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Abstract. In the study of hamiltonian graphs, many well known results use degree con-
ditions to ensure su½cient edge density for the existence of a hamiltonian cycle. Recently it
was shown that the classic degree conditions of Dirac and Ore actually imply far more than
the existence of a hamiltonian cycle in a graph G, but also the existence of a 2-factor with

exactly k cycles, where 1U k U
jV�G�j

4
. In this paper we continue to study the number of

cycles in 2-factors. Here we consider the well-known result of Moon and Moser which
implies the existence of a hamiltonian cycle in a balanced bipartite graph of order 2n. We
show that a related degree condition also implies the existence of a 2-factor with exactly k

cycles in a balanced bipartite graph of order 2n with nVmax 51;
k2

2
� 1

� �
.

1. Introduction

All graphs considered are simple, without loops or multiple edges. A 2-factor of
a graph G is a 2-regular subgraph of G that spans the vertex set V�G�, that is,
a 2-factor is a collection of vertex disjoint cycles that cover all vertices of G. For
years mathematicians have investigated results ensuring the existence of 2-factors
in graphs. Hundreds of results exist concerning the special case when the graph is
hamiltonian, that is, the 2-factor is a single cycle. Recently, there have been e¨orts
to determine more about the structure of general 2-factors. Questions about the
number of cycles possible in a 2-factor or the lengths of the cycles forming the
2-factor have drawn interest.

* Supported by N.S.A. Grant MDA904-97-1-0101
y Supported by O.N.R. Grant N00014-91-J-1085
z Supported by O.N.R. Grant N00014-97-1-0499
§ Supported by O.N.R. Grant N00014-91-J-1098
P Supported by O.N.R. Grant N00014-J-93-1-0050



Such a question was considered in [1], where the following generalization of
Ore's Theorem [6] was shown.

Theorem 1. Let k be a positive integer and let G be a graph of order nV 4k. If

deg u� deg vV n for every pair of nonadjacent vertices u and v in V�G�, then G has
a 2-factor with exactly k vertex disjoint cycles.

An immediate Corollary to Theorem 1 generalizes the classic hamiltonian
result of Dirac [3].

Corollary 2. If G is a graph of order nV 4k, k a positive integer, and d�G�V n

2
,

then G contains a 2-factor with exactly k cycles.

The complete bipartite graph Kn=2;n=2 shows that the conclusion of Theorem 1
and that of Corollary 2 are best possible in the sense that any 2-factor can contain

at most
n

4

� �
cycles. Throughout this paper we let G � �X UY ;E� be a balanced

bipartite graph with vertex set V � X UY , where jX j � jY j, and edge set E which
contains the edges with one vertex in X and the other one in Y. Corresponding to
Dirac's Theorem, Moon and Moser [5] obtained the following result for balanced
bipartite graphs.

Theorem 3. If G � �X UY ;E� is a balanced bipartite graph of order 2n; �nV 2�
with deg u� deg vV n� 1 for each pair of nonadjacent vertices u A X and v A Y ,
then G is hamiltonian.

In this paper we show the following result, which generalizes Theorem 3 in a
manner similar to the generalization of Ore's Theorem shown in Theorem 1.

Theorem 4. Let k be a positive integer and let G be a balanced bipartite graph of

order 2n where nVmax 51;
k2

2
� 1

� �
. If deg u� deg vV n� 1 for every u A V1 and

v A V2, then G contains a 2-factor with exactly k cycles.

We will use the notation P�u; v� to denote a path from u to v, while C�u; v� shall
mean the segment of the cycle C from vertex u to v (including u and v) under some
orientation of C. We also let hSi denote the subgraph of G induced by the vertex
set S JV�G�. We use the notation deg v for the degree of the vertex v and degS v

for the degree of v relative to the subgraph S. Further, N�x� represents the set of
vertices adjacent to x and NÿC �x� and N�C �x� represent the predecessors and suc-
cessors of neighbors of x along some orientation of cycle C respectively.

Given a cycle C (or path P) with an orientation, we let v� denote the successor
of vertex v along C and vÿ the predecessor of v along C, according to this orient-
ation. For terms not de®ned here, see [2].

We have recently learned of a related result due to Wang [7] that provides a
minimum degree condition (namely d�G� >� dn=2e � 1) for a balanced bipartite
graph to have a 2-factor with exactly k cycles.
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2. Preliminary Lemmas

In this section we provide some preliminary lemmas that will be useful in the proof
of Theorem 4.

Lemma 1. Let G � �X UY ;E� be a bipartite graph and let C be a cycle of G and let

P�u; v� be a uÿ v path in G ÿ V�C� such that u A X and v A Y . If

degC u� degC vV
jV�C�j

2
;

then hV�C�UV�P�u; v��i is hamiltonian, unless degC u � 0 or degC v � 0. If

degC u� degC vV
jV�C�j

2
� 1;

then hV�C�UV�P�u; v��i is hamiltonian. Furthermore, if in this case C also con-

tains a 2-factor with exactly two cycles, then so does hV�C�UV�P�u; v��i.

Proof. Since degC u� degC vV
jV�C�j

2
and G is bipartite with u A X and v A Y ,

either the cycle C has two consecutive vertices such that one is adjacent to u and
the other is adjacent to v, and hence we obtain the desired hamiltonian cycle, or
degC u � 0 or degC v � 0.

Now, if

degC1
u� degC1

vV
jV�C�j

2
� 1;

then we cannot have the situation that degC u � 0 or degC v � 0. Thus, again
hV�C�UV�P�u; v��i is hamiltonian.

Now suppose that C also contains a 2-factor with exactly two cycles, say C11

and C12. Then we have that either degC11
u� degC11

vV
jV�C�j

2
� 1 or degC12

u�

degC12
vV
jV�C�j

2
� 1. Thus, either hC11 U fu; vgi or hC12 U fu; vgi is hamil-

tonian. In either case, we have the desired 2-factor of hV�C�UV�P�u; v��i with
2 cycles. r

Lemma 2. Let G � �X UY ;E� be a bipartite graph and let C � u1v1u2v2 . . . unvnu1

be a cycle in G. If u A X and v A Y are two vertices of G ÿ V�C� and if

degC u� degC vV
jV�C�j

2
� 1;

then hV�C�U fu; vgi is hamiltonian unless equality holds and, up to renumbering,
we have that v is adjacent to u1; . . . ; uk and u is adjacent to vk; . . . ; vn, for some k.
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Proof. Suppose, to the contrary, hV�C�U fu; vgi is not hamiltonian. Since

degC u� degC vV
jV�C�j

2
� 1, there are two consecutive vertices on C, say x and

x�, with x A N�u� and x� A N�v�. Then, for any w0 x, w A N�u� implies that
w� B N�v�.

Now let y be the next neighbor of u along C from x following the orientation
given to C. Because of the degree sum condition, vyÿ A E�G� (note that yÿ and x�

may be the same vertex). Recall u A X and v A Y . If there is a vertex z A C�y; x�V
Y such that zÿÿ B N�u� and z A N�u�, then vzÿ A E�G�, (or the degree condition
would fail) which implies that hV�C�U fu; vgi is hamiltonian (see Figure 1a).
Thus, N�u�VV�C� � C�y; x�VY , which implies that hV�C�U fu; vgi is hamil-
tonian or N�v�VC�y; x� �h. Since

degC u� degC vV
jV�C�j

2
� 1

we have that N�v�VV�C� � C�x; y�VX , that is, up to renumbering, v is adjacent
to precisely u1; . . . ; uk for some k and u is adjacent to precisely vk; . . . ; vn (see
Figure 1b), and hence equality holds in the degree sum. r

Lemma 3. Let G � �X UY ;E� be a bipartite graph and C a cycle in G with

jV�C�jV 6. Let u A X , v A Y and u; v A V�G� ÿ V�C�. If

degC u� degC vV
jV�C�j

2
� 2;

then hV�C�U fu; vgi has a 2-factor with exactly two cycles.

Proof. Since degC u� degC vV
jV�C�j

2
� 2, then jNC�u�V �NÿC �v��jV 2 and

jNC�u�V �N�C �v��jV 2. Thus, there are two distinct vertices x; x1 A NC�u� such
that x�0 xÿ1 and fx�; xÿ1 gJNC�v� (see Figure 2). A 2-factor is easily found. r

Fig. 1
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3. Proof of Main Theorem

We now present the proof of our main result, Theorem 4.

Proof of Theorem 4. Assume that G does not contain a 2-factor with exactly k

cycles. Since deg u� deg vV n� 1 for every u A X and v A Y , we assume, without

loss of generality, that deg xV
n� 1

2
for each x A X .

We would fail to have a K4;4 in G, if for each possible set of 4 vertices (in say
X ), there were at most 3 common neighbors (in Y ). However, from our degree

condition and since nV 51, we see that

n� 1

2

4

0@ 1An > 3
n

4

� �
and hence, that G

contains a K4;4.

Let C1 be an 8-cycle in K4;4. Clearly, K4;4 also contains two vertex disjoint
4-cycles, call them C11 and C12. Now we claim that in G ÿ V�C1�, there must exist
at least k ÿ 2 vertex disjoint 4-cycles. To see this, suppose that the claim fails to
hold. Then there are at most k ÿ 3 vertex disjoint 4-cycles in G ÿ V�C1�. Call a
largest collection of 4-cycles F and say it contains s vertex disjoint 4-cycles. Let
XR � X ÿ V�C1� ÿ V�F� and YR � Y ÿ V�C1� ÿ V�F � and t � jXRj � jYRj �
nÿ 2sÿ 4. By our degree condition, we have tV nÿ 2�k ÿ 3� ÿ 4V nÿ 2k � 2 >
0. Since there are no 4-cycles in hXR UYRi, by counting the number of pairs of
distinct vertices in YR which have the same neighbor in XR, we see that

n� 1

2
ÿ 2sÿ 4

2

0@ 1AtU
t

2

� �
:

Since sU k ÿ 3, to reach a contradiction, we only need to show that

��n� 1�=2ÿ 2k � 2���n� 1�=2ÿ 2k � 1�V n:

Note that nVmaxf51; k2=2� 1g. Thus, if 51V k2=2� 1, then k U 10 and

��n� 1�=2ÿ 2k � 2���n� 1�=2ÿ 2k � 1�V ��n� 1�=2ÿ 8���n� 1�=2ÿ 9�
V 7��n� 1�=2ÿ 8�V n:

Fig. 2
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Hence, we assume that k2=2� 1 > 51, and so, k V 11. Thus,

�n� 1�=2ÿ 2k � 1V k2=4ÿ 2k � 2V 10:

Hence,

��n� 1�=2ÿ 2k � 2���n� 1�=2ÿ 2k � 1�V 10��n� 1�=2ÿ 2k � 2� �1�
� n� 1� 4�n� 1� ÿ 20�k � 1� �2�
V n� 1� 4�k2=2� 2� ÿ 20�k � 1�
> n: �3�

Hence, we have shown what we needed and the inequality is established. In par-
ticular, we have shown the following:

Claim 1. The bipartite graph G contains k ÿ 1 vertex disjoint cycles C1;C2;C3; . . . ;
Ckÿ1 such that there are two vertex disjoint cycles, C11 and C12, with V�C1� �
V�C11�UV�C12�.

Now, among all collections of k ÿ 1 vertex-disjoint cycles in G, choose one
that covers the largest possible number of vertices and in addition, has the prop-
erty that V�C1� can be partitioned into two parts that each contain a spanning
cycle. Since G does not contain a 2-factor with exactly k cycles, the graph H �
G ÿ6kÿ1

i�1 V�Ci�0h, in fact, H has at least 2 vertices since it has even order.

Claim 2. The graph H does not contain two nontrivial components.

Suppose that H does contain two nontrivial components, say H1 and H2.
Without loss of generality suppose that jV�H1�jV jV�H2�j and let uv A E�H2�.
Note that

degH u� degH vU jV�H2�jU jV�H�j
2

:

Thus, there is a cycle Ci �1U i U k ÿ 1� such that

degCi
u� degCi

vV
jV�Ci�j

2
� 1

and hence, by Lemma 1, hV�Ci�U fu; vgi is hamiltonian. But this contradicts the
maximality of the original collection of cycles, a contradiction to our assumptions.
Thus, H2 must be trivial if it exists. r

We now note that if B is a connected bipartite graph with partite sets W1 and
W2, where jW1jU jW2j, then B has a balanced connected subgraph.

If H has a nontrivial connected component H1, let F1 be a balanced connected
subgraph of H1. Further, we select F1 such that jV�F1�j is maximum under the
above restrictions. Then as before, all other components are trivial.

Claim 3. The graph F1 0K2.
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Suppose to the contrary that F1 � K2. Let V�F1� � fu; vg where uv A E�G�.
Then,

degH u� degH vU
jV�H�j

2
� 1: �4�

Note that equality holds in equation (4) if, and only if, H1 is a star centered either
at u or v. Without loss of generality, we assume that H1 is a star centered at v.

By Lemma 1, we have that

degCi
u� degCi

vU
jV�Ci�j

2

for each i � 1; 2; . . . ; k ÿ 1 or our cycle system could be enlarged, a contradiction.
Since deg u� deg vV n� 1, we have that

degCi
u� degCi

v � jV�Ci�j
2

for each i. Then, again by Lemma 1, we have that either degCi
u � jV�Ci�j

2
and

degCi
v � 0 or degCi

v � jV�Ci�j
2

and degCi
u � 0, for each i � 2; . . . ; k ÿ 1.

We shall show that H � F1 � K2. Suppose, to the contrary, H ÿ F1 0h.

Now suppose there is a cycle Ci �i V 2� such that degCi
u � jV�Ci�j

2
. Let u� A

V�Ci�VX . We interchange u and u� to get a new cycle C �i . Then replacing Ci by
C �i in our cycle system (and renaming C �i to Ci) preserves the properties of the
system. Now let H � � hH ÿ u� u�i and select a vertex u1 0 u� with u1 A V�H�V
X . Note here that u1 is adjacent to v. Then we have

degH � u1 � degH � vU
jV�H�j

2
:

But then there is a cycle Cj such that

degCj
u1 � degCj

vV
jV�Cj�j

2
� 1:

Thus, by Lemma 1, hC �j U fu1; vgi has a hamiltonian cycle C��j which preserves
the properties of Cj. But then replacing Cj by C��j contradicts the maximality of
our cycle system. Thus, degCi

u � 0 for each i V 2. Since deg uV 2, then degC1
u0

0. If degC1
v � 0, then degC1

u � jV�C1�j
2

. Therefore,

degC11
u � jV�C11�j=2 and degC12

u � jV�C12�j=2;

since V�C1� � V�C11�UV�C12�. Let u� A V�C11�VX . Since both the successor
(on C11) and the predecessor of u� on C11 are neighbors of u; hV�C11�U fugÿ
fu�gi has a hamiltonian cycle C �11. For the same reason, hV�C1�U fug ÿ fu�gi
has a hamiltonian cycle C �1 . Then, replacing C1 by C �1 in our cycle system pre-
serves the properties of the system. Let H � � hH U fug ÿ fu�gi and select a
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vertex u1 0 u� in V�H�VX . Then, again

degH � u1 � degH � vU
jV�H�j

2
:

Then, there is a cycle Cj such that

degCj
u1 � degCj

vV
jV�Cj�j

2
� 1

which, by Lemma 1, yields a contradiction.
Thus, degC1

v0 0. If for some j � 1; 2, we have that degC1j
u0 0 and degC1j

v

0 0, then by Lemma 1, hV�C1j�U fu; vgi is hamiltonian, and hV�C1�U fu; vgi is

hamiltonian, a contradiction. Therefore, since degC1
u� degC1

v � jV�C1�j
2

, we

may assume without loss of generality that

degC11
u � jV�C11�j=2 and degC12

v � jV�C12�j=2;

that is, N�u�KV�C11�VY and N�v�KV�C12�VX . For each u� A V�C11�VX , if
its successor and predecessor on C1 are both in V�C11�VY , we interchange u and
u�. In the same manner as above, we again obtain a contradiction. Thus, u� must
have a neighbor in V�C12�VY for each u� A V�C11�VX . It is readily seen that
V�C1�U fu; vg is hamiltonian and has a 2-factor with exactly two cycles (see Fig-
ure 3), unless jV�C11�j � jV�C12�j � 4. However, the later case can happen only
when hV�C1�i is a K4;4 by our choice of C1. Clearly, in this case, we can enlarge
the cycle system by inserting u and v to C1, a contradiction. Therefore, we can
conclude that H ÿ F1 �h and that H � F1 � K2.

We now relabel the cycles C11;C12;C2; . . . ;Ckÿ1 as C �1 ; . . . ;C �k . The cycle C �i is

called a u-type cycle if degC �
i

u � jV�C
�
i �j

2
and C �i is called a v-type cycle if degC �

i
v

� jV�C
�
i �j

2
. Note that each C �i is either a v-type or u-type cycle and the degree sum

condition implies there are both types of cycles. Assume without loss of generality
that C �1 ; . . . ;C �m are u-type cycles and C �m�1; . . . ;C �k are v-type cycles.

If d�G�V n� 1

2
and deg u� deg v � n� 1, we have that deg u � deg v � n� 1

2
.

Thus, the total number of vertices in u-type cycles is nÿ 1 and the total number

of vertices in v-type cycles is nÿ 1. Since nV
k2

2
� 1V 2m�k ÿm� � 1. Note

that equality holds throughout if and only if m � k=2 and n � k2=2� 1. Now
nÿ 1

m
V 2�k ÿm�. Let C �r be the longest cycle among the u-type cycles. Thus,

jV�C �r �jV 2�k ÿm�. Note that if equality holds above, each u-type cycle has the
same length, k. Since

Pm
i�1 jV�C �i �j � nÿ 1, each u� A X V �6m

i�1V�C �i �� must
have a neighbor in 6k

i�m�1V�C �i �. If either jV�C �r �j > 2�k ÿm� or there is a vertex
of C �r with at least two neighbors in 6k

m�1V�C �i �, then, by the pigeon hole prin-
ciple, there are two vertices u�; u�� A X VV�C �r � so that both u� and u�� have a
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neighbor in some cycle C �s ; �s > m�. Then the con®guration of Figure 3 shows that
hC �1 UC �s U fu; vgi has a 2-factor with exactly 2 cycles, namely

u�; v�; . . . ; v��; u��; b; . . . ; a; u; c; . . . ; u�

and

v; d; . . . ; e; v:

Thus, the longest u-type cycle has length exactly 2�k ÿm� (which implies each

u-type cycle is a longest such cycle) and has exactly one neighbor in 6k

m�1V�C �i �.
Thus, the subgraph induced by the u-type (or v-type) cycles are complete bipartite
graphs. Further, there is a perfect matching between the vertices in the u-type
cycles and the vertices in the v-type cycles. It is easy then to construct a 2-factor
with exactly k cycles in this graph. Thus G has a 2-factor with exactly k cycles.

Now if deg uV
n� 1

2
and deg v <

n� 1

2
(a similar argument applies if these

conditions are reversed), then as before, there is a u-type cycle, say C �d , of length

greater than 2�k ÿm�. Since deg v <
n� 1

2
, we see that for any u� A V�C �d �VX ;

deg u�V deg uV
n� 1

2
. Further, u� is not adjacent to v or we could extend our

cycle system. Thus, each u� A V�C �d �VX must have at least one adjacency to the
v-type cycles C �m�1; . . . ;C �k . We now proceed as before to obtain a contradiction.
Hence, we conclude that F1 0K2. r

Claim 4. If E�F1�0h, then F1 is hamiltonian.

By Claim 3, if E�F1�0h, then jV�F1�jV 4. If F1 is not hamiltonian, then
there are two nonadjacent vertices u; v A V�F1� such that u A X and v A Y and

degF1
u� degF1

vU
jV�F1�j

2

Fig. 3
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and so, by our choice of F1,

degH u� degH vU
jV�H�j

2
:

Let P�u; v� be a path in F1 from u to v. Then from the above inequality we
know that there is some Ci; iV 1, such that

degCi
u� degCi

vU
jV�Ci�j

2
� 1:

Thus, by Lemma 1, hV�Ci�UV�P�u; v��i has a hamiltonian cycle C �i and as be-
fore, C �i preserves the properties of Ci. But then the cycles C1; . . . ;Ciÿ1;C

�
i ;

Ci�1; . . . ;Ckÿ1 contradict the maximality of
Pkÿ1

i�1 jV�Ci�j. Thus, F1 must contain
a hamiltonian cycle. r

Since G does not contain a 2-factor with k cycles, it must be the case that
H ÿ F1 0h, or we could add the cycle in F1 to our cycle system and obtain a
2-factor with exactly k cycles, contradicting our assumptions.

Claim 5. E�F1� �h.

Assume that E�F1�0h, then by Claim 4, F1 is hamiltonian. Let C be a
hamiltonian cycle of F1 and let u A X VV�H ÿ F1� and v A Y VV�H ÿ F1�. Then,
by our choice of F1,

degH u� degH vU
jV�F1�j

2
U
jV�H�j

2
ÿ 1:

Thus, Xkÿ1

i�1

�degCi
u� degCi

v�V
Xkÿ1

i�1

jV�Ci�j
2

� 2:

Thus, by Lemma 2 and Lemma 3, there is some iV 2 such that

degCi
u� degCi

vV
jV�Ci�j

2
� 1

Without loss of generality, we assume that i � k ÿ 1. Since hV�Ckÿ1�U fu; vgi is
not hamiltonian, we have, by Lemma 2, the con®guration with adjacencies up to
renumbering, as shown in Figure 1b.

If x � y, replace Ckÿ1 by the cycle vCkÿ1�x�; yÿ�v. Then, note that H � �
h�H ÿ v�U fxgi. Let F �1 be the largest component in H �. Then, F �1 is the only
possible nontrivial component in H � as we have shown before. Since ux A E�G�,
then V�F �1 �KV�F1�U fu; xg, a contradiction to the maximality of F1.

Thus, x0 y and similarly, x�0 yÿ. Now select y� and w � yÿÿ and form
two paths P�u; v� � uCkÿ1�y��;wÿ�v and P��w; y�� � wyÿyy�. Since N�u�V
Ckÿ1�x�;wÿ� �h and N�v�VCkÿ1��y���; x� �h, we have that

degP u� degP vU
jV�P�j

2
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and similarly,

degP � y� � degP� wU
jV�P��j

2
:

Also note that either N�y��VV�H� �h or N�w�VV�H� �h. Otherwise,
swapping fy�;wg and fu; vg, we obtain a set of k ÿ 1 cycles preserving the prop-
erties of C1; . . . ;Ckÿ1 and the remaining graph H � obtained by deleting these
cycles either contains two nontrivial components or the balanced component in
H � is larger than that in H, in either case a contradiction.

Hence, there is a cycle Ct �t0 i ÿ 1� such that

degCt
u� degCt

vV
jV�Ct�j

2
� 1

which, by Lemma 1, implies that hV�Ct�UP�u; v�i has a hamiltonian cycle C �t and
(again by Lemma 1) it preserves the properties of C1;C2; . . . ;Ckÿ1.

Let C �1 � C1;C
�
2 � C2; . . . ;C �t ; . . . ;C �kÿ2 � Ckÿ2. Since deg y��deg wV n�1,

there is a cycle C �j such that

degC �
j

y� � degC �
j

wV
jV�C �j �j

2
� 1:

Then, by Lemma 1, hC �j UP��y�;w�i has a hamiltonian cycle, say C��j . Replacing
C �j by C��j produces a collection of k ÿ 2 cycles, which, along with the hamiltonian
cycle C in F1, provides a collection of k ÿ 1 cycles which contradicts the max-

imality of
Pkÿ1

i�1 jV�Ci�j. Thus, we conclude that F1 �h. r

We now note that since E�F1� �h;H is an empty graph.

Claim 6. The graph H has order two.

Suppose to the contrary that jV�H�jV 4 (recall H has even order), and say
u1; u2 A V�H�VX and v1; v2 A V�H�VY . Since deg u1 � deg v1 V n� 1 and by

Lemma 2 , degCi
u1 � degCi

v1 U
jV�Ci�j

2
� 1, a direct count shows us that there

Fig. 4
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are at least three cycles Ci1 ;Ci2 ;Ci3 such that

degCis
u1 � degCis

v1 � jV�Cis�j
2

� 1;

�s � 1; 2; 3�. Similarly, there are three cycles Cj1 ;Cj2 ;Cj3 such that

degCjt
u2 � degCjt

v2 � jV�Cjt�j
2

� 1;

�t � 1; 2; 3�. Without loss of generality, assume i1 0 j1 and i1 V 2; j1 V 2. Let
i � i1 and j � j1.

By Lemma 3 we have the following two con®gurations of Figure 5.
If x1 � y1, then operating as before, we exchange v1 with x1 and obtain k ÿ 1

cycles C �1 ; . . . ;C �kÿ1 and H � G ÿ6kÿ1

i�1
V�C �i � where H now contains an edge,

contradicting our previous claim. Similarly, x�1 � yÿ1 ; x2 � y2 and x�2 � yÿ2 all
lead to contradictions.

But now, u2Cj�y2; x2�u2 and v2Cj�x�2 ; yÿ2 �v2 provide a 2-factor of
hCj U fu2; v2gi.

Assign one of these two cycles to C �i and the other one to C �j . These two cycles
along with all other cycles Cl ; l 0 i; j gives a collection of k ÿ 1 cycles C �1 ; . . . ;
C �kÿ1 with C �1 � C1.

Let y�1 � z and yÿÿ1 � w. Also let

P�u1; v1� � u1C�z�;wÿ�v1

and

P��w; z� � wyÿ1 y1z:

Clearly, N�w�VV�H� �h and N�z�VV�H� �h. Otherwise, we may ex-
change u and z or v and w and then H � will have at least one edge, contradicting
our earlier claims.

Fig. 5

78 G. Chen et al.



Note that degP u1 � degP v1 U
jV�P�j

2
and degP� z� degP� wU

jV�P��j
2

. Since

deg u1 � deg v1 V n� 1, there is a cycle C �s such that degC �s u1 � degC �s v1 V
jV�C �s �j

2
� 1.

Then hV�C �s �UV�P�u1; v1��i has a hamiltonian cycle, say C��s and by Lemma
1 it preserves the properties of C �s . Let C��1 � C �1 ; . . . ;C��s � C��s ; . . . ;C��kÿ1 �
C �kÿ1. Since deg z� deg wV n� 1 and degP� z� degP� wU

jV�P��j
2

, and N�z�V
V�H� �h and N�w�VV�H� �h, there is a cycle C��t such that

degC��t
z� degC��t

wV
jV�C��t �j

2
� 1:

By Lemma 1, hV�C��t �UV�P�w; z��i is hamiltonian and the cycle preserves the
properties of C��t , which again allows us to contradict the maximality ofP jV�Ci�j, completing the proof of the claim. r

Thus, jV�H�j � 2, say V�H� � fu; vg. Since, by Lemma 2,

degC1
u� degC1

v � jV�C1�j
2

� 1

and deg u� deg vV n� 1, there is an iV 2 such that

degCi
u� degCi

v � jV�Ci�j
2

� 1:

By Lemma 2, hV�Ci�U fu; vgi has the subgraph of Figure 1b, or we would be
able to again contradict the maximality of our collection of cycles.

Note that if x � y, we could swap v with x to obtain the cycles

C �1 � C1; C �2 � C2; . . . ;C �i � vC�x�; yÿ�v; C �i�1; . . . ;C �kÿ1

But these k ÿ 1 cycles preserve the properties of C1; . . . ;Ckÿ1. However, then
G ÿ6kÿ1

i�1 V�C �i � � K2, a contradiction to Claim 4. Similarly, we have x�0 yÿ.
Thus, the graph hV�Ci�U fu; vgi has two cycles,

Ci1 � uC�y; x�u
and

Ci2 � vC�x�; yÿ�v:

Now, C1; . . . ;Ci1 ;Ci2 ; . . . ;Ckÿ1 forms a 2-factor of G with exactly k cycles, a
contradiction.

This contradiction completes the proof of the theorem. r

The following Corollary is immediate.
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Corollary 5. If G is a balanced bipartite graph of order 2n with nV

max 51;
k2

2
� 1

� �
and d�G�V n� 1

2
, then G contains a 2-factor with exactly k

cycles.
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