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Degree Sums, k-Factors and Hamilton Cycles in Graphs

R.J. Faudree! and J. van den Heuvel**

! Department of Mathematical Sciences, Memphis State University, Memphis,
TN 38152, U.S.A.

2 Faculty of Applied Mathematics, University of Twente, P.O. Box 217,

7500 AE Enschede, The Netherlands

Abstract. We prove (a generalization of) the following conjecture of R. Haggkvist: Let G be
a 2-connected graph on n vertices where every pair of nonadjacent vertices has degree sum
at least n — k and assume that G has a k-factor; then G is hamiltonian. This result is a
common generalization of well-known theorems of Ore and Jackson, respectively.

1. Results

We use Bondy and Murty [5] for terminology and notation not defined here and
consider finite, simple graphs only.
In Héggkvist [7] the following conjecture, among many others, appears.

Conjecture 1. Let G be a 2-connected graph on n vertices where every pair of non-
adjacent vertices has degree sum at least n — k and assume furthermore that G has a
k-factor. Then G is hamiltonian.

The main goal of this paper it to show that Conjecture 1 is true. In fact, we will
prove a more general result. For a graph G and integer k > 1, define 0,(G) by

0,(G) = min{ Y. dg(v) | S < V(G) is an independent set of size k}
veS

Now we can state our main result, the proof of which will be given in Section 2.

Theorem 2. Let G be a 2-connected graph on n vertices that contains a k-factor and
satisfies 65(G) > 3(n — k). Then either G is hamiltonian or k = 2 and G € .

Here Z is a family of six graphs defined as follows. Let

*  The research for this paper was done while the second author visited Memphis State

University, partly supported by a grant from the Netherlands Organization for Scientiftc
Research (N.W.0O.).
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Fe ={K;+K, +K;,K, +K, + K;,K, + K, + K;},

where “+” denotes the disjoint union of two graphs. Then % is the family of all
graphs that can be obtained as the join of K, or K, and a graph in %, .
From Theorem 2 it is easy to deduce the truth of Conjecture 1.

Corollary 3. Let G be a 2-connected graph on n vertices that contains a k-factor and
satisfies 6,(G) > n — k. Then G is hamiltonian.

Proof. For any graph G and any three independent vertices u, v, w in V(G) we have
d(u) + d(v) + d(w) = 3[([d®) + d(v)) + (d() + d(w)) + (d(v) + d(W))]
330,(G)

1\

So for any graph G, 65(G) > 30,(G). Hence if 6,(G) > n — k, then a5(G) > 3(n — k).
For k = 2, the graphs in %, do not satisfy ¢, > n — 2. Hence Corollary 3 follows
from Theorem 2. ]

Corollary 3 is best possible. This is shown by the graphs G, ; = K, v (K,4+; + IK;)
(“v” denotes the join of two graphs). For any k, I with [ >k>0and [ > 2, G,
is a 2-connected graph on n =2l + k + 1 vertices that contains a k-factor, has
0,(G,;) =2l=n—k — 1 and does not contain a Hamilton cycle. The Petersen
graph P is another example showing that Corollary 3 is best possible. (P has 10
vertices, contains a 3-factor and 6,(P) = 6 = 10 — 3 — 1.) Theorem 2 is almost best
possible. At the end of this section we state a best possible improvement.

Corollary 3 is a common generalization of two well-known results in hamil-
tonian graph theory. Every graph contains a O-factor, so substituting kK =0 in
Corollary 3 gives Ore’s Theorem.

Theorem 4 (Ore [9]). If G is a graph on n > 3 vertices that satisfies ,(G) > n, then
G is hamiltonian.

If G is a k-regular graph, then obviously it contains a k-factor and satisfies o,(G) >
2k. So, if G is a k-regular graph on n vertices with n < 3k, then ¢,(G) > 2k > n — k.
This shows that Corollary 3 generalizes the following result.

Theorem 5 (Jackson [8]). A 2-connected, k-regular graph on at most 3k vertices is
hamiltonian.

It is possible to improve Theorem 2 to the following result. The proof of this result,
which we will omit, uses the same techniques that will be used in Section 2.

Theorem 6. Let G be a 2-connected graph on n vertices that contains a k-factor and
satisfies 65(G) > 3(n — k — 1). Then G is hamiltonian, or G is a spanning subgraph of
a graph in &, (if k = 2), a spanning subgraph of a graph in #, (if k > 2), or a
spanning subgraph of a graph in g, (if k > 1).
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Here &, #, and ¢, are families of graphs defined as follows. Let
F7={K,+ K, +K,|me{3,456}}U{K, + K, + K, |me {3,4,5}}
H, =Ky + Kiiy + Kis1, Kooy + Ky + Kii2 ) (k=2
F={Ky + K + Ko, K + K + Kiwa, K+ Ky + Ky} (k21)

Then %, #,, #, are the families of all graphs that can be obtained as the join of
K, and a graph in &, #,, %, respectively.

Note that all exceptional graphs in Theorem 6 have connectivity 2. The bound
05(G) > 3(n — k — 1) in Theorem 6 cannot be lowered without introducing excep-
tional graphs of arbitrary connectivity for each k > 1. This is shown by the graphs
G, we introduced earlier. For any k, [ with [ > k > 0 and 1 >3, G, is a graph on
n=2l+k + 1 vertices that contains a k-factor, has 05(G, ;) =3l =3(n —k — 1)
and does not contain a Hamilton cycle. And also the Petersen graph shows that
lowering the bound on a5(G) in Theorem 6 is not possible (for k = 3).

Theorem 6 not only generalizes the previous results in this section, but it also
generalizes the case m = 2 of the following result. (It is easy to show that the
exceptional graphs in Theorem 6 do not satisfy o3 > 3(n — 1).)

Theorem 7 (Bondy [3]). Let G be an m-connected graph on n vertices such that
6,+1(G) > 1(m + 1)(n — 1). Then G is hamiltonian.

2. Proof of Theorem 2

Following Chvatal [6], we call a graph G 1-tough if (G — S) < |S| for every subset
S = V(G) with w(G — S) > 1, where w(H) denotes the number of components of a
graph H. For A, B < V(G) we denote the number of edges with one end vertex in
A and the other in B by ¢5(4, B), the edges with both ends in A N B being counted
twice.

The following lemma is a first but essential step in the proof of Theorem 2.

Lemma 8. Let G be a 2-connected graph on n vertices that contains a k-factor and
satisfies 03(G) > 3(n — k). Then either G is 1-tough or k = 2 and G € F.

Proof. Suppose G is a 2-connected graph on n vertices that contains a k-factor and
satisfies 0;(G) > 3(n — k). Let F be a k-factor in G. Assume that G is not 1-tough,
hence there exists a vertex cut S < V(G) with w(G — S) > |S|. Define s = |S| and
t = w(G — S); hence t > s + 1. G is 2-connected, so s > 2. Let Cy, C,, ..., C, be
the components of G — S and let ¢; be the number of vertices in component C;
(1 <i<t), where we assume ¢; < ¢, < - < ¢,. First we make some observations.

A vertex v e V(G) has k neighbors in F, hence it has at least k neighbors
in G. All neighbors of a vertex ve V(C) lie in (V(C;) — {v})US, implying that
¢;— 1+ s>k Thus

a2k—s+1, (1<i<) (1)
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Since F is a k-factor, ex(V(C;), V(G)) = kc;. Also, ex(V(C)), V(C;)) < (¢; — 1)c;, s0
er(V(C), V(G) — V() = ex(V(C), V(G)) — ex(V(C), V(C)) ?
> ke, — (¢; — 1) 1<i<y)
Hence, whenever ¢; < k,
er(V(C),V(G) = V(C)) = ke; — (c;— Ve =k + (k—c)(c;— 1) >k (3)

Suppose that ¢; < k for 1 <i < m. Then from (3) we have

km < 3. (VG V(G) = V(C)) = Y. ex(V(C).S
i 4)
= sF(U V(C,), S> < e(V(G) — 8§, 8) < ks.
i=1
From (4) it follows that m < s, whence
c;=>k+1, fors+1<i<t. (5)

Let v;e V(C;), 1 <i< 3. Then d(v;) <¢; — 1 +s. We distinguish two cases,
depending on the value of s.

Casel.s >3
In this case we have 3(n — k) < 03(G) < d(vy) + d(v,) + d(v3) < 3s + ¢y + ¢, +
c3 — 3, which gives

n<k+2s+3c, +c;+c;—3) (6)

By definition of ¢; we have ¢; > ¢, for 3 <i < s, and by (5) we have ¢; > k + 1 for
s+ 1 <i<t Together with t > s + 1 this gives

nzs+c+c+(5—2es+(t—s)k+1)>s+c;+c,+(5—2)ecs+k+1
(7)

Combining (6) and (7) we obtain s+c¢; +c¢c, +(s—2cs;+k+1<k+ 25+
3(cy + ¢; + ¢3 — 3), which is equivalent to (3s — 8)(c; — 1) + ¢, + ¢, + 1 < 0. But
we assumed s > 3,50 (3s — 8)(c; — 1) + ¢; + ¢, + 1 > 1, and we obtain a contra-
diction in this case.

Case2.s =2
In this case we have d(v;) < ¢; — 1 + s = ¢; + 1, hence

%(n_k)SO':;(G)SCl+02+C3+3sn+1 (8)

By (1) and (5) we know ¢y, ¢, >k —landcs,...,c, >k + 1.
We distinguish three subcases, depending on the values of ¢, and c,.

Case2l.ci;=c,=k—1
By (2) we have, fori =1, 2,

er(V(C:), S) = ex(V(Cy), V(G) — V(C)) = ke; — (¢, — Ve = 2(k — 1) )
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This gives 2- 2(k — 1) < &x(S, V(G) — S) < 2k, hence k < 2. But since k — l=¢r=1
we have k = 2. By (8) we have 3(n — 2) < n + 1, which gives n < 8. We conclude
that G is a spanning subgraph of K, v (K; + K; + K3)or K, v (K; + K + Ky).
It is easy to check that the only spanning subgraphs of those two graphs that
satisfy o, >3(n—2) are the graphs themselves and the graphs K, v
(K, + K, + K;)and K, v (K; + K, + K,).

Case2.2.¢c;,=k—1,c,=k
By (2) we have

epr(V(Cy),8) = key — (¢ — Dey = 2(k — 1) (10
)
er(V(C,),8) = ke, — (c; — e, =k

which gives k + 2(k — 1) < &x(S, V(G) — S) < 2k, hence k < 2. As in Case 2.1, it
follows that k = 2 and n < 8. We conclude that G is a spanning subgraph of
K, v (K, + K, + K;). And again, the only spanning subgraphs of this graph that
have o, > 3(n — 2) are the graph itself and the graph K, v (K, + K, + K3).

Case 2.3. ¢y + ¢, = 2k

In this case we have n > 2k + k + 1 + 2 = 3k + 3. By (8) we know 3(n — k) <
n + 1, which is equivalent to n < 3k + 2. Combining these two inequalities gives
an easy contradiction in this last case. O

For the remainder of this section we assume that G is a nonhamiltonian, 2-
connected graph on n vertices that contains a k-factor F, satisfies 05(G) > 3(n — k),
and is not one of the graphs in . Then we know by Lemma 8 that G is 1-tough.
Moreover, if k < n, then 04(G) = 3(n —3n) =n, and if k > 3n, then o3(G) >
04(F) = 3k > n. Hence 05(G) > n in both cases. This means that we can use the
following lemma. The first part of Lemma 9 is Bauer, Veldman, Morgana and
Schmeichel [2, Theorem 57; the second part is implicit in the proof of [2, Theorem
9] (the full lemma appears as Lemma 3 in Bauer, Broersma and Veldman (1.

Lemma 9 [1,2]. Let G be a 1-tough graph on n > 3 vertices with a5(G) > n. Then
every longest cycle of G has the property that V(G) — V(C) is an independent
set. Moreover, if G is nonhamiltonian, then G contains a longest cycle C such that
max{d(v)|v € V(G) — V(C)} = 305(G).

By Lemma 9 we can choose a longest cycle C in G and a vertex a € V(G) — V(C)
such that N(a) = V(C) and dg(a) > 305(G). We choose an orientation Cof C. If
u e V(C), then u* denotes the successor of u on C and u~ denotes its predecessor.
If 4 < V(C), then A" = {v*|ve A} and A~ = {v"|v e A}. For u, v € V(C), uCv de-
notes the set of consecutive vertices of C from u to v in the direction specified by C.

In the remainder of our proof we use several ideas of the proof of the main
result in Bondy and Kouider [4].

Set Y, = {a} and define,for i > 1,

X,=N(Y_y), Y={a}U{ceV(O)lc,c" e X}
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Then N(@)=X, c X, = X, < and W=Y%cYc¥c . Set X=X
and Y = U Y. Since C is a longest cycle in G and there exists no cycle C’' with

the same length as C satisfying w(G — V(C')) < w(G — V(C)), we can use the
“Hopping Lemma” from Woodall [10].

Lemma 10 (Hopping Lemma, [10, Lemma 12.3]). Let C, X and Y be defined as
above. Then X and Y have the JSollowing properties.

(@) N(Y)=X < V(C)
(b) XNX* =
© XNY=g

Set x=|X| and y=|Y| and define Z* =X"-Y,Z =X —Y and Z =
Z*UZ". Then, using Lemma 10,|Z*| = |Z7|=x -y + 1.

The subgraph C — X consists of segments of the cycle C. There are two types
of segments: segments consisting of isolated vertices (the vertices in Y — {a}), and
segments consisting of two or more vertices. The latter segments can be considered
as paths with one end vertex in Z* and the other end vertex in Z~. We denote these
“long” segments by Cos ---» C,_,, the element of V(C;)in Z* by p,, and the element
of V(C;)in Z~ by g;. Set, for 0 < i < x — Y, 8;=V(C), s; = |S;| and define S = S,
R:V(G)—(YUXUS)andr=lR|. i

We will use the following two results.

Lemma 11 (Jackson [8, Corollary 1]). Let C, Z*, Z~ and R be defined as above.
Then the following hold.

(@) Z" and Z~ are independent sets.

(b) If ue Z* and ve Z~, then there exist no X, yev*™*Cu " such that x e N(u),
VEN(@) and x =y~ or x = y*. R

© If u, veZ*, u v, then there exists no X €u™Cv~ such that x e N(u) and
X~ e N(v).

) If u, veZ™, u v, then there exists no xeu™*Cv™ such that x € N(u) and
x~ e N(v).

(¢) Every vertex of R has at most one vertex of Z* and at most one vertex of Z” as
a neighbor.

Lemma 12 (Jackson [8, Lemma 2]). Let S;, p; and q; be defined as above. Then for
all i # j we have es({P1,q:}, S) <5, — 1.

Recall that F is a k-factor in G. We will derive a lower and an upper bound for
ep(S, X).
First we derive a lower bound. It is obvious that for all i,

SG({pi’qi}sSi) <2s;—1) (11)
Lemma 12 and (11) together give

&(Z,8) = Z Z ec({p;, 4}, 8;) < Z xX=y+2)(s;—1)

=(X~y+2)Z(s,-—1)=(x—y+2)(lSl—(x—y+1))

(12)
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By definition we have |S| = |V(G) — (XU YUR)| =n — x — y — r, so from (12) we
obtain

er(2,8) < eg(Z,S) < (x—y+2)n—2x—r—1) (13)
By Lemma 10(a),
er(Z,Y)=¢4(Z,Y)=0 (14)
and by Lemma 11¢(e),
er(Z,R) < eg(Z,R) < 2r (15)
And, since F is a k-factor,
epr(Z,V(G) =k|Z| =2k(x—y+ 1) (16)

Combining (13)—(16) and using Z < S we obtain
SF(S! X) = 8F(Z’ X) = EF(Z’ V(G)) - lgF(Z’ Y) - 8F(Z> S) - 6F(Z, R) (17)
>2k(x—y+1)—(x—y+2)n—2x—r—1)—2r

Next we derive an upper bound for (S, X). Since F is a k-factor, we immedi-
ately have

ex(V(G), X) = kx

er(R,X) =0 (18)
(X, X) =0
Also, since Ng(Y) = X and hence Np(Y) € X,
ep(Y, X) = ky (19)

Combining (18) and (19) gives
er(S, X) = ep(V(G), X) — ep(Y, X) — ep(X, X) — ep(R, X) < kx —ky ~ (20)
The inequalities (17) and (20) together give
k(x —y+ 1) —(x—y+2)n—2x—r—1)—2r <kx —ky (21)
which is equivalent to
rx—y)+x—y+2)2x+k—n+1)<0 (22)

By the definition of X and Y we know y < x + 1,50 x — y + 2 > 1. Further-
more, N(a) € X, hence

x > dg(a) = 503(G) > 5-3(n — k) = 3(n — k) (23)

If k = 0, then x > 1n and we obtain a contradiction with (13). So we can assume
k > 1. By (20) we have k(x — y) > 0, so x — y > 0. We conclude that

rx—y+x—y+2)x+k—-n—-1=20+1-Q230—k)+k—-n+1)2=1
(24)

a contradiction with (22). This completes the proof of Theorem 2. O
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Note. After the preparation of this paper, R. Higgkvist informed us that he also
obtained a proof of Corollary 3.
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