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Degree Sums, ft-Factors and Hamilton Cycles in Graphs

R.J. Faudreel and J. van den Heuvel2*
1 Department of Mathematical Sciences, Memphis State University, Memphis,
TN 38152, U.S.A.
2 Faculty of Applied Mathematics, University of Twente, P.O. Box 217,
7500 AE Enschede, The Netherlands

Abstrsct. We prove (a generalization of) the following conjecture of R. Hiiggkvist: Let G be
a 2-connected graph on n vertices where every pair ofnonadjacent vertices has degree sum
at least n - k and assume that G has a k-factor; then G is hamiltonian. This result is a
common generalization of well-known theorems of Ore and Jackson, respectively.

1. Results

We use Bondy and Murty [5] for terminology and notation not defined here and
consider finite, simple graphs only.' In Hiiggkvist [7] the following conjecture, among many others, appears.

Conjecture l. Let G be a 2-connected graph on n uertices where euery pair of nan-
adjacent uertices has degree sum at least n - k anil assume furthermore that G has a
k-factor. Then G is hamiltonian.

The main goal of this paper it to show that Conjecture 1 is true. In fact, we will
prov€ a more general result. For a graph G and integer k > l, define o*(G) by

o*(G) : ,ri, { ; do(u) | s c v(G)is an independent set of size k}
[r.s )

Now we can state our main result, the proof of which will be given in Section 2.

Theorem 2. Let G be a 2-connected graph on n uertices that contains a k-factor and
satisfies or(G) 2 *(n - k).Then either G is hamiltonian or k:2 anil G e F*

Here %uis a family of six graphs defined as follows. Let

* The research for this paper was done while the second author visited Memphis State
University, partly supported by a grant from the Netherlands Organization for Scientifrc
Research (N.W.O.).
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g;:{K,+Kl +K3,K1 +K1 +K4,K1 +K2+K3},

where " * " denotes the disjoint union of two graphs. Then 9u is the family of all
graphs that can be obtained as the join of K2 or K, and a graph in 9{ .

From Theorem 2 it is easy to deduce the truth ofConjecture 1.

Corollary 3. Let G be a 2-connected graph on n uertices that contains a k-factor and
satisfies oz(G) > n - k. Then G is hamiltonian.

Proof.For any graph G and any three independent verticesu,D)winV(G) we have

d(u) + d(u) + d(w) : il@@) + d(u)) + (d(u) + d(w)) + (d(u)+ d(w))l

> !'3o29)

So for any graph G, os(G) > tr"r@). Hence lf or(G) > n - k, then or(G) > Z(n - k).

For k : 2, the graphs in 9u do not satisfy oz 2 n - 2. Hence Corollary 3 follows
from Theorem 2.

Corollary 3 is best possible. This is shown by the graphs Gr,,t: Kr v (Kr*, + lK)
("v" denotes the join of two graphs). For any /<, / with I > k > 0 and I 2 2, Gr,,

is a 2-connected graph on r : 2l + k + 1 vertices that contains a k-factor, has
oz(Gx):21 :n-k- l and does not contain a Hamilton cycle. The Petersen
graph P is another example showing that Corollary 3 is best possible. (P has 10

vertices, contains a 3-factor and or(P) : 6 : 10 - 3 - 1.) Theorem 2 is almost best
possible. At the end of this section we state a best possible improvement.

Corollary 3 is a common generalization of two well-known results in hamil-
tonian graph theory. Every graph contains a 0-factor, so spbstituting k:0 in
Corollary 3 gives Ore's Theorem.

Theorem 4 (Ore l9l). If G is a graph on n > 3 uertices that satisfies oz(G) > n, then
G is hamihonian.

If G is a k-regular graph, then obviously it contains a k-factor and satisfies o.r(G) 2.

2k. So, if G is a k-regular graph on n vertices with n < 3k, then or(G) 2 2k > n - k.

This shows that Corollary 3 generalizes the following result.

Theorem 5 (Jackson t8]). 1 2-connected, k-regular graph on at most 3k uertices is
hamiltonian.

It is possible to improve Theorem 2 to the following result. The proof of this result,
which we will omit, uses the same techniques that will be used in Section 2.

Theorem 6. Let G be a 2-connected graph on n uertices that contains a k-factor and
satisfiesor(G) > 1@ - k - 1). Then G is hamiltonian, or G is a spanning subgraph of
a graph in 9, (if k : 2), a spanning subgraph of a graph in /{r (if k > 2), or a

spanning subgraph of a graphin /1(if k > 1).

tr
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Here 91 , sfi and ;[o are families of graphs delined as follows. Let

9l : {K, + Kr + K. lme {3,4,5,6}} U {K, + K2 + K^lme {3,4,5)\

i/rk- : {K.-, * Kr*r * K**r,Kr-r * Kr*r -f Kx*z\ (k>2)

/o :{Kr+Ke+K1a1,Kr+K&+ Kya2,K1,*Kr*, *Kt*r} (k> 1)

Then 9r, #r, /o are the families of all graphs that can be obtained as the join of
K, and a graph in fr1, trr-, !;, respectively.

Note that all exceptional graphs in Theorem 6 have connectivity 2.The bound

o.(G) > tr@ - t - 1) in Theorem 6 cannot be lowered without introducing excep-

tional graphs ofarbitrary connectivity for each k > 1. This is shown by the graphs

Go,, we introduced earlier. For any k, I with I > k > 0 and I Z 3, G*tis a graph on

,:Zt+ k + 1 vertices that contains a /c-factor, has or(G1,):31:Z@-k- 1)

and does not contain a Hamilton cycle. And also the Petersen graph shows that
lowering the bound on o3(G) in Theorem 6 is not possible (for k : 3).

Theorem 6 not only generalizes the previous results in this section, but it also

generalizes the case m:2 of the following result. (It is easy to show that the

exceptional graphs in Theorem 6 do not satisfy o, > |(n - l).)

Theorem 7 (Bondy l3)). Let G be an m-connected graph on n uertices such that
o^nr(G) > i@ + 1)(n - l). Then G is hamiltonian.

2. ProofofTheorem 2

Following Chvital [6], we call a graph G l-tough if a\G - S) < lsl for every subset

S c Z(G) with ro(G - S) > 1, where ro(II) denotes the number of components of a

graph Il. For A, B c V(G) we denote the number of edges with one end vertex in
,4 and the other in B by e6(A, B), the edges with both ends in ,4 l^lB being counted

twice.
The following lemma is a first but essential step in the proof of Theorem 2.

Lemma 8. Let G be a Z-connected graph on n uertices that contains a k-factor and

satisfies ar(G) > *(n - k).Then either G is !-tough or k :2 and G e Fu.

Proo/. Suppose G is a 2-connected graph on n vertices that contains a k-factor and

satisfies dr(G) > tr@ - k\. Let F b a k-factor in G. Assume that G is not l-tough,
hence there exists a vertex cut S s y(G) with ar(G - S) > lSl. Define 5 : lSl and

t : ro(G - S); hence r > s + 1. G is 2-connected, so s > 2. Let Cr, Cr, ..., C, be

the components of G - S and let c, be the number of vertices in component C;

A vertex u e V(G\ has k neighbors in F, hence it has at least k neighbors

in G. All neighbors of a vertex ueV(C) lie in (I/(C;)- {r})US, implying that
c,-l+s>k.Thus

c,)k-s*1, (1<r<0 (1)
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Since F is a k-factor, tp(V(C),y(G)) : kc,. Also, er(V(C,),V(C,)) < (c, - 1)c,, so

e r(V (C,), V (G) - V (C,)) : e n(V (C,), V (G)) - e,(V (C,), V (C,)\

)kcr-(ci-l)c, (1 <,<0 Q)

Hence, whenever c, 1k,

ep(V(C,),V(G) - y(Ct))>kci- (ci- L)c,: k + (k- ct)ki- 1) > k (3)

Suppose that c; < Ic for 1 < i < m. Then from (3) we have

** 
= i er(v(c1),v(c) - v(c)) : i ep(r(C;),s)

i=1 i=1 
@)

-(g rtQ,s) < ep(v(G)- s,s) < ks.

From (4) it follows thatm < s, whence

cr>k+1, fors*1<i<r. (5)

Let urev(C), 1<i<3. Then d(u;) 3ci- 1+s. We distinguish tlyo cases,
depending on the value ofs.

Casel.s>3
In this case we have l@- e) < or(G) < d(ur) + d(ur) + d(ur) <3s * c, * c2 *
ct - 3, which gives

n<k+2s +!(c1+ c2+ cs - 3) (6)

By definition of c; we have c, > ca for 3 < i <s, and by(5) wehave cr> k + lfor
s + 1 < i < r. Togetherwith, > s + 1 this gives

n > s.t cL + cz+ (s- 2)cs *(t - sXk+ 1) > s+ cl + c, * (s - 2)", + k + |
(7\

Combining (6) and (7) we obtain s+cl +cr*(s-Z)cr+k+l<k+Zs+
?(r,.+ c2+ c, - 3),whichisequivalentto(3s - 8)(c, - 1) + c, * c2* 1< 0.But
we assumeds ) 3,so (3s - 8)(ca - 1) + cL + cz+ 1 > 1, and we obtain acontra-
diction in this case.

Case 2. s :2
In this case we have d(ur) 3 ci - 1 * s : c, + 1, hence

tr@-k)1or(G) (cr * c2+ca*3<n* 1 (8)

By (1) and (5) we know ct, cz) k - I and c3,..., c, > k + l.
We distinguish three subcases, depending on the values of c, and c2.

Case 2.1, ct: cz: k - |
By (2) we have, for i : 1,2,

er(v(c),s) : er([(c;\,v(G) - v(c,)) > kc, - (c, - l)ci: 2(k - l) (9)
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This gives 2' 2(k - 1) < eo(S, V(G) - S) < zk,hence k < 2. But since k - | : cr Z l,
we have k:2.8y (8) we have *("- 2)<.n* l, which gives n < 8. We conclude

that GisaspanningsubgraphofK, v (K1 + K1 * K.)orK, v (K1 + K1 + Ko).

It is easy to check that the only spanning subgraphs of those two graphs that
satisfy ot > i@ - 2) are the graphs themselves and the graphs Kz Y
(Kl + Kl * K.) and K, v (Kt * Kl + K4).

Case 2.2. cr : k - l, c, : la

By (2)we have

er(Y(Cr),S) > kc, - (c, - l)c, : 2(k - l)
(10)

eo(V(C),5) > kc, - (cz - l)cr: 1,

which gives k + 2(k - 1) < e"(S,l/(G)- S) < 2k, hence k <2. As in Case 2.1, it
follows that k :2 and n < 8. We conclude that G is a spanning subgraph of

K, v (K, + Kz + Kr). And again, the only spanning subgraphs of this graph that
have o. > )(" - 2) are the graph itself and the graph K, v (K, * K2 + K).

Case 2.3. c1 * c2 > 2k
In this case we have n> 2k +k + 1 + 2:3k+ 3. By (8) we know J(n-k) <
n * 1, which is equivalent lo n I 3k + 2. combining these two inequalities gives

an easy contradiction in this last case. tr

For the remainder of this section we assume that G is a nonhamiltonian, 2-

connected graph on n vertices that contains a k-factor F, satisfies o.(G) > tr@ - t),
and is not one of the graphs in 9u. Then we know by Lemma 8 that G is l-tough.

Moreover, if k<\n, then o.(G) >tr@-*r):n, and if k>*r, then o3(G)>

o.(F) : 3k > n. Hence os(G) > n in both cases. This means that we can use the

following lemma. The hrst part of Lemma 9 is Bauer, Veldman, Morgana and

Schmeichel [2, Theorem 5]; the second part is implicit in the proof of [2, Theorem

9l (the full lemma appears as Lemma 3 in Bauer, Broersma and Veldman [1]).

Lemma g U,2). Let G be a l-tough graph on n > 3 uertices with or(G) > n. Then

ersery longest cycle of G has the property that V(G) - y(C) is an independent

set. Moreouer, tf G is nonhamiltonian, then G contains a longest cycle C such that

max{d(u)lu e V (G) - V (C)\ > }".(G).

By Lemma 9 we can choose a longest cycle C in G and a vertex a e V(G) - Y(C\

such that l{(c)c V(C) and do@)> 1".(G).We choose an orientation C of C. If
u e V(C), then u+ denotes the successor of a on C and u- denotes its predecessor.

Il Ac Iz(C), then 1+ : {u+lue A} and A- : {u-lu e,4}' For u,ueV(C),uCu de-

notes the set of consecutive vertices of C from u to u in the direction specified by C.

In the remainder of our proof we use several ideas of the proof of the main

result in Bondy and Kouider [4].
Set Yo : {c} and define,'for i > 1,

Xi: N(Yi-), Yi: {r} U {c e V(C)lc- ,c* e X,}
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Then N(a):Xr s Xr=Xrc...and {a}-yos y, g yz-.... Set X: UX,and Y: U x. since c is a rongest cycle in G and there exists no cycle c, I,itt
the same length as-c satisfying ar(G -v(c'))<,,(G -v(c)),we can use the"Hopping Lemma" from Woodall tl .

Lemma l0 (Hopping Lemma, [10, Lemma r2.3J). Let c, x and y be defined asaboue. Then X and y haue the fillowfng properties.

(a) N(f =XcV(C)
(b) xlrX+ : g
(c) Xfl Y: E

1"1 :_:lX_l and y:lYl and define Z+:X+ -y Z- -X-_ y and Z:Z- y?-. Then, using Le-mma lO,lZ+l : lZ-l: x _ l,'+ l.The subgraph c - x consists of segments of the cycle c. There are two typesof segments: segments- consisting of isoiated vertices (tir. u".ti.o ii y - {a}), and,segments consisting of two or more vertices. The rattei r.g-;il;;; be consideredas paths with one end vertex in z+ andthe other end ,"rtiiii-i--.fr" d"note thes""lolg] segments by Cg, ..^., C,_r,the element of V(C) i" i;ii pr,and the elementof V(Ct)inZ- by 4r.Set,for.0-Si 
=., -.y, S,: V(Cii,s,: lS,lanidefineS: US,,R =_Y(G) - (ruxus) and r: lnl. 

\-t') e' rvir sus r 
,

We will use the following two results.

"*:rrl 
1l (Jackson [8, coroflary rl). Let c, Z* , Z- and R be deJined as abooe.Then the following hold.

(a) Z* and Z- are independent sets.
(b) If u e Z+ and o e Z-, then therc exist no x, y e,** iu-- such that xe N(u),. yF N(u)anilx: ! or x: !+.(c) If u, ueZ+, u*u, then tiere exists no xeu**iu- such that xeN(u) andx- e.n[(o).
(d) If u, uez-, u*ts, then there exists no xeu**io- such that xe N{u) andx- e N(u).
(e) Euery uertex of R has at most one uertex of Z+ and at most one Dertex of Z- asa neighbor.

Lemma 12 (Jackson tg, {11a Zf). Let 5,, p, and q, be ilefined as aboue. Then foralli * jwehaue ec({pi,q,},Si) <,l_ f . " r'

Recall that F is a k-factor in G. we wil derive a lower and an upper bound for€r(&X).
First we derive a lower bound. It is obvious that for all r,

R.J. Faudree and J. van den Heuvel

(1 1)
ee({pi, qi},Si) < 2(s, - l)

Lemma 12 and (11) together give

te(Z,s) : I I eo({pi,qi},s,)< I (, - y + 2)(s, _ 1)ijT
:(x- y+2) I(r,-1):(x-l+2)flSl -(x-y+1)) 

02)
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Bydefinition we have lsl : lll(G) - (XU yUR)l : n - x - ! - r,so from(12)we
obtain

eu(Z,S) < es(Z,S) ( (x - y + 2)(n - 2x - r - l)

By Lemma 10(a),

t,r(Z,Y): te(/, Y) : 0

and by Lemma 11(e),

er(Z,R)<eo(Z,R)<2r

(13)

(14)

(1s)

And, since F is a k-factor,

w@,V(G)\: klzl :Zk(x - Y + 1) (16)

Combining (13)-(16) and using Z = S we obtain

er(S,X) > er(Z,X): sr(Z,V(G)) - er(Z,Y) - er(Z,S) - er(Z,R) 
(17)

> 2k(x- y + 1) - (x - y + 2)(n - 2x - r - l) - 2r

Next we derive an upper bound for er(S, X). Since F is a k-factor, we immedi-

ately have

ep(Y(G),X): 16

er(R,X) > 0

e"(X,X) > 0

Also, since No(Y) e X and hence Nr(Y) c X,

er(Y, X\ : l6y

Combining (18) and (19) gives

ep(s, x) : er(v(G), X) - er(Y, X) - ep(x, x\ - ep(R, X) < kx - ky (20)

The inequalities (17) and (20) together give

2k(x- y+ 1)-(x- y+2)(n-2x- r- 1)- 2r<kx-ky (21)

which is equivalent to

r{x-y) *(x- y+2)(2x*k-n + 1)<0 (22)

By the definition of X and Y we know y < x + 1, so x - y + 2> 1. Further-
more, N(a) c X, hence

x2d6@) >*or(c) >*'tr@-k):i@-k) (23)

If k : 0, then x > ln and we obtain a contradiction with (13). So we can assume'

k > 1. By(20) we have k(x - y)> 0, so x - y > 0. We conclude that

r(x - y) * (x - y + 2)(2x * k - n - 1) > 0 + l' (2' !(n - k) + k - n +'l) > I
(24)

a contradiction with (22). This completes the proof of Theorem 2. tr

(18)

(1e)
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Note. After the preparation of this paper,
obtained a proof of Corollary 3.
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