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The submarine Siri Canyon is NE–SW-oriented and located 

in the Danish North Sea (Fig. 1). It contains a number of oil 

reservoirs with glauconite-rich sand. The reservoirs of inter-

est in the Nini oil field are the Late Paleocene Tyr Member of 

the Lista Formation and the Kolga Member of the Sele For-

mation (Schiøler et al. 2007), presumably of Early Eocene 

age. These members have previously been known as the Ty 

and Hermod members (Hamberg et al. 2005; Poulsen et al. 

2007). The sand shows signs of injection, both in cores and 

in seismic data. The aim of this work is to chemically charac-

terise and fingerprint the sand in order to reveal the origin of 

the sand found in three horizontal wells, which could have 

been injected from one or both of the Tyr and Kolga mem-

bers. Core samples were collected from two vertical wells of 

known stratigraphy to make a basis of comparison, whereas 

samples of the cuttings were collected from the three hori-

zontal wells with ages primarily corresponding to the Kolga 

Member. The purpose was moreover to evaluate whether 

cuttings samples can be used for fingerprinting as an alterna-

tive to  core samples.

The interest in discriminating between the ages of the in-

jected sand is the fact that the reservoir properties (porosity 

and permeability) are largely controlled by the original com-

position of the sand. Consequently, results from this study 

could affect the property modelling of the field.

Sand from the Tyr and Kolga members is dominated by 

quartz and glauconite and contains fairly well-preserved K-

feldspar, plagioclase and mica. The content of feldspar and 

mica is quite constant, and the feldspar and quartz grains are 

equally rounded. K-feldspar is more common and better pre-

served than plagioclase, and K-feldspar overgrowth is often 

found on plagioclase grains. Barite and siderite are impor-

tant authigenic phases in several intervals, but the presence 

of barite may be due to the use of drilling mud, potentially 

contaminating the sand samples with both barium and 

strontium. Most of the sand is fairly loose, but parts of the 

Tyr Member are cemented by quartz and calcite as it was lo-

cated below the oil-water contact, whereas cementation was 

largely inhibited by oil in most of the Kolga Member.

Methods
Geochemical analyses were performed using a number of 

methods including inductively coupled plasma mass spec-

trometry (ICP-MS). The advantages of this method com-

pared with X-ray fluorescence (XRF) are that the former 

measures a wider range of trace elements including rare-earth 

elements (REE), and that the detection limits are lower than 

those of XRF, which allows more accurate interpretation of 

elements found in low concentrations. Core material has pre-

viously been analysed by Friis et al. (2007) using XRF.

The modal composition of the sand as well as the chemi-

cal composition of the individual mineral grains have been 

analysed using computer-controlled scanning electron mi-

croscopy (CCSEM), where each grain is classified as a spe-

cific mineral on the basis of its chemical composition (Keu-

len et al. 2008). This method was applied in order to discern 

whether the samples could be differentiated based on their 

glauconite composition and to test if injected sand could be 

identified by its glauconite composition. The >45 μm frac-

tion of the sand was used for the analyses. Oil was extracted 

by toluene, and detergent applied to remove the oily drilling 

mud and disintegrate the slightly lithified sand.
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Fig. 1. Map of the North Sea region showing the location of the NE–SW-

oriented Siri Canyon with the Tyr and Kolga members under investigation 

in the Nini oil field. Dashed lines: national borders.
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Bulk geochemical analyses were carried out at AcmeLabs, 

Vancouver, on 14 core samples and 73 cuttings samples. Ma-

jor and several minor elements were determined by induc-

tively coupled plasma emission spectrometry (ICP-ES) on 

fused glass discs, whereas trace elements, including REE, 

were identified by ICP-MS also on fused glass discs.

The modal content of minerals in 10 core samples and 16 

samples of the cuttings mounted in epoxy were determined 

at GEUS by CCSEM on a Philips XL40SEM (Keulen et al. 

2008). Approximately 1200 grains were analysed per sam-

ple. The method integrates backscattered electron micro-

graphs with energy dispersive X-ray spectrometry (EDX) to 

measure the element composition of each grain. The major 

element weight percentages (wt%) were measured as oxides. 

The analysis is performed by sweeping over the entire grain, 

and hence the chemical analysis represents an average of the 

whole grain and not a point. This is important because the 

glauconite grains are inhomogeneous. Grain size and shape 

parameters were also measured at the cut surface in the pol-

ished section. The fragile nature of the glauconite grains 

made crushing of the more consolidated parts of the sand 

inexpedient, so a new application of the CCSEM method 

was developed with measurement of chemical composition 

in points defined by a grid. This was done in five additional 

core samples.

Geochemistry
Chondrite-normalised REE spectra of the Tyr and Kolga 

members are quite similar (Fig. 2), except for a positive ceri-

um anomaly in the Kolga Member. The REE concentrations 

are moreover higher in the Kolga Member. The REE spectra 

of the cuttings samples fit very well with the Kolga Member 

(Fig. 2D). However, the wells from which the cuttings were 

sampled have some intervals with high resistivity, and these 

are generally characterised by a lower content of cerium and 

an enlarged negative europium anomaly. 

The lower content of trace elements in the Tyr Member 

than in the Kolga Member makes the sand distinguishable 

by a number of factors. For example, Th and Ce in the Tyr 

Member are below 6 ppm and 70 ppm, respectively, whereas 

the concentration is higher in the Kolga Member. All sam-

ples of the cuttings except four are, on this basis, interpreted 

as Kolga Member. The four outliers are diluted by either 

calcite cementation or organic matter, which is seen as high 

values of calcium and loss on ignition (LOI), respectively.

Glauconite composition
The glauconite grains show a wide range in chemical com-

position, which is reflected in green to brown colours. Green 

grains are usually rounded and well preserved, whereas 

brown grains show some structural and chemical resem-

blance to clay minerals. The roundness of the grains could 

either be caused by their formation process or by subsequent 

physical abrasion (Odin & Matter 1981). The best preserved 

grains are usually those with the highest iron content. Zona-

tion seen in many glauconite grains with light centres and 

dark rims is apparently related to outward decreasing mag-

nesium content.

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

1000

100

10

1

100

10

100

10

100

10

Sa
m

p
le

 /
 R

E
E
 c

h
o
n
d
ri

te

Core samples from the Kolga Member

Core samples from the Tyr Member

A

B

C

D

Cuttings samples interpreted as Kolga Member

Kolga Member

Tyr Member

Kolga Member (interpreted)

Fig. 2. REE spectra measured by ICP-MS and normalised to the chon-

drite composition of Boynton (1984). A: The Tyr Member has lower REE 

concentrations than the Kolga Member. B: The Kolga Member is charac-

terised by a small positive cerium anomaly. C: REE spectra from cuttings 

samples from intervals without infiltration by drilling mud or clayey de-

posits and with normal resistivity. D: Composite diagram with REE spec-

tra from A, B and C indicating that the known and interpreted intervals 

of the Kolga Member are idential and that they are different from those of 

the Tyr Member.
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Compositional variation is recorded in the glauconite in 

every sample. However, this variation range is different in the 

Tyr and Kolga members. The glauconite in core samples from 

the Tyr Member is characterised by a broad scatter and high 

iron content (Fig. 3A), which is distinctly different from the 

glauconite of the Kolga Member. The Kolga Member shows 

positive correlation between iron and potassium (Fig. 3B), 

which represents a substitution series with aluminium. The 

Kolga Member is moreover distinguishable by a high siderite 

content compared to the Tyr Member. All the cuttings sam-

ples of unknown stratigraphy are interpreted as Kolga Mem-
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measured by CCSEM. A: The Tyr Member shows a broad glauconite com-

position without a linear trend. B: The Kolga Member is characterised 

by a narrow glauconite composition. C: The sand from the cuttings sam-

ples has a glauconite composition that closely resembles that of the Kolga 

Member.
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Fig. 4. Grain-size distribution curves for the minerals measured by CC-

SEM. A: The grain-size distribution of the Tyr Member has only been 

measured in one sample, where the glauconite shows a smaller grain size 

than quartz. B: Quartz and glauconite grains in the Kolga Member are of 

medium size. C: The cuttings samples have undergone severe crushing and 

hence the origin of the sand is difficult to determine from the grain-size 

distribution alone. For legend see Fig. 3.
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ber on the basis of mineralogy, as their glauconite composi-

tions and siderite contents fit well with this sand (Fig. 3C).

A large amount of barite is found in many of the cuttings 

samples, but at least some of it comes from the drilling mud. 

Five of the six samples from the cored Tyr Member have been 

measured in single points instead of whole grains because of 

the extensive cementation, so the results are not entirely reli-

able. However, the measured glauconite compositions fit well 

with the broad scatter measured in the un-cemented sample. 

Grain curves
The quartz of both the Tyr and Kolga members is well-sort-

ed, and the variation in grain-size distributions is small (Fig. 

4). The heavy minerals are finer grained than the light min-

erals, showing that hydraulic sorting has occurred. The aver-

age grain size of the glauconite and quartz grains is almost 

equal in the Kolga Member, but the sorting of glauconite is 

poorer than quartz due to a broad, fine-grained tail, which 

may be caused by crushing of the fragile glauconite grains. 

The glauconite in the Kolga Member is coarser grained than 

in the Tyr Member. However, the grain size of the Tyr Mem-

ber has only been measured in one sample because of the ce-

mentation in the other samples. Siderite is silt-sized, and the 

almost straight grain curves in most samples show that the 

siderite is authigenic (Weibel et al. 2010).

Cores and cuttings are dominated by quartz grains of 

about the same size (Fig. 4), but the cuttings also contain a 

fine-grained tail (Fig. 4C) which may have been generated by 

crushing during the drilling process. The glauconite grains 

are especially susceptible to crushing because of their fragile 

nature, and this explains why glauconite from cuttings sam-

ples is more fine grained than from core samples.

Concluding remarks
The samples of the cuttings collected from the horizontal 

wells are interpreted as Kolga Member on the basis of trace 

element concentrations, REE spectra, glauconite composi-

tions and siderite contents. This implies that remobilisation 

is restricted to intra-strata processes, rather than between 

strata. Modelling of the injected part of the field is there-

fore likely to be comparable to that of the in situ parts, as the 

original composition of the sand is the same.

ICP-MS and CCSEM have proved useful in characteris-

ing sand types, and from these observations it was possible 

to identify the origin of the intrusive sand bodies. Especially 

the REE spectra measured by ICP-MS and the glauconite 

compositions measured by CCSEM have enhanced the un-

derstanding of the sediments.
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