

Hardy's theorem for the generalized Bessel transform on the half line

El Mehdi Loualid¹, Azzedine Achak², Radouan Daher³

¹Laboratory of Engineering Sciences for Energy, National School of Applied Sciences of El Jadida, University Chouaib Doukkali, Morocco.

²Higher School of Education and Formation. University Chouaib Doukkali, El Jadida Morocco

²Department of Mathematics, Faculty of Sciences Aïn Chock, University of Hassan II, Casablanca, Morocco

Article history:

ABSTRACT

Received Jun 20, 2021 Revised Sep 9, 2021 Accepted Sep 19, 2021

Keywords:

First keyword Generalized Bessel transform uncertainty principle Hardy's theorem In this paper, we give a generalization of a qualitative uncertainty principle namely Hardy's theorem, which asserts that a function and its Fourier transform cannot both be very small, for the generalized Bessel transform on the half line.

This is an open access article under the <u>CC BY</u> license.

Corresponding Author:

El Mehdi Loualid, Laboratory of Engineering Sciences for Energy National School of Applied Sciences of El Jadida University Chouaib Doukkali, Morocco. Email: mehdi.loualid@gmail.com

1. INTRODUCTION

The uncertainty principle says that a function and its Fourier transform can't simultaneously decay very rapidly at infinity. A classical version of uncertainty principle, known as Hardy's theorem, was first proved by Hardy on \mathbb{R} . We state Hardy's theorem on \mathbb{R} as follows [3].

Theorem 1..1 Suppose that f is a measurable function on \mathbb{R} and satisfies

$$|f(x)| \le Ce^{-ax^2}$$
$$|F(f)(\xi)| \le Ce^{\frac{-\xi^2}{4a^2}}$$

then f is a multiple of e^{-ax^2}

The Hardy's theorem was extended to various settings see [4–6] for more results. The purpose of this paper is to obtain a generalization of this theorem for the generalized Bessel transform.

The structure of the paper is as follows: In section 2 we set some notations and collect some basic results about the Bessel operator and the Bessel transform. In section 3 we give some facts about harmonic analysis related to the second-order singular differential operator on the half line Δ and generalized Bessel transform. In section 4 we state and prove an analogue of Hardy's theorem for the generalized Bessel transform.

2. PRELIMINARIES

In this section, we recapitulate some facts about harmonic analysis related to the Bessel operator \mathcal{L}_{α} . We cite here, as briefly as possible, some properties. For more details we refer to [7].

Throughout this paper we assume that $\alpha > \frac{-1}{2}$.

Defined L^p_{α} , $1 \le p \le \infty$, as the class of measurable function f on $[0, +\infty[$ for which $||f||_{p,\alpha} < \infty$, where

$$||f||_{p,\alpha} = \left(\int_0^\infty |f(x)|^p x^{2\alpha+1} dx\right)^{\frac{1}{p}} \quad if \ p < \infty$$

and

$$||f||_{\infty,\alpha} = ||f||_{\infty} = ess \ sup_{x \ge 0} |f(x)|$$

The Bessel operator \mathcal{L}_{α} is defined as following:

$$\mathcal{L}_{\alpha}f(x) = \frac{d^2}{dx^2}f(x) + \frac{2\alpha + 1}{x}\frac{d}{dx}f(x).$$

The Fourier-Bessel transform of ordre α is defined for a function $f \in L^1_{\alpha}$ by

$$\mathcal{F}_{\alpha}(f)(\lambda) = \int_{0}^{\infty} f(x) j_{\alpha}(\lambda x) x^{2\alpha+1} dx, \quad \lambda \ge 0,$$
(1)

where

$$j_{\alpha}(z) = \Gamma(\alpha+1) \sum_{n=0}^{\infty} \frac{(-1)^n (\frac{z}{2})^{2n}}{n! \, \Gamma(n+\alpha+1)} \ (z \in \mathbb{C}).$$
(2)

is the normalized Bessel function of index α .

Proposition 2..1 (i) If both f and \mathcal{F}_{α} are in L^1_{α} then

$$f(x) = \int_0^\infty \mathcal{F}_\alpha(f)(\lambda) j_\alpha(\lambda x) d\mu_\alpha(\lambda), \quad \text{for almost all } x \ge 0$$

where

$$d\mu_{\alpha}(\lambda) = \frac{1}{4^{\alpha}(\Gamma(\alpha+1))^2} \lambda^{2\alpha+1} d\lambda.$$
(3)

(ii) For every $f \in L^1_{\alpha} \bigcap L^2_{\alpha}$ we have

$$\int_0^\infty |f(x)|^2 x^{2\alpha+1} dx = \int_0^\infty |\mathcal{F}_\alpha(f)(\lambda)|^2 d\mu_\alpha(\lambda)$$

The Bessel translation operators τ_{α}^x , $x \ge 0$, are defined by

$$\tau_{\alpha}^{x}(f)(y) = a_{\alpha} \int_{0}^{\pi} f(\sqrt{x^{2} + y^{2} + 2xy\cos\theta})(\sin\theta)^{2\alpha}d\theta, \tag{4}$$

where

$$a_{\alpha} = \frac{2\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\alpha+\frac{1}{2})}.$$
(5)

3. HARMONIC ANALYSIS ASSOCIATED WITH Δ

In this section we provide some facts about harmonic analysis related to the second-order singular differential operator on the half line Δ . We cite here, as briefly as possible, some properties. For more details we refer to [1, 2].

Consider the second-order singular differential operator on the half line

$$\Delta f(x) = \frac{d^2}{dx^2}f(x) + \frac{2\alpha + 1}{x}\frac{d}{dx}f(x) - \frac{4n(\alpha + n)}{x^2}f(x)$$

where $\alpha > \frac{-1}{2}$ and n = 0, 1, 2, ... For n = 0 we regain the Bessel operator \mathcal{L}_{α} . Let \mathcal{M} be the map defined by

$$\mathcal{M}f(x) = x^{2n}f(x).$$

Let $L^p_{\alpha,n}, 1 \leq p \leq \infty$, be the class of measurable functions f on $[0, \infty[$ for which

$$||f||_{p,\alpha,n} = ||\mathcal{M}^{-1}f||_{p,\alpha+2n} < \infty.$$

Remark 3..1 \mathcal{M} is an isometry from $L^p_{\alpha+2n}$ onto $L^p_{\alpha,n}$.

3.1. Generalized Bessel transform

For $\lambda \in \mathbb{C}$ and $x \in \mathbb{R}$, put

$$\varphi_{\lambda}(x) = x^{2n} j_{\alpha+2n}(\lambda x), \tag{6}$$

where $j_{\alpha+2n}$ is the normalized Bessel function of index $\alpha + 2n$ given by (2).

Proposition 3..1 • φ_{λ} possesses the Laplace integral representation

$$\varphi_{\lambda}(x) = a_{\alpha+2n} x^{2n} \int_0^1 \cos(\lambda t x) (1-t^2)^{\alpha+2n-\frac{1}{2}} dt,$$
(7)

where $a_{\alpha+2n}$ is given by (5)

• φ_{λ} satisfies the differential equation

$$\Delta \varphi_{\lambda} = -\lambda^2 \varphi_{\lambda}$$

• For all $\lambda \in \mathbb{C}$ and $x \in \mathbb{R}$,

$$|\varphi_{\lambda}(x)| \le x^{2n} e^{|Im\lambda||x|}$$

Definition 3..2 The generalized Fourier transform is defined for a function $f \in L^1_{\alpha,n}$ by

$$\mathcal{F}_{\Delta}(f)(\lambda) = \int_0^\infty f(x)\varphi_{\lambda}(x)x^{2\alpha+1}dx, \ \lambda \ge 0.$$
(8)

Remark 3..2 • By (1) and (3) observe that

$$\mathcal{F}_{\Delta} = \mathcal{F}_{\alpha+2n} \circ \mathcal{M}^{-1},\tag{9}$$

where $\mathcal{F}_{\alpha+2n}$ is the Fourier-Bessel transform of order $\alpha + 2n$ given by (1).

• If $f \in L^1_{\alpha,n}$ then $\mathcal{F}_{\Delta}(f) \in C_0([0;\infty[)(\text{of continuous functions on } [0;\infty[\text{ vanishing at infinity}))$ and $\|\mathcal{F}_{\Delta}(f)\|_{\infty} \leq \|f\|_{1,\alpha,n}$.

Theorem 3..3 Let $f \in L^1_{\alpha,n}$ such that $\mathcal{F}_{\Delta}(f) \in L^1_{\alpha+2n}$. Then for almost all $x \ge 0$,

$$f(x) = \int_0^\infty \mathcal{F}_\Delta(f)(\lambda)\varphi_\lambda(x)d\mu_{\alpha+2n}(\lambda),$$

where $d\mu_{\alpha+2n}(\lambda)$ is given by (3).

Theorem 3..4 (i) For every $f \in L^1_{\alpha,n} \cap L^2_{\alpha,n}$ we have the Plancherel formula

$$\int_0^\infty |f(x)|^2 x^{2\alpha+1} dx = \int_0^\infty |\mathcal{F}_{\Delta}(f)(\lambda)|^2 d\mu_{\alpha+2n}(\lambda).$$

(ii) The generalized Fourier transform \mathcal{F}_{Δ} extends uniquely to an isometric isomorphism from $L^2_{\alpha,n}$ onto $L^2([0,\infty[,\mu_{\alpha+2n})])$. The inverse transform is given by

$$\mathcal{F}_{\Delta}^{-1}(g)(x) = \int_0^\infty g(\lambda)\varphi_{\lambda}(x)d\mu_{\alpha+2n}(\lambda),$$

where the integral converge in $L^2_{\alpha,n}$.

4. HARDY'S THEOREM FOR THE GENERALIZED BESSEL TRANSFORM

In this section, we will obtain a Hardy uncertainty principle for the generalized Bessel transform.

Theorem 4..1 Suppose that f is a measurable function such that $f \in L^2_{\alpha,n}$ and satisfies

$$|f(x)| \le Cx^{2n}(1+x^2)^k e^{-ax^2}$$
$$|\mathcal{F}_{\Delta}(f)(\xi)| \le C(1+\xi^2)^k e^{-b\xi^2}$$

where a, b > 0. Then, f = 0 whenever $ab > \frac{1}{4}$ and when $ab = \frac{1}{4}$, $f(x) = H(x)e^{-ax^2}$, where H is a polynomial of degree $\leq 2k + 2n$.

We will use the following lemma

Lemma 4..2 [8] Suppose that $F(\xi)$ is an entire function of one complex variable satisfying

$$|F(\xi)| \le C(1+|\xi|^2)^k e^{b|Img(\xi)|^2}, \quad \xi \in \mathbb{C}$$
$$|F(\xi)| \le C(1+\xi^2)^k e^{-b\xi^2}, \quad \xi \in \mathbb{R}$$

where b is a positive constant. Then, $F(\xi) = P(\xi)e^{-b\xi^2}$, where $P(\xi)$ is a polynomial of degree $\leq 2k$.

Proof of theorem

Assume first that $ab = \frac{1}{4}$. Obviously, $\mathcal{F}_{\Delta}(f)$ can be extended to an entire function. Let $\xi = \zeta + i\eta$ then, we have

$$\begin{aligned} |\mathcal{F}_{\Delta}(f)(\xi)| &= C|\int_{0}^{\infty} f(x)\varphi_{\xi}(x)x^{2\alpha+1}dx| \\ &= C|\int_{0}^{\infty} x^{2n}f(x)j_{\alpha+2n}(\xi x)x^{2\alpha+1}dx| \\ &\leq \frac{C}{2}|\int_{0}^{\infty} \frac{f(x)}{x^{2n}}x^{2(\alpha+2n)+1}\int_{-1}^{1}e^{ix\xi s-x\eta s}(1-s^{2})^{\alpha+2n-\frac{1}{2}}dsdx| \\ &\leq \frac{C}{2}|\int_{0}^{\infty}(1+x^{2})^{k}x^{2(\alpha+2n)+1}e^{-ax^{2}+x|\eta|}dx| \\ &\leq \frac{C}{2}e^{b\eta^{2}}\int_{0}^{\infty}(1+x^{2})^{k}x^{2(\alpha+2n)+1}e^{-(\sqrt{a}x-\sqrt{b}|\eta|)^{2}}dx \\ &\leq \frac{C}{2}(1+\eta^{2})^{k+\alpha+2n+1}e^{b\eta^{2}} \\ &\leq C(1+\eta^{2})^{k+\alpha+2n+1}e^{b\eta^{2}}. \end{aligned}$$

By lemma 4.2, $\mathcal{F}_{\Delta}(f)(\xi) = Q(\xi)e^{-b\xi^2}$, where $Q(\xi)$ is a polynomial. Because

$$|Q(\xi)e^{-b\xi^2}| = |\mathcal{F}_{\Delta}(f)(\xi)| \le C(1+\xi^2)^k e^{-b\xi^2}$$

we have degQ = 2k.

In view of Lemma 4.2 and by taking the inverse of the Fourier-Bessel transform of order $\alpha + 2n$, we obtain

$$\mathcal{M}^{-1}(f)(x) = P(x)e^{-ax^2},$$

where P(x) is an even polynomial of degree $\leq 2k$. Then

$$f(x) = x^{2n} P(x) e^{-ax^2} = H(x) e^{-ax^2}$$

where H(x) is an even polynomial of degree $\leq 2k + 2n$. When $ab > \frac{1}{4}$, $|\mathcal{M}^{-1}(f)(x)| \leq C(1 + |x|^2)^k e^{-a_1 x^2}$, where $a_1 = \frac{1}{4b} < a$. As argument above,

$$\mathcal{M}^{-1}f(x) = P(x)e^{-a_1x^2}$$

where P(x) is an even polynomial of degree $\leq 2k$. Then

$$|\mathcal{M}^{-1}f(x)| \le C(1+x^2)^k e^{-ax^2}$$

cannot hold unless

$$\mathcal{M}^{-1}f = 0,$$

then f = 0.

REFERENCES

- [1] R.F. Al Subaie and M.A. The continuous wavelet transform for a Bessel type operator on the half line, to appear in Mathematics and satistics
- [2] R.F. Al Subaie and M.A. Mourou, Transmutation operators associated with a Bessel type operator on the half line and certain of their applications, to appear in Tamsui Oxford Journal of Mathematics.
- [3] Hardy G H. A theorem concerning Fourier transforms. J London Math Soc, 1933, 8: 227-231
- [4] Hardy, G., 1933, A theorem concerning Fourier transform, Journal of the London Mathematical Society, 8, 227231.
- [5] Huang J and Liu H, A heat kernel version of Hardy's theorem for the Laguerre hypergroup. Acta Mathematica Scientia 2011,31B(2):451-458
- [6] Thangavelu S. An introduction to the uncertainty principle. Progr Math Vol. 217. Boston-Basel-Berlin: Birkhauser, 2003
- [7] K. Trimèche, Generalized Harmonic Analysis and Wavelet Packets, Gordon and Breach Science Publishers, 2001.
- [8] Thangavelu S. An introduction to the uncertainty principle. Progr Math Vol. 217. Boston-Basel-Berlin: Birkhauser, 2003