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ABSTRACT

In this paper, we give a generalization of a qualitative uncertainty principle namely
Hardy’s theorem, which asserts that a function and its Fourier transform cannot both
be very small, for the generalized Bessel transform on the half line.
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1. INTRODUCTION
The uncertainty principle says that a function and its Fourier transform can’t simultaneously decay

very rapidly at infinity. A classical version of uncertainty principle, known as Hardy’s theorem, was first
proved by Hardy on R. We state Hardy’s theorem on R as follows [3].

Theorem 1..1 Suppose that f is a measurable function on R and satisfies

|f(x)| ≤ Ce−ax
2

|F (f)(ξ)| ≤ Ce
−ξ2

4a2

then f is a multiple of e−ax
2

The Hardy’s theorem was extended to various settings see [4–6] for more results. The purpose of this paper is
to obtain a generalization of this theorem for the generalized Bessel transform.

The structure of the paper is as follows: In section 2 we set some notations and collect some basic
results about the Bessel operator and the Bessel transform. In section 3 we give some facts about harmonic
analysis related to the second-order singular differential operator on the half line ∆ and generalized Bessel
transform. In section 4 we state and prove an analogue of Hardy’s theorem for the generalized Bessel transform.
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2. PRELIMINARIES
In this section, we recapitulate some facts about harmonic analysis related to the Bessel operator Lα.

We cite here, as briefly as possible, some properties. For more details we refer to [7].
Throughout this paper we assume that α > −1

2 .
Defined Lpα, 1 ≤ p ≤ ∞, as the class of measurable function f on [0,+∞[ for which ‖f‖p,α <∞, where

‖f‖p,α =

(∫ ∞
0

|f(x)|px2α+1dx

) 1
p

if p <∞

and
‖f‖∞,α = ‖f‖∞ = ess supx≥0|f(x)|.

The Bessel operator Lα is defined as following:

Lαf(x) =
d2

dx2
f(x) +

2α+ 1

x

d

dx
f(x).

The Fourier-Bessel transform of ordre α is defined for a function f ∈ L1
α by

Fα(f)(λ) =

∫ ∞
0

f(x)jα(λx)x2α+1dx, λ ≥ 0, (1)

where

jα(z) = Γ(α+ 1)

∞∑
n=0

(−1)n( z2 )2n

n! Γ(n+ α+ 1)
(z ∈ C). (2)

is the normalized Bessel function of index α.

Proposition 2..1 (i) If both f and Fα are in L1
α then

f(x) =

∫ ∞
0

Fα(f)(λ)jα(λx)dµα(λ), for almost all x ≥ 0

where
dµα(λ) =

1

4α(Γ(α+ 1))2
λ2α+1dλ. (3)

(ii) For every f ∈ L1
α

⋂
L2
α we have∫ ∞

0

|f(x)|2x2α+1dx =

∫ ∞
0

|Fα(f)(λ)|2dµα(λ).

The Bessel translation operators τxα , x ≥ 0, are defined by

τxα(f)(y) = aα

∫ π

0

f(
√
x2 + y2 + 2xycosθ)(sinθ)2αdθ, (4)

where

aα =
2Γ(α+ 1)
√
πΓ(α+ 1

2 )
. (5)

3. HARMONIC ANALYSIS ASSOCIATED WITH ∆
In this section we provide some facts about harmonic analysis related to the second-order singular

differential operator on the half line ∆. We cite here, as briefly as possible, some properties. For more details
we refer to [1, 2].
Consider the second-order singular differential operator on the half line

∆f(x) =
d2

dx2
f(x) +

2α+ 1

x

d

dx
f(x)− 4n(α+ n)

x2
f(x)
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where α > −1
2 and n = 0, 1, 2, .... For n = 0 we regain the Bessel operator Lα.

LetM be the map defined by
Mf(x) = x2nf(x).

Let Lpα,n, 1 ≤ p ≤ ∞, be the class of measurable functions f on [0,∞[ for which

‖f‖p,α,n = ‖M−1f‖p,α+2n <∞.

Remark 3..1 M is an isometry from Lpα+2n onto Lpα,n.

3.1. Generalized Bessel transform
For λ ∈ C and x ∈ R, put

ϕλ(x) = x2njα+2n(λx), (6)

where jα+2n is the normalized Bessel function of index α+ 2n given by (2).

Proposition 3..1 • ϕλ possesses the Laplace integral representation

ϕλ(x) = aα+2nx
2n

∫ 1

0

cos(λtx)(1− t2)α+2n− 1
2 dt, (7)

where aα+2n is given by (5)

• ϕλ satisfies the differential equation
∆ϕλ = −λ2ϕλ

• For all λ ∈ C and x ∈ R,
|ϕλ(x)| ≤ x2ne|Imλ||x|.

Definition 3..2 The generalized Fourier transform is defined for a function f ∈ L1
α,n by

F∆(f)(λ) =

∫ ∞
0

f(x)ϕλ(x)x2α+1dx, λ ≥ 0. (8)

Remark 3..2 • By (1) and (3) observe that

F∆ = Fα+2n ◦M−1, (9)

where Fα+2n is the Fourier-Bessel transform of order α+ 2n given by (1).

• If f ∈ L1
α,n then F∆(f) ∈ C0([0;∞[)(of continuous functions on [0;∞[ vanishing at infinity)

and ‖F∆(f)‖∞ ≤ ‖f‖1,α,n.

Theorem 3..3 Let f ∈ L1
α,n such that F∆(f) ∈ L1

α+2n. Then for almost all x ≥ 0,

f(x) =

∫ ∞
0

F∆(f)(λ)ϕλ(x)dµα+2n(λ),

where dµα+2n(λ) is given by (3).

Theorem 3..4 (i) For every f ∈ L1
α,n

⋂
L2
α,n we have the Plancherel formula∫ ∞

0

| f(x) |2 x2α+1dx =

∫ ∞
0

| F∆(f)(λ) |2 dµα+2n(λ).

(ii) The generalized Fourier transform F∆ extends uniquely to an isometric isomorphism from L2
α,n onto

L2([0,∞[, µα+2n). The inverse transform is given by

F−1
∆ (g)(x) =

∫ ∞
0

g(λ)ϕλ(x)dµα+2n(λ),

where the integral converge in L2
α,n.
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4. HARDY’S THEOREM FOR THE GENERALIZED BESSEL TRANSFORM
In this section, we will obtain a Hardy uncertainty principle for the generalized Bessel transform.

Theorem 4..1 Suppose that f is a measurable function such that f ∈ L2
α,n and satisfies

|f(x)| ≤ Cx2n(1 + x2)ke−ax
2

|F∆(f)(ξ)| ≤ C(1 + ξ2)ke−bξ
2

where a, b > 0. Then, f = 0 whenever ab > 1
4 and when ab = 1

4 , f(x) = H(x)e−ax
2

, where H is a
polynomial of degree ≤ 2k + 2n.

We will use the following lemma

Lemma 4..2 [8] Suppose that F (ξ) is an entire function of one complex variable satisfying

|F (ξ)| ≤ C(1 + |ξ|2)keb|Img(ξ)|
2

, ξ ∈ C

|F (ξ)| ≤ C(1 + ξ2)ke−bξ
2

, ξ ∈ R

where b is a positive constant. Then, F (ξ) = P (ξ)e−bξ
2

, where P (ξ) is a polynomial of degree ≤ 2k.

Proof of theorem
Assume first that ab = 1

4 . Obviously, F∆(f) can be extended to an entire function. Let ξ = ζ + iη then, we
have

|F∆(f)(ξ)| = C|
∫ ∞

0

f(x)ϕξ(x)x2α+1dx|

= C|
∫ ∞

0

x2nf(x)jα+2n(ξx)x2α+1dx|

≤ C

2
|
∫ ∞

0

f(x)

x2n
x2(α+2n)+1

∫ 1

−1

eixξs−xηs(1− s2)α+2n− 1
2 dsdx|

≤ C

2
|
∫ ∞

0

(1 + x2)kx2(α+2n)+1e−ax
2+x|η|dx|

≤ C

2
ebη

2

∫ ∞
0

(1 + x2)kx2(α+2n)+1e−(
√
ax−
√
b|η|)2dx

≤ C

2
(1 + η2)k+α+2n+1ebη

2

≤ C(1 + η2)k+α+2n+1ebη
2

.

By lemma 4.2, F∆(f)(ξ) = Q(ξ)e−bξ
2

, where Q(ξ) is a polynomial. Because

|Q(ξ)e−bξ
2

| = |F∆(f)(ξ)| ≤ C(1 + ξ2)ke−bξ
2

we have degQ = 2k.
In view of Lemma 4.2 and by taking the inverse of the Fourier-Bessel transform of order α + 2n, we

obtain
M−1(f)(x) = P (x)e−ax

2

,

where P (x) is an even polynomial of degree ≤ 2k.
Then

f(x) = x2nP (x)e−ax
2

= H(x)e−ax
2

where H(x) is an even polynomial of degree ≤ 2k + 2n.

When ab > 1
4 , |M−1(f)(x)| ≤ C(1 + |x|2)ke−a1x

2

, where a1 = 1
4b < a.

As argument above,
M−1f(x) = P (x)e−a1x

2
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where P (x) is an even polynomial of degree ≤ 2k.
Then

|M−1f(x)| ≤ C(1 + x2)ke−ax
2

cannot hold unless
M−1f = 0,

then f = 0.
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