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Summary. The �eld of Grammatical Inference provides a good theoretical frame-

work for investigating a learning process. Formal results in this �eld can be relevant

to the question of �rst language acquisition. However, Grammatical Inference stud-

ies have been focused mainly on mathematical aspects, and have not exploited the

linguistic relevance of their results. With this paper, we try to enrich Grammatical

Inference studies with ideas from Linguistics. We propose a non-classical mecha-

nism that has relevant linguistic and computational properties, and we study its

learnability from positive data.

1 Introduction

Grammatical Inference (GI) is a sub�eld of Machine Learning that deals with

the learning of formal languages. Roughly speaking, a GI problem can be de-

�ned as a gamed played between two players: a teacher and a learner. The

teacher provides data to the learner, and from this data, the learner must

identify the underlying language [4]. The initial theoretical foundations of GI

? This paper is based on [2] and [1].
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were given by M.E. Gold [7], who was primarily motivated by the problem of

�rst language acquisition. Since his seminal work, research in GI has focused

on obtaining formal results (e.g, to �nd e�cient methods for inferring gram-

mars). Besides this theoretical bent, GI algorithms have also been applied to

practical problems (e.g., Natural Language Processing, Computational Biol-

ogy, etc.). Excellent surveys on the �eld of GI can be found in [6, 17].

Chomsky-inspired linguistic studies conceive grammar as a machine (in the

sense of the theory of formal languages) that children develop and reconstruct

very fast during the �rst years of their life. Children infer and select the gram-

mar of their language from the data that the surrounding world o�ers them.

Therefore, the proximity between GI and linguistic studies is considerable.

On the basis of these ideas, we try to bring together the theory of GI

and studies of language acquisition, in pursuit of a �nal goal: to gain insight

into the process of language acquisition. One concrete goal of this paper is

to try to improve GI studies by using ideas from Linguistics. After present-

ing formal preliminaries (Section 2), we review the classes of languages on

which GI studies have focused and we discuss whether they are suitable for

modelling natural language syntax (Section 3). Then, we propose to study

a non-classical mechanism that has important linguistic and computational

properties (Section 4), and we study its learnability from positive data (Sec-

tion 5). Concluding remarks and future work are presented in Section 6.

2 Preliminaries

In this paper we follow standard de�nitions and notations in formal language

theory. Supplementary information can be found in [8].

Given an alphabet Σ, the set of all strings over the alphabet Σ is denoted

by Σ∗. The set of nonempty strings from alphabet Σ is denoted Σ+. A lan-

guage L over Σ is a subset of Σ∗. The elements of L are called strings or

words. λ is the empty string. Assume that a ∈ Σ and w ∈ Σ∗; the length of

w is denoted by |w|, and the number of occurrences of a in w is denoted by

|w|a.
N denotes the set of natural numbers. Assume that Σ = {a1, a2, ..., ak}.

The Parikh mapping, denoted by Ψ , is:

Ψ : Σ∗ → Nk, Ψ(w) = (|w|a1 , |w|a2 , ..., |w|ak
)

If L is a language, then the Parikh set of L is de�ned by:
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Ψ(L) = {Ψ(w) | w ∈ L}

A linear set is a set M ⊆ Nk such that M = {v0 +
∑m
i=1 vixi | xi ∈ N},

for some v0, v1, ..., vm in Nk. A semilinear set is a �nite union of linear sets,

and a semilinear language is a language L such that Ψ(L) is a semilinear set.

We denote by RE,CS,CF,LIN, and REG the families of languages

generated by arbitrary, context-sensitive, context-free, linear, and regular

grammars, respectively (RE stands for recursively enumerable). By FIN we

denote the family of �nite languages. The following strict inclusions hold:

FIN ⊂ REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE. We call this, the Chomsky hierar-

chy .

3 Natural Languages and the Chomsky Hierarchy

GI studies have focused on learning REG and CF languages (i.e, the �rst two

levels in the Chomsky Hierarchy) [6, 17]. However, the Chomsky Hierarchy

has some limitations that should be taken into account when we want to study

natural language syntax. One of the main limitations emerges when we try to

locate natural languages in this hierarchy.

The question of determining the location of natural languages in the Chom-

sky Hierarchy has been a subject of discussion since it was posed by Chomsky

in [3]. This debate focused on the following question: �Are natural languages

CF?". However, in the late 80s, some clear examples of natural language struc-

tures that cannot be described using a context-free grammar were discovered

(some examples of such constructions can be found in [11]). Linguists then

agreed that natural languages are not CF.

It is worth noting that although the family of CF does not contain some

important formal languages that appear in human languages, it has good

computational properties. The family of context-sensitive languages contains

all important constructions that occur in natural languages, but it is believed

that the membership problem for languages in this family cannot be solved

in deterministic polynomial time. Therefore, the question now is: �How much

power beyond context-free is necessary to describe these non-context-free con-

structions that appear in natural language?"

The idea of generating CF and non-CF structures, and keeping the gener-

ative power under control, has led to the notion of Mildly Context-Sensitive

(MCS), originally introduced by A.K. Joshi [9].
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De�nition 1. By a Mildly Context-Sensitive family of languages we mean a

family L of languages that satis�es the following conditions:

(i) each language in L is semilinear,

(ii) for each language in L the membership problem is solvable in deterministic

polynomial time,

(iii) L contains the following three non-context-free languages:

- multiple agreements: L1 = {anbncn | n ≥ 0}
- crossed agreements: L2 = {anbmcndm | n,m ≥ 0}
- duplication: L3 = {ww | w ∈ {a, b}∗}
The mechanisms for fabricating MCS families are well known (e.g., tree

adjoining grammars ([10]), head grammars [16], combinatory categorial gram-

mars [19], etc). All these studies are based on the idea that the class of natural

languages is located in the Chomsky Hierarchy, between CF and CS (i.e., it

includes REG and CF, but it is included in CS). However, as some authors

have pointed out (for instance, see [12]), this assumption is not necessarily

true, as natural languages could occupy an orthogonal position in the Chom-

sky Hierarchy (i.e., it contains some REG, some CF, etc.). In fact, we can �nd

some constructions in natural languages that are neither REG or CF, and also

some REG and CF constructions that do not appear naturally in sentences.

Taking these ideas into account, we consider that the study of natural lan-

guage syntax from a formal point of view should focus on mechanisms that

generate MCS languages and occupy an orthogonal position in the Chom-

sky Hierarchy. Unfortunately, most research on Grammatical Inference is not

based on a class of languages with such features.

4 P-dimensional External Contextual Grammars

Contextual grammars were introduced by S. Marcus in [13], motivated by nat-

ural language investigations (for instance, modelling the acceptance of a word

only in certain contexts). Roughly speaking, a contextual grammar produces

a language starting from a �nite set of words (axioms) and iteratively adding

contexts (pair of words) to the currently generated words. Unlike the Chom-

sky grammars, contextual grammars do not involve nonterminals and they

do not have rules of derivation except one general rule: to adjoin contexts. In

the derivation process of the contextual grammars, the contexts can be added

in two di�erent ways: at the ends of the current string (these grammars are

called external); or inside the current string (internal grammars).
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Many variants have been investigated [15]. One of them is the so called

Many-dimensional External Contextual grammars. These grammars extend

the external contextual grammars, but work with vectors of words and vectors

of contexts. Their linguistic relevance has been investigated in [11].

Let p ≥ 1 be a �xed integer, and let Σ be an alphabet. A p-word

x over Σ is a p-dimensional vector whose components are words over Σ,

i.e., x = (x1, x2, ..., xp), where xi ∈ Σ∗, 1 ≤ i ≤ p. A p-context c over

Σ is a p-dimensional vector whose components are contexts over Σ, i.e.,

c = [c1, c2, ..., cp] where ci = (ui, vi), ui, vi ∈ Σ∗, 1 ≤ i ≤ p. We denote

vectors of words with round brackets, and vectors of contexts with square

brackets.

De�nition 2. Let p ≥ 1 be an integer. A p-dimensional External Contextual

grammar is G = (Σ,B,C), where Σ is the alphabet of G, B is a �nite set of

p-words over Σ called the base of G, and C is a �nite set of p-contexts over

Σ. C is called the set of contexts of G.

The direct derivation relation with respect to G is a binary relation between

p-words over Σ, denoted by ⇒G, or ⇒ if G is understood from the context.

Let x = (x1, x2, ..., xp) and y = (y1, y2, ..., yp) be two p-words over Σ. By

de�nition, x ⇒G y i� y = (u1x1v1, u2x2v2, ..., upxpvp) for some p-context

c = [(u1, v1), (u2, v2), ..., (up, vp)] ∈ C. The derivation relation with respect

to G, denoted by ⇒∗G, or ⇒∗ if no confusion is possible, is the re�exive and

transitive closure of ⇒G.

De�nition 3. Let G = (Σ,B,C) be a p-dimensional External Contextual

grammar. The language generated by G, denoted L(G), is de�ned as:

L(G) = {y ∈ Σ∗| there exists (x1, x2, ..., xp) ∈ B such that (x1, x2, ..., xp)
⇒∗G (y1, y2, ..., yp) and y = y1y2...yp}.

The family of all p-dimensional External Contextual languages is denoted

by ECp.

Remark 4.1 Any family ECp for p ≥ 2 is a subfamily of linear simple matrix

languages (see [11]).

De�nition 4. A Linear Simple Matrix Grammar of degree n, n ≥ 1, is a

grammar G = (N1, ..., Np, Σ,M, S), where:

• Ni: nonterminal alphabet.
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• Σ: terminal alphabet.

• S: start symbol.

• M: �nite set of matrices of the form

1. (S → A1...Ap), for Ai ∈ Ni, 1 ≤ i ≤ p, or
2. (A1 → x1, A2 → x2, ..., Ap → xp), forAi ∈ Ni, xi ∈ Σ∗, 1 ≤ i ≤ p, or
3. (A1 → x1B1y1, A2 → x2B2y2, ..., Ap → xpBpyp), for Ai, Bi ∈ Ni,
xi, yi ∈ Σ∗, 1 ≤ i ≤ p.

Kudlek et al. [11] showed that for p ≥ 2, the family ECp is a MCS family

of languages. They also showed that ECp occupies an orthogonal position

in the Chomsky Hierarchy. Therefore, ECp is a mechanism with the desired

properties described in Section 3.

5 The Simple p-Dimensional External Contextual Case

Taking into account the relevant properties of ECp from a linguistic and

computational point of view, in this section we will study its learnability from

positive data.

One of the most important models investigated in GI is the model of

identi�cation in the limit, introduced by E.M. Gold in [7]. In this model, an

in�nite sequence of examples of the unknown language is presented to the

learner, and its eventual or limiting behavior is used as the criterion of its

success.

De�nition 5. Method M identi�es language L in the limit if, after a �nite

number of examples, M makes a correct guess and does not alter its guess

thereafter. A class of languages is identi�able in the limit if there is a method

M such that given any language of the class and given any admissible example

sequence for this language, M identi�es the language in the limit.

Two di�erent learning settings are considered in this model: learning from

text (only strings that belong to the language are given to the learner. It is

also known as learning from positive data) and learning from informant (in

addition to positive data, strings that do not belong to the language are also

given to the learner).

Although it is desirable to learn from only positive data, Gold [7] proves

that super�nite classes (i.e., classes of languages that contains all �nite lan-

guages and at least one in�nite language) are not identi�able in the limit
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from positive data. This implies that even the smallest class in the Chomsky

Hierarchy (i.e., REG) is not identi�able in the limit from positive data.

According to the general de�nition, the ECp grammar family is super�nite,

since the base of G can be any �nite set of p-words. We denote by p the

dimension and by q the number of contexts.

Theorem 1. The class ECp is super�nite.

Proof. Let p = q = 1. For any �nite set S of strings over Σ, consider a ECp
with a base set S and an empty context set. Then, such a ECp generates

a �nite language S. A ECp with a base λ and a context set {[(a, λ)]} can

generate an in�nite language a∗. Therefore, the language class is super�nite.

Corollary 5.1 ECp is not identi�able in the limit from positive data.

Hence, we need to set some restrictions to make it possible to learn this

class in the limit from only positive data.

De�nition 6. A Simple p-dimensional External Contextual grammar is G =
(Σ,B,C), where Σ is the alphabet of G, B is a singleton of p-words over Σ

called the base of G, and C is a �nite set of p-contexts over Σ. C is called the

set of contexts of G.

Therefore, a Simple many-dimensional External Contextual grammar is

a subfamily of ECp. The main di�erence is that the base of a Simple p-

dimensional External Contextual grammar is restricted to a single p-word.

The family of all Simple p-dimensional External Contextual languages is

denoted by SECp.

5.1 Properties of SECp grammars

Even if the base is a singleton, the family of SECp has several properties that

are very interesting from a linguistic point of view. Here we present some of

the most remarkable ones. On the basis of analogous arguments to those used

by Kudlek et al. in [11], we can establish the following theorems.

Theorem 2. For every integer p ≥ 2, the family SECp is a MCS family of

languages.

Proof. 1. SECp ⊆ ECp and ECp contains semilinear languages only (see

[11]).
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2. By membership problem the following is understood: given a language

L ⊆ Σ∗ (de�ned by a certain type of grammar, automaton, etc.) and a

word w ∈ Σ∗, decide algorithmically whether w is in L or not. Since the

membership problem is polynomially decidable for ECp, it follows that

each family SECp, p ≥ 1, is parsable in polynomial time (see [11], [14]).

3. The following languages are in SECp for every p ≥ 2:
- multiple agreements: L1 = {anbncn | n ≥ 0}
- crossed agreements: L2 = {anbmcndm | n,m ≥ 0}
- duplication: L3 = {ww | w ∈ {a, b}∗}
It is easy to construct SECp grammars for each of these languages:

(i) L1 = {anbncn | n ≥ 0}. It is generated by the SECp grammar

G1 = ({a, b, c}, B,C), where:

- B = {(λ, λ)}
- C = { c1 = [(a, b), (c, λ)]}

(ii) L2 = {anbmcndm | n,m ≥ 0}. It is generated by the SECp grammar

G2 = ({a, b, c, d}, B,C), where:

- B = {(λ, λ)}
- C = { c1 = [(a, λ), (c, λ)], c2 = [(λ, b), (λ, d)]}

(iii) L3 = {ww | w ∈ {a, b}∗}. It is generated by the SECp grammar

G3 = ({a, b}, B, C), where:

- B = {(λ, λ)}
- C = { c1 = [(a, λ), (a, λ)], c2 = [(b, λ), (b, λ)]}

Moreover, SECp occupies an orthogonal position in the Chomsky Hierar-

chy.

Theorem 3. 1. SECp ⊂ CS, for every p ≥ 1.
2. Each family SECp, p ≥ 2, is incomparable with the family CF . The family

SEC1 is strictly contained in CF .

3. Each family SECp, p ≥ 1, is incomparable with the family REG.
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Proof. 1. Since no deletion is observed in the derivation process of a string

in a SECp grammar, the �rst statement follows.

2. From Theorem 2 it follows that every family SECp, p ≥ 2, contains
noncontext-free languages. Consider now the context-free language L =
{anbn|n ≥ 0}∗. Assume that L can be generated by a SECp grammar

G = (Σ,B,C). Consider the following word from L:

w = ai1bi1ai2bi2...airbir,

where p < r. One can easily see that by pumping all occurring contexts

we cannot generate w , so L is not in SECp, for any p ≥ 2.

The second part of this statement follows from the fact that the family

of external contextual languages is equal to MinLIN, which is a strict

subfamily of LIN, incomparable with REG (see [11]).

3. Note that each family SECp, p ≥ 1, contains nonregular languages. Now,
consider the regular language L = a∗ ∪ b∗. One can verify that L is not in

SECp, for any p ≥ 1.

Figure 1 shows the location of SECp family in the Chomsky Hierarchy.

Fig. 1. The SECp family occupies an orthogonal position in the Chomsky hierarchy.

Moreover, the SECp grammar has another property with regard to ECp
grammars. We can �nd some languages showing the proper inclusion:

SECp ⊂ ECp
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For example, L = {a, b, c}. It is generated by an ECp grammar, but can

never be generated by a SECp grammar because of the restricted features of

SECp grammars. This demonstrates that SECp is not super�nite.

5.2 Learnability of SECp languages from only positive data

Shinohara [18] showed that the class of languages generated by CS grammars

with a �xed number of rules is learnable from only positive data. Hence, if

we can transform a given SEC grammar with dimension p and degree q into

an equivalent LSMG (linear simple matrix grammar [5]) with dimension p'

and degree q' and this into an equivalent CS grammar with a �xed number

of rules, we will achieve our goal.

We will give the following constructive demonstration to prove that

SECp,q ⊂ LSMGp′,q′ ⊂ CS grammars with a �xed number of rules.

First, we need to de�ne p, q, p' and q'.

(i) SECp,q:

- p: dimension (in the same sense as SECp),

- q: degree (the number of contexts).

(ii) LSMGp′,q′ :

- p': number of nonterminals in the right hand of the unique rule of the

LSMG started by S.

- q': number of matrices.

Let G = (Σ,B,C) be a SECp,q grammar, where

- B = {(γ1, ..., γp)}
- C = { c1 = [(α1

1, β
1
1), ..., (α

1
p, β

1
p)], ..., cq = [(αq1, β

q
1), ..., (α

q
p, β

q
p)] }

We can transform this SEC grammar with dimension p and degree q into

an equivalent LSMG with dimension p' and degree q'.

G' = (N1, ..., Np, Σ, P, S), where

- P = { S −→ A1...Ap,

(A1 −→ γ1, ..., Ap −→ γp),

(A1 −→ α1
1A1β

1
1 , ..., Ap −→ α1

pApβ
1
p),

(...),

(A1 −→ αq1A1β
q
1 , ..., Ap −→ αqpApβ

q
p)}
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for Ai ∈ Ni, γi, αji , βji ∈ Σ∗, 1 ≤ i ≤ p, 1 ≤ j ≤ q
The number of rules of an equivalent CSG will be proportional to p' · q'.

Generally, there exists a CSG with the number of rules ≤ k · p′ · q′ (k is a

constant).

We now illustrate this method using a grammar as follows. As a simple

example, consider a SECp,q with p = 2 and q = 2.

Let G = ({a, b, c, d}, B,C) be a SECp,q grammar, where

- B = {(ab, cd)}
- C = { c1 = [(a, λ), (c, λ)], c2 = [(λ, b), (λ, d)] }
Note that L(G) = {ambncmdn|m,n > 0}.
We can transform this SECgrammar with dimension p and degree q into

an equivalent LSMG with dimension p' and degree q'.

G′ = ({S,A,A′}, {a, b, c, d}, P, S), where

- P = { m0: S −→ AA',

m1: (A −→ ab, A' −→ cd),

m2: (A −→ aA, A' −→ cA'),

m3: (A −→ Ab, A' −→ A'd) }.

Now, we can construct a CSG: G� = ( VN , T, P', S), where

VN = {S,A,A′, B,R1, R2, R3}

P' = {S −→ ABA′

AB −→ abR1 R1b −→ bR1 R1c −→ cR1 bB −→ Bb

AB −→ aAR2 R2b −→ bR2 R2c −→ cR2 cB −→ Bc

AB −→ AbR3 R3b −→ bR3 R3c −→ cR3

R1A
′ −→ Bcd R1A

′ −→ cd

R2A
′ −→ BcA′ R2A

′ −→ cA′

R3A
′ −→ BA′d R3A

′ −→ A′d}

Note that the set of rules presented here may contain some redundancy.

However, we gave a priority to the consistency of the manner of constructing

corresponding CSGs for general cases.

It is easy to prove that L(G) = L(G′) = L(G′′). We will do it in two steps:

1. L(G)⇔ L(G′)
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2. L(G′)⇔ L(G′′).

Proof 1

(i) L(G)⇒ L(G′)

Let G = (Σ,B,C) be a SECp,q grammar such that L(G) = L. De�ne the

LSMGp′,q′ G
′ = (N1, ..., Np, Σ,M, S) such that Ai ∈ Ni, 1 ≤ i ≤ p. The

set M contains the following matrices:

• (S → A1A2...Ap). The number of nonterminals in the right hand of the

unique rule of the LSMGp′,q′ started by S, is equal to the dimension

of the SECp,q. Therefore, p = p'.

• For the p-word (x1, x2, ..., xp), which constitutes the base of SECp,q, M

contains the following matrix of rules: (A1 → x1, A2 → x2, ..., Ap →
xp). There is only one matrix of this kind because the base of the

SECp,q is a singleton (it has only one p-word).

• For each p-context c = [(u1, v1), (u2, v2), ..., (up, vp)] ∈ C, M contains

the matrix of rules: (A1 → u1A1v1, A2 → u2A2v2, ..., Ap → upApvp).

In this way, when we apply the contexts c1, c2, ..., cq, we obtain the

same result as when we apply the matrices m2,m3, ...,mq+1, respec-

tively.

It is easy to see that L(G') = L. By construction, for every s ∈ L(G) there
exists a derivation of s in G'.

(ii) L(G)⇐ L(G′).

Let G' be the LSMGp′,q′ , with L(G′) = L. We de�ne a SECp,q grammar

G = (Σ,B,C) such that:

• For the matrix (A1 → x1, A2 → x2, ..., Ap → xp) ∈M , B contains the

p-word (x1, x2, ..., xp). Therefore, the elements of B coincide with the

elements on the right hand of the matrix (A1 → x1, A2 → x2, ..., Ap →
xp).

• For each matrix of rules (A1 → u1A1v1, A2 → u2A2v2, ..., Ap →
upApvp) ∈M , the set C of p-contexts contains c = [(u1, v1), (u2, v2), ...,
(up, vp)]. Therefore, the number of matrices is equal to the number of

contexts + 1.

It is easy to verify that L(G) = L. By construction, for every s ∈ L(G′)
there exists a derivation of s in G.
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Proof 2

(i) L(G′)⇒ L(G′′)

Let G′ = (N1, ..., Np, Σ,M, S) be a LSMGp′,q′ such that L(G') = L.

De�ne the CSG G′′ = (N,Σ,P, S), where: N is a �nite set of nonterminal

symbols, Σ is a �nite set of terminal symbols that is disjoint from N, P

is a �nite set of production rules and S ∈ N is the start symbol. The set

P contains the following rules:

• S → A1BA2A3...Ap. The right hand of S coincides with the right

hand of the unique rule started by S of the LSMGp′,q′ . We add the

nonterminal B when p ≥ 2, to allow applications of di�erent rules.

• For each matrix of M, P contains the following rules:

• For the �rst rule of each matrix, P contains:

A1B → x1R1

A1B → u1A1v1R2

(...)
A1B → u1A1v1Rq′

q′ is the number of matrices. So, there are correspondences between

choosing the rule that contains R1, for example, and applying ma-

trix m1.

• For the second rule of each matrix, P contains:

R1A2 → x2R1

R2A2 → u2A2v2R2

(...)
Rq′A2 → u2A2v2Rq′

We apply this kind of rule from the second to the p−1 rule of each

matrix (note that each matrix has p rules).

• For the p rule of each matrix, P contains:

R1Ap → Bxp | xp
R2Ap → BupApvp | upApvp
(...)
Rq′Ap → BupApvp | upApvp.
If we use the rule that contains the nonterminal B, we will go back

and apply more rules. Otherwise, we will �nish the derivation.

• We will need to add some intermediate rules to allow us to make the

necessary derivations. These rules don't have any correspondence

with the LSMGp′,q′ . With these intermediate rules, we swap Ri to

the right until it is adjacent to an Ai, allowing us to apply another
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rule. Similarly, we move B to the left until it is adjacent to A1, and

then start to apply this process again.

It is easy to see that L(G′′) = L. By construction, for every s ∈ L(G′)
there exists a derivation of s in G′′.

(ii) L(G′)⇐ L(G′′)

Let G� be the CSG, with L(G�) = L. We de�ne a LSMGp′,q′ G
′ =

(N1, ..., Np, Σ,M, S) such that:

• For the unique rule started by S of the CSG, M contains the same

rule without the nonterminal B.

• For all the rules that contain Ri in the CSG (except intermediate

rules), where 1 ≤ i ≤ q′, M contains a matrix with all these rules, but

B, Ri and repeated rules are deleted.

It is easy to verify that L(G') = L. By construction, for every s ∈ L(G′′)
there exists a derivation of s in G'.

Hence, there are clear relationships between SECp,q, LSMGp′,q′ and

CSG.

(i) p′ = p (in our example, p is equal to 2; therefore, the number of nonter-

minals in the right hand of the unique rule of the LSMG started by S is

2).

(ii) q′ = q + 1 (in our example, q is equal to 2; therefore, the number of

matrices of LSMG has to be 3).

(iii) The �xed number of rules of CSG is proportional to p'·q'. Generally, one
can have G′′ with O(p′ · q′) number of rules. Since p′ and q′ are given, G′′
has a bounded number of rules.

From a result by Shinohara [18], we can obtain the following theorem:

Theorem 4. Given p′ > 0 and q′ > 0, the class of languages generated by

linear simple matrix grammars with dimension p′ and degree q′ is learnable

from positive data.

Corollary 5.2 Given p > 0 and q > 0, the class of languages generated

by simple external contextual grammars with dimension p and degree q is

learnable from positive data.
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Although what we have proved is enough to show that SEC can be learned

from only positive data, we have a stronger result. As we will prove below,

SEC with any dimension, but with at most q contexts and m bases, has �nite

elasticity (a su�cient condition for learning from positive data).

We will use the notation ⊂ to mean a proper subset relation in the sequel.

By Sec(p, q,m), we denote the class of languages that can be generated

by SECs with a dimension that is less than or equal to p, with at most q

contexts, and with at most m bases. By Sec(∗, q,m), we denote the class of

languages de�ned by

Sec(∗, q,m) =
∞⋃
p=1

Sec(p, q,m).

Let w be a string over Σ. A pair (b, C) of a base b and a set C of contexts

is said to minimally generate w if and only if w is generated by using a base b

and contexts in C and there exists no b′ and C ′ such that b = b′, C ′ ⊂ C and

w is generated by using b′ and C ′. For a string w, by MinC(w), we denote

the set of all pairs (b, C) (b:base, C:set of contexts) which minimally generate

w. It is clear that the following lemma holds:

Lemma 1. For any w ∈ Σ∗, MinC(w) is �nite.

Theorem 5. The class Sec(∗, q,m) has �nite elasticity. Therefore, it is iden-
ti�able in the limit from positive data.

Proof. Assume that the class Sec(∗, q,m) has in�nite elasticity.
There exists an in�nite sequence w0, w1, w2, ... of strings in Σ∗ and an

in�nite sequence L1, L2, ... of languages in Sec(∗, q,m) such that, for any

k ≥ 1, {w0, w1, ..., wk−1} ⊆ Lk and wk 6∈ Lk hold.

For each i = 1, 2, ..., let Si be some SEC generating Li. Note that each

Si includes some element of MinC(w0) in its base and context set. Since

MinC(w0) is �nite by the above lemma, there exists C0 ∈ MinC(w0) such

that in�nitely many Si's include C0. Let σ = Sn1 , Sn2 , ... be an in�nite se-

quence of such SEC's including C0. Note that σ is a subsequence of S1, S2, ....

(That is n1, n2, ... is a subsequence of 1,2,3,....)

The string wn1 is not an element of Ln1 . Therefore, wn1 is not generated

by Sn1 . But, the in�nite subsequence Sn2 , Sn3 , Sn4 , ... should generate wn1 ,

and therefore, should include some element of MinC(wn1) in its base and

context set. Since MinC(wn1) is �nite, there exists C1 ∈ MinC(wn1) such
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that in�nitely many Snj
's include C1. Note that C0 does not generate wn1 .

Therefore, |C0| < |C0 ∪ C1| holds.
Repeating the same discussion, we can �nd an in�nite sequence C0, C1, ...

satisfying the following conditions:

1. |C0| < |C0 ∪ C1| < |C0 ∪ C1 ∪ C2| < · · · holds,
2. for any q, there exist in�nitely many SEC's in S1, S2, ... which include

C0 ∪ · · · ∪ Cq as its base and context set.

These conditions contradict the fact that the number of contexts and bases

are upper bounded by q and m, respectively. This completes the proof.

6 Concluding Remarks

Despite the fact that REG and CF grammars are mechanisms with limited

representational power to describe some constructions that appear in natural

languages, GI studies have focused on them. In this paper we have proposed

to study classes of languages that are more relevant from a linguistic point of

view.

On one hand, we have seen that MCS languages provide a grammatical

environment for natural language constructions. On the other hand, we have

given some arguments that support the idea that natural languages could oc-

cupy an orthogonal position in the Chomsky Hierarchy. Therefore, it would be

very interesting to study mechanisms with these properties (i.e., they fabri-

cate MCS languages and they occupy an orthogonal position in the Chomsky

Hierarchy).

P-dimensional External Contextual grammars are an example of a mech-

anism with such features. Hence, we believe they could have a chance in the

study of natural language syntax. However, in order to study its learnabil-

ity from only positive data, we have to restrict the grammar. So, we have

introduced a new class of languages called Simple External Contextual. We

have shown that this class with �xed dimension and degree is learnable from

positive data, from Shinohara's results [18]. Moreover, we have presented a

second stronger result that shows that Simple External Contextual with any

dimension, but at most q contexts and m bases, has �nite elasticity (su�cient

condition for positive data learnability).

In the future, we would like to have a better understanding of the proper-

ties of the new class proposed and extend these learnability results. Moreover,
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taking into account that corrections are also available to the child in the

early stages of language acquisition, and that the idea of corrections has been

successfully applied to learn REG languages [1], we would like to study the

learnability of Simple External Contextual languages using positive data and

corrections.
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