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1 Introduction

Membrane computing with symbol-objects is a biologically inspired frame-
work of distributed parallel multiset processing; see [10] for an overwiew
and [13] for the comprehensive bibliography. The most addressed questions
are completeness (solving every solvable problem) and efficiency (solving
hard problems in a feasible time). We focus on the latter.

An interesting class of membrane systems are those with active mem-
branes (see [9]), where membrane division can be used for solving compu-
tationally hard problems in polynomial time. Let us mention a few results:

• A semi–uniform solution to SAT using three polarizations and division
for non-elementary membranes, [9].

• A polarizationless solution, [2].
• Only division for elementary membranes, with three polarizations [11].
• A uniform solution, with elementary membrane division, [12].
• Only two polarizations, in a uniform way, with elementary membrane

division [3].
• Computational completeness of P systems with three polarizations and

three membranes [10].
• Only two polarizations and two membranes [6].
• Only one membrane, with two polarizations [4, 5].
• Polarizationless systems are complete, with no known bound on the num-

ber of membranes [1].
• Solving SAT in a minimally parallel way, using non-elementary mem-

brane division (replicating both objects and inner membranes) [7].
• Polarizations avoided by using rules that change membrane labels. To the

best of the author’s knowledge the rules are either cooperative or non-
elementary division as above [8].

Given a P system, a rule and an object, whether the rule is applica-
ble to the object in some membrane might depend on both the membrane
label (that usually cannot be changed) and the membrane polarization. Es-
sentially, the number of polarizations is the number of states that can be
encoded directly on the membrane.

Minimal parallelism provides less synchronization between the objects,
so one might expect the need for stronger control (i.e., more polarizations).
It is not difficult to construct the system so that the rules are global (i.e., the
membrane labels are not distinguished), probably by not adding additional
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polarizations. In this way, the results dealing with the number of polariza-
tions can be reformulated in terms of number of membrane labels (in which
case the systems have no polarizations, but the rules are allowed to modify
membrane labels).

2 Preliminaries

2.1 Solvability by P systems with input

Definition 1. A P system with input is a tuple (Π, Σ, iΠ), where (a) Π is a P
system with working alphabet , with m membranes labelled with 1, · · · , m, and
initial multisets w1, · · · , wm (over O− Σ) associated with them; (b) Σ ⊆ O is an
(input) alphabet, (c) iΠ is the label of a distinguished (input) membrane.

The initial configuration of (Π, Σ, iΠ) with an input multiset w over Σ is

(µ, w1, · · · , wiΠ ∪ w, · · · , wm).

We call (Π, Σ, iΠ) a decisional P system with input if there exist two distin-
guished objects yes, no ∈ O and for any valid input (see cod function in the
definition below) all its computations send to the environment exactly one
object: either yes (in this case the computation is called an accepting one)
or no. Moreover, (Π, Σ, iΠ) is called confluent if for any valid input all its
computations halt in the same configuration.

Definition 2. Consider a decision problem X = (IX , θX): IX is the set of possible
instances of X and θX is a Boolean function over IX . We say that X is solvable in
polynomial time by a uniform family of P systems Π = (Π(n))n∈N if the following
conditions hold:

• The family Π is polynomially constructible: i.e., there exists a deterministic
Turing machine constructing the system Π(n) from n in polynomial time.

• There exists a pair (s, cod) of polynomial-time computable functions mapping
every instance u ∈ IX of the problem X into a natural number and a multiset
(over the alphabet of Π(s(u))), respectively. The instance u is to be solved by
a system Π(s(u)) with the multiset cod(u) placed in the input membrane, as
described below.

• The family Π is polynomially bounded with respect to (X, cod, s): i.e., there
exists a polynomial function p(n) such that for each u ∈ IX every computation
of the system Π(s(u)) with input cod(u) halts in at most p(s(u)) steps.
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• The family Π is sound with respect to (X, cod, s): i.e., for each u ∈ IX if there
exists an accepting computation of Π(s(u)) with input cod(u), then θX(u) =
1.

• The family Π is complete with respect to (X, cod, s): i.e., for each u ∈ IX
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

2.2 P systems with active membranes

Definition 3. A P system with active membranes is a P system with the working
alphabet O,the set H of membrane labels, the set E of polarizations, and the rules of
the following forms:

(a) [ a ] au ] e
h for a ∈ O, u ∈ O∗, h ∈ H and e ∈ E. These are object evolution

rules. An object a ∈ O in the region associated with a membrane with label h
and polarization e evolves to a multiset u ∈ O∗.

(b) a[ ] e
h → [ b ] e′

h for a, b ∈ O, h ∈ H and e, e′ ∈ E. These are send–in communi-
cation rules. An object a from the region immediately outside a membrane with
label h and polarization e is introduced in to this membrane, transformed into b
and the polarization of the membrane is changed to e′.

(c) [ a ] e
h → [ ] e′

h b for a, b ∈ O, h ∈ H and e, e′ ∈ E. These are send–out
communication rules. An object a is sent out from the region associated with
a membrane with label h and polarization e to the region immediately outside,
transformed into b and the polarization of the membrane is changed to e′.

(d) [ a ] e
h → a for a, b ∈ O, h ∈ H and e ∈ E. These are dissolution rules. A

membrane with label h and polarization e is dissolved in reaction with an object
a, and transformed into b. The skin is never dissolved.

(e) [ a ] e
h → [ b ] e′

h [ c ] e′′
h for a, b, c ∈ O, h ∈ H and e, e′, e′′ ∈ E. These are divi-

sion rules for elementary membranes. An elementary membrane can be divided
into two membranes with the same label, possibly with different polarizations,
possibly transforming some objects.

Generally, rules of type (a) are executed in parallel, while at most one rule
out of all rules of types (b), (c), (d), (e) can be applied to the same membrane
in the same step. We will also speak about the sequential version

(a′′s ) [ a ] e
h → [ u ] e′

h for a ∈ O, u ∈ O∗, h ∈ H and e, e′ ∈ E.

of rules (a) (let us use ′′ to indicate that the rule is allowed to change the
polarization of the membrane) and their modifications (b0), (c0), (d0), (e0),
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(a′0s), (b
′
0), (c

′
0), (e

′
0) (here, 0 represents that the rules neither distinguish po-

larization nor change it, while ′ means that the rule is allowed to change
membrane label).

2.3 Minimal parallelism

These rules are applied according to the following principles:

• The rules of type (a) may be applied in parallel. In one step, a membrane
can be the subject of only one rule of types (a′0s), (a′′s ) and (b), (c), (d), (e)
with their modifications.

• In one step, one object of a membrane can be used by only one rule (non-
deterministically chosen), but for every membrane at least one object
that can evolve by one rule of any form, must evolve (no rules associated
to a membrane are applied only if none are applicable).

• If at the same time a membrane is divided by a rule of type (e) and there
are objects in this membrane which evolve by means of rules of type (a),
then we assume that the evolution rules of type (a) are used first, and
then the division is produced. Of course, this process takes only one
step.

3 Using rules (a′′
s )

The three size parameters of the SAT problem are the number m of clauses,
the number n of variables and the total number l of occurrences of variables
in clauses (clearly, l ≤ mn: without restricting generality, we could assume
that no variable appears in the same clause more than once, with or without
negation).

Theorem 1. A uniform family of confluent P systems with rules (a′′s ), (c0), (e0)
working in minimally parallel way can solve SAT with four polarizations in
O(l(m + n)) number of steps.

Proof. The main idea of the construction is to implement a maximally paral-
lel step sequentially. To do so, a “control" object will change the polarization,
and then an input object or a clause object will restore it. Since the input
is encoded in l objects, changing and restoring polarization will happen l
times, and the counting is done by the “control" object.

Let us consider a propositional formula in the conjunctive normal form:
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β = C1 ∨ · · · ∨ Cm,

Ci = yi,1 ∧ · · · ∧ yi,li , 1 ≤ i ≤ m, where

yi,k ∈ {xj,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li,

l =
m

∑
i=1

li.

Let us encode the instance of β in the alphabet Σ(〈n, m, l〉) by multisets
X, X′ of the clause-variable pairs such that the variable appears in the clause
without negation, with negation or neither:

Σ(〈n, m, l〉) = {vj,i,1,s | 1 ≤ j ≤ m, 1 ≤ i ≤ n, 1 ≤ s ≤ 2},
X = {(vj,i,1,1, 1) | xi ∈ {yj,k | 1 ≤ k ≤ lj},

1 ≤ j ≤ m, 1 ≤ i ≤ n},
X′ = {(vj,i,1,2, 1) | ¬xi ∈ {yj,k | 1 ≤ k ≤ lj},

1 ≤ j ≤ m, 1 ≤ i ≤ n}.

We construct the following P system:

Π(〈n, m, l〉) = (O, H, E, [ [ ]0
2[ ]0

3 ]0
1, w1, w2, w3, R), with

O = {vj,i,k,s | 1 ≤ j ≤ m, 1 ≤ i ≤ n,

1 ≤ k ≤ m + n + 1, 1 ≤ s ≤ 4}
∪ {di,k | 1 ≤ i ≤ m + n + 1, 1 ≤ k ≤ 2l}
∪ {ti,k, fi,k | 1 ≤ i ≤ n, 1 ≤ k ≤ l}
∪ {di | 1 ≤ i ≤ m + n + 1} ∪ {S, Z, yes, no}
∪ {zk | 1 ≤ k ≤ (4l + 3)n + m(4l + 1) + 2}

w1 = λ, w2 = d1, w3 = z0, H = {1, 2, 3}, E = {0, 1, 2, 3},

and the rules are listed below. The computation consists of three stages.

1. Producing 2n membranes with label 2, corresponding to the possible as-
signments of variables x1, · · · , xn and selecting clauses that are satisfied
for every assignment (groups A and C of rules).

2. Checking whether all clauses are satisfied for all assignments (groups of
rules B and D).

3. Generating yes from the positive answer, and sending it to the environ-
ment. Generating no from the timeout (during the first two stages the
number of steps is counted in the object in membrane with label 3) and
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sending it to the environment if there is no positive answer (groups of
rules E and F).

Stage 1 consists of n cycles and stage 2 consists of m cycles. Each cycle’s aim
is to process all l objects: i.e., each object counts the number of cycles com-
pleted, and in the first stage the clauses are evaluated while in the second
stage the presence of each clause is checked.

In the case of maximal parallelism, a cycle can be performed in a con-
stant number of (actually, one or two) steps, while minimal parallelism can-
not guarantee that all objects are processed. The solution used here is the
following. A cycle consists of marking (setting the last index to 3 or 4) all l
objects one by one while performing the necessary operation, and then un-
marking (setting the last index to 1 or 2) all of them. Marking or unmarking
an object happens in two steps: the control object changes the polarization
from 0 to 1, 2 (to mark) or 3 (to unmark), and then one of the objects that
has not yet been (un)marked is processed, resetting the polarization to 0.

Control objects in membrane 2: select clauses
A1 (for variable i: divide)

[ di ] → [ ti,0 ] [ fi,0 ] , 1 ≤ i ≤ n
A2 (process and mark all l objects)

[ ti,k−1 ]0 → [ ti,k ]1, 1 ≤ i ≤ n, 1 ≤ k ≤ l
[ fi,k−1 ]0 → [ fi,k ]2, 1 ≤ i ≤ n, 1 ≤ k ≤ l

A3 (prepare to unmark objects)
[ ti,l ]

0 → [ di,0 ]0, 1 ≤ i ≤ n
[ fi,l ]

0 → [ di,0 ]0, 1 ≤ i ≤ n
A4 (unmark all l objects)

[ di,k−1 ]0 → [ di,k ]3, 1 ≤ i ≤ n, 1 ≤ k ≤ l
A5 (switch to the next variable)

[ di,l ]
0 → [ di+1 ]0, 1 ≤ i ≤ n

Control objects in membrane 2: check clauses
B1 (test if clause i is satisfied)

[ dn+i ]
0 → [ dn+i,1 ]2, 1 ≤ i ≤ m

B2 (process and mark the other l − 1 objects)
[ dn+i,k−1 ]0 → [ dn+i,k ]1, 1 ≤ i ≤ m, 1 ≤ k ≤ l

B3 (unmark all l objects)
[ dn+i,l+k−1 ]0 → [ dn+i,l+k ]3, 1 ≤ i ≤ m, 1 ≤ k ≤ l
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B4 (switch to the next clause)
[ dn+i,2l ]

0 → [ dn+i+1 ]0, 1 ≤ i ≤ m
B5 (send a positive answer)

[ dm+n+1 ] → [ ] S

Input objects in membrane 2: select clauses
C1 (mark an object)

[ vj,i,k,s ]
p → [ vj,i,k+1,s+2 ]0,

1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ m, k 6= m, 1 ≤ s ≤ 2, 1 ≤ p ≤ 2
C2 (a true variable present without negation or a false variable present with

negation satisfies the clause)
[ vj,i,i,s ]

s → [ vj,i,i+1,3 ]0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ 2
C3 (a true variable present with negation or a false variable present without

negation does not satisfy the clause)
[ vj,i,i,3−s ]

s → [ vj,i,i+1,4 ]0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ 2
C4 (unmark an object)

[ vj,i,k,s+2 ]3 → [ vj,i,k,s ]
0,

1 ≤ i ≤ m, 1 ≤ j ≤ n, 2 ≤ k ≤ m + 1, 1 ≤ s ≤ 2

Input objects in membrane 2: check clauses
D1 (check if the clause is satisfied by at least one variable)

[ vj,i,m+j,1 ]2 → [ vj,i,k+1,3 ]0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ 2
D2 (mark an object)

[ vj,i,m+k,s ]
1 → [ vj,i,k+1,s+2 ]0,

1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ n, 1 ≤ s ≤ 2
D3 (unmark an object)

[ vj,i,m+k,s+2 ]3 → [ vj,i,k,s ]
0,

1 ≤ i ≤ m, 1 ≤ j ≤ n, 2 ≤ k ≤ n + 1, 1 ≤ s ≤ 2

Control objects in membrane 3
E1 (count)

[ zk−1 ]0 → [ zk ]0, 1 ≤ k ≤ N = (4l + 3)n + m(4l + 1) + 2
E2 (send time-out object)

[ zN ] → [ ]Z

Control objects in the skin membrane
F1 (a positive result generates the answer)

[ S ]0 → [ yes ]1
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F2 (without the positive answer, the time-out generates the negative answer)
[ Z ]0 → [ no ]0

F3 (send the answer)
[ yes ] → [ ] yes
[ no ] → [ ] no

Let us now explain how the system works in greater detail.
Like the input objects, the control objects keep track of the number of cy-

cles completed. The control object also remembers whether marking or un-
marking takes place, as well as the number of objects already (un)marked.
Moreover, the control object is responsible for sending the “right" informa-
tion to the objects via polarization: in stage 1, 1 if the variable is true, and 2
if the variable is false; in stage 2, 1 if the clause has already been found, and
2 if the clause is being checked for.

During the first stage, an object vj,i,1,s is transformed into vj,i,n+1,t, where
t = 1 if variable xj satisfies clause Ci, and t = 2 if not. The last index
changes from s to t when the third index is equal to i. Notice that, although
only information about what clauses are satisfied seems to be necessary
for checking if β is true for the given assignment of the variables, such
information as the number of cycles completed is kept for synchronization
purposes, and the other objects are kept so that their total number remains l.
The control object d1 is transformed into dn+1. Stage 1 takes (4l + 3)n steps.

If some clause is not satisfied, then the computation in the correspond-
ing membrane is “stuck" with polarization 2. Otherwise, during the second
stage an object vj,i,n+1,t is transformed into vj,i,n+m+1,t, while the control ob-
ject dn+1 becomes dm+n+1. Stage 2 takes m(4l + 1) steps, plus one extra step
to send objects S to skin, if any.

After stage 2 is completed, one copy of S, if any, is transformed into yes,
changing the polarization of the skin membrane. If a yes is sent out, at the
same time object Z comes to the skin from region 3. If the polarization of
the skin is still 0, Z changes to no, and is then sent out. Depending on the
answer, stage 3 takes 2 or 4 steps. In either case, the result is sent out in the
last step of the computation. �

Notice that membrane labels are not indicated in the rules. This means
that the system is organized in such a way that the rules are global: i.e.,
the system would work equally well if it started with the configuration
µ = [ w1[ w2 ]0

1[ w3 ]0
1 ]0

1. The labels are only given for the simplicity of
explanation.
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Using the remark at the end of the Introduction, we can obtain the fol-
lowing

Corollary 1. A uniform family of confluent polarizationless P systems with rules
(a′0s), (c0), (e0) working in minimally parallel way can solve SAT with membrane
labels of four kinds.

The statement follows directly from the possibility of rewriting a global rule
[ a ] e → [ u ] e′ of type (a′′s ) as a rule [ a ] e → [ u ] e′ of type (a′0s) (which is
polarizationless but can change the membrane label).

4 Using rules (a)

An informal idea in this section is to replace rules of type (a′′s ) with rules
(a) producing additional objects, and rules (c), sending an additional object
out to change the polarization.

Theorem 2. A uniform family of confluent P systems with rules (a), (c), (e0)
working in minimally parallel way can solve SAT with six polarizations in O(l(m+
n)) number of steps.

Proof. The strategy used in the construction below is similar to that of the
previous theorem. However, since the application of the evolution rules no
longer changes the polarization of the membrane, the control symbols di,k,
ti,k, fi,k no longer “operate" in polarization 0, but rather in a polarization
that toggles between 0 (for even k) and 5 (for odd k), to prevent multiple
applications of evolution rules in one row in the same membrane. Moreover,
the input objects are actually allowed to evolve in parallel (and the degree
of parallelism is chosen non-deterministically), but at the end of both halves
of a cycle the number of extra objects produced can be counted, to make
sure that all l objects have been processed.

For the same propositional formula

β = C1 ∨ · · · ∨ Cm,

Ci = yi,1 ∧ · · · ∧ yi,li , 1 ≤ i ≤ m, where

yi,k ∈ {xj,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li,

l =
m

∑
i=1

li.
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and the same encoding of the instance of β in the alphabet Σ(〈n, m, l〉) by
multisets X, X′,

Σ(〈n, m, l〉) = {vj,i,1,s | 1 ≤ j ≤ m, 1 ≤ i ≤ n, 1 ≤ s ≤ 2},
X = {(vj,i,1,1, 1) | xi ∈ {yj,k | 1 ≤ k ≤ lj},

1 ≤ j ≤ m, 1 ≤ i ≤ n},
X′ = {(vj,i,1,2, 1) | ¬xi ∈ {yj,k | 1 ≤ k ≤ lj},

1 ≤ j ≤ m, 1 ≤ i ≤ n}.

we construct the following P system:

Π(〈n, m, l〉) = (O, H, E, [ [ ]0
2[ ]0

3 ]0
1, w1, w2, w3, R), with

O = {vj,i,k,s | 1 ≤ j ≤ m, 1 ≤ i ≤ n,

1 ≤ k ≤ m + n + 1, 1 ≤ s ≤ 4}
∪ {di,k | 1 ≤ i ≤ m + n + 1, 1 ≤ k ≤ 2l}
∪ {ti,k, fi,k | 1 ≤ i ≤ n, 1 ≤ k ≤ l}
∪ {di | 1 ≤ i ≤ m + n + 1} ∪ {S, Z, yes, no}
∪ {zk | 1 ≤ k ≤ (4l + 3)n + m(4l + 1) + 2}
∪ {oi,j | 0 ≤ i ≤ 5, 0 ≤ j ≤ 5}

w1 = λ, w2 = d1, w3 = z0, H = {1, 2, 3}, E = {0, 1, 2, 3, 4, 5},

and the rules are listed below. The computation stages are the same as in
the previous proof.

1. Producing 2n membranes for all the possible assignments of variables;
selecting satisfied clauses (groups A and C).

2. Checking whether all clauses are satisfied (groups B and D).
3. Generating the answer and sending it to the environment (groups E and

F).

Stage 1 consists of n cycles and stage 2 consists of m cycles. Each cycle’s
aim is to process all l objects: i.e., each object counts the number of cycles
completed. In the first stage the clauses are evaluated while in the second
stage the presence of each clause is checked.

A cycle consists of marking (setting the last index to 3 or 4) all l objects
one by one while performing the necessary operation, and then unmarking
(setting the last index to 1 or 2) them. An object is generally marked or
unmarked in five steps:
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1. The control object produces two “polarization changers".
2. One of them changes the polarization from 0 or 5 to 1, 2 (to mark) or 3

(to unmark).
3. One of the objects that has not yet been (un)marked is processed, pro-

ducing a “witness" — yet another “polarization changer".
4. The “witness" switches the polarization to 4.
5. The second “changer" produced in step 1 of this routine changes the

polarization to 5 or 0.

Notice, however, that “step" 3 might actually take more than one step (more
objects can be (un)marked in parallel, or even in a row, thus creating a
supply of “witnesses"). Step 4 might actually be executed in parallel with
the last step of “step" 3 (sending out a previous “witness" while producing
more). Finally, “step" 3 might even be skipped if a previous “witness" is
already there. What matters is that the whole (un)marking routine should
take at most 5l steps.

Changing the polarization of membrane 2
O1 (change from i to j)

[ oi,j ]
i → [ ] j o4,5, 0 ≤ i ≤ 5, 0 ≤ j ≤ 5

O2 (“witnesses" of D2 are “compatible" with “witnesses" of D1; this does
not interfere with the rest of the computation)
[ o1,4 ]2 → [ ]4 o4,5

Control objects in membrane 2: select clauses
A1 (for variable i: divide)

[ di ] → [ ti,0 ] [ fi,0 ] , 1 ≤ i ≤ n
A2 (process and mark all l objects)

[ ti,k−1 → ti,ko0,1o4,5 ]0, 1 ≤ i ≤ n, 1 ≤ k ≤ l, k is odd
[ fi,k−1 → fi,ko0,2o4,5 ]0, 1 ≤ i ≤ n, 1 ≤ k ≤ l, k is odd
[ ti,k−1 → ti,ko5,1o4,0 ]5, 1 ≤ i ≤ n, 1 ≤ k ≤ l, k is even
[ fi,k−1 → fi,ko5,2o4,0 ]5, 1 ≤ i ≤ n, 1 ≤ k ≤ l, k is even

A3 (prepare to unmark objects)
[ ti,l → di,0 ]0, 1 ≤ i ≤ n, if l is even
[ fi,l → di,0 ]0, 1 ≤ i ≤ n, if l is even
[ ti,l → di,0o5,0 ]5, 1 ≤ i ≤ n, if l is odd
[ fi,l → di,0o5,0 ]5, 1 ≤ i ≤ n, if l is odd
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A4 (unmark all l objects)
[ di,k−1 → di,ko0,3o4,5 ]0, 1 ≤ i ≤ n, 1 ≤ k ≤ l, k is odd
[ di,k−1 → di,ko5,3o4,0 ]0, 1 ≤ i ≤ n, 1 ≤ k ≤ l, k is even

A5 (switch to the next variable)
[ di,l → di+1 ]0, 1 ≤ i ≤ n, if l is even
[ di,l → di+1o5,0 ]5, 1 ≤ i ≤ n, if l is odd

Control objects in membrane 2: check clauses
B1 (test if clause i is satisfied)

[ dn+i → dn+i,1o0,2o4,5 ]0, 1 ≤ i ≤ m
B2 (process and mark the other l − 1 objects)

[ dn+i,k−1 → dn+i,ko0,1o4,5 ]0, 1 ≤ i ≤ m, 1 ≤ k ≤ l, k is odd
[ dn+i,k−1 → dn+i,ko5,1o4,0 ]0, 1 ≤ i ≤ m, 1 ≤ k ≤ l, k is even

B3 (unmark all l objects)
[ dn+i,l+k−1 → dn+i,l+ko0,3o4,5 ]0, 1 ≤ i ≤ m, 1 ≤ k ≤ l, l + k is odd
[ dn+i,l+k−1 → dn+i,l+ko5,3o4,0 ]0, 1 ≤ i ≤ m, 1 ≤ k ≤ l, l + k is odd

B4 (switch to the next clause)
[ dn+i,2l → dn+i+1 ]0, 1 ≤ i ≤ m

B5 (send a positive answer)
[ dm+n+1 ]0 → [ ]0S

Input objects in membrane 2: select clauses
C1 (mark an object)

[ vj,i,k,s → vj,i,k+1,s+2op,4 ] p,
1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ m, k 6= m, 1 ≤ s ≤ 2, 1 ≤ p ≤ 2

C2 (a true variable present without negation or a false variable present with
negation satisfies the clause)
[ vj,i,i,s → vj,i,i+1,3os,4 ] s, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ 2

C3 (a true variable present with negation or a false variable present without
negation does not satisfy the clause)
[ vj,i,i,3−s → vj,i,i+1,4os,4 ] s, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ 2

C4 (unmark an object)
[ vj,i,k,s+2 → vj,i,k,so3,4 ]3,
1 ≤ i ≤ m, 1 ≤ j ≤ n, 2 ≤ k ≤ m + 1, 1 ≤ s ≤ 2

Input objects in membrane 2: check clauses
D1 (check if the clause is satisfied by at least one variable)

[ vj,i,m+j,1 → vj,i,k+1,3o1,4 ]2, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ 2
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D2 (mark an object)
[ vj,i,m+k,s → vj,i,k+1,s+2o1,4 ]1,
1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ n, 1 ≤ s ≤ 2

D3 (unmark an object)
[ vj,i,m+k,s+2 → vj,i,k,so3,4 ]3,
1 ≤ i ≤ m, 1 ≤ j ≤ n, 2 ≤ k ≤ n + 1, 1 ≤ s ≤ 2

Control objects in membrane 3
E1 (count)

[ zk−1 → zk ]0, 1 ≤ k ≤ N = (10l + 5)n + m(10l + 1) + 2
E2 (send time-out object)

[ zN ]0 → [ ]0Z

Control objects in the skin membrane
F1 (the first positive result sends the answer)

[ S ]0 → [ ]1
yes

F2 (without the positive result, the time-out sends the negative answer)
[ Z ]0 → [ ]0

no

Let us now explain how the system works in greater detail. The control
objects keep track of the number of cycles completed, whether marking or
unmarking takes place, as well as the number of objects already (un)marked.
Moreover, the control object is responsible for sending the “right" informa-
tion to the objects via polarization: in stage 1, by generating o0,1 or o5,1 if the
variable is true, and o0,2 or o5,2 if the variable is false; in stage 2, o0,1 or o5,1
if the clause has already been found, and o0,2 or o5,2 if the clause is being
checked for.

During the first stage, an object vj,i,1,s is transformed into vj,i,n+1,t, where
t = 1 if variable xj satisfies clause Ci, or t = 2 if not. The last index changes
from s to t happens when the third index is equal to i. The control object
d1 is transformed into dn+1. Stage 1 takes at most (10l + 5)n steps (at most
(10l + 3)n in the case when l is even).

If some clause is not satisfied, then the computation in the correspond-
ing membrane is “stuck" with polarization 2. Otherwise, during the second
stage an object vj,i,n+1,t is transformed into vj,i,n+m+1,t, while the control ob-
ject dn+1 becomes dm+n+1. Stage 2 takes at most m(10l + 1) steps, plus one
extra step to send objects S to skin, if any.

After stage 2 is completed, one copy of S, if any, is sent out as yes,
changing the polarization of the skin membrane. After this time has passed,
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object Z comes to the skin from region 3. If the polarization of the skin is
still 0, Z is sent out as no. �

The rules of the system in the proof above are also global, so we can again
obtain the following

Corollary 2. A uniform family of confluent polarizationless P systems with rules
(a), (c′0), (e0) working in minimally parallel way can solve SAT with membrane
labels of six kinds.

5 Conclusions

Changing membrane polarization controls what rules can be applied, so the
number of polarizations corresponds to the number of states of this con-
trol. Moreover, almost the only way the objects of the system may interact
is by changing the membrane polarization. Therefore, the number of polar-
izations is a complexity measure that deserves our attention.

For maximal parallelism it has been proved that two polarizations are
sufficient for both universality (with one membrane) and efficiency, while
one-polarization systems are still universal (with elementary membrane di-
vision and membrane dissolution), but are conjectured not to be efficient.

We have proved that efficient solutions of computationally hard prob-
lems by P systems with active membranes working in a minimally parallel
way can be constructed avoiding both cooperative rules and non-elementary
membrane division, thus improving results from [7],[8]. For this task, it is
enough to have four polarizations, sequential evolution rules changing po-
larizations, polarizationless elementary membrane division rules and po-
larizationless rules for sending an object out. The standard evolution and
send-out rules, as well as polarizationless elementary membrane division
rules, can be used; in this case, six polarizations suffice.

The first construction is “almost" deterministic: the only choices the sys-
tem can make in each cycle is the order in which the input systems are pro-
cessed. The second construction exhibits a more asynchronous behaviour
of the input objects, which, depending on the chosen degree of parallelism,
might speed up the positive answer, but by less than 20%. 2 In this case,

2 The maximal total number of steps needed is slightly over 10l(m + n); the fastest
computation happens if rules C2 are executed in parallel for all input objects, as
well as rules C4, D2, D3, saving lm− 1, lm− 1, ln− 1, ln− 1 steps, respectively.
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controlling polarizations by evolution is still faster than controlling polar-
izations by communication.

A number of interesting problems related to minimal parallelism re-
main open. For instance, is it possible to decrease the number of polariza-
tions/labels? Other computational problems in the minimally-parallel set-
ting can also be studied: for instance, the computational power of P systems
with one active membrane working in the minimally parallel way.
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