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Abstract 
Purpose of review: This article reviews research based on the evaluation of postharvest control methods alternative to conven-
tional chemical fungicides for the control of citrus green and blue moulds, caused by the pathogens Penicillium digitatum and P. 
italicum, respectively. Emphasis is given to advances developed during the last few years. Potential benefits, disadvantages and 
commercial feasibility of the application of these methods are discussed. 
Findings: Substantial progress has been accomplished in selecting and characterising new effective physical, chemical and bio-
logical control methods. However, their widespread commercial implementation relies, in general, on the integration of different 
treatments of the same or different nature in a multifaceted approach. For satisfactory penicillium decay control, this postharvest 
approach should be part of an integrated disease management (IDM) programme in which preharvest and harvest factors are also 
considered. 
Limitations: The lack of either curative or preventive activity, low persistence, high variability, inconsistency or excessive 
specificity are general limitations associated with the use of alternatives to synthetic fungicides as stand-alone treatments. Fur-
thermore, the risk of adverse effects on fruit quality, technological problems for cost-effective application, or the availability of 
new conventional fungicides for traditional markets are additional reasons that may hinder the broad commercial use of such 
treatments. 
Directions for future research: As we learn more about the fundamental basis underlying host-pathogen interactions and  
how they are influenced by direct or indirect protective effects of existing or new single alternative treatments, more effective 
methods of applying and combining complementary approaches for additive or synergistic effects will emerge. Research should 
provide appropriate tools to tailor the application of these nonpolluting postharvest control systems and, further, the complete 
IDM strategy for each specific situation (ie, citrus species and cultivar, climatic and seasonal conditions, destination market, 
etc).  
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Abbreviations 

Introduction 
Green and blue moulds, caused by Penicillium digitatum 
(Pers.:Fr.) Sacc. and Penicillium italicum Wehmer, respec-
tively, are the most economically important postharvest dis-
eases of citrus in all production areas that like Spain, Califor-
nia or Israel, are characterised by low summer rainfall [1*]. 
Actual losses due to these diseases are quite variable and 
depend on the area of production, citrus variety, tree age and 
condition, weather conditions during the growing and harvest 
season, the extent of physical injury to the fruit during har-
vest and subsequent handling, the effectiveness of antifungal 
treatments, and postharvest environment. Both P. digitatum 
and P. italicum are strict wound pathogens that can infect the 
fruit in the grove, the packinghouse, and during distribution 
and marketing. They reproduce very rapidly, and their spores 
are ubiquitous in the atmosphere and on fruit surfaces and are 
readily disseminated by air currents. Therefore, the source of 
fungal inoculum in citrus groves and packinghouses is practi-
cally continuous during the season. The surface of virtually 
every citrus fruit that arrives at the packinghouse is contami-
nated with conidia and the inoculum may build up to high 
levels if appropriate packinghouse sanitation measures are 
not adopted [2]. Furthermore, citrus fruit can become 
“soiled” with conidia of the two fungi that are loosened in 
handling of diseased fruit. The conidia situated in injuries 
that rupture oil glands or penetrate into the albedo of the peel 
usually bring irreversible infection within 48 h at 20–25ºC 
[1*, 3]. The germination of conidia of both Penicillium spe-
cies inside rind wounds requires free water and nutrients [4, 
5], and is stimulated by volatiles emitted from the host tissue 
[6, 7]. Disease development is mediated by complex interac-
tions between pathogen virulence mechanisms and host de-
fence responses. Extensive research work is being conducted 
to analyse and understand such interactions at either the bio-
chemical or molecular level [8*–16]. 
 
Worldwide, both diseases have been primarily controlled for 
many years by the application of conventional fungicides such 
as imazalil (IZ), sodium ortho-phenyl phenate (SOPP), thia-

bendazole (TBZ) or different mixtures of these compounds. 
Currently, new active ingredients such as fludioxonil (FLU), 
pyrimethanil, azoxystrobin (AZX) and trifloxystrobin, most of 
which are classified by the United States Environmental Pro-
tection Agency as “reduced-risk” fungicides, have been exten-
sively assayed in Europe or the USA [2, 17–23]. Postharvest 
treatments with these synthetic chemicals are typically rela-
tively inexpensive, easy to apply, have curative action against 
pre-existing or established infections and persistent preventive 
action against potential new infections that can occur after their 
application in the packinghouse, and many also inhibit the 
sporulation from lesions on decaying fruit that reduces air-
borne inoculum production to break infection cycles. Among 
fruits treated with conventional fungicides, losses are typically 
2–4%, while without postharvest treatment or refrigeration, 
losses of 15–30% occur within 1–3 weeks after harvest [24, 
25**]. However, concerns about environmental contamination 
and human health risks associated with fungicide residues peri-
odically led to regulatory reviews and potential restrictions or 
cancellations. Likewise, traditional citrus export markets are 
increasingly demanding products with lower levels of pesti-
cides in order to satisfy the safety demands from the general 
public. In addition, new higher-value markets based on organi-
cally grown, sustainable, environmentally friendly, ecological 
or green agricultural produce are currently arising and becom-
ing more popular. Furthermore, the widespread and continuous 
use of these synthetic compounds has led to the proliferation of 
resistant biotypes of both P. digitatum and P. italicum and the 
build-up of single, double and even triple-resistant isolates in 
the population of the pathogens in commercial packinghouses 
seriously compromises the effectiveness of these treatments 
[26–29]. There is, therefore, a clear and increasing need to find 
and implement control methods alternative to conventional 
fungicides for the control of postharvest green and blue moulds 
of citrus fruit. If conventional chemicals are not used, the goal 
is to accomplish satisfactory decay control by adopting inte-
grated disease management (IDM) programmes [30, 31*]. The 
purpose of such strategy, based on the knowledge of pathogen 
biology and epidemiology and the consideration of all prehar-
vest, harvest and postharvest factors that may influence disease 
incidence, is to minimise decay losses with no adverse effects 
on fruit quality by taking cost-effective action on every one of 
those factors at the right moment. Besides preharvest, harvest 
and transport considerations, attention should be devoted dur-
ing the postharvest phase to three basic aspects when establish-
ing a penicillium decay control programme: effective fruit and 
packinghouse sanitation to reduce atmospheric and superficial 
inoculum levels of P. digitatum and P. italicum; appropriate 
practices during handling and storage to maintain fruit resis-
tance to infection; and adoption of suitable nonpolluting anti-
fungal treatments to replace the use of conventional fungicides 
[1*, 25**]. According to their nature, these alternative decay 
control methods can be physical, chemical or biological. The 
purpose of this article is to review significant research work, 
giving emphasis to that published during the last few years, in 
which the most important of these control methods have been 
evaluated for the control of citrus postharvest green and blue 

 

AZX Azoxystrobin 
CA Controlled Atmosphere 
FLU Fludioxonil 
GRAS Generally Regarded as Safe 
IDM Integrated Disease Management 
IZ Imazalil 
PS Potassium Sorbate 
RH Relative Humidity 
SB Sodium Benzoate 
SBC Sodium Bicarbonate 
SC Sodium Carbonate 

TBZ Thiabendazole 
UV-C Far Ultraviolet Radiation 

SOPP Sodium ortho-phenyl phenate  
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moulds, either alone or in combination with other treatments. 
Potential benefits, disadvantages and commercial feasibility of 
the application of these methods are discussed.  

 
Physical control methods 
Major benefits from the use of physical treatments for fungal 
control are doubtlessly the total absence of residues on/in the 
treated produce and minimal environmental impact. General 
disadvantages, however, include limited and variable efficacy 
and lack of preventive activity and persistence. Nevertheless, 
it has been observed that the application of heat, far ultravio-
let radiation (UV-C) or other physical treatments may, under 
certain conditions, initiate some defence mechanisms in cit-
rus fruit tissues. Cold storage and controlled atmospheres 
(CAs) are complementary physical tools to reduce or inhibit 
the development of the pathogens and maintain fruit resis-
tance to infection. 
 
Heat treatments: curing and hot water 
Typical procedures for thermal curing treatment of citrus 
employ exposure of fruit for 2–3 days to an air atmosphere 
heated to temperatures higher than 30ºC at high relative hu-
midity ([RH] > 90%). Since it was first reported by Hopkins 
and Loucks in 1948 [32], numerous studies demonstrated the 
elevated curative activity of curing treatments against green 
mould in a variety of citrus species and cultivars [33–37*, 
38*, 39*]. Control of blue mould, however, was less satisfac-
tory when fruit were cold-stored for long periods after treat-
ment [34]. In spite of their good efficacy, commercial imple-
mentation of curing treatments for citrus decay control is 
rare, firstly because of the expense of heating and immobilis-
ing large amounts of fruit for relatively long periods and, 
secondly, because excessive or uncontrolled treatments may 
harm fruit quality [40, 41]. Fruit weight loss and heat phyto-
toxicity are major potential risks whose incidence depend not 
only on treatment conditions but also on the type of fruit and 
their initial condition. In fact, only early season citrus fruit 
from Florida, Brazil or other high rainfall areas are nowadays 
commercially cured because these fruit are degreened with 
ethylene at temperatures of about 30ºC. Besides combination 
with other control methods, which will be discussed later in 
this review, new technological approaches for curing treat-
ment include intermittent curing (two 18-h cycles at 38ºC) 
[42], curing at higher temperatures for reduced periods of 
time (18 h at 40ºC) [43] or, in the case of low rainfall areas 
where early season mandarins are degreened with 5–10 µL/L 
ethylene at about 20ºC for 2–3 days, the integration of curing 
treatment in the degreening process [44*]. On the other hand, 
it has been recently determined that exposure to hot air at 
50ºC and RH higher than 75% for 1 day effectively killed 
spores of P. digitatum and could be a good sanitation practice 
for empty storage rooms [45]. 
 
Treatments with hot water are a technology easier, cheaper, 
and more feasible for heat application than curing. Relatively 
brief immersions (2–5 min) in water at 45–55ºC have repeat-
edly shown value in reducing citrus green and blue moulds 

[35, 46–52*, 53*]. Likewise, good results have been obtained 
with packingline machinery where hot water at 55–65ºC is 
applied for 10–30 s over rotating brushes [54–56*]. How-
ever, commercial application of hot water as a stand-alone 
treatment for citrus decay control is limited to small fruit like 
kumquat, whose peel is also eaten, or some organically-
grown fruit [57*]. This is primarily because hot water treat-
ments are not fungicidal or very persistent, the range of effec-
tive yet non-phytotoxic temperatures is very narrow, and the 
effectiveness is greatly dependent on type, age, and physical 
and physiological condition of the fruit [51, 52*, 58].  
 
The mode of action of heat can be direct on the pathogen by 
inhibiting spore germination or mycelial growth of P. digi-
tatum or P. italicum or indirect on the host by inducing dif-
ferent mechanisms of resistance in the rind wounds such as 
melting of peel waxes, maintenance of the activity of pre-
formed antifungal compounds, and biosynthesis of lignin-like 
materials, phytoalexins, pathogenesis-related proteins or heat 
shock proteins [8*, 57*, 59, 60*, 61**, 62**].  
 
Irradiation treatments: UV-C and ionising radiation  
Exposure to low doses (0.5–8 kJ/m2) of UV-C (wavelength 
from 100 to 280 nm) has significantly reduced the incidence 
of green or blue moulds in different citrus species and culti-
vars, although the effectiveness of the treatment and the risk 
of phytotoxicity varied with irradiation dose and duration, 
fruit type and maturity, and fruit harvest season and storage 
conditions [39*, 63–65*, 66*]. Despite the direct germicidal 
effects of illumination with UV-C at 254 nm on conidia and 
mycelia of both P. digitatum and P. italicum [67, 68], the 
prevalent mode of action of this treatment for penicillium 
control in citrus fruit is the stimulation of beneficial re-
sponses in the host when applied at sublethal doses 
(hormesis). Responses to UV-C caused, in many ways simi-
lar to heat treatment, induction in rind tissues of resistance to 
fungal infection. Some of these fruit defensive reactions have 
been identified: alteration of the levels of preformed antifun-
gal flavonoids such as some polymethoxyflavones or fla-
vonones [69], accumulation of pathogenesis-related proteins 
such as chitinase or β-1,3-endoglucanase [8*, 70], or induc-
tion of the activity of enzymes such as phenylalanine ammo-
nia lyase or peroxidase that are related to the activation of 
plant defence mechanisms such as the biosynthesis of phy-
toalexins [65*, 66*, 71*]. Although an on-line UV-C appara-
tus to treat harvested fresh fruit was developed [72] and cur-
rently there is increasing commercial interest to design suit-
able prototypes for either intact or fresh-cut produce, a num-
ber of issues will have to be addressed before realising the 
practical implementation of UV-C systems in citrus packing-
houses. Illumination devices should be appropriately inte-
grated in the packinglines to provide continuous effective 
treatment of the entire area of the fruit rapidly enough for 
commercial purposes. At the same time, the system should be 
flexible enough to change treatment conditions as a function 
of particular fruit attributes and destination. Currently, con-
siderable attention is on pulsed light (synonyms: pulsed UV 
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light, pulsed white light), which use short time pulses of in-
tense broad spectrum, rich in UV-C light, and is claimed as 
an improved technology compared with classic continuous-
wave UV-C light delivering [73*]. To our knowledge, how-
ever, this technique has not been specifically tested against 
citrus penicillium moulds. In any case, besides scaling-up 
efficacy trials, additional research on the effects of UV-C on 
fruit physiology, sensory quality and consumer acceptance is 
also needed before attempting to use this technology at a 
commercial scale. 
 
Ionising radiation of fresh fruits and vegetables is not permitted 
at doses exceeding 1,000 Gy (100 krad) [74] and can be per-
formed with radioactive (60Co or 137Cs, γ-rays) or machine 
sources (electron beams and X-rays). Conidia of both P. digi-
tatum and P. italicum were found in early research to be highly 
sensitive to γ-irradiation [75*, 76], but effective control of their 
established infections on oranges or lemons required irradiation 
doses higher than 1,000 Gy and, in general, such doses induced 
apparent rind injury [77–79*]. It is primarily for this reason that 
ionising radiation as a single treatment for decay suppression 
cannot be commercially adopted, despite the fact that some 
beneficial effects have been associated with radiation exposure, 
including: high penetration power, stimulation of the synthesis 
of bioactive or functional phenolic components including differ-
ent antifungal compounds, and extension of shelf-life by delay-
ing ripening and senescence [79*–81].  
 
Complementary physical methods 
In general, conventional cold storage or storage in controlled 
or modified atmospheres can be considered as complemen-
tary physical tools for postharvest decay control of fresh 
fruits and vegetables. These systems cannot be used as stand-
alone antifungal treatments because typically they only pro-
vide fungistatic activity by inhibiting or delaying the growth 
and development of the pathogens. In addition, they consid-
erably reduce the metabolic activity of the host, delay its se-
nescence, and therefore contribute to the maintenance of fruit 
resistance to fungal infection.  
 
The optimal growth temperature for both P. digitatum and P. 
italicum is 24ºC. Green mould is predominant at ambient 
temperatures, but blue mould becomes more important when 
citrus fruit are cold-stored for long periods because P. itali-
cum grows faster than P. digitatum below 10ºC [82]. How-
ever, the development of both pathogens is greatly sup-
pressed at typical orange or mandarin storage temperatures of 
3–5ºC. Citrus cold storage in conventional CA (5–10% O2 + 
0–5% CO2 for oranges and mandarins and 5–10% O2 + 0–
10% CO2 for lemons, limes and grapefruits) [83] has not 
been generally adopted because potential benefits do not 
compensate the high installation and maintenance costs. Re-
sults of early research are contradictory and both positive 
[84] and negative [85, 86] effects of CA on the incidence of 
postharvest decay have been reported. Other technological 
options involving CA such as modified atmosphere packag-
ing, storage in either carbon monoxide CA (5% O2 + 5–10% 

CO) [83], low-pressure (hypobaric) CA [87*], or ethylene 
removal from storage rooms [88, 89] may have beneficial 
effects on decay suppression, but they are not economically 
viable for fresh citrus fruit. 
 
Storage in ozonated atmospheres and general ozone applica-
tions for sanitation and control of postharvest diseases of fresh 
fruits and vegetables have been recently reviewed [90*]. 
Ozone (O3) is a highly reactive, potent biocide that has recently 
received regulatory approval for many food contact applica-
tions. It is a residue-free effective sanitiser, but its efficacy in 
controlling postharvest diseases cannot be predicted by its tox-
icity against free fungal spores and hyphae. Continuous or in-
termittent exposure to ozone gas at non-phytotoxic concentra-
tions of 0.3–1.0 µL/L does not control infection of fruit by P. 
digitatum and P. italicum in wounds and consequently does 
not reduce final disease incidence after storage. Gaseous 
ozone, however, inhibits aerial mycelial growth and sporula-
tion of these fungi, which can help to reduce the proliferation 
of fungicide-resistant strains of the pathogens [91]. Neverthe-
less, these effects are transitory and limited to infected citrus 
fruit stored in highly vented packages or open-top containers 
that allow direct contact with the gas [92, 93]. Ozone, like 
other strong oxidant sanitisers such as hypochlorite or chlorine 
dioxide, readily kills free Penicillium conidia when they are 
immersed in ozonated water, but it fails to control infections in 
wounds already established in citrus fruit [90*, 94]. Like all 
oxidising agents, ozone can harm humans if there is exposure 
to high concentrations for a sufficient duration. Therefore, is-
sues related to the safety of workers and personnel must be 
addressed before the installation of ozone in air or water appli-
cation systems in fresh citrus packinghouses. 
 
Chemical control methods 
Chemical alternatives to conventional fungicides for posthar-
vest disease control should be natural or synthetic com-
pounds with known and minimal toxicological effects on 
mammals and the environment. The origin of these alterna-
tives includes classifications such as food additives and sub-
stances listed as GRAS (Generally Regarded as Safe) by the 
United States Food and Drug Administration, natural com-
pounds obtained from plants, animals or microorganisms 
including some volatiles and essential oils, phenolic com-
pounds, plant extracts, peptides, alkaloids, lectins, antibiotics, 
propolis, latex or chitosan [95**, 96*], and other chemicals 
such as calcium polysulfide or ammonium molybdate. 
 
Food additives and GRAS compounds 
In California for over 75 years, the standard method of clean-
ing oranges or lemons was to soak fruit for 2–4 min in a 
heated (43°C) solution of 4% borax (sodium tetraborate deca-
hydrate) and 2% boric acid or 3% sodium carbonate (SC) 
within a day or two after harvest [97–99]. Soap or a detergent 
was usually added and the fruit were rinsed with a fresh wa-
ter spray to remove salt residues from the surface. The borax 
bath treatment was abandoned because of residue issues and 
disposal of rinse water containing boron. SC (soda ash, 
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Na2CO3) or sodium bicarbonate (SBC, baking soda, 
NaHCO3) treatments remain in common use to today because 
they are effective and inexpensive food additives allowed 
with no restrictions for many applications including organic 
agriculture [100–102**]. While they can also be applied ef-
fectively through high-pressure washer nozzles [103], low-
volume spray applications over rotating brushes are avoided 
because their efficacy is lower and calcium carbonate scale 
accumulates on the brushes. Although their effectiveness is 
lower in mandarins than lemons or oranges, good control of 
penicillium moulds and fair control of sour rot, caused by 
Geotrichum citri-aurantii, is obtained with these treatments, 
especially if heated solutions and prolonged immersion times 
are used [51, 52*, 101, 102**, 104, 105]. The mechanism of 
action of carbonate salts against penicillium decay is unclear. 
It appears to be due in part to the presence of an alkaline resi-
due in wounds [3, 106, 107], although equimolar solutions of 
the same pH prepared from SC or SBC were more effective 
than those prepared from potassium or ammonium salts, 
which suggested that the sodium cation and other factors may 
be important [102**]. In contrast, it was found in other work 
[108] that the effectiveness of potassium bicarbonate against 
green mould was equivalent to that of SBC at the same con-
centration. 
 
Besides carbonates, other common food preservatives have 
been evaluated for the control of citrus green or blue moulds. 
Some short-chain organic acids such as formic, acetic or 
propionic acid have been assayed as fumigants [109–111*] 
and some organic acid salts such as sodium propionate, so-
dium benzoate (SB) or potassium sorbate (PS) have been 
applied as aqueous solutions [112, 113**]. Among more than 
forty food additives and low-toxicity chemicals tested, PS 
and SB were the most effective on oranges and lemons 
[113**]. They were about equal in activity to each other and 
to SC. PS (C6H7O2K) was firstly evaluated against fungicide-
resistant strains of Penicillium spp. [114, 115] and it has been 
applied to citrus fruit in commercial packinghouses to control 
decay, although its use for this purpose is rare and some 
regulatory approvals may not be current [116*]. Immersion 
of fruit in heated solutions is the most effective method of 
application [116*–118]. Advantages of PS are that P. digi-
tatum and P. italicum developed little or no tolerance after 
prolonged and repeated exposure to it [119] and that disposal 
of used solutions would have fewer regulatory issues than the 
sodium salts SC or SBC [116*]. 
 
In general, handicaps associated with the use of GRAS salt 
solutions include lack of preventive activity, limited persis-
tence [51, 52*, 102**, 113**, 116*, 118], risk of fruit injury 
or weight and firmness losses during long-term storage if 
treated fruit have not been rinsed, reduction of treatment ef-
fectiveness by high-pressure water washing or rinsing, and 
disposal issues associated with high pH and sodium or potas-
sium content [102**, 120*, 121]. Moreover, chlorine (200 
µg/mL) should be added and maintained to kill conidia of 
Penicillium spp. in the solutions and on fruit surface [102**, 

122]. Some of these problems could be solved by the devel-
opment of new technologies such as the incorporation of anti-
fungal GRAS compounds as ingredients of new edible coat-
ings or synthetic waxes.  
 
Natural compounds 
 
Volatiles and essential oils 
A large variety of volatile compounds with antifungal activ-
ity have been isolated from plants: acetaldehyde, benzalde-
hyde, benzyl alcohol, ethanol, methyl salicylate, ethyl benzo-
ate, ethyl formate, hexanal, (E)-2-hexenal, lipoxygenases, 
jasmonates, allicin, glucosinolates and isothiocyanates, etc 
[123]. Among them, jasmonates [124*] and some aroma 
components like acetaldehyde, benzaldehyde, ethanol, ethyl 
formate, nerolidol and 2-nonanone [100, 125*, 126] have 
been specifically tested against P. digitatum or P. italicum. A 
method based on the use of allyl-isothiocyanate on citrus fruit 
has been patented in Japan [127]. 
 
Aromatic plants, such as citrus, produce essential oils that 
basically contain volatile C10 and C15 terpenes derived from 
isoprene units. Caccioni et al. [128*] stated that citral was the 
most potent monoterpene in citrus essential oils, although its 
two isomers geranial and neral were similarly toxic [129]. 
Citral has been described as a preformed antifungal compo-
nent in the flavedo of citrus fruit associated with a first line 
of resistance to infection by P. digitatum [130, 131*]. Other 
constitutive components present in oil glands are phenolic 
compounds such as flavanones (eg, nariturin, didymine, hes-
peridin), polymethoxylated flavones (eg, nobiletin, tan-
geretin, sinensetin) or p-coumaric acid (a precursor of cou-
marins) [132, 133**]. A second line of defence would in-
clude the synthesis of phytoalexins (mainly coumarins such 
as scoparone, scopoletin, scopolin) in the fruit rind as a re-
sponse to fungal challenge. Stress triggered by certain physi-
cal, chemical or biological postharvest treatments can induce 
the retention or biosynthesis of both preformed and induced 
volatile antifungal compounds with subsequent maintenance 
or induction of fruit resistance to disease [60*, 66*, 69, 71*, 
133**–135]. Products to control green or blue moulds with 
components of essential oil from citrus peel as active ingredi-
ents have been described. The efficacy of citral against P. 
digitatum and P. italicum in vitro depended on the method of 
application [136], but exogenous application in vivo was phy-
totoxic and not promising [130]. Angioni et al. [137*] iso-
lated 7-geranoxy coumarin from grapefruit peel, a phenolic 
compound that effectively reduced decay and was not phyto-
toxic. Recently, a product containing essential oils and limo-
nene hydroperoxides from citrus flavedo was developed that 
controlled green mould after either natural or artificial inocu-
lation with P. digitatum [138].  
 
Inhibitory activity of essential oils from plants other than 
citrus against P. digitatum and P. italicum has also been re-
ported. Compounds from species of thyme, oregano, cinna-
mon, clove, dictamus or mint were very effective in vitro, but 
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results from in vivo experiments were contradictory and ap-
plications to citrus fruit were often ineffective or phytotoxic 
[139–143*, 144*, 145**, 146*]. In fact, despite their potent 
antifungal activity, commercial implementation of treatments 
with essential oils is strongly restricted in citrus because of 
problems related to potential phytotoxicity, intense sensory 
attributes or technological application as fumigants or in 
aqueous solutions. The mode of action of essential oils on P. 
digitatum and P. italicum and other fungi has not been deter-
mined, and many aspects of essential oil toxicity remain un-
resolved [138]. It has been shown that their antimicrobial 
activity is dependent on their hydrophobicity and partition in 
microbial membranes [147]. Compounds with saturated car-
bonyl groups had less antifungal activity than their corre-
sponding alcohols [138].  
 
Plant extracts 
Strictly, most of the volatiles, essential oils or phenolic com-
pounds that have been mentioned are included in this section 
because they are active phytochemical components that can 
be isolated from certain extracts of plant tissues. Powders, 
gels and aqueous or organic solvent extracts of plants from 
different origins are reported to have activity against P. digi-
tatum or P. italicum under different experimental conditions. 
These plants include Aloe vera [148], garlic [149], Hua-
muchil [150], Thymus sp., Eucaliptus sp., Cistus sp., Juglans 
sp., Myrtus sp. [146*], Acacia sp., Whitania sp. [151*] and a 
variety of weeds from Jordania [152]. 
 
Peptides and proteins 
Plants and animals produce a variety of peptides and small 
proteins with antimicrobial activity that are presumed to be 
part of constitutive or inducible defence mechanisms against 
fungal infection [153, 154]. Their mechanism of action is 
presumed to involve the interaction of the amphipathic cati-
onic peptide with the target cell membrane, followed by 
membrane disruption [155]. Several peptides from different 
origins have been identified, characterised and tested for ac-
tivity against P. digitatum or P. italicum, and some have 
shown promise for the control of the diseases caused by these 
fungi [156–159*, 160**]. These researchers identified 
PAF26, a tryptophan-rich, cationic hexapeptide, which mod-
erately controlled penicillium decay even caused by fungi-
cide-resistant strains of the pathogens. Strategies envisioned 
to be feasible employ peptide synthesis by transgenic plants, 
either to protect the plant or to economically produce the 
peptides, since at present the high cost of synthetic peptides 
is a barrier to their practical application. Some new peptides 
derivatives of PAF26 with broader spectrum activity have 
also been recently obtained [161]. 
 
Chitosan and derivatives 
Chitin is a primary constituent of crustacean shells, insect 
cuticles and fungal cell walls [162]. Chitosan, its deacety-
lated soluble form, has wide antifungal properties and, at low 
concentrations, can elicit defensive responses in fresh fruit 
against phytopathogenic fungi. Chitosan and its derivatives 

such as glycolchitosan can be used in solution, powder form 
or as wettable coatings [96*]. Antifungal activity against P. 
digitatum or P. italicum, in vivo significant reduction of cit-
rus penicillium decay, and fruit senescence retardation during 
long-term cold storage of different citrus species and culti-
vars have been observed after application of certain chitosan 
formulations [163–166*]. 
 
Other chemicals 
Liquid lime sulphur solution, an inexpensive and widely 
available fungicide that contains calcium polysulfide, is often 
used by organic growers on many crops before harvest. As a 
postharvest treatment, it was approved for use on citrus fruit 
in California and Arizona because, if heated, it is equal or 
superior in effectiveness to SCs for the control of green 
mould and sour rot. However, it has not become popular be-
cause of the objectionable sulphide odour it emits and its 
corrosiveness to some packinghouse equipment [104]. The 
fertiliser ammonium molybdate [113**] and the inducer of 
disease resistance β-aminobutyric acid [167*] have also 
shown activity against citrus penicillium moulds. Schirra et 
al. [168] developed a new effective postharvest antifungal 
product by complexation of IZ with beta-cyclodextrin. On the 
other hand, it has been repeatedly observed that fumigation 
with the ethylene inhibitor 1-methylcyclopropene to prolong 
postharvest life of stored citrus fruit increased the incidence 
of postharvest decay [13, 169, 170]. 
 
Biological control methods 
In this review, this category will be restricted to the utilisation of 
microbial antagonists. Substantial progress has been made in 
developing antagonistic microorganisms for the control of post-
harvest diseases [171–175*, 176*, 177**]. During the last two 
decades, numerous strains of yeasts (eg, Candida oleophila 
[178**–180], Candida guilliermondii (syn.: Pichia guillier-
mondii, Debaryomyces hansenii) [181–185**], Candida sai-
toana [163, 186*, 187*], Candida famata [188*, 189], 
Metschnikowia fructicola [190*, 191], Metschnikowia mulcher-
rima [192*], Rhodotorula glutinis [193], Cryptococcus laurentii 
[194*], Kloeckera apiculata [195, 196*], Pichia anomala 
[197]), bacteria (eg, Pseudomonas syringae [198**–201], Pseu-
domonas cepacia [202–204], Pseudomonas glathei [205*], Pan-
toea agglomerans [206–209*], Bacillus subtilis [210–214*, 
215*], Bacillus pumilus [216], Serratia plymuthica [217]) and 
filamentous fungi (eg, Trichoderma viride [218], Verticillium 
lecanii [164], Aureobasidium pullulans [219, 220]) have been 
selected, identified and characterised because of their biocontrol 
activity against citrus green or blue moulds. However, by the 
early 2000s, there were only two postharvest biological products 
registered for use against postharvest rots of citrus fruit that were 
available on the market: Aspire™ (C. oleophila, limited to the 
USA and Israel) and BioSave™ (P. syringae, limited to the 
USA). Other products (Biocure, Bio-Coat) were developed with 
C. saitoana [221], but have not reached the marketplace yet. 
Another recently developed product is based on the use of a 
heat-tolerant strain of M. fructicola and is marketed under the 
name Shemer™ in Israel by the company AgroGreen Ltd. 
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(Ashdod, Israel). Besides Penicillium spp., it has been shown to 
be also effective against rots caused by Botrytis cinerea, 
Rhizopus spp., and Aspergillus spp. on citrus, strawberries and 
grapes [190*, 222–224]. Depending on the antagonist, the 
pathogen and the fruit host, different modes of action might ex-
plain the biocontrol activity of antagonistic microorganisms: 
competition for nutrients and space, secretion of antibiotics, di-
rect effects of the antagonist on the pathogen or induction of host 
defence mechanisms [8*, 175*, 225, 226*, 227**]. In general, 
microbial antagonists are used as aqueous cell suspensions in 
postharvest spray, drench or dip applications. On citrus fruit, 
some of them have been tested as preharvest treatments [225] 
and others as active ingredients in fruit coatings [163, 185**, 
187*, 221, 228–230]. An unusual case is the control of citrus 
penicillium decay by biofumigation with volatile compounds 
produced by grain cultures of the fungus Muscodor albus 
[231**].  
 
In spite of the large volume of research published about post-
harvest biocontrol of citrus rots, the commercial use of these 
products was and remains limited and accounts for only a 
very small fraction of the potential market. As discussed in 
several reviews [173, 174, 176*, 177**, 232], the main short-
coming of the use of postharvest biocontrol products has 
been inconsistency in their performance, especially when 
used as a stand-alone product to replace synthetic fungicides. 
Furthermore, another important handicap for current com-
mercial adoption in EU countries of such products is the 
strict regulatory issues that prevent registration [233]. The 
combination of biological control with other control methods 
is one of the most promising means of establishing effective 
nonpolluting integrated control systems [173, 234–236*] and 
will be later discussed in this review. Other approaches to 
enhance the biocontrol activity of antagonistic microorgan-
isms include the addition of nutrients such as certain nitroge-
nous compounds [172] or genetic manipulation of the antago-
nists. Efforts to identify genetic traits of the yeast C. oleo-
phila and determine its potential to enhance biocontrol activ-
ity showed that both chitinase and glucanase activities are 
constitutively produced by the yeast in culture and in planta. 
CoEXG1, a exo-β-1,3-glucanase gene of the yeast biocontrol 
agent C. oleophila was cloned from a partial genomic library 
as a segment containing the open reading frame and the pro-
moter [237*]. Trasformants with double copy of CoEXG1 
exhibited two fold exo-β-1,3-glucanase activity compared 
with the wild type. When tested on citrus fruit against P. digi-
tatum, biocontrol efficacy of the transformant over-
expressing glucanase gene was not significantly enhanced 
[238*]. Another important aspect to improve the commercial 
performance and generalise the use of biocontrol agents is the 
development of stable, reliable and economically acceptable 
product formulations [207, 239, 240]. 
 
Combination of treatments for integrated  
disease management 
Successful commercial control of postharvest diseases of 
fruits and vegetables must be extremely efficient, in the range 

of 95–98%, unlike the control of tree, field crop or soil borne 
diseases. Consistent performance to such levels of control 
cannot presently be achieved by alternatives to fungicides as 
stand-alone treatments, so strategies where they are com-
bined are needed to attain commercially acceptable perform-
ance. Therefore, researchers have devoted considerable atten-
tion to the integration of different treatments in order to over-
come the variable performance and augment the efficacy of 
existing alternative approaches. In general, three objectives 
may be pursued by the integration of two or more treatments: 
additive or synergistic effects to increase the effectiveness or 
the persistence of individual treatments; complementary ef-
fects to combine preventive and curative activities; and po-
tential commercial implementation of effective treatments 
that are too impractical, costly or risky as single treatments. 
For example, combinations of treatments can be made to re-
duce the length and cost of curing treatments or reduce the 
dose and phytotoxicity risk of irradiation treatments. 
 
Most of the research on the combination of alternative treat-
ments to control citrus green and blue moulds included post-
harvest heat or biocontrol treatments as components of an 
integrated strategy, so particular subsections will focus on 
these combinations. Ionising radiation at low doses combined 
with reduced levels of either conventional fungicides (eg, 
SOPP, diphenyl) [241, 242] or GRAS compounds (eg, SC) 
[121], and conventional fungicides at low doses combined 
with GRAS compounds or sanitisers (eg, SBC, PS, chlorine) 
[20, 22, 116, 243–245*] are other options that have been as-
sessed.  
 
On the other hand, there is an increasing interest in the appli-
cation of antifungal preharvest treatments to reduce field 
populations of Penicillium spp. or induce fruit resistance as 
part of IDM programs. Therefore, fungicides such as beno-
myl, cyprodinil, thiophanate methyl, pyraclostrobin, AZX, 
FLU and phosphorous acid, and other chemicals such as sev-
eral carbonates, calcium chloride (CACl2), dichloro-
phenoxyacetic acid, gibberellic acid and a mannaoligosaccha-
ride (ISR 2000®) have been recently evaluated for these pur-
poses [39*, 192*, 244, 246–249*]. 
 
Combination of heat with other control methods 
 
Combination with other physical control methods 
In order to reduce potential negative impacts of antifungal 
treatments on citrus fruit quality, curing or hot water treat-
ments have been combined with variable results with individ-
ual plastic packaging of fruit [33, 54], ionising radiation at 
low doses [47, 78, 250*], UV-C treatments [39*, 251, 252] or 
brief CO2 shocks [253*].  
 
Combination with chemical control methods 
It has been repeatedly reported that heating aqueous solutions 
of either conventional fungicides [17, 20, 58, 243–245*, 
254–257] or low-toxicity alternative chemicals such as SC, 
SBC [51, 52*, 100–102**, 105, 245*, 258**], PS [113**, 
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116*–118, 259], SB, sodium and ammonium molybdates 
[113**], ethanol, sulphur dioxide [100] or calcium polysul-
fide [104] significantly enhanced their effectiveness against 
penicillium moulds and other citrus postharvest diseases. 
Heat probably facilitates the uptake of the active ingredient 
through the fruit cuticle [61**] in a similar way that it is fa-
cilitated by dip treatments in comparison to spray or drench 
applications [257, 260]. The most appropriate solution tem-
perature should be specifically determined for each combina-
tion of active ingredient and fruit species and cultivar, but in 
general, if compared with hot water alone, similar effective-
ness is obtained at much lower solution temperatures, which 
considerably reduces the risk of heat injury to the fruit. The 
combination of curing treatments with conventional fungi-
cides [36, 39*], GRAS compounds such as SC [38*, 261*] or 
ethanol [38*], or postharvest surfactants such as dodecylben-
zenesulfonate [37*] also resulted in improved control of cit-
rus green or blue moulds. 
 
Combination with biocontrol antagonists  
Heat treatments and the application of antagonistic microor-
ganisms are complementary treatments that often show syner-
gistic effects for the control of postharvest diseases. In some 
cases, both are components of complex integrated control 
strategies that also include other control means [234–236*]. 
 
Thermal curing or hot water treatments have been success-
fully combined with microbial antagonists for citrus penicil-
lium decay control, including C. oleophila [38*, 258**], C. 
famata [189], M. mulcherrima [192*], P. glathei [205*], B. 
subtilis [214*] and P. agglomerans [262*]. 
 
Combination of biocontrol antagonists with other control 
methods 
 
Combination with physical control methods 
Besides heat treatments, other physical control means that 
have been combined with the application of antagonistic mi-
croorganisms to control of citrus green or blue moulds in-
clude UV-C illumination and storage in CAs. The application 
of UV-C in combination with the yeast antagonist D. han-
senii completely inhibited the development of P. digitatum 
on Dancy tangerines [263*]. While similar results were ob-
tained on navel oranges with the combination of UV-C and 
the yeast C. oleophila, no synergistic effects were observed 
when UV-C was combined with the bacterium B. subtilis 
[264]. Satisfactory decay control was found on clementine 
mandarins previously treated with the bacterium P. agglom-
erans and stored for 60 days at 3.5ºC in 5 kPa O2 + 3 kPa 
CO2. These storage conditions did not adversely affect the 
viability of the antagonist on fruit surface wounds (Palou, 
Usall, and Viñas, unpublished results). 
 
Combination with low levels of conventional fungicides 
In laboratory and large scale tests, biocontrol products such 
as AspireTM and BioSaveTM often provide a level of control 
equivalent to synthetic fungicides only when combined with 

low doses of these fungicides [178**, 192*, 265–268*]. For 
instance, C. oleophila in combination with 200 µg/mL of 
TBZ controlled citrus decay at the level equivalent to a com-
mercial fungicide treatment, where TBZ is often used at 10 to 
20 times this concentration, and reduced the variability often 
observed when using the antagonistic yeast alone [178**]. 
 
Combination with food additives and other chemicals 
Among the low toxicity chemicals examined to enhance bio-
control efficacy against P. digitatum or P. italicum were etha-
nol [38*], peracetic acid [191] and oxalic acid [180]. How-
ever, SCs (especially SBC) are the additives that have been 
most widely evaluated for synergistic activity with microbial 
antagonists. Their combination with P. syringae [102**], P. 
agglomerans [209*, 269**, 270], C. oleophila [38*, 258**], 
B. subtilis [214*] or C. laurentii [194*] was superior to either 
treatment alone in controlling green or blue moulds on differ-
ent citrus species and cultivars.  
 
The addition of calcium chloride to citrus fruit increased the 
protective effect of the antagonist P. guilliermondii and also 
greatly reduced the populations of yeasts required to give 
effective control [271**]. The combination of C. saitoana 
with a low dose of 0.2% (w/v) of the sugar analog 2-deoxy-
D-glucose applied to fruit wounds before inoculation was 
more effective in controlling decay of orange and lemon 
caused by P. digitatum than either C. saitoana or 2-deoxy-D-
glucose alone [186*]. These results were confirmed in semi-
commercial trials [272]. 
 
Combination with chitosan and derivatives 
A biocontrol preparation termed “bioactive coating” that con-
sists of a unique combination of the antagonistic yeast C. 
saitoana with chemically-modified chitosan (0.2% glycolchi-
tosan) was evaluated in laboratory and semicommercial stud-
ies against P. digitatum on oranges and lemons. The biocon-
trol activity of C. saitoana was markedly enhanced by the 
addition of glycolchitosan and the combination made it possi-
ble to synergistically exploit the antifungal properties of both 
treatment components [163, 187*].  
 
Conclusion 
As this review makes evident, extensive research work has been 
conducted worldwide for many years and continues today to 
identify, evaluate, select, characterise and eventually implement 
alternative means to conventional synthetic fungicides for the 
control of postharvest penicillium moulds of citrus fruit. These 
sustained efforts are warranted by the economical importance of 
postharvest losses caused by P. digitatum and P. italicum in all 
citrus growing areas and the increasing market and social pres-
sure to adopt safe nonpolluting technologies for fresh fruit pro-
duction. Particularly, consumer safety concerns are more impor-
tant for postharvest pesticide treatments than for field applica-
tions, because the residues are likely to be present on the fruit at 
the time of consumption.  
 
Despite the evident substantial progress that has been accom-
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plished, the commercial use of available alternative posthar-
vest antifungal treatments has been rather limited given the 
potential market. The lack of either curative or preventive 
activity, low persistence, high variability, cost, inconsistency 
or excessive specificity are general limitations associated 
with the nature of alternative physical, chemical or biological 
control methods. As stated once by a student: “… it is not 
going to be easy to kill with no poison…”. Furthermore, the 
risk of adverse effects on fruit quality, technological prob-
lems for cost-effective application or the availability of new 
conventional fungicides for traditional markets are additional 
reasons that may hinder the broad commercial use of such 
treatments. As we learn more about the fundamental basis 
underlying host-pathogen interactions and how they are influ-
enced by direct or indirect protective effects of existing or 
new alternative treatments, more effective methods of apply-
ing and combining complementary approaches for additive or 
synergistic effects will emerge. So far the results obtained 
with combinations of antifungal treatments demonstrate the 
promise of this multifaceted integrated approach to become a 
viable alternative to the use of synthetic fungicides. Once 
developed, these alternatives should prove durable and valu-
able. The complexity of the mode of action associated with 
combined alternative treatments should make the develop-
ment of pathogen resistance unlikely and provide higher lev-
els of stability and effectiveness than approaches relying on 
single mode of action treatments. 
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