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Summary  11 

Electromagnetic induction (EMI) measurements (σb*) are widely used for the survey 12 

of several soil attributes, among which basic properties such as salinity (σe), water 13 

content (θw), clay (wc), organic matter (wom) and bulk density (ρb) stand out. In the 14 

usual practice, purely empirical models relating one of these properties to σb* are 15 

calibrated in selected sites. However, this calibration is site and time specific and has 16 

to be repeated one time and again.  17 

In order to understand where the variability of the EMI empirical models 18 

comes from, it is necessary to know how the different soil properties contribute to 19 

them and, for this aim, a more physically-based relationship between σb* and, at least, 20 

σe, θw, wc, wom, ρb was developed in this work, additionally including soil temperature 21 

(t). It was calibrated and cross-validated with the data from one survey done in a wide 22 

agricultural irrigation area in SE Spain taking σb* measurements with the Geonics 23 

EM38 in the horizontal and vertical dipole modes and at various heights over the 24 

ground. Then, it was externally validated with the data from a second survey carried 25 

out four years later in the same area but in a different season.  26 

In the calibration R2 was 0.84 and RMSE 0.18 dS/m (41%) for the vertical 27 

dipole orientation and 0.90 and 0.11 dS/m (39%) for the horizontal one. In the 28 

external validation, R2 was 0.80 and RMSE 0.24 dS/m (44%) for the vertical dipole 29 

orientation and, respectively, 0.90 and 0.13 dS/m (38%) for the horizontal one.  30 

Therefore, since the performance of the model barely worsened as time passed 31 

by, it can be considered to represent the underlying physical process and, therefore, to 32 

increase our understanding of how the soil EMI signals are generated with potential 33 

benefits for the planning and comparability of EMI soil measurements, specifically 34 

with the EM38, among different areas. 35 
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 36 

Keywords: salinity, water content, texture, organic matter, electromagnetic induction 37 

Highlights: 38 

A semi-empirical model was developed to predict soil EMI measurements from 39 

basic ground properties. 40 

Salinity, water content, clay, organic matter, bulk density, and temperature were 41 

used as predictors. 42 

The model was able to explain between 80 and 90% of the variance in EMI 43 

measurements in the validation. 44 

This model helps us understand how the basic soil properties contribute to the 45 

EMI measurements. 46 

 47 

Symbols and abbreviations:  48 

A list has been provided as Supporting Information Material 1 (SIM 1)  49 
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Introduction 50 

Soils conduct electricity since they contain ions, which act as charge carriers and, 51 

additionally, water, which acts as a transport medium. Conceptually, conduction in 52 

soil takes place in the liquid water that surrounds the soil solid particles by means of 53 

the ions moving through the soil pore water, and by the exchange ions moving along 54 

the solid-water interfaces (Jurinak et al., 1987; Kelleners et al., 2004). Therefore, the 55 

aggregated ability of a soil to conduct electricity, i.e., the soil bulk electrical 56 

conductivity (σb) depends on a) the salt, or ion, content, which is usually expressed as 57 

the electrical conductivity at 25 ºC of the saturation extract (σe), b) the volumetric 58 

water content (θw), c) the bulk density (ρb), d) the amount of exchange ions, which is 59 

generally equal to the cation exchange capacity (CEC), and e) temperature (t). 60 

Providing CEC essentially depends on the soil clay and organic matter fractions, σb 61 

can be considered to ultimately depend on the mineralogy and mass fractions of clay 62 

(wc) and organic matter (wom) in addition to σe, θw, ρb and t (McNeill, 1992; Rhoades 63 

et al., 1999).   64 

Nowadays there are several electromagnetic techniques for σb sensing: electrical 65 

resistivity (ER), time domain reflectometry (TDR), frequency domain reflectometry 66 

(FDR) and electromagnetic induction (EMI) (Visconti & de Paz, 2016). Compared to 67 

ER, TDR and FDR, EMI presents one important advantage for data collection because 68 

it does not require soil contact. Therefore, since EMI instruments are non-invasive, 69 

they can be mounted on non-conductive custom-made vehicles, connected to data 70 

loggers and GPS navigation devices and towed along large expanses of lands for fast, 71 

frequent and cost-effective surveys (Carter et al., 1993; Sudduth et al., 2001; 72 

Triantafilis et al., 2002; Freeland et al., 2002). 73 
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EMI instruments are made up of at least two coils: one transmitter (Tx) that 74 

generates a primary time-varying magnetic field of Hp amplitude and one receiver 75 

(Rx) that responds to a secondary time-varying magnetic field of Hs amplitude 76 

generated at Rx by both the Tx and the soil (McNeill, 1980). The ratio of the 77 

quadrature component of Hs (Hs,π/2) to Hp depends on the σb and the soil magnetic 78 

permeability (μ), which can be considered equal to the vacuum permeability (μ0 = 4π 79 

10-7 H m-1), and, additionally, on the primary field frequency (f ) and the spacing 80 

between the Tx and Rx (r), their relative orientation (coplanar, crosswise, etc.) and, 81 

importantly, on the closeness and orientation of the whole EMI instrument to the soil 82 

(vertical, horizontal, etc.) (de Jong et al., 1979). Since the σb varies with depth, a 83 

depth-weighted average bulk electrical conductivity measurement represented by σb* 84 

and related to the previously-commented parameters by:  85 

2
0

pπ/2s,
b

μ

)/(4
*

r

HH
σ


        (1), 86 

is taken in the Rx coil and presented to the user (McNeill, 1980). This σb* 87 

measurement ultimately depends on the same soil properties that σb, namely, σe, θw, 88 

wc, wom, ρb and t. Besides, several σb* measurements can be taken by changing the 89 

orientation and height over the ground of the EMI instrument. For example, the 90 

widely used EM38 (Geonics Ltd., Mississauga, Ontario, Canada) has only two 91 

parallel 1-m apart Tx and Rx coils (r = 1 m), and measurements are commonly taken 92 

in horizontal coplanar (σb(H)*) and vertical coplanar (σb(V)*) ‘dipole’ orientations and 93 

at different heights (h) over the ground from the surface to up to 2 m (Corwin & 94 

Rhoades, 1990) to give 2 m measurements: σb(Vhi)*,… σb(Vhm)*, σb(Hhi)*,… σb(Hhm)*. 95 

Then, the σb of as many as 2 m different soil layers can be assessed from the σb* 96 

measurements by means of an inverse matrix multiplication, i.e., a 1D inversion 97 

(Borchers et al., 1997; Hendrickx et al., 2002).     98 
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The composite nature of σb, and the even more complex σb*, complicates the use 99 

and interpretation of EMI measurements. Therefore, EMI instruments require 100 

calibration for the soil factor under study and recalibration as soon as the other soil 101 

factors on which conductivity depends significantly change in mean and/or range of 102 

variation along the lands (Corwin & Rhoades, 1990). Despite this inconvenience, EMI 103 

has been thoroughly used in soil studies, primarily for the appraisal and delineation of 104 

salinity, but also θw, textural class and wc, ρb and, recently, even wom (Table 1).   105 

[Table 1] 106 

The calibration of EMI instruments is usually carried out by means of ordinary 107 

least squares regression and multiple linear regression, but also by means of principal 108 

components regression (PCR), partial least squares regression (PLSR), geostatistical 109 

modelling and other related techniques (Lesch et al., 1995; Lesch et al., 2000; 110 

Triantafilis et al., 2000). These approaches have, however, one important drawback: 111 

statistical models are functional, i.e., they represent just the data generating process 112 

(Cox, 2006), thus giving poor insight into the underlying physical mechanisms. For 113 

σb, physically-based models have been developed for use along with ER (Rhoades et 114 

al., 1976; Kizito et al., 2008), TDR (Kelleners & Verma, 2010) and FDR techniques 115 

(Visconti et al., 2014). Nevertheless, a physically-based model of the form σb* = 116 

σb*(σe, θw, wc, wom, ρb, t) has never been developed to our best knowledge for use 117 

along with EMI instruments. The development of, at least, a semi-empirical model 118 

would increase our insight into the EMI signal physics. This will help the planning of 119 

EMI measurement campaigns and the interpretation of their results. This is of the 120 

utmost importance since EMI continues to be widely used for the survey of soil 121 

properties all around the World (Heil & Schmidhalter, 2017). 122 
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The objective of this investigation was to develop, including calibration and 123 

validation, a semi-empirical model to predict the measurements taken with an EMI 124 

device (σb*), specifically the EM38, using salinity along with the volumetric soil 125 

water content, the mass fractions of clay and organic matter, bulk density and, 126 

additionally, temperature, as predictors in order to understand how these properties 127 

contribute to form the EMI signal. This kind of study is absent in the literature and 128 

much needed. 129 

 130 

Model theory and development 131 

A model for σb* prediction on the basis of σe, θw, wc, wom, ρb and t was developed 132 

starting with the linear relationship (Eq. 2) between a set of σb* measurements taken 133 

with the EM38 in the vertical and horizontal dipole orientations at various heights (h) 134 

over the ground from h1 to hm (σb(Vh1)*, σb(Vh2)*,... σb(Vhm)*, σb(Hh1)*, σb(Hh2)*,... 135 

σb(Hhm)*) and the σb of the different layers in which the ground can be split from d1 to 136 

dn (σb(d1), σb(d2),… σb(dn)) (Borchers et al., 1997; Hendrickx et al., 2002): 137 
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(2), 138 

where z expresses the downward coordinate and the matrix coefficients express the 139 

integrated contribution of each soil layer to each sensor measurement according to the 140 
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known sensitivity functions for the vertical and horizontal dipole measurement modes 141 

featuring the EM38 (McNeill, 1980): 142 

2/32V
)14(

4
)(φ




z

z
z  (3),   

2/12H
)14(

4
2)(φ




z

z
z  (4). 143 

The linear model represented by Eq. 2, in addition to Eq. 3 and Eq. 4, is valid 144 

as long as the induction number (NB) for the soil is low enough (NB << 1). The NB is 145 

defined as the ratio of the intercoil separation (r) to the skin depth (δ) when the EMI 146 

instrument lays on the soil. The skin depth δ is the soil depth needed to decrease the 147 

amplitude of the primary magnetic field from Hp to Hp/e (≈ 0.368 Hp) and depends on 148 

the angular frequency of the primary time-varying magnetic field (ω = 2πf) and the σb 149 

of the soil ( bσ ) through: 150 

2

μ b0
B

σ
r

r
N



         (5). 151 

Eq. 5 was originally posed for a homogeneously conductive soil, i.e., one with 152 

a σb constant from topsoil to subsoil and below (McNeill, 1980). However, since such 153 

a soil never exists, a depth-weighted average σb, i.e., bσ , calculated according to Eq. 6 154 

is used in this work for NB evaluation, where Δdj is the thickness of the jth soil layer: 155 














n

j
j

n

j
jd

d

d

σ
j

1

1
)(b

b


        (6). 156 

Once the hypothesis of NB << 1 can be assumed, Eq. 2 can be reliably used for 157 

the calculation of the σb of the several soil layers (n ≤ 2 m) in which the soil can be 158 

split from j = 1 to n (σb(dj)). Therefore, each σb(dj) value in Eq. 2 can be related to the 159 

pore water electrical conductivity at the soil temperature when the measurement was 160 

taken (σp,t), the volumetric soil water content (θw), the bulk density (ρb) and the cation 161 
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exchange capacity (CEC) of its corresponding soil layer by means of the following 162 

physically-based equation, whose derivation is shown in Kelleners and Verma (2010): 163 











w

b
p,wb

B


 CEC

T t                             (7), 164 

where B is the equivalent conductance of the counterions on the exchange 165 

complex in units of dS m2 molC
-1 provided ρb is in g cm-3, CEC in mmolC kg-1 and σb 166 

in dS m-1, and T is the tortuosity, structure or formation factor, which is related to the 167 

soil structure, i.e., the arrangement of the soil solid particles and the in-between air-168 

filled and water-filled voids, and depends again on its volumetric soil water content 169 

and, in its simplest, takes the following linear formulation where a and b are two 170 

dimensionless parameters provided θw is dimensionless too (Rhoades et al., 1976): 171 

T = a θw + b                    (8). 172 

The electrical conductivity of saline aqueous solutions, i.e., σp,t in equation 7, 173 

is known to increase as temperature (t) does at a rate of roughly 2% per ºC, and this 174 

relationship can be modelled through an empirical equation like the following:  175 

σp,t = σp,25/f(t)         (9),  176 

where σp,25 is the pore water electrical conductivity at 25 ºC and f(t) is a temperature 177 

function given by (Sheets & Hendrickx, 1995; Corwin & Lesch, 2005):   178 

f(t) = 0.4470 + 1.4034e-t/26.815       (10). 179 

The σp,25 value can be related to the soil (soluble) salt content represented by 180 

the electrical conductivity at 25 ºC of the saturation extract of the corresponding layer 181 

(σe) through the following semi-empirical equation (Eq. 11): 182 

w

ee
σp0p,25 kσ

w

σw
σ                     (11), 183 

where the factor we/ww is the concentration ratio from the mass fraction of 184 

water in the saturated paste (we), to the mass fraction of water in the field at the time 185 
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of measurement (ww), and where the factors σp0 (in units of dS/m) and kσ 186 

(dimensionless), are two empirical coefficients included to take account of various 187 

effects that make the relationship between σp and σe depart from the simple dilution 188 

ratio that is represented by σp,25 = we σe/ww. These effects are, mainly, the precipitation 189 

of the soil salts of limited solubility calcite and gypsum, the cation exchange dilution 190 

effect and the anion exclusion (Visconti & de Paz, 2012). 191 

The we in Eq. 11 can be considered to linearly depend on the mass fraction of 192 

soil clay (wc) through a simple pedotransfer function like the following: 193 

we = we0 + kc,e wc                 (12). 194 

where the coefficients we0 and kc,e (both dimensionless) were obtained 195 

previously for the study area using simple linear regression (Visconti, 2009). 196 

Besides, the field mass fraction of soil water in equation 7 can be calculated 197 

from θw, ρb and water density (ρw) through Eq. 13: 198 

ww = θw ρw/ρb                              (13). 199 

Finally, the CEC in Eq. 7 is known to essentially depend for most soils on the 200 

mass fractions of clay and organic matter (Bell & van Keulen, 1995; Krogh et al., 201 

2000) through a pedotransfer function like the following: 202 

CEC = CEC0 + kc,CEC wc + kom,CEC wom                         (14), 203 

where wom is the mass fraction of soil OM and the coefficients kc,CEC and 204 

kom,CEC were found for the study area using multiple linear regression (Visconti, 205 

2009). 206 

Equations 8 to 14 can be combined to obtain Eq. 15 in which σb depends only 207 

on σe, θw, wc, wom, ρb and t: 208 

     
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
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σ
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




   (15). 209 

Materials and methods 210 
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Study area 211 

The semi-empirical model was applied to the irrigated agricultural area of the Vega 212 

Baja del Segura and Baix Vinalopó (SE Spain) which amounts to 55,000 ha of land 213 

(Fig. 1). The soils in this area are mostly calcaric Fluvisols in the alluvial central part 214 

and, additionally, various types of Calcisols, Regosols and gleyic Solonchaks to the 215 

outskirts (Ortiz et al., 2008). Surface textures range from silt loam to silty clay loam 216 

and clay mineralogy overwhelmingly correspond to hydrated micas. According to the 217 

Thornthwaite and Köppen-Geiger systems, the climate in the area is classified as arid 218 

to semi-arid hot-summer Mediterranean, i.e., very dry with hot summers and mild 219 

winters and where the scarce rainfalls concentrate mainly in autumn and then spring 220 

and winter (Fig. 2). 221 

[Figure 1] 222 

[Figure 2]  223 

Soil surveys 224 

Two surveys were carried out four years apart. The first one was made in summer 225 

2006 when 28 sites distributed in the whole study area were visited. The second one 226 

was made in autumn 2010 when another set of 28 sites were visited following 75 mm 227 

of rainfall in the area since mid August (Fig. 2). Ten of these had been already visited 228 

in summer 2006, specifically they were within a radius of 250 m of one previous site, 229 

whereas the other 18 were further away (Fig. 1). The 28 selected sites in 2006 and the 230 

new 18 sites in 2010 were distributed, respectively, in the whole study area (2006) 231 

and only in the central alluvial part (2010) according to two systematic random 232 

sampling designs using a Geographic Information System (GIS). The sites from the 233 
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first survey were used for calibration and cross-validation of the model, whereas the 234 

sites from the second survey were used for external validation. 235 

Soil water content and salinity are very dynamic and hence time-variable in 236 

irrigated agricultural fields, overall under dry sub-humid to arid climates. Therefore, 237 

by changing the seasons between the first and second surveys we aimed at 238 

maximizing differences of water content and salinity between calibration and 239 

validation.  240 

EMI instrument 241 

The EMI instrument used in this work was the EM38 (Geonics Ltd., Mississauga, 242 

Ontario, Canada). The EM38 primary magnetic field frequency (f = 14.6 kHz) and 243 

spacing between the transmitter and receiver coils (r = 1 m) enables it to respond to 244 

the conductive properties of ground materials, and barely to their magnetic properties, 245 

down to 0.8 and 1.5 m for 75% cumulative signal in, respectively, the horizontal (H) 246 

and vertical (V) coplanar ‘dipole’ orientations (McNeill, 1980). These characteristics 247 

make it especially suitable for the sensing of σb in the rooting depth of most crop 248 

plants.    249 

EMI measurements 250 

A global positioning system (GPS) receiver was used to locate the exact selected site. 251 

Before taking the EMI measurements in each site, the EM38 instrument functioning 252 

parameters were adjusted in order to avoid the drift effects known to affect this device 253 

(Sudduth et al., 2001). According to the EM38 instructions manual (Geonics Ltd., 254 

1992), first of all, the instrument was left to warm-up away from direct sunlight for 15 255 

minutes on a homogeneous expanse of low-conductive ground outside the target 256 

agricultural site, i.e., a shaded spot on the access road. Then, the in-phase and 257 

quadrature-phase measurements were set to zero by adequately switching the I/P and 258 
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Q/P controls. Finally, the EM38 was lifted to 1.5 m height and the Q/P control was 259 

switched again to have a σb* measurement in the vertical dipole mode double than in 260 

the horizontal one at that height.  261 

After setting up the instrument, the σb* of the soil in the selected site was 262 

measured with the EM38 in both available dipole orientations, i.e., V and H, and at 0, 263 

50, 100, 150 and 200 cm over the ground to compile a set of ten measurements per 264 

site: σb(V0)*, σb(V50)*, σb(V100)*, σb(V150)*, σb(V200)*, σb(H0)*, σb(H50)*, σb(H100)*, σb(H150)* 265 

and σb(H200)*. 266 

Soil sampling, bulk electrical conductivity and temperature measurements 267 

After the EMI measurements, the soil beneath the centre of the instrument in each site 268 

was drilled with a Riverside auger 10 cm in diameter. Four disturbed samples were 269 

separately taken from the upper topsoil, lower topsoil, subsurface soil and subsoil and 270 

sealed in plastic bags. In the first survey the depth intervals were, respectively, 0-10, 271 

10-30, 30-65 and 65-95 cm, and in the second one were 0-10, 10-30, 30-60 and 60-90 272 

cm.  273 

Besides, in the second survey, a second point next to the first one was drilled 274 

to take undisturbed soil cores 5 cm in diameter and height with a 0753SA volumetric 275 

sampler (Eijkelkamp, Giesbeek, The Netherlands) from the depth intervals 0-5, 10-15, 276 

30-35 and 50-55 cm. The values for the ranges 0-10, 10-30 and 30-60 cm were hence 277 

calculated by means of linear interpolation from the values determined at 0-5, 10-15, 278 

30-35 and 50-55 cm. Additionally, an average bulk density for the depth interval 60-279 

90 cm could be calculated by non-linear extrapolation using the following potential 280 

function calibrated with the shallower depth intervals: 281 

ρb = 1.1428 z0.08       (16),  282 
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which gave 1.61 g cm-3 and was subsequently used as the ρb of the 60-90 cm layer in 283 

all the sites of the second survey for the external validation. Besides, the mean ρb 284 

values obtained for the 0-10, 10-30 and 30-60 cm soil layers in the second survey, in 285 

addition to the previously commented ρb value for the 60-90 cm soil layer, were used 286 

for, respectively, the 0-10, 10-30, 30-65 and 65-95 cm soil layers in the calibration 287 

and cross validation of the model for σb* prediction. 288 

 In both soil surveys, as the soil was drilled to take the disturbed soil samples, 289 

the bulk electrical conductivity and temperature were measured at the following 290 

depths: 0, 10, 30 and 50 cm with a WET-2 sensor (Delta-T Devices Ltd., Cambridge, 291 

UK). Temperature was empirically modelled in each site as a function of depth (z) 292 

with this equation:  293 

t = α zβ         (17), 294 

and as a consequence, a t estimate could be made for the subsoil layers. 295 

Soil analyses 296 

The soil samples from the first survey were, first of all, analysed for the mass fraction 297 

of water at field conditions (ww) by oven-drying during 24 h at 105 ºC of a 298 

representative subsample 20 g in weight.  299 

The undisturbed soil cores from the validation sampling were oven-dried at 105 300 

ºC for 24 h, weighted and then, the ww and bulk density (ρb) determined. These were 301 

the only determinations made in these undisturbed cores. 302 

Following the ww determination, all disturbed soil samples were spread out on 303 

trays and left to dry at room air conditions. Then, they were gently deaggregated to 304 

pass a 2-mm mesh sieve and the air-dry fine earth saved for the analyses explained in 305 

the ensuing paragraphs. 306 
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The soil organic matter mass fraction (wom) was determined according to the 307 

Walkley and Black method using a Walkley-Black factor of 1.282, which is based on 308 

the assumption that only 78% of soil OM reacts in the mild oxidation conditions 309 

featuring this method, and a van Bemmelen factor of 1.724, which is based on the 310 

hypothesis that soil OM is 58% carbon (Nelson & Sommers, 1996). 311 

The soil texture, and thus clay mass fraction (wc) was determined with the 312 

hydrometer method (Gee & Or, 2002) using NaPO3 0.25% (w/v) in water as 313 

dispersing medium and 20 g of air-dry fine earth. 314 

The saturated paste was prepared by adding deionized water (~ 1 μS cm-1) to 400 315 

g of air-dry fine earth (Rhoades, 1996). Then, the soil water was vacuum extracted 316 

and the σe immediately measured with a microCM 2201 conductimeter (Crison, 317 

Barcelona, Spain) equipped with a 1.1 cm-1 cell and a temperature probe. 318 

Model application 319 

To calibrate and validate the model presented in this work, first of all, a 1D inversion 320 

was performed on Eq. 2 to obtain the σb values at different soil depths from the σb*  at 321 

different heights collected in the first survey. Then, Eq. 15 was calibrated employing 322 

the basic ground properties in the first survey and hence the optimum values of the 323 

parameters a, b and B obtained (Fig. 3 top row). Once calibrated, Eq. 15 was used to 324 

estimate the σb at different depths from the basic ground properties in the second 325 

survey. Finally, Eq. 2 was forwardly applied to calculate the σb* at different heights in 326 

the second survey from the estimates of σb, and the σb* calculations were compared to 327 

the EM38 measurements for validation (Fig. 3 bottom row).  328 

[Figure 3] 329 
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Calculation of the σb of the different soil layers from the σb* measurements at 330 

different heights 331 

According to the model presented by means of Eq. 2, the EMI-surveyed soils can be 332 

conceptually split in n layers (n ≤ 2 m), each one characterized by a σb value, and this 333 

set of n σb values, in our case n = 5 and, therefore [σb0-10, σb10-30, σb30-60(65), σb60(65)-334 

90(95), σb>90(95)], can be calculated by inversion of the matrix of sensitivity coefficients, 335 

followed by multiplication by the vector of σb* measurements, in our case [σb(V0)*, 336 

σb(V50)*, σb(V100)*, σb(V150)*, σb(V200)*, σb(H0)*, σb(H50)*, σb(H100)*, σb(H150)*, σb(H200)*]. 337 

Although correct, this problem is, however, ill-posed. That is, because all the σb* 338 

measurements are often highly correlated, the solution is remarkably sensitive to 339 

small deviations in the σb* measurements, thus leading to non-reproducible results. 340 

This difficulty can be conveniently overcome using the Tikhonov regularization 341 

(Zhdanov, 2018). In this approach the minimum of the following objective function 342 

ΦA (Eq. 18) is iteratively searched using different values of the λ parameter at a time 343 

(Borchers et al. 1997; Hendrickx et al., 2002): 344 
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where X is V or H, σb(Xhi)*’ is the predicted σb(Xhi)* and ljk is the element of the jth row 346 

and kth column of the second derivative matrix L (Eq. 19): 347 
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 In order to search for an adequate λ value, the range from 0.07 to 3 is usually 349 

tested (Huang et al., 2017; Dakak et al., 2017). In this work the 0-to-2 interval was 350 
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explored instead, where a λ = 0 transforms the objective function ΦA in a least-squares 351 

one. The adequate λ value in this work was selected by taking the one that featured the 352 

vertex of the ‘L’ shaped graph that arises by representing the first against the second 353 

summand of the objective function ΦA (Borchers et al., 1997; Hendrickx et al., 2002). 354 

Note that the Tikhonov regularization was independently applied for each location in 355 

the surveys and, therefore, a different λ value for each one was obtained and 356 

subsequently used to calculate its corresponding set of n σb values. 357 

 Following the calculation of the n σb values for each site, they were compared 358 

with the σb values measured with the WET-2 so as to know the degree of applicability 359 

of the linear model represented by Eq. 2 in the soils of the study area. The soil 360 

weighted σb averages were also assessed with Eq. 6, and the induction numbers NB 361 

next calculated with Eq. 5. 362 

Calibration of the model for σb* prediction 363 

Once the σb of the different soil layers in every site belonging to the first survey had 364 

been calculated, Eq. 15 was calibrated using the values of σe, θw, wc, wom and t that 365 

had been determined for the same soil layers. For ρb the mean value for every soil 366 

layer obtained in the second soil survey was used. Therefore, the calibration of Eq. 15 367 

consisted in finding the values of the parameters a, b and B that minimized the sum of 368 

square errors between measured (σb(dko)) and calculated (σb(dko)’) soil bulk electrical 369 

conductivities for all sites and soil layers (ΦB):  370 
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The other seven parameters in Eq. 15 (σp0, kσ, we0, kc,e, CEC0, kc,CEC and kom,CEC) 372 

were not estimated by means of the ΦB minimization since they were known from 373 

other works of the study area where they have been calculated by simple linear 374 
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regression of the equations they specifically feature, i.e., Eq. 11, Eq. 12 and Eq. 14 375 

(Table 2). 376 

[Table 2] 377 

Estimation of confidence intervals for the a, b and B coefficients  378 

The 95% confidence intervals for the coefficients a, b and B were determined by 379 

means of the bootstrapping percentile method in which 1000 bootstrap replications of 380 

size 28 × 4 = 112 were drawn from the calibration dataset. Then, the a, b and B 381 

coefficients of each one were calculated and the 2.5th and 97.5th percentiles finally 382 

assessed (Devore & Berk, 2018).  383 

Cross-validation of the model for σb* prediction 384 

A leave-one-site-out scheme was used for cross-validation of the model with the data 385 

from the first survey. In the first survey dataset, one location was removed at a time 386 

and the parameters a, b and B each time recalculated with the other 27 sites. Then, the 387 

σb in the layers 0-10, 10-30, 30-65, 65-95 and below 95 cm (σb(0-10), σb(10-30), σb(30-65), 388 

σb(65-95) and σb(>95)) of the removed site were predicted using the recalculated a, b and 389 

B values. Finally, these newly predicted σb values were used along with Eq. 2 to 390 

calculate the σb* that would have resulted from the measurement with the EM38 in 391 

the vertical and horizontal dipole orientations and at 0, 50, 100, 150 and 200 cm 392 

height, and were compared to the observed values.  393 

External validation of the model for σb* prediction 394 

The model parameters a, b and B that had been estimated in the calibration of Eq. 15 395 

were used along with this equation and the soil properties (σe, θw, wc, wom, ρb and t) 396 

that had been determined in the different layers of the 28 sites of the second survey to 397 

predict σb at 0-10, 10-30, 30-60, 60-90 and below 90 cm (σb(0-10), σb(10-30), σb(30-60), 398 
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σb(60-90) and σb(>90)) (Fig. 3 from top to bottom row). Then, calculated and WET-2-399 

measured σb values were compared, and Eq. 2 was used to calculate the σb* that 400 

would have been obtained in the vertical and horizontal dipole orientations and at 0, 401 

50, 100, 150 and 200 cm height. 402 

Results 403 

EMI measurements 404 

The EMI measurements (Visconti & de Paz, 2020) always decreased as height 405 

increased both in the vertical and horizontal dipole modes and in both surveys (Fig. 406 

4). They ranged from 0.01 to 2.47 dS/m in the first survey and from 0.01 to 3.44 dS/m 407 

in the second one, i.e., the σb* measurements in the first survey were consistently 408 

lower than in the second one (SIM 2). Conversely, the quotient σb(H0)*/σb(V0)* was 409 

higher (0.98) in the first than in the second survey (0.77), which indicates that the σb 410 

profile was more homogeneous in the first survey than in the second one.  411 

[Figure 4] 412 

The Pearson’s skewness coefficients for all measurements and both surveys 413 

were well within the [-1, 1] limits and thus, normality could be assumed for all σb* 414 

measurements.  415 

From Fig. 4 it is apparent that, in general, the higher the measurement at the 416 

soil surface, the higher the measurement at whatever height. This visual observation 417 

was supported by the correlation coefficients: the Pearson’s product-moment 418 

correlation coefficients among the σb* measurements at the different soil heights and 419 

dipole modes were between 0.881 and 0.994 in the first survey and between 0.894 and 420 

0.995 in the second one (SIM 3). 421 

Soil properties 422 
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The σe values measured in the first survey were higher than in the second one, and the 423 

difference between both was, in general, larger near surface (SIM 4). Interpretation of 424 

these observations points towards the effect of the season each survey was carried out. 425 

The first one was performed in summer when soil salinity is expected to be higher 426 

because of the high evapotranspiration, rainfall scarcity characteristic of the 427 

Mediterranean climate in the area during summer and, hence, plenty of irrigations and 428 

salt inputs to the soils therein. On the contrary, the second survey was made in 429 

autumn when soil salinity is expected to be lower because of the much lower 430 

evapotranspiration in that season and the leaching effect of the autumn rainfalls 431 

featuring again the Mediterranean climate in the area and which, in 2010 amounted to 432 

75 mm (Fig. 2).  433 

Additionally, the effect of the different season each survey was carried out 434 

showed up in θw (SIM 4). As expected, soil water contents were lower in the first 435 

survey, which was carried out in summer, than in the second autumnal one and, again, 436 

the shallower the soil the wider the difference.  437 

Regarding the clay and OM mass fractions, i.e., wc and wom, these were, in 438 

general, higher in the first survey (SIM 4). This is likely due to the fact that the sites 439 

of the second survey were more clustered in the alluvial part of the study area where 440 

the soils have finer textures and, as a consequence of this characteristic, they are also 441 

a bit higher in organic matter (Fig. 1). 442 

Regarding the bulk density, this was only determined in the second survey and 443 

not for exactly the same depth intervals that σe, θw, wc and wom. It increased from the 444 

upper topsoil to the subsurface soil layer with barely variations from there down (SIM 445 

4).    446 
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Finally, regarding the WET-2 measurements, both σb and temperature were higher 447 

in the first survey, which was carried out in summer, than in the second one, that so 448 

was in autumn (SIM 5). Differences between the summer and autumn soil 449 

temperatures were between 18 and 11 ºC: the highest within the shallowest soil depth.   450 

Regarding distributions, σe and wom were the properties which presented more 451 

skewness coefficients outside the [-1, 1] bounds. Additionally, the logarithmic 452 

transformations (to base 10) of both variables were able to give distributions, in 453 

general, less skewed (SIM 4), thus indicating that these properties tend to be log-454 

normally distributed in the area. 455 

Calculation of the σb of the different soil layers from the σb* measurements at the 456 

different heights 457 

Since the σb* measurements at the different heights were highly correlated (SIM 3), a 458 

traditionally least-squares minimization to solve Eq. 2 could not be applied. 459 

Alternatively, the Tikhonov regularization was done.  460 

In the Tikhonov regularization the λ parameters featuring the vertex of the 461 

graph of the first against the second summand of Eq. 18 were between 0.34 and 0.75 462 

in the first survey with mean of 0.44 ± 0.03 (Table 3). Once the adequate λ values for 463 

each site had been calculated, Eq. 2 could be inverted and the σb at the different soil 464 

depths at each site in the first survey calculated from the corresponding sets of σb* 465 

measurements at the different heights.  466 

[Table 3] 467 

For the soils that were highly conductive, their σb increased from the upper 468 

topsoil down to the subsurface soil and then, it kept almost constant with depth, i.e., 469 

σb followed a ‘normal’ conductivity profile (Fig. 5). Conversely, for soils that were 470 

lowly conductive, their σb kept almost constant from the topsoil down to the subsoil, 471 
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i.e., σb followed a ‘uniform’ conductivity profile (Fig. 5). Inverted conductivity 472 

profiles were not observed. In any case, the σb values at the different soil depths were 473 

highly correlated featuring Pearson’s product-moment correlation coefficients 474 

between 0.950 and 0.997 in the first survey. This high correlations logically follow 475 

those also observed in the σb* measurements at the different heights and dipoles over 476 

the ground (SIM 3).  477 

[Figure 5] 478 

Next, depth-weighted σb averages ( bσ ) were obtained for each of the sites 479 

with Eq. 6 (Table 3), and the induction number (NB) was thus calculated with the use 480 

of Eq. 5 where r, µ0 and ω are all known. The NB values were between 0.029 and 481 

0.101 with mean of 0.059 ± 0.008 in the first survey and somewhat higher in the 482 

second one (Table 3). These induction numbers are at least one order of magnitude 483 

below unity, however, in order to know whether they are low enough to adequately 484 

fulfil the requirement of low induction numbers (NB << 1), the σb values calculated by 485 

means of the 1D inversion were compared to the WET-2 σb measurements giving R2 486 

of 0.59 and RMSE of 0.17 dS/m (19%). However, what was more relevant is that the 487 

calculations were on average very similar to the measurements (Fig. 6a) with a mean 488 

pairwise difference of -0.07 ± 0.10 dS m-1, which is not different from zero at the 95% 489 

confidence level (p = 0.13). This fact gave support to the hypothesis of low induction 490 

numbers and the convenience of the linear model represented by Eq. 2 for the soils of 491 

the study area. 492 

[Figure 6] 493 

Calibration of the model 494 

The calibration of the model given by Eq. 15 was done using the σb values previously 495 

calculated by the 1D inversion of Eq. 2 for all the sites in the first survey (Fig. 5). As 496 
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a consequence, the following estimations for the 95% confidence intervals of the a, b 497 

and B parameters in Eq. 15: a = 0.51 ± 0.23, b = 0.09 ± 0.07, and B = (1.3 ± 0.7) × 10-498 

6 S m2 mmolC
-1 were obtained.  499 

The calibrated values of a, b and B, along with the rest of coefficients in Eq. 500 

15 (Table 2), were used to predict σb at the different soil depths in each site of the first 501 

survey. On the basis of these σb values, the corresponding σb* at the different heights 502 

over the ground in each site of the first survey were subsequently calculated with the 503 

forward application of Eq. 2.   504 

The fit of predictions against measurements for σb* in the horizontal and 505 

vertical dipole modes is shown in Fig. 7a and b. The coefficient of determination (R2) 506 

and RMSE of the model for σb* prediction in the vertical dipole mode for all 507 

measurements were 0.84 and 0.18 dS m-1 (41%), respectively, whereas the R2 and 508 

RMSE in the horizontal one were 0.90 and 0.11 dS m-1 (39%), also respectively 509 

(Table 4). The mean pairwise difference between predictions and observations was -510 

0.04 ± 0.03 dS m-1 in the vertical dipole, i.e., different from zero at the 95% 511 

confidence level (p = 0.006), and 0.007 ± 0.018 dS m-1 in the horizontal dipole, i.e., 512 

non-different from zero at the 95% confidence level (p = 0.4). The fit between 513 

measurements and predictions barely changed as a function of the measurement 514 

height as revealed by the R2 and RMSE percentages (Table 4).  515 

[Figure 7] 516 

[Table 4] 517 

Cross-validation of the model 518 

The fit of predictions against observations of σb* in the horizontal and vertical dipole 519 

modes at 0, 50, 100, 150 and 200 cm height is shown in Fig. 7c and d. The coefficient 520 

of determination (R2) and RMSE of the model for σb* prediction in the vertical dipole 521 
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mode were for all measurements, respectively, 0.80 and 0.19 dS m-1 (43%), whereas 522 

the R2 and RMSE in the horizontal one were, respectively, 0.87 and 0.12 dS m-1 523 

(43%), respectively (Table 4). The mean pairwise difference between predictions and 524 

observations was -0.04 ± 0.03 dS m-1 in the vertical dipole, i.e., different from zero at 525 

the 95% confidence level (p = 0.02), and 0.01 ± 0.02 dS m-1 in the horizontal dipole, 526 

i.e., non-different from zero at the 95% confidence level (p = 0.3). 527 

External validation of the model 528 

The model in Eq. 15 with calibrated parameters a, b and B was applied to the basic 529 

ground data from the second survey to predict the σb at the different soil depths. The 530 

fit of predictions against WET-2 measurements presented R2 of 0.65 and RMSE of 531 

0.13 dS m-1 (15%) (Fig. 6b) therefore slightly improving precision regarding what had 532 

been obtained in the 1D inversion (Fig. 6a). However, accuracy decreased with a 533 

mean pairwise difference between predictions and observations of 0.17 ± 0.08 dS m-1, 534 

i.e., significantly different from zero at the 95% confidence interval (p < 0.001). 535 

Then, by the forward application of Eq. 2 the σb* data were calculated. The fit of 536 

predictions against observations of σb* in the horizontal and vertical dipole modes at 537 

0, 50, 100, 150 and 200 cm height is shown in Fig. 7e and f. The coefficient of 538 

determination (R2) and RMSE of the model for σb* prediction in the vertical dipole 539 

mode were for all measurements 0.80 and 0.24 dS m-1 (44%), respectively, whereas 540 

the R2 and RMSE in the horizontal one were 0.90 and 0.13 dS m-1 (38%), respectively 541 

(Table 4). The mean pairwise difference between predictions and observations was -542 

0.12 ± 0.06 dS m-1 in the vertical dipole, i.e., different from zero at the 95% 543 

confidence level (p < 0.001), and 0.008 ± 0.200 dS m-1 in the horizontal dipole, i.e., 544 

non-different from zero at the 95% confidence level (p = 0.5). Again, the fit between 545 
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measurements and predictions barely changed as a function of measurement height as 546 

revealed by the R2 and RMSE percentages (Table 4).  547 

Discussion 548 

There are many models for the prediction of one of the following five basic soil 549 

properties: σe, θw, wc, wom and ρb on the basis of EMI measurements. All these models 550 

are purely empirical and usually calibrated by means of simple linear regression (e.g., 551 

McKenzie et al., 1989), multiple linear regression (e.g., Díaz and Herrero, 1992), or 552 

either geostatistical techniques (e.g., García-Tomillo et al., 2017). There are also 553 

consolidated mathematical techniques for the calculation of soil σb values from EMI 554 

measurements (Zhdanov, 2018) which have been compared to TDR-measured σb 555 

values (Dragonetti et al., 2018). In this work, however, a semi-empirical model was 556 

developed to predict, not the basic properties, but the EMI measurements themselves, 557 

specifically, the EM38 measurements at the two dipole orientations and various 558 

heights over the ground on the basis of the main five soil properties, besides 559 

temperature, on which soil conductivity depends at various depths.  560 

 This semi-empirical model presents two parts: one that relates the σb* 561 

measurements at the different dipoles and heights with the σb values at the different 562 

soil depths (Eq. 2) and another that relates the σb values to the soil properties (Eq. 15). 563 

The linearity of Eq. 2 has eased the model development, however, it is an 564 

approximation that only holds for low induction numbers, i.e., when the ability of the 565 

soil to attenuate the primary magnetic field of the EMI instrument conforms to the 566 

asymptotic approximation of Maxwell’s equations developed by McNeill (1980). If 567 

this approximation is valid then the σb values calculated by inversion of Eq. 2 are 568 

considered to adequately correspond to true σb values (Callegary et al., 2007), i.e., 569 

those that would be measured by a reliable direct contact technique, mainly ER, but 570 
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also TDR and FDR. In this work the σb values obtained by inversion of Eq. 2 have 571 

been compared with the σb measurements taken with the WET-2, an FDR sensor, and, 572 

though featuring a remarkable scattering, have been found to satisfactorily agree on 573 

average. Even though relevant, the scattering is a consequence of the different sensing 574 

volumes of the WET-2 and the EM38, which are, respectively, 0.5 dm3 and 1000 dm3 575 

according to their instructions manuals and, therefore, as already pointed out by 576 

Coppola et al. (2016) when calibrating EMI with TDR measurements, while the 577 

WET-2 provides quasi-point-like measurements and thus does not integrate the small-578 

scale soil variability, the EM38 integrates all the small-scale soil heterogeneities. In 579 

short, the lack of bias in the σb estimation gave us confidence that the low induction 580 

number hypothesis is acceptably fulfilled in the surveyed soils featuring estimated NB 581 

values between 0.029 and 0.101 with mean of 0.059.  582 

In the calibration of the semi-empirical model developed in this work, the R2 583 

coefficients for σb* prediction were between 0.84 and 0.90, with the lower value 584 

corresponding to the vertical dipole measurements and the higher to the horizontal 585 

one. The magnitude of the R2 values found in this work are similar to the 0.92 for the 586 

vertical and the 0.83 for the horizontal dipole modes found by Brevik and Fenton 587 

(2002), who developed a multiple linear regression model for the EM38 588 

measurements using θw, wc, t and the carbonate mass fraction as predictors.  589 

The predictive ability of the semi-empirical model developed in this work 590 

decreased a bit when it was externally validated for the vertical dipole mode but not at 591 

all for the horizontal one. However, since σe and θw were on average 23% lower and 592 

23% higher, respectively, in the second validation survey regarding the first 593 

calibration one, the result of this validation means that the model seems to not depend 594 

much on the average values of these properties, although this should be rigorously 595 



 27

assessed with a sensitivity analysis. In addition to σe and θw, the soil temperature also 596 

changed from calibration to validation: it was, on average, between 18 and 11 ºC 597 

higher in the first calibration survey in comparison to the second validation one. 598 

Therefore, the model resisted this change too without losing much accuracy. Besides, 599 

the better performance in the horizontal dipole mode corresponds well with the higher 600 

sensitivity of the EM38 to the shallower soil layers in this measurement orientation.  601 

Considering additionally, the soil conductivity profile was more homogeneous in the 602 

first survey than in the second one, the validation conditions, on the whole, were very 603 

challenging thus giving us more confidence in the ability of the model to grab the 604 

underlying EMI signal generating process. Even more, since in inverted soil 605 

conductivity profiles, the shallower the soil layer the more conductive, the model 606 

developed in this work would be expected to behave even better with inverted 607 

conductivity profiles. This way we can say that the model is able to represent the soil 608 

as a conductive system under EMI.  609 

Out of the ten parameters of the semi-empirical model developed in this work, 610 

only the three related to tortuosity (a and b) and the exchange complex (B) were 611 

estimated in the calibration. The parameters a and b presented values of 0.51 ± 0.23 612 

and 0.09 ± 0.07. These are, respectively, slightly lower and higher in comparison to 613 

those in Rhoades et al. (1976) and Kelleners and Verma (2010) that were between 1.4 614 

and 2.1 and between -0.27 and -0.09. Nevertheless, they are within the intervals 615 

estimated by Visconti et al. (2014) for the upper topsoil layer of a site within the same 616 

study area using instead of EMI, FDR and capacitance-conductance techniques, which 617 

were, respectively, between 0 and 6 and between 0.8 and -1. Regarding, the 618 

equivalent conductance of the counterions on the exchange complex, the value 619 

obtained in this work was (1.3 ± 0.7) × 10-6 S m2 mmolC
-1, i.e., one order of 620 
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magnitude lower than the value obtained by Kelleners and Verma (2010) for a loamy 621 

soil, which was 5.9 × 10-5 S m2 mmolC
-1. This remarkable departure could be caused 622 

by the sites where the hypothesis of low induction numbers is less acceptable. 623 

The development of a semi-empirical model of the form σb* = σb*(σe, θw, wc, 624 

wOM, ρb) in which σb* is taken as an effect that depends on several causes, i.e., basic 625 

soil properties, has given insight into how these contribute to the building of the EMI 626 

signal. That is, that the dependence of the EMI signal on the several basic soil 627 

properties is essentially linear with, perhaps, the exception of θw, whose dependence 628 

may be regarded as quadratic since it appears in both factors of Eq. 15. Contrary to 629 

this semi-empirical model, a classical one of the type x = f(σb*, y1, y2, ...) where the 630 

dependent variable x is either σe, θw, wc, wOM or ρb, and the y’s are whichever of the 631 

basic properties that are not the target one and/or other measurements, takes linearity 632 

for granted and aims at just estimation of the target property.  633 

The practical interest of the semi-empirical model developed in this work is 634 

that the σb profile of the soils and, therefore, the induction numbers and the σb* 635 

measurements can be estimated in advance thus providing information about the 636 

applicability and scope of the technique in a study area as a part of the survey 637 

planning. Moreover, the sensitivity analysis of this model for an area will provide 638 

beforehand information about which properties will influence the most the sensor 639 

signal thus contributing to know if it is worth to perform a survey for one soil 640 

property if other soil properties are more influential than that.    641 

 642 

Conclusions 643 

A semi-empirical model to predict the measurements taken with an EMI device, 644 

specifically the EM38 in the horizontal and vertical dipole modes, and at various 645 
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heights from 0 up to 200 cm over the ground, was developed using the soil contents of 646 

salt, water, clay and organic matter, in addition to bulk density and temperature, at 647 

various soil depths, as predictors. Since the hypothesis of low induction numbers was 648 

acceptably fulfilled in the study area, the model could be calibrated and validated with 649 

the data obtained therein, respectively, in two contrasted seasons. This model 650 

presented coefficients of determination between 0.8 and 0.9 in the calibration, cross-651 

validation and external validation analyses, RMSE values between 38 and 44% and, 652 

mean pairwise differences between -0.04 ± 0.03 and -0.12 ± 0.06 dS m-1 for the 653 

vertical dipole and between 0.007 ± 0.018 and 0.01 ± 0.02 dS m-1 for the horizontal 654 

one. The model significantly underestimated (p < 0.05) the EM38 measurements in 655 

the vertical dipole, but not in the horizontal one. Remarkably, however, the model was 656 

robust against changes in the mean soil contents of salt, water, and temperature and, 657 

also against changes in the conductivity profile shape, from the calibration to the 658 

external validation. Even though the robustness of the model against changes in the 659 

mean and variability of the basic soil properties can only be rigorously tested by 660 

means of a sensitivity analysis, the stability from calibration to validation gave us 661 

confidence on the model predictive ability for conditions differing from the 662 

calibration. As a consequence, this model helps to understand how the different soil 663 

properties physically contribute to conductivity and why calibrations are so site-664 

specific in the practice of EMI soil surveying. For the study area for which it was 665 

developed, the model can be used to advance the EMI measurements taken with the 666 

EM38 at different heights and dipole orientations. Notwithstanding this, by 667 

replacement of the values of its parameters for the ones that characterize other study 668 

areas it may also be used elsewhere for the estimation of σb profiles, induction 669 

numbers and σb* measurements and, additionally, to estimate the importance the 670 
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different basic soil properties have on the EM38 signal. In future works, the model 671 

here presented will be subjected to a sensitivity analysis in order to ascertain the 672 

relative importance of the soil properties on the EMI measurements. It will be also 673 

extended to other instruments and areas, thus testing its universality.  674 
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TABLES  915 

Table 1 Characteristics of some relevant electromagnetic induction studies using the 916 

EM38 and focusing on the detection of basic soil properties down to a maximum of 917 

1.5 m depth. 918 

Soil  
property 

Study area 
extension/ 
ha 

Calibration 
(Sites × 
times) 

Calibration 
R2 

Reference 

σe               2,066 12 0.86 Dakak et al. (2017) 
σe             72,000 173 0.14 – 0.67 Taghizadeh-Mehrjardi et al. (2014) 
σe                  400 84 0.82 – 0.96 Yao and Yang (2010) 
σe                    21 6 0.80 – 0.86 Doolittle et al. (2001) 
σe                 0.94 62 0.80 Lesch et al. (1998) 
σe 0.40 – 0.54 13 – 20 0.67 – 0.85 Díaz and Herrero (1992) 
σe      12,000,000 694 – 796 0.63 – 0.85 McKenzie et al. (1989) 
θw                 0.60 200 0.87 Huang et al. (2018) 
θw                    13 47 0.86 Rallo et al. (2018) 
θw                 19.5 91 0.35 – 0.47 Zhu et al. (2010) 
θw                 0.01 113 0.58 – 0.85 Brevik et al. (2006) 
θw                 0.06 350 0.80 – 0.84 Reedy and Scanlon (2003) 
θw                 0.78 1040 0.58 – 0.64 Sheets and Hendrickx (1995) 
θw                 1.50 52 0.96 Kachanoski et al. (1988) 
wc           300,000 88 0.81 Saey et al. (2009) 
wc                    14 46 0.66 Weller et al. (2007) 
wc                  332 144 – 240 0.61 Sudduth et al. (2005) 
wc                    12 24 0.65 – 0.72 Hedley et al. (2004) 
wc                  244 46 0.72 – 0.77 Triantafilis et al. (2001) 
wom                    10 80 0.36 García-Tomillo et al. (2017) 
ρb                      4 65 0.35 Jung et al. (2005) 
 919 
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Table 2 Parameters of the model represented by Eq. 15 that were obtained in previous 930 

works by simple linear regression. 931 

Parameter 
σp0/ 
dS  
m-1 

kσ we0 kc,e 
CEC0/ 
mmolC  
kg-1 

kc,CEC/ 
mmolC  
kg-1 

kom,CEC/ 
mmolC  

kg-1 
Value     0.4 ± 0.4 0.71 ± 0.03 0.11 ± 0.03 0.96 ± 0.09       -12 ± 9     282 ± 24 2310 ± 320 
Equation 6 7 9 

Reference 
Visconti and de Paz, 

2018 
Visconti, 2009 
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Table 3 Statistical summary of the Tikhonov regularization parameter (λ), average σb, 952 

skin depth (δ) and induction number (NB) for each site in both surveys. 953 

 
First survey Second survey 

λ 
σb/ 
dS m-1  

δ/m NB λ 
σb/ 
dS m-1  

δ/m NB 

Count 28 28 28 28 28 28 28 28
Mean 0.446 0.674 19.0 0.059 0.435 0.852 16.9 0.067 
Std. Dev. 0.086 0.419 6.9 0.020 0.100 0.496 7.2 0.021 
Max. 0.752 1.76 35.1 0.100 0.689 2.50 41.5 0.120 
Min. 0.339 0.14 9.9 0.029 0.300 0.10 8.3 0.024 
Skewness 0.69 -0.26 1.45 -0.72 1.01 0.13 0.99 -0.31 
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Table 4 Coefficient of determination (R2) and root mean square error (RMSE) in 973 

units of dS m-1 and in percentage of the model for σb* prediction in both dipole mode 974 

orientations for all measurements and separately for each height in the calibration, 975 

cross-validation and external validation data analyses. 976 

Data analysis 
Height/
cm 

R2 RMSE/dS m-1 RMSE (%) 
Vertical Horizontal Vertical Horizontal Vertical Horizontal 

Calibration 0 0.749 0.763 0.346 0.218 37.9 27.6 
Calibration 50 0.787 0.786 0.141 0.092 28.1 36.6 
Calibration 100 0.788 0.770 0.097 0.046 28.5 27.4 
Calibration 150 0.720 0.726 0.082 0.038 32.7 31.1 
Calibration 200 0.720 0.727 0.054 0.027 31.2 30.6 
Calibration All 0.839 0.895 0.178 0.110 40.8 38.7 
Cross-validation 0 0.690 0.708 0.360 0.242 39.5 30.6 
Cross-validation 50 0.730 0.727 0.163 0.107 32.3 42.4 
Cross-validation 100 0.736 0.714 0.107 0.053 31.3 32.2 
Cross-validation 150 0.656 0.664 0.090 0.042 35.9 35.0 
Cross-validation 200 0.657 0.664 0.062 0.031 35.6 35.0 
Cross-validation All 0.801 0.870 0.189 0.123 43.4 43.3 
External validation 0 0.647 0.796 0.502 0.215 45.2 26.3 
External validation 50 0.699 0.757 0.262 0.120 37.2 30.1 
External validation 100 0.700 0.695 0.182 0.081 39.0 36.2 
External validation 150 0.693 0.659 0.089 0.081 32.3 33.9 
External validation 200 0.659 0.621 0.066 0.035 33.2 35.4 
External validation All 0.793 0.894 0.271 0.119 49.1 35.5 

977 
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FIGURE CAPTIONS  978 

Figure 1 Study area and placement of the sites visited in the first and second survey. 979 

Figure 2 Monthly rainfall and FAO’s reference evapotranspiration (ET0) in the study 980 

area in 2006 (1st survey) and 2010 (2nd survey) 981 

Figure 3 Flowchart of the calibration and validation of the semi-empirical model  982 

Figure 4 Measurements of σb* in the vertical and the horizontal dipole modes and in 983 

the first and the second soil surveys. 984 

Figure 5 Calculated σb at the different soil depths for all the sites visited in the first 985 

and the second surveys. 986 

Figure 6 Predicted (σb’) against WET-2-measured (σb) soil bulk electrical 987 

conductivity on the basis of the 1D inversion done with the data of the first survey (a) 988 

and on the basis of the application of Eq. 15 to the data of the second survey (b).   989 

Figure 7 Predicted (σb*’) against observed (σb*) values of soil depth-weighted 990 

electrical conductivity as measured with the EM38 in the horizontal coplanar (H) and 991 

vertical coplanar (V) dipole modes in the calibration, cross-validation and external 992 

validation. 993 
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Figure 4. 1027 
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Figure 5. 1038 
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Figure 6. 1053 
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Figure 7. 1066 
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