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Abstract

This letter presents a full computer vision system for the identification

of postharvest damages in citrus packing houses. The method is based

on the combined use of hyperspectral images and the Mahalanobis kernel

classifier. More accurate and reliable results compared to other methods

are obtained in several scenarios and acquired images.
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1 Introduction

Early fungi infection detection is especially important in citrus packing

houses since a few infected fruits can spread the infection to a whole batch,

causing great economic losses and affecting further operations, such as storage

or exportation. Penicillium digitatum sp produces the most important posthar-

vest damages in citrus packing houses. Nowadays, the detection of rotten fruit

in the citrus packing lines is carried out visually under ultraviolet illumination,

and fruits are removed manually. This procedure, however, may be harmful for

operators and operationally inefficient.

In this context, the introduction of hyperspectral sensor imaging permits

the analysis of an image at different wavelengths, and the resulting spectral

signature (or spectrum) can be used to identify a given defect. Very few works

are available concerning the detection of citrus damages using machine learning

techniques [1, 2, 3]. The high number of acquired channels is beneficial for

detection but also poses the problem of the curse of dimensionality for many of

the classifiers used so far. In such situations, SVMs have revealed very efficient

[4]. In this paper, we propose the use of support vector machines (SVM) with the

Mahalanobis kernel to classify images of citrus with fungal damages. This kernel

handles the different intrinsic relevance of spectral channels more efficiently, as

their relative importance is learned from the data.

2 Mahalanobis kernel for SVM classifiers

Given a labeled training data set {(x1, y1), . . ., (xn, yn)}, where xi ∈ R
N

and yi ∈ {−1, +1}, and a nonlinear mapping φ(·), usually to a higher (possibly

infinite) dimensional Hilbert space, φ : R
N −→ H, the SVM method solves:

min
w,ξi,b

{
1
2
‖w‖2 + C

∑
i

ξi

}
(1)
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constrained to:

yi(〈φ(xi),w〉 + b) ≥ 1 − ξi ∀i = 1, . . . , n (2)

ξi ≥ 0 ∀i = 1, . . . , n (3)

where w and b define a linear classifier in the feature space. The non-linear

mapping function φ is performed in accordance with Cover’s theorem [5], which

guarantees that the transformed samples are more likely to be linearly separable

in the resulting feature space. The regularisation parameter C controls the

generalisation capabilities of the classifier and it must be selected by the user,

and ξi are positive slack variables enabling to deal with permitted errors.

It is worth noting that all φ mappings used in the SVM learning occur in the

form of inner products in H, which allows us to define a kernel function K(xi,xj)

= 〈φ(xi), φ(xj)〉, and then a non-linear SVM can be constructed using only the

kernel function, without having to consider the mapping φ explicitly. Finally,

the decision function implemented by the classifier for any test vector x∗ is given

by f(x∗) = sgn(
∑n

i=1 yiαiK(xi,x∗) + b), where b can be easily computed from

the αi that are neither 0 nor C [6].

In the literature, the RBF kernel is commonly used to define the mapping

K(xi,xj) = exp
(− 1

2σ2 (‖xi − xj‖2
)
. Despite the good characteristics of this

kernel, one can note that no explicit weight is defined for the (in principle) dif-

ferent relevance of each spectral band (feature). A possible solution to alleviate

this shortcoming is to tune a different Gaussian width per feature, but this re-

sults in a too heuristic method, also prohibitive for the hyperspectral scenario.

In this paper, we introduce the Mahalanobis kernel (MK) in the formulation of

the SVM, which is defined as:

K(xi,xj) = exp
(
− 1

2σ2
(xi − xj)�Q−1(xi − xj)

)
, (4)

where Q is the estimated covariance matrix computed using the available train-

ing data. Note that this constitutes a non-linear generalisation of the classical

Mahalanobis distance metric through the use of the kernel methods framework.
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3 Acquisition methodology

Experiments were conducted on 20 mandarins Cv. clemenules and 20 man-

darins Cv. clemenvilla. Thirty-two of them were inoculated with spores of

Penicillium digitatum sp at a concentration of spores of 106 spores/ml and the

rest (8), only with water. Later, the fruit was stored at 18oC and 90% RH. Hy-

perspectral images were acquired using a monochromatic high-resolution camera

on which two liquid crystal tuneable filters (LCTF Varispec Vis-07 and NIR-07)

were placed having a spectral resolution of 7 nm and covering the range between

400 to 1100 nm (400 to 720 nm and 650 to 1100 nm, respectively). In order to

know the transmittance characteristics of the LCTF in the spectral region of

interest, the equipment was calibrated before the experiments using a precision

spectrometer and a calibrated light source. A standard white spectralon, and

a black sorbothane sheet that absorbs up to 95.5% of light, were also used for

reference purposes. The scene was lighted using halogen lamps to obtain good

radiance in the visible and NIR spectra.

The inoculated area of every fruit was labelled and imaged at 12-hour in-

tervals until the damage was observed visually. For each fruit, monochromatic

images in the 460 to 1020 nm range were acquired at 10 nm intervals, producing

N = 57 features (spectral channels) per fruit (bands from 400 to 460 and 1020

to 1100 nm were discarded owing to the low efficiency of the filters in these

ranges). In order to obtain the actual reflectance of the fruits, corrections were

applied to avoid the effect of the spatial inhomogeneities of the lighting system

and to correct the spherical shape of the fruits by producing a digital elevation

model of the fruits [7].

4 Experimental Results

We built a training and a test set for validating the classification results.

The training set contains 4320 pixels; 1920 were from the Cv. clemenules and

2400 from the Cv. clemenvilla, acquired at different stages of the development
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of the damage. In each window, pixels were labelled as sound/rotten/stem.

We compare performance of linear discriminant analysis (LDA) classifier, a

classification tree C4.5 (Tree), and the SVM using both an RBF kernel (RBF-

SVM) and a Mahalanobis kernel (MK-SVM). In all cases, the kernel width was

tuned in the range σ = {10−3, . . . , 103}, and the regularisation parameter was

varied in C = {10−1, . . . , 103}. A one-vs-one multiclass strategy was followed for

training the models. In order to analyse model robustness, we conducted experi-

ments in ill-posed situations, i.e. low number of high-dimensional labelled train-

ing samples. We randomly selected different rates of labelled samples (0.1%, 1%,

2%, 5%, 10%, 25%) from the training set and used 8-fold cross-validation for

free parameter tuning. Then, we tested the built classifier on the whole images.

Figure 1 shows the obtained results (averaged over 100 realisations). It is

worth noting that the proposed kernel method outperforms the rest for both

fruit varieties. This improvement is specially significant for the (more com-

plex) clemenules variety where an average gain of 5% in the overall accuracy

is obtained, thus suggesting that a proper band selection could improve the

results. However, the design and application of a feature selection stage is time-

consuming, scenario-dependent, and sometimes needs a priori knowledge. The

related problem of overfitting in high dimensional input spaces is alleviated with

the use of the MK-SVM. The better performance of the method is also observed

in the clemenvilla variety, specially in ill-posed situations (0.1% training sam-

ples).

The good numerical results obtained with the presented method are con-

firmed observing the classification maps in Figure 2. Here, the MK-SVM pro-

duces spatially more uniform and accurate solutions compared to the rest of

classifiers. In general, the rest of the models in homogeneous areas produce

many false positives, which is intolerable for operational environments. These

problems are more evident in the tree and linear discriminant classifiers, sug-

gesting the problems of overfitting and its Hughes attendant. In conclusion, the

robustness to the input data dimensionality observed for the MK-SVM method

suggests its potential usefulness for on-line fruit classification and sorting.
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5 Conclusions

This work demonstrated the feasibility of a hyperspectral computer vision

technique for the detection of infections caused by Penicillium digitatum in

citrus fruits before they become apparent. We introduced the use of the Ma-

halanobis kernel in the SVM classifier to improve results, leading to a more

versatile feature-adapted kernel classification scheme. Our future work is tied

to introducing the contextual and textural information in the classifier.
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Figure 1: Overall accuracy in the test set for all classifiers using different rates

of training samples for (a) clemenules and (b) clemenvilla mandarin varieties.
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