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ABSTRACT 11 

Current satellite remote sensing instruments still face a trade-off between spectral and spatial resolution. 12 

Moreover, for many applications the timely acquisition of satellite remote sensing data is expensive and often 13 

not achievable. This gap between information needs and data availability inspires research on using 14 

Remotely Piloted Aircraft Systems (RPAS) to capture the desired high spectral and spatial information, 15 

furthermore providing temporal flexibility. Present full-range hyperspectral sensors are yet not suited to be 16 

operated on RPAS systems, due to sensor weight and instability. This motivated the investigation of an 17 

unmixing based data fusion approach to combine available airborne hyperspectral (APEX) and hyperspatial 18 

(RPAS) sensor imagery. As such, the fused dataset provides huge potential for more in-depth spectral and 19 

spatial analysis. This manuscript looks into the use of a hyperspectral-hyperspatial fusion technique for better 20 

biophysical parameter retrieval and physiological assessment in agricultural crops. To confirm this statement, 21 

a biophysical parameter extraction study was performed on a simulated citrus orchard using a 3D radiative 22 

transfer approach. Furthermore, the unmixing based fusion was applied on a real test case in commercial 23 

citrus orchards with discontinuous canopies, in which a more efficient and accurate estimation of water stress 24 

was achieved by fusing thermal RPAS and hyperspectral APEX imagery. Narrow-band reflectance indices 25 



that have proven their effectiveness as pre-visual indicators of water stress, such as the Photochemical 26 

Reflectance Index (PRI), showed a significant increase in tree water status detection accuracy when applied 27 

on the fused dataset compared to the original hyperspectral APEX dataset (R²=0.62 vs R²=0.21). This 28 

approach could be extended globally for the fusion of high spatial and high spectral resolution satellite 29 

imagery, enabling also a temporal hyperspectral, hyperspatial analysis.  30 

 31 

1. INTRODUCTION 32 

Due to physical limitations and data-transfer requirements the design and development of remote sensors 33 

face a trade-off between (i) the signal-to-noise ratio, (ii) the spatial, and (iii) spectral resolution. The 34 

Hyperion sensor on board EO-1 satellite currently offers the highest spectral resolution available from space. 35 

The spatial resolution of only 30 meters however restricts a proper use of the inherent potential of these data 36 

for detailed mapping purposes and precision farming applications. On the other hand, sensors such as 37 

Quickbird and WorldView-2 are able to offer very high spatial resolution imagery, but at the expense of their 38 

spectral resolution: panchromatic at sub-meter spatial resolution, and 4 to 8 broad spectral bands 39 

(Worldview-2) with approximately 2.5 m spatial resolution. With the launch of new very high resolution 40 

satellites such as Worldview-3 and planned hyperspectral missions like Enmap, Prisma and Hyspiri much 41 

more data will become available to the user community. Still, the trade-off in spectral and spatial resolution 42 

will remain and new advanced data and decision fusion approaches are needed to make optimal use of the 43 

future sensor ensembles. 44 

 45 

On a different scale, hyperspectral airborne sensors such as APEX (Airborne Prism EXperiment), AHS 46 

(Airborne Hyperspectral Scanner), CASI (Compact Airborne Spectrographic Imager), AVIRIS (Airborne 47 

Visible/Infrared Imaging Spectrometer), and Hymap (Hyperspectral Mapper), also have to deal with this 48 
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spectral-spatial resolution trade-off. These hyperspectral airborne systems are limited to a spatial resolution 49 

of around 2m, which for specific applications might not sufficient. This is especially true for many precision 50 

farming applications in which the retrieval of spatial and spectral variability within heterogeneous orchards is 51 

of great importance for identifying crop stress that is one of the major factors influencing farming 52 

management decisions making. Suarez et al. (2010), for example, indicated the importance of acquiring very 53 

high spatial resolution imagery (~ 0.2m) for assessing fruit quality and water stress in citrus and olive 54 

orchards using airborne Photochemical Reflectance Index (PRI) formulation. Stuckens et al. (2010) came to a 55 

similar conclusion when exploring the amount of spectrally mixed pixels (i.e. trees, weeds and/or soil all 56 

occur within a single image pixel) in simulated orchards. They concluded that pixel sizes should be smaller 57 

than 1 m in order to obtain a minimum of 50 percent pure pixels and smaller than 10 cm for 82 percent pure 58 

pixels. Follow-up studies demonstrated that these mixing effects of plants and background/litter, whether 59 

linear or non-linear, play an important role in obstructing a detailed assessment of crop conditions in these 60 

heterogeneous architectures (Tits et al., 2012, 2013). For these reasons, Guo et al., (2012) suggested that 61 

RPAS remote sensing is very valuable for the applications of precision agriculture and to generate 62 

quantitative mapping products.  63 

 64 

Innovative developments in RPAS platforms and associated sensing technologies are nowadays expanding at 65 

an increasing rate, bringing image resolutions to unprecedented levels of detail, thereby opening exciting new 66 

application opportunities (Berni et al., 2009). This is especially of huge interest to the precision farming 67 

community which requires flexible and frequent data capturing. Though, mainly due to payload restrictions, 68 

full-range optical hyperspectral sensors (i.e., ranging from 350 – 2500 nm) are not yet suited to be operated 69 

in an operational manner on these lightweight RPAS platforms proposed for precision agriculture. To our 70 



knowledge, only few studies have successfully tested pushbroom hyperspectral VNIR sensors on a small, 71 

lightweight, fixed-wing RPAS (Zarco-Tejada et al., 2012; 2013). 72 

 73 

In an attempt to overcome current spatial-spectral resolution tradeoffs in spectral sensor design, this study 74 

investigates the possibility of assembling a promising new data source through fusing very-high spatial and 75 

high spectral imagery based on unmixing techniques, as such enabling more detailed monitoring purposes. 76 

We thereby hypothesize that the combination of the high spatial resolution imagery captured by a RPAS and 77 

the more detailed spectral information available from airborne hyperspectral sensors, albeit at lower spatial 78 

resolution, can help to overcome the spatial-spectral data availability trade-off. Such a fusion technique was 79 

previously proposed by Zurita-Milla et al. (2008), who extended on the work of Zhukov (1999) and Filiberti 80 

(2005). In each of these studies, a multi-sensor, multi-resolution fusion technique was applied to unmix low-81 

resolution images using the information about their pixel composition from co-registered high-resolution 82 

images. Yet, none of these studies were performed on very high spatial (cm resolution) and hyperspectral 83 

datasets. Filiberti (2005) merged a high-spatial-resolution panchromatic band with a low-spatial-resolution 84 

multispectral Landsat TM band with a 1:2 ground sample distance (GSD) ratio between the panchromatic 85 

(15-m) and the TM multispectral band (30-m). As such, he aimed at restoring the multispectral image using 86 

content from the higher resolution panchromatic image. Zurita-Milla et al. (2008) showed that the unmixing 87 

based data fusion approach can be used to successfully downscale MERIS FR information  (300 m pixel size, 88 

15 bands) to a Landsat-like spatial resolution (25 m pixel size, 6 bands) and as such obtain better MERIS 89 

land products. They successfully used the MERIS fused images to assess vegetation status by evaluating the 90 

Normalized Difference Vegetation Index (NDVI), the Modified Transformed Chlorophyll Index (MTCI) and 91 

the Modified Green Vegetation Index (MGVI).   92 

 93 
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In this study, the added value of the unmixing based fusion of unmanned aerial systems and airborne 94 

hyperspectral imagery is investigated in light of pre-visual estimation of crop stress in commercial citrus 95 

orchards characterized by a discontinuous canopy. The spatial unmixing fusion algorithm is therefore 96 

implemented and applied on simulated and in-situ high spatial and high spectral citrus orchard image data 97 

sets. The simulated citrus orchard thereby serves as a preliminary validation tool for the fusion algorithm. For 98 

the in-situ datasets, the fusion process is applied on the most detailed information available both spectrally 99 

and spatially. Hyperspatial (cm) images are gathered by a highly flexible RPAS, while the hyperspectral data 100 

was acquired by the APEX sensor. The fused or spatially unmixed (SpU) hyperspectral – hyperspatial dataset 101 

allowed us to assess the performance of narrow-band physiological indices for estimating stress levels in 102 

citrus orchards at a 20 cm scale.  103 

 104 

 105 

1. THEORETICAL BACKGROUND 106 

1.1 Spectral Unmixing method 107 

Spectral unmixing or spectral mixture analysis (SMA) is a commonly used image analysis technique 108 

converting mixed pixel reflectance values into numerical sub-pixel fractions of a few ground components 109 

(Adams & Gillespie, 2006). Although nonlinear mixing effects are well-acknowledged in vegetated areas 110 

(Roberts, 1991; Borel & Gerstl, 1994; Somers et al., 2009), mixed pixel signals (r) are generally modeled as 111 

a linear combination of pure spectral signatures of its constituent components (i.e., endmembers), weighted 112 

by their subpixel fractional cover (Adams et al., 1986): 113 

r = Mf + ε             (1) 114 



In Eq. (1) M is a matrix in which each column corresponds to the spectral signal of a specific endmember. f is 115 

a column vector [f1,…,fm]T denoting the cover fractions occupied by each of the m endmembers in the pixel. 116 

ε is the portion of the spectrum that cannot be modeled using these endmembers. 117 

 118 

Critical to successful SMA is the selection of appropriate endmembers (Elmore et al., 2000; Tompkins et al., 119 

1997). The spectral signatures of the endmembers may be (i) derived from spectral libraries built from field 120 

or laboratory measurements, obtained using ground based or portable spectro-radiometers (e.g., Asner & 121 

Lobell, 2000; Roberts et al., 1998); (ii) derived directly from the image data themselves (e.g., Bateson et al., 122 

2000; Plaza et al., 2002; Somers et al., 2012); or (iii) simulated using radiative transfer models (e.g., Peddle 123 

et al., 1999; Painter et al., 2003; Tits et al., 2012).  124 

 125 

Once the endmembers and their spectral signatures are known and if the number of endmembers is less than 126 

the number of spectral bands, the system of equations in (1) is over-determined and may uniquely be inverted 127 

using techniques to solve for the fractions with minimal additional error in the equations. Least squares 128 

regression analysis is one of the most commonly used optimization techniques (Barducci & Mecocci, 2005). 129 

SMA can be implemented without constrains (e.g., Harsayni & Chang, 1994), but physically meaningful 130 

abundance estimates are often obtained by constraining the coefficients in (1) to sum to unity and to be 131 

positive (Adams et al., 1993).  132 

 133 

1.2 Spatial Unmixing 134 

Spatial unmixing is an image fusion technique which aims at combining the detailed information from two 135 

images over the same study area: one with low spatial and high spectral resolution (in our case a 136 

hyperspectral airborne image), and one with high spatial and low spectral resolution (in our case an RPAS 137 
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image). Spatial unmixing differs from spectral unmixing as it tries to recover the material spectra for classes 138 

within a pixel, instead of the cover fractions of the different materials. The material fractions can be deduced 139 

from the high spatial, low spectral resolution RPAS image. Figure 1 gives a visual representation of the 140 

spatial unmixing technique. Several steps are involved in the procedure starting with the classification of the 141 

high spatial resolution image in n classes (in casu, soil and vegetation). Fraction maps, F, are subsequently 142 

created per pre-defined kernel k (in casu, five by five) of the hyperspectral pixels, by counting for each class 143 

the amount of high resolution pixels which are present in the corresponding lower resolution pixel. Once the 144 

fraction maps F are calculated and given the hyperspectral reflectance values for the hyperspectral pixels R at 145 

a particular wavelength of interest, the spatial unmixing equation can be solved by least squares optimization, 146 

in order to find the reflectance value at that particular wavelength of the class endmembers, M. The unmixing 147 

is thus solved for each low resolution band independently. Therefore, a kernel size larger than or equal to the 148 

number of classes present in the neighbourhood had to be chosen, because each hyperspectral pixel provides 149 

only one mixing equation (Zurita-Milla, 2008). Finally, each of the n classes present in the central pixel of 150 

the neighborhood is replaced by its corresponding unmixed signal. By repeating this operation for all the 151 

airborne hyperspectral pixels, and bands and for different combinations of n and k, a series of fused images is 152 

generated in which endmember variability is induced, which can be seen as a major benefit of this unmixing 153 

based fusion method.  154 

Analogous to  equation 1, the unmixing based fusion method can be defined as follows 155 

Ri,k = Mi,k,n . Fk,m + ε             (2) 156 

In (2) Ri,k is a vector that contains the values of band i for all the hyperspectral pixels present in the 157 

neighborhood k. Mi,k,n is the unknown vector containing spectral information of each of the classes present in 158 

k.  Fk,n  is a matrix containing the cover fractions occupied by each of the m endmembers in each pixel in k. ε 159 

is the portion of the spectrum that cannot be modeled. 160 



This indirectly implies that the number of classes (n) and the size of the neighborhood (k) need to be 161 

optimized. n needs to be optimized based on the application demand and on the spectral variability of the 162 

scene. k also needs to be optimized because it has a great impact on the spectral quality of the fused image. 163 

 164 

 165 

 166 

Figure 1. Overview of the spatial unmixing technique 167 

 168 
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 169 

2. MATERIALS AND METHODS 170 

2.1 Simulated dataset 171 

For this study a ray-tracing experiment in a fully calibrated virtual 3D representation of a citrus orchard was 172 

used. This 3D radiative transfer model has been integrated in the web-based RAMI Online Model Checker 173 

(ROMC) service (Widlowski et al., 2008, and has previously been used as a reference tool for validation of 174 

image analysis techniques for precision farming (e.g., Tits et al., 2012b; Tits et al., 2013). Based on detailed 175 

in situ calibration measurements, virtual 3D replicas of orchard trees were built as triangular meshes using an 176 

implementation tree geometry algorithm developed in Weber and Penn (1995) (Figure 2). All reference data 177 

for calibration (and validation) was collected in a 9-year-old Valencia ‘Midknight’ orange grove near 178 

Wellington, South Africa (33°13’60’’S; 18°15’60’’E, altitude 100 m). The orchard block had a row spacing 179 

of 4.5 m, a tree spacing of 2 m and a row azimuth of 7.3°. For each tree, tree vigour (i.e, LAI, height, crown 180 

width and diameter) and optical properties (leaf and canopy reflectance) were determined. Canopy and leaf 181 

reflectance spectra were collected using an ASD FR spectroradiometer (Analytical Spectral Devices, 182 

Boulder, CO) ranging from 350 to 2500 nm with a spectral resolution of 3 nm in the VIS and NIR and 10 nm 183 

in the SWIR. A 25° field of view (FOV) bare fiber optic was used. Within the orchard, 60 trees were selected 184 

that span the range of structural and spectral variability encountered in the orchard. Leaf chlorophyll and 185 

water content were derived from the measured leaf spectra through inversion of the PROSPECT model 186 

(Jacquemoud and Baret, 1990). These field measurements were used to calibrate 3D replicas of the measured 187 

trees. In order to increase the observed variability in tree conditions we further created for each of the 3D 188 

trees three additional clones. While the overall tree architecture remained the same, we created (i) one clone 189 

with similar leaf spectra but with a LAI which was 56% of the reference trees by randomly removing part of 190 

the leaves, (ii) one clone with similar LAI and leaf water content but reduced leaf chlorophyll content (50% 191 



of the reference chlorophyll) (note that the new reflectance coefficients were recalculated with the 192 

PROSPECT model (Stuckens et al., 2009)), (iii) one clone with similar LAI and leaf chlorophyll but reduced 193 

water content (70% of reference). The new reflectance coefficients were recalculated with the PROSPECT 194 

model (Stuckens et al., 2009). Thus extra variability in the biophysical parameters and the spectral data was 195 

created to incorporate different types of stress. All 3D tree replicas were then randomly placed in the orchard. 196 

The physical and optical properties of the soil (sandy texture, gravimetric moisture content ranging between 197 

0 and 15%) were determined and used to the virtual model. Full details on the calibration procedure can be 198 

found in Stuckens et al. (2009) while a more detailed description of the field campaign can be found in 199 

Somers et al. (2009). 200 

 201 

Three synthetic images of the virtual orchard were generated using a modified version of a physically based 202 

ray-tracer (Pharr & Humphreys, 2004) (Figure 3). The first image of 400 by 400 pixels provided information 203 

in 216 spectral bands ranging from 350 to 2500 nm with a spectral resolution of 10 nm and a spatial 204 

resolution of 2 m (referred to  as LR-HS, left panel of Figure 3). This is similar to what nowadays can be 205 

delivered by airborne hyperspectral sensors. A RGB representation of the image scene is shown in the right 206 

panel of Figure 3. The second scene, depicted in the centre panel of Figure 3, simulated an image captured by 207 

a RGB sensor onboard an RPAS. The image of 4000 by 4000 pixels with a spatial resolution of 0.2 m is 208 

further referred to as HR) (Figure 3, centre panel). 209 

 210 

The third or reference image scene simulated a 216 band hyperspectral sensor ranging from 350 to 2500 nm 211 

with a spectral resolution of 10 nm and a spatial resolution of 0.20 m (HR-HS). Such detailed imagery is 212 

currently not yet achievable by airborne or satellite systems but serves as a perfect reference scene to test the 213 
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efficiency of the unmixing based data fusion of the first two image scenes. For each simulated image scene 214 

detailed fraction images were available.  215 

 216 

Figure 2: (left) A virtual 3D replica of an orchard tree, (right) a real orchard tree 217 

    218 

 219 

Figure 3: A RGB representation of the synthetic images of the virtual orchard (left:HS – 2m, centre: HR – 220 

0.2m and right: HR-HS – 0.2m)  generated using a modified version of a physically based ray-tracer 221 

 222 

 223 

 224 



2.2 In-situ dataset 225 

2.2.1 Study area and ground reference measurements 226 

The study area was located in Picassent, in the province of Valencia (Spain, 39.38 N, 0.475 E, altitude 47 m), 227 

and the experiment was conducted in a drip irrigated area of 310 ha. Citrus was the predominant cultivated 228 

crop, for which, an accurate and pre-visual detection of water stress can be of utmost economic importance 229 

for farmers. Orchard design is characterized by large (5-6 m) row spacing and canopy ground cover even in 230 

the more vigorous orchard is below 65% of the soil allotted per tree. . Three test orchards were selected based 231 

on the large variation in plant water status of the measured trees. A total of 14 trees were used for assessment 232 

of midday stem water potential (s) determined using a pressure chamber in leaves that were bagged at least 233 

1 h prior the measurements. Stem water potential  was chosen as the true field determination of citrus trees 234 

water status due to its sensitivity to water deprivation (Ballester et al. 2012). The s data measured from each 235 

tree were related with the individual tree canopy temperature (Tc) extracted from the airborne imagery. 236 

Within the selected trees, s varied from –0.6 to –2.0 MPa. According to a previous study by Ballester et al. 237 

(2012), these values correspond to well watered and relatively severe tree water stress conditions, 238 

respectively. 239 

 240 

    241 

 Figure ???? 242 
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 243 

 244 

 245 

2.2.2 Airborne imagery 246 

Airborne hyperspectral APEX (Airborne Prism Experiment) imagery was acquired over the study area on 8 247 

September 2011 around solar noon. The air temperature and VPD at flight time on the date of the flight were 248 

30.4 ºC and 2.1 kPa respectively. The APEX recorded the reflectance in 288 bands in the 380 - 2500nm 249 

spectral range with spatial resolutions of 2.7 m. The airborne measurements were accompanied with spectral 250 

field and lab measurements for calibration and validation of the airborne data. Images were atmospherically 251 

and geometrically corrected [3,4,5]. APEX geometric correction was accomplished based on the delivered 252 

metadata (i.e. IMU). Atmospheric correction was performed with the in-house processing chain of VITO, 253 

based on the algorithms of ATCOR (Biesemans et al., 2007). The geometric correction was performed by 254 

VITO’s own developed C++ module and is based on direct georeferencing. Input data from the sensor’s 255 

GPS/IMU, boresight correction data and the SRTM DEM were further used during the geometric correction 256 

process. Finally the data were projected to the geographic coordinated system lat/lon, WGS84. 257 

 258 

Another set of aerial images was collected on 23st August 2011 at 10:00 GMT time with a RPAS equipped 259 

with a thermal camera, acquiring imagery at 20 cm resolution. Surface temperature was obtained applying 260 

atmospheric correction methods based on the MODTRAN radiative transfer model. The mosaicking process 261 

selects only the most nadir part of the overlapping images, limiting the viewing angle and thus avoiding 262 

directional effects and thermal hotspot. Each snapshot had a relative temperature scale, being the minimum 263 

value the coldest pixel and the maximum value the hottest pixel of the snapshot. The air temperature and 264 

VPD at flight time on the date of the flight were 31.6 ºC and 1.9 kPa respectively. 265 



 266 

Based on the temperature differences between plant canopy and air temperature (Tc-Ta), all background and 267 

non-photosynthetic trees were masked. This region of interest was subsequently overlaid on the APEX image 268 

to remove all redundant information from the APEX scene. This, however, also implied the removal of all 269 

warm, i.e., non transpiring and/ or dead trees.   270 

 271 

 272 

               273 

 Figure 5: Left: APEX region of interest with 288 spectral bands and 2.80m spatial resolution, Right: RPAS 274 

region of interest with 1 thermal band and 0.28m spatial resolution.   275 
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  276 

 Figure 6: Left: 10x zoom of APEX orchard with 288 spectral bands and 2.80m spatial resolution, Right: 277 

RPAS orchard with 1 thermal band and 0.28m spatial resolution.   278 

 279 

2.3 Unmixing based fusion of high spectral and high spatial data  280 

The high spectral, low spatial and high spatial, low spectral images obtained from the simulation exercise as 281 

well as from the real case study, were fused and analyzed in an automated way in order to obtain a high 282 

spatial, high spectral resolution scene (SpU). The only requirements to run the fusion process were the 283 

parameterization of the kernel size and the number of classes or endmembers . These parameters had to be 284 

carefully thought-out, since they have a vast impact on the reconstruction of the hyperspectral signatures and 285 

the endmember variability inherently obtained by the unmixing based fusion processing.    286 

 287 

2.3.1 Simulated dataset 288 



For testing the performance of the unmixing based fusion method in estimating biophysical parameter 289 

contents, a preliminary study on a fully controlled realistic dataset was performed which allowed managing 290 

and creating validation datasets. Since the input parameters were well-known in this simulation exercise, the 291 

usefulness of the spatial unmixing techniques on the biophysical parameter extraction on high spatial, high 292 

spectral resolution data could be analyzed. We focused on water and chlorophyll content estimation. A robust 293 

classification of the high spatial image was achieved by the linear discriminant analysis method with 294 

endmember selection as available in the open source ENVI/IDL code (Bertels, 2013). After a sensitivity 295 

analysis (results not shown) an optimal kernel size of 5×5 pixels was defined. Changing the kernel size had a 296 

major impact on the endmember variability in the scene and played an important role in the reconstruction of 297 

the hyperspectral signatures.    298 

 299 

Since the data in this experiment was simulated, the portions or fractions of these input parameters for each 300 

pixel were known as well. Multiplying these fractions with the leaf water and chlorophyll content values 301 

enabled the reconstruction of reference water and chlorophyll maps. Hitherto, two reference biophysical 302 

parameter maps and four spectral images, i.e., LR-HS, HR, HR-HS simulated images and the unmixing based 303 

fused HR-HS, referred to as SpU image, were available. Subsequently, for the LR-HS, HR-HS and SpU 304 

images, standardized difference vegetation index (SDVI) maps were calculated from the spectral reflectance 305 

values for each possible combination of two different wavelengths (Delalieux et al., 2008; eq.2). 306 

ji

jiSDVI






                                                                                                            (2) 307 

with i  and j  being the spectral reflectance at wavelength i and wavelength j, respectively, with i and j 308 

ranging from 400-2500 nm. 309 
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A coefficients of determination (R²) index map for each possible SDVI map and the reference water and 310 

chlorophyll maps, was then calculated. This approach allowed the selection of an optimal SDVI to estimate 311 

water and chlorophyll content and in the mean time allowed to check how well the commonly used 312 

biophysical parameter related vegetation indices perform on the (i) high spectral – low spatial (LR-HS), (ii) 313 

high spatial-high spectral (HR-HS), and the (iii) fused high spectral-high spatial (SpU) dataset. The R² index 314 

maps of the LR-HS and SpU images were evaluated based on their correlation with the R² maps of all 315 

possible SDVI’s calculated on the HR-HS simulated reference image.  316 

 317 

Next to the assessment of the index performances, the hyperspectral signatures reconstruction through 318 

unmixing based fusion were evaluated as well. The Root Mean Square Error (RMSE) and Relative Root 319 

Mean Square Error (RRMSE) were calculated to compare the hyperspectral signals from the reference HR-320 

HS image and the modelled signals from the SpU and LR-HS (upscaling with a factor 10) images. RMSE, 321 

defined in eq 3, is a measure of the standard deviation, while RRMSE, defined in equation 4, is RMSE as a 322 

percentage of the mean observation. RMSE and RRMSE should be as small as possible, optimally zero.  323 
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In equations (3) and (4), Oi is the reference or observed value at wavelength i: Pi the predicted value at 326 

wavelength i; n the total amount of measurements and O  the average of the observations.  327 

 328 

2.3.2 Real data experiment: Precise water management in fruit orchards  329 

The thermal, high spatial resolution RPAS (section 3.2.4) and high spectral resolution airborne APEX images 330 

(section 3.2.3) were used as input in the unmixing based fusion model. The thermal RPAS data was therefore 331 



classified in three temperature classes. A kernel size of 5×5 was defined as most optimal. Combining 332 

different kind of images requires a perfect coregistration. 15 ground control points (GCPs) were identified in 333 

both images for warping them such that they perfectly fitted each other.  334 

(Jackson et al., 1977b; Idso et al., 1978; Jackson and Pinter, 1981).  335 

Vegetation indices provide a simple and efficient method for extracting water content or estimating water 336 

stress from complex canopy spectra. It has to be mentioned that broad waveband vegetation indices typically 337 

lack diagnostic capability for identifying certain stress levels. Narrow band indices (Table X) closely related 338 

to the (i) epoxidation state of the xanthophylls cycle, (ii) chlorophyll a+b concentration (iii) blue/green/red 339 

ratio indices, (iv) carotenoid concentration and (v) tree crown structure have been applied in a previous study 340 

to detect water stress in citrus orchards at the tree level (Zarco-Tejada et al., xxx). It was concluded from that 341 

study that the xanthophyll pigment related Photochemical Reflectance Index (PRI) calculated with the 570 342 

nm (PRI570) (Gamon et al., 1992) as well as with 515 nm (PRI515) band as a reference (Hernández-Clemente et 343 

al., 2011) was significantly related to the stem water potential, and as such indirectly to the water status of 344 

the plant. Also in other studies, PRI has been used to assess pre-visual water stress at leaf level (Thenot et al., 345 

2002 and Winkel et al., 2002), at canopy level (Dobrowsky et al., 2005; Evain et al., 2004; Peguero-Pina et 346 

al., 2008; Sun et al., 2008) and using airborne imaging spectroscopy (Suárez et al., 2008). The PRI index, 347 

(Gamon et al.,1992; Peñuelas et al., 1995), is based on the short-term reversible xanthophyll pigment 348 

changes accompanying plant stress (Gamon et al., 1990; Peñuelas et al., 1994). These changes are linked to 349 

the dissipation of excess absorbed energy that cannot be processed through photosynthesis (Demmig-Adams, 350 

1990, Gamon et al. 1997, Peñuelas and Filella 1998, Peñuelas and Inoue 2000, Trotter et al. 2002). At the 351 

leaf and canopy levels, the PRI has been extensively found adequate to estimate photosynthetic performance 352 

(Garbulsky et al., 2011).  353 
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Also the Transformed Chlorophyll Absorption Ratio Index (TCARI) showed sensitivity to stress levels, and 354 

the blue/green ratio BGI1 was highly significant. The effects of water stress on the canopy structure were 355 

successfully captured by structural indices such as NDVI, RDVI, SR, MSR, OSAVI, TVI and MTVI. For the 356 

14 trees under investigation in the three selected orchards of the study area, the correlation between all 357 

possible SDVIs, including the above-mentioned indices, and the stem water potential was calculated. The 358 

index pixel values of the SpU image (28 cm) were averaged over each tree.  359 

 360 

As suggested in numerous studies, also temperature profiles of trees (Jackson et al., 1977b; Idso et al., 1978; 361 

Jackson and Pinter, 1981) and the stem water potential (Shackel et al. 1997; Naor 2000) are reliable plant-362 

based water status indicators for irrigation scheduling in fruit trees. Therefore, a relationship was sought 363 

between the vegetation indices, calculated from the fused and the original APEX datasets, and the in-situ 364 

measured stem water potentials as well as between the thermal data and the stem water potentials.  365 

 366 

3. RESULTS AND DISCUSSION 367 

3.1 Simulated dataset 368 

The unmixing based fusion of the LR-HS and HR simulated image data resulted in a SpU image containing 369 

216 bands at 20 cm resolution. The added value of the proposed method in estimating water and chlorophyll 370 

content is illustrated by calculating the correlation between all possible SDVIs and biochemical parameter 371 

reference maps. These reference maps were reconstructed from the fraction images and the Cw and Cab input 372 

parameters of PROSPECT, illustrating the water and chlorophyll content variation in the simulated citrus 373 

orchard (Figure 7). 374 

For each simulated image, i.e. (i) high spatial, (ii) high spectral, and (iii) high spatial and spectral, the 375 

correlation between all possible SDVIs and the reference maps are summarized in Figure 8.   376 



 377 

 378 

 379 

 380 

 381 

 382 

 383 

   384 

 385 

Figure 7: The reference chlorophyll (left) and water map (right) 386 
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 387 

Figure 8: R² values indicating the performances of each possible SDVI to estimate chlorophyll (top) and 388 

water content (bottom) of the LR-HS, SpU, and HR-HS simulated images. A lower threshold value is defined 389 

for each image to enlarge the colour contrast    390 

 391 

According to our expectations, the general patterns of the best performing SDVI’s were similar throughout 392 

the three images with no significant difference in correlations ranging between 73 and 83%. A significant 393 

increase in predictive power of the model was found for the SpU algorithm with maximal R² values, for the 394 

spatially unmixed image (max R² = 0.77 for water and 0.71 for chlorophyll), compared to the high spectral, 2 395 

m resolution image (max R² = 0.35 and 0.30). As expected, the most appropriate water related indices 396 

contain a shortwave infrared (SWIR) waveband corresponding to the highest coefficient of absorption by 397 

water as shown in Figure 9. This is also true for the most appropriate chlorophyll related indices, being those 398 

containing wavebands with highest absorption coefficients for chlorophyll (620-700 nm). 399 

Wavelengths [nm]                      Wavelengths [nm]                         Wavelengths [nm] 

 

 



  400 

  401 

Figure 9 (left): The absorption spectrum of chlorophyll and carotenoids (Absorption characteristics obtained 402 

from PROSPECT (Feret et al., 2008) and the LOPEX data set (Hosgood et al., 1994)); (right)  The 403 

absorption spectrum of water (Absorption characteristics obtained from PROSPECT (Jacquemoud et al., 404 

1996) 405 

 406 

The best performing indices (eq. (5) and (6)) to estimate water and chlorophyll content respectively were 407 

extracted from these analyses and applied on the three images to provide water and chlorophyll content maps 408 

extracted from the information available in the LR-HS, SpU and HS-HR image.  409 

For easy interpretation, also the reference index maps, based on the PROSPECT input parameter are shown 410 

(Figures 10 and11).   411 
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   417 

Figure 10: Index (eq.5) maps representing water content extracted from the LR-HS (top left), SpU (top right), 418 

HR-HS (bottom left )images, and reference water content map  (bottom right).    419 

 420 

 

 



 421 

Figure 11: Index (eq.6) maps representing chlorophyll content extracted from the LR-HS (top left), SpU (top 422 

right), HR-HS (bottom left )images, and reference chlorophyll content map  (bottom right).    423 

 424 

We can conclude from Figures 10 and 11 that the spatial resolution of 2.8 m can be beneficial for large scale 425 

mapping and monitoring of the citrus orchard, e.g. for delineating management zones in the orchard. 426 

However, the resolution is too coarse to precisely manage the orchard system in which an optimisation of 427 

yield with a restricted input of natural resources is endeavoured. This corroborated previous results of..... A 428 
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high-resolution (temporal and spatial), high-accuracy and low-cost technology in crop and environmental 429 

info acquisition is required to provide such a timely information support for agricultural production and 430 

accurate and precise management. 431 

The usefulness of the unmixing based fusion technique for detailed stress monitoring is furthermore proven 432 

by the general and significant increase in SpU, compared to LR-HS signature, modelling accuracy (Figure 433 

10). Compared to the low resolution spectra, the increase was specifically remarkable in the 350 to 800 nm 434 

and 1200 to 2500 nm domain which is most probably due to the higher differences between soil and 435 

vegetation spectra in these regions. This indicates that the mixing effects of vegetation and soil spectra which 436 

remains the main bottleneck for using LR-HS imagery in precision agriculture (Peddle & Smith, 2005; 437 

Stuckens et al., 2010; Tits et al., 2013) is mainly solved by introducing the SpU algorithm. The results of 438 

SpU for the extraction of the vegetation signal, as shown in Figure 10, were similar to the MESMA approach 439 

in Tits et al.(2013), with RRMSE values between 0.16 and 0.32 for the MESMA approach and between XX 440 

and YY for SpU. The correlation with the biophysical parameters after unmixing, however, was higher for 441 

SpU, as the correlations obtained with MESMA were only 0.54 and 0.39 for chlorophyll and water, 442 

respectively.  443 



  444 

Figure 12: RMSE (left) and RRMSE (right) plots calculated from the reference spectra and (i) the 445 

reconstructed SpU spectra (ii) the downscaled LR-HS spectra.  446 

 447 

Based on the high correlations between the SDVI performances calculated from the SpU image and those 448 

calculated from the reference images, and the high R² values of the SDVI biophysical parameter content 449 

relations compared to those of the LR image, we may conclude that the SpU method has potential for more 450 

detailed research in water and chlorophyll content estimation. Furthermore, the implementation of the 451 

unmixing based fusion method seems to provide an opportunity to enhance the orchard management 452 

efficiency through the detailed identification of the biochemical parameter contents within the trees. In the 453 

following section, the SpU method is used to early detect water stress in a commercial citrus orchard in 454 

Spain.  455 

 456 
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3.2. In situ dataset 457 

Applying the spatial unmixing technique on the 0.28m thermal RPAS and the 2.8m hyperspectral APEX 458 

datasets resulted in a spatially unmixed (SpU) image providing 288 bands at 0.28m spatial resolution (Figure 459 

13). 460 

 461 

 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 

Figure 13: SpU image and detailed view 470 

 471 

Mixing of soils and vegetation in an APEX pixel became already obvious by visually comparing the spectra. 472 

The added value of the high spatial resolution lies herein that vegetation indices can be applied on pure 473 

vegetation pixels without the contribution of soil background and structural effects.  474 

For the 14 trees under investigation in the three selected orchards of the study area, the correlation between 475 

all possible SDVIs and the stem water potential is represented in Fig 14, with colour bars indicating the R² 476 

values of the linear relationship between the two parameters.  477 



 478 

Figure 14:  R² values of the linear relation between the stem water potential of the 14 trees of interest and all possible SDVIs (left) 479 

calculated from APEX pixels (right) calculated from SpU pixels 480 

 481 

It is unambiguous that a higher correlation between SDVIs and stem water potential was obtained by 482 

applying the SpU algorithm. This is further illustrated by extracting the 21 narrow-band stress-related 483 

vegetation indices described in a similar case study performed by Zarco-Tejada et al. (2012). In that study, 484 

the authors obtained hyperspectral VNIR images from a RPAS platform from which they calculated the 485 

narrow-band indices to relate them with the stem water potentials for water stress detection in citrus orchards. 486 

A comparison of the coefficients of determination obtained through narrow-band indices from APEX and 487 

SpU imagery against stem potential is shown in Table 1. Similar trends were found in the relation between 488 

vegetation indices obtained from APEX tree pixels and stem water potential compared to those obtained from 489 

SpU tree pixels. However, an overall better relationship has been found for the SpU pixels, particularly for 490 

the PRI570 index (Figure 15). This pre-visual stress indicator is definitely more related to stem water 491 
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potential or water stress when the SpU method is applied as shown in Fig. 15 and Table 1. Significant 492 

relationships (p<0.05) are shown in bold in Figure 15.  493 

 494 

The most appropriate SDVIs to estimate water content obtained from the simulation study (Figure 8) and the 495 

SDVIs which were most related to stem water potential (Figure 14) differed mostly from each other in those 496 

containing NIR bands. This corresponds to the spectral region mainly controlled by leaf and canopy 497 

structural parameters having the highest RMSE and RRMSE scores for the unmixing based fusion method 498 

(Figure 12).  499 

 500 

Table 1: Coefficients of determination R² obtained through narrow-band indices from APEX and SpU imagery against 501 

stem potential.  502 

SpU ‐   APEX ‐
PRI570  0.62 ***  0.21 

BRI2  0.47 **  0.29* 

R515/R570  0.42 *  0.16 

R515/R670  0.38 *  0.14 

ZM  0.35 *  0.12 

OSAVI  0.34 *  0.05 

G  0.34 *  0.14 

NDVI  0.34 *  0.13 

SR  0.34 *  0.13 

MSR  0.34 *  0.12 

VOG1  0.31 *  0.09 

PRI515  0.24  0.09 

R520/R500  0.23  0.05 

TCARI  0.14  0.02 

RDVI  0.13  0.02 

BGI1  0.12  0.01 

LIC3  0.12  0.06 

TVI  0.09  0.01 

MTVI  0.09  0.00 

BGI2  0.02  0.00 

BRI1  0.01  0.01 

*   p<0.05 



** p<0.01 

*** p<0.001 

 503 

Figure 15: Representation of the correlation between the coefficients of determination R² obtained through narrow-band indices 504 

from APEX and SpU imagery against stem potential. 505 

 506 

As can be concluded from Figure 15 and 16, structural and background effects (present in the APEX pixels) 507 

have an impact on the PRI values and consequently also on the performance of the PRI to estimate water 508 

stress. This is in corroboration with the findings of (refs, Suarez?) who tested the influence of structural 509 

effects on PRI. Knowing that the stem water potential is a good and reliable estimator of plant water stress, it 510 

can be concluded from the relationship shown in Figure 16 that detailed spatial information is vital in water 511 

stress detection studies. Significant higher relationships between stem water potential and PRI values were 512 

obtained for SpU images (R² = 0.62) compared to those obtained by the LR-HS APEX image (R²=0.21).  513 

 514 
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Figure 16: Comparison of APEX (red) and SpU (black) PRI index values correlated to stem potential 515 

 516 

Due to the presence or admixture of soil, background and vegetation in the larger APEX pixels, all indices 517 

performed worse in estimating water stress in this LR-HS image. 518 

 519 

The images shown in Figure 14 indicate that even a better water stress detection should be possible when 520 

also the reflectance patterns of the SWIR domain could be captured by the sensor. Numerous previous 521 

remote sensing studies have proven that the spectral behaviour of vegetation in the SWIR spectral domain is 522 

severely influenced and masked by water absorption. In this study, R² values up to 0.81 were obtained 523 

through a linear relation of SpU derived SDVIs based on 562 and 1650 nm against stem water potential. The 524 

reflectance absorptions in the 1650–1850 nm region are known to reflect not only the leaf water content, but 525 

also the contents of leaf cellulose and lignin, and are directly related to the plant growing status (Curran 526 

1989, Zagolski 1996). Moreover, the 1650–1850nm band combines an excellent soil-green vegetation 527 

spectral contrast with within band sensitivity to the leaf water content and the influence of the atmosphere on 528 

solar irradiance is small (Gausman 1978, Valley 1965).  529 

However, current technology does not yet allow to gather such a high spatial, high spectral imagery over the 530 

full spectral range with airborne sensors. By fusing high spatial and high spectral images a new data source is 531 

created which opens new and promising opportunities for e.g., detailed water stress mapping. At the ground 532 

level, stem water potential (s) is known to be a reliable plant-based water status indicator for irrigation 533 

scheduling in fruit trees (Shackel et al. 1997; Naor 2000). However, its measurement is a cumbersome 534 

procedure and requires frequent trips to the field and a significant input of labour. In addition, because plant 535 

water status varies is dynamic during the course of the day, only a few measurements can be performed what 536 

limits the determination of plant water status to a few orchards at a time. For these reasons, efficient and non-537 

destructive methods looking beyond the visual spectral range, for the detection of water stress’ induced plant 538 



physiological changes were searched for to better steer the citrus water management system. In addition, the 539 

possibility of determining plant water status in large areas expand the possibilities of using remote sensing 540 

detection of plant water status beyond the farm level, increasing the opportunities for commercial 541 

applications of the developed technology.  542 

 543 

From previous studies (Cohen et al., 2005; Idso et al.,1978; 1981; Jackson et al., 1977, 1981; Jackson & 544 

Pinter, 1981; Leinonen & Jones, 2004; Möller et al., 2007; Sepulcre-Cantó et al., 2006, 2007; Wanjura et al., 545 

2004), we know that a good correlation should exist between thermal data and water stress or stem potentials, 546 

which was not found in our study, due to a miscalibration of the thermal sensor. Within one image, the 547 

relation between stem potentials and thermal data was high (R²=0.72), but not as high as the PRI calculated 548 

from the SpU and water potentials relation (R²=0.80) within that same image. The temperature differences 549 

caused by the sensor were masked in the fusion method due to its inherent characteristic to reconstruct 550 

hyperspectral endmember signatures based on the materials present in the pixels within the kernel.       551 

 552 

 553 

4. CONCLUSION 554 

The aim of the study was to apply an unmixing based fusion technique on a hyperspectral APEX and 555 

hyperspatial RPAS dataset for a better assessment of biophysical parameters in agricultural areas. We first 556 

tested the unmixing based fusion method on simulated datasets to evaluate the proposed method through 557 

standardized vegetation indices and spectral signature reconstruction. Based on the high correlations between 558 

the SDVI performances calculated from the SpU image and those calculated from the reference images, and 559 

the high R² values of the SDVI biophysical parameter content relations compared to those of the LR image, 560 
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we concluded that the SpU method has a lot of potential for more detailed research in water and chlorophyll 561 

content estimation.  562 

Subsequently, the fusion method was applied on a real test case, in which hyperspectral APEX and 563 

hyperspatial thermal RPAS images were combined in order to better and more accurately detect water stress 564 

in commercial citrus orchards. Assuming that the stem water potential and PRI index are good indicators of 565 

water stress levels, it can be decided that a higher spatial resolution (SpU) image obtained from fusing high 566 

spatial thermal RPAS images and high spectral APEX images, is better suited (R²=0.62 vs 0.21) for detailed 567 

water stress estimation.   568 

  This fusion technique offers new opportunities to the user community in that higher spatial spectral 569 

dataset become available for their research or operations. The need for a perfect co-registration of the two 570 

input images (i.e., high spatial and high spectral) can be seen as the major drawback of this technique. A lot 571 

of effort has to be put in this processing step, which has a large impact on the resulting fused image if not 572 

carefully done. Ideally, the two sensors, of which one is focused on the spatial detail and the other focused on 573 

the spectral detail should be mounted on one chip, so that coregistration is not an issue anymore.   574 

 575 
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