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SUMMARY

To invade systemically host plants, viruses need to replicate in the
infected cells, spread to neighbouring cells through plasmodes-
mata and move to distal parts of the plant via sieve tubes to start
new infection foci. To monitor the infection of Nicotiana bentha-
miana plants by Citrus leaf blotch virus (CLBV), leaves were
agroinoculated with an infectious ¢DNA clone of the CLBV
genomic RNA expressing green fluorescent protein (GFP) under
the transcriptional control of a duplicate promoter of the coat
protein subgenomic RNA. Fluorescent spots first appeared in
agroinfiltrated leaves 11-12 days after infiltration, indicating
CLBV replication. Then, after entering the phloem vascular system,
CLBV was unloaded in the upper parts of the plant and invaded all
tissues, including flower organs and meristems. GFP fluorescence
was not visible in citrus plants infected with CLBV-GFP. Therefore,
to detect CLBV in meristematic regions, Mexican lime (Citrus
aurantifolia) plants were graft inoculated with CLBV, with Citrus
tristeza virus (CTV), a virus readily eliminated by shoot-tip grafting
in vitro, or with both simultaneously. Although CLBV was detected
by hybridization and real-time reverse transcription-polymerase
chain reaction (RT-PCR) in 0.2-mm shoot tips in all CLBV-
inoculated plants, CTV was not detected. These results explain the
difficulty in eliminating CLBV by shoot-tip grafting in vitro.

Systemic infection of plants by viruses requires the replication of
the viral genome in infected cells, cell-to-cell movement in the
inoculated leaf and long-distance transport to start new infection
sites. For cell-to-cell movement, viruses cross through plasmodes-
matal intercellular connections. Long-distance movement requires
the entry of the virus into phloem sieve tubes from adjacent
companion cells, fast motion through the connected sieve ele-
ments and subsequent unloading into new adjacent cells to start
again cell-to-cell movement and to invade neighbouring cells of
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distal plant tissues (Harries and Ding, 2011, Scholthof, 2005).
Although most viruses use phloem transport to move systemically,
some have been shown to traffic through the xylem (Moreno
etal., 2004; Opalka etal., 1998; Verchot etal., 2001). Plant
viruses usually encode movement proteins (MPs) which, in coop-
eration with some host proteins, facilitate their translocation
through plasmodesmata and the vascular system (Lucas, 2006;
Taliansky et al., 2008).

Citrus leaf blotch virus (CLBV), family Betaflexiviridae (Adams
et al., 2012; Martelli et al., 2007) , has a single-stranded, positive-
sense genomic RNA (gRNA) of 8747 nucleotides with three open
reading frames (ORFs) and untranslated regions (UTRs) at the 5’
and 3" ends of the gRNA, as described previously (Galipienso
etal., 2001; Renovell etal., 2010; Vives etal., 2001, 2002).
Although preliminary data on CLBV accumulation in different
plant organs have been reported (Ruiz-Ruiz et al., 2009), invasion
of growing shoots by CLBV has not yet been examined.

Methods for virus localization in infected cells include electron
microscopy or in situ techniques for the detection of either viral
RNA or virus-encoded proteins (Amari et al., 2009; Appiano and
Pennazio, 1972; Leisner et al., 1992). An alternative approach has
been to introduce the reporter gene -glucuronidase into the viral
genome, thus allowing histochemical localization of virus-infected
cells (Chapman et al., 1992; Dolja et al., 1992). However, all of
these techniques are invasive and do not allow the real-time
observation of virus movement. The introduction of the jellyfish
green fluorescent protein (GFP) gene into viral genomes as an
in vivo reporter has increased the ability to observe inter- and
intracellular events accompanying virus infection by fluorescence
observation or confocal microscopy (Baulcombe etal., 1995;
Cheng et al., 2000; Folimonova et al., 2008; Haupt et al., 2001;
Santa Cruz et al., 1996; Silva et al., 2002).

Several reports have documented that most viruses and viroids
are unable to invade the apical meristems of infected shoots
(Al-Kaff and Covey, 1996; Di Serio et al., 2010; Faccioli et al.,
1988; Gosalvez-Bernal et al., 2006; Hull, 2002; Walkley and Webb,
1968). Generally, a variable region of 100-1000 um remains virus
free, a feature that has been exploited to recover virus-free plants
from infected varieties by growing excised shoot tips in appropri-
ate tissue culture media (Matthews, 1991). Similarly, shoot-tip
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Fig. 1 Outline of the infectious Citrus leaf blotch virus (CLBV) clone
clbv3'pr-GFP expressing the green fluorescent protein (GFP). Grey boxes
represent the CLBV open reading frames (ORFs) (227-kDa polyprotein
containing the replicase domains; MP, movement protein; CP, coat protein)
and the white box the gfp gene. Arrows indicate transcription of subgenomic
RNAs (sg). White triangle represents the promoter of the CP subgenomic
RNA, duplicated to express GFP.

grafting in vitro has been used to recover virus-free plants from
infected citrus cultivars (Navarro et al., 1975); however, CLBV was
difficult to eliminate by this procedure (Navarro and Juérez, 2007),
suggesting that it might be able to replicate very close to the
meristem.

In this work, we examined CLBV spread during systemic infec-
tion of Nicotiana benthamiana plants in nearly real-time condi-
tions using an infectious cDNA clone engineered to express GFP
(clbv3'pr-GFP clone) (Fig. 1; Agliero etal., 2012; Vives etal.,
2008). This clone, maintaining all genes and controller regions of
the wild virus, was agroinoculated in N. benthamiana plants as
described in Agliero et al. (2012). The viral progeny produced by
this construct is referred to as CLBV-GFP. The infection pathway
was initially monitored, observing GFP expression in inoculated
plants illuminated with a long-wavelength UV lamp (Black RayR
model B100AP, UV Products, Upland, CA, USA) and capturing
images with a CANON EOS 300D digital camera using a yellow
filter (Jos. Schneider Optische Werke, B+W Filter, Bad
Kreuznach, Germany). Infection was first detected in agroinocu-
lated leaves at approximately 11 or 12 days post-inoculation
(dpi) by the appearance of bright green fluorescent spots
(Fig. 2a) that increased in number and size in the following days
(Fig. 2b). Discontinuous fluorescent foci were later observed in
veins of different size, including the midrib (Fig. 2c), suggesting
that the virus was loaded into the sieve tubes and that minor
and major veins may be entry points for long-distance infection
of N.benthamiana plants, as reported for other plant viruses
(Cheng et al., 2000; Silva et al., 2002). Detailed observation with
a stereomicroscope (Leica Microsystems, Heerbrugg, Switzerland)
using a high-energy light source and a GFP filter revealed clus-
ters of infected cells beside the vein foci (Fig. 2d), suggesting
that CLBV-GFP arrived to veins via cell-to-cell movement. Within
cells, confocal laser scanning microscopy (Leica TCS-SL, Man-
nheim, Germany) showed that fluorescence was located in the
cytoplasm and the nucleus, but not in the vacuoles of infected
epidermal cells, with the most intense fluorescence being
observed in the nucleus (Fig. 2e). This GFP accumulation does
not mean that the virus replicates in the nucleus.

Systemic viral infection was detected at 18 dpi by the presence
of new fluorescent areas in the stem, petiole and veins of the
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upper leaves (Fig. 2f), and then in other leaf tissues (Fig. 2g),
indicating that, once the virus enters the vascular system, it can
move long distances in a short time. For other plant viruses,
cell-to-cell movement has been reported to occur at a rate of
approximately 25 um/h (Derrick et al., 1992; Mise and Ahlquist,
1995; Szécsi et al., 1999), whereas movement through the vascu-
lar system occurs at a rate of centimetres per hour (Nelson and van
Bel, 1998). Generally, fluorescence was not uniform throughout
the stem, petioles or leaf veins, with scattered fluorescent spots of
variable size and intensity being observed (Fig. 2f). This distribu-
tion is consistent with CLBV-GFP delivery into surrounding cells
after long-distance transport via the phloem vessels. Observation
of stem cross-sections from infected plants with a stereomicro-
scope showed GFP fluorescence in the phloem and pith, indicating
the presence of the virus in these tissues (Fig. 2h). Stem cross-
sections from healthy plants showed red fluorescence caused by
chlorophyll, or a faint yellow fluorescence in xylem and paren-
chyma cells, probably caused by phenolic compounds (Fig. 2i). In
the petiole of infected leaves, GFP fluorescence was observed in
the phloem and, to a lesser extent, in parenchyma (Fig. 2j),
whereas no fluorescence was observed in identical sections from
healthy plants (Fig. 2I). At the most intense fluorescence spots, in
either the stem (data not shown) or petioles, additional GFP fluo-
rescence was detected in the parenchyma and epidermal cells
(Fig. 2k), probably as a result of cell-to-cell movement.

After vascular transport of the virus through the stem, it leaves
the phloem to establish new infection foci in sink tissues. In young
developing leaves, GFP fluorescence was first seen mainly in the
midrib (class | vein) and class Il veins. The first indication of virus
exit to the mesophyll of these leaves was the appearance of
disperse fluorescent flecks in the lamina, suggesting that virus
unload did not occur uniformly (Fig. 2m). Fluorescent foci associ-
ated with virus unload were mainly observed in class Ill and,
occasionally, class Il veins at later stages of infection, but rarely in
smaller veins. Similar results were reported by Roberts et al.
(1997) comparing phloem unload of GFP-tagged Potato virus X
(PVX) and the fluorescent solute carboxyfluorescein in N. bentha-
miana plants. Both virus and carboxyfluorescein were predomi-
nantly unloaded from class Ill veins, with minor veins (classes IV
and V) playing no role in the process. From the initial site of CLBV
unload, the infection spread by cell-to-cell movement, as indicated
by the progressive appearance of GFP fluorescence in the
interveinal mesophyll tissue (Fig. 2g). The invasion pattern
depends on the developmental stage of the leaf at the time of
infection. The three leaves immediately above those agroinocu-
lated did not show any fluorescence, indicating that these leaves
were already developed and not at the sink stage when CLBV
reached the vascular system. In the next two or three following
upper leaves, the virus invaded only their basal region, but never
reached the leaf apex (Fig. 2n), suggesting that the virus arrived to
these leaves when they were at the sink—source transition, as

© 2013 BSPP AND JOHN WILEY & SONS LTD MOLECULAR PLANT PATHOLOGY (2013) 14(6), 610-616



612 J. AGUERO et al.

described previously by Roberts et al. (1997) for PVX. The virus
would be unable to advance through the veins, but it would still
move from cell to cell from some basal class Il veins, invading the
mesophyll around the unloading point (Fig. 2n). CLBV also
invaded and accumulated in N. benthamiana roots, as detected by
real-time reverse transcription polymerase chain reaction (rtRT-
PCR) with a TagMan probe targeted to the CLBV ORF1 (Ruiz-Ruiz
etal., 2009) (data not shown), and by strong green GFP fluores-
cence observed in infected plants in comparison with the
weak vyellowish fluorescence shown by healthy plant roots
(Fig. 20).

Cell-to-cell and long-distance movement of free GFP has been
observed in plants after biolistic bombardment of sink leaves with
a plasmid encoding the gfp gene (ltaya et al., 1998; Oparka et al.,
1999), and in plants expressing the gfp gene under the control of
the companion cell-specific AtSUC2 promoter (Imlau et al., 1999).
In order to confirm that GFP fluorescence observed in plants
agroinoculated with the clbv3'pr-GFP clone is caused by the pres-
ence of CLBV, tissue print hybridization was performed with fresh
sections of different plant organs and a digoxigenin (DIG)-labelled
RNA probe specific for the 3’ UTR of the gRNA (Agtiero et al.,
2012). CLBV was detected in all tissues showing GFP fluorescence,
whereas no hybridization signal was obtained in nonfluorescent

Fig. 2 Expression of the green fluorescent
protein (GFP) in Nicotiana benthamiana plants
agroinoculated with the infectious Citrus leaf
blotch virus (CLBV) clone clbv3'pr-GFP. (a, b)
Infection foci in agroinoculated leaves at 13
and 16 days post-inoculation (dpi), respectively.
(c) Virus loading into the phloem vessels at
different sites of an agroinoculated leaf. (d)
Fluorescence focus beside a vein observed in a
fluorescence stereomicroscope. Bar, 80 um (e)
Epidermal cells observed by confocal
microscopy. Bar, 10 um. n, nucleus; ¢,
cytoplasm. (f) GFP accumulation in stem,
petiole and veins of upper leaves at 18 dpi. (g)
Plant systemically infected at 25 dpi. (h, })
Cross-sections of stem and petiole from an
infected plant. (k) Similar petiole cross-section
from an intense fluorescence spot. (i, I) Similar
stem and petiole cross-sections from a healthy
plant. Bar, 500 um. E, external phloem; |,
internal phloem; pa, parenchyma; ph, phloem;
xy, xylem. (m) Upper leaf of infected plants at
20 dpi. (n) Leaf undergoing the sink—source
transition at 20 dpi. (o) Roots of infected (left)
and healthy (right) plants. Photographs a—c, ,
g and m—o were taken with a digital camera
using UV light and a yellow filter, d and h-I
with a fluorescence stereomicroscope and e
with a confocal laser scanning microscope.

tissues (Fig. 3a). These results confirmed that the GFP fluorescence
observed was caused by virus spread rather than by independent
translocation of the GFP protein. Moreover, GFP fluorescence
faded in a couple of weeks, suggesting that the bright fluores-
cence observed in the initial stages of infection was a result of GFP
expression during CLBV replication.

To explore the possibility that CLBV could invade meristems,
shoot tips of infected N. benthamiana plants were examined by
confocal laser scanning microscopy. Two kinds of meristem were
observed.

(i) Shoot apical meristems (SAMs) located at the tip of growing
stems and surrounded by the leaf primordia (Fig. 4a). A strong
fluorescent signal was observed in both SAM and leaf primordia
with GFP fluorescence being located mainly in the cytoplasm
(Fig. 4b,c), whereas no GFP fluorescence was observed in shoot
tips from noninfected plants (data not shown). In these meristems,
cells divide actively and different stages of the cell cycle were
observed (Fig. 4c).

(i) Latent axillary meristems located in leaf axils (Fig. 4d). Cells
in these meristems are quiescent and GFP fluorescence appeared
mainly in the nuclei (Fig. 4e,f). Because GFP fluorescence
expressed by CLBV-GFP was detected in the corpus cells of both
meristems, where no vascular tissue is present, the virus probably

MOLECULAR PLANT PATHOLOGY (2013) 14(6), 610-616 © 2013 BSPP AND JOHN WILEY & SONS LTD



(a) N. benthamiana

Stem Petiole Ovules Ovary

Green . v d .
fluorescence - . \
Red
fluorescence
(b) Citrus  N. benth
Pollen ST ST
CLBV . L -
Healthy
(C) C. clementina
Petals Ovary Ovules
- ‘ -

ey (ag N |™ »

Healthy

(d)

CLBV CLBV + CTV CcTv
Tissue g-clov | g-ctv | gelbv [ gctv | g-clbv | g-ctv
Shoot Tip| 2.3* - 3.4% ) - -
Bark 20.1* - 17.7* 80* - 72*

*x10° RNA copies/ng total RNA (mean of 6 plants)

Fig. 3 Citrus leaf blotch virus (CLBV) detection by molecular hybridization in
infected tissues of Nicotiana benthamiana and citrus plants. (a) Imprints of
different tissues from N. benthamiana plants agroinoculated with the CLBY
infectious clone clbv3'pr-GFP showing green (green fluorescent protein, GFP)
or red (chlorophyll) fluorescence. (b) Dot-blot hybridization using total RNA
extracted from healthy or CLBV-infected Citrus clementina (pollen), Mexican
lime (shoot tips, ST) or N. benthamiana (ST) plants. (c) Tissue-print
hybridization of petals, ovary or ovules from healthy or CLBV-infected

C. clementina plants. The membranes were hybridized with a digoxigenin
(DIG)-labelled RNA probe specific for the CLBV 3" untranslated region (UTR).
(d) Detection and absolute quantification of genomic RNA copies of CLBV
(g-clbv) or Citrus tristeza virus (CTV) (g-ctv) in 0.2-mm shoot tips or bark of
Mexican lime plants infected with CLBV, CTV or co-inoculated with both
viruses. —, not detected.
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moves from cell to cell from the infected protophloem to meris-
tematic cells.

As Imlau et al. (1999) showed that GFP can spread by passive
diffusion through expanding tissues, we attempted to confirm the
presence of CLBV in SAM cells by analysing total RNA extracts
from infected and healthy meristematic tissue (about 0.2-mm
shoot tips) by dot-blot hybridization and rtRT-PCR. CLBV was
readily detected by both techniques in the meristems of infected
plants (Fig. 3b and data not shown), confirming that the GFP
fluorescence observed was caused by virus spread rather than by
passive translocation of the GFP protein from neighbouring
regions.

In CLBV-GFP-infected citrus plants, GFP fluorescence was not
observed, probably as a result of the instability of the construct
(Agliero et al., 2012). Therefore, to examine CLBV infection in
citrus meristematic regions, six Mexican lime [Citrus aurantifolia
(Chrism.) Swing.] plants were graft inoculated with CLBV, with the
T318A isolate of Citrus tristeza virus (CTV), a phloem-restricted
virus that is easily eliminated by shoot-tip grafting in vitro, or
co-inoculated simultaneously with both viruses. CLBV was
detected by dot-blot hybridization (Fig. 3b) and rtRT-PCR
(Ruiz-Ruiz et al., 2009) (Fig. 3d) in 0.2-mm shoot tips from citrus
plants inoculated with CLBV or CLBV plus CTV, whereas CTV was
not detected by rtRT-PCR (Ruiz-Ruiz et al., 2007) in similar shoot
tips from plants inoculated with CTV or CTV plus CLBV. These
results explain, in part, the difficulty in eliminating CLBV by shoot-
tip grafting in vitro. Most virus and viroids are eliminated by this
technique in more than 90% of micrografted plants. However,
depending on the citrus genotype, CLBV is usually eliminated in
only 10%-50% of micrografted plants and, in some genotypes, no
CLBV-free plants were recovered.

In most plant-virus combinations, viruses are not detected in
SAM (Hull, 2002), but it is unknown whether this absence of virus
is a result of the inability of viruses to replicate in meristematic
tissues or whether the presence of some active or passive barrier
impairs their entry to SAM. An attractive hypothesis to explain the
ability of meristematic cells to avoid viral infection is that a strong
defence mechanism would allow newly differentiated tissues to
develop virus free. It has been reported that an RNA-mediated
surveillance system protects the shoot tip from viral infection
(Foster et al., 2002). The RNA-dependent RNA polymerase 6,
which is an integral part of the RNA silencing machinery, is
involved in the exclusion of viruses (Qu et al., 2005; Schwach
et al., 2005) and viroids (Di Serio et al., 2010) from N. benthami-
ana meristems. To counteract RNA silencing, most plant viruses
encode proteins that act as suppressors of the host antiviral
defence. Tobacco rattle virus (TRV) can invade SAM cells using a
16K suppressor protein encoded by its genome. This protein
showed a weak suppressor activity in agroinoculated N. bentha-
miana 16¢ plants in comparison with the p19 protein of Tomato
bushy stunt virus (Martin-Hernandez and Baulcombe, 2008). The
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Fig. 4 Green fluorescent protein (GFP) detection in meristems and floral organs of Nicotiana benthamiana plants agroinoculated with the infectious Citrus leaf
blotch virus (CLBV) clone clbv3'pr-GFP. (a—c) Shoot apical meristem (SAM). (d—f) Axillary meristem. (g, h) Longitudinal sections of flowers from an infected plant at
early developmental stages (g1 and h) and a similar section from a healthy plant (g2). (i-k) Developing ovary, style, stigma and corolla from an infected plant, and
similar organs from a healthy plant (p—r). (I, m) Longitudinal section of a mature ovary from an infected plant (I) and a similar ovary after eliminating the carpel (m).
(n) Young seeds from infected (left) and healthy (right) plants. (o) Mature seed from a healthy plant. Images (b, ¢, e, f) were captured using a confocal laser
scanning microscope, (a, d) with a light microscope and (g—r) with a fluorescence stereomicroscope. Bars in the latter images, 500 pm.

authors suggested that the weak suppressor activity of 16K might
be a crucial evolutionary factor, as a strong suppressor activity
would allow high virus accumulation in meristematic cells, prob-
ably causing severe damage to infected plants. Similarly, the CLBV
MP is a weak silencing suppressor (Renovell et al., 2012), and
could be the factor responsible for the viral invasion of meristem-
atic cells without causing important symptoms in most citrus hosts
(Galipienso et al., 2000). However, the 16K protein of TRV is able
to act in trans, whereas the MP of CLBV is not. Thus, although
plants co-infected with TRV and PVX accumulated PVX in 53% of
the meristems, this virus was excluded from the meristems in
plants co-infected with PVX and a 76k mutant of TRV
(Martin-Hernandez and Baulcombe, 2008). However, in plants
co-inoculated with CLBV and CTV, the latter virus was never
detected in meristematic tissues.

Extensive examination of longitudinal sections of N. bentha-
miana flowers with a fluorescence stereomicroscope revealed
that CLBV-GFP reaches the flower through phloem channels
(Fig. 491, h), and then invades the ovary (Fig4i), style and
stigma (Fig. 4j), sepals and petals (Fig. 4k). In mature ovaries,
strong GFP fluorescence was observed in ovules (Fig. 4l,m), indi-
cating preferential accumulation of the virus in these organs. The
ovary, style, stigma and petals of healthy plants showed red fluo-
rescence (Fig. 492, p—r). The anthers of healthy plants showed a
strong green fluorescence, probably as a result of the accumu-
lation of phenolic compounds in the pollen exine, which ham-
pered the detection of GFP fluorescence in infected plants (data
not shown). The presence of CLBV in ovary and ovules was con-
firmed by tissue-print hybridization (Fig. 3a) and rtRT-PCR (data
not shown).
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CLBV infection in flower organs of citrus was examined by
dot-blot hybridization with total RNA extracted from pollen
(Fig. 3b), and by tissue-print hybridization with petals, ovary and
ovules (Fig. 3c) from CLBV-infected C. clementina. The virus was
detected in all of these tissues, indicating that CLBV invades floral
organs, including pollen, at least in citrus.

Finally, GFP fluorescence was also observed in young seeds of
CLBV-infected N. benthamiana plants (Fig. 4n, left), in comparison
with the weak yellowish fluorescence caused by the presence of
lignin in healthy seeds (Fig. 4n, right), indicating that CLBV-GFP is
able to invade the seed coat. However, cross-sections of dry seeds
from infected or healthy plants showed similar yellowish fluores-
cence (Fig. 40 and data not shown). This finding indicates that,
although CLBV is able to infect maternal seed tissues, it would be
excluded from the embryo, suggesting that embryos are not sym-
plastically connected with the maternal tissue. In addition, we did
not observe seed transmission in more than 100 seedlings
obtained from CLBV-GFP-infected N.benthamiana plants after
fluorescence observation and RT-PCR analyses (Agiiero et al.,
2012), whereas a low rate of seed transmission (about 2.5%) was
observed previously in citrus plants (Guerri et al., 2004).
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