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ZAHRAA NAJI SABRA. Studying Category-Based Visual Attention and Mental 

Imagery in the Human Brain Using Local Field Potentials. (Under the direction of 

THOMAS NASELARIS). 

ABSTRACT 

Cerebral processing of visual stimuli is characterized by a complex circuitry 

involved in processing visual inputs while simultaneously contextualizing, categorizing 

or modulating these inputs by higher-order cortical centers. The sensory input and the 

cognitive control over this input can potentially be differentiated spatially, i.e. different 

brain regions, or spectrally, i.e. different frequencies of neuronal activity. In this work, 

we used object-category based visual tasks to investigate the spectral and spatial patterns 

of encoding of visual inputs and cognitive control at the level of visual attention and 

mental imagery using local field potentials in human subjects across widely distributed 

recording sites and a broad frequency spectrum(1-100Hz). Using PCA, we demonstrate 

that during a task involving both visual attention to an object category with varied 

observed category a broadband, and two narrowband low-frequency explained the main 

variance in the data. When comparing response to attended versus seen categories, we did 

not observe a spatial difference in location of encoding sites, but using decoding models, 

the broadband signal decodes vision better than attention in visual cortex and vision and 

attention equally in the temporal lobe. However, narrowband delta-theta decodes the best 

for both vision and attention, and alpha-beta differentially decodes for attention better 

than vision. Using an alternate task that involves image memorization, imagery, and 

passive viewing, we demonstrate that the main power spectral modulation among those 

mental states are represented by a broadband, gamma band, and low-frequency band. 

Encoding sites were similarly spatially widely distributed. Decoding models showed that 
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gamma band predicts attentive viewing and mental imagery with best accuracy. Both 

broadband and low frequency band accurately decode for passive and attentive viewing. 

Our findings demonstrate that encoding of vision, attention and mental imagery is not 

dependent on a single spectral domain and optimal decoding of visual processes should 

consider the co-contribution of narrowband and broadband spectral patterns to account 

for the different co-occurring top-down and bottom-up processes. Therefore, although 

gamma-significantly studied in vision-is involved in visual working-memory tasks, both 

broadband and low-frequency narrowband patterns of neuronal activity co-participate in 

visual processing in the context of object-based visual attention and mental imagery. 
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1.1. Definitions 

1.1.1. Visual receptive field 

The visual receptive field for a certain neuron corresponds to the components 

and/or location of the visual field that elicit neuronal activity in this neuron. The 

complexity and size of the receptive field increases when moving from primary visual 

cortex (V1) to higher cognitive visual regions (Figure 1.1). 
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Figure 1.1. Size and complexity of receptive field along the hierarchy of visual 

cognitive processing 

Adapted from (Herzog and Clarke, 2014). The figure illustrates how the size and 

complexity of receptive fields increase when going from primary visual cortex (V1) to 

higher visual brain regions (IT: Inferior temporal). In parallel, the complexity of features 

extracted from stimulus within the receptive field also increases along the hierarchy of 

visual cognitive processing (V1→ V2 → V4 → IT) .  
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1.1.2. Spatial distribution of neuronal activity 

By spatial distribution we refer to anatomical locations within the MNI (Montreal 

Neurological Institute) space of the studied recording sites on a normalized brain. 

1.1.3. Spectral domain representation of neuronal activity 

The spectral domain of neuronal activity is the frequency domain representation of 

a time series recording of neuronal activity that shows the power at each represented 

frequency value. The spectral representation of neuronal response to a stimulus is used to 

compare the responses of a recording site to various stimuli by studying modulations in 

power across different frequencies. 

1.1.4. Spectral pattern 

The spectral pattern refers to the form of the neuronal response signal in the 

frequency domain. Two major spectral patterns could be noticed when studying stimulus-

induced neuronal activity: broadband and narrowband spectral patterns. 

1.1.5. Narrowband modulation in the spectral domain 

In the frequency domain, when comparing the modulation of power over a 

frequency range between two or more conditions, a narrowband increase/decrease of 

power appears as a peak over a narrow range of frequencies. This narrowband spectral 

pattern could take place in the low frequency (< 30Hz) or in the high frequency (>30Hz) 

bands. Figure 1.2A and Figure 1.3 show an example of a narrowband peak in the time-

frequency spectrograms and in power spectra respectively. 
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1.1.6. Broadband modulation in the spectral domain 

A broadband pattern of spectral modulation represents a generalized increase/decrease of 

power spanning a wide range of frequencies. This broadband modulation could span the 

whole range of the studied frequencies. Figure 1.2B and Figure 1.3 shows an example of 

a broadband change in the time-frequency spectrograms and in power spectra 

respectively.  
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Figure 1.2. Example of broadband and narrowband spectral modulation patterns 

(A) Time-frequency plot showing an increase in power in early visual cortex for the 

duration of onset (0.5 sec) of a grating stimulus, and demonstrating a narrowband response 

within the gamma band. (B) Time-frequency plots showing a broadband increase in power 

over a wide range of frequency after the onset of faces and houses stimuli in a recording 

site from the ventral temporal cortex. adapted from (Hermes et al., 2015) 
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Figure 1.3. Power spectra showing broadband and narrowband modulation 

patterns 

Power spectral plot showing the mean frequency representation of the response of local 

field potential recording site from the parahippocampus of human brain to stimuli 

displayed on the screen for 0.5 sec, and featuring house (pink), face (blue), and inter-

stimulus interval (gray). Broadband increase of response to house-triggered epochs was 

clearly seen in the gamma band when compared to responses to face and inter-stimulus 

epochs, and narrowband increase was seen in the low frequency for house and face-

triggered epochs compared to inter-stimulus epochs. 
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1.1.7. Feedforward/Feedback processing 

Feedforward processing in the brain refers to the input signal propagating from 

early sensory brain region to higher-order cognitive regions. In case of vision, a 

feedforward processing of vision corresponds to the propagation of visual sensory input 

from V1 to V2, then to higher visual brain regions within the temporal lobe. The 

feedforward projections in the brain represent the ascending connections in the hierarchy 

from lower to higher-order brain regions processing the sensory information. On the 

other hand, feedback processing of information is the descending projections from 

higher-order brain regions involved in control and tuning of the lower-order brain regions 

in the hierarchy. Those two signals play an important and simultaneous role in different 

aspects of vision in the brain (Kafaligonul et al., 2015). Figure 1.4 illustrates the 

interconnections between feedforward and feedback projections in the visual system in 

the brain (Gilbert and Li, 2013). 

1.1.8. Bottom-up/Top-down signals 

We use the terms bottom-up and top-down processes to refer to feedforward and 

feedback brain signals respectively. 
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Figure 1.4. feedforward and feedback connections between brain regions in response 

to visual stimulus. 

Adapted from (Gilbert and Li, 2013). Blue arrows represent the feedforward connections 

between brain regions in response to a visual stimulus, and the red arrows represent the 

feedback connections from higher order visual areas to lower order visual areas in the 

visual hierarchy. Feedback connections are present for every feedforward connection. AIP: 

anterior intraparietal, IT: inferior temporal, LIP: lateral intraparietal, MIP: medial 

intraparietal, MST: medial superior temporal, MT: medial temporal, PMd: dorsal premotor, 

PMv: ventral premotor, TeO: tectum opticum. 
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1.2. The visual perception system 

1.2.1. General overview 

Visual information presented to the eye is relayed to the brain from the retina via 

the lateral geniculate nucleus of the thalamus to the primary visual cortex (V1) in the 

occipital lobe.  Our understanding of the primary processing of visual information as it is 

presented to the brain comes from early studies in cats showing that V1 is the host of 

neurons representing distinct specific receptive fields, which correspond to a particular 

region within the visual field that are sensitive to orientation and direction of light (Hubel 

and Wiesel, 1959, 1961, 1962). Subsequent studies investigating visual processing 

beyond the primary visual cortex have demonstrated that going from primary visual 

cortex to higher-order cognitive areas is associated with increase of the size of receptive 

fields and decrease of sensitivity to specific spatial features of the seen object. These 

changes in the response properties that take place along the visual processing of images 

are associated with loss of sensitivity to spatial location and spatial features of the image 

and increase in the ability to recognize an object as a whole (Desimone et al., 1984). 

Visual processing in the brain takes place in two different yet arguably interacting 

streams: the dorsal stream or the “where pathway” that processes the spatial location of the 

object in space, and the ventral stream or the “what pathway” that processes the 

identification and recognition of the visual object (Goodale and Milner, 1992). In the work 

presented in this dissertation, I focused on studying higher-order visual processing in the 

brain that underlines the recognition and categorization of visualized objects independent 

of their location in space. Although object categorization have been predominantly studied 

in the temporal lobes using imaging and electrophysiological studies, it is anticipated that 
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object recognition and selectivity is not limited to the temporal lobe (Joseph, 2001). In the 

following sections, I review prior work on object recognition in different regions of the 

human brain. 

1.2.2. Object selectivity in the temporal lobe 

Recognition of specific object categories in the brain was first investigated during 

awake craniotomies by Wilder Penfield (Penfield and Perot, 1963). Penfield reported that 

when he stimulated the fusiform and parahippocampal gyri, patients experienced 

hallucinations of faces and places respectively (Penfield and Perot, 1963). When functional 

brain imaging and advanced electrophysiological tools became available, these two 

category-specific brain regions were further studied and confirmed in the human brain 

using functional Magnetic Resonance Imaging (fMRI) (Joseph, 2001), local field potential 

(LFP) recordings (Allison et al., 1999), and single unit recordings (Kreiman et al., 2000b). 

Supporting these finds were earlier studies on patients with brain lesions reporting the loss 

of ability to recognize faces in patients with lesions to the fusiform gyrus (Damasio et al., 

1982), a condition known as prosopagnosia. Yet, patients with lesions to the fusiform gyrus 

retained the ability to describe some of the features of the seen faces. Place selectivity has 

been consistently reported in the PPA within the ventral temporal lobe, located medial to 

the face-selective region, the fusiform face area (FFA) (Joseph, 2001). Although faces and 

places were the most commonly studied object categories, further studies using fMRI 

showed the ability of the temporal lobe to discriminate among many object categories 

(Chao et al., 1999), and single neuron recordings showed the ability of single neurons to 

decode for multiple categories (Kreiman et al., 2000b). Decoding of object categories was 
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also reported human medial temporal lobe using local field potential and single neurons 

recordings (Kreiman et al., 2000b; Kraskov et al., 2007). 

1.2.3. Object selectivity extends beyond temporal lobe 

Even though category-based object recognition was extensively reported within the 

temporal lobe using different neuroimaging and electrophysiology techniques, object 

selectivity is rather broadly distributed in the brain. Using intracranial EEG recordings 

from patients confronted with different visual object categories, Vidal et al. showed that 

despite the prominent existence of electrodes encoding for different object categories in 

the temporal lobe, the frontal and occipital lobes were also involved in encoding visual 

categories (Vidal et al., 2010). Moreover, a meta-analysis of 14 fMRI studies conducted 

on category-specificity responses in the human brain showed a broad distribution of object 

selectivity regions (Joseph, 2001) (Figure 1.5).  The same report also confirmed the 

reported distribution of face selectivity regions lateral to manufactured objects and natural 

scene selectivity regions within the medial temporal lobe (Figure 1.5).  
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Figure 1.5. Meta-analysis of reported distribution of object based category in human 

brain.  

Modified from Joseph et al (Joseph, 2001). Left panel: sagittal view showing brain loci 

reported, in published fMRI reports, to be involved in the recognition of natural objects 

(black squares), manufactured objects (gray squares), and faces (white square). Right 

panel: axial and sagittal views showing the mean and standard error bars of activation in 

brain loci in response to the same object categories presented in the left panel. 
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Interestingly, subcortical regions were also reported to be involved in visual 

processing and object-based selectivity in the brain. Specifically, the caudate and putamen 

within the neostriatum showed object-category sensitive response, a finding that is not 

unanticipated  given the presence of dense inputs to the striatum from the temporal visual 

regions (Yeterian and Van Hoesen, 1978). These findings were later confirmed by studies 

on single neurons in non-human primates showing both visually-responsive neurons and 

object-category selective neurons in the caudate and putamen (Yamamoto et al., 2012; 

Kunimatsu et al., 2019). More specifically, the tail region of caudate and putamen, which 

is in close proximity to the temporal lobe, was found to control saccade and attention 

among objects based on their historical value to guide subsequent behavior involving 

movement to reach to the object (Yamamoto et al., 2012; Kunimatsu et al., 2019).  

1.2.4. Significance of a broadly distributed visual representation system 

The broad distribution of visual information in the human brain is expected given 

the need for visual inputs to guide motivational, emotional, motor and cognitive outputs of  

cortical and subcortical areas (Kourtzi and Connor, 2011). For instance, the medial 

temporal lobe is implicated in memorization of visual information, the prefrontal cortex is 

key in rule-based tasks including those based on visual sensory information, and the basal 

ganglia requires visual information and feedback for tuning movements in response to 

salient visual objects (Kourtzi and Connor, 2011). Thus, object selectivity in brain regions 

involved in visual category learning is not surprising. Even though some brain regions are 

not essential for object recognition, like the prefrontal cortex for example, the visual object 

selectivity of those areas allow for optimizing relevant behavior, in the case of the 
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prefrontal cortex it helps in directing attention to the targeted object category (Duncan, 

2001; Ashby and Maddox, 2005).  

1.2.5. Temporal propagation of unconscious and conscious visual information 

Visual inputs propagate from the primary visual cortex V1 to higher-order cognitive 

regions in the brain. Latency of electrodes’ response to visual stimuli within the studied 

brain region increases along the hierarchy of visual processing. This response latency has 

been previously studied in the macaque visual system (Schmolesky et al., 1998) as shown 

in Figure 1.6. 
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Figure 1.6. The order of latency to respond of different brain regions involved in early 

visual processing of a visual stimuli in macaque.  

M-LGN: magnocellular layers of the lateral geniculate nuclei, P-LGN: parvocellular layers 

of the lateral geniculate nucleus, V1, V2, V3, V4: cortical visual areas, MT: middle 

temporal area, FEF: frontal eye field. 
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Even though the response delay in the visual system of the macaque may be 

quantitatively different than that of man, the same order in delay still applies (Gomez 

Gonzalez et al., 1994; VanRullen and Thorpe, 2001). A magnetoencephalography (MEG) 

study showed that a chromatic grating, encoded beyond V1, would evoke a stable response 

in the striate cortex with a peak around 100-140 msec (Fylan et al., 1997), compared to the 

60-80 ms delay observed in V1 }(VanRullen and Thorpe, 2001). 

Interestingly, in an human intracranial EEG study using images displayed to 

subjects between 16 msec and 66 msec, the average evoked and gamma power response to 

faces did not change whether the subjects recognized the images (conscious vision) or not 

(unconscious vision)(Fisch et al., 2009). The concept is that electrodes within the occipito-

temporal cortex respond to the stimulus in the visual field regardless of visual awareness 

of the object of the response. The response in the occipito-temporal cortex started at 150-

200 msec and outlasted the time of image display. This delayed response to object 

recognition in the temporal lobe was also observed on MEG studies showing that face 

categorization response is triggered around 100 msec (M100) in the ventral temporal lobe 

(Liu et al., 2002), even though face identification is correlated with a later component at 

170 msec (M170). Thus, object recognition is a delayed cerebral response compare to 

vision consistent with the processing hierarchy where object categorization occurs in 

higher-order cortical regions.  

Going higher in the visual hierarchy, the medial temporal lobe was reported to 

have a further delayed response (369±53 msec) when subjects were exposed to nine 

object categories (including faces, cars, and spatial layouts) during LFP recording 
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(Kreiman et al., 2000b). The stimuli were presented for 1000 msec, and the duration of the 

response ranged from 53 to 1190 msec. On the other hand, fronto-parietal cortex 

implicated in perceptual awareness was reported to have a delayed response of more 

than 300 msec after stimulus onset (Del Cul et al., 2007; Gaillard et al., 2009). 

 Understanding the time dynamics of different regional cortical response to visual 

information is key to design the appropriate experiments aiming at understanding visual 

processing in the brain when including higher-order cortical processing centers. This 

temporal pattern of responses is also critical for the selection of the appropriate size of time 

windows used in subsequent analyses. 

1.2.6. Synchronous and asynchronous aspects of neuronal activity 

 Following confrontation with a visual stimulus, changes observed at the level of 

the LFP recordings are reflective of changes at the level of the neuronal population around 

the recording site.  Those changes are of two types; modulation of individual neuronal 

activity in a synchronous manner (rhythmic) leading to oscillatory behavior, or in an 

asynchronous manner. The latter type results in a broadband increase (non-rhythmic) in the 

power of the spectral density across a wide range of frequencies (1-200Hz). This concept, 

simulated by Miller and his colleagues (Miller et al., 2009a) and illustrated (Miller, 2015) 

in Figure 1.7, is key to understand the power modulation reflected in the LFP after stimulus 

onset. As Miller explained (Miller, 2015), asynchronous synaptic input would manifest, at 

the level of LFPs, as a speeding up of a random walk that is hard to notice unless taken to 

the frequency domain where it would be clearly emphasized as a broadband spectral 

increase, and it reflects local cortical activity. Whereas synchronous neuronal activity is 

easily depicted in the recording and would be reflected by a narrowband spectral peak. The 
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emerging synchronous activity (rhythm) could be the result of a feedback loop involving 

subcortical cortices like the cortico-striato-thalamic loop, and the state of the components 

would determine if they get in synch or out of synch. Synchronization results in an increase 

the narrowband peak whereas desynchronization results in a decrease in this peak. 

Alternatively, another source of synchronization could be a feedforward process, an 

example of which is the visual input propagating from the thalamus to V1 as a result of a 

time-locked response triggered by special features. This visual stimulus would first activate 

the pyramidal cells then synchronize lateral inhibition to create an oscillatory pattern 

(Miller, 2015). Using this concept, we can better understand the previously reported 

modulations in the spectral power upon visual processing in the brain as explained in the 

next section. 
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Figure 1.7: The concept of synchronous vs asynchronous activity as illustrated in 

(Miller, 2015).  

The figure describes the effects of synchronous vs. asynchronous neuronal activity on the 

spectral domain patterns and ECoG raw signals as simulated by Miller et al.  (A) 

Synchronous activity shows as a narrowband peak in the spectral domain, and a 

corresponding oscillation in the recorded ECoG signal. (B) Asynchronous activity is seen 

as a broadband modulation in the spectral domain and as a corresponding increase in the 

velocity of the random walk in the recorded ECoG signal. 
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1.2.7. Spectral modulation during visual processing 

1.2.7.1. The Famous Gamma 

A commonly reported robust and narrowly confined gamma oscillation (40-60 Hz) 

has been proposed as the key element in visual encoding in the visual cortex (Tallon-

Baudry et al., 1997; Hoogenboom et al., 2006; Fries et al., 2008; Brunet et al., 2014). 

However, more recent studies have questioned the functional primacy of the narrowband 

gamma responses in vision (Ray and Maunsell, 2010; Jia et al., 2013; Hermes et al., 2015). 

Hermes et al. (Hermes et al., 2015) showed that a narrowband gamma response can be 

induced by stimuli with specific size, contrast, textures, and patterns.  However, no 

evidence of a consistent narrowband gamma response was reported for many recording 

sites in the fusiform or parahippocampal gyri when seeing a face or a building respectively, 

even though both areas have been consistently implicated in the perception of these 

categories of visual stimuli. Rather, the authors noted stimulus-evoked power variations 

over a wide range of frequencies - termed a “broadband response”- in these higher-order 

cortical regions (Hermes et al., 2015). In another human LFP study, power variation across 

the entire range of gamma frequencies within the ventral temporal cortex, rather than a 

narrowband gamma, was reported to be selective for the presented object categories (Miller 

et al., 2014; Miller et al., 2016).  

Moreover, to explain the previous reported power increase over a wide range within the 

gamma band (Jacobs and Kahana, 2009; Vidal et al., 2010), Miller and his colleagues 

(Miller et al., 2014) argued that what seems to be a gamma band modulation is actually a 

broadband modulation across all the frequency bands that is masked by the low frequency 

modulations. Using principal component analysis (PCA) they successfully decoupled the 
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spectral power of the rhythmic synchronous narrowband activity in the brain from non-

rhythmic broadband asynchronous activity in multiple modalities including motor and 

visual tasks. This was basically done by reconstructing the power spectral response of the 

rhythmic part using principal components 2,3, and 4, and reconstructing the power spectral 

response of the non-rhythmic part using all other principle components (mainly the first 

principal component) not used in the reconstruction of the rhythmic part.  

1.2.7.2. The neglected other frequencies 

Even though low frequency oscillations were reported to be modulated during 

visual processing in the brain, they are usually skipped from the analysis. An example from 

our data is shown in Figure 1.8 after a visual stimulus is presented for 500 msec. The 

variation along the low frequency bands in addition to the broadband gamma increase in 

power can be easily appreciated.  
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Figure 1.8: Spectrogram of LFP response from a recording site in the visual cortex of 

a subject confronted with visual stimuli.  

The figure shows a spectrogram of z-scored power modulation across time and frequency 

(1-200 Hz) showing the average response of a recording site within the visual cortex 

(calcarine) to 450 images displayed on the screen for 0.5 sec, and followed by ISI for 1 sec. 

The recording site responds instantly after the onset of stimuli (presented at time 0 sec), 

with a clear decrease in low frequency alpha-beta range, and a broadband increase for when 

the image is on the screen. 
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Low frequency alpha-beta power modulation (decrease) is reported to be important 

to facilitate vision in the occipital lobe (Pfurtscheller et al., 1994; Pfurtscheller and Lopes 

da Silva, 1999). At rest, i.e. in the absence of visual stimuli, a high-power alpha rhythm is 

noticed, and after the onset of a visual stimuli the power of alpha decreases. This decrease 

is referred to as the desynchronization of the cortico-thalamic loop to allow for visual 

encoding in the brain (Miller et al., 2010b).  On the other hand, an increase in the power of 

theta in the hippocampus is thought to be important to facilitate encoding of long-term 

memory in the hippocampus. It is possible that because the delta to beta bands represent 

relatively slow signals in the brain (as opposed to gamma), those bands were dropped from 

the analysis of object category-based encoding in the brain and were specifically reported 

in top-down feedback cognitive processing studies like attention, memory, and decision 

making. However, in these cognitive functions performed at higher-order region, the seen 

object needs to be recognized, categorized or contextualized to generate the corresponding 

response or behavior. 

After a thorough review of the literature on visual category-based decoding using low 

frequency aspect of LFP recordings, we found that only few studies have investigated and 

eventually implicated the low frequency bands in visual categorization in the brain. An 

overview of these studies is presented here: 

- Vidal and his colleagues (Vidal et al., 2010) showed that alpha-beta band decodes 

seven visual categories across widely distributed recording sites across the human 

brain. 

- Majima and his colleagues (Majima et al., 2014) showed that delta – theta bands 

(1-10Hz) have the highest decoding accuracy compared to the other bands when 
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decoding visual object categories. They also showed that decoding at this range is 

robust and immune to changes with shuffling of the seen images unlike the other 

bands that show changes in responses with shuffling. 

- Miller and his colleagues (Miller et al., 2014) showed that the main spectral 

components that vary across stimuli of buildings, faces, and interstimulus interval 

(ISI), consist of a broadband pattern, and narrowband pattern at the theta band. 

Even though when power variation across frequencies was studied using principal 

component analysis, it was evident that the second and third principal components 

contained a robust low frequency component. Although this low frequency 

component was reported, it was not studied to compare its decoding accuracy to 

that of the broadband effect studied by this group. 

- Bastos and his colleagues (Bastos et al., 2015) reported the involvement of reported 

theta oscillation (3-4 Hz), which actually includes delta oscillation too, as a 

feedforward signal during visual attention task in macaques.  

- Isik and his colleagues (Isik et al., 2018) recently showed the ability to decode using 

single trials in a movie the onset and the actual scene at which an abrupt change 

takes place. They only studied the alpha band (8-15Hz) among the low frequency 

bandsto show the ability of low frequency bands to decode such information. 

- Davidesco and his colleagues  (Davidesco et al., 2013) showed an increase in 

broadband gamma after the onset of visual stimuli. Even though both delta and 

other low frequency modulation were present in the spectrograms after the onset of 

visual stimuli, these bands were dropped from the analysis without a clear rationale. 
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- The role of delta oscillations has been reviewed by Harmony (Harmony, 2013) 

reporting a number of cognitive functions where delta band oscillations were 

implicated such as attention and detection of motivationally salient stimuli. 

 

1.2.8. Selectivity of spectral patterns to object categories 

An important studied aspect of spectral encoding of broadband and narrowband low 

frequency is the selectivity index of each pattern to specific object categories. The 

selectivity index is a metric that studies how selective is the response of one spectral pattern 

to a specific stimuli category versus another, and how sparse is the representation of one 

spectral pattern compared to another. The significance of this metric, despite being 

measured differently across studies, is that it gives an insight into the type of information 

encoded by different spectral patterns. A sparse representation or high selectivity index 

would mean that the studied spectral pattern is sharply tuned to a specific stimulus, whereas 

a low selectivity index indicates that the studied spectral pattern is not selective to a specific 

stimulus. Both studies by Vidal et al. (Vidal et al., 2010) and by Miller et al. (Miller et al., 

2009b) showed that broadband activity has high selectivity indices whereas narrowband 

low frequency showed low selectivity index. 

 

1.2.9. Spatial distribution of spectral patterns 

The broadband patterns with high selectivity indices were shown to be more focused 

in selective brain regions (Miller et al., 2014). For example, a broadband pattern was 

reported to be highly selective to faces and places in FFA and PPA respectively (Miller et 
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al., 2016), and in brain regions corresponding to tongue and finger movements in the motor 

area (Miller et al., 2010a). On the other hand, low frequency narrowband patterns were 

more distributed within and around the brain regions selective for the specific studied 

visual or motor stimuli (Miller et al., 2009b; Miller et al., 2010a).  

 

1.2.10. Spectral patterns relation to BOLD and single neurons firing rate 

In an effort to integrate the knowledge across different functional investigation 

techniques to understand how the brain processes visual information, it was shown that 

modulation in the power of the broadband pattern of the LFP recordings correlates best 

with an increase in single neuronal firing rate (Manning et al., 2009) and with increase in 

fMRI BOLD signal (Hermes et al., 2017). Low frequency narrowband pattern could be 

positively or inversely correlated with the rate of single neuronal firing or BOLD signal 

depending on the direction of change in power at the low frequency narrowband.  

Integrating information from different brain recording and imaging techniques allows 

improves our understanding of the cognitive processing in the brain to reach an 

understanding in terms of several levels of description and the relations across them. 

 

1.3. Top-down modulation of vision 

We have this far discussed prior work that investigated vision as a sensory input to 

the visual cortex that propagates to higher-order brain regions.  However, passive viewing 

of images/videos doesn’t represent the complexity of the everyday life scenarios where 

vision is almost always oriented to a specific object in the space or affected by the 



 

40 

 

behavioral task that the person is performing. This cognitive influence on how we perceive 

the sensory input is what we refer to as top-down modulation of vision, or feedback 

processing in the brain. Attention is one of the obvious examples of top-down controls in 

the brain that has been shown to modulate visual perception when studied at the level of 

BOLD changes on fMRI (Andersson et al., 2011; Cukur et al., 2013), LFPs on ECoG 

(Ramot et al., 2012), and single neuron recordings (Fries et al., 2001). Mental imagery is 

yet another example of top-down signals that interact with the visual system. During mental 

imagery, an image is generated in the brain by a sole top-down effect in the absence of a 

visual sensory input. 

 

1.3.1. Feedforward and feedback connections target different layers in 

the visual cortex 

Feedback and feedforward projections have been shown to be distinct at the level 

of cortical microarchitecture. The granular layer (layer IV) receives feedforward 

projections (Felleman and Van Essen, 1991) that originate from the supragranular layers 

(Markov et al., 2014). These projections are reported to have gramma band synchrony 

(Buffalo et al., 2011). On the other hand, feedback projections avoid the granular layer  

(Felleman and Van Essen, 1991), and originate from the infragranular layers (Markov et 

al., 2014) with a predominant alpha-beta band synchrony (Buffalo et al., 2011; Xing et al., 

2012).   
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1.3.2. Visual attention 

An unanswered question about the encoding of visual information in LFP spectra 

is the influence of visual attention. It is known that attention can modulate the action 

potential firing rates (Moran and Desimone, 1985; Fries et al., 2001) and blood-oxygen-

level-dependent (BOLD) signals (Cukur et al., 2013) during the perception of visual 

stimuli. However, there is some evidence that, at the LFPs, the encoding of information 

about what is attended and what is seen may be differentially distributed across the 

frequency spectrum (Bastos et al., 2015; Jensen et al., 2015; Michalareas et al., 2016). 

Indeed, there is cumulative evidence that top-down (e.g., visual attention) signals are 

generally encoded at lower frequency bands (<30Hz ranging from δ (1-4Hz) to β (14-

30Hz)) in the sub-gamma range of the frequency spectrum (Klimesch, 1999; Klimesch et 

al., 2011; Jensen et al., 2015; Michalareas et al., 2016; Helfrich et al., 2017). Thus, the 

frequency bands most relevant to the encoding of visual information may depend strongly 

on how attention varies during viewing. 

In this work, we study which frequency bands are relevant to encoding natural 

scenes during sustained attention to a specific object category by analyzing LFP recordings 

from epileptic patients. We address key questions related to spectral encoding in this 

context, namely:  Which frequency bands are subject to the most power variation upon 

varying the category of attended and/or seen objects? And can attention and vision be 

separated at the spectral level? 



 

42 

 

1.3.2.1. Spectral modulations during visual attention 

1.3.2.1.1. The Famous Alpha 

Visual attention as a feedback cognitive function in the brain was mainly reported 

over the low frequency range. In the visual cortex, a decrease in the power of alpha band 

oscillations was the most commonly reported modulation taking place during visual 

attention (Pfurtscheller et al., 1994; Thut et al., 2006; Klimesch et al., 2011). This decrease 

was also shown, using magnetoencephalographic (MEG), to be lateralized to the location 

and spatial distribution of the attended object in the visual field (Ikkai et al., 2016). 

1.3.2.1.2. The other frequencies 

Albeit the extensive reporting of alpha oscillation in the visual cortex during visual 

attention tasks, other oscillations ranging from delta to beta were also reported to be 

involved in top-down attention (Klimesch, 1999; Klimesch et al., 2011; Jensen et al., 2015; 

Michalareas et al., 2016; Helfrich et al., 2017). We will refer to attention here as “top-down 

attention” since an alternate bottom-up attention effect has been described as a response to 

salient stimuli and has been shown to be encoded by high gamma oscillations (Bastos et 

al., 2015). 

1.3.2.2. Spatial distribution of category-based visual attention 

In a pioneer fMRI study (Cukur et al., 2013), Cukur and his colleagues showed the 

effect of category based visual attention on shifting human’s brain response to the attended 

category over a widely distributed brain network during observation of a movie scene. The 

effect of attended visual category of modulating the response to seen frames was present 

even in the absence of the attended category from the studied movie scene. This study was 
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one of few whole brain studies that addressed category based visual attention where the 

subjects watch a movie containing a wide range of object categories. Previous studies 

showed the effect of tuning in selective brain regions on BOLD signal (O'Craven et al., 

1999; Peelen et al., 2009), and on the response of single neurons within the early visual 

cortex (David et al., 2008) and in the pre-frontal cortex (Warden and Miller, 2010). A yet 

unexplored area of investigation is the spectral effect of attention on category-based visual 

attention in human brain. This investigation cannot be performed using fMRI studies that 

lack the ability to test the spectral variation occurring during attention. Single neuron 

recording studies didn’t address the ability of neurons within a studied brain region to 

encode for different categories during the category-based attention.  

In the work presented here, we addressed category-based visual attention using LFP 

recordings to study the spectral domains and determine which frequency patterns are 

involved in vision and/or attention, and to study the ability of those spectral pattern to 

decode different combinations of seen or attended categories.  

1.3.3. Mental imagery 

Top-down processes in the brain include a wide range of cognitive functions, and 

mental imagery is one of the best manifestations of outputs from the top-down system 

(Kosslyn et al., 2001). Visual imagination highly overlaps with visual perception, with the 

difference of lack of sensory input to the brain in case of mental imagery. Despite the 

presence of evidence from fMRI regarding the overlap between perception and mental 

imagery (Kanwisher et al., 1997; Bartolomeo, 2008), this overlap may not be complete. 

Evidence from patients with isolated deficits in one of the two domains provide preliminary 

evidence that lesions in the left temporal lobe affects mental imagery with preservation of 
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visual perception, whereas lesions within the occipital lobe may affect perception while 

mental imagery is intact (Farah, 1988). It has been also proposed that mental imagery 

ability is modality-specific (Fallgatter et al., 1997; Schifferstein, 2009) based on lesion 

studies showing isolated loss of visual mental imagery while mental motor, auditory, 

olfactory, and gustatory imagery are preserved (Bartolomeo et al., 2013). In order to better 

understand the connection between mental imagery being modality-specific and its 

preservation in cases where vision itself is damaged, Kreiman and his colleagues (Kreiman 

et al., 2000a) studied single neurons within the medial temporal lobe of human brain using 

LFP and showed that a subset of neurons were exclusively responsive to mental imagery 

as opposed to vision itself. It is not surprising that mental imagery shares neuronal 

substrates with working memory since during mental imagery the subject retain the 

imagined picture in the brain while sustaining attention to that picture for successful 

imagination (Albers et al., 2013). Mental imagery and its retention in the brain requires a 

wide repertoire of cognitive control that humans apply as part of the learning process 

leading to their survival and improvement of functional ability. Moreover, based on 

neuroimaging experiments, mental imagery uses a large network of top down cognitive 

processing that involves frontal, parietal and temporal lobes (Ishai et al., 2000; Ganis et al., 

2004). 

1.3.3.1. Visual mental imagery 

Visual perception and mental imagery in the human brain were studied using fMRI 

(Kanwisher et al., 1997; Bartolomeo, 2008) and single neurons recordings (Kreiman et al., 

2000a) with consistent overlap in observations from both modalities. However, studies in 

patients with damage to the visual circuitry provided better insight into the close correlation 
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between the processing of imagined and visualized objects. Interestingly, damages to a 

specific track affecting one aspect of vision in patients also affected the same aspect in 

mental imagery (Levine et al., 1985). To illustrate, damage to the ventral stream affecting 

the recognition of faces also affected the ability to imagine faces, whereas damage to dorsal 

stream affecting the ability to locate objects in space also affected the mental imagery of 

spatial recognition such as indicating when the eyes are closed the spatial location of 

furniture in a room (Levine et al., 1985). Along the same line, brain injury involving 

impaired visual recognition of colors also impaired the mental imagery of the 

corresponding colors too (De Vreese, 1991).  Single neurons recordings in the medial 

temporal lobe showed a high percentage of neurons whose activity is shared by vision and 

mental imagery, but still an independent subset of neurons were only responsive for either 

vision or mental imagery (Kreiman et al., 2000a). This latter finding would likely explain 

what Farah and his colleagues reported in a series of clinical cases where patients with 

lesions resulting in the impaired ability to see but not to imagine or vice versa (Farah, 

1984). 

1.3.3.2.On the difference among mental imagery, attention, and working 

memory 

One of the major debates in the field of mental imagery is the interaction with other 

cognitive processes like working memory and attention, since having a mental imagery 

during a task that involves attention to visual stimuli may also fit the definition of working 

memory (Albers et al., 2013). Mental images may also be created by modifying a memory 

or by simple generation of new object in mind and requires sustained attention to maintain 

a vivid imagination of the object. In a recent review, Pearson et al. (Pearson et al., 2015) 
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discussed how people with high ability to perform mental imagery utilize it in visual 

working memory tasks, whereas people with poor mental imagery would rely on non-visual 

strategies to perform a visual working memory task. Thus, mental imagery is not required 

for all visual working memory tasks.  

1.3.3.3. Spectral distribution of mental imagery 

Little is known about the spectral distribution of mental imagery, mainly because of 

the disconnect between research on working memory and mental imagery. Still, it has been 

demonstrated that motor mental imagery exhibits a similar decrease in beta oscillation and 

increase in gamma band to that seen in actual movement as compared to rest (Miller et al., 

2010a). On the other hand, when studied in the context of working memory, van Gerven 

and his colleagues studied ECoG recordings (van Gerven et al., 2013) and showed that 

theta/alpha band (8-14 Hz) and gamma band (65–128 Hz) modulations are associated with 

the stimuli-specific neuronal activity in different recording sites within the temporal lobe.  

1.3.3.4. Studying the visual mental state 

In part of this work, we study the response of the brain to different visual mental 

states in order to better understand visual mental imagery encoding. We designed an 

experiment that allows the comparison of the brain response to passive viewing of images, 

ISI gray screen, active looking at images to memorize them, and mental imagery of the 

memorized images. We used the same approach we applied to category-based visual 

attention (Chapter 2) to reveal the pattern of neuronal activity involved in different visual 

mental states. We anticipate that mental imagery follows the spectral patterns 

characteristics of a top-down process. This top-down process uses recall and maintenance 

of image in the working memory during the actual imagination of an image, and is 
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anticipated correlate with a low frequency component likely related to the top-down effect 

in the brain and a high gamma component to vividly recall the image and maintain it in 

memory during recall. 

1.4. The rationale and aims of the dissertation 

1.4.1. Rationale and hypothesis 

Cerebral processing of external stimuli is characterized by an intricate circuit of top-

down and bottom-up processes, also referred to as feedback and feedforward processes 

respectively. Bottom-up processes involve external sensory information whereas top-down 

processes involve cognitive activities initiated within the brain. Top-down and bottom-up 

signals often co-exist in a spiral processing paradigm that may be difficult to disentangle 

and form a substrate for physiological processes such as conscious awareness or mental 

imagery, and pathological perceptual events such as illusions or neglect. Since top-down 

and bottom-up processes represent distinct cerebral activities, they are expected to have 

different underlying circuitry characteristics. Neuronal activity recorded from the brain is 

rich in various components including phase, amplitude, and frequency bands that may 

mediate different aspects of neuronal encoding. Decomposing the signal into its frequency 

components would show the power at different frequency bands. This is known as spectral 

distribution of the signal which has been shown to reflect different communication 

pathways. In order to identify how the brain encodes top-down and bottom-up processes, 

it is key to investigate their corresponding spatial distribution and spectral distribution. 

Whereas spatial distribution provide insight into the neuroanatomical substrates of top-

down and bottom-up for a given stimulus, spectral distribution identifies the circuit-level 

interaction patterns within or across these substrates. Therefore, techniques that directly 
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records high temporal resolution brain activity, such as LFP recordings, are suited to 

address questions about spectral distribution. This work aims to investigate the spatial and 

spectral distribution of top-down and bottom-up processing using LFP recordings. We will 

approach top-down processing by studying visual attention and mental imagery, and 

bottom-up processing by studying perception of photographs. 

Visual sensory inputs are propagated in a feedforward manner from the retina to the 

primary visual cortex V1. Further processing in the visual system occurs in an integrative 

way where small receptive fields converge into bigger fields as signal propagates to higher-

order cognitive areas until the image is abstractly perceived. During top-down processing, 

information descends from abstract regions to lower levels, expectedly through differential 

diffusive tracts as opposite to bottom-up processing. Spatially, bottom-up circuits are 

expected to converge into focal regions while top-down circuits follow a divergent 

trajectory. Simulation of neuronal models showed that asynchronous increase in activity of 

single neurons result in a broadband spectral pattern characterized by an increase of power 

over a wide range of frequencies. Synchronous activity of a neuronal population at a given 

frequency results in a narrowband spectral pattern characterized by a peak in the 

spectrogram at that specific frequency. Therefore, investigating visual encoding given the 

new understanding of the relation between the spectral distribution and the underlying 

neuronal activity would provide novel insight on top-down and bottom-up loops. This work 

will benefit from the characteristics of LFPs to test the central hypothesis that top-down 

and bottom-up processes exhibit an asymmetric spatial and spectral distribution; where 

top-down activity is spatially diffused and spectrally confined whereas bottom-up activity 

is spatially confined and spectrally diffused over a broadband range. We will use LFP 
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recordings from epileptic subjects to study using visual processing in the human cortical 

areas as a model. The interest of this work is bi-dimensional: spatial and spectral. The 

spatial dimension investigates visual encoding over a wide range of cortical regions, and 

the spectral dimension studies the pattern of power spectral density over a broad spectrum 

(1-100Hz).  

1.4.2. Dissertation aims 

The specific aims for this dissertation will be covered in independent chapters and are 

listed here: 

• Specific aim 1 develops a computational approach to identify the spatial and 

spectral distribution of perceptual and attentional encoding of categorized 

visual stimuli in the human brain using LFP data. As discussed in our 

introduction, we anticipate that visual perception encoding representing bottom-up 

processing is spectrally diffuse over a broadband range of frequencies, and spatially 

confined to the temporal lobe. However, visual attention encoding representing top-

down processing is expected to be spectrally limited to a narrow band frequency 

range and spatially diffuse in the brain. In this aim, we intend to build spectral 

encoding models using broadband and narrowband spectrograms and to apply them 

to different combinations of seen and attended stimuli to disentangle the two 

components of visual object processing (attention and vision). (Chapter 2) 

• Specific aim 2 investigates the spatial and spectral distribution of mental 

imagery in the human brain. Since mental imagery is a top-down activity that 

that exhibits significant spatial overlap with vision, we predict that it will be 

spatially broad across diffuse brain regions. Yet, since mental imagery includes the 
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maintenance of images reverberating in the brain while engaging in imagination, 

we expect encoding of mental imagery to spectrally involve the gamma band along 

with the low frequency bands corresponding to the top-down effect of attention in 

the brain. We intend to test this aim by applying the same spectral encoding model 

used in specific aim 1 to different visual mental states that involve passive viewing 

of images, ISI gray screen, active viewing of images to memorize them, and mental 

imagery of the memorized images. We believe that top down and bottom-up 

processing are distinguished at the circuit level, but currently one can only speculate 

what these circuit differences might be. Successful completion of these aims will 

uncover the spectral distinction of these signals. Such information will lead to a 

better understanding of circuitry underlying top-down and bottom-up processes and 

would give potential explanations of brain pathologies such as dementia, autism, or 

attentional deficit disorders at the level of neuronal circuitries. Finally, 

understanding the mechanisms involved in encoding visual information will 

provide valuable information for the design of brain computer interfaces to 

favorably alter neuronal encoding to ameliorate disease-related deficits. (Chapter 

3) 
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CHAPTER TWO 

 

VISUAL ATTENTION 
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2.1. Introduction 

A longstanding challenge in systems neuroscience is to understand how variations 

in sensory and cognitive states are encoded in variations in the power spectrum of local 

field potentials. During sensory and cognitive experiments the frequencies at which 

variations in power are most tightly coupled to variations in experimental conditions 

depends heavily upon the brain area under study and the variables manipulated in the 

experiment.  Thus, the first step in many local field potential (LFP) studies of sensory or 

cognitive processing is to identify the most appropriate frequency bands to examine for 

relationships to the stimulus or task.  

In visual neuroscience, questions about the encoding of visual stimuli are often 

addressed by examining frequencies above 30Hz exclusively—the so-called “gamma” 

range. There is ample prior work to justify why the gamma band is the default frequency 

range of interest. For example, many studies have reported a robust and narrowly 

confined (40-60Hz) increase in power in the gamma range in response to artificial and 

natural scenes (Fries et al., 2001; Fries et al., 2008; Fries, 2009; Brunet et al., 2014). It 

has been argued that this so-called “narrowband-γ ” is in fact required for the perception 

of both objects and natural scenes via the visual cortex (Tallon-Baudry et al., 1997; 

Hoogenboom et al., 2006; Fries et al., 2008; Brunet et al., 2014).  

Recent studies have questioned the functional primacy of narrowband gamma 

responses in vision (Ray and Maunsell, 2010; Jia et al., 2013; Hermes et al., 2015). For 

example, Hermes et al. (Hermes et al., 2015) showed that while a robust narrowband 

gamma is indeed be induced by some types of visual stimuli, a narrowband gamma 

response in response to pictures of faces or buildings was largely absent for recording 
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sites in the fusiform or parahippocampal gyri, even though both areas have been heavily 

implicated in the perception of these categories of visual stimuli (Kanwisher et al., 1997; 

Chao et al., 1999; Haxby et al., 2001). Rather, these authors noted stimulus-evoked 

power variations over a wide range of frequencies--termed a “broadband response”--in 

these high-level visual areas. In another human electrocorticography (ECoG) study, 

power variation across the entire studied range of gamma frequencies (30-200 Hz)--in 

contrast to a narrowband gamma response--within the ventral temporal cortex was 

reported to be selective for the presented object categories (Miller et al., 2014; Miller et 

al., 2016). Thus, the particular spectral bands most relevant for encoding information 

about object category would appear to be an unsettled question whose answer is 

dependent on brain region and the kind of stimuli presented. 

Another unsettled question about the encoding of visual information in LFP spectra 

relates to visual attention. It is known that attention can modulate the action potential 

firing rates (Moran and Desimone, 1985) and blood-oxygen-level-dependent (BOLD) 

signals (Cukur et al., 2013) encode information about visual stimuli. However, there is 

some evidence that for LFPs information about what is attended and what is seen may be 

encoded in different frequency bands that can in principle vary independently of one 

another (Bastos et al., 2015; Jensen et al., 2015; Michalareas et al., 2016). Indeed, there is 

accumulating evidence that top-down (e.g., visual attention) signals generally are 

encoded in a lower (< 30 Hz ranging from δ (1-4Hz) to β (14-30Hz), sub-gamma range of 

the frequency spectrum (Klimesch, 1999; Klimesch et al., 2011; Jensen et al., 2015; 

Michalareas et al., 2016; Helfrich et al., 2017). Thus, the frequency bands most relevant 
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to the encoding of visual information may depend strongly on how attention varies during 

viewing. 

In this work, we study which frequency bands are relevant to encoding natural 

scenes during sustained attention to a specific object category by analyzing LFP 

recordings in humans. We address key questions related to spectral encoding in this 

context, namely:  Which frequency bands are subject to the most power variation upon 

varying the category of attended and/or seen objects? How are information about 

attended and seen object categories encoded in patterns of variation in spectral power? 

To address these questions, we prepared peri-stimulus power spectral density (PSD) 

functions for LFP signals recorded at sites on and beneath the surface of cortex, in 

hippocampus and amygdala. We decomposed the variation in PSDs across seen and 

attended stimulus categories using principal component analysis (PCA). The major PCs 

revealed the combinations of frequency bands that explain a substantial fraction of the 

variation in spectral power across different seen and attended object categories as well as 

across recording sites. We then analyzed variation in power along each PC at each 

recording site by building simple encoding models based upon seen and attended object 

category.  When then used the encoding models to determine the spatial distribution of 

recording sites that encode stimulus and attentional category variation along each PC, and 

the sharpness of tuning along each PC. Finally, we used the encoding models to perform 

model-based decoding to understand how the encoding of information about seen and 

attended stimulus category are distributed across the frequency spectrum. 
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2.2. Material and Methods 

2.2.1. Subjects 

 Eleven epileptic patients (6 males, 5 females) between 14 and 56 years old 

participated in the experiment. Prior to the experiment each participant underwent a 

surgical procedure for implantation of depth electrodes for detection of seizures within 

cortical and subcortical structures. The location of the implanted electrodes was 

determined based solely on clinical considerations. All participants provided written 

consent approved by the Institutional Review Board at the Medical University of South 

Carolina. Only one participant (S2) had an electrode grid (a transparent numbered mesh 

of electrodes that is placed subdurally the brain surface) over the lateral surface of the left 

hemisphere in addition to depth electrodes. 

 

2.2.2. Electrode features, placement, and location mapping 

 The location of subdural and depth electrodes (Ad-Tech, Oak Creek, WI) varied 

among participants and it is listed in supplementary table 2-1. The placement of 

electrodes was solely guided by clinical evaluation of each participant. Each depth 

electrode has 10 recording sites separated along the electrode by 5mm. Each electrode 

has a diameter of 2.29 mm. Participant S2 had an additional grid of 8 × 8 recording sites 

with 10mm spacing between adjacent recording sites. 

We used T1-weighted structural MR images taken for each post-implantation to 

determine the anatomical location of recording sites. First electrodes were masked in the 

structural images using “cost function masking” (Brett et al., 2001) in 

MRIcron  (MRIcron, RRID:SCR_002403). Structural images for each participant were 
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then normalized to MNI space using the Clinical Toolbox (Rorden et al., 2012) within 

SPM8 (SPM, RRID:SCR_007037; Clinical Toolbox for SPM, RRID:SCR_014096). 

Mapping of individual recording sites on a normalized brain was visualized using 

BrainNet Viewer (BrainNet Viewer, RRID:SCR_009446). After excluding recording 

sites that were clinically determined to be a source of seizure (see details below) the 858 

recording sites were distributed as follows  (Figure 2.3): frontal (7 participants , 253 in 

left hemisphere, 68 in right hemisphere), temporal lobe including medial temporal lobe 

(10 participants, 218 in left hemisphere, 148 in right hemisphere), insula (4 participants, 8 

in left hemisphere, 20 in right hemisphere), occipital lobe (3 participants, 13 in left 

hemisphere, 33 in right hemisphere), parietal lobe (7 participants, 39 in left hemisphere, 

28 in right hemisphere), and basal ganglia ( 4 participants, 23 in left hemisphere, 7 in 

right hemisphere) (Table 2.1).  
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Subject 

ID 

Electrodes location Gender Age Nb. Recording 

sites 

1 Bilateral temporal Male 44 28 

2 
Left. Grid: frontal and 

temporal. Depth: frontal 
Female 36 114 

3 
Bilateral frontal, temporal, 

insular 
Female 33 115 

4 
Bilateral temporal, occipital.  

Right frontal 
Male 19 68 

5 
Bilateral frontal, temporal, 

insular 
Female 45 132 

6 

Right: temporal, occipital.  

Left: frontal, temporal, 

insular 

Male 30 109 

7 
Bilateral occipital. Left 

temporal. 
Male 32 45 

8 Left temporal Female 41 18 

9 
Bilateral frontal, temporal, 

insular 
Male 14 96 

10 
Left: frontal, temporal, 

insular 
Male 21 81 

11 Bilateral temporal Female 56 52 
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Table 2.1. List of subjects and electrodes location.  

The table shows the distribution of 858 recording sites across subjects and brain regions. 

Unless otherwise specified to be grids, electrodes are depth electrodes. Note that the 

nomenclature of electrodes is broad; a frontal electrode goes from a deep brain region 

within frontal lobe up to frontal cortex. A temporal electrode goes from amygdala or 

hippocampus up to temporal cortex. Insular electrodes go from either anterior insula to 

frontal cortex or posterior insula to parietal cortex. And occipital electrode goes from 

medial occipital regions to occipital cortex and sometimes to parietal cortex. 

  



 

59 

 

2.2.3. Recording apparatus 

LFP data were recorded using an XLTEK EEG system (Natus Medical, Inc.). 

Sampling frequency varied across participants between 1-2 KHz.  Recordings collected 

with 2 KHz sampling rate were downsampled to 1 KHz for consistency of analysis across 

all 11 participants. 

 

2.2.4. Experimental procedure 

 Participants sat upright and viewed a laptop screen during the course of the 

experiment. The screen was positioned at eye-level at a distance from the participants of 

about 40 cm. Participants were encouraged to pause and take a break at any point during 

the experiment if they felt fatigued or distracted. 

 

2.2.5. Synching stimulus and LFP time series 

In order to align the time of presentation of each experimental stimulus with the 

recorded brain signals a photodiode was attached to the bottom right corner of the screen. 

Each stimulus frame displayed a small white box at the location of the photodiode at 

stimulus onset, and a small black box at stimulus offset. Leads from the photodiode were 

inserted into the same bedside pre-amplifier used to record brain signals. The photodiode 

timeseries (a series of on-off pulses) was then used to synchronize the brain signals with 

stimulus onsets and offsets (Rorden and Hanayik, 2014) offline. 
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2.2.6. Experimental design 

Patients fixated on a dot at the center of the laptop screen throughout each 

experiment. Each experiment consisted of a stream of natural scenes that prominently 

displayed either a human face, a building, or a car. Each image was displayed for 500 ms, 

followed by an interstimulus interval (ISI) of 1000 ms. During ISIs a blank screen 

(luminance set to average luminance of all images) was displayed; participants 

maintained fixation throughout each ISI. 

Images were displayed in 9-15 blocks of 30-50 images each. All images were 

unique and none of the images were repeatedly displayed. A total of 450 images were 

displayed. At the start of each block participants were instructed to attend either the 

“face” images, the “car” images, or the “building” images. The attended category was 

fixed during each block; it alternated across blocks in the following order: building, face, 

car (Figure 2.1). After a random number of selected ISIs during each block a large 

question mark was displayed (an average five question marks was displayed per block). 

Participants were instructed to then verbally indicate if the last seen image was of the 

same category as the attended one. The experiment provided verbal feedback on their 

response to indicate correct and incorrect trials. All participants gave correct responses on 

at least 90% of the trials. 

Given that all images belonged to one of three attended stimulus categories, the 

experiment was composed of nine distinct task conditions, each corresponding to a 

distinct (attended category, seen category) pair. These task conditions are illustrated in 

Figure 2.1.  
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Figure 2.1. Experimental design to study category-based visual attention. 

Participants viewed color photographs depicting either a car, building, or face. 

Photographs were presented for 0.5 sec followed by a 1.0 sec grey screen inter-stimulus 

interval (ISI). An experiment was partitioned into blocks of 30 to 50 photographs. At the 

beginning of each block, participants were cued to attend to one object category in the 

following order: building, faces, and cars. Photographs did not repeat across or within 

blocks. At random intervals participants were presented with a question mark after the ISI 

and asked to verbally indicate whether the last displayed photograph belonged to the 

attended object category. This design allowed the study of 9 combinations of seen and 

attended object category (for example “see building, attend car”). In the illustration 

above, columns indicate series of photographs presented within one block. The attended 

object category is indicated at the top of each column. Photographs were selected to 

illustrate each of the 9 possible combinations of seen (rows) and attended (columns) 

object categories. 
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2.2.7. Signal screening and preprocessing 

 Prior to analyzing brain signals we screened all recordings to identify recording 

sites suspected by each patient’s clinical team to be near a locus of seizure-related 

activity, and recording sites corrupted by large artifacts that were obviously not related to 

healthy brain activity. We also excluded recording sites located above the surface of the 

brain, as identified by inspecting the post-op structural images. A total of 286 out of 1144 

recording sites were excluded in this way. 

After screening, all signals were referenced to a global mean. That is, for each participant 

independently a global average timeseries was computed and subtracted from the 

timeseries of each individual recording site. 

 

2.2.8. Peri-stimulus power spectral density functions 

 For each recording site, the LFP starting from stimulus onset and ending 500ms 

after (i.e., the total duration of each stimulus display) was extracted and used to estimate 

a PSD function (Miller et al., 2014; Miller et al., 2016). PSD frequencies ranged from 

1Hz  (DC offset was excluded) to 100Hz with increment of 1Hz; frequencies between 56 

and 63Hz were excluded to compensate for a 60Hz line artifact. Each of these single-trial 

PSDs were normalized by calculating the logarithmic value of dividing single-trial PSDs 

over the mean power of all single-trial PSDs (log [𝑃𝑆𝐷 〈𝑃𝑆𝐷〉⁄ ], where 〈∙〉 indicates an 

average across all trials for the given recording site) as in (Miller et al., 2016) Single-trial 

PSDs for each recording site were then grouped according to task condition (i.e., 

according to the [attended category, seen category] pair associated with each trial) and 

averaged to construct a condition-specific average PSD. For each recording site this 
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process resulted in nine condition-specific average PSD functions. A baseline PSD was 

also calculated by averaging across PSDs prepared from the first 500ms of signal during 

each ISI.  Thus, a total of 8580 condition-specific PSDs were calculated from 858 

recording sites across 11 participants. 

 

2.2.9. Principal Component Analysis 

 The 8580 PSDs were treated as independent 93-dimensional (one dimension for 

each of the frequencies in the PSD) observation vectors in PCA. This resulted in 93 

orthogonal spectral components. Each spectral component was itself a 93-dimensional 

PSD function, with each value indicating power at each of the studied 93 frequency 

points. In this work we study the top 3 components, which accounted for roughly 40% of 

the variance.  

 

2.2.10. PC-specific encoding models 

 We investigated how variations in spectral power along each PC encoded 

information about variation in task conditions by constructing PC-specific encoding 

models. Encoding models were constructed independently for each recording site and 

participant. To construct models for participant k we first applied PCA to the PSDs from 

the other 10 participants. We then projected the single-trial PSDs for participant k onto 

the first, second, and third PCs resulting from this participant-specific PCA. Thus, for 

each recording site we have 450 projections (one per experimental stimulus) per PC 

describing variation in spectral power along the PC. These projections are the 

“responses” that are predicted by each PC-specific encoding model. Formally, for a 
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single recording site and participant let 𝒒𝑖  be the PSD calculated for trial i and let 𝒑𝑗  be 

the jth principal component. Then 𝑟𝑖𝑗 =  𝒒𝑖 ⋅ 𝒑𝑗 is the single-trial response for PC j that is 

predicted by each encoding model. The encoding model for a single recording site in 

participant k is specified as a simple linear combination of task conditions: 

𝒓𝑗 = 𝑆𝒘𝑇 + 𝑏 + 휀 

where 𝒓𝑗   is an (𝑁𝑡𝑟𝑎𝑖𝑛 × 1) vector of “responses” along PCj, S is the (𝑁𝑡𝑟𝑎𝑖𝑛 × 9) design 

matrix of the experiment (each column indicates a task condition), w is (9 × 1) vector of 

condition weights (i.e., regression parameters), b is an intercept term, and is 휀 zero-mean 

Gaussian noise. The number Ntrain indicates the number of training samples. 

The values of the encoding model weights w and intercept b were determined for each 

recording site via simple linear regression. Regressions were performed by applying a 10-

fold leave-k-out procedure to a subset of 360 trials that were used only for training and 

evaluating encoding models (the remaining Nval = 90 trials were used for decoding 

analyses as described below). This means that for each recording site, 10 separate 

regressions were performed. Each regression used a different set of Ntrain = 288 trials that 

were randomly sampled from the 360 trials used to construct encoding models. On each 

of these 10 folds, the regression model was evaluated on the remaining Ntest = 72 trials. 

We used Pearson correlation between model predictions and the observed responses 𝒓𝑗. 

The “prediction accuracy” that we report for each encoding model is the average Pearson 

correlation across all 10 folds. Here an encoding model is considered “accurate” if the 

Pearson correlation exceeds a significance threshold (p < .05) determined by a random 

permutation test (permutation of prediction and observed responses across trials). The 
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encoding model weights that we discuss and analyze below are the average of the weights 

across all 10 folds. 

 

2.2.11. Tuning width of encoding model 

For analysis of tuning width encoding model weights for each recording site were 

normalized to span a (0.0, 1.0) range and then ranked by magnitude. Tuning width is the 

rank of the lowest-ranking weight that has a value of greater than 0.5. A “sharply” tuned 

encoding model would have a tuning width of 8, indicating only a single weight exceeds 

the middle of the (normalized) range of weight values. A “broadly” tuned encoding 

model would have a tuning width of 4 or 5, indicating an even distribution of weights 

about the middle of the range. Tuning width is shown in Figure 2.6 by plotting weight 

value against weight rank. For the extreme case of broad and completely non-specific 

tuning the resulting plot would appear as flat line. For recording sites with highly-specific 

encoding of a subset of task conditions these plots will reveal curves with a sharp peak 

(corresponding to the largest model weight) and rapid fall-off. 

 

2.2.12. Model-based decoding analysis 

 A decoding analysis was performed on the Nval = 90 trials that were not used to 

estimate or evaluate the encoding models. Decoding analyses were performed using data 

from participants S6-S11 only, as these were the participants for which the largest 

common number of trials (consisting of 432 trials) was acquired. 
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 Here, the decoding objective is to predict the seen or attended stimulus category 

associated with a set of responses sampled from a population of recording sites. Decoding 

is performed independently for each PC. As above, a “response” 𝑟𝑗  associated with the jth 

PC, 𝒑𝑗  is defined as the projection of a PSD q onto the PC, 𝑟𝑗 =  𝒒 ⋅ 𝒑𝑗  . Below we will 

suppress the subscript j, as it is understood that all responses refer to a specific PC. 

Let s1, s2, s3 indicate the seen stimulus categories of “face”, “building”, and “car”, 

respectively. To decode a seen stimulus category, say s2, we first form a response vector 

𝑟𝑠2 associated with category s2. Thus, for each recording site in the population, we 

randomly select a trial associated with the category s2 under each attention condition. We 

then concatenate these trials across all recording sites. For example, to form a response 

vector associated with the seen category “building”, we randomly sample for each 

recording site a trial associated with “see building, attend face”, “see building, attend 

building” and “see building:attend car”. Thus 

𝒓𝑠2 = (𝑟𝑠2:𝑎1
1 , 𝑟𝑠2:𝑎2

1 , 𝑟𝑠2:𝑎3
1 , … , 𝑟𝑠2:𝑎1

𝑀 , 𝑟𝑠2:𝑎2
𝑀 , 𝑟𝑠2:𝑎3

𝑀 ) 

where the superscript indexes a recording site, M is the total number of recording sites in 

the population, the subscripts a1, a2, a3 index the three attended categories “face”, 

“building”, “car”, and the notation s2:a1 indicates a trial associated with “see building, 

attend face”, and so on. The length of a response vector for a given seen stimulus 

category is thus 3𝑀. Note that response vectors for attended category can be formed in a 

similar way, by fixing the attended category and allowing the stimulus category to vary. 

 To perform model-based decoding of seen stimulus category from a response 

vector, say 𝑟𝑠2, we use the encoding model for each recording site in the response vector 
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to generate a predicted response vector 𝑟𝑠1
′ , 𝑟𝑠2

′ , 𝑟𝑠3
′  for each of the 3 possible stimulus 

categories. We then calculate a Pearson correlation between the response vector 𝑟𝑠2, and 

each of the predicted response vectors 𝑟𝑠1
′ , 𝑟𝑠2

′ , 𝑟𝑠3
′

 . Decoding is successful if the 

correlation between the response vector and its matching predicted response vector is 

higher than the correlation the between response vectors and the other two, non-

matching, predicted response vectors. In this example, decoding would be successful if 

the correlation between 𝑟𝑠2 and 𝑟𝑠2
′  were larger than the correlation between 𝑟𝑠2 and 𝑟𝑠1

′ , 

and also larger than the correlation between 𝑟𝑠2 and 𝑟𝑠3
′ . We refer to successful decoding 

of a response vector as a “hit”. 

 To calculate the decoding performance for seen stimulus categories we formed 

300 response vectors for each seen stimulus category, for a total of 900 response vectors. 

Decoding performance is the number of “hits” divided by the total number of response 

vectors. Chance performance is 33%, since each response vector has a ⅓ chance of being 

successfully decoded by randomly selecting a seen stimulus category. Decoding 

performance for seen stimulus category was calculated independently each PC. 

To perform model-based decoding of attended stimulus category response vectors  

𝑟𝑎1, 𝑟𝑎2, 𝑟𝑎3  were correlated with predicted response vectors 𝑟𝑎1
′ , 𝑟𝑎2

′ , 𝑟𝑎3
′   as described 

above. Performance was calculated by counting “hits” across # response vectors, as 

described above. Decoding performance for attended stimulus category was calculated 

independently for each PC. 

 As shown in Figure 2.9, decoding performance was calculated for populations of 

varying sizes (i.e., populations with varying numbers of recording sites) ranging from 1 
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to 401 recording sites. To select recording sites for a population of a given size all 

recording sites were rank-ordered according to their prediction accuracy. Thus, the 

population of size 1 contained the single recording site with the highest prediction 

accuracy. The population of size 2 contained the recording sites with the highest and 

second-highest prediction accuracy, and so on. We emphasize that none of the trials used 

to measure prediction accuracy were used to measure decoding performance. 

2.2.13. Statistical analysis 

Statistical analyses were performed using MATLAB 2018b (Mathworks, MA) and 

Graphpad Prism 8 (GraphPad Software, CA). Permutation tests were performed for 

enrichment analyses and comparisons to random distributions. PCA analysis was 

performed as described above. One-sample t-test was used to compare accuracy of 

decoding models to random, and student’s t-test was used to compare accuracy of 

decoding between vision and attention. Unless otherwise specified, statistical significance 

is reported at α < 0.05. 

 

2.3. Results 

Eleven participants performed a category-based visual attention task, where they 

were instructed to look at photographs of buildings, cars, and faces shown for 500 msec 

and followed by ISI for 1000 msec while attending to one of those three categories at a 

time. The design of the experiment allows the study of nine combinations of 

attended/seen categories. 
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2.3.1. Broadband and narrow, low-frequency components explain 

almost half the variance in spectral power across seen and 

attended stimulus categories 

To determine the combinations of frequency bands that explain the most variance 

in spectral power across seen and attended categories we first prepared single-trial, peri-

stimulus power spectral density functions (PSD) for each recording site in the dataset 

(858 number of recording sites across 11 participants). Single-trial PSDs were log-

transformed and normalized (log [𝑃𝑆𝐷 〈𝑃𝑆𝐷〉⁄ ] where 〈∙〉 indicates an average across all 

trials for the given recording site; (Miller et al., 2016)). Normalized PSDs were then 

grouped according to the combination of seen and attended category associated with each 

trial, and then averaged within-group. This resulted in 9 normalized mean PSDs, one for 

each pair of seen stimulus category and attended stimulus category. An additional PSD 

corresponding to an average across all the inter-stimulus intervals was also prepared.  

PCA analysis was performed on pooled data from all participants except the 

studied participant as described in the methods. We found that variance was rather 

broadly distributed across PCs (Figure 2.2C), with the top three PCs accounting for less 

than half (41.7%) of the total variance in spectral power (Figure 2.3 bottom left). PC1 

(24% of total variance) had a broadband profile indicated by elevated (non-zero) power 

across at all frequencies in the studied range (1-100 Hz). PC2 (8.8%) and PC3 (7.9%) had 

narrow, low-frequency profile as indicated by non-zero power over a narrow frequency 

range. Specifically, PC2 concentrated most non-zero power in a 𝛿 − 𝜃 frequency range 

(1-8 Hz). PC3 concentrated non-zero power primarily in a 𝛼 − 𝛽 frequency range (8-30 

Hz). PCA applied to single-participant data revealed some variation in the ranking of the 
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top three PCs (Figure 2.3), but the basic motif of one broadband and two narrow, low-

frequency components were conserved across participants. Thus, as seen and attended 

categories varied in our experiment the largest variation in spectral power was along a 

broadband component (corresponding roughly to a variation in the sum power across all 

frequency components), while the second and third largest variations in spectral power 

were restricted to low (sub-gamma) frequencies.   
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Figure 2.2. Principle component analysis (PCA) of peri-stimulus power spectral 

density (PSD) functions.  

(A) Brain maps illustrating the location of all recording sites from 11 participants. Each 

black dot in the brain map in the top left indicates the location of one recording site, plotted 

in MNI space. (B,C) Peri-stimulus PSDs from a single recording site in the right calcarine 

cortex (B) and left hippocampus (C) from participant 6. Each sub-plot shows the average 

(shading indicates SEM) normalized, log-transformed PSD corresponding to each 

combination of seen and attended object category and for the ISI (attended object category 

is underlined in each subplot). These condition-specific averages were performed over all 

single-trial PSDs for a specified combination of seen and attended category (or for the ISI). 

Single-trial PSDs are derived from the local field potential (LFP) beginning at onset of 

stimulus for a duration of 0.5 sec. A total of 8580 condition-specific PSDs were calculated 

from 858 recording sites across 11 participants. (D) Results of PCA applied to all 

condition-specific PSDs. The top three principal components (PCs) are shown (labeled 

PC1, PC2, and PC3). PC1 characterizes broadband variation in spectral power; PC2 and 

PC3 are selective for power variation in narrow, low-frequency bands. 
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Figure 2.3. Subject based PCA analysis show similar results to the global PCA 

analysis applied on group of subjects 

Upper left plot: The spectral patterns for the top three PCs are calculated based on 

condition-specific PSD from all participants except the tested participant to avoid double 

dipping. Lower left plot. PC1 is color coded in light blue, PC2 in orange, and PC3 in light 

green. Percentage of total variance explained by each PC shows that PC1 represents 

24.4%, PC2 represents 8.8%, and PC3 represents 7.9%. All other plots: similar PCs’ 

patterns are also broadly seen in the top three PCs calculated for each participant aside. 

Broadband PC1 is consistently broad across all participants, with a higher bump around 

40 Hz for S1. As for PC2 and PC3, the pattern is broadly conserved with a low frequency 

(< 10 Hz) high power, and low frequency bump (roughly less than 30Hz). Note that the 

number of recording sites used for PCA analysis varies across participants between 28 

and 132 recording sites. This variation account for the fluctuations we see in the plots of 

top three PCs. Also note the close percentage of representation of each of PC2 and PC3 

in the lower left plot. This explains why the patterns in PC2 and PC3 calculated for each 

participant flips order for some participants like in S10. For each participant, above the 

individual plots of PC1-3, the corresponding distribution of recording sites across the 

brain (in black) of the participant is displayed with sagittal view. 
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2.3.2. Broadband and narrowband encoding explain a significant 

fraction of variance in the temporal lobe 

In order to determine how information about seen and attended categories was 

encoded in each principal component, we independently estimated an encoding model for 

each of the top three PCs, and for each recording site. The encoding model predicts, for 

each trial, the spectral power along each PC as a function of the seen/attended stimulus 

category associated with the trial (Figure 2.4A). Thus, the encoding models used here 

were quite simple: for a given PC and recording site, a design matrix (independent 

variable) indicating the seen and attended category associated with each trial was 

regressed onto the projection the PSD onto the PC (see methods above). We estimated 

encoding models independently for each PC and recording site using linear regression. 

We evaluated the prediction accuracy of the encoding model for each recording site and 

PC by calculating the Pearson correlation between the model’s predictions and the 

observed spectral power along the PC across a held-out set of testing trials (Figure 2.4B). 

For many recording sites this model achieves fairly high prediction accuracy (Figure 

2.4C-E). 
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Figure 2.4. Spatial distribution of recording sites with an accurate encoding model 

for each PC 

(A,B) Spatial distribution of recording sites with an accurate encoding model for each PC. 

(A,B)  Condition-specific PSDs (A) at each recording site were projected onto each PC. 

Independently for each PC and recording site an encoding model was constructed. The 

encoding predicted power along each PC as a function of the 9 conditions in the 

experiment, where each condition is a pairing of seen and attended object category. This 
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panel shows the construction of an encoding model for the recording site illustrated in 

Figure 1. Our encoding model was evaluated for participant S6 as an illustrative example. 

(A) shows the predicted PSDs for a single recording site in the left hippocampus across the 

different attended/seen categories using the encoding model. (B) The PSDs predicted by 

the encoding model for each image in the test trials were projected over PC1, PC2, and 

PC3 and the projects were correlated with the actual projections of measured PSDs for the 

same trials. Shown in (B) is the correlation of predicted and measured projections for test 

trials over PC1 for a recording site shown in (A). The black dots represent the predicted 

projections for each category of test trials using the encoding model trained on an 

independent set of 80% of total trials whereas the colored dots represent the actual 

projections for each test trial. The different colors refer to different seen/attended category. 

The resulting recording site-wise predicted PC1 projection of each condition is used to 

calculate the encoding accuracy of the studied recording site; defined as the correlation 

coefficient between the predicted condition projections and the measured ones. (C-E) The 

same method described in (B) is applied to all 858 recording sites across all three studied 

PCs (PC1-PC3). Top panels: Histogram illustrating the distribution of recording sites by 

encoding accuracy for PC in log-scale (PC1 in blue, PC2 in orange, PC3 in green). The 

dashed line represents the accuracy threshold used to define accurately encoding recording 

sites. Middle panels: the spatial distribution of accurately encoding recording sites 

represents the anatomical distribution in the human brain presented in the MNI space across 

the 11 participants for PC1 (C, N=75 recording sites), PC2 (D, N=195 recording sites), and 

PC3 (E, N=111 recording sites). L: Left hemisphere, R: Right hemisphere. Significantly 

more encoding recording sites were observed for PC2 and PC3 compared to PC1 (Figure 

2.5). Bottom panels: The corresponding distribution of the accurate encoding recording 

sites across the brain regions is plotted below the corresponding brain map where for each 

brain region the percentage of recording sites within the studied region encoding for the 

corresponding PC is indicated in corresponding colors of PC1 (light blue), PC2 (orange), 

and PC3 (light green). For each brain region, we assessed whether accurately encoding 

recording sites are specifically enriched (i.e. more than expected from initial distribution 

of all studied recording sites) using permutation analysis. Results of permutation are shown 

in black as mean +/- SEM. Only temporal lobe showed significantly more recording sites 

than random that accurately encode for PC1, PC2, or PC3. Permutation test with N=1000 

iterations.*p<10-3.  
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Encoding models were considered accurate if their prediction accuracy exceeded a 

common threshold (Pearson correlation > 0.19, p < .05; permutation test). Recording sites 

with accurate encoding models for all three PCs were identified in the temporal, prefrontal, 

occipital, insular and parietal cortex (Figure 2.4C-E). There were no recording sites within 

the precentral gyrus that showed accurate encoding for any of the 3 PCs (0/8 studied 

recording sites). We observed significantly fewer accurately encoding recording sites for 

PC1 compared to either PC2 or PC3 (Figure 2.5A), and a more distributed spatial pattern 

for PC2 and PC3 compared to PC1 (Figure 2.5B). 

To identify brain areas in which accurate encoding of the seen and attended 

categories was enriched we compared the number of recording sites with accurate encoding 

models in each cortical lobe to the number expected if prediction accuracy for each 

recording site were randomly sampled from the empirical histograms in Figures 2.4C-E.  

We found that in the temporal lobe more recording sites than would be expected by such 

random sampling (n = 45, 103, 63 for PC1, PC2, PC3, respectively; p=0.0009, 0.0006 and 

0.0001 permutation test) had accurate encoding models for PC1-3. In the prefrontal lobe, 

fewer recording sites than would be expected by such random sampling (n = 14, 53, 24 for 

PC1, PC2 and PC3, respectively; p=0.0002, 0.0005 and 0.0000, permutation test) had 

accurate encoding models for PC1-3. For all other lobes the number of recording sites that 

exceeded the prediction accuracy threshold was not statistically different from chance 

(Figure 2.4C-E, bottom panel). 
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Figure 2.5. Spatial and spectral distribution of accurately encoding recording sites. 

(A) Among total recording sites investigated at each PC, the pie charts show the proportion 

of accurately encoded recording sites for the studied PC. There was a significantly higher 

proportion of accurately encoding recording sites in PC2 and PC3 compared to PC1. Fisher 

exact test. N=848 total recording sites. ***p<0.001 comparing each PC to PC1. (B) 

Distribution of accurately encoding recording sites for PC1 (broadband pattern, light blue) 

and PC2/3 (narrowband pattern, orange) across the brain showing the more widespread 

distribution of accurately encoding recording sites in PC2/3 compared to the focal 

distribution in PC1. 
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To identify whether encoding of each of the three PCs is more prominent in specific 

brain region, we performed enrichment analysis to check whether accurately encoding 

recording sites are enriched in a specifically studied brain region using permutation tests. 

We found that in the temporal lobe more recording sites than would be expected by the 

distribution of studied recording sites (n = 45, n = 103, n = 63 for PC1, PC2 and PC3, 

respectively; p=0.0009, 0.0006 and 0.0001 permutation test) exceeded a threshold on 

prediction for all PCs. In the prefrontal lobe, fewer recording sites than would be expected 

by the distribution of studied recording sites (n = 14, n = 53, n = 24 for PC1, PC2 and PC3, 

respectively; p=0.0002, 0.0005 and 0.0000 permutation test) exceeded the prediction 

accuracy threshold for all PCs. For all other lobes the number of recording sites that 

exceeded the prediction accuracy threshold was not statistically different from chance 

(Figure 2.4C-E, bottom panel). 

 

2.3.3. Broadband encoding model is more sharply tuned than 

narrowband encoding models 

Are power variations along each PC equally dependent on all seen/attended 

categories, or only on select ones? To address this question we developed a selectivity 

index for each encoding model. Selectivity was defined as the rank of the encoding 

model parameter that exceeded the middle of the range of weight values. Note that each 

encoding model is specified by 9 parameters--one for each seen/attended category pair. A 

highly selective, or “sharply tuned” encoding model would have only one parameter at an 

extremum (a value well above or below the middle of the range). A non-selective or 

“broadly tuned” encoding model would have all parameter values uniformly distributed 
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about the middle of the range. By this measure we find that encoding models for PC1 are, 

as a population, significantly more sharply tuned than encoding models for PC2 and PC3 

(Figure 2.6A, Figure 2.7). This was true when tested for all recording sites (Figure 

2.6B, Figure 2.7) , and when tested for only recording sites in the temporal lobe (data not 

shown). Thus, of the top three principal components the one that is most sharply tuned, 

PC1, is the component that distributes power most uniformly across the spectrum. When 

PC1-selective recording sites in the temporal lobe were identified by the specific 

selectivity to which each recording site was tuned (face vs. building vs. car) (Figure 2.8), 

face-selective recording sites clustered within the fusiform gyrus and building-selective 

recording sites clustered within the parahippocampal gyrus (Figure 2.8).   
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Figure 2.6. Sharpness of tuning to seen and attended object categories.  

(A) Comparison of sharpness of tuning across three PCs for one recording site. 

Parameters (normalized) of the encoding model for PC1-3 are plotted in blue, orange, 

green, respectively. For each PC the parameters of the encoding model were rank-ordered 

along the x-axis.  The number rank of the smallest-valued parameter (arrows) above the 

above the middle of the normalized range (dashed line at 0.5) was then identified. High 

(8-9) or low (1-2) values of this response index indicate relatively sharp tuning. Mid-

range values (3-7) indicate relatively broad tuning. For the recording site shown here 

from the left hippocampus (recording site 37) of participant S11, the index for PC1 is 9 

(blue arrow), indicating sharp tuning of the response along the broadband component. 

Indices for PC2 and PC3 are 3 (orange arrow) and 6 (green arrow), respectively, 

indicated relatively broad tuning in the response along the low-frequency components. 

(B) Rank-ordered tuning plots for every single recording site with an accurate encoding 

model for PC1, PC2 and PC3 are plotted in thin line with color corresponding to the 

studied PC. PC1: mean plotted in dark blue with SEM at each point. PC2: mean plotted in 

dark orange. PC3: mean plotted in dark green. Responses along PC1 are on average 

significantly more sharply tuned than responses along PC2-3. Statistical comparisons of 

ranks is shown in Figure 2.7. (C-E) Histogram of the number of recording sites with 

accurate encoding models for each of PC1 (C), PC2 (D), and PC3 (E) for each value of 

the response index. Response indices for PC1 are skewed toward the extremum relative 
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to PC2-3, indicating sharper tuning of the broadband PC1 response than the low-

frequency PC2 and PC3 responses.  
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Figure 2.7. Comparison of selectivity index for each PC across all trials.  

Box and whisker plot showing the median (line in box) and range of selectivity index for 

each PC across all trials. Mean is denoted by (+) sign. Rank order comparison was 

performed using Kruskal-Wallis test with Dunn’s correction for multiple comparisons. 

N=75 (PC1), 195 (PC2) and 111 (PC3). ****P<0.0001 compared to PC1. Only 

significant comparisons are shown. 
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Figure 2.8. Spatial distribution of recording sites with accurate-encoding in PC1 and 

high selectivity index split by selectivity category. 

Shown in light blue are dots representing each recording site that had accurate encoding 

on PC1 and was sharply tuned for a specific object category (Face, Building or Car) with 

selectivity index ≥ 7.   
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2.3.4. Information about seen and attended categories are unequally 

distributed across the top principal components 

Given previous results (Klimesch, 1999; Klimesch et al., 2011; Miller et al., 2014; 

Jensen et al., 2015; Michalareas et al., 2016; Miller et al., 2016; Helfrich et al., 2017), we 

suspected that variations in spectral power along the top three PCs might encode different 

levels of information about seen and attended stimulus categories. Thus, we used a 

model-based decoding analysis to compare the amount of information about seen and 

attended stimulus categories encoded by each PC. This analysis used the encoding 

models to decode from measured brain activity the seen or attended stimulus category. 

The measure of brain activity in this case was the projection of each recording site’s peri-

stimulus PSD onto a single PC (i.e., the dependent variable of the encoding model for 

each recording site). Thus, the analysis allowed us to independently decode seen and 

attended stimulus category from variations in power along each PC. By comparing the 

accuracy of decoded seen stimulus category to the accuracy of decoded attended stimulus 

category we were able to quantify the relative amount of information each PC encodes 

about vision and attention (Figure 2.9A-C). 
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Figure 2.9. Model based decoding of seen and attended categories.  

Model-based decoders were used to identify the seen or attended object category encoded 

in spectral power along PC1, PC2, and PC3 from populations of recording sites. The 

relative amount of information about seen and attended object category varies across PCs 

and brain region. (A-B) How populations were selected. (A) Recording sites were selected 

on the basis of their encoding model prediction accuracy. The plot shows a histogram of 

encoding model accuracies for PC1 (similar histograms were constructed PC2 and PC3).  

Color indicates prediction accuracy.  (B) Populations of varying size were constructed by 

selecting recording sites in order of encoding model prediction accuracy. The population 
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of size 1 (squares indicate recording sites; circles delimit populations) contains the single 

recording site whose encoding model has the highest prediction accuracy. The population 

of size 2 contains the recording sites whose encoding models have the highest and second-

highest prediction accuracies, and so on. The largest population contains all recording sites. 

(C) The procedure for decoding seen object category from a population of recording sites 

(a similar procedure was applied to decode attended object category). The first three 

columns on the left of the matrix indicate the 9 different conditions of the experiment. 

Capital letters indicate the seen, attended object categories, where B=building, F=face, and 

C=car. Attended object category is fixed along each column; seen object category is fixed 

along each row. The rightmost column indicates the seen object category to be identified 

from measured spectral power (along PC1 in this example) in the population of recording 

sites. In this example, the “true” seen object category is building. Thus, measured spectral 

power was obtained from three randomly selected trials (top row of the matrix) in which 

the seen object was building and the attended object was car, face and building, 

respectively. Measured spectral power for each recording site and trial were concatenated 

to form the “measured pattern” illustrated by the plot at top right. In this plot recording site 

and condition are arranged along the x-axis, and measured spectral power is indicated on 

the y-axis. To decode seen object category from this pattern of measured spectral power 

the encoding model for each recording site in the population was used to generate 

“predicted patterns” (bottom three plots at right) corresponding to each of the three seen 

object categories. That is, for each seen object category predicted spectral power for each 

recording site is concatenated across the three attended object categories. Each of the three 

predicted patterns was then correlated with the measured pattern. If the predicted pattern 

corresponding to the true seen object (in this example “building”, indicated with an asterix) 

was most highly correlated with the measured pattern, decoding was considered successful 

and marked as a “hit”. (D) Decoding performance was estimated for spectral power 

measured along PC1 (top row), PC2 (middle row) and PC3 (bottom row). Columns indicate 

that recording sites were sampled from all available sites (left column), temporal lobe only 

(middle column E), or occipital lobe only (right column F).  Each plot shows percentage 

of hits (y-axis) across 900 attempts (300 attempts per each object category) for populations 

of varying size (x-axis). Decoding of seen object category (red curves) and attended object 

category (brown lines) was performed independently. Statistical analysis is presented in 

Figure 2.10. 
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We observed a consistent pattern of differential decoding of information about 

seen and attended stimulus category regardless of whether brain activity was sampled 

from all lobes (401 recording sites) or the temporal lobe only (170 recording sites) when 

compared to random (Figure 2.9D,E). For PC1 and PC2 decoding accuracy for seen and 

attended stimulus categories was close to parity (Figure 2.9D,E, top and middle); 

however, given a sufficiently large (> 50 recording sites) population, PC3 decoding 

accuracy was significantly better for attended than for seen stimulus category (Figure 

2.9D,E, Bottom). We observed a slightly different pattern when activity was sampled 

from occipital lobe only (32 recording sites): for PC1 only seen stimulus category could 

be decoded more accurately than chance (Figure 2.9F). Thus, the spectral power along 

the first (broadband) PC encodes at least as much information about seen as attended 

stimulus category; spectral power along the second (𝛿 − 𝜃) PC appears to encode roughly 

the same amount of information about vision and attention; spectral power along the third 

(𝛼 − 𝛽) PC appears to encode significantly more information about attended than seen 

stimulus category (Figure 2.9D-F). 
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Figure 2.10. Comparison of decoding accuracy for each PC to random.  

One-sample t-test used to compare each sample to random (33.33% accuracy) for 

decoding specific categories (face, building or car). *P<0.01, **P<0.0001. 
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2.4. Discussion 

2.4.1. Summary of results 

We analyzed how variations in the spectral power of local field potentials encode 

variations in seen and attended object category. Using PCA, we found that 40% of the 

variance in spectral power is explained by variation in broadband (PC1) power and by 

variation in low (𝛿 − 𝜃 for PC2, 𝛼 − 𝛽 for PC3) frequencies specifically. Power variation 

along the broadband and low-frequency PCs encoded information about variations in 

seen and attended object category at recording sites in occipital, temporal, insular, 

parietal and prefrontal cortex. Encoding was enriched in the temporal lobe, which is well-

known to maintain representations of object identity and category. 

Although broadband PC1 explained the single largest fraction of variance, it was 

less tightly coupled to variations in seen and attended stimulus category, as evidenced by 

the fact that fewer recording sites have an accurate PC1 encoding model than they do for 

the low-frequency PC2 or PC3 encoding models. This means that, relative to PC2 and 

PC3, a larger fraction of the variance explained by PC1 is not related to variations in seen 

or attended stimulus category. This “noise” may reflect variation in signal properties 

across different participants, different brain areas, or just the inevitable trial-to-trial 

variability of signals recorded at one site (which will be reflected in the SEM of the 

within-group average PSDs that are entered into the PCA). 

For recording sites with an accurate PC1 encoding model, variation in power 

along the broadband PC1 was more sharply tuned than for the low-frequency PC2 and 

PC3. The selective tuning of power along the broadband PC1 is reminiscent of the 

selective BOLD responses to object category observed in temporal lobe (Bar et al., 2001; 
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Haxby et al., 2001). Indeed, previous work suggests that broadband LFP and the BOLD 

response are tightly coupled (Hermes et al., 2017). 

Although information about seen and attended object categories was encoded by 

power variations along each PC, the relative amount of information about vision and 

attention varied across PCs. Broadband PC1 encoded slightly more information about 

seen that attended category. The 𝛿 − 𝜃 band PC2 robustly encoded information about 

both seen and attended category. The 𝛼 − 𝛽 band PC3 encoded much more information 

about attended than seen categories. 

 

2.4.2. Information about seen and attended object category is encoded 

by variation in power at many frequencies 

Our findings are consistent with previous work that reported encoding of object 

category in broadband and low-frequency power variations. (Bosman et al., 2012; Miller 

et al., 2014; Jensen et al., 2015; Michalareas et al., 2016; Miller et al., 2016). In this work 

we studied the encoding of both seen and attended objects category across a spatially 

broad distribution of recording sites. We found that the encoding of attended object 

categories is, like the encoding of seen object categories, encoded by power variation in 

multiple spectral components.  

We did not observe a spectral component that resembled a narrowband gamma 

response (Fries et al., 2008; Fries, 2009). The absence of an obvious narrowband gamma 

component doesn't mean that the gamma band is not an essential component of the 

neuronal processing of seen and attended object categories. Our findings simply indicate 
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that a narrowband gamma response did not account for enough of the variance in spectral 

power during our experiment to merit its own PC. Also notable is an absence of a spectral 

component resembling a broad (high-pass) gamma response (Jacobs and Kahana, 2009; 

Vidal et al., 2010). One possible explanation for this finding (Miller et al., 2014) is that 

broad, high-pass gamma responses reflect a broadband effect that is masked by a 

suppressed low frequency (sub-gamma) narrowband response. Therefore, by decoupling 

the broadband and low-frequency narrowband patterns, the PCA performed here unmasks 

the low-frequency components observed in PC2-3 and reveals the underlying broadband 

effect in.  

Our results may be interpreted as endorsing an expansive, inclusive approach to 

analyzing the relationship between variations in spectral power and task conditions, 

particularly for tasks that involve interacting top-down and bottom-up signals. Focusing 

exclusively on a single frequency band, such as narrow-band gamma, may obscure 

components of the spectrum that encode a significant amount of information.  

The approach we used to answer which frequency bands are subject to the most power 

variation upon varying the category of attended and/or seen object doesn’t limit the study 

of PSD variance to certain frequency bands.  

 

2.4.3. The broadband response 

Our results provide a detailed characterization of the broadband response to seen 

and attend object categories. We now briefly summarize its most salient characteristics. 
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Broadband responses are promiscuous. Projecting a PSD onto the broadband components 

effects an equally-weighted sum of powers at all frequencies. Therefore, power variations 

at any frequency will register as non-zero variance along the broadband PC. This makes 

broadband power variations sensitive to both signal and noise, broadly construed. This is 

most likely why the broadband PC explains the most variance in PSDs but at the same 

time offers the fewest recording sites with an accurate encoding model. 

Interestingly, where the broadband response is coupled to variation in seen and 

attended category (i.e., at recording sites with an accurate encoding model), it is more 

selective than low-frequency components (PC2-3). Of the three PCs, PC1 was the most 

sharply tuned. In the temporal lobe the recording sites where broadband response was 

selective for faces tend to locate more lateral than recording sites where the broadband 

response was most selective for buildings or cars, which in turn are medially located. 

This is generally consistent with relative locations of place and face selective regions 

revealed in fMRI studies (Kanwisher et al., 1997; Haxby et al., 2001; Joseph, 2001). 

Across the population of recording sites studied here, broadband responses were quite 

redundant. This was evidenced by plots showing the change in decoding performance as 

a function of population size. Relative to the low-frequency PCs, decoding performance 

plateaued rapidly when decoding was performed with broadband responses. This 

observation held regardless of whether recording sites were sampled from only occipital 

lobe, only temporal lobe, or all available sites.  

Finally, in early visual areas broadband responses during our experiment were 

“bottom-up”. This was evidenced by the fact that recording sites in the occipital lobe 

permitted above-chance decoding performance for seen object category, but not attended 
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object category.  In contrast, low-frequency PC2 responses in occipital lobe recording 

sites permitted above-chance decoding of both seen and attended object category, while 

PC3 responses in occipital lobe recording sites permitted above-chance decoding of 

attended object only. 

In summary, we find that broadband PC1 responses were promiscuous (i.e., 

sensitive to multiple sources of variance), sharply tuned, generally consistent with 

findings from fMRI studies, encoded redundant information across the recording sites 

studied here, and in occipital lobe encoded purely “bottom-up” sensory information. 

 

2.4.4. Spectral signature of attention and vision 

Although many previous studies have reported that attention modulates the 

encoding of seen stimuli in firing rate (Moran and Desimone, 1985) and BOLD responses 

(Cukur et al., 2013) we found no evidence that attention systematically modulated the 

encoding of seen object category in power variations along any of the top three PCs. 

Rather, we found that information about attention and seen stimulus category were 

differentially distributed across PCs, as summarized above. This finding suggests that 

attention and vision have different spectral signatures. In particular, variation in power 

within the 𝛼 − 𝛽  band of frequencies (PC3) was highly selective for attended object 

category. This finding is generally consistent with emerging evidence for asymmetric 

encoding of top-down and bottom-up signals in variation of spectral power (Bastos et al., 

2015; Jensen et al., 2015; Kafaligonul et al., 2015; Michalareas et al., 2016). 
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CHAPTER THREE 

 

DECODING OF THE VISUAL MENTAL STATE 
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3.1. Introduction 

Visual mental imagery is a cognitive function that was shown to be spatially tightly 

correlated with vision in the human brain using fMRI (Kanwisher et al., 1997; Bartolomeo, 

2008) and single neurons recordings (Kreiman et al., 2000a). This regional overlap between 

mental imagery and vision was also reported to be conserved across sub-modalities of 

vision including the “where” and “what” of objects that are impaired in both mental 

imagery and vision when the dorsal and ventral streams were respectively damaged 

(Levine et al., 1985). However, responses to mental imagery and vision do not fully overlap 

in human brain. Clinical series have been reported where patients had damage to vision, 

but had intact mental imagery or the opposite (Farah, 1984). Kreiman et al. (Kreiman et 

al., 2000a) showed studied whether mental imagery and vision share neuronal substrates at 

the level of single neurons within the medial temporal lobe and reported that although most 

of the studied neurons were responsive to both vision and imagination, there were some 

neurons that responded only to vision and other that responded only to mental imagery. 

The two main components of mental imagery, i.e. maintenance of mental imagery in 

working memory and recall, were studied at the spectral level (Jensen et al., 2007)  showing 

a close association with an increase in gamma activity (30-100Hz) when studied using 

MEG, EEG, and LFP recordings (Sederberg et al., 2003; Gruber et al., 2004; Osipova et 

al., 2006; Sederberg et al., 2007). Theta (Sauseng et al., 2010) and alpha oscillations 

(Jokisch and Jensen, 2007) were also reported to be increased with the increase of memory 

load. Specifically, Van Gerven and his colleagues studied ECoG recordings (van Gerven 

et al., 2013) and showed that theta/alpha band (8-14 Hz) and gamma band (65–128 Hz) 
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modulations are associated with the stimuli-specific neuronal activity in different recording 

sites within the temporal lobe. However, studies from neuroimaging have demonstrated 

that cognitive control of mental imagery goes beyond the temporal and occipital lobes and 

involves large-scale network activity that includes the frontal, parietal and temporal lobe 

(Ishai et al., 2000; Ganis et al., 2004).  

In this work, we studied the response of the brain to different visual mental states in 

order to better understand the encoding of visual mental imagery at a systems neuroscience 

level. We tailored our experimental design to allow for the comparison of the brain 

response to passive viewing of images, active looking at images to memorize them, and 

mental imagery of the memorized images. During passive viewing and ISI a simple 

attentional task was applied to discriminate between simple attentional state and mental 

imagery. We used principal component analysis to study the spectral patterns accounting 

for the most variation across visual mental states and across studied recording sites and 

subjects. We built both encoding and decoding models of the studied visual mental states 

using the candidate spectral patterns revealed by the PCA. 

 

3.2. Material and Methods 

3.2.1. Subjects 

 Thirteen epileptic patients (7 males, 6 females) with ages range between 18 and 58 

participated in the experiment (Table 3.1). The subjects underwent surgical procedure for 

implantation of depth electrodes for detection of seizures within cortical and subcortical 

structures. The location of electrodes was solely determined based on clinical indication in 
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patients with refractory epilepsy. All subjects provided written consent approved by the 

Institutional Review Board at the Medical University of South Carolina. 
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Subject 

ID 

Electrodes location based on 

clinical target 

Gender Age Nb. Recording 

sites 

1 Right: frontal, temporal, insular Male 37 66 

2 Left: frontal, temporal, insular Male 21 63 

3 Bilateral: frontal, temporal Male 58 79 

4 Bilateral: frontal, temporal, insular Male 30 93 

5 Bilateral: frontal, temporal, insular Female 53 122 

6 Left: frontal, temporal, insular Female 34 62 

7 Bilateral: frontal, temporal, insular Female 18 117 

8 

Left: frontal, temporal. Right: 

temporal, insular 

Female 23 63 

9 Bilateral: frontal, temporal, insular Male 38 133 

10 Bilateral: frontal, temporal, insular. Male 40 103 
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Left: occipital 

11 Bilateral: temporal, occipital Female 31 72 

12 Bilateral: temporal, occipital Male 23 53 

13 Right: frontal, temporal, insular Female 34 65 

 

Table 3.1. List of subjects and electrodes location.  

The table shows the distribution of 1091 recording sites across subjects and brain regions. 

The electrodes are depth electrodes. Note that the nomenclature of electrodes is broad; a 

frontal electrode extends from a deep brain region within frontal lobe up to frontal cortex. 

A temporal electrode extends from amygdala or hippocampus up to temporal cortex. 

Insular electrodes extend from either anterior insula to frontal cortex or posterior insula to 

parietal cortex. Occipital electrodes generally extend from medial occipital regions to 

occipital cortex and sometimes to parietal cortex. 
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3.2.2. Electrode features, placement, and location mapping 

 The location of Ad-Tech subdural and depth electrodes varied among subjects and 

it is listed in Table 3.1. The placement of electrodes was solely guided by clinical 

evaluation of each subject and is mapped to the brain as shown in Figure 3.1. Each depth 

electrode has 10 recording sites separated along the electrode by 5mm. Each electrode 

has a diameter of 2.29 mm. 
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Figure 3.1. Brain maps illustrating the location of all recording sites from the 13 

subjects enrolled in the study.  

 

Each black dot in the brain map indicates the location of one recording site, plotted in 

MNI space. 
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3.2.3. Recording apparatus 

LFP data were recorded using an XLTEK EEG system (Natus Medical, Inc.). 

Sampling frequency was 2 KHz across subjects. Recordings were downsampled to 1 KHz 

and all further analysis were applied on the downsampled recordings. 

 

3.2.4. Experimental procedure 

 Subjects sat upright and viewed a laptop screen during the experiment. The screen 

was positioned at eye-level at a distance from the subjects of about 40 cm. Patients were 

encouraged to pause and take a break at any point during the experiment if they felt 

fatigued or distracted. 

 

3.2.5. Experimental design 

Patients were instructed to focus their vision, or fixate, on a dot at the center of the 

laptop screen throughout each experiment. Each experiment consisted of two phases: 

1- In the first phase, subjects are instructed to fixate on a red dot in the center of 

the screen and to monitor if the dot changes its color. Then a stream of paintings 

that prominently feature either a human face, a landscape scene, or an abstract 

shape was displayed. Each image was displayed for 2.5 s, and followed by an 

interstimulus interval (ISI) of 2.5 sec. During ISIs a blank screen (luminance 

set to average luminance of all images) was displayed. Subjects maintained 

fixation throughout each ISI. All images were unique and none of the images 

were repeatedly displayed. A total of 45 images were displayed (Figure 3.2). 

After a random number of displayed images subjects were instructed to then 
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verbally indicate if the fixation dot changed color and, they were provided with 

feedback on their response to indicate whether they got it right or not. All 

subjects were correctly identifying the presence or absence of the color change. 

The subjects were asked about the color changes at nine instances, and the dot 

changes its color three times.  

2- In the second phase of the experiment, the fixation dot doesn’t change color, 

and subjects were instructed to memorize each image, one at a time, the to 

imagine the same image as long as the ISI is on. So this time the ISI is actually 

referred to in the text as mental imagery (MI). The same images were displayed 

(45 images), in the same order, and the same time (2.5 sec). MI time was 

displayed for 2.5 sec too (Figure 3.2). Instead of asking about a change of color 

at the fixation point, and at the same point in time as in the first phase, the 

subjects were asked to give a feedback about how vivid they were able to 

imagine the images during MI. In general, subjects reported that they were able 

to successfully imagine the displayed images during MI, with some minimal 

difficulties when the imagined images were abstract paintings.  

This experimental design allows the comparison of recording sites responses to 

four different visual mental states: vision prior to ISI, ISI, vision prior to MI, and MI. 

These four states reflect passive viewing state, rest state, image memorization state, and 

MI state respectively. 
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Figure 3.2. Experimental design showing the two phases of the study.  

The figure shows the experimental design used to study visual mental state. In the first 

step (first row), subjects were instructed to look at images of abstract, building, and face 

paintings each displayed for 2.5 sec and followed by ISI (gray screen) for 2.5 sec and to 

notice if the dot in the center of the screen changes color from red to black. At a random 

time after the ISI the subject is instructed to give a feedback whether the color of the dot 

changed or not. Then in the second step (second row), subjects were instructed to 

memorize the displayed image on the screen, then to imagine it as long as the gray screen 

is on. The images are displayed for 2.5 sec and the gray screen for imagination is 

displayed for 2.5 sec. at a random time after the gray screen the subject were asked to 

give feedback whether they were able to vividly imagine the images or not. The images 

in this step are shown in the same order as in the first step. All images were displayed one 

time without repetition. 
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3.2.6. Signal screening and preprocessing 

 Prior to analyzing brain signals all recordings were screened by the patient’s 

epileptologist. Recording sites were excluded if they were in close proximity to a locus 

with seizure-related activity, or if they were corrupted by large artifacts obviously not 

related to healthy brain activity. We also excluded recording sites located above the surface 

of the brain, as identified by inspecting the post-op structural images (MRI). A total of 251 

out of 1342 recording sites were excluded based on these criteria. 

After screening, all signals were referenced to a global mean. That is, for each 

subject independently a global average time-series was computed and subtracted from the 

time-series of each individual recording site. 

 

3.2.7. Peri-stimulus power spectral density functions 

 For each recording site, the LFP starting from stimulus onset and ending 2 sec after 

was extracted and used to estimate a PSD (power spectral density) function (Miller et al., 

2014; Miller et al., 2016). PSD frequencies ranged from 1Hz (DC offset was excluded) to 

100Hz with increment of 1Hz; frequencies between 56 and 63Hz were excluded to 

compensate for a 60Hz line artifact. Each of these single-trial PSDs were normalized by 

calculating the logarithmic value of dividing single-trial PSDs over the mean power of all 

single-trial PSDs (Miller et al., 2016). Single-trial PSDs for each recording site were then 

grouped according to the task condition (i.e., vision prior to ISI, ISI, vision prior to MI, 

and MI) and averaged to construct a condition-specific average PSD. For each recording 
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site this process resulted in four condition-specific average PSD functions.  Thus, a total of 

4364 condition-specific PSDs were calculated from 1091 recording site across 13 subjects. 

 

3.2.8. Principal Component Analysis 

 The 4364 PSDs were treated as independent 93-dimensional (one dimension for 

each of the frequencies in the PSD) observation vectors in a principal component analysis 

(PCA). This resulted in 93 orthogonal spectral components. Each spectral component was 

itself a 93-dimensional PSD function, with each value representing the modulation of 

power at each of the studied 93 frequency points. In this work we study the top 3 

components, which accounted for roughly 50% of the variance. (Figure 3.3)  

 

3.2.9. PC-specific encoding models 

 We investigated how variations in spectral power along each PC encoded 

information about variation in task conditions by constructing PC-specific encoding 

models. Encoding models were constructed independently for each recording site and 

subject. To construct models for subject k we first applied PCA to the PSDs from the 

other 12 subjects. We then projected the single-trial PSDs for subject k onto the first, 

second, and third PCs resulting from this subject-specific PCA. Thus, for each recording 

site we have 180 projections (one per experimental stimulus) per PC describing variation 

in spectral power along the PC. These projections are the “responses” that are predicted 

by each PC-specific encoding model. Formally, for a single recording site and subject let 

𝒒𝑖  be the PSD calculated for trial i, and let 𝒑𝑗  be the jth principal component. Then 𝑟𝑖𝑗 =

 𝒒𝑖 ⋅ 𝒑𝑗  is the single-trial response for PC j that is predicted by each encoding model. The 
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encoding model for a single recording site in subject k is specified as a simple linear 

combination of task conditions: 

𝒓𝑗 = 𝑆𝒘𝑇 + 𝑏 + 휀 

where 𝒓𝑗   is an (𝑁𝑡𝑟𝑎𝑖𝑛 × 1) vector of “responses” along PCj, S is the (𝑁𝑡𝑟𝑎𝑖𝑛 × 4) design 

matrix of the experiment (each column indicates a task condition), w is (4 × 1) vector of 

condition weights (i.e., regression parameters), b is an intercept term, and is zero-mean 

Gaussian noise. The number Ntrain indicates the number of training samples. 

The values of the encoding model weights w and intercept b were determined for each 

recording site via simple linear regression. Regressions were performed by applying a 10-

fold leave-k-out procedure to a subset of 144 trials that used only for training and 

evaluating encoding models (the remaining Nval = 36 trials were used for decoding 

analyses as described below). This means that for each recording site, 10 separate 

regressions were performed. Each regression used a different set of Ntrain = 116 trials that 

were randomly sampled from the 144 trials used to construct encoding models. On each 

of these 10 folds, the regression model was evaluated on the remaining Ntest = 28  trials. 

We used Pearson correlation between model predictions and the observed responses 𝒓𝑗. 

The “prediction accuracy” that we report for each encoding model is the average Pearson 

correlation across all 10 folds. Here an encoding model is considered “accurate” if the 

Pearson correlation exceeds a significance threshold (p < .05) determined by a random 

permutation test (permutation across trials of prediction and observed responses). The 

encoding model weights that we discuss and analyze below are the average of the weights 

across all 10 folds. 
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3.2.10. Model-based decoding analysis 

 A decoding analysis was performed on the Nval = 36 trials that were not used to 

estimate or evaluate the encoding models. Decoding analyses were performed using data 

from subjects S8-S13 only, as these were the subjects for which the common number of 

trials (consisting of 180 trials) was acquired. 

 Here, the decoding objective is to predict the visual mental state associated with a 

set of responses sampled from a population of recording sites. Decoding is performed 

independently for each PC. As above, a “response” 𝑟𝑗 associated with the jth PC, 𝒑𝑗  is 

defined as the projection of a PSD q onto the PC, 𝑟𝑗 =  𝒒 ⋅ 𝒑𝑗  . Below we will suppress 

the subscript j, as it is understood that all responses refer to a specific PC. 

Let s1, s2, s3, s4 indicate the visual mental states stimuli of “vision prior to ISI”, 

“ISI”, “vision prior to MI”, and “MI”, respectively. To decode the visual mental states for 

a given trial belonging to one of the visual states, for example s3, we first form a 

response vector 𝑟𝑠3 associated with mental state of stimulus s3. We then concatenate the 

response to this trial across all recording sites. Thus 

𝒓𝑠3 = (𝑟𝑠3
1 , 𝑟𝑠3

2 , … , 𝑟𝑠3
𝑀) 

where the superscript indexes a recording site, M is the total number of recording sites in 

the population, and the notation s3 indicates a trial associated with the visual mental state 

“vision prior to MI”. The length of a response vector for a given stimulus is thus 1 × 𝑀. 

 To perform model-based decoding of a visual mental state stimuli from a response 

vector, say 𝑟𝑠3, we use the encoding model for each recording site in the response vector 

to generate a predicted response vector 𝑟𝑠1
′ , 𝑟𝑠2

′ , 𝑟𝑠3
′ , 𝑟𝑠4

′  for each of the 4 possible 

stimulus categories. We then calculate a Pearson correlation between the response vector 
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𝑟𝑠3, and each of the predicted response vectors 𝑟𝑠1
′ , 𝑟𝑠2

′ , 𝑟𝑠3
′ , 𝑟𝑠4

′
 . Decoding is successful 

if the correlation between the response vector and its matching predicted response vector 

is higher than the correlation the between response vectors and the other three, non-

matching, predicted response vectors. We refer to successful decoding of a response 

vector as a “hit”. 

 Decoding performance is the number of “hits” and divided by the total number of 

response vectors. Chance performance is 25%, since each response vector has a 1/4 

chance of being successfully decoded by randomly the visual mental state. Decoding 

performance for visual mental state stimulus was calculated independently each PC. 

 As shown in Figure 3.3, decoding performance was calculated for across 

populations of varying sizes (i.e., populations with varying numbers of recording sites), 

from 2 to 489. To select recording sites for a population of a given size all recording sites 

were rank-ordered according to their prediction accuracy. Thus, the population of size 2 

contained the recording sites with the highest and second-highest prediction accuracy, 

and so on. We emphasize that none of the trials used to measure prediction accuracy 

were used to measure decoding performance. 

 

3.2.11. Statistical analysis 

Statistical analyses were performed using MATLAB 2018b (Mathworks, MA) and 

Graphpad Prism 8 (GraphPad Software, CA). Permutation tests were performed for 

enrichment analyses and comparisons to random distributions. PCA analysis was 

performed as described above. One-sample t-test was used to compare accuracy of 

decoding models to random, and student’s t-test was used to compare accuracy of decoding 
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between vision and attention. Unless otherwise specified, statistical significance is reported 

at alpha < 0.05.  

3.3. Results 

3.3.1. Broadband, gamma, and narrowband low frequency components 

explain almost half the variance in spectral power across visual 

mental states 

To determine the combinations of frequency bands that explain the most variance 

in spectral power across visual mental states, we first prepared single-trial, peri-stimulus 

power spectral density functions (PSD) for each recording site in the dataset (1091 number 

of recording sites across 13 subjects). Single-trial PSDs were normalized 

(log(PSD/<PSD>)), where <> indicates an average across all trials for the given recording 

site; (Miller et al., 2016)). Normalized PSDs were then grouped according to their visual 

mental state category associated with each trial, and then averaged within-group. This 

resulted in 4 normalized mean PSDs. 

PCA analysis was performed on pooled data from all subjects except test set as 

described in the methods. We found that variance was rather broadly distributed across 

PCs, with the first three PCs accounting for less than half (48.66 %) of the total variance 

in spectral power (Figure 3.3). PC1 (33.16 % of total variance) had a broadband spectral 

pattern represented by an elevation in power across all the studied frequency range (1-100 

Hz). PC2 (10.18 %) corresponds to gamma band (high pass filter) pattern, and PC3 (5.32 

%) corresponded to narrowband low frequency (low pass filter) spectral pattern represented 

by an elevation in power over a narrow frequency range. Specifically, PC2 distributes most 
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non-zero power in 𝛾 frequency range (above 50 Hz). PC3 distributed non-zero power 

primarily with  𝛿 − 𝛽 frequency range (1-30 Hz). The PCA analysis reveals the main 

variation in power at each frequency across the different visual mental states. Notably, for 

each studied subject, we applied PCA analysis on all the PSDs from all other subjects while 

excluding recording sites from the studied subject. 
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Figure 3.3. Principal component analysis of power spectral variation across visual 

mental states.  

Left panel: PCA analysis applied to all condition-specific PSDs showing the spectral 

variance across conditions for subject S1. The top three PCs are used in our encoding model 

and are therefore calculated for each subject only using data from the remaining 12 

subjects. The shown plot represents the PCA analysis on data from S2-13 used in the 

encoding model for subject S1. Results of PCA analysis shows PC1 (blue) with a 

broadband spectral pattern compared to PC2 (orange) that demonstrate a gamma band 

activity, and PC3 (green) that demonstrate low frequency spectral patterns. Right panel: 

percentage variance explained across PCs shows that PC1 has the highest percentage 

variance explained (33.16 % of total variance), then PC2(10.18 %), then PC3(5.32 %). 

After PC3 the percentage variance explained drops to less than 4%. 
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3.3.2. Broadband, gamma, and narrowband low frequency components 

encode visual mental states over a widely distributed brain 

network 

In order to determine how information about visual mental states is encoded in each 

principal component, we independently estimated an encoding model for each of the first 

three PCs, and for each recording site. The encoding models used here were simple: for 

each PC and recording site, a design matrix (independent variable) indicating the visual 

mental state associated with each trial was regressed onto the recording site’s projection 

onto the PC. Thus, the encoding model predicts, for each trial, the spectral power along 

each PC as a function of the stimulus category associated with the trial. We estimated 

encoding models independently for each PC and recording site using linear regression. We 

evaluated the prediction accuracy of the encoding model for each recording site and PC by 

calculating the Pearson correlation between the model’s predictions and the observed 

spectral power along the PC across a held-out set of testing trials (Figure 3.4). 

 Accurately encoding recording sites were identified using a permutation test for the 

recording site-specific accuracy over 5000 iterations. Selection of accurately encoding 

recording sites was based on p-value<0.05, and the minimum correlation coefficient 

observed in these recording sites was 0.2 (Figure 3.4 A-C top panels). Accurately encoding 

recording sites across all three PCs were identified in the temporal, prefrontal, occipital, 

insular and parietal cortex (Figure 3.4 A-C bottom panels). There were no recording sites 

within the precentral gyrus that showed accurate encoding at any of the 3 PCs (0/7 studied 

recording sites). We observed significantly fewer accurately encoding recording sites for 
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PC1 (n=217) compared to PC2 (n=280), and significantly fewer accurately encoding 

recording sites for PC3 (n=118) compared to PC1 and to PC2. 
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Figure 3.4. Spatial distribution of accurate recording sites encoding of PC1-3 

projections across the studied 1091 recording sites 

Encoding model described in section 3.2.9 is applied to all studied 1091 recording sites 

across all three studied PCs (PC1-PC3). Top panels: Histogram illustrating the 

distribution of recording sites by encoding accuracy for PC in log-scale (PC1 in blue, 

PC2 in orange, PC3 in green). The dashed line represents the accuracy threshold used to 

define accurately encoding recording sites. Bottom panels: the spatial distribution of 

accurately encoding recording sites represents the anatomical distribution in the human 

brain presented in the MNI space across the 13 subjects for PC1 (A, N=217 recording 

sites), PC2 (B, N=280 recording sites), and PC3 (C, N=118 recording sites). L: Left 

hemisphere, R: Right hemisphere. 
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3.3.3. Gamma band decodes all four visual mental states the best 

compared to broadband and low frequency patterns 

Using the decoding approach described in section 3.2.10, we found that gamma 

band decodes the studied four visual mental states the best when compared to broadband 

PC1, and narrowband low frequency PC3 with accuracy that reaches 90% when adding 

more recording sites to the decoding model. PC2 reaches high decoding accuracy from 

the first 3 studied recording sites (>75%), whereas PC1 and PC3 reach high decoding 

accuracy at around 100 and 50 recording sites respectively (Figure 3.5). 
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Figure 3.5 Decoding accuracy of studied visual mental states for PC1, PC2, and PC3 

Plot representing the decoding accuracy as function of increasing number of decoding 

recording sites in all 489 for each PC.  Broadband PC1 pattern (blue) decodes the four 

studied visual mental states with low accuracy when studied over a small group of decoding 

recording sites, but it increases and reach a plateau of around 70% when the number of the 

studied recording sites is around 100. PC2 (orange) gamma high frequency decodes the 

best for all four visual mental states with the decoding accuracy jumping to 75% from the 

first 3 decoding recording sites and reaching 90% with the increase of number of decoding 

recording sites. PC3 (green) narrowband low frequency pattern accurately decode the 

visual mental states when using more than 50 decoding recording sites at a time and reaches 

a percentage accuracy in the 60-70% range. 
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3.3.4. Broadband, and low frequency decode best for passive and 

attentive vision, while gamma decodes the best for attentive vision 

and mental imagery 

We then studied the confusion matrix representing the detailed decoding accuracy 

of each of the four visual mental states over the first three PCs (Figure 3.6). We found that 

broadband PC1, and low frequency PC3 had the highest decoding accuracy for passive and 

attentive vision (~80%), and the lowest for ISI and MI (50-55%), whereas gamma band 

high frequency PC2 pattern, decoded attentive vision and MI without any error (100%), 

and passive vision with ~90%. Gamma decodes had the lowest decoding accuracy for ISI. 
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Figure 3.6. Confusion matrices showing accuracy of decoding of the four visual 

mental states using PC1-3 

Shown is the confusion matrix for one instance of the decoding accuracy calculated when 

the first best 100 encoding recording sites for the corresponding studied PC are used in the 

decoding. For all three tables the numbers 1 to 4 on the target and output classes represent 

in the order: passive vision, ISI, attentive vision, and MI. The rows represent the output 

predicted class, and the columns represent the actual class (or target class). The cells in the 

diagonal represents the accurately classified trials. The off-diagonal cells are the 

incorrectly classified trials. In each cell the number of trials and their percentage of the 

total number of trials is shown. The last column on the right of each table represent the 

precision (positive predictive value in green), and false discovery rate (in red). The row at 

the bottom of each table shows the percentage of correctly classified trials also called recall 

or true positive rate (green), and the percentage of incorrectly classified trials or false 

negative rate (red). The last cell in the lower right corner represents the overall accuracy. 

A-C: Confusion matrix of PC1 broadband pattern (A), PC2 gamma band (B), and PC3 low 

frequency (C) show that broadband and low frequency spectral patterns decodes the best 

for passive vision and attentive vision (~80%), and the least to ISI and MI (50-55%), and 

gamma band decodes the best for attentive vision and MI.  
  



 

121 

 

3.4. Discussion 

In this chapter, we studied the visual mental state in the brain by changing the task 

and the seen stimuli among passive viewing of images of paintings (abstract, landscape, 

and face), ISI, attentive viewing of paintings, and mental imagery of the attended paintings. 

We studied how the different visual mental states are encoded in the brain at the spectral 

level. We found that broadband, low frequency (<30 Hz), and gamma band (>30 Hz) 

frequency represent the most variance explained across the studied four visual mental states 

across 1091 recording sites in 13 participants. Our finding of increase of power in the 

gamma band support what was reported about maintenance of mental imagery in working 

memory and recall to be spectrally associated with increase of gamma activity (30-100Hz) 

(Jensen et al., 2007) when studied using MEG, EEG, and LFP recordings (Sederberg et al., 

2003; Gruber et al., 2004; Osipova et al., 2006; Sederberg et al., 2007). Moreover, the 

increase of power in the low frequency PC3 component support the reported theta (Sauseng 

et al., 2010) and alpha oscillations (Jokisch and Jensen, 2007) were also reported to be 

increased along with the increase of memory load. The importance of this study is that it 

showed the wide distribution of recording sites encoding for visual mental state across 

different brain regions, consistent with the pattern shown with fMRI studies (Ganis et al., 

2004; Dijkstra et al., 2017). 

The decoding accuracy of gamma band was the highest compared to broadband and 

narrowband. This emphasizes the role of gamma in decoding the studied visual mental 

states, especially that gamma had higher accuracy when decoding for attentive vision and 

mental imagery compared to passive vision, and as the lowest for ISI. This means that 

gamma is mostly involved when the brain is memorizing and recalling visual images, and 
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during processing of vision. Those results are consistent with the findings discussed in 

Chapter 2, where we showed that during category-based visual attention, gamma band did 

not stand as a separate component when PCA was applied to the spectra of seen/attended 

categories. Although our earlier results do not mean that gamma is not involved in 

category-based visual attention, but rather they indicated that gamma did not stand as a 

separate component to be represented in the first three PCs. One of the explanations of why 

gamma did not explain significant variability in our prior experiment compared to our 

current work is likely that gamma was increasing consistently with all stimuli in our prior 

experiment of seen/attended object category variation. PCA analysis reflects the variance 

across the studied stimuli, so if gamma increase in a consistent manner for the studied 

stimuli, then gamma would not stand out as one of the differentially modulated spectral 

patterns. In the experiments performed in Chapter 2, attention was a common factor across 

all stimuli. Even during ISI, participants were keeping the category of the last seen image 

in mind to give an answer about recalling the last image. This prior design in Chapter 2 is 

similar to the second phase of this study where the studied states are attentive vision and 

mental imagery. In order to test whether gamma would be majorly modulated between 

spectra of attentive vision and mental imagery, we applied PCA to only those two visual 

mental states instead of all four and the results were, indeed, consistent with those seen in 

Chapter 2. Specifically, we show the prominent contribution to variance by a broadband 

effect, a low frequency narrowband (<10 Hz), and a low frequency alpha-beta band (10-30 

Hz) (data not shown).   

Interestingly, the fact that gamma decoding was accurate even with a small number 

of recording sites (3 recording sites) support the hypothesis that gamma reflects local 



 

123 

 

reverberant circuitries in the brain (Miller et al., 2014), where almost single units 

(recording sites) are keeping information about the visual mental states. On the other hand, 

broadband and low frequency narrowband decoders were mostly accurate for vision, 

regardless of if it was passive or attentive viewing of images. Collectively, our findings 

indicate the visual processing in the brain involved both broadband and low frequency 

narrowband patterns; however, the gamma band is specifically involved in the 

memorization and recall of observed and imagined objects or scenes. 

 A potential future extension of this work is to test the ability to use spectral based 

decoders to accurately decode specific object categories of visual mental imagery 

especially that the experiment was designed for participants to imagine three different 

categories (abstract, landscape, and faces). Another aspect of mental imagery to be 

explored is the difference between imagining abstract paintings, which most participants 

reported to be hard to accurately imagine, and other imagined object categories that are 

closer to natural scenes. It would be also interesting to compare the difference in attention 

while looking at abstract paintings that are hard to memorize versus scenes that can be 

relative easier in memorizing and imagining such as faces.  
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CHAPTER FOUR 

 

SUMMARY OF FINDINGS 
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4. Summary 
 

In summary and across Chapters 2 and 3, we have successfully implemented an 

unbiased spectral approach to study spectral encoding and decoding of various visual or 

visual related object categories, across widely distributed LFP recording sites, and we 

introduced encoding and decoding models that can be applied to any type of experiments 

studying the responses of LFP recordings across various stimuli. We also provided 

evidence on the contribution of different spectral frequency bands to different components 

of visual processing and visual mental imagery in the human brain.  

 What we have learned about the brain from all the results is multifold: First, 

broadband spectral pattern reflects the main variance in power across object-based visual 

tasks involving study of category-based visual attention and visual mental states in human 

brain. This broadband spectral pattern mainly decodes bottom-up sensory input regardless 

of whether it was passive or attentive viewing of photographs. Second, low frequency 

delta-theta band decodes the best for attention and vision. Third, low frequency alpha-beta 

band differentially decodes top-down attentional state better than vision. Fourth, gamma 

band decodes the best for memorization of attentively viewed images and recall of mental 

imagery. 

 Previous work reported some similar results to ours when studied in focal 

recording sites, but to our knowledge this is the first study that took an expansive spatial 

and spectral view to study feedforward and feedback processing of visual information in 

the human brain and set up the stage for a better understanding of the mechanisms by which 

visual information is encoded in the brain. The identified spectral patterns could be used 
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as biomarkers to sense visual mental states and could be targeted (stimulation/modulation) 

in potential therapeutic approaches in deficits and disorders affecting visual processing in 

the human brain.  
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