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SARAH CORRIN GARR. The effects of acute stress and adolescent alcohol 
exposure on behavioral flexibility in adulthood. (Under the direction of L. 
JUDSON CHANDLER). 
  

The prefrontal cortex (PFC) is critical for executive functions that underlie 

behavioral flexibility, but is especially vulnerable to environmental insults during 

development, which concludes after adolescence. Adolescence is a time of 

neural development, and is marked by increased risk-taking and impaired 

judgment. Adolescence is often associated with engagement in risky behaviors 

such as experimentation with drugs of abuse, including alcohol. Alcohol is 

particularly damaging to the PFC, and leads to negative impacts on executive 

functions. Traumatic stress has also been shown to negatively impact executive 

functions, and alcohol use and stress disorders frequently occur co-morbidly. 

Additionally, deficits in executive functions following adolescent alcohol or 

traumatic stress exposure in rats may differentially affect different strains of rats. 

This dissertation addressed the overarching hypothesis that binge-like 

adolescent alcohol (AIE) and a model of traumatic stress (SPS) negatively 

impact executive functions in adulthood, and that two strains of rats (Long-Evans, 

LE, and Sprague-Dawley, SD) may respond differentially to these exposures. 

First, the effects of AIE and SPS in adulthood on probabilistic reversal learning 

(PRL) were examined. AIE impaired discrimination learning with probabilistic 

reinforcement in LE rats on day one of the PRL task, and led to decreased 

reward and negative feedback sensitivity in SD rats over extended testing. SPS 

exposure following AIE led to increased negative feedback and reward sensitivity 

in LE rats. The second component of this dissertation addressed the effects of 
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AIE and SPS on the probabilistic decision-making task. AIE led to increased 

choice latency and impaired mastery of the task in SD rats during initial training 

sessions. SPS exposure following AIE led to decreased risky choice compared to 

SPS exposure alone in SD rats. The third component of this dissertation 

addressed the effects of AIE and SPS on fear-related behaviors. AIE and SPS 

exposure led to faster acquisition of associative fear conditioning in LE rats, and 

increased resistance to extinction. Taken together, this dissertation demonstrates 

that AIE leads to persistent deficits in behavioral flexibility in adulthood, and that 

SPS exacerbates these deficits. 
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CHAPTER 1 
 
 
 
 

BACKGROUND & SIGNIFICANCE 
 
 
 
 
ALCOHOL ABUSE 

Alcohol is one of the most commonly abused drugs in the United States, 

and its misuse leads to effects including impaired driving and car crashes, liver 

disease, increased risk for certain types of cancers, and familial dysfunction 

(NIAAA, 2015a). Alcohol misuse has been estimated to cost the US 

approximately 250 billion dollars, and three-quarters of that cost is due to binge 

drinking. As defined by the National Institutes of Health (NIH), binge drinking 

consists of consuming 5 or more standard alcoholic drinks in one sitting (NIAAA, 

2015b). Heavy use of alcohol, especially early in life such as during adolescence, 

is associated with an increased risk for alcohol use disorders later in life (NIAAA, 

2017a). 

Alcohol use in adolescents is relatively common with more than one-third 

of individuals by age 15, and two-thirds by 18 years of age, reporting that they 

have tried alcohol. Additionally, when teens and young adults drink alcohol, they 

typically consume it in a binge-like fashion (NIAAA, 2017b). Young people drink 

more than 90% of their alcohol in this binge-like fashion. In fact, 13.4% of those 

aged 12-20 reported engaging in binge drinking within the past month, and an 

additional 3.3% reported heavy alcohol use within the same timeframe (NIAAA, 
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2015b). While drinking such a large quantity of alcohol at a young age can have 

acute effects – including impaired judgment and increased risk-taking 

manifesting as drinking and driving, physical and sexual assault, and unprotected 

sex – long term effects of this type of alcohol consumption can lead to persistent 

cognitive deficits that impact an individual well into adulthood. These include 

reduced regional blood flow (Suzuki, Oishi, Mizutani, & Sato, 2002), impaired 

visuospatial abilities and mental flexibility (Fein, Bachman, Fisher, & Davenport, 

1990b), and decreased attention (Fein, Torres, Price, & Sclafani, 2006b). 

However, the full extent of these deficits and how long impairments may last is 

poorly understood. Animal models of binge-like ethanol exposure during 

adolescence enable detailed studies of behavioral, neural, and molecular 

mechanisms underlying these deficits that would not otherwise be possible with 

human subjects. 

 

STRUCTURE & FUNCTION OF THE PFC 

As the evolutionarily most recent addition to the brain, the prefrontal cortex 

(PFC) is mostly composed of associative cortex. That is, it has reciprocal 

connections throughout the rest of the brain, as well as independent inputs from 

– and outputs to – other neural areas including sensory, motor, memory, and 

other association cortices. The anatomical boundaries of the prefrontal cortex are 

by no means a settled matter, but one commonly accepted cross-species 

definition is the area of frontal cortex that has stronger reciprocal connections 

with the mediodorsal (MD) nucleus of the thalamus than with other thalamic 
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nuclei (H. M. Uylings & Van Eden, 1990). Functionally, it has been hypothesized 

that the overall function of the PFC is to, “select and generate behavior patterns.” 

This function is supported by the fact that the PFC uses its own “working memory 

subsystem but that it uses a long-term memory store that is largely a function of 

the medial temporal regions” (H. Uylings, Groenewegen, & Kolb, 2003). Within 

this anatomically and functionally defined area, the PFC has several distinct 

regions, including the dorsal anterior cingulate cortex (dACC), the dorsolateral 

PFC (dlPFC), the ventromedial PFC (vmPFC), the ventrolateral PFC (vlPFC), the 

orbitofrontal cortex (OFC), and some of the insular cortex. Studies in primates 

have shown that damage to the anterior cingulate region may result in difficulty 

initiating movements and a reduced pain response, while damage to orbitofrontal 

areas results in spontaneity, impaired olfactory and gustatory information 

processing, and changes in social and emotional behaviors. Lesions of the 

dorsolateral frontal areas results in impaired working memory, specifically as it 

relates to supervising and planning behavior (H. Uylings et al., 2003). The 

vmPFC mediates affective and economic value as well as some aspects of social 

cognition (Delgado et al., 2016), while the vlPFC is critical for behavioral control 

and tasks that involve working memory. Although each area of the PFC is 

thought to contribute independently to an organism’s planning and behavior, the 

overall result of this cognitive symphony is executive control. Specifically, the 

PFC is responsible for processing the various types of information brought 

through the cortico-cortical connections to the PFC while taking into account 
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information from working and long-term memory to efficiently select the most 

beneficial course of action for the organism.  

While humans are thought to have the most developed prefrontal cortex, 

there are anatomical and functional correlates in non-human primates as well as 

other mammals. It is easiest to make these comparisons using the 

cytoarchitectural classification of Brodmann’s areas. The prefrontal cortex in the 

human brain is comprised of Brodmann’s areas (BA) 8, 9, 10, 11, 12, 13, 14, 44, 

45, 46, and 47, all of which are dysgranular or granular regions of cortex; that is 

they contain a rudimentary (dysgranular) or well-developed (granular) layer IV of 

the cortex (Wallis, 2013), with small, round cells that appear like granules. A 

common non-human primate research subject, the macaque monkey has parallel 

areas in its prefrontal cortex (BA 9-14). However, it is much more difficult to find 

parallel regions of cortex in the rat, as its prefrontal cortex is significantly smaller 

and less developed than that of primates; therefore, it is more accurate to find 

functionally parallel cortical regions, such as the ACC, insular cortex, OFC, and 

vmPFC (Wallis, 2013). Interestingly, Preuss & Kass (1999) hypothesized that the 

dlPFC may be a specialization of primates. However, recent studies have 

reported cortex anatomically and functionally similar to dlPFC in rodents (H. 

Uylings et al., 2003), and at least one research group has shown cortex that is 

anatomically similar to the primate dlPFC in dogs (Markow-Rajkowska & Kosmal, 

1987; Stepniewska & Kosmal, 1986). 
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Adolescence & the PFC 

During adolescence, the PFC undergoes significant cortical refinement via 

synaptic pruning (Petanjek et al., 2011), and myelination of cortico-cortical and 

cortico-subcortical connections. The brain matures primarily in a caudal-rostral 

direction with the visual cortex among one of the first areas to reach maturity, 

and the PFC as one of the last to mature after adolescence. In addition, the 

striatum reaches maturity prior to the PFC, which results in a bias towards striatal 

influence over decision-making and behavior during this time due to the absence 

of top-down inhibitory control by the PFC. The striatum consists primarily of the 

caudate, putamen, and nucleus accumbens. The dorsal striatum (encompassing 

the caudate and putamen) is primarily responsible for motor function and 

stimulus-response learning, whereas the ventral striatum (including the nucleus 

accumbens shell and core) mediates reward-learning and motivation. The 

relatively stronger influence of the striatum in relation to the PFC in adolescent 

decision-making is thought to partially contribute to a phenotype of increased 

risk-taking. This exemplifies behaviors that are typical during adolescence: 

impaired judgment, increased exploration and independence, and increased risk-

taking (L. P. Spear, 2000). This behavioral drive can lead to experimentation with 

alcohol and other drugs of abuse. 

 

EFFECTS OF ETHANOL ABUSE 

Alcohol – specifically ethanol – has acute effects as an anxiolytic, a 

muscle relaxant, a sedative, and can lead to impairment in muscle coordination. 
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The effects of chronic ethanol abuse include stroke, high blood pressure, 

hepatitis, pancreatitis, and cancer of the liver, breast, and throat, just to name a 

few (NIAAA & NIH, 2016). Ethanol’s broad cognitive and behavioral effects are 

due to its relatively promiscuous interactions with a broad range of 

neurotransmitter systems and receptor types in the central nervous system 

(CNS). Its anti-convulsant, anxiolytic, sedative, and ataxic effects are due in part 

to ethanol’s facilitation of the γ-amino-butyric acid (GABA) receptor’s activity. Its 

anti-convulsant, sedative, and subjective intoxication cues are associated with its 

inhibition of the glutamatergic N-methyl-D-aspartate (NMDA) receptor’s activity. 

In contrast, the stimulant effect of low doses of ethanol may relate to its actions 

at serotonergic and dopaminergic receptors. Finally, the rewarding effects of 

ethanol are associated with actions on the dopaminergic reward pathways as 

well as on the endogenous opioid system. Symptoms of withdrawal are also 

mediated by these same pathways: seizures are associated with a lack of 

ethanol’s effects at GABA and NMDA receptors, and aversive effects 

(withdrawal) are mediated in part by the dopaminergic, serotonergic, and 

opioidergic systems of the brain. While effects of ethanol can be rewarding (and 

anxiolytic) throughout the life span of an organism, adolescence is a window of 

vulnerability, especially for the prefrontal cortex. 

The prefrontal cortex is especially vulnerable to the impacts of ethanol 

during adolescence (Bava et al., 2009b). As the last major region of the brain to 

reach maturity, environmental insults such as repeated binge-like ethanol 

intoxication could permanently alter the developmental trajectory of the prefrontal 
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cortex and its cortical and subcortical targets. Additionally, the prefrontal cortex 

appear to be more susceptible to both short- and long-term damage from chronic 

ethanol exposure compared to other areas of the brain, such as the 

hippocampus (Fowler et al., 2014). After three weeks of monitored abstinence, 

ethanol-dependent human adolescents displayed impaired visuospatial function 

and verbal skills, which is similar to the performances of patients with mild 

frontal-subcortical dysfunction (Brown, Tapert, Granholm, & Delis, 2000).  

 

Effects of adolescent ethanol abuse 

Several studies have shown deficits in executive functions following 

adolescent ethanol abuse in humans, such as impaired inhibitory control 

(Schweinsburg et al., 2004; Tapert et al., 2007) and decision-making 

(Uekermann & Daum, 2008; Wilcox, Dekonenko, Mayer, Bogenschutz, & Turner, 

2014). Adolescent ethanol abuse in humans has also been shown to lead to 

accelerated cortical thinning in frontal and temporal areas involved with, “visual 

object recognition and language comprehension,” (Squeglia, Jacobus, & Tapert, 

2014). These data highlight the vulnerability of the PFC to environmental insults 

such as ethanol exposure during adolescence. It is hypothesized that ethanol 

abuse during this window of vulnerability to developmental insult can 

permanently alter the developmental trajectory of the prefrontal cortex and lead 

to persistent cognitive deficits extending into adulthood. It has been reported that 

human adolescents with a history of binge drinking had functionally impaired 

white matter tracts across the brain compared to adolescents without a history of 
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binge drinking (Bava et al., 2009b; McQueeny et al., 2009). A more recent study 

showed that human adolescents who went on to initiate drinking (eventually 

averaging ~5 drinks per occasion 4 times per month) showed increased thinning 

of the right frontal cortex and diminished white matter development in initiators 

(those who started drinking) compared to non-users at follow-up compared to 

baseline (Luciana, Collins, Muetzel, & Lim, 2013). In addition to increased white 

matter, non-users also displayed greater increases in fractional anisotropy (FA) 

over the two-year follow-up compared to initiators. FA is a scalar measure of 

uniformity of diffusion. Smaller values indicate that diffusion is uniform in all 

directions, whereas larger values indicate that diffusion is completely anisotropic, 

or along only one axis. Therefore, it is reasonable that the developmental 

increase in white matter seen in non-users is accompanied by an increase in FA. 

Additionally, the lack of increase in FA in adolescents who initiated drinking 

ethanol in the study from Luciana et al. (2013) indicates the possibility of 

microstructural abnormalities in the white matter of initiators. Squeglia et al. 

(2015) replicated these findings and showed that human adolescents who 

initiated heavy drinking had diminished white matter development during follow-

up scans over a period of up to eight years. However, a 2014 study from 

Pfefferbaum et al. demonstrated that measurements of white matter 

microstructure (such as FA) in adult human alcoholics could recover and move 

towards normality with increasing time in sobriety (Pfefferbaum et al., 2014).  
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Effects of ethanol abuse on the OFC 

As a part of the prefrontal cortex, the OFC reaches maturity after 

adolescence. As such, it is also especially vulnerable to the effects of 

environmental insults during adolescence, such as binge-like ethanol exposure 

(Bava et al., 2009a; Fowler et al., 2014). McMurray and colleagues (McMurray, 

Amodeo, & Roitman, 2016) reported that binge-like consumption of ethanol 

gelatin during adolescence in rats led to an increased preference for large, risky 

rewards over small, certain rewards in adulthood. Using in vivo 

electrophysiology, they also found that increased ethanol consumption was, 

“associated with increased risk preference,” (McMurray et al., 2016) and that, 

“higher risk preference was associated with reduced responses to rewards in one 

identified population of neurons [in the OFC].” They further hypothesized that the 

population of neurons referenced earlier may be inhibitory interneurons that 

modulate output to other reward-related areas of the brain such as the nucleus 

accumbens and the ventral tegmental area. However, it is important to note that 

the blood ethanol concentrations (BECs) reported by McMurray et al. were 

significantly lower than the threshold for binge-like ethanol exposure defined by 

the National Institute on Alcohol Abuse and Alcoholism (NIAAA). Interestingly, 

Coleman and colleagues (Coleman, Liu, Oguz, Styner, & Crews, 2014) found 

that adolescent binge-like ethanol administration lead to increased brain volume 

in the OFC in male rats, which correlated with findings in alcoholic adolescent 

human males (Medina et al., 2008). This could be due to a relative increase in 

white matter compared to controls, which also parallels the finding from Medina 
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and colleagues: an enlarged volume of the vlPFC of alcoholic adolescent human 

males, which “was associated with a 7% increase in white matter,” (Coleman et 

al., 2014). It is important to note that neurodevelopmental milestones in human 

males occur later than in females, and that white matter volume generally 

increases over the course of adolescence (Lenroot & Giedd, 2006). However, 

this area of the brain in humans (the vlPFC, which contains the OFC) typically 

decreases in volume as it matures throughout the late teen years and early 20s 

(Gogtay et al., 2004).  

 

Effects of adolescent ethanol abuse on brain volume 

Heavy drinking during human adolescence has also been shown to lead to 

decreases in the volume of the left ventral diencephalon (which includes the 

thalamus and hypothalamus), the left caudate, the left middle and inferior 

temporal gyri, and the brain stem (Squeglia, Rinker, et al., 2014). This volume 

reduction may partially reflect increased pruning of synaptic connections; while 

normative adolescent development involves decreasing grey matter due to 

neural pruning (Petanjek et al., 2011), and increasing white matter due to 

myelination, a sharper decline in grey matter volume – as demonstrated in this 

study – may indicate pathological changes in normative development. The 

authors note that, “These volumetric changes were positively correlated with 

lifetime ethanol use and peak number of drinks on an occasion in the past year, 

suggesting a dose-dependent effect of substance use on cortical thinning,” 

(Squeglia, Rinker, et al., 2014). Additionally, they note that other longitudinal 
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studies with functional MRI (fMRI) analysis have demonstrated increased brain 

activation in human adolescents who are heavy drinkers; this increased 

activation during tests of visual working memory (Squeglia et al., 2012) and 

response inhibition (Wetherill, Squeglia, Yang, & Tapert, 2013) may represent 

neural compensation for decreased grey matter seen in heavy drinkers observed 

in each of these studies.  

Other studies have shown decreased hippocampal volume in human 

adolescents with alcohol use disorder (AUD) either in both hemispheres (De 

Bellis et al., 2000), or in the left hippocampus alone (Nagel, Schweinsburg, Phan, 

& Tapert, 2005). De Bellis et al. showed that total hippocampal volume was 

correlated negatively with duration of AUD, and was correlated positively with 

age of onset; this suggests that earlier initiation of drinking and longer durations 

of AUD correlate with smaller hippocampal volumes after diagnosis. Assays of 

hippocampal function in human adolescents who abuse ethanol have shown that 

those with a history of binge drinking showed deficits in spatial orientation 

compared to non-binge drinkers (Blankenship, Blackwell, Ebrahimi, Benson, & 

Wallace, 2016), and deficits in spatial working memory with more neural 

activation, both compared to light drinkers (Tapert et al., 2004). 

 

ANIMAL MODELS OF ADOLESCENT ETHANOL ABUSE 

Heavy drinking during human adolescence can lead not only to a higher 

incidence of ethanol abuse in adulthood, but to persistent cognitive deficits that 

last well into abstinence and adulthood (Fein, Bachman, Fisher, & Davenport, 
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1990a; Fein, Torres, Price, & Sclafani, 2006a). However, it is difficult to 

differentiate between pre-existing differences and consequential changes in 

human adolescent binge drinkers. One way to control for some of the variables 

that are innately present in a cohort of human subjects is to use an animal model 

of binge-like ethanol exposure. Following adolescent ethanol exposure, adult rats 

exhibit several persistent cognitive deficits parallel to those seen in human 

subjects. Specifically, adult rats show deficits in behavioral flexibility as assessed 

via a set-shifting task (Gass et al., 2014), a spatial reversal learning task 

(Coleman et al., 2014), risky decision-making tasks (McMurray et al., 2016; 

Schindler, Tsutsui, & Clark, 2014), and extinction of ethanol seeking behaviors 

(Gass et al., 2014). Together, these results in rodent models of adolescent 

ethanol abuse indicate a phenotype of behavioral inflexibility and impaired 

cognitive function, which parallels the findings of research conducted in humans. 

There are several binge-like ethanol exposure models, encompassing 

multiple methods of ethanol delivery and duration of exposure during 

adolescence. Binge-like ethanol exposure is defined by NIAAA as a pattern of 

drinking that results in BECs of 80mg/dl or more, although many studies report 

BECs of 150-200mg/dl, which parallels those reported from late adolescent 

humans in field studies (Day, Celio, Lisman, Johansen, & Spear, 2013; L. Spear, 

2016). Models of binge-like ethanol exposure can broadly be separated into self-

administered and passive exposure models. Self-administration models have the 

advantage of taking into account the motivational aspects of the development of 

ethanol dependence, but the ethanol exposure of individual subjects cannot be 
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as tightly controlled as in passive exposure models. Accordingly, these models 

do not always result in binge-like levels of ethanol exposure for every subject, 

especially in rodent models. These models include self-administered drinking 

studies such as intermittent bottle access, drinking in the dark, and two-bottle 

choice, as well as the ethanol-laced gelatin consumption model. Passive 

exposure models, as stated earlier, do not account for the motivational aspects of 

the development of ethanol dependence, but can control individual subjects’ 

ethanol exposure both in terms of timing as well as achieving high blood ethanol 

levels. These models include experimenter-administered ethanol via intra-gastric 

(IG, or gavage) dosing or intraperitoneal (IP) injections. However, both the IP and 

IG routes of forced administration can be associated with stress due to 

experimenter handling for the animal, depending on the speed and experience of 

the experimenter administering the dose. An alternative passive ethanol 

exposure model is the vaporized ethanol exposure procedure. This involves 

chambers of tightly controlled concentrations of vaporized ethanol, into which 

subjects can be placed for ethanol exposure, usually overnight for 12-16 hours. 

For adolescent binge-like exposure, a pattern of two nights on, two nights off is 

usually followed. This is called adolescent intermittent ethanol (AIE) exposure, 

and it models the common pattern of repeated binge exposure and withdrawal in 

which adolescent humans engage. While the method of drug delivery (inhalation 

and absorption through the lungs) is not a common method of ethanol use in 

humans, it is a method of experimenter-controlled passive ethanol exposure that 

allows for carefully regulated ethanol exposure, and repeated intoxication and 



 14 

withdrawal. In addition to tightly regulated concentrations of ethanol vapor in the 

chambers, periodic blood samples to measure BECs as well as regular 

assessments of behavioral intoxication upon removal from the chambers can 

also ensure that the ethanol exposure is safe yet sufficient to qualify as a binge-

like exposure. Finally, the timing of the ethanol exposures allows for repeated 

episodes of withdrawal, which have been reported to be critical for the 

development of dependence-like behavior in adulthood (Crews, Vetreno, 

Broadwater, & Robinson, 2016). Behavioral tasks to assess cognitive function 

are carried out in adulthood. 

 

BEHAVIORAL TESTS OF COGNITIVE FLEXIBILITY 

The PFC mediates many of the higher order behaviors including executive 

functions (i.e. working memory and strategic planning) and behavioral flexibility. 

This requires extensive connections to, from, and within the PFC including the 

visual, motor, and association cortices; the thalamus, striatum, hippocampus and 

other subcortical structures; and other areas of the prefrontal cortex (Fuster, 

2015). Behavioral flexibility requires a balance between focus on the task at hand 

and the ability to flexibly update strategies in order to optimize outcomes 

(Floresco, 2013).  

There are many tasks that are used to assess various aspects of 

behavioral flexibility, but they can be separated into three broad categories: set-

shifting, reversal learning, and extinction learning (Hamilton & Brigman, 2015). 

Set-shifting includes tasks that require the subject to first learn a response rule 
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and then update that rule to account for new information either within the same or 

in a different dimension (visual, tactile, olfactory, or spatial); these are useful for 

assessing working memory span and endurance, attentional set formation, and 

attention shifting. One example of such a task is the operant set shifting 

procedure, in which a response rule is established (i.e. respond on the right lever 

for reward, a rule in the spatial dimension), and then shifted extra-dimensionally 

to require the subject to attend to a light cue above a lever to ascertain the 

rewarded response (a rule within the visual dimension). Reversal learning, in 

which tasks require the subject to learn a response rule and then directly reverse 

it, is useful for assessing many of the same aspects of behavioral flexibility as 

set-shifting tasks, albeit in a slightly different manner; these include working 

memory span and endurance, the ability to update response values, and 

inhibition of previously rewarded responses. Finally, extinction learning tasks 

require the subject to use negative feedback for a learned association in order to 

extinguish the previously learned association; these kinds of tasks are useful for 

assessing inhibition of previously learned associations and updating the value of 

outcomes and/or associations. One example is fear conditioning and extinction, 

in which a tone (a conditioned stimulus, CS) is associated with a foot shock (an 

unconditioned stimulus, US). This association is then extinguished by exposing 

the subject to the tone without the foot shock. Of these three broad categories of 

tasks that assess behavioral flexibility, the current project utilized reversal 

learning and extinction learning tasks. 
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Probabilistic reversal learning task 

Reversal learning is thought to be mediated by a network of brain regions 

including the orbitofrontal cortex (OFC), the medial PFC (mPFC) to a lesser 

extent, and the necessary sensory cortices (visual, olfactory, auditory, tactile, 

and/or spatial) for the specific task. There are several types of reversal learning 

tasks: 1) visual discrimination tasks, which usually utilize two or more visual 

cues, 2) olfactory discrimination tasks, which utilize two or more odor cues, 3) 

spatial tasks, which utilize mazes including the Morris water maze, the plus 

maze, the T-maze, and the radial arm maze with 5 or more arms, and 4) operant 

tasks, which utilize visual, auditory, and spatial stimuli (Hamilton & Brigman, 

2015). All of these tasks form associations between stimuli, cues, or spaces, and 

reward. The rodent OFC has been thought to be essential for reversal learning, 

specifically for updating reward value (Gallagher, McMahan, & Schoenbaum, 

1999; Hornak et al., 2006) and maintaining an accurate representation of an 

internal “task state” (Sharpe, Wikenheiser, Niv, & Schoenbaum, 2015). A “task 

state” is the neural representation of the abstract (and physical) context in which 

a given action is being considered or executed; often this representation involves 

unobservable components, such as the many possible results (and combinations 

thereof) of running a red light (Sharpe et al., 2015). Additionally, while past 

studies have shown that the OFC is critical for reversal learning, other recent 

work in rodents has shown that the OFC is critical for initial reversal learning, but 

not serial reversals (Boulougouris, Dalley, & Robbins, 2007). Interestingly, 

Boulougouris & Robbins (2009) demonstrated this principle by using excitotoxic, 
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bilateral OFC lesions after initial reversal training, and there were no differences 

between control and treatment groups in the number of trials to reach criterion 

during retention (of pre-surgical training) or reversal phases of the task. 

One paradigm that assesses behavioral flexibility, outcome value, reward 

sensitivity, and negative feedback sensitivity is the probabilistic reversal learning 

(PRL) task. The rodent operant version of this task (Gemma L. Dalton, Phillips, & 

Floresco, 2014) involves a “correct” lever, which is reinforced with an 80% 

reward probability, and an “incorrect” lever, which is reinforced 20% of the time. 

After initially discriminating the correct lever, the identity of the levers is reversed. 

This pattern of discerning the correct lever followed by a lever identity reversal 

continues until the end of the session, allowing evaluation of probabilistic 

discrimination and within-session reversal learning. Brain regions involved in this 

task include the nucleus accumbens shell (NAcs) and core (NAcc), the OFC, and 

– to a lesser extent – the mPFC. Regional inactivation studies in rodents from the 

Floresco lab using this task confirm earlier studies demonstrating that the NAcc 

facilitates reward approach and the NAcs plays a critical role in probabilistic 

reinforcement learning (Gemma L. Dalton et al., 2014). Additionally, the same lab 

used the same task and inactivation of prefrontal cortices to further determine 

that the medial OFC (mOFC) is critical for learning with probabilistic 

reinforcements, and that the lateral OFC (lOFC) is important for efficient 

approach to reward-related stimuli. In a later report, the same authors go on to 

contribute to the data implicating the lOFC in early but not late serial reversal 

learning (G. L. Dalton, Wang, Phillips, & Floresco, 2016). Interestingly, the same 
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study showed that mPFC inactivation improved PRL performance, most likely by 

increasing both reward and negative feedback sensitivity to yield an increased 

number of reversals completed per session. Neither inactivation of the infralimbic 

(IL) PFC or the anterior cingulate (ACC) significantly impaired PRL performance, 

although ACC inactivation slowed choice latencies (G. L. Dalton et al., 2016). 

 

Fear conditioning & extinction 

Extinction learning can be conceptualized as a type of inhibitory learning, 

as extinction involves “behavioral modifications that occur as a result of negative 

contingencies between a stimulus and a response,” (Hamilton & Brigman, 2015), 

which is an inhibition of previously learned behavioral associations. Before 

extinction can occur, these types of tasks must include an “excitatory learning 

history,” (Hamilton & Brigman, 2015), during which an initial association is formed 

via Pavlovian or fear conditioning. Pavlov’s initial hypothesis of extinction 

learning was that extinction was not the erasure of previous memory, but the 

formation of a new memory that could inhibit the previously learned association 

(Pavlov, 1927; Quirk, Garcia, & González-Lima, 2006); this hypothesis has been 

supported with recent work that also serves to elaborate on the specific neural 

bases of extinction learning. The brain regions that are currently thought to 

underlie extinction learning, especially extinction of fear conditioning, include the 

mPFC, the OFC, the basolateral (BLA) and central (CeA) nuclei of the amygdala, 

the intercalated cells (ITC) of the amygdala, and sensory cortices specific to the 

learning paradigm (visual, olfactory, auditory, tactile, and/or spatial) (Quirk et al., 
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2006). Within the frontal cortex, activity in the OFC has been shown to be crucial 

for initial extinction learning, whereas coordinated activity in the prelimbic (PL) 

and infralimbic (IL) medial prefrontal cortices has been shown to be critical for 

consolidation of extinction learning. For example, in the rodent OFC, excitotoxic 

lesions of the lateral and ventral OFC have been shown to impair initial extinction 

learning (West, Forcelli, McCue, & Malkova, 2013; Zelinski, Hong, Tyndall, 

Halsall, & McDonald, 2010), whereas recordings in the mPFC have shown an 

increase in IL activity (Francois et al., 2014) and excitability (Santini, Quirk, & 

Porter, 2008) during extinction. Additionally, high frequency stimulation of the IL 

immediately after fear conditioning in rodents facilitated extinction learning 

(Maroun, Kavushansky, Holmes, Wellman, & Motanis, 2012), whereas low 

frequency stimulation of the IL impaired extinction learning (Shehadi & Maroun, 

2013). Extinction has also been shown to decrease the efficacy of 

neurotransmission between the mPFC and the BLA while also shifting the 

balance of excitation and inhibition towards inhibition (Cho, Deisseroth, & 

Bolshakov, 2013). It is this increase in “top-down” prefrontal control of the 

amygdala that contributes to the newly formed extinction memory inhibiting the 

previously learned fear conditioning memory. 

 

Probabilistic decision-making task 

As discussed earlier, adolescence is a time of impaired judgment, 

increased exploration and independence, and increased risk-taking (L. P. Spear, 

2000). The probabilistic decision making task (PDT) is an animal model of risky 
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choice that can be used to assess probability discrimination, efficiency of 

decision-making, risk tolerance, negative feedback sensitivity, and reward 

sensitivity (Onge & Floresco, 2009). It is an operant task comprised of blocks of 

trials in which the subject chooses between a “risky” lever associated with a large 

reward, and a “certain” lever associated with a small reward. The risky lever is 

associated with a decreasing probability of reward across five blocks (100%, 

50%, 25%, 12.5%, and 6.25%), whereas the certain lever always has a 100% 

rate of reward. Each block of reward probability for the risky lever includes forced 

choice trials at the beginning to establish the new reward probability, and free 

choice trials afterward to test the subject’s preference for the risky lever. 

However, this task has not been used exclusively; other models of risky choice 

include tasks with intermittently introduced novel stimuli associated with unknown 

reward probabilities (Costa, Tran, Turchi, & Averbeck, 2014), and delay 

discounting tasks (Mar, Walker, Theobald, Eagle, & Robbins, 2011; Stopper, 

Green, & Floresco, 2014), which, it could be argued, are more suited to 

assessing impulsive than risky choice. Interestingly, acute administration of 

ethanol (0.5-1.5 mg/kg) had no effect on performance in the PDT (Mitchell, 

Vokes, Blankenship, Simon, & Setlow, 2011) despite obvious motor impairments. 

In literature examining human subjects, the Balloon Analogue Risk Task (BART) 

is commonly used to assess risky decision making by simulating the inflation of a 

balloon where each pump of air is paired with a reward. Following each air pump, 

the subject can collect their reward(s) or continue with the task, but an exploded 

balloon yields no rewards. Reynolds et al. (2006) found no effect of acute ethanol 
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administration on young adult healthy social drinkers, but Claus et al. (2017) 

found that human adolescents who frequently used ethanol and marijuana 

showed “reduced differentiation of increasing risk,” in the dorsal ACC, insula, 

striatum, and superior parietal lobe. This means that with decreased activation of 

these areas, especially the dACC, which has been closely associated with 

appraisal of risk, the subject is expected to demonstrate more risk-taking (Claus 

et al., 2017). However, pre-clinical studies in rats have shown that reversible 

inactivation of the anterior cingulate cortex has no effect on PDT performance 

(Onge & Floresco, 2010). In the same study, OFC inactivation increased choice 

latency in the later blocks (25% and 12.5%) without affecting risky choice. Finally, 

prelimbic inactivation in rodents led to an increase in choice latency, an increase 

in risky choice when the probability of reward decreased across blocks, and a 

decrease in risky choice when the probability of reward increased. St. Onge & 

Floresco concluded that the mPFC serves an “updating function,” by integrating 

environmental, temporal, and cue-related information to optimize reward 

acquisition (Onge & Floresco, 2010). They note that the mPFC of the rat has 

anatomical connections analogous to the ventral ACC of primates, performs 

functions similar to the primate dorsolateral PFC, and ultimately may be similar to 

both regions in anatomical and functional manners. 

 

RAT STRAIN DIFFERENCES 

There are many rat strains available for almost any experimental purpose, 

but the two that are used in the studies discussed below are the pigmented Long-
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Evans (LE) rats, and the albino Sprague-Dawley (SD) rats. Historically, 

pigmented rat strains (such as LE rats) have been selected for tasks involving 

visual discrimination, as albinism (such as in SD rats) has been documented to 

impair visual acuity. Additionally, many studies have compared various rat strains 

for performance on spatial memory and learning tasks, acquisition of operant 

tasks, measures of attention and impulsivity, differences in drug response or 

metabolism, and differences in response to stress. It is important to note that 

there are two broad types of rat strains relative to genetics: inbred and outbred. 

Inbred rats have been developed via inbreeding for specific traits (such as P-rats, 

or ethanol-preferring rats), while outbred rats (such as Long-Evans rats) have 

been bred to maintain relative genetic diversity within a distinct strain.  

The Long-Evans (LE) rat was initially created by crossing the outbred, 

albino Wistar rat with a wild, gray rat in 1915 by Drs. Long & Evans. The 

Sprague-Dawley (SD) rat was created by Sprague-Dawley farms in 1925 as an 

outbred, multipurpose, albino rat that was especially easy to handle. Long-Evans 

rats are commonly used in studies of cognitive performance, but multiple studies 

have shown that different strains of rats, including the LE and SD rats, perform 

similarly on behavioral tasks with minimal additional training. For example, 

Auclair et al. (2009) assessed performance in the five-choice serial reaction time 

test (5-CSRTT) in SD and LE rats. The 5-CSRTT involves five choices of nose 

poke holes; after a brief visual stimulus at one of the holes, the rat must nose 

poke in the indicated hole for a food reward. Fewer trials were required for SD 

rats to acquire the task, but LE and SD rats performed similarly after task 
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acquisition (Auclair et al., 2009). However, a separate study demonstrated that 

SD rats required more training on an operant task to both initiate trials as well as 

complete a reversal of the task compared to LE rats (Turner & Burne, 2014). 

Similarly, an older study from Andrews et al. (1995) showed that LE rats acquired 

an operant procedure faster than SD rats. Interestingly, Andrews et al. (1995) 

also showed that LE and SD rats performed similarly in a swim maze task, but 

that SD’s showed increased latency to choose compared to LE rats. Turner and 

colleagues used the acoustic startle response (ASR) to measure response to a 

loud noise, and revealed that LE rats showed increased habituation to the stimuli 

compared to SD rats (Turner & Burne, 2014), which may indicate that LE rats 

handle stress more readily than SD rats. Similarly, Faraday (2002) demonstrated 

that chronic restraint stress increased the ASR of SD but not LE rats. Clearly 

there is no clear consensus from the literature as to a “better” or “worse” strain 

for performance on behavioral tasks, but perhaps LE rats handle stress better 

than SD rats (Faraday, 2002; Turner & Burne, 2014). 

Unpublished data from our lab has shown that AIE differentially affected 

anxiety-like behavior as assessed with the light/dark box. Rodents naturally 

prefer dark and/or enclosed spaces, so the open, light side of the light/dark box is 

relatively aversive to them. Following AIE, LE rats spend significantly more time 

in the light side, whereas SD rats spend significantly more time in the dark side of 

the light/dark box. This could be interpreted as decreased anxiety-like behavior in 

LE rats, but increased anxiety-like behavior in SD rats, following AIE exposure. 
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Similar to the lack of consensus on performance in behavioral tasks, the 

literature on behavioral and metabolic responses to drugs is murky as well. A 

study from Horowitz et al. (1997) revealed that cocaethylene (the metabolic 

product of cocaine and ethanol) administration significantly increased locomotion 

and exploratory behavior in SD but not LE rats; however, concomitant 

administration of fluoxetine (an SSRI) with cocaethylene increased the 

locomotion and exploratory behaviors of LE rats to levels comparable to SD rats. 

A follow-up study from the same group found that there was no difference 

between LE and SD rats in dopamine or serotonin neurotransmission in the 

striatum or cingulate, and hypothesized that transmitter release or post-synaptic 

receptor sensitivity may instead account for the differences in response to 

cocaethylene in LE versus SD rats (Baumann, Horowitz, Kristal, & Torres, 1998). 

Another study from Horowitz and colleagues (2002) demonstrated that fluoxetine 

administration led to increased immediate early gene expression (as assessed 

with Fos immunohistochemistry) in the striatum of LE but not SD rats. Faraday et 

al. (1999) used increasing doses of nicotine to show that it increased ASR in SD 

rats, but impaired it in LE rats. Additionally, they noted that LE rats appeared to 

develop tolerance to the nicotine by day 12 of a 14-day administration, whereas 

SD rats did not display this. Finally, phencyclidine (PCP, an NMDA receptor 

antagonist) administration led to increased latency and omissions in SD but not 

LE rats on the 5-CSRTT (Auclair et al., 2009). If there are any generalities to take 

away from the above summary of studies, it is that SD rats may be more prone to 

displaying increased choice latency, either in a spatial water maze (Andrews et 
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al., 1995) or on the 5-CSRTT after PCP administration (Auclair et al., 2009), and 

that there are definite but complex differences in serotonin neurotransmission 

and/or serotonin receptor sensitivity in LE and SD rats (Baumann et al., 1998; 

Horowitz et al., 2002; Horowitz et al., 1997). 

 

STRESS & ETHANOL ABUSE 

Stress and adolescent binge-like ethanol exposure can lead to many of 

the same symptoms of cognitive dysfunction: deficits in cognitive flexibility (Park, 

Wood, Bondi, Arco, & Moghaddam, 2016) and impaired attention and working 

memory (Arnsten, 1998; Goldman‐Rakic, 1999). Unfortunately, the effects of 

stress can also increase the vulnerability to substance abuse, especially ethanol. 

Of the patients who survive a traumatic situation, up to 75% of them 

subsequently report problems with drinking (V.A., 2016). Additionally, 

approximately 70% of veterans seeking treatment for a stress disorder have an 

AUD (V.A., 2016). People with an AUD have an increased likelihood of also 

being diagnosed with an anxiety disorder, with PTSD being the most common 

anxiety disorder (Petrakis, Gonzalez, Rosenheck, & Krystal, 2002). Symptoms of 

PTSD include mentally re-experiencing the trauma, avoiding triggers associated 

with the trauma, social avoidance, negative affect, and hyperarousal (V.A., 

2015). One animal model of acute stress that models some of the behavioral and 

neurological aspects of PTSD is the single prolonged stress (SPS) model. This 

consists of (consecutively) 2 hours of restraint stress, a 20 minute forced swim in 

24°C water, 15 minutes of recovery, and ether anesthesia until loss of the toe 
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pinch reflex (Liberzon, Krstov, & Young, 1997). After this exposure, the rat is left 

undisturbed in its home cage for 7 days; these 7 days of relative isolation have 

been shown to be a “consolidation phase,” that is important for the development 

of behaviors and neurochemical changes that model those seen in PTSD (Knox, 

Nault, Henderson, & Liberzon, 2012; Liberzon et al., 1997; Liberzon, Lopez, 

Flagel, Vazquez, & Young, 1999).  

SPS exposure leads to increased negative feedback of the hypothalamic-

pituitary-adrenal (HPA) axis (Liberzon et al., 1997; Liberzon et al., 1999), which 

parallels the impaired cortisol response to stress seen in patients with PTSD 

(Yamamoto et al., 2009). Additionally, animals exposed to SPS display increased 

arousal and an exaggerated response to both trauma-related (Khan & Liberzon, 

2004) and trauma-unrelated cues and/or contexts (Knox et al., 2011), similar to 

patients with PTSD (Grillon, 2002; Grillon, Morgan, Davis, & Southwick, 1998). 

Knox et al. (2012) specifically demonstrated that SPS exposure led to impaired 

extinction retention for context and cued fear; however, it did not affect the 

acquisition or extinction processes. This parallels the deficits in extinction of fear 

conditioning seen in PTSD, which is thought to be due to an inability to learn that 

something that was once dangerous is now safe (Jovanovic, Kazama, 

Bachevalier, & Davis, 2012; Liberzon & Abelson, 2016). A myriad of hippocampal 

abnormalities have also been seen following SPS exposure in rodents, including 

decreased NMDA receptor density (Yamamoto et al., 2009), increased BDNF 

mRNA and TrkB receptors (Takei et al., 2010), and increased glucocorticoid 

receptors (GRs) in the dorsal hippocampi of female but not male rats (Keller, 
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Schreiber, Staib, & Knox, 2015). It has been shown that patients with PTSD have 

reduced hippocampal volumes (Karl et al., 2006; Kitayama, Vaccarino, Kutner, 

Weiss, & Bremner, 2005), although some studies assert that reduced 

hippocampal volumes may be a pre-existing risk factor for developing PTSD 

(Gilbertson et al., 2002). No study to date has confirmed if SPS exposure also 

leads to reduced hippocampal volumes. Chronic treatment with selective 

serotonin reuptake inhibitors (SSRIs) can remedy some of these symptoms in 

both PTSD patients and SPS exposed animals (Berger et al., 2009; Takahashi, 

Morinobu, Iwamoto, & Yamawaki, 2006); administration of SSRIs prior to and 

continuing after SPS exposure can also prevent the increase in contextual fear 

and anxiety behaviors (Yamamoto et al., 2009). 

Stress and alcohol use disorders are, “inextricably intertwined,” with such 

frequency that many patients must be treated for both concurrently (Kofoed & 

Friedman, 1993). While the diagnosis of PTSD preceded an AUD diagnosis in a 

sample of veterans from WWII, an AUD diagnosis preceded a PTSD diagnosis in 

a separate sample of Vietnam veterans (Davidson, Kudler, & Saunders, 1990). 

This demonstrates the frustratingly complex relationship between stress 

disorders and ethanol abuse. Of note is the considerable overlap in circuitry 

between drug addiction and stress: both involve decreased prefrontal activity 

(Arnsten, Raskind, Taylor, & Connor, 2015; Goldstein & Volkow, 2011; McMurray 

et al., 2016), which is due at least in part to increased catecholaminergic activity 

(Arnsten et al., 2015). Following this dysfunction of the prefrontal cortical “brakes” 

of the brain, “a vicious cycle that maintains primitive circuits in control of 
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behavior,” is initiated so that decreased prefrontal cortical activity is perpetuated 

in both drug addicted and stressed states (Arnsten et al., 2015). Kushner et al. 

(2000) framed this problem of comorbid ethanol use and anxiety as a “feed 

forward cycle” in which initial ethanol use can relieve symptoms of anxiety, but 

longer-term ethanol use actually generates more anxiety. Several recent pre-

clinical studies have examined the interaction between ethanol administration 

and stress. Varlinskaya et al. (2016) demonstrated that AIE followed by stress 

exposure (90 minutes restraint stress for 4 days in adulthood) led to a lack of 

habituation in the corticosterone (CORT) response to repeated restraint stress 

over the 4 days of stress exposure; normally, adult rodents display a habituated 

CORT response to repeated stress whereas adolescents do not display this 

habituation. The lack of CORT habituation in AIE animals during repeated stress 

suggests a dysregulation of the HPA axis, which can also be seen in SPS 

exposed animals (Liberzon et al., 1999). Other studies utilizing an adult model of 

chronic ethanol exposure (chronic intermittent ethanol exposure, CIE) have 

demonstrated that repeated episodes of forced swim stress (FSS) led to 

increased escalation of ethanol intake compared to ethanol-dependent, 

unstressed mice (Rodberg et al., 2017).  

 

COMT, PTSD, & ethanol abuse 

Dopaminergic neurotransmission in the PFC is critical for many executive 

functions, as well as working memory. Studies have shown that dopamine 

receptor signaling is critical for behavioral flexibility (Floresco, Magyar, Ghods-
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Sharifi, Vexelman, & Tse, 2005), risk-based decision-making (Onge, Abhari, & 

Floresco, 2011), and working memory (Sawaguchi & Goldman‐Rakic, 1991, 

1994). However, the dopamine transporter (DAT) is not significantly expressed in 

the PFC, so catechol-O-methyltransferase (COMT) is the major pathway through 

which dopamine is enzymatically cleared from the synaptic cleft. Interestingly, the 

Val158Met polymorphism of COMT gene in humans plays an important role in 

both PTSD and drug abuse. The substitution of methionine for valine at amino 

acid 158 in the COMT protein leads to a significant decrease in the ability of 

COMT to catabolize catecholamines. Compared to val/val and val/met allele 

carriers, met/met carriers (those with relatively decreased COMT activity and 

increased baseline catecholamine concentrations) display an increased 

incidence of PTSD (Arnsten et al., 2015), and increased BOLD response in the 

OFC following a reward (Dreher, Kohn, Kolachana, Weinberger, & Berman, 

2009). Additionally, in a gambling task that investigated the effect of how a 

situation is presented (the framing effect), Met allele carriers were more 

susceptible to negative framing and thus gambled more than val/val allele 

carriers (Gao et al., 2016).  

 

SUMMARY 

The frontal lobe is one of the last areas of the brain to reach maturity, and 

the prefrontal cortex undergoes significant development during adolescence. 

Additionally, adolescence is a time of increased risk-taking and impaired 

behavioral inhibition; it is also a time when experimentation with drugs can initiate 



 30 

life-long addictive behavioral patterns. One of the most commonly abused drugs 

during adolescence is ethanol; the prefrontal cortex is particularly vulnerable to 

neurotoxic effects of this drug compared to other brain regions. Adolescent 

ethanol use typically follows a pattern of binge-like episodes of use and 

withdrawal, which human neuroimaging studies have shown to lead to abnormal 

developmental trajectories of both white and gray matter. A variety of cognitive 

assessments in humans have also shown that adolescent ethanol abuse leads to 

impaired behavioral flexibility. 

Ethanol use disorders and stress or anxiety disorders are frequently 

comorbid, with several studies showing that a diagnosis of either type of disorder 

may precede (and possibly predispose the patient to) the other. There is also 

considerable overlap in the circuitry of stress reactivity and drug addiction, 

notably a significant decrease in prefrontal activity. However, the complicated 

development of these disorders makes it difficult to determine if a condition is 

pre-existing or a pathological change. Therefore, carefully controlled studies 

using animals are necessary to elucidate the mechanisms involved with both 

disease states. 

 

STATEMENT OF PROBLEM & SPECIFIC AIMS 

Adolescent ethanol abuse leads to demonstrable developmental changes 

and cognitive impairments in adulthood. Various developmental and cognitive 

deficits have been reported in the human as well as animal literature. 

Additionally, many human and animal studies have shown the deleterious effects 
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of traumatic stress on cognitive function. However, relatively few studies have 

attempted to determine the combined effects of adolescent binge-like ethanol 

exposure as well as traumatic stress. The following experiments use the 

adolescent intermittent ethanol (AIE) model of adolescent binge-like ethanol 

exposure, as well as the single prolonged stress (SPS) model of some symptoms 

of PTSD to aim to address the overarching question: do AIE, SPS, or AIE and 

SPS lead to cognitive deficits in adulthood? Cognitive deficits were assessed via 

reversal learning, risky decision-making, and extinction learning procedures. The 

overall hypothesis being tested was that binge-like ethanol exposure during 

adolescence would lead to impaired behavioral flexibility, and that SPS 

would interact with AIE to further facilitate these deficits. This hypothesis 

was tested via the following three specific aims: 

 

SPECIFIC AIM 1: TEST THE HYPOTHESIS THAT AIE AND SPS WILL RESULT IN 

IMPAIRMENT OF PERFORMANCE ON AN OPERANT PROBABILISTIC REVERSAL LEARNING 

PROCEDURE IN ADULT RATS. 

Adolescent binge-like exposure to ethanol has been shown to impair spatial 

reversal learning in male C57BL/6 mice (Coleman et al., 2014) and operant set-

shifting performance in male Long-Evans rats (Gass et al., 2014). Additionally, 

single prolonged stress (SPS) has been shown to lead to impaired behavioral 

flexibility in a reversal learning task as well as a set-shifting task in male 

Sprague-Dawley rats (George et al., 2015). However, preliminary data suggested 

that AIE exposure did not lead to deficits in reversal learning in male Long-Evans 
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rats. Therefore, the hypothesis of this aim was that AIE exposure would facilitate 

the effects of SPS exposure in adulthood on performance of the probabilistic 

reversal learning procedure in male Sprague-Dawley but not Long-Evans rats. 

 

SPECIFIC AIM 2: TEST THE HYPOTHESIS THAT AIE AND SPS WILL RESULT IN 

INCREASED RISKY CHOICE ON AN OPERANT PROBABILISTIC DECISION-MAKING TASK IN 

ADULTHOOD. 

Binge-like exposure to ethanol during adolescence has been reported to result in 

increased risky choice in adulthood (McMurray et al., 2016; Nasrallah, Yang, & 

Bernstein, 2009; Schindler et al., 2014). Additionally, binge-like adolescent 

ethanol exposure has been shown to increase the dopaminergic response of the 

mesolimbic dopamine system to risk but not reward (Nasrallah et al., 2011). 

Therefore, the hypothesis of this aim was that SPS exposure in adulthood would 

facilitate the effects of AIE exposure in adolescence on performance of the 

probabilistic decision-making procedure in adulthood.  

 

SPECIFIC AIM 3: TEST THE HYPOTHESIS THAT SPS WILL EXACERBATE AIE-INDUCED 

ALTERATIONS OF FEAR-RELATED BEHAVIORS IN ADULT LONG-EVANS RATS. 

Adolescent binge-like ethanol exposure has been shown to lead to impairments 

in extinction of ethanol-seeking behavior (Gass et al., 2014) as well as deficits in 

extinction of fear conditioning (unpublished observations from the Gass lab). SPS 

exposure has been shown to impair extinction retention of cued fear without 

affecting fear conditioning or extinction (Knox et al., 2011). Therefore, the 
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hypothesis of this aim was that AIE exposure would facilitate the effects of SPS 

exposure in adulthood on extinction of fear conditioning as well as extinction 

retention of cued fear. 
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CHAPTER 2 
 
 
 
 

ADOLESCENT ETHANOL VAPOR EXPOSURE & SINGLE PROLONGED 
STRESS MODELS 

 
 
 
 

As discussed briefly in the previous chapter, the methods and results in 

this chapter detail the adolescent intermittent ethanol (AIE) exposures for 

subsequent data chapters. There are several methods of ethanol administration 

in rodents that mimic different parameters of human use of ethanol, and each 

have their advantages and disadvantages. Voluntary ethanol consumption in 

rodents can be achieved by providing free access to a solution containing 

ethanol either with or without concomitant water access (Rossi & Zucoloto, 1977; 

Sarles, Lebreuil, Tasso, & Figarella, 1971). While this model has the highest face 

validity in regards to how humans ingest ethanol, it is problematic in that the 

experimenter has no control over the amount of ethanol consumed by each rat. 

Subsequently, there may only be a small portion of a given cohort of rats that 

meets the criteria for intoxication (80mg/dl)(NIAAA, 2015a), or that reaches 

substantial levels of intoxication similar to what is seen in human alcoholics. 

Experimenter-administered ethanol, while it is not representative of the way most 

humans use ethanol, can resolve the problem of varying levels of ethanol 

consumption between cohorts, as intoxication and blood ethanol concentrations 

(BECs) can be tightly controlled. Consequently, much higher BECs can be 
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achieved with these types of methods in rodents than with voluntary ethanol self-

administration. 

Involuntary ethanol administration can be achieved with intraperitoneal 

(IP) injection of ethanol, intragastric (IG) gavage with ethanol, or inhalation of 

vaporized ethanol. IP administration of ethanol (Seitz et al., 1990; Siegmund, 

Haas, Schneider, & Singer, 2003) involves injecting an ethanol solution directly 

into the intraperitoneal cavity. This method is useful for examining the acute 

metabolic and behavioral effects of ethanol on animals, as it avoids first-pass 

metabolism. This enables the experimenter to account for variation between 

animals in metabolic rates, but the stress and inflammation associated with 

multiple injections in a chronic ethanol administration paradigm can be a 

confound. IG gavage of ethanol (Lieber, DeCarli, & Sorrell, 1989; Siegmund et 

al., 2003), while it is involuntary, has a greater degree of face validity. It utilizes 

the same route of administration as human consumption of ethanol, but allows 

the experimenter to regulate the dose and monitor the effects of ethanol 

administration so as to minimize variability between animals. However, repeated 

gavage administrations can be associated with stress due to experimenter 

handling, which may confound any results seen with chronic IG ethanol 

administration. Finally, ethanol vapor inhalation (Rogers, Wiener, & Bloom, 1979) 

may be used for involuntary ethanol administration by placing an animal in a 

sealed chamber of vaporized ethanol to inhale the gas. This results in BECs 

similar to those seen with other involuntary administration methods, and 

intoxication can be tightly regulated by adjusting the ethanol vapor concentration. 
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This method is not similar to human ethanol use, as very few humans inhale 

ethanol (Glatter, 2013; Press, 2006), and inhaled ethanol is not processed 

metabolically the same way as ethanol metabolized through the gastrointestinal 

tract. However, there is relatively less handling compared to other ethanol 

administration methods, and thus presumably less handling stress associated 

with chronic ethanol vapor exposure. Therefore, although it is not physiologically 

relevant to the manner in which humans consume ethanol, it is useful for 

examining the effects of longer term, experimenter administered ethanol in 

rodents. 

The characterization of exposure parameters includes studies in both 

Sprague-Dawley (SD) and Long-Evans (LE) rats. Additionally, the initial 

hypothesis that two different outbred strains of rats would display differential 

effects of AIE exposure on behavioral flexibility in adulthood was based on data, 

reported here, of differences in anxiety-like behavior in adult male LE versus SD 

rats following AIE exposure. 

 

AIE VAPOR EXPOSURE & MEASUREMENT OF BECS 

Cross-fostered litters of 8 male and 2 female rats with a dam were ordered 

from Harlan (now Envigo) to arrive at PD22, and the litters were weaned at PD24 

after 2 days of habituation to the animal facility after shipping. Male rats were 

then divided into control and experimental groups and pair-housed in standard 

polycarbonate cages. Pairing was always done within a litter and there was 

always a within litter control and experimental group. Access to food and water in 



 37 

the home cage was continuous throughout the experiment except for the weeks 

of operant training (see below). The animal colony room was maintained on a 

reverse 12:12 light-dark cycle with lights off at 0900. All experimental procedures 

were conducted during the dark cycle, when rodents are most active, between 

0900 and 1800. All procedures were approved by the Institutional Animal Care 

and Use Committee at the Medical University of South Carolina, and within 

guidelines set forth by the National Research Council’s Guideline for the Care 

and Use of Mammals in Neuroscience and Behavioral Research (2003). 

The AIE exposure procedure used in the present study involved 

intermittent binge-like exposure to ethanol by vapor inhalation as previously 

described in Gass et al. 2014. AIE exposure encompassed post-natal days (PD) 

28 through 44, and involved 5 cycles of 2 consecutive episodes of ethanol vapor 

inhalation, with each exposure consisting of 14-hrs in the vapor chambers 

followed by 10-hrs out of the chambers. Rats were exposed to ethanol on PD28 

& 29 (cycle 1), PD31 & 32 (cycle 2), PD35 & 36 (cycle 3), PD38 & 39 (cycle 4), 

PD42 & 43 (cycle 5) (Figure 2-1).  
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Figure 2-1. Experimental timeline of AIE exposure, pair housing, and operant testing 
 
A 5-point behavioral intoxication rating scale was used to provide an index of the 

level of intoxication that was achieved during each of the exposure cycles. The 

rats were scored according to the following behaviors: 1 = No signs of 

intoxication; 2 = Slightly intoxicated (slight motor impairment); 3 = Moderately 

intoxicated (obvious motor impairment but able to walk); 4 = Highly intoxicated  

(severe motor impairments, loss of righting reflex); 5 = Extremely intoxicated 

(loss of righting reflex for at least 30 seconds and loss of eye blink reflex) (Table 

2-1).  
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Table 2-1. Behavioral intoxication ratings for AIE exposures 
Intoxication 
Rating 1 2 3 4 5 

Behavioral 
Markers 

No signs of 
intoxication 

Slight 
motor 
impairment 

Obvious 
motor 
impairments, 
but able to 
walk 

Severe 
motor 
impairments
, loss of 
righting 
reflex 

Loss of 
righting 
reflex 
and 
loss of 
eye 
blink 
reflex 

 
The target intoxication level was slight to moderate intoxication, which 

corresponded to an intoxication rating of 2 to 3, respectively. This level of 

intoxication is similar to that observed after binge-drinking in adolescent humans 

(NIAAA, 2015b). In addition to providing a measure of the level of intoxication, 

the rating also provided immediate information that was used to make 

adjustments in the level of ethanol vapor in the chambers in order to maintain a 

consistent level of intoxication across exposure days. Tail vein blood was 

obtained at the end of each of the 2-day ethanol vapor exposure cycles. 

Immediately following the collection of blood from the tail vein, the blood was 

centrifuged at 10,000 X g for 10 minutes to obtain plasma supernatant, which 

was then stored at -20 °C until assayed. Next, 10 µl of plasma was used for 

determination of ethanol levels using a colorimetric enzymatic assay as 

described previously (Prencipe, Iaccheri, & Manzati, 1987) for all of the Long-

Evans rats and the Sprague-Dawley rats used in the light/dark box assessment, 

or using enzymatic oxygen rate detection via an AM1 Alcohol Analyser from 

Analox (Analox-AM1) for the Sprague-Dawley animals used in the probabilistic 

decision-making and probabilistic reversal learning tasks. 
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Single Prolonged Stress (SPS) exposure 

The SPS paradigm is an animal model of traumatic stress that reliably 

reproduces some of the key symptoms of post-traumatic stress disorder (PTSD). 

In humans, PTSD is marked by several categories of symptoms: re-experiencing 

symptoms, avoidant behavior, negative affect, and hyperarousal. While it is 

currently not possible to ascertain if an animal has re-experiencing symptoms 

such as nightmares, flashbacks, or intrusive thoughts, the other symptom 

categories have been modeled in animals. Avoidant behavior in humans is 

characterized by eschewing crowds or cues that elicit memories of the original 

traumatic event (V.A., 2015); similar parallel behaviors in animals exposed to 

SPS include avoidance of trauma-related cues (Khan & Liberzon, 2004) and 

decreased social and novelty preference (Eagle, Fitzpatrick, & Perrine, 2013). 

Negative affect in humans is characterized by anhedonia, depressive symptoms, 

and misanthropic behaviors (V.A., 2015); parallel behaviors in SPS-exposed 

animals involve social avoidance (Eagle et al., 2013), decreased sucrose 

preference, and decreased cocaine preference (Enman, Arthur, Ward, Perrine, & 

Unterwald, 2015). Finally, symptoms of hyperarousal in humans include 

increased startle response, difficulty sleeping and concentrating, and increased 

negative feedback of the hypothalamic-pituitary-adrenal (HPA) axis (V.A., 2015; 

Yehuda et al., 1993). In animals, SPS has been shown to lead to increased 

contextual fear-related behaviors (Takahashi et al., 2006), increased startle reflex 

(Khan & Liberzon, 2004), and increased negative feedback of the HPA axis 

(Liberzon et al., 1997; Liberzon et al., 1999). Increased negative feedback of the 
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HPA axis manifests as decreased plasma levels of adreno-corticotrophic 

hormone (ACTH). Corticotropin releasing hormone (CRH), released by the 

hypothalamus, stimulates the anterior pituitary to release ACTH, which then 

stimulates the adrenal cortex to release glucocorticoids (primarily cortisol in 

humans, and corticosterone in rodents). Glucocorticoid release from the adrenal 

cortex regulates hormone release from the pituitary and the hypothalamus via 

negative feedback, so decreased ACTH following SPS exposure indicates 

enhanced negative feedback of the HPA axis (Liberzon et al., 1997). Additionally, 

PTSD has been shown to lead to deficits in extinction learning (Milad et al., 

2008), which has been replicated in animals (Knox et al., 2011). 

PTSD and ethanol use disorders are frequently comorbid, with many 

patients being treated concurrently for both (Petrakis et al., 2002). Additionally, 

those with PTSD have been reported to have problems with ethanol use both 

before and after diagnosis (Kofoed & Friedman, 1993). Therefore, preclinical 

experiments addressing the intersection of these two disorders are needed to 

disentangle the causes of and solutions to both PTSD and alcohol use disorders. 

Interestingly, disorders of stress (such as PTSD) and alcohol use disorders share 

many symptoms. For example, it has been reported that AIE leads to a lack of 

habituation of the corticosterone response, which is a marker of HPA axis 

dysregulation (Varlinskaya et al., 2016). AIE has also been shown to lead to 

deficits in extinction learning (Bergstrom, McDonald, & Smith, 2006; Broadwater 

& Spear, 2013), decreased reward preference, and decreased social preference 
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(Varlinskaya et al., 2016). Therefore, it was hypothesized that SPS exposure 

would exacerbate the effects of AIE. 

In studies contained in this dissertation that involve SPS, animals that 

were subjected to exposure were PD90 or older. The SPS procedure is based on 

previous work by Liberzon et al. (Liberzon et al., 1997; Liberzon et al., 1999). On 

the day of the procedure, the control group was brought out of the animal facility 

to be kept in a lighted area outside of the exposure room in order to match the 

disturbance in light cycle that the SPS group would experience but without 

experiencing the smells and sounds from the stressed rats in the SPS group. 

Rats assigned to the SPS group were exposed to three successive stressors: 2 

hours of restraint stress in a clear, acrylic cylinder; 20 minutes of forced swim in 

23-25°C water that was deeper than the length of the rat; 15 minutes for recovery 

in a clean cage on a heating pad; followed by ether anesthesia to 

unconsciousness (approximately 5 minutes of exposure). Following this final 

stressor, the rats were allowed to recover in a clean cage on a heating pad until 

they were dry (approximately 2 hours), and then returned with the control group 

to the animal facility where they were left undisturbed for 7 days. Behavioral 

testing resumed on the 8th day after control or stressor exposures. Each of these 

exact stressors, in the order in which they are presented here, with the 

consolidation phase of 7 days after the stressors, have been shown to be vital to 

the development of behaviors which model some symptoms of PTSD in humans 

such as hyperarousal, extinction retention deficits, and enhanced negative 
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feedback of the hypothalamic-pituitary-adrenal (HPA) axis (Knox et al., 2012; 

Liberzon et al., 1997; Liberzon et al., 1999). 

The rats used in these studies (n = 27 AIE, 26 Control Long-Evans; n = 27 

AIE, 32 Control Sprague-Dawley) were all male, and were separated within litters 

into pair-matched groups of Control or AIE exposed animals, which were put 

through AIE exposure, operant training and testing, SPS exposure, and then re-

testing on the operant task. Intoxication scores measured at the end of each 14-

hour ethanol vapor exposure period were averaged across all five cycles within 

each rat strain cohort. Across the five cycles of ethanol vapor exposure, there 

were minor but statistically significant differences between rat strains. A 

comparison via a 2-way ANOVA (strain by cycle number) revealed that, for the 

scores on Day 1, there was a significant interaction between strain and cycle 

number (F(5,502) = 9.967 p < 0.0001). Additionally, there was a significant 

difference due to cycle number (F(5,502) = 14.27 p < 0.0001) and strain (F(1,502) = 

7.01 p = 0.0084). For the scores on Day 2, there was only a significant difference 

due to cycle number (F(5,502) = 3.063 p = 0.0098). These results demonstrate a 

significant difference due to cycle number for both Days 1 & 2 of each exposure 

cycle, regardless of strain, but a significant effect of strain on BEC for Day 1 only 

(Figure 2-2). 
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Figure 2-2. Strain of rat is not associated with persistent or consistent differences 
in intoxication scores across five cycles of ethanol exposure. A) Intoxication scores 
collapsed across rat strain for day 1 of each of five cycles of intoxication, and a grand 
average collapsed across all five cycles of ethanol exposure. B) Intoxication scores 
collapsed across rat strain for day 2 of each of five cycles of intoxication, and a grand 
average collapsed across all five cycles of ethanol exposure. ** p < 0.01 # p < 0.0001 
 
The grand averages, computed from the intoxications scores from the respective 

days of each of the five exposure cycles, for Day 1 were 2.91 ± 0.08 for LE rats, 

and 2.69 ± 0.07 for SD rats; an unpaired t-test revealed no significant differences 

between strains with respect to this measure. The grand averages for Day 2 

were 2.30 ± 0.07 for LE rats, and 2.35 ± 0.07 for SD rats; a separate unpaired t-

test revealed no significant differences between strains with respect to this 

measure, either. Finally, the grand average for both days across all cycles were 

2.60 ± 0.06 for LE rats, and 2.52 ± 0.05 for SD rats (Figure 2-3). A 2-way 

ANOVA (strain by day of cycle) revealed that there was a significant difference 

due to day of cycle (F(1,250) = 40.98 p < 0.0001), but no significant difference 

between strains. Additionally, an unpaired t-test of intoxication scores collapsed 

across and all cycle numbers and both days of the cycle revealed that there was 

no significant difference between the strains (t(490) = 0.698 p = 0.486). 
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Figure 2-3. Strain of rat is not associated with differences in average intoxication 
scores. Grand average intoxication scores for Days 1 & 2 across five cycles of binge-
like ethanol exposure, and collapsed into a grand average for both days across the five 
cycles. **** p < 0.0001 
 
Tail vein blood drawn at the end of each of the 2-day ethanol vapor exposure 

cycles was used to measure blood ethanol concentrations (BEC). A 2-way 

ANOVA revealed a significant difference due to strain (F(1,247) = 86.08 p < 

0.0001), and a significant interaction between strain and cycle number (F(4,247) = 

3.866 p = 0.0046), but no significant difference due to cycle number alone (F(4,247) 

= 2.396 p = 0.051) (Figure 2-4A). Additionally, an unpaired t-test of the grand 

average of BECs, collapsed across all 5 exposure cycles within strain, revealed a 

significant difference between strains (t(252) = 8.488 p < 0.0001) (Figure 2-4B). 

Day 1 Day 2 Both Days
0

1

2

3

4

5

Intoxication Scores
Grand Averages

In
to

xi
ca

tio
n 

S
co

re
Long-Evans

Sprague-Dawley

n = 27

n = 28#



 46 

 
Figure 2-4. Sprague-Dawley rats display significantly higher BECs compared to 
Long-Evans rats throughout five cycles of ethanol vapor exposure. A) Average 
BECs by cycle and rat strain for cycles 1-5, with B) a grand average collapsed across all 
five cycles, all displaying a significantly increased BEC in SD compared to LE rats. ** p < 
0.01 *** p < 0.001 # p < 0.0001 
 
As both the intoxication scores and BECs were revealed to be significantly 

different due to strain across exposure cycles, an analysis was conducted of the 

correlation of the average BECs at each intoxication score within rat strain. The 

average BEC at each intoxication score was significantly correlated for both LE 

(p = 0.0006) and SD (p = 0.0087) rats (Figure 2-5). Additionally, a 2-way ANOVA 

(strain by intoxication score) revealed that there was a significant effect of both 

strain (F(1,242) = 43.39 p < 0.0001) and intoxication score (F(3,242) = 37.09 p < 

0.0001), but no interaction between the two (F(3,242) = 0.963 p = 0.411). 

Additionally, multiple comparisons with Sidak’s correction revealed that the BEC 

values for each strain were significantly different from each other at each 

intoxication score:  1 (t(242) = 2.6 p = 0.39), 2 (t(242) = 7.62 p < 0.0001) 3 (t(242) = 

5.642 p < 0.0001), and 4 (t(242) = 2.53 p = 0.047). There were insufficient samples 

(n = 3 SD, n = 0 LE) to conduct analyses at an intoxication score of 5 (Figure 2-

5). 
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Figure 2-5. Sprague-Dawley rats display significantly increased BEC values at 
each intoxication score compared to Long-Evans rats. n = 15-20 BEC values for 1, n 
= 40-70 BEC values for 2, n = 47 BEC values for 3, n = 4-6 BEC values for 4, n = 3 BEC 
values for 5 * p < 0.05 ** p < 0.01 # p < 0.01 
 
Analysis of the two methods used to calculate BECs in these studies 

(colorimetric assay and enzymatic oxygen rate detection) revealed that there was 

no significant difference in the BECs generated from each measure (unpublished 

observation from our lab). Therefore, it seems reasonable to conclude that, at a 

given level of intoxication determined by behavioral observation, SD rats display 

an increased BEC compared to LE rats. While this is a potentially interesting 

observation, additional studies are required to more fully define these 

differences. To this end, additional studies involving much larger sample 

numbers are ongoing in the lab to correlate BECs with intoxication scores 

according to age, strain, method of BEC analysis, and researcher. 
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EFFECT OF AIE ON ANXIETY IN ADULTHOOD 

Following AIE exposure, rats were allowed to mature into early adulthood (after 

PD60), and then assessed for anxiety-like behavior with the light/dark box. This 

task assesses anxiety-like behavior in rodents by taking advantage of two 

conflicting drives: the exploratory drive, as the apparatus and environment are 

novel, and the drive for safety and security, as rodents usually prefer dark, 

enclosed spaces. Increased time spent in the dark side of the box would indicate 

an increased drive for safety and a decreased exploratory drive, which could be 

interpreted as increased anxiety-like behavior. In contrast, increased time spent 

in the light side of the box is typically interpreted as a display of decreased 

anxiety-like behavior. 

 

Light/dark box: Identical boxes of opaque, glossy black or white PVC were 

constructed and joined together with a doorway tall and wide enough for a 

standard adult rat. The white/light box was constructed without a ceiling whereas 

the black/dark box had a ceiling of the same black PVC material. The light/dark 

box apparatus had no floor, so it was set on the same white, matte, wood-

grained PVC flooring as the open field. The testing room was illuminated by 

overhead fluorescent bulbs, and a white noise machine – turned to “white noise” 

– had the volume set to 76 dB. In the light side of the box, the fluorescent bulbs 

produced an illumination of approximately 300 lux. Following a 5-minute 

acclimation period, the test subject was removed from the home cage and placed 
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in the light box facing away from the doorway to the dark box. The subject was 

left alone in the testing room for 5 minutes. At the end of the test the room lights 

were turned on and the test subject was returned to the home cage. The 

assessment was recorded from directly above at 60 frames per second for later 

analysis in Ethovision. Between each test subject the entire apparatus and the 

PVC flooring were wiped down with Cavicide and allowed to air dry. At a later 

time, the video files were analyzed in Ethovision for the amount of time spent in 

the light side of the box as well as number of entries into the light side of the box. 

These values were averaged across treatment groups, and differences between 

groups were assessed via a 2-way ANOVA for exposure (AIE or Control) and 

stress (SPS or Control) with a significance threshold of α=0.05. This task was 

never administered more than once for each test subject in order to reduce any 

confounds due to environmental acclimation. 

Following AIE exposure, both Long-Evans and Sprague-Dawley AIE and 

Control groups were assessed for anxiety-like behavior using the light/dark box 

task. The data were analyzed using paired t-tests within each rat strain, as the 

time spent in the light side of the box was calculated as the time during the 

session in which the rat was not in the dark side of the box; that is, it is the same 

data expressed in different ways. This analysis revealed that the Long-Evans AIE 

group spent more time in the light side of the box compared to the Control group 

(t(11) = 2.42 p = 0.034), whereas the Sprague-Dawley AIE group spent more time 

in the dark side of the box (t(7) = 3.47 p = 0.010) (Figure 2-6). 
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Figure 2-6. AIE is associated with differential anxiety-like behavior in Long-
Evans versus Sprague-Dawley rats. AIE led to decreased anxiety-like behavior in 
Long-Evans (A) but increased anxiety-like behavior in Sprague-Dawley rats (B). * p < 
0.05 
 

This indicates decreased anxiety-like behavior for LE rats, but increased 

anxiety-like behavior for SD rats following AIE exposure. This decreased anxiety-

like behavior in LE rats may be interpreted as an increase in disinhibition as has 

previously been observed in our lab in adult rats exposed to AIE. The light/dark 

box takes advantage of the conflicting drives in the rodent to explore a novel 

environment (spend time in the light side of the box) and to avoid brightly lit areas 

(spend time in the dark side of the box). Increased disinhibition could manifest 

similarly to decreased anxiety-like behavior, as a decreased drive for safety and 

an increased drive to explore. Literature assessing anxiety-like behavior after AIE 

exposure shows mixed results, with some studies showing increases in anxiety-

like behavior in adulthood (Coleman et al., 2014; Pandey, Sakharkar, Tang, & 

Zhang, 2015; Sakharkar et al., 2016; Vetreno, Broadwater, Liu, Spear, & Crews, 

2014), and others showing decreased anxiety-like behavior, or increased 

disinhibition (Ehlers, Criado, Wills, Liu, & Crews, 2011; Gass et al., 2014; Gilpin, 
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Karanikas, & Richardson, 2012). In order to clarify these results from tasks 

designed to assess anxiety, the modified open-field conflict task could be useful 

as an additional measure. This task uses food placed in the middle of a brightly lit 

open field, and the rat’s contact with the food may be interpreted as a measure of 

its disinhibitory drive. Animals tested in adulthood after AIE using this procedure 

were reported to spend significantly more time exploring and eating the food, 

consistent with the suggestion that AIE leads to an increased disinhibitory drive 

(Ehlers et al., 2011). This increase in disinhibition in adulthood following AIE 

exposure may be mediated by PFC dysfunction, as inactivation of the PFC led to 

increased time spent in the open arms of the elevated plus maze (Shah, Sjovold, 

& Treit, 2004).  

It is important to note that rat strain and AIE exposure method may be an 

important factor contributing to these mixed results of anxiety-like behavior in 

adulthood after AIE. Some studies that used SD rats showed that AIE led to 

increased anxiety-like behavior in adulthood (Pandey et al., 2015; Sakharkar et 

al., 2016), whereas studies that used LE rats showed an increase in disinhibition 

after AIE (Ehlers et al., 2011; Gass et al., 2014). Additionally, studies that used 

intragastric or intraperitoneal administration of ethanol are the same studies that 

reported increased anxiety-like behavior, and those that reported an increase in 

disinhibitory drive administered ethanol in vapor chambers. It is possible that 

increased stress from injections or gavage of ethanol may combine with the 

effects of binge-like ethanol exposure to produce increased anxiety-like behavior 

in adulthood, whereas the relatively lower stress of ethanol vapor inhalation 
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would not lead to this increase in anxiety-like behavior (Crews et al., 2016). 

Finally, it should be noted that the significant increase in the amount of time 

spent on the light side of the box for LE rats may be statistically significant but 

not functionally meaningful, as the difference in time spent between each side is 

27.25 seconds out of a total of 300 seconds. Further studies replicating this result 

would confirm if this is a functionally meaningful difference in the LE AIE 

compared to Control groups. 

In conclusion, both SD and LE rats’ behavioral intoxication scores were 

within the target range of the AIE exposure. Interestingly, the BECs of the SD 

rats were significantly higher than those of the LE rats for a given level of 

behavioral intoxication. The objective of the vapor exposure procedure was to 

maintain a consistent level of intoxication not only across cycles, but also 

between strains. This resulted in higher BEC values for SD rats as a group. This 

may be due to several factors, including rat strain. However, further analysis with 

different cohorts (as is currently ongoing in the lab) is necessary to confirm these 

differences. Following AIE exposure, LE rats displayed decreased anxiety-like 

behavior (or increased disinhibition) on the light/dark task, whereas SD rats 

displayed increased anxiety-like behavior. These differences in performance on a 

task used to measure anxiety-like behavior may demonstrate inherent 

differences between SD and LE rats’ response to AIE exposure, as several 

studies using SD rats have demonstrated increased anxiety-like behavior 

following AIE, and studies using LE rats have demonstrated increased 

disinhibition, similar to what is reported here. However, as differences in ethanol 
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sensitivities were not the focus of this project, further testing is needed to clarify 

whether LE rats show decreased anxiety-like behavior or increased disinhibitory 

behavior, possibly with the modified open-field conflict task. 
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CHAPTER 3 
 
 
 
 

ADOLESCENT BINGE-LIKE ETHANOL EXPOSURE DIFFERENTIALLY 
AFFECTS PROBABILISTIC REVERSAL LEARNING IN LONG-EVANS 

VERSUS SPRAGUE-DAWLEY RATS 
 
 
 
 
BACKGROUND & SIGNIFICANCE 

The prefrontal cortex (PFC) is the seat of executive control. As such, it 

takes in information from sensory, motor, and association cortices; processes it 

along with information from long-term and working memory storage; assesses 

the values of various stimuli and possible actions; and selects appropriate 

behavioral responses. This includes functions such as value assessment 

(thought to depend at least in part on the orbitofrontal cortex, OFC), positive and 

negative feedback sensitivity (mediated in part by the medial PFC, mPFC), and 

working memory (through recurrent loops of excitatory neurotransmission within 

the cortex). Each of these functions are important for behavioral flexibility, or 

keeping the balance between focus on the current task and the ability to flexibly 

update strategies in order to optimize outcomes (Floresco, 2013).  

Although the PFC is responsible for executive control over all cerebral 

activity, it is one of the last areas of the brain to reach maturity. Accordingly, it is 

especially vulnerable to pathological changes during its developmental trajectory, 

which includes adolescence. The PFC undergoes thinning of gray matter and 

development of white matter throughout adolescence. However, adolescence is 
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behaviorally typified by increased risk-taking, such as abuse of ethanol. More 

than 90% of ethanol consumed by individuals under the age of 21 is in the form 

of binge drinking, or more than four drinks within two hours as defined by the 

National Institutes of Health (NIAAA, 2015b). It has been reported that binge-like 

ethanol exposure during adolescence in humans leads to increased thinning of 

gray matter as well as decreased integrity of white matter in the frontal cortex 

(Luciana et al., 2013; Squeglia, Rinker, et al., 2014). It has also been reported 

that the PFC is more vulnerable to insult by ethanol than other brain regions 

(Bava et al., 2009a). 

Multiple studies have shown that adolescent binge-like ethanol exposure 

leads to functional impairments and anatomical abnormalities in cortical areas 

critical for reversal learning. Reduced responses to reward were seen in OFC 

neurons in rats following adolescent binge-like ethanol exposure (McMurray et 

al., 2016). An increase in OFC volume was seen in rats following a binge-like 

ethanol exposure in adolescence (Coleman et al., 2014), which parallels findings 

in a clinical study of adolescent males who abused ethanol (Medina et al., 2008); 

this appears to be pathological, as orbitofrontal and ventrolateral PFC areas 

typically decrease in volume throughout adolescence (Gogtay et al., 2004). 

Adolescent binge-like ethanol exposure has also been shown to impair mPFC 

function as assessed via operant set-shifting (Gass et al., 2014). Additionally, a 

study by Coleman et al. (2014) in rats demonstrated that adolescent binge-like 

ethanol exposure led to deficits in behavioral flexibility as measured via spatial 

reversal learning. However, this study used a reversal task dependent on spatial 
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learning and memory, which is mediated in relatively larger part by the 

hippocampus. The probabilistic reversal learning (PRL) task used in the following 

experiments is an operant procedure, so it is not as dependent on hippocampal 

function. Additionally, the procedure in the following experiments utilizes 

probabilistic reinforcement, which more robustly engages working memory and 

value assessment, both mediated by prefrontal cortical areas.  

While these are effects of a rat model of binge-like ethanol exposure in 

adolescence (adolescent intermittent ethanol, AIE), both stress and AIE 

exposures lead to similar deficits. Both types of exposures lead to impaired 

behavioral flexibility as assessed via reversal learning and set-shifting tasks 

(George et al., 2015), as well as decreased prefrontal engagement 

(“hypofrontality”) in the PFC and OFC during a set-shifting task (Park et al., 

2016). Additionally, both AIE and a model of post-traumatic stress disorder, the 

single prolonged stress (SPS) exposure, led to impaired habituation of the 

corticosterone (CORT) response to repeated stress; adult animals typically 

respond to repeated stress with successively lower concentrations of CORT in 

the blood (habituation of the CORT response), but AIE (Varlinskaya et al., 2016) 

and SPS (Liberzon et al., 1997) both lead to impaired habituation of this 

response.  

All of the studies mentioned previously comparing the effects of stress and 

AIE used Sprague-Dawley (SD) rats, an outbred albino rat strain. However, as 

noted in chapter 2, Long-Evans (LE) rats displayed reduced anxiety-like behavior 

whereas SD rats displayed increased anxiety-like behavior as assessed via the 
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light/dark box following AIE exposure. Previous work in our lab has also 

demonstrated that AIE led to decreased anxiety-like behavior as assessed via 

the elevated plus maze (Gass et al., 2014). Taken together, this led to the 

hypothesis that LE and SD rats may be differentially affected by AIE and/or SPS 

exposure, and that they may perform differently on the reversal learning task 

used in the following experiments. Specifically, it was hypothesized that greater 

deficits would be observed following AIE and/or SPS exposure in Sprague-

Dawley compared to Long-Evans rats in the reversal learning task. 

 

MATERIALS & METHODS 

Animal care, AIE exposure, blood ethanol concentration (BEC) analysis, 

and SPS exposure were presented in chapter 2. The specific timeline of AIE 

exposure, PRL testing, SPS exposure, and PRL re-testing for the studies in this 

chapter is schematically presented in Figure 3-1. 
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Figure 3-1. Experimental timeline of AIE exposure, pair housing, and operant testing 

 

Operant Behavior 

One week prior to the beginning of any operant training, rats were single 
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training was started at PD70 or later. Additionally, rats were habituated to the 

process of moving to the behavior room for a minimum of two days before being 

placed in the operant box. Animals were also accustomed to the reward that 

would be used for operant training by receiving ~20 mL of 20% sucrose in their 

home cage Monday through Friday the week before operant training began. For 

the first day of operant training, a program was used that dispensed 10 µl of 20% 

sucrose at random intervals over the course of 30 minutes; 60 total 
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the syringe pump turning on and off to deliver the liquid reward, and to associate 

the reward delivery well with a reward. 

 

Operant boxes: Plexiglas operant boxes (Med Associates, St. Albans, VT) used 

in the present study measured 32 cm W x 25 cm D x 11 cm H and were located 

in melamine sound attenuating cubicles. Each cubicle was equipped with an 

exhaust fan to provide air circulation and mask external noise. Mounted on one 

wall of the self-administration chamber were two response levers that flanked a 

liquid receptacle connected to a single speed syringe infusion pump with 

polyethylene tubing. Located above the active lever was a 2.5 cm diameter 

stimulus light that was turned on during various phases of testing. Located at the 

top the chamber was a house light and a Sonalert speaker that emitted a tone 

(2900 Hz, ~65 dB) that were activated during various phases of testing. 

Chambers were interfaced to a PC computer that controlled experimental 

sessions and recorded data using commercially available software (MED 

Associates, MED-PC IV).  

 

Probabilistic Reversal Learning (PRL) Task 

The PRL task was based on previous work as detailed in Bari et al. (2010) 

and Dalton et al. (2014). The operant training consisted of 3 distinct phases: a 

Training phase in which rats were trained to lever press, a Probability Habituation 

phase in which rats learned to respond on a lever within a fixed amount of time (a 

trial; this phase also included the rats learning that each lever had a 50% 
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probability of delivering a reward), and a probabilistic reversal testing phase, 

where the levers changed probability so that the “correct” lever had an 80% 

probability of delivering a reward and the “incorrect” lever had a 20% probability 

of delivering a reward. Additionally, reversals of the levers were also incorporated 

into the program (i.e. the left lever changes from being “correct” to “incorrect”) so 

that the lever identities were reversed following 7 responses on the “correct” 

lever regardless of reward delivery. 

 

Training phase: During this phase, rats were trained to respond to a lever with a 

lever press, on a fixed-ratio 1 (FR1) schedule of reinforcement. At the beginning 

of the first training session (30 min), one of the levers was extended and the 

house and receptacle lights were illuminated. Each lever press activated a 

syringe pump for 1.5 sec to deliver approximately 45 µl of 20% sucrose into the 

reward receptacle. Rats received daily 30 min sessions until stable responding 

was achieved, which was defined as receiving at least 50 reinforcements during 

a session for two consecutive training days. Training then proceeded to an FR1 

schedule of reinforcement of whichever lever was not reinforced at first. Stable 

responses (receiving at least 50 reinforcements during a session for two 

consecutive training days) in this phase were required before progressing to the 

next phase of the training. 

 

Probability Habituation phase: This phase served to train the rats to respond with 

a lever press within a discrete period of time (a trial), as well as to establish 
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probabilistic reinforcement of lever presses. It consisted of 3 programs of 

decreasing trial length time. The first and second programs had an inter-trial 

interval (ITI) of 40 seconds, and the third and final program had an ITI of 15 

seconds. Each program had the exact same order of other components. At the 

start of each trial the house light would illuminate and both levers would extend. If 

a lever was selected then there was a 50% probability of activating a syringe 

pump for 1.5 seconds to deliver approximately 45ul of 20% sucrose. There were 

90 trials in each of the first two programs with 20 seconds and 10 seconds during 

which a lever could be selected, respectively for the first and second training 

program. There were 100 trials in the last program with the shortest ITI time and 

10 seconds in which a lever could be selected. Each rat had to omit fewer than 

10 trials on 2 successive training days to progress from one program to another. 

For the third and final program, each rat had to omit fewer than 10 trials for 3 

successive training days in order to progress to the Probabilistic Reversal testing 

phase. 

 

Probabilistic Reversal Learning (PRL) testing phase: This phase introduced 

differential probabilistic reinforcement of lever pressing, in which each lever had 

different probabilities of reward. Additionally, this phase was the testing phase. It 

consisted of 1 day of testing on the First Day PRL program and 15 days of 

testing on the probabilistic reversal program. For the First Day PRL program, 

there were 240 trials with an ITI of 16 seconds. Each trial was identical to the 

final program in the Probability Habituation phase, except that the probability of 
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reward for each lever was adjusted so that the “correct” lever had an 80% 

probability of delivering a reward when pressed, and the “incorrect” lever had a 

20% probability of delivering a reward; the “correct” and “incorrect” lever 

identities were randomly assigned at the start of each training day. For the first 

80 trials there were no reversals (no changes in lever identity from “correct” to 

“incorrect” or vice versa). Reversals of the lever identities were suspended for the 

first 80 trials to ensure that the rat was adequately familiar with the differential 

probabilistic reinforcement associated with each lever. Starting on the 81st trials, 

7 consecutive responses on the “correct” lever caused a reversal; that is, the 

identities of the levers reversed (i.e. the right lever changes from being the 

“incorrect” lever to now being the “correct” lever). This pattern continued until the 

240th trial; there was no limit set on the number of reversals that could be 

completed. For the PRL program on days 2 through 16 of testing, there were only 

200 trials total. Additionally, reversals could be completed starting with the first 

trial; that is, responses on the “correct” lever for the first 7 trials of this program 

would lead to a reversal of lever identities on the 8th trial. Reversals were allowed 

immediately in the program used on days 2 through 16 as the rat was 

familiarized with the differential probabilistic reinforcement of the levers with the 

First Day program. On the 8th day after SPS exposure, test subjects were re-

started on the same PRL program that was used for days 2 through 16 of testing 

prior to SPS for 4 days. 
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Data Analysis: For the first day of PRL testing (with the First Day program), the 

following 15 days of PRL testing, and the 4 days of PRL testing following SPS 

exposure, the following parameters were assessed: number of completed 

reversals, number of omissions, average latency to lever press, number of errors 

committed in the 1st discrimination and 1st reversal, the win-stay ratio, the lose-

shift ratio, number of trials to meet criterion for the 1st discrimination and 1st 

reversal, corrected trials to meet criterion for the 1st discrimination and 1st 

reversal, and reversals per 100 trials (Table 3-1).  
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Table 3-1. Parameters assessed during PRL testing 
Parameter Definition Notes 
Criterion Seven correct responses without 

errors 
Minimum number of 
correct responses to 
cause a reversal of lever 
identities 

Reversals completed Sum of the number of times the 
subject met criterion in one session 

  

Omissions Trials without a lever press  
Reversal per 100 
trials 

Reversals per session averaged 
per 100 trials 

Accounts for large 
discrepancies between 
subjects in number of 
reversals per session 

Average latency to 
lever press 

The time between lever 
presentation and lever press, 
averaged across all trials for one 
session 

 

Errors in 
discrimination 

Incorrect responses before the first 
reversal was completed 

  

Errors in 1st reversal Incorrect responses after the first 
reversal and before the second 
reversal was completed 

 

Win-stay ratio The proportion of trials where a 
correct, rewarded response was 
followed by another correct 
response 

  

Lose-shift ratio The proportion of trials where a 
correct, unrewarded response was 
followed by an incorrect response 

 

Trials to criterion for 
discrimination 

The number of trials needed to 
meet criterion before the first 
reversal was completed 

  

Trials to criterion for 
1st reversal 

The number of trials needed to 
meet criterion after the first reversal 
but before the second reversal was 
completed 

 

Corrected trials to 
criterion for 
discrimination 

Trials to criterion for discrimination 
minus omissions 

Accounts for omissions 

Corrected trials to 
criterion for 1st 
reversal 

Trials to criterion for first reversal 
minus omissions 

Accounts for omissions 
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The number of completed reversals was the number of times the subject 

met criteria (7 correct selections without errors) within a session. The number of 

omissions was the number of trials in which the subject did not select a lever 

within the given time limit of a trial. The average latency to lever press was the 

average time between the initiation of a trial (lever extension) and when a lever 

press occurred. The trials encompassed in the 1st discrimination were determined 

by the number of trials needed to reach criterion (7 correct selections) the first 

time; this was also the value for the number of trials to meet criterion for the 1st 

discrimination. For the First Day program it was possible to meet criterion before 

the 81st trial, but the lever identities would not be reversed until the 81st trial; the 

corrected trials to meet criterion for the 1st discrimination and the 1st reversal 

accounted for omissions by subtracting them from the number of trials needed to 

meet criterion. The number of trials needed to reach criterion for the second time 

determined the trials encompassed in the 1st reversal; this was also the value for 

the number of trials to meet criterion for the 1st reversal. For the First Day 

program, this was computed by taking the total number of trials (240) minus the 

number of trials in the 1st discrimination. The errors for either the 1st 

discrimination or the 1st reversal were the number of incorrect selections within 

those trials encompassed in each section. The win stay ratio was the proportion 

of trials where a correct, rewarded selection is followed by another correct 

selection. The lose shift ratio was the proportion of trials where a correct, 

unrewarded selection is followed by an incorrect selection. Reversals per 100 

trials were computed using the number of reversals completed in a session, 



 66 

divided by the number of trials in a session (the total number of trials minus the 

number of omissions from that day). Differences between AIE and Control 

groups were assessed using Students’ t-tests, and the threshold for significance 

was set at p < 0.05. Differences between AIE-SPS, AIE-Control, Control-SPS, 

and Control-Control groups were assessed using ANOVA tests, MANOVA tests, 

and/or Students’ t-tests, with the threshold for significance again being set at p < 

0.05 or less. Data are presented as mean ± SEM. 

 

RESULTS 

The rats used in this set of studies (n = 45) were separated within litters 

into pair-matched groups of Control or AIE exposed animals. The LE cohort was 

put through AIE exposure, the PRL task, SPS exposure, and then re-started on 

the PRL task. After completion of these studies using LE rats, these studies were 

repeated with SD rats; therefore, the PRL studies in LE and SD rats were run in 

series and not in parallel. These studies were not run in parallel due to logistical 

and spatial constraints. Both LE and SD rats were used in order to assess 

differences in response to AIE and/or SPS exposure by strain, as preliminary 

data (detailed in chapter 2) from our lab indicated that LE and SD rats displayed 

decreased and increased anxiety-like behaviors, respectively, after AIE 

exposure.  

In the first set of experiments, differences in operant reversal learning with 

probabilistic reinforcement were assessed using the probabilistic reversal 

learning (PRL) task (Gemma L. Dalton et al., 2014), wherein rats chose between 
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a correct lever that was usually reinforced (rewarded 80% of presses) and an 

incorrect lever that was not usually reinforced (rewarded 20% of presses). The 

mOFC is critical to probabilistic reinforcement learning, and the lOFC is important 

for early but not late serial reversal learning as well as efficient approach to 

reward-related stimuli (G. L. Dalton et al., 2016). Interestingly, inactivating the 

mPFC improves performance on this task; an increase in reversals per session 

may be achieved through this inactivation by increasing both reward and 

negative feedback sensitivity (G. L. Dalton et al., 2016). 

 
Figure 3-2. AIE is not associated with a deficit in operant learning in either Long-
Evans or Sprague-Dawley rats. Average days of operant training for A) Long-Evans 
rats and B) Sprague-Dawley rats. Training was separated into two phases: an initial 
phase using an FR1 schedule of reinforcement to associate lever pressing with a 
reward, and a probability phase using a 50% probability of reward to introduce the 
concept of probabilistic reinforcement. Additionally during the probability phase, three 
operant programs with a 50% probability of reward had progressively decreasing inter-
trial intervals to decrease response times in preparation for performance of the PRL 
task. 
 
There was no evidence of a difference in learning ability between AIE and 

Control groups in either the Long-Evans or Sprague-Dawley cohort, as detailed 

in Figure 3-2. A 2-way ANOVA (AIE exposure by training phase) revealed that 

there were no differences between AIE and Control groups in number of days of 

training for either Long-Evans (F(1,44) = 0.719 p = 0.401) of Sprague-Dawley 
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(F(1,38) = 0.583 p = 0.449) rats. This was not unexpected, as previous studies 

have not shown impairment in operant learning ability following AIE exposure 

(Fernandez & Savage, 2017; Gass et al., 2014). 

 
Figure 3-3. AIE is not associated with impairment of reversal learning on day one 
of the PRL task in either Long-Evans or Sprague-Dawley rats. Average reversals per 
session on day one of the PRL task for A) Long-Evans rats and B) Sprague-Dawley rats 
 
Contrary to our original hypothesis, there was no difference in the average 

number of reversals completed per session on the first day of PRL performance 

between AIE and Control rats in either Long-Evans (t(11) = 0.233 p = 0.820) or 

Sprague-Dawley (t(8) = 0.229 p = 0.824) rats (Figure 3-3). There was also no 

difference in the average number of omissions per session on the first day of 

PRL performance between AIE and Control rats in either Long-Evans (t(11) = 

1.615 p = 0.135) or Sprague-Dawley (t(8) =  0 p > 0.999) rats (Figure 3-4). 
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Figure 3-4. AIE is not associated with an increase in omissions on day one of the 
PRL task in either Long-Evans or Sprague-Dawley rats. Average omissions on day 
one of the PRL task for A) Long-Evans rats and B) Sprague-Dawley rats. Note the 
differences in scale between the graphs. 
 
After subtracting omissions from the number of trials needed to reach criterion for 

each reversal, the number of reversals per session could be computed. Following 

that, the number of reversals completed per 100 trials can be computed by 

dividing the number of completed reversals by the total number of trials. This 

assessment can account for large discrepancies in the number of completed 

reversals between experimental groups, if present. There were no differences 

between AIE and Controls in the number of reversals completed per 100 trials in 

either Long-Evans (t(11) = 0.032 p = 0.975) or Sprague-Dawley (t(8) = 0.222 p = 

0.8298) rats (Figure 3-5). 
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Figure 3-5. AIE is not associated with an altered number of reversals compared to 
Controls in either strain of rat. Average reversals per 100 trials on day one of the PRL 
task for A) Long-Evans rats and B) Sprague-Dawley rats 
 
There were no differences between Control and AIE groups in Long-Evans rats 

on day one of the PRL task in the number of errors committed during the 

discrimination (t(11) = 1.63 p = 0.13) or first reversal phases (t(11) = 1.081 p = 

0.302) (Figure 3-6), or in the win-stay (t(11) = 0.858 p = 0.41) or lose-shift (t(11) = 

1.484 p = 0.166) ratios (Figure 3-7). Neither were there any differences between 

Control and AIE groups in Sprague-Dawley rats on day one of the PRL task in 

the number of errors committed during the discrimination (t(8) = 0.693 p = 0.508) 

or first reversal phases (t(8) = 0.232 p = 0.822) (Figure 3-6), or in the win-stay (t(8) 

= 0.634 p = 0.544) or lose-shift (t(8) = 0.499 p = 0.631) ratios (Figure 3-7). 
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Figure 3-6. AIE is not associated with an alteration in the number of errors on the 
first day of PRL testing compared to Controls in either strain of rat Average errors 
during the first discrimination or first reversal on day one of the PRL task for A) Long-
Evans rats and B) Sprague-Dawley rats 
 

 
Figure 3-7. AIE is not associated with differences in either the win-stay or lose-
shift ratios on the first day of the PRL task in either strain of rat. Average win-stay 
and lose-shift ratios for day one of the PRL task for A) Long-Evans rats and B) Sprague-
Dawley rats 
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There were no statistically significant differences in the number of trials needed 

to reach criterion in Sprague-Dawley AIE compared to Control rats in either the 

Discrimination 1st reversal
0

20

40

60

80

100

E
rr

or
s

Control

AIE

Day 1 Errors
Long-Evans rats

12 12 12 12

A. 

0

20

40

60

80

100

Discrimination 1st Reversal

E
rr

or
s

Day 1 Errors
Sprague-Dawley rats

Control

AIE  

12 9 12 9

B. 

0.0

0.2

0.4

0.6

0.8

P
ro

po
rt

io
n 

of
 T

ri
al

s
Day 1 Win-Stay & Lose-Shift Ratios

Sprague-Dawley rats
Control

AIE  

Win-stay Lose-shift

12 9 12 9

Win-stay Lose-shift
0.0

0.2

0.4

0.6

0.8

P
ro

po
rt

io
n 

of
 T

ri
al

s

Day 1 Win-Stay & Lose-Shift Ratios
Long-Evans rats

Control

AIE

12 12 12 12

A. B. 



 72 

discrimination (t(8) = 0.602 p = 0.564) or first reversal (t(8) = 1.081 p = 0.311) 

phases on day one of the PRL task (Figure 3-8). 

 

 
Figure 3-8. AIE resulted in a significant increase in the number of trials needed to 
reach criterion in the discrimination phase on the first day of the PRL task in 
Long-Evans rats. Average trials to criterion for the first discrimination or first reversal 
phases on day one of the PRL task for A) Long-Evans rats and B) Sprague-Dawley rats. 
* p < 0.05 
 
There was no difference between AIE and Control groups in choice latency on 

day one of the PRL task in either Long-Evans (t(11) = 0.526 p = 0.607) or 

Sprague-Dawley (t(8) = 0.377 p = 0.716) rats (Figure 3-9). 

 

 
Figure 3-9. AIE is not associated with differences in choice latency on day one of 
the PRL task in either Long-Evans or Sprague-Dawley rats. Average latencies to 
lever press on day one of the PRL task for A) Long-Evans and B) Sprague-Dawley rats. 
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Performance of AIE and Control animals were assessed for 15 additional days 

on the PRL task, for a total of 16 days of PRL testing in both Long-Evans and 

Sprague-Dawley rats. A 2-way ANOVA (AIE exposure by days of training) 

revealed a significant effect of days of training, in that both Long-Evans (F(15,352) = 

6.448 p < 0.0001) and Sprague-Dawley rats (F(15,304) = 10.51 p < 0.0001) 

exhibited a significant increase in the number of reversals completed per session 

over 16 days of PRL testing. However, there was an only an effect of AIE 

exposure in the Sprague-Dawley rats (F(1,304) = 9.982 p = 0.0017), and visual 

examination revealed that the AIE group completed fewer reversals than the 

Control rats (Figure 3-10). There was no difference in the number of reversals 

completed by Long-Evans AIE compared to Control rats (F(1,352) = 1.393 p = 

0.239). 

 
Figure 3-10. AIE resulted in a deficit in the number of reversals completed per 
session over 16 days of PRL testing in Sprague-Dawley but not Long-Evans rats. 
Average reversals per session over 16 days of PRL training for A) Long-Evans or B) 
Sprague-Dawley rats. * p < 0.05 ★ main effect of exposure n = 9-12 per group 
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0.0064), but there was no effect of days of training (F(15,352) = 0.6951 p = 0.789). 

Neither AIE (F(1,304) = 0.042 p = 0.838) nor days of training (F(15,304) = 0.577 p = 

0.892) had a significant effect on the number of omissions per session for 

Sprague-Dawley rats (Figure 3-11). Note, however, that the lack of effect in 

Sprague-Dawley rats may be due to a floor effect, as a 2-way ANOVA (rat strain 

by days of training) revealed that Sprague-Dawley rats committed significantly 

fewer omissions over 16 days of PRL testing compared to Long-Evans rats 

(F(1,41) = 16.86 p < 0.0001). 

 
Figure 3-11. AIE resulted in a decrease in omissions compared to Control rats in 
Long-Evans but not Sprague-Dawley rats. Average omissions per session over 16 
days of PRL training for A) Long-Evans or B) Sprague-Dawley rats. Note the differences 
in scale between the graphs. ★ main effect of exposure n = 9-12 per group 
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(discrimination: F(1,352) = 0.731 p = 0.393, first reversal: F(1,352) = 1.568 p = 0.211) 

nor Sprague-Dawley (discrimination: F(1,304) = 1.354 p = 0.246, first reversal: 

F(1,304) = 0.604 p = 0.438) rats exhibited a difference in errors committed during 

the discrimination or first reversal phases between AIE and Control groups over 

the 16 day testing period (Figure 3-12). 

 
Figure 3-12. AIE is not associated with an alteration in the number of errors 
committed in either the discrimination or first reversal phases of the PRL task 
over 16 days of testing. Average errors in first discrimination phase (A & B) or first 
reversal phase (C & D) over 16 days of PRL training for Long-Evans (A & C) or Sprague-
Dawley (B & D) rats. n = 9-12 per group 
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for Sprague-Dawley (F(15,304) = 7.379 p < 0.0001) but not Long-Evans rats 

(F(15,352) = 1.895 p = 0.23). However, only Sprague-Dawley rats exhibited a 

significant effect of AIE exposure on both win-stay (F(1,304) = 31.02 p < 0.0001) 

and lose-shift ratios (F(1,304) = 14.35 p = 0.0002) over 16 days of PRL testing. 

Long-Evans rats exhibited no effect of AIE exposure on either win-stay (F(1,352) = 

3.741 p = 0.054) or lose-shift ratios (F(1,352) = 2.942 p = 0.087) over 16 days of 

PRL testing (Figure 3-13). 

 
Figure 3-13. AIE resulted in decreased win-stay and lose-shift ratios over 16 days 
of PRL testing in Sprague-Dawley but not Long-Evans rats. Average win-stay ratios 
(A & B) or lose-shift ratios (C & D) over 16 days of PRL training for Long-Evans (A & C) 
or Sprague-Dawley (B & D) rats. ★ main effect of exposure n = 9-12 per group 
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A series of 2-way ANOVAs (AIE exposure by days of training) revealed a 

significant effect of days of training, in that Long-Evans rats exhibited a 

significant decrease in the number of trials needed to reach criterion over 16 

days of PRL testing in the first reversal phase (F(15,352) = 2.138 p = 0.008) but not 

the discrimination phase (F(15,352) = 1.311 p = 0.192). However, with Sprague-

Dawley rats there was a significant decrease in the number of trials needed to 

reach criterion in both the discrimination (F(15,304) = 4.358 p < 0.0001) as well as 

the first reversal phases (F(15,304) = 8.546 p < 0.0001) of the PRL task over 16 

days of training. Neither strain exhibited any significant effect of AIE over the 

same testing period in either the discrimination (Long-Evans: F(1,352) = 0.047 p = 

0.828, Sprague-Dawley: F(1,304) = 1.64 p = 0.201) or first reversal phases (Long-

Evans: F(1,352) = 0.603 p = 0.438, Sprague-Dawley: F(1,304) = 1.388 p = 0.239) 

(Figure 3-14). 
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Figure 3-14. AIE is not associated with a deficit in the number of trials needed to 
reach criterion in the discrimination or first reversal phases over 16 days of the 
PRL task in either Long-Evans or Sprague-Dawley rats. Average trials to criterion for 
the first discrimination phase (A & B) or the first reversal phase (C & D) of the PRL task 
over 16 days of training for Long-Evans (A & C) or Sprague-Dawley (B & D) rats. n = 9-
12 per group 
 
Interestingly, Long-Evans rats exhibited no effect of either AIE (F(1,352) = 0.928 p 

= 0.336) or days of training (F(15,352) = 0.423 p = 0.972) on choice latency over 16 

days of PRL testing. However, Sprague-Dawley rats exhibited a significant 

increase in choice latency in AIE compared to Control rats (F(1,304) = 42.74 p < 

0.0001) and a decrease in choice latency over 16 days of PRL testing (F(15,304) = 

10.15 p < 0.0001), but no interaction between the two factors (F(15,304) = 1.249 p = 

0.234), detailed in Figure 3-15. 
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Figure 3-15. AIE resulted in an increase in choice latency in Sprague-Dawley but 
not Long-Evans rats over 16 days of PRL testing. Average latencies to lever press 
over 16 days of PRL training for A) Long-Evans or B) Sprague-Dawley rats. * p < 0.05  
★ main effect of exposure n = 9-12 per group 
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SPS exposure (irrespective of strain), or the interaction between them, of 

reversals completed per session after SPS revealed that there was no effect of 

AIE exposure (F(1,41) = 0.217 p = 0.644) or SPS exposure (F(1,41) = 0.171 p = 

0.702), but there was a trend of an interaction between AIE and SPS exposure 

(F(1,41) = 3.490 p = 0.069). 

 
Figure 3-16. Neither AIE nor SPS affected the number of reversals completed per 
session in either Long-Evans or Sprague-Dawley rats. Average reversals per 
session over 4 days of PRL training before and after SPS exposure for A) Long-Evans 
rats B) Sprague-Dawley rats, and C) Long-Evans and Sprague-Dawley rats combined. 
@ p = 0.069 compared to Control-Control post-SPS 
 
There were no differences seen between exposure groups in number of 

omissions either before or after SPS exposure, in Long-Evans (F(1,40) = 0.124 p = 

0.727) or Sprague-Dawley rats (F(1,34) = 2.34 p = 0.135). Once again, a 2-way 

ANOVA (AIE exposure by rat strain) revealed that Sprague-Dawley rats 
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committed fewer omissions overall compared to Long-Evans rats (F(1,41) = 7.358 

p = 0.010), as detailed in Figure 3-17. 

 
Figure 3-17. Neither AIE nor SPS affected the number of omissions per session in 
either Long-Evans or Sprague-Dawley rats. Average omissions per session over 4 
days of PRL training before and after SPS exposure for A) Long-Evans or B) Sprague-
Dawley rats. Note the differences in scale between the graphs. 
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and performance before or after SPS exposure (F(3,17) = 1.424 p = 0.270). Follow-

up analysis with a series of 2-way ANOVAs (AIE by SPS exposure, or AIE 

exposure by task phase) revealed that there were no interactions between AIE 

exposure and performance before or after SPS exposure (F(3,17) = 1.169 p = 

0.351), or between discrimination or first reversal phases and AIE exposure 

(F(3,17) = 0.158 p = 0.923) (Figure 3-18). 

 
Figure 3-18. Neither AIE nor SPS affected the number of errors during either the 
discrimination or first reversal phases of the PRL task in either Long-Evans or 
Sprague-Dawley rats. Average reversals per session over 4 days of PRL training 
before and after SPS exposure for A) Long-Evans or B) Sprague-Dawley rats. Average 
errors during the first discrimination phase (A & B) or the first reversal phase (C & D) of 
the PRL task over 4 days before and after SPS for Long-Evans (A & C) or Sprague-
Dawley (B & D) rats. 
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exposure group) of the average win-stay/lose-shift ratio post-SPS did reveal a 

significant effect of SPS exposure (F(3,20) = 5.168 p = 0.008). A follow-up 1-way 

ANOVA (lose-shift ratio by exposure group) revealed that this effect was primarily 

driven by an increase in the lose-shift ratio (F(3,20) = 5.000 p = 0.010), or 

increased negative feedback sensitivity. A 2-way ANOVA (average ratio by 

exposure group) revealed that there were no differences between exposure 

groups in baseline win-stay or lose-shift ratios in Sprague-Dawley rats (F(3,17) = 

0.248 p = 0.861). However, a follow-up 2-way ANOVA (average ratio by SPS 

exposure) revealed that there were also no differences in win-stay or lose-shift 

ratios before or after SPS exposure (F(3,17) = 0.066 p = 0.977) (Figure 3-19). 

 
Figure 3-19. SPS resulted in increased negative feedback sensitivity in AIE-
exposed Long-Evans rats. Average win-stay and lose-shift ratios over 4 days of PRL 
training before and after SPS exposure for A) Long-Evans or B) Sprague-Dawley rats. 
Percent change from baseline (before SPS exposure) for C) Long-Evans or D) Sprague-
Dawley rats.  * p < 0.05 

Win-Stay Lose-Shift
0.0

0.2

0.4

0.6

0.8

1.0

post-SPS Win-Stay & Lose-Shift Ratios
Long-Evans rats

P
ro

po
rt

io
n 

of
 T

ri
al

s

Control

Control SPS

AIE

AIE SPS

6 66 6 66 6 66 6 66

____

*____

*

pre-SPS baseline

A. 

Win-Stay Lose-shift
-10

0

10

20

30

P
er

ce
nt

 c
ha

ng
e 

fr
om

 b
as

el
in

e

Control-control

Control SPS

AIE-control

AIE-SPS*
*     p < 0.05

*

post-SPS Win-Stay & Lose-Shift Ratios
Change from Baseline

Long-Evans rats

C. 
Win-Stay Lose-Shift

0.0

0.2

0.4

0.6

0.8

1.0

post-SPS Win-Stay & Lose-Shift Ratios
Sprague-Dawley rats

P
ro

po
rt

io
n 

of
 T

ri
al

s

Control-Control

Control-SPS

AIE-Control

AIE-SPS

pre-SPS baseline

7 5 4 5 7 5 4 5

Win-Stay Lose-Shift
-10

0

10

20

30

P
er

ce
nt

 c
ha

ng
e 

fr
om

 b
as

el
in

e

post-SPS Win-Stay & Lose-Shift Ratios
Change from Baseline
Sprague-Dawley rats Control-Control

Control-SPS

AIE-Control

AIE-SPS

B. 

D. 



 84 

 
In Long-Evans rats, a 2-way ANOVA (SPS by AIE exposure) revealed that there 

were no differences between exposure groups in choice latency before or after 

SPS exposure (F(1,40) = 0.006 p = 0.938). However, there were differences 

between exposure groups at baseline in Sprague-Dawley rats (F(3,34) = 4.931 p = 

0.006). Subsequent comparisons using multiple t-tests with Holm-Sidak 

corrections revealed that the baseline choice latency of the Control-SPS group 

was significantly different than that of the AIE-SPS group (t(8) = 2.662 p = 0.029). 

There were no significant differences between exposure groups after SPS as 

assessed using multiple t-tests with Holm-Sidak corrections. A 2-way ANOVA of 

Sprague-Dawley choice latency before and after SPS exposure revealed that, 

although there was no interaction between AIE and SPS exposure, both AIE 

(F(3,34) = 4.931 p = 0.006) and SPS exposure (F(1,34) = 729.3 p < 0.0001) 

significantly affected choice latency after SPS, with SPS exposure accounting for 

the majority of the total variation in the sample (91.18%). Additionally, further 

analysis with multiple t-tests and the Holm-Sidak correction revealed that there 

were significant differences in every exposure group before SPS compared to 

after exposure in Sprague-Dawley rats (Control t(12) = 13.07 p < 0.0001; Control-

SPS t(8) = 14.43 p < 0.0001; AIE t(8) = 12.69 p < 0.0001; AIE-SPS t(8) = 16.76 p < 

0.0001) (Figure 3-20). 
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Figure 3-20. Sprague-Dawley rats displayed decreased choice latency in all 
exposure groups after SPS exposure. Average latencies to lever press during the 
PRL task over 4 days before and after SPS exposure for A) Long-Evans or B) Sprague-
Dawley rats. * p < 0.05   # p < 0.0001 compared to baseline 
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Table 3-2. Significant results, separated by parameter, assessed during training for and 
testing of the PRL task in AIE and Control groups, as well as pre- and post-SPS 
exposure. 

Parameter Significant? 
Exposure 

Group >/< 
Exposure 

Group Strain Phase 

Reversals Yes AIE < Control SD 
16 days 
of PRL 

  
No* 
p = 0.069 

Control-SPS 
& AIE-
Control < 

Control-
Control 

LE & 
SD 

post-
SPS 

Omissions Yes AIE < Control LE 
16 days 
of PRL 

Win-stay ratio Yes AIE < Control SD 
16 days 
of PRL 

  Yes AIE-SPS > 
AIE-
Control 

LE 
 

post-
SPS 

Lose-shift 
ratio Yes AIE < Control SD 

16 days 
of PRL 

  Yes AIE-SPS > 
AIE-
Control LE 

post-
SPS 

Trials to 
criterion 
during 
discrimination Yes AIE > Control LE 

First day   
of PRL 

Choice 
latency Yes AIE  > Control SD 

16 days 
of PRL 

  Yes Control-SPS < AIE-SPS SD 
pre-SPS 
baseline 

  Yes 
all groups     
post-SPS < 

all gups     
pre-SPS SD 

post-
SPS 

 
 
DISCUSSION 
 
Pre-SPS Observations 

The results from these behavioral studies demonstrate that both Long-

Evans and Sprague-Dawley rats performed the probabilistic reversal learning 

task at an equivalent level. On the first day of the task, there was a significant 

increase in the number of trials to criterion during the discrimination phase in AIE 

compared to Control groups in Long-Evans rats; however, there were no other 
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differences between AIE and Control groups in either Long-Evans or Sprague-

Dawley rats on the first day of PRL testing. There were also no differences in 

either strain of rat between AIE and Control groups in terms of the number of 

days of training for the task; the number of reversals, omissions, or errors in 

either the discrimination or first reversal phases of the task; the win-stay or lose-

shift ratios; or the choice latency. 

Over 16 days of testing on the PRL task, there were several differences 

between AIE and Control groups, but they were strain-specific. In Long-Evans 

rats, the AIE group had fewer omissions per session compared to Controls, 

especially in the initial testing days. There were no differences between AIE and 

Control groups in Long-Evans rats in the number of reversals per session, the 

number of errors in the discrimination or first reversal phases, the win-stay or 

lose-shift ratios, the trials to criterion in either the discrimination or first reversal 

phases, or choice latency over 16 days of testing on the PRL task. In Sprague-

Dawley rats, the AIE group had fewer reversals per session compared to the 

Control group. This difference was especially prominent in the first ten days of 

testing, which indicates that rats exposed to AIE may be slower to reach criterion 

on the PRL task. Together with the increased choice latency seen in AIE over 16 

days of PRL testing, it could be hypothesized that AIE leads to decreased 

efficiency in strategy formation in Sprague-Dawley rats. There was no difference 

between the groups of Sprague-Dawley rats over 16 days of testing on the PRL 

task in terms of the number of omissions, errors in either the discrimination or 

first reversal phases, or trials needed to reach criterion in either the 
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discrimination or first reversal phases. However, AIE Sprague-Dawley rats did 

show reduced win-stay and lose-shift ratios over 16 days of PRL testing. 

Interestingly, Bari and colleagues (2010) demonstrated that acute administration 

of a moderate dose (10 mg/kg) of citalopram, a selective serotonin reuptake 

inhibitor (SSRI), decreased negative feedback sensitivity, whereas global 

cerebral serotonin depletion decreased the number of reversals completed as 

well as the win-stay ratio (Bari et al., 2010). These authors noted that acute 

modulation of serotonergic neurotransmission appeared to affect negative 

feedback sensitivity, whereas chronic perturbation altered reward sensitivity. A 

recent study demonstrated that AIE exposure decreased serotonin expression in 

adulthood in the raphe nucleus, as well as serotonergic projections to the 

hypothalamus and the amygdala (Vetreno, Yaxley, Paniagua, Johnson, & Crews, 

2017). Taken together, these observations may suggest that AIE leads to 

reduced serotonergic neurotransmission in adulthood, which may in turn affect 

performance on the probabilistic reversal learning task investigated in the current 

study. 

The lack of a frank effect of AIE exposure on reversal learning in the Long-

Evans and Sprague-Dawley rat strains was surprising in light of several recent 

studies reporting impaired reversal learning after AIE exposure (Coleman, He, 

Lee, Styner, & Crews, 2011; Coleman et al., 2014; Fernandez, Lew, Vedder, & 

Savage, 2017; Fernandez & Savage, 2017; Fernandez, Stewart, & Savage, 

2016). However, there are a number of significant differences in experimental 

design that may have contributed to different results, including the method of AIE 
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exposure, the length and timing of AIE exposure, the method of testing reversal 

learning, and the reinforcer used in the task. As discussed in more detail in 

chapter 6, these differences could account for why we did not observe impaired 

reversal learning. 

 

Post-SPS Observations 

Following SPS exposure, there was a trend (p = 0.069) for the Control-

SPS and AIE-Control groups of rats, irrespective of strain, to complete fewer 

reversals per session compared to the Control group; this reduction in reversals 

per session was normalized in the AIE-SPS group. Although we do not believe 

these studies were underpowered, it is possible that the addition of more animals 

to these studies would pull out a small, but statistically significant, difference in 

this parameter. A decrease in reversals per session may indicate deficits in key 

brain regions for value updating, such as the OFC; however, this is unlikely to be 

the case as studies have shown that the OFC is only important for initial but not 

later phases of reversal learning (Boulougouris et al., 2007; Boulougouris & 

Robbins, 2009). This trend could also indicate a deficit in the nucleus accumbens 

shell (NAcS) or core (NAcC), as Dalton and colleagues (2014) demonstrated that 

inactivating the NAcC impaired reward approach, whereas inactivating the NAcS 

impaired probabilistic reinforcement learning. SPS has been shown to impair 

reversal learning as well (George et al., 2015), although the task involved 

reversals between sessions, unlike the procedure used in these studies. 

Interestingly, while the Control-SPS and AIE-Control groups appeared to be 
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somewhat impaired in the number of reversals completed per session compared 

to the Control-Control group, this impairment was not observed n in the AIE-SPS 

group. While this could be a trend of an effect, further studies of the effects of 

AIE and SPS on the number of reversals completed per session of the PRL task 

would be needed to determine if this trend would hold up with increased 

statistical power. 

In Long-Evans rats, there was an increase in both win-stay and lose-shift 

ratios in the AIE-SPS group after SPS exposure. This effect was driven primarily 

by an increase in the lose-shift ratio, or increased negative feedback sensitivity. 

This increase in lose-shift behavior has been demonstrated following acute, 

global, cerebral serotonin reduction (Bari et al., 2010). Vetreno and colleagues 

(2017) have also shown that AIE leads to a reduced number of serotonergic 

neurons in the dorsal raphe nucleus, as well as decreased serotonergic 

projections to the amygdala. Although speculative, the combination of AIE and 

SPS exposure may have resulted in a reduction in serotonergic 

neurotransmission, and an increase in lose-shift behavior in Long-Evans rats. As 

discussed in a previous chapter, it has been reported that Long-Evans and 

Sprague-Dawley rats have differential behavioral and transcriptional responses 

to cocaethylene (the metabolic product of cocaine and ethanol) administration 

(Horowitz et al., 1997), which appears to be due to differences in their 

serotonergic systems (Baumann et al., 1998; Horowitz et al., 2002). Studies from 

this group demonstrated decreased behavioral sensitivity to cocaethylne in Long-

Evans rats compared to Sprague-Dawley rats, apparently due to serotonin (5-
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HT) availability, as fluoxetine (a 5-HT reuptake inhibitor) administration in Long-

Evans rats eliminated the differences in behavior (Horowitz et al., 1997). 

Additional studies using immunohistochemical analysis of Fos, an immediate 

early gene product, revealed that Long-Evans rats had increased numbers of Fos 

immunoreactive-positive cells in the caudate nucleus and putamen compared to 

Sprague-Dawley rats (Horowitz et al., 2002). These differential responses of the 

serotonergic system in Long-Evans compared to Sprague-Dawley rats may have 

played a role in the differences seen in PRL performance after AIE and SPS 

exposure. Further studies may include examining the effect of administration of a 

5-HT reuptake inhibitor on negative feedback sensitivity after AIE and SPS 

exposure in Long-Evans compared to Sprague-Dawley rats. 

In Sprague-Dawley rats, there was a difference in baseline choice latency 

between Control-SPS and AIE-SPS groups; this was due to the difference in 

choice latency between AIE and Control groups prior to SPS exposure. All 

treatment groups (Control-Control, Control-SPS, AIE-Control, and AIE-SPS) 

exhibited significantly decreased choice latency after SPS exposure in Sprague-

Dawley rats. While this effect was visually obvious and quite significant  

(p < 0.0001), it was unexpected for all four exposure groups to show similar 

reductions in choice latency despite differential exposure to both AIE and SPS. 

Therefore, it could be hypothesized that this effect was due to the time between 

testing sessions that all groups experienced (8 days) regardless of SPS 

exposure. This necessary gap in testing sessions may have led to increased 

anticipation of reward (20% sucrose) for all groups of Sprague-Dawley rats, 
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which in turn led to decreased choice latency after the re-initiation of the PRL 

task following the eight-day gap. However, Long-Evans rats experienced the 

same gap in testing, and displayed no decrease in choice latency following re-

initiation of the PRL task following the eight-day gap. Although speculative, it may 

be that these rat strains respond differently to gaps in training with reward 

administration, and further testing to examine the choice latency on a simplified 

operant task after varying gaps in training could shed more light on this issue. 

In conclusion, the results of the present set of studies demonstrated that 

Long-Evans and Sprague-Dawley rats respond differentially to AIE and SPS 

exposure as assessed via performance on the probabilistic reversal learning 

task. Long-Evans AIE compared to Control rats required increased trials to meet 

criterion during discrimination on the first day of PRL testing, and committed 

fewer omissions over 16 days of PRL testing. Additionally, Long-Evans AIE-SPS 

rats displayed increased win-stay and lose-shift ratios on the PRL task after SPS 

compared to AIE-Control rats. Sprague-Dawley AIE compared to Control rats 

completed fewer reversals per session, displayed decreased win-stay and lose-

shift ratios, and displayed increased choice latency over 16 days of PRL testing. 

Additionally, all exposure groups of Sprague-Dawley rats displayed decreased 

choice latency after SPS exposure (regardless of SPS or Control exposure 

groups) compared to pre-SPS baseline choice latency. This pattern of differential 

effects of adolescent ethanol and adult SPS exposure in two different strains of 

rats demonstrates that AIE leads to distinct yet subtly different patterns of deficits 

on the PRL task without frank effects on the number of reversals completed in 
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Long-Evans and Sprague-Dawley rats. Additionally, the effects of SPS exposure 

in adulthood are modulated by AIE exposure and rat strain. 
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CHAPTER 4 
 
 
 
 

ADOLESCENT BINGE-LIKE ETHANOL LEADS TO INCREASED CHOICE 
LATENCY ON THE PROBABILISTIC DECISION-MAKING TASK, & 

DECREASED RISKY CHOICE WITH SINGLE PROLONGED STRESS 
EXPOSURE  

 
 
 
 

BACKGROUND & SIGNIFICANCE 

One aspect of the suite of executive functions performed by the PFC is 

that of updating information. This can include updating the value and/or salience 

of external stimuli, updating information in the working memory, and updating 

behavioral strategies in order to maximize reward. These functions can be 

conceptualized as following after one another: using information from the working 

memory to modify the perceived value of a stimulus, and then adapting the 

current behavioral strategy accordingly. While these functions depend on brain 

regions and networks outside of the PFC to provide support for memory (the 

hippocampus), salience (the mesolimbic and mesocortical dopamine networks), 

and motor implementation (the basal ganglia and motor cortex), it is the PFC that 

orchestrates their functions to yield maximal return on investment. However, the 

PFC is one of the last areas of the brain to reach maturity in early adulthood, as 

the brain matures in a caudal to rostral direction. Adolescence is a time during 

which the PFC is still maturing, and not performing at its ultimate adult capacity. 

Therefore, adolescence is also a time of relative PFC hypo-functionality, in 
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addition to being a time of increased exploratory drive and risk-taking (L. P. 

Spear, 2000).  

Due in part to this increase in exploratory drive and risk-taking, 

adolescence is a time of increased experimentation with drugs of abuse. One of 

the most commonly abused drugs in adolescence is ethanol, with two-thirds of 

adolescents reporting that they tried ethanol by 18 years of age (NIAAA, 2017b); 

additionally, 90% of the ethanol consumed by youth under 21 in the US is in the 

form of binge drinks, defined as 5 or more standard alcoholic drinks in one sitting 

(NIAAA, 2015b). Preclinical studies have shown that the prefrontal cortex is 

relatively more vulnerable to the effects of ethanol than other areas of the brain 

(Bava et al., 2009a; Fowler et al., 2014), and that binge-like ethanol exposure in 

humans in adolescence leads to impaired inhibitory control (Schweinsburg et al., 

2004; Tapert et al., 2007) and an increased preference for large, risky rewards 

over small, certain rewards in an operant probabilistic decision-making task in 

rodents in adulthood (McMurray et al., 2016). The probabilistic decision-making 

task (PDT) used in the following experiments is the same procedure shown to be 

dependent upon the OFC and mPFC by St. Onge & Floresco (2010), and is 

based on an earlier operant procedure used by Cardinal & Howes (2005). 

The dorsal anterior cingulate cortex (dACC) has been associated 

functionally with the appraisal of risk, and Claus and colleagues (2017) 

demonstrated that adolescent humans who frequently used ethanol and 

marijuana displayed decreased activation of the dACC and increased risk-taking. 

Other pre-clinical studies in rats have shown that reversible ACC inactivation did 
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not affect performance on an operant probabilistic decision-making task (Onge & 

Floresco, 2010). In the same study, orbito-frontal cortex (OFC) inactivation 

increased choice latency in the later blocks with lower probability of reward, 

without affecting risky choice. The authors also hypothesized that the medial 

prefrontal cortex (mPFC) served to update information in the PFC, such as the 

probability of reward associated with a stimulus, or a lever in the case of the 

probabilistic decision-making task (Onge & Floresco, 2010).  

 Several studies have shown that adolescent binge-like ethanol exposure 

leads to increased preference for large, risky rewards (McMurray et al., 2016; 

Nasrallah et al., 2011; Nasrallah et al., 2009), in Sprague-Dawley rats. However, 

other previous, unpublished studies in our lab have shown no differences in risky 

choice or choice latency following adolescent binge-like ethanol exposure in 

Long-Evans rats (Figure 4-1) (Centanni, 2015).  

Figure 4-1. Long-Evans rats displayed no differences in A) risky choice or B) choice 
latency after AIE exposure. 
 

100% 50% 25% 12.5% 6.25%
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Probability Block

P
er

ce
nt

ag
e 

ch
oi

ce
 

la
rg

e/
ri

sk
y 

op
tio

n

Training Days 17-20

Control

AIE

n = 14

n = 15

100% 50% 25% 12.5% 6.25%
0

1

2

3

Probability Block

La
te

nc
ie

s 
(s

)

Choice Latency
Days 17-20

Control

AIE

n = 14

n = 15

A. B. 



 97 

As detailed in chapter 2, Sprague-Dawley and Long-Evans rats displayed 

differential anxiety-like behaviors following AIE exposure. Also recall the 

differences in performance between the two rat strains on the probabilistic 

reversal learning task from chapter 3. Therefore, taking these differences 

between the two rat strains in mind, we hypothesized that Sprague-Dawley rats 

may display deficits in risky choice after adolescent binge-like ethanol exposure. 

Stress associated with repeated episodes of forced swimming has been 

shown to exacerbate cognitive dysfunction following binge-like ethanol exposure 

(Rodberg et al., 2017), and acute mild stress led to impaired set-shifting (Butts, 

Floresco, & Phillips, 2013). One model of acute stress is the single-prolonged 

stress (SPS) paradigm, which replicates several clinical symptoms of post-

traumatic stress disorder including hyperarousal (Khan & Liberzon, 2004), 

impaired extinction retention (Knox et al., 2011), and impaired behavioral 

flexibility (George et al., 2015). Therefore, we hypothesized that Sprague-Dawley 

rats may display increased risky choice on the PDT following AIE exposure, and 

that SPS exposure would further exacerbate these deficits. 

 

MATERIALS & METHODS 

Animal care, AIE exposure, blood ethanol concentration (BEC) analysis, 

and SPS exposure are discussed in chapter 2 detailing general methods for 

chapters 3 and 4. The specific timeline of AIE exposure, PDT testing, SPS 

exposure, and PDT re-testing is detailed in Figure 4-2. 
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Figure 4-2. Experimental timeline of AIE exposure, pair housing, and operant testing 
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the syringe pump turning on and off to deliver the liquid reward, and to associate 

the reward delivery well with a reward. 

 

Operant boxes: Plexiglas operant boxes (Med Associates, St. Albans, VT) used 

in the present study measured 32 cm W x 25 cm D x 11 cm H and were located 

in melamine sound attenuating cubicles. Each cubicle was equipped with an 

exhaust fan to provide air circulation and mask external noise. Mounted on one 

wall of the self-administration chamber were two response levers that flanked a 

liquid receptacle connected to a single speed syringe infusion pump with 

polyethylene tubing. Located above the active lever was a 2.5 cm diameter 

stimulus light that was turned on during various phases of testing. Located at the 

top the chamber was a house light and a Sonalert speaker that emitted a tone 

(2900 Hz, ~65 dB) that were activated during various phases of testing. 

Chambers were interfaced to a PC computer that controlled experimental 

sessions and recorded data using commercially available software (MED 

Associates, MED-PC IV).  

 

Probabilistic Decision-making Task 

The probabilistic decision-making task (PDT), or “Risk” task, was originally 

described by Onge & Floresco (2009). The operant training consisted of 3 distinct 

phases: a Training phase in which rats were trained to lever press, a Probability 

Habituation phase in which rats learned to respond on a lever within a fixed 

amount of time (a trial); this phase also included the rats learning that each lever 
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had a 50% probability of delivering a reward. Finally, following side preference 

determination, there was a Probabilistic Discounting testing phase, where one 

lever was association with a small (1x volume), certain (100%) reward and the 

other lever was associated with a large (4x volume), risky reward. The probability 

for the large, risky reward decreased across blocks of trails from 100%, to 50%, 

to 25%, to 12.5%, to 6.25%. 

 

Training phase: During this phase, rats were trained to respond to a lever with a 

lever press, on a fixed-ratio 1 (FR1) schedule of reinforcement. At the beginning 

of the first training session (30 min), one of the levers was extended and the 

house and receptacle lights were illuminated. Each lever press activated a 

syringe pump for 1.5 sec to deliver approximately 45 µl of 20% sucrose into the 

reward receptacle. Rats received daily 30 min sessions until stable responding 

was achieved, which was defined as receiving at least 50 reinforcements during 

a session for two consecutive training days. Training then proceeded to an FR1 

schedule of reinforcement of whichever lever was not reinforced at first. Stable 

responses (receiving at least 50 reinforcements during a session for two 

consecutive training days) in this phase were required before progressing to the 

next part of the training. 

 

Probability Habituation phase: This phase served to train the rats to respond with 

a lever press within a discrete amount of time (a trial), as well as to establish 

probabilistic reinforcement of lever presses. It consisted of 2 programs of 
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decreasing trial length time. Both programs had an inter-trial interval (ITI) of 40 

seconds. Each program had the exact same order of all other components. At 

the start of each trial the house light would illuminate and one of the levers would 

extend. If the lever was selected then there was a 50% probability of activating a 

syringe pump for 1.5 seconds to deliver approximately 45 ul of 20% sucrose. If 

the lever was not selected then the lever would retract and all lights would be 

extinguished until the next trial. In the first program, there were 90 trials with 20 

seconds during which a lever could be selected; in the second program, there 

were also 90 trials with 10 seconds during which a lever could be selected. Each 

rat had to omit fewer than 10 trials on 2 successive training days to progress 

from one program to another, and then to the next training phase. 

 

Side preference determination: Following the last day of the probability 

habituation phase, the rats were assessed for preference for either lever. In the 

first trials, both levers were extended, and pressing either lever delivered a 

reward. Following a 20 second ITI, both levers were again extended. If the rat 

chose the same lever as the previous trial, then no reward was delivered. This 

continued until the rat chose the opposite lever of the one that initially delivered a 

reward; that would comprise one alternation. The program continued indefinitely 

until 7 alternations were completed. Assessing which lever was chosen first more 

often across the 7 alternations usually identified the side preference of the rat, 

although if the total lever presses for a lever were more than a 2:1 ratio 
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compared to the lever pressed first most often, then the lever that was pressed 

more frequently was considered the preferred lever. 

 

Probabilistic Discounting Task testing phase: This phase consisted of a rat’s 

preferred lever being associated with a small (1x volume), certain (100% 

probability) reward, and the non-preferred lever being associated with a large (4x 

volume), risky (decreasing from 100% to 6.25% probability) reward; this 

association remained the same for the duration of the testing phase. There were 

5 blocks of trials, each consisting of 8 forced trials with only one lever extended, 

and 10 free choice trials where both levers were extended. This program had an 

ITI of 40 seconds, after which the houselights were illuminated and one or both 

levers were extended; each trial lasted for 10 seconds, and unless a selection 

was made, then both levers were retracted and all lights were extinguished. 

Selecting the small, certain lever would deliver a 30 ul reward of 20% sucrose, 

and selecting the large, risky lever may deliver a 120 ul reward. The probability 

for the small, certain lever remained 100% throughout the session, but the 

probability of the large, risky lever decreased over each successive block of trials 

from 100%, to 50%, to 25%, to 12.5%, to a 6.25% probability of reward in the 5th 

and final block of trials in the session. Selecting the large, risky lever was most 

advantageous in the first two blocks of trials, and selecting the small, certain 

lever was most advantageous in the last two blocks of trials. This phase lasted 

for approximately 20 days, or until the cohort of test subjects reached a stable 

level of responding during each probability block over 3 days of testing. Stability 
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was determined by statistically analyzing the data for 5 blocks across 3 days with 

a 2-way ANOVA (day x block); if there was no statistical difference between days 

then the responding was determined to be stable. On the 8th day after SPS 

exposure, test subjects were re-started on the PDT program for 10 days, or until 

stable responding was achieved using the above methods of statistical analysis. 

 

Data Analysis: For the 20 days of PDT testing and the 8 days of PDT testing after 

SPS exposure, the following parameters were assessed: percent risky choice by 

block, omissions, win-stay ratio, lose-shift ratio, and average latency to lever 

press. The percent risky choice by block was computed as the percent of trials in 

which the rat chose the risky lever within the 10 free-choice trials within each 

probability block. Omissions were the number of trials in which a selection was 

not made within the time limit of the trial. The win-stay ratio was the proportion of 

trials in which a rewarded, risky choice was followed by another choice of the 

risky lever. The lose-shift ratio was the proportion of trials in which an 

unrewarded, risky choice was followed by a choice of the certain lever. The 

average latency to lever press was the average amount of time between the 

initiation of a trial (lever extension) and lever selection. 

Differences between AIE and Control groups were assessed using 

Students’ t-tests, and the threshold for significance was set at p < 0.05. 

Differences between AIE-SPS, AIE-Control, Control-SPS, and Control-Control 

groups were assessed using ANOVA tests, RM-ANOVA tests, and/or Students’ t-
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tests, with the threshold for significance again being set at p < 0.05 or less. Data 

are presented as mean ± SEM. 

 

RESULTS 
 

The rats used in these studies (n = 22) were separated within litters into 

pair-matched groups of Control or AIE exposed animals, which were put through 

AIE exposure, the probabilistic decision-making task, SPS exposure, and then 

re-started on the PDT. Differences in probabilistic decision-making were 

assessed using the probabilistic decision-making task (PDT) (Cardinal & Howes, 

2005; Onge & Floresco, 2009), wherein rats chose between a risky lever 

associated with a large reward (4x volume) and a certain lever associated with a 

small reward (1x volume); the probability of reward for the risky lever decreased 

within an operant session over 5 consecutive blocks: 100%, 50%, 25%, 12.5%, 

and 6.25%, but the identity of each lever did not change throughout the entirety 

of testing with this procedure. Each block began with 8 forced-choice trials with 

only one lever extended per trial to establish the new probability of reward 

associated with the risky lever as well as to re-establish the same probability of 

reward with the certain lever (always 100%). Next, 10 free-choice trials occurred 

where both levers were extended in each trial and the animal was allowed to 

choose between the large, risky lever and or the small, certain lever; it was from 

these free choice trials that the percent choice of the large/risky option was 

calculated for each probability block, on each PDT training day. 
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AIE did not impair operant learning, as there were no significant 

differences in the number of days needed to meet criteria in either the FR1 (t(20) = 

0.197 p = 0.852) or probability (t(20) = 0.511 p = 0.852) phases of training (Figure 

4-3). 

 
Figure 4-3. AIE is not associated with impaired operant learning A) Average days of 
operant training for Sprague-Dawley rats for the probabilistic decision-making task 
 

AIE also had no effect on percent risky choice in the initial stages of PDT 

training. A 2-way ANOVA revealed that there were no significant effects of AIE 

exposure (F(1,100) = .307 p = 0.581) or probability block (F(4,100) = 0.416 p = 0.797) 

on percent risky choice on the first day of PDT training (Figure 4-4). Both AIE 

and Control groups progressed from expressing no preference for a certain lever 

on day one of training, to expressing a strong preference for the risky lever in the 

100% and 50% probability blocks and a strong preference for the certain lever in 

the 12.5% and 6.25% probability blocks. The risky lever is the more efficacious 

choice in the 100% and 50% probability blocks. In the 25% probability block, both 

levers are equally valuable as the risky lever returns 4x the amount of reward as 

the certain lever. However, the certain lever is the more efficacious choice in the 
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12.5% and 6.25% probability blocks. Therefore, an appropriate strategy to 

maximize reward is to select the risky lever in the first two blocks, either lever in 

the third block, and the certain lever in the last two blocks. As expected, this 

pattern was not observed on the first day of PDT training (Figure 4-4), but did 

emerge as training progressed through day 20 (Figure 4-5, 4-6, and 4-7). 

Analyses via 2-way ANOVAs (AIE exposure by probability block) of percent risky 

choice averaged across four days of training revealed that there was an 

increasingly significant effect of probability block on percent risky choice on days 

1-4 (F(4,100) = 4.66 p = 0.002) and 5-8 (F(4,200) = 120.8 p < 0.0001) (Figure 4-5), 

days 9-12 (F(4,100) = 166.7 p < 0.0001) 13-16 (F(4,100) = 217.7 p < 0.0001) (Figure 

4-6), and days 17-20 (F(4,100) = 271.8 p < 0.0001), but no effect of AIE exposure, 

even on days 17-20 (F(4,80) = 1.791 p = 0.129) (Figure 4-7). 

 
Figure 4-4. AIE is not associated with changes in risky choice on the first day of 
PDT training. Average percent choice of the large/risky lever during A) the first day of 
training for the probabilistic decision-making task. There was no effect of probability 
block on day 1 of training. AIE n = 12 Control n = 10 
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Interestingly, AIE appeared to have a biphasic effect on choice latency, in 

that the AIE group initially demonstrated increased choice latency (on days 1-4 

and 5-8, Figure 4-5), but then displayed decreased choice latency (on days 13-

16, Figure 4-6). However, by days 17-20 of PDT training, there was no effect of 

AIE on choice latency (Figure 4-7). A 2-way ANOVA (AIE exposure by 

probability block) revealed that there was a significant effect of AIE exposure, in 

that the AIE group displayed significantly different choice latency compared to 

the Control group on days 1-4 (F(1,100) = 52.92 p < 0.0001), days 5-8 (F(1,100) = 

9.93 p = 0.0021) (Figure 4-5), and days 13-16 (F(1,100) = 13.11 p = 0.0005) 

(Figure 4-6). A series of 2-way ANOVAs also revealed that there was a 

significant difference in choice latency due to probability block across all days of 

training. 
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Figure 4-5. AIE resulted in increased choice latency on training days 1-4 and 5-8 of 
the probabilistic decision-making task. Average A) percent risky choice by block for 
training days 1-4, B) choice latency for days 1-4, C) percent risky choice by block for 
training days 5-8, and D) choice latency for days 5-8. * p < 0.05 **** p < 0.001 ★ main 
effect of AIE exposure 
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Figure 4-6. AIE resulted in decreased choice latency on training days 13-16 of the 
probabilistic decision-making task. Average A) percent risky choice by block for 
training days 9-12, B) choice latency for days 9-12, C) percent risky choice by block for 
training days 13-16, and D) choice latency for days 13-16. ★ main effect of AIE 
exposure 
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Figure 4-7. AIE is not associated with changes in risky choice or choice latency on 
training days 17-20 of the probabilistic decision-making task. Average A) percent 
risky choice by block, and B) choice latency on days 17-20 of the probabilistic decision-
making task. 
 
AIE had no effect on the number of omissions per session, either in the initial 

phases of training (days 1-4) (t(9) = 1.769 p = 0.111) or at the end of training 

(days 17-20) (t(9) = 0.474 p = 0.647) (Figure 4-8). 

 
Figure 4-8. AIE is not associated with changes in omissions per session during 
training days 1-4 or 17-20 of the probabilistic decision-making task. Average 
omissions per session for A) days 1-4, and B) days 17-20 of the probabilistic decision-
making task 
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Additionally, AIE had no effect on either the win-stay ratio (t(9) = 0.481 p = 0.642) 

or the lose-shift ratio (t(9) = 1.357 p = 0.208) during days 17-20 of the probabilistic 

decision-making task (Figure 4-9). 

 
Figure 4-9. AIE is not associated with changes in the win-stay or lose-shift ratios 
on days 17-20 of the probabilistic decision-making task. Average A) win-stay ratio 
and B) lose-shift ratio for days 17-20 of the probabilistic decision-making task. 
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ratios (F(3,18) = 2.455 p = 0.096), or omissions (F(3,18) = 0.436 p = 0.730) between 

exposure groups prior to SPS exposure (Figure 4-10).  

 

 
Figure 4-10. There are no differences in baseline performance between SPS 
exposure groups prior to SPS. Average A) omissions per session, B) win-stay ratio, 
and C) lose-shift ratio over days 17-20 of the probabilistic decision-making task 
expressed as the baseline performance before SPS exposure. 
 
A 2-way ANOVA also revealed that there were no differences in percent risky 

choice (F(3,90) = 0.695 p = 0.558) or choice latency (F(3,90) = 1.747 p = 0.163) 

between treatment groups prior to SPS exposure  (Figure 4-11). 

 
Figure 4-11. There are no baseline differences in percent risky choice or choice 
latency between SPS exposure groups prior to SPS.  A) Average percent choice of 
the large/risky lever and B) choice latency during days 17-20 of the probabilistic 
decision-making task expressed as the baseline performance before SPS exposure. 
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A 4-way, multivariate, repeated measures analysis was conducted with 

phase (pre- and post-SPS) and probability block as within subject factors, and 

AIE and SPS exposure as between subject factors. This revealed that there was 

an interaction between phase, AIE exposure, and SPS exposure (F(1,18) = 4.446 p 

= 0.049). Follow-up analysis revealed that there were no significant effects prior 

to SPS exposure due to probability block, AIE exposure, or SPS exposure (F(4,72) 

= 1.117 p = 0.355). Further analysis of post-SPS percent risky choice via a 1-way 

ANOVA revealed that, in the Control-Control and AIE-Control groups (that is, 

groups not exposed to SPS), there was no difference between pre- and post-

SPS performance (F(1,9) = 0.001 p = 0.974). Analysis of the SPS-exposed groups 

(Control-SPS and AIE-SPS) revealed that there was a significant difference 

between pre- and post-SPS percent risky choice (F(1,9) = 8.885 p = 0.015); rats in 

the AIE-SPS group were more risk averse (had lower percent risky choice) than 

rats in the Control-SPS group (Figure 4-12). 
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Figure 4-12. AIE resulted in increased risk aversion in SPS exposed animals on 
days 1-4 after SPS. Average percent choice of the large/risky lever on days 1-4 after 
SPS for A) all four exposure groups. B) For visual clarity, the same data is graphed as in 
A with only the Control-SPS and AIE-SPS groups displayed. * p < 0.05 ★ main effect of 
AIE exposure 
 
However, this effect was only seen in the first four days of PDT testing after SPS 

exposure; there were no significant differences between groups on days 5-8 of 

PDT testing (Figure 4-13). 

 
 
Figure 4-13. AIE and SPS are not associated with changes in percent risky choice 
more than four days after SPS exposure. Average percent choice of the large/risky 
lever on A) days 1-4 and B) days 5-8 after SPS exposure 
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Additionally, a 3-way ANOVA of the type of response (win-stay or lose-shift), AIE 

exposure, and SPS exposure, revealed that there were no significant differences 

between any of the groups in win-stay or lose-shift ratios pre- or post-SPS 

exposure (F(1,18) = 1.303 p = 0.289) (Figure 4-14). 

 
Figure 4-14. AIE and SPS are not associated with changes in win-stay or lose-shift 
ratios. The four-day average A) win-stay ratios and B) lose-shift ratios before and after 
SPS exposure 
 
A 2-way ANOVA (AIE by SPS exposure) revealed that there were no differences 

between exposure groups in choice latency post-SPS exposure (F(3,90) = 0.783 p 

= 0.507), and another 2-way ANOVA revealed that there were no differences 

between exposure groups in omissions due to AIE (F(3,36) = 0.781 p = 0.512) or 

SPS (F(1,36) = 0.927 p = 0.342) exposure (Figure 4-15). 
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Figure 4-15. AIE and SPS are not associated with changes in choice latency or 
omissions. Average A) choice latency and B) omissions per session during days 1-4 
after SPS exposure 
 
Table 4-1. Significant results, separated by parameter, assessed during training for and 
testing of the PDT in AIE and Control groups, as well as pre- and post-SPS exposure. 

Parameter Significant? In [group] >/< 
Compared to 

[group] Phase 
Percent risky 
choice Yes AIE-SPS < Control-SPS 

post-SPS  
Days 1-4 

Choice 
latency Yes AIE > Control Days 1-8 

 Yes AIE < Control Days 13-16 
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ratio over 20 days of PDT training. In the 4 days following SPS exposure, the 

AIE-SPS group displayed decreased risky choice compared to the Control-SPS 

group; however, there were no additional differences between groups in choice 

latency, omissions, win-stay ratios, or lose-shift ratios. 

The increase in choice latency over days 1-8 of PDT training may indicate 

impaired behavioral efficiency following AIE exposure, as was recently reported 

by Miller et al. (2017). Behavioral efficiency involves the maintaining the balance 

between speed and accuracy, and is best assessed in situations in which an 

organism must make a choice between competing stimuli. In their report, Miller 

and colleagues demonstrated that AIE led to increased choice latency (impaired 

behavioral efficiency) on the risky decision-making task (RDT). This task differed 

from the PDT in that it involved a risk of punishment instead of reward associated 

with the risky lever; that is, the risky lever always delivered a 4x reward 

compared to the small, certain lever, but with each change in probability block, 

the probability of punishment changed. The punishment used was relatively mild, 

a 0.35mA foot shock of durations ranging from 1.0-1.5s, as it is less than the 

stimulus traditionally used in fear conditioning (0.75mA for 2.0s), but enough to 

serve as an aversive stimulus nonetheless. This risk of punishment is evaluated 

with neural networks similar to those used in evaluating the risk of reward, but 

with opposite actions on neural activity.  

During tasks with an appetitive stimulus, the basolateral amygdala (BLA) 

and its connections with the nucleus accumbens shell (NAcs) appear to facilitate 

selection of the large, risky choice over a small, certain choice, while the 
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prefrontal cortex (PFC) – specifically the medial PFC and the orbitofrontal cortex 

(OFC) – act as the brakes on this drive by tracking changes in reward 

probabilities and updating the value of an action, respectively. In contrast, during 

tasks with an aversive stimulus, the BLA appears to mediate the integration of 

information about reward magnitude and punishment probability, while the OFC 

seems to be critical for calculating punishment probabilities. Lesions of the BLA 

bias choice towards the risky option in aversive stimulus tasks, whereas they 

bias choice towards the certain option in appetitive stimulus tasks; contrastingly, 

lesions of the OFC bias choice towards the risky option in appetitive stimulus 

tasks and towards the certain option in aversive stimulus tasks (for review, see 

(Orsini, Moorman, Young, Setlow, & Floresco, 2015). 

If the increase in choice latency seen during PDT training in AIE compared 

to Control rats demonstrates behavioral inefficiency, then a task with an aversive 

stimulus, such as the RDT, may shed more light on this effect of AIE than the 

current studies utilizing a task with an appetitive stimulus. However, it may also 

represent impaired ability to master the task, as was seen with the Sprague-

Dawley animals in the last set of experiments (see Chapter 2). Recall that the 

Sprague-Dawley AIE group completed fewer reversals per session, and also 

displayed increased choice latency over 16 days of the PRL task compared to 

the Control group. In contrast, the Long-Evans AIE rats did not display impaired 

choice latency or reduced reversals. This could relate to genetic differences 

between the SD and LE rat strains. A more simple assessment of learning ability 

and recall may reveal more information about the learning impairment seen after 
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AIE exposure. In the next chapter, fear conditioning, extinction, and cue recall will 

be tested after AIE and/or SPS exposure; this more simple learning paradigm 

may shed light on the learning impairments demonstrated by the AIE compared 

to Control groups in this chapter, as well as chapter 3. 

The AIE group did not display impaired risky choice on days 1-20 of the 

PDT compared to the Control group. This lack of effect of AIE on percent risky 

choice was surprising given recent studies showing that AIE exposure led to 

increased risky choice on a probabilistic decision-making task (Boutros, Der-

Avakian, Semenova, Lee, & Markou, 2016; McMurray et al., 2016; Nasrallah et 

al., 2011; Nasrallah et al., 2009). However, there were several differences in 

experimental design that may have contributed to different results, including 

housing conditions during adolescence, AIE exposure method, and operant task 

design. These differences could account for why AIE rats in the current study did 

not display increased risky choice in the PDT, and are discussed in greater detail 

in chapter 6. 

Compared to the Control-SPS group, the AIE-SPS group displayed 

decreased risky choice over the four days following SPS exposure. Choice under 

conditions of uncertain probabilities with an appetitive stimulus is thought to be 

mediated by a network of key brain regions, including, as mentioned previously, 

the BLA, the OFC, the mPFC, and the NAc. However, dopamine (DA) function 

within this network is critical to reward sensitivity, and balancing the drives 

between safety and exploration. D1-like receptors (D1Rs) are thought to, “aid in 

overcoming uncertainty costs,” to maintain an efficacious choice strategy despite 
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losses, and D2-like receptors underlie the exploration of choices in the face of 

changing reward probabilities (Orsini et al., 2015). Antagonizing D1Rs in the 

mPFC or the NAc has been shown to reduce risky choice in the PDT (Onge & 

Floresco, 2010; Stopper et al., 2014). Previous work from our lab has shown that 

AIE led to impaired D1R function in the prelimbic cortex of the mPFC (Trantham-

Davidson et al., 2016). Additionally, SPS exposure has been reported to blunt 

responses to acute cocaine administration, which was hypothesized to result 

from decreased DA receptor function or expression following SPS (Eagle et al., 

2015). Therefore, it may be that an AIE-induced reduction in D1R function in the 

mPFC was facilitated by SPS exposure, and contributed to decreased risky 

choice in the PDT on days 1-4 after SPS exposure.  

In conclusion, the current set of studies demonstrated that AIE led to a 

significant increase in choice latency during days 1-8 of PDT training, without 

concurrent changes in percent risky choice, compared to the Control group. 

While this observation of a lack of increased risky choice in adult rats exposed to 

AIE was unexpected considering other studies in the literature that have 

observed increases in risky decision-making, differences in ethanol exposure, 

housing conditions in adolescence, and behavioral procedures may account for 

some or all of this. The increase in choice latency may reflect decreased 

behavioral efficiency, which could be clarified by additional studies utilizing a task 

with an aversive stimulus, such as the RDT. Additionally, following SPS 

exposure, the AIE-SPS group displayed decreased risky choice compared to the 

Control-SPS group in the four days following SPS exposure. This may be due to 
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a combination of AIE- and SPS-induced DA receptor dysfunction. Further studies 

examining the expression of DA receptor expression and function following SPS 

exposure could provide more information and clarity on this issue. 
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CHAPTER 5 
 
 
 
 

ADOLESCENT BINGE-LIKE ETHANOL EXPOSURE 
LEADS TO CHANGES IN FEAR-RELATED BEHAVIOR 

 
 
 
 
BACKGROUND & SIGNIFICANCE 

Extinction learning can be conceptualized as a specific type of inhibitory 

learning (Hamilton & Brigman, 2015). It involves an initial phase of associative 

learning, in which a conditioned stimulus (such as a tone) is associated with an 

unconditioned stimulus (such as a mild shock). This is followed by an extinction 

phase, in which negative feedback is used to update the previously formed 

associative memory (i.e. a tone no longer predicts a shock). In the tone-shock 

pairing paradigm, lack of movement (freezing) is interpreted as the behavioral 

result of a successful association of the tone with the shock, as freezing indicates 

that the animal expects a shock. A lack of freezing during extinction indicates that 

the associative memory pairing the tone with the shock has been superseded by 

the extinction memory in which the tone is no longer paired with the shock. 

Pavlov originally theorized that the original associative memory would be 

inhibited by the extinction memory, as opposed to the erasure of the associative 

memory (Pavlov, 1927). In the years since Pavlov’s original work, considerable 

progress has been made in detailing the specific circuitry of fear conditioning and 

extinction learning. 
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Fear conditioning is canonically thought to be dependent upon activity 

between amygdalar nuclei (basolateral, BLA, and central, CeA), the intercalated 

cells (ITC) of the amygdala, the hippocampus (HC), and prefrontal areas 

including the medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC). 

Information acquired during initial fear conditioning is transmitted from primary 

sensory cortices and the thalamus to the BLA, where reciprocal connections 

between the BLA and the ventral hippocampus (vHC), and the BLA and prelimbic 

mPFC, modulate fear-related neuronal plasticity. The BLA then projects to the 

CeA, and the CeA projects to the hypothalamus and brainstem nuclei, which 

mitigate fear-related behaviors (Tovote, Fadok, & Lüthi, 2015). Connections 

underlying extinction of fear behaviors include projections from the infralimbic (IL) 

mPFC to the ITC, and then to the CeA and brainstem nuclei to inhibit fear 

behaviors. 

Activity within prefrontal areas is important for expression of fear behavior 

as well as consolidation of extinction learning, and disruption leads to deficits in 

these behaviors. Lesions of the lateral and ventral OFC have been shown to 

impair initial extinction learning in rats (West et al., 2013; Zelinski et al., 2010), 

and low frequency stimulation of the infralimbic PFC immediately after fear 

conditioning has also been shown to impair extinction learning in rats (Shehadi & 

Maroun, 2013). Inhibition of protein synthesis in the mPFC led to impaired fear 

extinction retention (Santini, Ge, Ren, de Ortiz, & Quirk, 2004), and temporary 

inactivation of the PL and IL prefrontal cortices prior to extinction impaired 

extinction retention as well as decreased freezing at all stages of fear 
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conditioning and extinction in rats (Sierra�Mercado, Corcoran, Lebrón�Milad, & 

Quirk, 2006). Taken together, these studies demonstrate that the PFC is critical 

for both fear behavior and extinction retention. Additionally, while studies utilizing 

circuit-specific disruptions have demonstrated deficits in fear-related behaviors 

following these disruptions, other systemic insults, such as those by drugs of 

abuse, can also lead to deficits in fear-related behaviors. 

One such drug of abuse is ethanol, and its effects on the brain are 

widespread. However, its effects on fear conditioning and extinction can be quite 

specific. For example, rats exposed to intermittent ethanol during early 

adolescence displayed a deficit in context fear retention not seen in rats exposed 

to ethanol during later adolescence or adulthood, whereas rats exposed later in 

adolescence or adulthood displayed enhanced context extinction resistance not 

seen in rats exposed during early adolescence (Broadwater & Spear, 2013). 

Additionally, adolescent intermittent ethanol (AIE) exposure, an animal model of 

binge-like ethanol exposure encompassing early to middle adolescence, has 

been shown to impair extinction of ethanol-seeking behavior in rats (Gass et al., 

2014). Interestingly, traumatic stress exposure has been shown to lead to similar 

deficits in fear-related behaviors. 

As discussed in chapter 2, single prolonged stress (SPS) exposure is an 

animal model that exhibits a number of core symptoms of post-traumatic stress 

disorder (PTSD). These include hyper-arousal (Khan & Liberzon, 2004), 

increased negative feedback of the hypothalamic-pituitary-adrenal (HPA) axis 

(Liberzon et al., 1997; Liberzon et al., 1999), and impaired extinction retention 
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(Knox et al., 2011). Animals exposed to SPS displayed increased acquisition of 

fear conditioning with no differences in extinction learning; however, they 

displayed significantly impaired extinction retention, which parallels findings from 

PTSD patients (Liberzon & Abelson, 2016). In the studies presented in this 

chapter, we tested that hypothesis that AIE exposure would facilitate deficits in 

extinction retention following SPS exposure. 

 

MATERIALS & METHODS 

The animal care and AIE exposure model were identical to the methods 

detailed in chapter 2, with one exception. In contrast to 5 cycles of ethanol vapor 

inhalation used in all previous studies, the AIE exposure paradigm for 

experiments in this chapter encompassed post-natal days (PD) 28 through 53, 

and involved 8 cycles of 2 consecutive episodes of ethanol vapor inhalation. Rats 

were exposed to ethanol on PD28 & 29 (cycle 1), PD31 & 32 (cycle 2), PD35 & 

36 (cycle 3), PD38 & 39 (cycle 4), PD42 & 43 (cycle 5, PD45 & 46 (cycle 6), 

PD49 & 50 (cycle 7), and PD52 & 53 (cycle 8) (Figure 5-1). 
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Figure 5-1. Experimental timeline of AIE exposure, pair housing, and operant testing 
 

Single Prolonged Stress (SPS) exposure 

In studies in this chapter that involve SPS, animals that were subjected to 

exposure were PD60 or older. The SPS procedure is based on previous work by 

Liberzon et al. (Liberzon et al., 1997; Liberzon et al., 1999). On the day of the 

SPS procedure, the control group was brought out of the animal facility to be kept 

in a lighted area outside of the exposure room in order to match the disturbance 

in light cycle that the SPS group would experience but without experiencing the 

smells and sounds from the stressed rats in the SPS group. Rats assigned to the 

SPS group were exposed to three successive stressors: 2 hours of restraint 

stress in a clear, acrylic cylinder; 20 minutes of forced swim in 23-25°C water that 

was deeper than the length of the rat; 15 minutes for recovery in a clean cage on 

a heating pad; followed by ether anesthesia to unconsciousness (approximately 

5 minutes of exposure). Following this final stressor, the rats were allowed to 

recover in a clean cage on a heating pad until they were dry (approximately 2 
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hours), and then returned with the control group to the animal facility where they 

were left undisturbed for 7 days. Behavioral testing resumed on the 8th day after 

control or stressor exposures. Each of these exact stressors, in the order in 

which they are presented here, with the consolidation phase of 7 days after the 

stressors, have been shown to be vital to the development of behaviors which 

model some symptoms of PTSD in humans such as hyperarousal, extinction 

retention deficits, and enhanced negative feedback of the hypothalamic-pituitary-

adrenal (HPA) axis (Knox et al., 2012; Liberzon et al., 1997; Liberzon et al., 

1999). 

 

Measures of Anxiety 

Following AIE exposure and after PD60, two different behavioral 

measures were used to assess anxiety: the light/dark box (LDB), and the 

elevated plus maze (EPM) (Figure 5-2). Only one assessment was administered 

per day in order to reduce any confounds due to the sequence of behavioral 

tests. 

 
Figure 5-2. Detailed timeline of SPS stressor exposure, anxiety testing, and fear 
conditioning & extinction 
 
The methods for assessment of anxiety-like behaviors were detailed in chapter 2. 
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animals can only be tested once with either of the tasks, rats were first tested on 

the light/dark box after AIE and SPS but prior to fear conditioning, and then 

tested after fear extinction using the elevated plus maze procedure as detailed 

below. 

 

Elevated plus maze: The dimensions of the elevated plus maze were arm widths 

of 10 cm and length of 50 cm, closed arm wall heights of 40 cm, open arm wall 

heights of 1 cm, and a maze elevation height of 40 cm. The behavioral testing 

room was dimly lit with a red light. A white noise machine was used to obscure 

any distracting sounds. On test day, each rat was brought to the room 

individually in their home cage to habituate to the room for 5 minutes prior to the 

start of the test. To start the test, each rat was placed in the central square facing 

an open arm and allowed to explore the maze for 5 minutes. The entirety of the 

test was recorded via digital video at 60 frames per second for later analysis in 

Ethovision of the time spent in the open vs closed arms, and number of entries 

into the closed vs open arms. These values were averaged across treatment 

groups, and differences between groups were assessed via a 2-way ANOVA for 

exposure (AIE or Control) and stress (SPS or Control) with a significance 

threshold of α=0.05. Between each test subject the entire apparatus was wiped 

with Cavicide and allowed to air dry. 
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Fear Conditioning with SPS & Measures of Anxiety 

All animals that were treated with this exposure were PD60 or older. On 

the 8th day after SPS exposure, each subject was tested with the light/dark box 

test in order to assess anxiety-like behavior. On the following day, the first phase 

of fear conditioning began. It consisted of a 120 second acclimation period 

followed by three pairings of the Conditioned Stimulus (CS; 30s, 80dB, 3kHz 

tone) with the Unconditioned Stimulus (US; 2s, 0.75mA scrambled foot shock) 

during the last 2 seconds of the CS. This procedure was followed for three days. 

Two days later, extinction training began; this consisted of 120 seconds of 

acclimation followed by 10 presentations of the CS (30s tone). Each CS 

presentation was separated by 10-second intervals without any stimuli. This 

extinction training continued for 3-4 days, or until the subject froze less than 20% 

in response to the CS (30s tone) for 3 consecutive presentations. This model of 

extinction training in multiple blocks over 3-4 days (or until criteria is met) allows 

detailed analysis of within-session extinction (via trial blocks within one day) as 

well as extinction recall/retention the following day. Three days after extinction 

criteria was met, rats were tested for extinction recall and presented with the CS 

one time (Figure 5-2). Freezing behavior was determined from digitized videos 

using FreezeScan (Clever Systems, Inc.), and was determined as the complete 

absence of movement except for breathing, with parameters set by FreezeScan 

and verified by high inter-rater reliability prior to the initiation of the experiment. 

Percent freezing was calculated as the average amount of time the animal did 

not move within a trial divided by the total time of the trial. Finally, on the day 



 130 

following the extinction recall test, each subject was assessed for anxiety-like 

behaviors using the elevated plus maze. 

 

RESULTS 

The Long-Evans rats used in these studies (n = 32) were separated within 

litters into pair-matched groups of Control or AIE exposed animals, and then 

sequentially subjected to AIE exposure, SPS exposure, and then fear 

conditioning. Intoxication scores measured at the end of each 14-hour ethanol 

vapor exposure period were averaged across all eight cycles. The average 

scores for day 1 of each of the eight cycles were 2.73 ± 0.34, 1.93 ± 0.15, 3.07 ± 

0.21, 2.67 ± 0.16, 3.00 ± 0.09, 2.73 ± 0.12, 2.60 ± 0.27, and 2.67 ± 0.13, 

respectively, with a grand average across all eight cycles of 2.68 ± 0.07. The 

average scores for day 2, on which blood was obtained for BEC determination, of 

each of the eight cycles were 2.60 ± 0.21, 2.80 ± 0.11, 2.53 ± 0.17, 2.13 ± 0.24, 

2.53 ± 0.13, 3.07 ± 0.07, 2.60 ± 0.16, and 2.47 ± 0.19, respectively, with a grand 

average across all eight cycles of 2.59 ± 0.07 (Figure 5-3).  
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Figure 5-3. Average behavioral intoxication scores by cycle for A) day 1 or B) day 2 of 
each 2-day cycle, with the grand average across all first days of the 8 exposure cycles. 
The grey box denotes the target behavioral intoxication. 
 

Intoxication scores for days 1 or 2 were collapsed across all eight cycles 

of ethanol vapor inhalation, revealing that the average scores for the cohort were 

2.68 ± 0.07 for day 1, 2.59 ± 0.07 for day 2, with a grand average across both 

days of all eight cycles of 2.63 ± 0.07 (Figure 5-4A). Tail vein blood drawn at the 

end of each of the 2-day ethanol vapor exposure cycles revealed that the 

average BEC in each of the eight cycles was (in mg%) 443.2 ± 30.06, 421.84 ± 

24.54, 394.37 ± 27.23, 311.40 ± 20.90, 399.77 ± 14.67, 426.81 ± 24.52, 431.46 ± 

23.56, and 384.26 ± 24.15, respectively, with a grand average across all eight 

cycles of 401.64 ± 9.00 (Figure 5-4B). 
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Figure 5-4. A) Average behavioral intoxication scores collapsed across all eight cycles 
for day 1, day 2, or for both days. B) Average BECs for each cycle, with a grand average 
across all eight cycles. 
 
Following AIE and SPS exposures, anxiety-like behavior was assessed via the 

light/dark box task. A 1-way ANOVA of the four treatment groups (Control-

Control, Control-SPS, AIE-Control, and AIE-SPS) revealed that there were no 

differences between groups in the amount of time spent in the light side of the 

box (F(3,28) = 1.184 p = 0.334) (Figure 5-5), the latency to first entry (F(3,27) = 

0.566 p = 0.642), or in the number of entries into the light side of the box (F(3,28) = 

0.891 p = 0.458) (Figure 5-6). 
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Figure 5-5.  AIE and SPS are not associated with changes in time spent in the light 
side in the light/dark box task. Neither AIE nor SPS resulted in differences in the 
amount of time spent in the light side of the light/dark box. 
 

 
Figure 5-6. AIE and SPS are not associated with changes in latency to first entry 
or number of entries in the light/dark box task. Neither AIE nor SPS led to 
differences in A) latency to first entry or B) total entries in the light/dark box task.  
 
This indicates that neither AIE exposure nor SPS exposure alone had an effect 

on anxiety-like behavior tested via the light/dark box task 8 days after SPS 

exposure.  
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learning was assessed via three distinct phases: associative conditioning, in 

which a tone (CS) is associated with a mild foot shock (US); extinction, during 

which the tone is presented without the foot shock; and cue recall, in which the 

tone is presented without the foot shock. A 2-way ANOVA of treatment by day 

interactions revealed that the AIE-Control and AIE-SPS groups displayed 

increased freezing to the tone in the second and third (F(6,84) = 2.95 p = 0.0116) 

conditioning sessions compared to the Control-Control and Control-SPS groups 

(Figure 5-7). 

 
Figure 5-7. AIE and SPS facilitated acquisition of fear conditioning. AIE exposure 
led to increased freezing during fear conditioning sessions 2 and 3 compared to Control-
control and Control-SPS groups, and SPS exposure exacerbated this effect. * p < 0.05 
for AIE-Control compared to Control-Control  # p < 0.05 for AIE-SPS compared to AIE-
Control n = 7 - 9 per group 
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Following associative conditioning of the tone and the foot shock, extinction 

training was initiated. A 2-way ANOVA of treatment by day interactions with 

repeated measures revealed that, over five days of extinction, the AIE-control 

groups displayed increased freezing to the tone, and that SPS exposure 

exacerbated this effect (F(12,144) = 2.652 p = 0.013) (Figure 5-8A-E). Following 

extinction training, a cue recall test was administered. A one-way ANOVA 

revealed that the AIE-SPS and AIE-control groups were significantly different 

from the Control-Control and Control-SPS groups (F(3,12) = 19.53 p = 0.0001), 

and visual inspection revealed that the AIE-SPS and AIE-Control groups 

displayed increased freezing compared to the other groups (Figure 5-8F). When 

taken together with the increased extinction resistance observed earlier in the 

AIE-SPS and AIE-Control groups, these observations are consistent with an 

inability to extinguish freezing behavior following AIE exposure. Of particular 

interest is that there appeared to be a synergistic interaction of AIE and SPS. 
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Figure 5-8. AIE and SPS resulted in increased resistance to fear extinction. AIE 
exposure led to increased freezing behavior compared to Control-Control or Control-
SPS groups during multiple days of extinction training, and SPS exposure exacerbated 
this effect. Extinction sessions following fear conditioning for A) Day 1, B) Day 2, C) Day 
3, D) Day 4, E) Day 5, and F) the extinction recall test. @ p < 0.05 for Control-Control 
compared to all other exposure groups * p < 0.05 for AIE-Control compared to Control-
Control  # p < 0.05 for AIE-SPS compared to AIE-Control n = 7 - 9 per group 
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To examine the effect of SPS on anxiety behaviors in these rats, one day 

after the cue recall session, anxiety-like behavior was tested via the elevated 

plus maze task. A one-way ANOVA revealed that there were no differences 

between groups in the amount of time spent in the open arms (F(3.28) = 0.139 p = 

0.936) (Figure 5-9), or in the total number of entries into the open arms (F(3,28) =  

0.436 p = 0.729) for any of the treatment groups. However, there was a 

significant difference between groups in the latency to first open arm entry (F(3,27) 

= 3.826 p = 0.021). Multiple comparisons with Holm-Sidak correction revealed 

that the Control-Control group was significantly different from the AIE-Control 

group (t(27) = 3.072 p < 0.05), and visual inspection revealed that the AIE-Control 

group displayed significantly decreased latency to first open arm entry compared 

to the Control-Control group (Figure 5-10). 

 
Figure 5-9. AIE and SPS are not associated with changes in time spent in the open 
arms of the elevated plus maze. Neither AIE nor SPS exposures led to differences in 
the amount of time spent in the open arms of the elevated plus maze. 
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Figure 5-10. AIE resulted in decreased latency to first open arm entry on the 
elevated plus maze. AIE led to a significant decrease in the latency to first open arm 
entry compared to the Control-Control group. There were no differences between other 
groups in the latency to first entry, and no differences between groups in total number of 
entries into the open arms. * p < 0.05 
 
 
DISCUSSION 

The results from these studies demonstrate that both AIE and SPS 

exposures led to significant alterations in fear-related behaviors. Prior to fear 

conditioning, neither AIE nor SPS were associated with changes in anxiety-like 

behavior as assessed via the light/dark box task. However, AIE exposure led to 

increased acquisition of fear conditioning, and SPS exposure exacerbated this 

effect. During extinction learning, AIE was associated with extinction resistance, 

an effect that was exacerbated by SPS. In the extinction retention test, AIE 

exposure was associated with impaired extinction retention, which was 

exacerbated by SPS. Finally, after the extinction retention test, neither AIE nor 

SPS exposures were associated with alterations in anxiety-like behavior as 

assessed via the elevated plus maze. 

The lack of effect of SPS on anxiety-like behavior on the light/dark box 

task prior to fear conditioning was unexpected, as a previous study reported that 
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SPS exposure led to increases in anxiety-like behavior on both the light/dark box 

and elevated plus maze tasks (Shafia et al., 2017). However, a potentially 

important difference between that study and the current one is that it used a 14-

day period of consolidation in the home cage, and tested the rats for anxiety-like 

behavior on the elevated plus maze and light/dark box tasks six weeks after SPS 

exposure. 

Three weeks after SPS exposure and one day after the extinction 

retention test, there were no differences between the groups in the amount of 

time spent in the open arms of the elevated plus maze. However, this 

observation may have been confounded by a floor effect, as each group spent 

~20% of the total time (~60 out of 300 seconds) in the open arms, and a more 

extensive habituation to the testing conditions prior to testing might increase time 

spent in the open arms of the maze, as this would negate a potential floor effect. 

This could reveal differences in anxiety between the groups that were masked by 

the insufficient habituation in the present set of studies. For example, a prior 

study utilized a habituation procedure involving one hour of habituation to the 

testing conditions the day before testing, and five minutes of habituation on test 

day (Gass et al., 2014). It is important to note that this testing was conducted 

after almost three weeks of handling for fear conditioning testing; it could be that 

extended handling confounded the results of this test for anxiety-like behavior 

following SPS exposure. Interestingly, there was a significant difference in the 

latency to first open arm entry; the AIE-Control group had a significantly 

decreased latency to first open arm entry compared to the Control-Control group. 
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However, since this difference between groups was not associated with changes 

in time spent in the open arms or number of entries into the open arms of the 

maze, it is unclear what, if anything, this change in latency means.  

Another potential explanation for the lack of differences observed in 

anxiety-like behavior following SPS exposure could be that these types of 

differences following SPS (and AIE) are not as evident in the strain of rat used in 

this study (Long-Evans). Data was presented in chapter 2 demonstrating that 

Long-Evans rats did not display increased anxiety-like behavior following AIE, 

whereas Sprague-Dawley rats did. Perhaps the use of Sprague-Dawley instead 

of Long-Evans rats may reveal differences in anxiety-like behavior following SPS 

exposure using the light/dark box and elevated plus maze tasks. 

A particularly interesting observation was that AIE exposure led to 

increased acquisition of fear-related behavior over three sessions of fear 

conditioning, and SPS exposure exacerbated this effect. A similar effect was 

reported by Azzinnari et al. (2014), in which mice exposed to 15 days of chronic 

social defeat (CSD) were assessed for fear-related behavior in a contextual fear 

conditioning paradigm. The mice exposed to CSD froze for a significantly 

increased time during that intertrial interval compared to controls. While this 

study used contextual fear conditioning (in contrast with cued fear conditioning 

used in the present studies), they also observed increased acquisition of fear 

conditioning consistent with our observations following either AIE alone or in 

combination with SPS exposure. However, other studies using AIE exposure 

(Bergstrom et al., 2006; Broadwater & Spear, 2013; M. Broadwater & L. P. 
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Spear, 2014) have not reported increased acquisition of fear-related behavior. 

The increased acquisition of fear conditioning in the present study following AIE 

exposure may be the result of ethanol exposure encompassing early to late 

adolescence (PD28-53), as other studies that did not report a change in 

acquisition of fear conditioning following AIE used exposures that only 

encompassed either early to mid- or mid- to late adolescence. Perhaps binge-like 

ethanol exposure during the entire period of adolescence is necessary for 

increased acquisition of fear conditioning as reported in the present study. 

Additionally, while other studies using SPS exposure (Knox et al., 2011; Knox et 

al., 2012) have not reported increased acquisition of fear conditioning, it was only 

the AIE-SPS group that exhibited this increase, and not the Control-SPS group. It 

is possible that the combination of binge-like ethanol exposure throughout most 

of adolescence with SPS exposure in adulthood is necessary to promote 

increased acquisition of fear conditioning. 

AIE also led to increased resistance to extinction over five days of 

extinction testing, and SPS exposure exacerbated this effect. Consensus in the 

literature is lacking on the effects of AIE on extinction and extinction retention of 

fear-related behavior. Broadwater & Spear (2014) reported decreased retention 

of context-induced fear, but a separate study by Broadwater & Spear (2014) 

reported that AIE exposure during mid- to late-adolescence led to increased 

resistance to extinction of context-induced fear. Additionally, Bergstrom et al. 

(2006) reported that adolescent ethanol was associated with impaired extinction 

of cue-induced fear in male rats.  
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It is important at this juncture to note the difference in context-induced and 

cue-induced fear conditioning. Context-induced fear conditioning associates foot 

shocks with a specific environment, and is predominantly dependent on 

hippocampal connections with the amygdala and prefrontal cortex for conditioned 

fear expression and extinction (Morgan & LeDoux, 1999; Orsini, Kim, Knapska, & 

Maren, 2011). In contrast, cue-induced fear conditioning associates foot shocks 

with a cue (i.e., a tone), and this is relatively more dependent on connections 

from the basolateral amygdala (BLA) to the prefrontal cortex for conditioned fear 

expression and extinction (Blair, Schafe, Bauer, Rodrigues, & LeDoux, 2001). It 

has been reported that BLA projections to the mPFC are not fully developed until 

adulthood (Cunningham, Bhattacharyya, & Benes, 2002), and that chronic 

ethanol administration alters the expression of NMDA and GABA-A receptors in 

the BLA (Floyd et al., 2004; McCool, Frye, Pulido, & Botting, 2003). Therefore, 

adolescent ethanol exposure may impair development of these BLA connections 

to the mPFC, and that may in turn impair cue-induced fear-related behavior. 

While AIE has been shown to lead to impaired extinction of fear-related 

behavior, a similar resistance to extinction of fear-conditioned freezing has been 

reported following SPS exposure (Knox et al., 2012), although only one day of 

extinction training was conducted before testing for extinction retention. 

Additionally, the authors note that while this phenomenon was observed in one 

cohort in their study, it was not replicated in unpublished pilot experiments in their 

lab, leading these authors to conclude that the enhanced conditioned fear 

memory performance during extinction is likely not a stable phenomenon (Knox 
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et al., 2012). Regarding the possible mechanisms underlying this effect, SPS has 

been shown to result in decreased activity in the infralimbic (IL) cortex as well as 

disinhibition of the BLA during extinction training (Knox et al., 2016). Inhibition of 

the BLA by the IL cortex is important for extinction retention (Herry et al., 2008; 

Knapska & Maren, 2009; Sierra-Mercado, Padilla-Coreano, & Quirk, 2010; 

Sierra�Mercado et al., 2006). Thus, decreased IL activity during extinction 

training in the SPS-exposed groups may have led to disinhibition of the BLA, and 

thus impaired extinction training and retention (Knox et al., 2016). Taken 

together, decreased activity in the IL cortex following SPS exposure may 

manifest as disinhibition of the BLA during extinction training and retention, and 

disruption of extinction of fear-conditioned freezing. 

Another interesting observation was that AIE also led to decreased recall 

of the extinction memory, and this effect was exacerbated by SPS. It is important 

to note the difference in impaired extinction and impaired extinction recall. 

Extinction is the process by which a memory (i.e. a tone is not associated with 

foot shock) is formed that serves to inhibit a previously formed excitatory memory 

(a tone is associated with foot shock). When extinction is examined over several 

days with multiple sessions per day, the first session of each day (excluding the 

first day) serves as a recall test for the inhibitory memory learned the day before. 

Therefore, impaired extinction would manifest as significantly increased freezing 

during sessions within one day, whereas impaired extinction retention would 

manifest as significantly increased freezing in the first session of a day compared 

to the last session of the day before. Impaired extinction is indicative of impaired 
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behavioral flexibility, whereas impaired extinction retention is indicative of 

impaired consolidation of the new inhibitory memory. Accordingly, the deficit in 

extinction retention in the AIE-Control and AIE-SPS groups indicates impaired 

consolidation between the last extinction session and the extinction recall test. As 

discussed earlier, AIE during early to mid-adolescence has been shown to impair 

retention of context-induced fear conditioning (Broadwater & Spear, 2013), but 

not AIE during mid- to late adolescence. Another report by Broadwater & Spear 

(2014) showed that AIE exposure in early to mid-adolescence reduced retention 

of fear to context, but enhanced retention of cued fear. However, both of these 

studies reported changes in retention of fear conditioning, and not changes in 

extinction retention, following AIE exposure. It could be argued that the 

impairment in extinction retention observed in the AIE-Control group was simply 

due to a failure to extinguish cue-induced freezing. However, the AIE-Control 

group did display reduced levels of cue-induced freezing at levels similar to those 

observed in the Control-Control and Control-SPS groups, and it was only the 

AIE-Control and AIE-SPS groups that exhibited a significant increase in cue-

induced freezing during the extinction retention test. 

Decreased extinction retention following SPS exposure has been reported 

in a number of previous studies (Knox et al., 2011; Knox et al., 2012; Knox et al., 

2016), and they have suggested it is mediated by enhanced conditioned fear 

memory performance (Knox et al., 2011). Extinction retention relies on reciprocal 

connections between the ventral hippocampus (vHPC), the IL, and the BLA 

(Burgos-Robles, Vidal-Gonzalez, Santini, & Quirk, 2007; Corcoran & Quirk, 2007; 
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Knox et al., 2016; Milad & Quirk, 2002; Santini et al., 2004; Sierra-Mercado et al., 

2010; Sierra�Mercado et al., 2006). Inhibition of the BLA by the IL cortex is 

important for extinction retention (Do-Monte, Manzano-Nieves, Quiñones-

Laracuente, Ramos-Medina, & Quirk, 2015; Herry et al., 2008; Knapska & 

Maren, 2009; Sierra-Mercado et al., 2010; Sierra�Mercado et al., 2006), and 

reciprocal connections between the BLA and vHPC are critical for increasing 

activity of “fear” neurons (Herry et al., 2008). However, extinction suppresses 

activity in the BLA and vHPC (Knox et al., 2016). SPS exposure abolishes this 

suppression during extinction, which may be one of the mechanisms through 

which SPS leads to deficits in extinction retention (Knox et al., 2016). SPS has 

also been reported to increase apoptosis in the BLA (Ding, Han, & Shi, 2010; 

Xiao, Yu, Wang, Han, & Shi, 2011). If apoptosis in the BLA following SPS is 

selective for inhibitory neurons, then this could explain the loss of suppressed 

neural activity during extinction in the BLA, and the impaired extinction retention 

following SPS exposure (Knox et al., 2016). Furthermore, as SPS increases 

apoptosis in the IL cortex (Knox, Perrine, George, Galloway, & Liberzon, 2010; 

Zhao, Zhou, Xu, & Zhang, 2014), this could lead to decreased output from the IL 

to the BLA, which could also impair extinction retention. 

In conclusion, while neither AIE nor SPS led to alterations in anxiety-like 

behavior as assessed via the light/dark box (tested before SPS) or elevated plus 

maze (tested after SPS) tasks, AIE exposure alone led to increased acquisition 

of fear-related behavior, increased resistance to extinction, and decreased 
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extinction retention, and SPS exposure exacerbated each of these effects. 

Although speculative, the absence of changes in anxiety-like behavior observed 

in the present study may relate to the strain of rat used (Long-Evans). This strain 

did not show increases in anxiety-like behavior following AIE, whereas Sprague-

Dawley rats did (see chapter 2). Perhaps use of the Sprague-Dawley strain 

would reveal anxiety-like behavioral changes not evident with Long-Evans rats 

following SPS exposure. AIE exposure in Long-Evans rats was associated with 

increased acquisition of fear-related behavior. However, the AIE exposure 

paradigm used in the studies presented in this chapter encompassed almost the 

entirety of early to late adolescence (PD 28-53). Therefore, it may be that the 

increased extent of AIE exposure led to the observed changes in acquisition of 

fear-related behavior, and this was exacerbated by SPS exposure in adulthood. 

The resistance to extinction following AIE exposure observed in the present 

study has been observed previously, in particular after ethanol exposure in mid- 

to late adolescence (Bergstrom et al., 2006; Broadwater & Spear, 2013; M. A. 

Broadwater & L. P. Spear, 2014); this effect has also been reported following 

SPS exposure (Knox et al., 2011; Knox et al., 2012). This increased resistance to 

extinction following AIE and SPS exposures may be due to impaired connections 

between the BLA and the mPFC, as well as impaired inhibition of the BLA by the 

IL cortex. Finally, results from the present study demonstrated that AIE exposure 

led to impaired retention of extinction of cue-induced fear-related behaviors, and 

SPS exposure exacerbated this effect. It has been reported previously that SPS 

leads to impaired extinction retention, which may be due to disrupted 
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connections between the BLA and vHPC, decreased inhibition of the BLA by the 

IL cortex, or selective loss of inhibitory interneurons in the BLA. These 

mechanisms of impaired extinction retention may also underlie the deficits 

demonstrated in the present study. Taken together, these effects on fear-related 

behavior suggest that AIE may lead to impaired connections between the BLA 

and the mPFC, and impaired inhibition of the BLA by the IL cortex; SPS 

exposure might further disrupt these connections, which would result in the 

effects on fear-related behavior demonstrated in the present study. 
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CHAPTER 6 
 
 
 

DISCUSSION & FUTURE DIRECTIONS 
 
 
 
 

 The studies presented in this dissertation provide support for the idea that 

adolescent binge-like ethanol exposure leads to persistent cognitive deficits in 

adulthood, specifically in behavioral flexibility, and that a traumatic stress 

exacerbates these deficits. Additionally, adolescent binge-like ethanol exposure 

has been associated with changes in anxiety-like behavior in adulthood, and data 

presented following an animal model of binge-like ethanol exposure (adolescent 

intermittent ethanol exposure, AIE), show differential responses of anxiety-like 

behavior in two different, outbred strains of rats. This was the basis for the initial 

hypothesis that AIE may also lead to differential effects on behavioral flexibility in 

adulthood in Long-Evans (LE) versus Sprague-Dawley (SD) rats and that a 

traumatic stress (single prolonged stress, SPS) would exacerbate these effects. 

Therefore, several tasks dependent on behavioral flexibility and PFC function 

were used to assess both strains of rats in adulthood following AIE and SPS 

exposures. The results are summarized and discussed below. 

 

AIE differentially affects anxiety-like behavior in LE versus SD rats 

Following AIE exposure, the light-dark box task was used to assess 

anxiety-like behavior. This revealed that LE AIE-exposed rats spent more time in 
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the light side of the box compared to control rats. In contrast, SD AIE-exposed 

rats spent more time in the dark side of the box compared to controls. This 

indicates an increase in anxiety-like behavior in SD rats, but not in LE rats, which 

is consistent with previous observations. It could be argued that the AIE LE rats 

demonstrated a decrease in anxiety-like behavior, but it could also be interpreted 

as an increase in disinhibitory behavior. Increased disinhibition would also 

manifest as more time spent in the light side of the box, and several studies have 

reported increased disinhibition following AIE exposure (Ehlers et al., 2011; Gass 

et al., 2014; Gilpin et al., 2012). It is also important to consider the possibility that 

both increased disinhibition and decreased anxiety could contribute 

simultaneously to this behavior. A recent review examined the lack of consensus 

in the literature regarding whether AIE led to increased anxiety-like behavior or 

increased disinhibitory behavior (Crews et al., 2016). The authors concluded that 

the use of certain ethanol exposure paradigms (such as IP or IG) and strains of 

rats (such as SD) are more likely to be associated with increased anxiety-like 

behavior, whereas the use of other ethanol exposure paradigms (such as ethanol 

vapor) and rat strains (such as LE and Wistar) are more likely to yield increased 

disinhibitory behavior. Further testing with a separate task that more specifically 

examines increased disinhibition versus decreased anxiety, such as the open 

field conflict avoidance task (Ehlers et al., 2011), may yield a more clear answer. 

However, the authors of the review ultimately concluded that, “the nature of 

rodent assessments prevents a clear determination of how AIE impacts these 

two traits,” (Crews et al., 2016). Nevertheless, the results from the light/dark box 
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in the current set of studies indicated differential effects of AIE on LE versus SD 

rats, which provided support for the hypothesis that the performance of LE and 

SD rats on tasks of behavioral flexibility would also be differentially affected 

following AIE exposure. 

 

AIE differentially affects probabilistic reversal learning in LE versus SD rats 

The deficits seen in the probabilistic reversal learning (PRL) task following 

AIE exposure were subtly different between LE and SD rats. For example, the LE 

AIE group only showed a deficit in the number of trials to reach criterion during 

the discrimination phase of the first day of PRL testing, and the number of 

omissions over 16 days of PRL testing compared to the LE control group. The 

former result indicates impaired discrimination learning with probabilistic 

reinforcement, but not reversal learning. This is contrary to some reports in the 

literature that suggested that AIE impairs reversal learning in adulthood 

(Coleman et al., 2011; Coleman et al., 2014; Fernandez et al., 2017; Fernandez 

& Savage, 2017; Fernandez et al., 2016). The latter result may indicate 

increased compulsivity or impulsivity, but not without a concomitant change in 

choice latency (which was not reported in LE rats in these studies). In contrast, 

the SD rats showed no deficits following AIE on the first day of PRL testing, but 

several deficits following 16 days of PRL testing. SD AIE rats displayed a 

decreased number of reversals completed per session, increased choice latency, 

decreased win-stay ratio, and decreased lose-shift ratio compared to the SD 

control group. The combination of fewer reversals per session and increased 
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choice latency suggests a deficit in behavioral efficiency. However, tasks with an 

appetitive stimulus, such as the PRL task, are not ideal for testing this parameter. 

Behavioral efficiency is best tested with a task with an aversive stimulus (Miller et 

al., 2017), such as the risky decision-making task (RDT). 

The lack of an effect on reversal learning in either LE or SD rats on day 

one of the PRL task, and the lack of an effect after 16 days of the PRL task in LE 

rats, was unexpected given the reports in the literature (Coleman et al., 2011; 

Coleman et al., 2014; Fernandez et al., 2017; Fernandez & Savage, 2017; 

Fernandez et al., 2016). As discussed below, there are a number of differences 

in experimental design that may have contributed to different results. 

 

Method of ethanol administration 

The present study exposed rats to binge-like levels of ethanol via 

chambers of vaporized ethanol, whereas the studies by Coleman et al. (Coleman 

et al., 2011; Coleman et al., 2014) used an intragastric mode of exposure. 

Forced ethanol administration through oral gavage can be associated with 

experimenter handling stress, whereas passive exposure via vaporized ethanol 

chambers allows for similar levels of closely monitored intoxication without the 

possible handling stress that may be associated with oral gavage. Adolescence 

is an ontogenetic period in which the stress system (hypothalamic-pituitary-

adrenal, or HPA, axis) is undergoing significant development. Foilb et al. (2011) 

demonstrated that the typical adult response to stress (30 minutes of restraint 

stress in this study) in male rats developed as indexed by plasma 
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adrenocorticotropic hormone (ACTH) levels between 40 and 50 days of age. The 

typical adult response to stress as indexed by plasma corticosterone (CORT) 

levels appeared to develop between 30 and 40 days of age in male rats. 

Additionally, many studies have shown that an acute stressor exerts a response 

from the HPA axis as indexed by ACTH and CORT levels that is twice as 

extensive in prepubertal compared to adult rats (Doremus-Fitzwater, Varlinskaya, 

& Spear, 2009; Goldman, Winget, Hollingshead, & Levine, 1973; Romeo, 2016; 

Romeo, Patel, Pham, & So, 2016). Therefore, stress associated with 

experimenter handling during oral gavage administration of ethanol may exert 

effects in addition to those from adolescent binge-like ethanol administration. 

This could be a contributing factor to the deficit in reversal learning seen in the 

studies from Coleman et al. (Coleman et al., 2011; Coleman et al., 2014), 

Fernandez & Savage (2017), and Fernandez et al. (2017). 

 

Length & timing of ethanol administration 

The binge-like ethanol exposure in the present studies encompassed early 

to middle adolescence (PD28-44). However, the exposures from Coleman et al. 

(2011 & 2014) also encompassed early adolescence (PD28-37), while the 

exposures from Fernandez & Savage (2017) and Fernandez et al. (2017) 

covered early to late adolescence or adulthood: PD25-55 in the former, and 

PD28-53 & PD35-88 in the latter study. Development of the PFC spans the 

entirety of adolescence, and therefore ethanol exposures that encompass more 

of adolescence may lead to more severe cognitive deficits in adulthood. 
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However, both studies from Coleman et al. (Coleman et al., 2011; Coleman et 

al., 2014) covered a relatively shorter range of days than either the current 

studies or the other studies referenced previously, yet they still demonstrated 

impairment in reversal learning in adulthood. A recent review (L. Spear, 2015) 

hypothesizes that early to mid-adolescent insults (such as binge-like ethanol 

exposure) may disproportionately affect self-administration and social/affective 

behaviors, whereas insults during later adolescence and early adulthood may 

disproportionately affect cognitive functions supported by neural substrates that 

are still undergoing maturation. While length and timing of ethanol exposure may 

be another contributing factor to the lack of effect of AIE on reversal learning 

seen in the present studies, it is by no means the prime candidate given the 

deficits seen in reversal learning by Coleman et al. (Coleman et al., 2011; 

Coleman et al., 2014) after early to middle adolescent ethanol exposure. As 

discussed below, those studies differ from the present studies primarily in the 

method of reversal learning testing. 

 

Method of testing reversal learning 

The present studies use an operant reversal learning paradigm with 

probabilistic reinforcement, which differs significantly from the paradigms used in 

other previously published studies. Several of these used spatial-based reversal 

learning tasks: Coleman et al. (2011) used the Morris water maze, while 

Coleman et al. (2014) and Fernandez & Savage (2017) used the Barnes maze. 

Reversal learning paradigms such as these are more dependent on the 
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hippocampus, as they test not only reversal learning, but also spatial orientation 

and spatial memory. Therefore, perhaps tasks requiring spatial reasoning 

abilities are more sensitive to the effects of AIE. 

After completing 16 days of PRL testing, one half of the LE and SD rats 

underwent SPS exposure, resulting in four treatment groups for each rat strain: 

Control-Control, Control-SPS, AIE-Control, and AIE-SPS. After four days of PRL 

testing following SPS exposure, LE AIE-SPS rats displayed increased win-stay 

and lose-shift ratios compared to the LE AIE-control groups. The increase in win-

stay ratio was statistically significant, but was small, and thus this deficit may not 

be functionally meaningful. However, the increase in lose-shift ratio for the LE 

AIE-SPS group was more robust, and was a 26.7% increase in the AIE-SPS 

group compared to the AIE-Control group. This increase in lose-shift ratio is 

thought to reflect an increase in negative feedback sensitivity, which is also seen 

in depressed patients, and following global, acute, cerebral serotonin reduction 

(Bari et al., 2010). Therefore, it seems reasonable to conclude that this effect 

may be due to a change in serotonergic neurotransmission following both AIE 

and SPS exposures. Future studies to address the underlying mechanism could 

include characterization of markers of serotonergic neurotransmission and 

innervation in the PFC, OFC, and nucleus accumbens in AIE-SPS compared to 

AIE-control LE rats. Additionally, it may be valuable to test the effects of 

administration of a selective serotonin reuptake inhibitor on LE AIE-SPS rats 

during the PRL task. 
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 In contrast to LE rats, exposure of SD rats to SPS was associated with a 

decrease in choice latency across all treatment groups compared to the baseline 

values prior to SPS exposure. Sometimes animal behavior can be affected by the 

activity in the building in which they are housed or perform their behavior. 

Anecdotally, there may be changes in performance on a Monday after a day off 

on Sunday. However, following SPS exposure, half of the SD rats were re-started 

on the PRL task on a Thursday, and the other half were re-started the following 

day, on a Friday. Therefore, it is unlikely that the decrease in choice latency 

across all treatment groups was due to the day of the week. As this effect was 

significant across treatment groups following SPS exposure, it is also likely not 

due to either AIE and/or SPS exposure. 

 

AIE leads to increased choice latency on the probabilistic decision-making 

task 

Previous data from the lab demonstrated that there is no change in risky 

choice or choice latency as assessed via the probabilistic decision-making task 

(PDT) in AIE compared to control LE rats. However, it was hypothesized that SD 

rats may be differentially affected on the PDT following AIE exposure. Following 

AIE exposure, SD AIE rats displayed increased choice latency across all 

probability blocks on days 1-4 and days 5-8 of training compared to the SD 

control group. However, this was unaccompanied by changes in risky choice 

either during training, or after reaching a stable level of performance (17-20 days 

of training). Additionally, there were no differences between SD AIE and control 
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groups in the win-stay or lose-shift ratios, or the number of omissions per 

session. The AIE group did not display impaired risky choice on days 1-20 of the 

PDT compared to the Control group. This lack of effect of AIE on percent risky 

choice was surprising given recent studies showing that AIE exposure led to 

increased risky choice on a probabilistic decision-making task (Boutros, 

Semenova, Liu, Crews, & Markou, 2015; McMurray et al., 2016; Nasrallah et al., 

2011; Nasrallah et al., 2009). However, these studies differed from the current 

set of experiments in several important ways. 

 

Method of ethanol administration 

All of the referenced studies used ethanol exposure periods that were 

similar, encompassing early, mid, and some of late adolescence (~PD29-49). 

However, not all of the exposure paradigms used similar ethanol administration 

methods. The Boutros group (2015) used intra-gastric gavage, while the 

Nasrallah (Nasrallah et al., 2011; Nasrallah et al., 2009) and McMurray (2016) 

groups used ethanol-laced gelatin self-administration. While models of self-

administration of ethanol in rodents are more representative of how humans 

typically consume ethanol, they have a number of drawbacks for studying the 

effects of ethanol. Rats may consume ethanol to reach BECs of 80mg/dl (the 

legal limit of intoxication for driving) or higher, but will usually not self-administer 

to the levels associated with binge-intoxication seen in humans. Additionally, not 

all of the rats within an experimental cohort will consume similar amounts of 

ethanol. As seen in the paper from McMurray et al. (2016), it is common to have 
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part of the group consume significantly more ethanol (the high consumption 

group), and the rest of the group consume less ethanol (the low consumption 

group), sometimes with several animals consuming little to no ethanol at all. This 

is one example of why many studies utilize experimenter-administered ethanol, 

such as intra-gastric gavage (Boutros et al., 2015), or chambers of vaporized 

ethanol as in the current set of studies. 

There are several common critiques of experimenter-administered ethanol 

in studies of the effects of binge-like ethanol exposure. First, these studies 

should be designed to shed light on the processes involved in human abuse of 

ethanol, which is largely self-administered. However, given the relatively low 

intoxication rates associated with rodent ethanol self-administration (compared to 

humans), it is sometimes more relevant to employ experimenter-administered 

ethanol to achieve BECs similar to those seen in humans who engage in binge 

drinking, as is modeled in the current studies. Second, the route of experimenter-

administered ethanol is not always the same as human ethanol use. While all of 

the studies referenced previously involve ethanol intake via the gastrointestinal 

tract, the present set of studies used chambers of vaporized ethanol. Ethanol 

vapor administration is not very popular among humans, but it is used sparingly 

with nebulizers or heated vaporizers of ethanol (Glatter, 2013; Press, 2006). 

More importantly, it is a method with minimal handling for rodents of achieving 

BECs associated with binge-like ethanol consumption in humans without the 

handling-associated stress and/or pain of injections (IP ethanol), gavage (IG 

ethanol), or the uncertainty of ethanol self-administration levels. 
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Isolation during adolescence 

Another important factor that can impact differences in results, especially 

in relation to PFC function and anxiety-like behavior, is social isolation. The 

previous studies from Nasrallah et al. that were cited above (Nasrallah et al., 

2011; Nasrallah et al., 2009) employed individual housing during adolescence 

(starting at PD27 or 30, respectively), while the current study employed pair 

housing with a littermate until adulthood (up to PD60). Rodents are naturally 

social creatures, and social isolation during adolescence has been used as a 

model of anxiety as well as vulnerability to alcohol use disorders (Butler, 

Karkhanis, Jones, & Weiner, 2016). Social isolation in adolescence has been 

shown to increase anxiety-like behaviors, as well as lead to increased ethanol 

consumption in adulthood. Therefore, adolescent social isolation should not be 

considered a standard housing practice, and may have contributed significantly 

to both the amount of ethanol gelatin consumed, as well as the increase in risky 

decision-making in both studies from Nasrallah et al. (Nasrallah et al., 2011; 

Nasrallah et al., 2009). 

 

Between- or within-session changes in reward probability 

There are two broad categories of changes in behavioral procedures: 

between-session and within-session changes. A change in the behavioral 

paradigm, such as the probability of reward on a risky lever, which happens 

between discrete sessions of behavioral testing is denoted as a “between-

session” change. In contrast, changes that occur within a discrete behavioral 
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session are “within-session” changes. The studies detailed in this chapter utilize 

within-session changes in reward probability, which familiarize the animal with all 

levels of reward probability in one session, and allow for extended training with 

all of these probabilities. However, both studies from Nasrallah et al. (Nasrallah 

et al., 2011; Nasrallah et al., 2009), as well as the study from McMurray et al. 

(2016), utilized between-session changes in reward probability for the risky lever. 

The result of this experimental design is that the animal only experienced one 

reward probability per day, and required significantly more days of training to 

both familiarize the animal with each distinct probability of reward, as well as to 

examine changes in task performance over the course of multiple days of testing. 

Another implication is that the animal would have to remember information from 

one day with one reward probability to the next (and likely several more) to form 

the most efficacious strategy for reward. This may have placed an increased 

cognitive load on short- as well as long-term memory, memory consolidation, 

reward evaluation, and strategy formation, which may have introduced a 

confound to assessment of PFC function. 

 

AIE leads to changes in fear-related behavior 

Reports in the literature on changes in cue-induced fear-related behavior 

following AIE exposure is sparse, and there have been no studies to date that we 

are aware of examining the combined effects of AIE and SPS exposures on cue-

induced fear-related behaviors. Following AIE and SPS exposures in the present 

study, LE rats were assessed for anxiety-like behavior in the light/dark box task. 
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Surprisingly, there were no differences between any treatment groups. However, 

other studies have found increases in anxiety-like behavior in the light/dark box 

task following SPS exposure and a longer consolidation period (Shafia et al., 

2017). Perhaps a longer consolidation period after administration of the stressors 

and before light/dark box testing would reveal differences in anxiety-like behavior 

not seen in the present study. After assessment of cue-induced fear-related 

behavior, a separate assessment of anxiety-like behavior was carried out using 

the elevated plus maze. However, there were no consistent, significant 

differences between groups. Again, a longer consolidation period may have 

revealed deficits in anxiety-like behavior not seen here with the canonical seven-

day consolidation period. Additionally, as reported in chapter 2, LE rats did not 

display an increase in anxiety-like behavior following AIE exposure, whereas SD 

rats did display this. Accordingly, changes in anxiety-like behavior following AIE 

and SPS exposure may be revealed through the use of SD instead of LE rats.  

 Despite not observing changes in anxiety-like behavior, there were 

significant differences in cue-induced fear-related behavior following AIE and 

SPS exposure. Both the AIE-Control and AIE-SPS groups showed increased 

acquisition of cue-induced freezing compared to the Control-Control and Control-

SPS groups, and thus it is likely that AIE exposure (as opposed to SPS 

exposure) is necessary to elicit this difference in fear-related behavior. 

There have been relatively few studies of the acquisition of fear-related 

behavior following AIE. There has not been a report of increased acquisition of 

fear-related behavior, but the present set of studies utilized a model of AIE that 



 161 

encompassed early (PD28) to late (PD54) adolescence. This is a more extensive 

ethanol exposure compared to other studies that have not reported an increase 

in acquisition of fear-related behavior, and it may be that this more extensive 

exposure over most of adolescence is the reason for the increase in acquisition 

of cue-induced freezing. Follow-up studies could examine the effects of 

exposures varying both in length of time and age of initiation to ascertain if the 

extended AIE exposure is the cause of increased acquisition of cue-induced 

freezing. 

One of the most interesting observations in the present set of studies was 

that AIE led to an increased resistance to extinction training, and that SPS 

exacerbated this effect. On the first day of extinction, only the Control-Control 

group displayed a decrease in cue-induced freezing. However, after five days of 

extinction training with multiple cue presentations per day, all groups 

demonstrated extinguished cue-induced freezing except for the AIE-SPS group. 

Several studies have reported increased resistance to extinction following AIE 

exposure (Bergstrom et al., 2006; Broadwater & Spear, 2013). Cue-induced fear-

related behavior is dependent on connections between the basolateral amygdala 

(BLA) and the PFC (Blair et al., 2001), and these connections continue to 

develop throughout adolescence (Cunningham et al., 2002). Perhaps AIE 

exposure disrupts communication between these regions, and this in turn leads 

to impaired extinction retention (and possibly also increased acquisition of cue-

induced freezing). Relevant follow-up studies might include examining cellular 

activation within the BLA during cue-induced fear conditioning and extinction 
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training with protein markers of recent cellular activity, such as cFos. Additionally, 

studies detailing the development of connections between the BLA and PFC, and 

whether AIE affects this, would be informative. 

SPS exacerbated the resistance to extinction seen in the AIE-Control 

group. This effect of SPS exposure has been noted in the literature (Knox et al., 

2012). It has also been reported that SPS exposure leads to decreased activity in 

the infralimbic (IL) cortex, which has reciprocal projections with the BLA. IL 

inhibition of the BLA is critical for extinction retention, so decreased IL activity 

may lead to disinhibition of the BLA, and impaired extinction training as 

demonstrated in the present set of studies. Follow-up studies to confirm this 

hypothesis could involve analysis of cellular activation of the cellular population 

that projects to the BLA during extinction training and retention in the IL, and 

examining the effects of an artificial increase in the activity of these neurons to 

alleviate the resistance to extinction observed following AIE and AIE-SPS 

exposures. 

Finally, the present studies also revealed that AIE exposure led to 

impaired extinction retention, and that SPS exposure following AIE exacerbated 

this effect. Impaired extinction retention following SPS exposure has been well 

documented (Knox et al., 2011; Knox et al., 2012; Knox et al., 2016), but very 

few studies have investigated the effects of AIE exposure on extinction retention. 

The literature regarding SPS exposure suggests that impairments in IL and BLA 

neural activity (and projections between the two regions) similar to those 

proposed to underlie the resistance to extinction also mediate the deficit in 
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extinction retention (for review, see D. Knox et al., 2016). However, it should be 

noted that neither the AIE-Control nor the AIE-SPS groups failed to extinguish; all 

treatment groups reduced cue-induced freezing by at least 50% over the course 

of extinction training, but only the AIE-Control and AIE-SPS groups displayed 

significantly increased freezing during the extinction retention test three days 

later. Follow-up studies to further detail the effects of AIE and SPS exposures on 

IL and BLA activity could include optogenetic or chemogenetic inhibition of IL to 

BLA projections during extinction training and extinction recall to recapitulate the 

deficits reported here, or excitation of this circuit to alleviate the resistance to 

extinction training and extinction recall reported here. 

In conclusion, the studies included in this dissertation demonstrate a 

subtle yet significant impact of adolescent binge-like ethanol exposure on three 

separate measures of behavioral flexibility in adulthood. While SPS exposure 

exacerbated some of these effects, the effects of both AIE and SPS exposures 

varied by rat strain. Differing susceptibilities to anxiety-like behavior for each rat 

strain may play a role in the observed differences in performance. These studies 

demonstrate the synergistic effects of binge-like ethanol and traumatic stress 

exposure, and contribute to the growing literature examining the effects of 

comorbid ethanol abuse and traumatic stress. They also contribute to the 

mounting evidence that adolescent ethanol abuse can have lasting, if not 

permanent, effects on cognitive function in adulthood. 
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