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ABSTRACT 

Based on literature in Adult Respiratory Distress Syndrome in humans and 

evidence of surfactant activation in vitro and vivo, and our clinical observations of 

secondary respiratory decompensation in premature infants recovering from RDS, a study 

was designed to look at the possibility of benefit from secondary surfactant 

administration in premature infants with secondary decompensation after recovery from 

respiratory distress syndrome (RDS). A prospective pilot study was performed to study 

the effects of secondary surfactant administration on oxygenation, ventilation and 

pulmonary function of neonates who had respiratory decompensation after recovery from 

RDS. A secondary data analysis was performed looking at pulmonary function related to 

ventilatory efficiency index (VEl), modified ventilatory index (MVI) and respiratory 

severity score (RSS). 

Entry criteria included infants admitted with RDS who were 7 days to 3 months of 

age, with birth weights ~ 500 grams. Infants qualified if they demonstrated recovery 

from RDS with a secondary respiratory decompensation defined prospectively as an 

acute pulmonary decompensation after 6 days of age, which was non-cardiac in origin 

and accompanied by diffuse parenchymal lung disease on chest x-ray, in conjunction 

with sustained increase in fraction of inspired oxygen (Fi02; ;;::: 20%) and mean airway 

pressure (MAP; ;;:::2 em) above base-line for at least 4 hours prior to surfactant 

administration. Infants meeting all entry criteria received surfactant within four hours of 
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the qualifying decompensation and again 12 hours later. Oxygenation, ventilation and 

pulmonary function were compared before and after administration at 12 and 24 hours. 

Twenty neonates qualified for secondary surfactant administration. The PC02, 

pH, MAP, Fi02, MVI, and RSS all improved significantly at 12 and 24 hours after 

surfactant administration. Infants who received Curosurfhad improvement in pH and 

PC02 within 2 hours of surfactant administration. The rates of adverse events were low. 

These findings suggest that secondary surfactant administration may be effective 

in reducing short term oxygen and ventilatory requirements and improving pulmonary 

function in neonates who have a respiratory decompensation after recovery from initial 

RDS. Secondary surfactant replacement may improve outcomes in this subset of patients 

and further randomized controlled trials are needed to confirm these preliminary findings. 
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INTRODUCTION 
Infants born prematurely, especially those less than 30 weeks gestation are at high 

risk for lung disease at birth. The clinical pattern after the first week of life usually 

includes episodes of respiratory decompensation necessitating increased inspired oxygen 

or ventilatory support [1]. The requirement for respiratory support often continues for 

weeks [2,3]. In 30% of low birth weight infants lung disease will progress to 

Bronchopulmonary Dysplasia (BPD), defined as a continuing requirement for 

supplemental oxygen and lor positive pressure ventilatory support at 36 weeks 

postmenstrual age [4, 5]. The progressive respiratory failure in these infants is probably 

multifactorial secondary to oxygen toxicity, volutrauma associated with mechanical 

ventilation, infection, patent ductus arteriosus (PDA), and inflammation, and results in 

arrest of alveolar development and interstitial fibrosis [4]. In some infants this respiratory 

decompensation can lead to respiratory failure and subsequent death. 

Trials are currently investigating the administration of surfactant to adults and 

children with Acute Respiratory Distress Syndrome (ARDS), but neonatal health care 

providers are just now recognizing this disease process in premature and term neonates. 

Secondary episodes of respiratory decompensation in neonates are frequently severe, 

requiring intensive ventilation and systemic therapy, increasing time on the ventilator (at 

a time when many infants are ready to extubate), and may contribute significantly to 

development ofBPD. Surfactant replacement distributes a more uniform tidal volume 

among the alveoli and might reduce the damage caused by mechanical ventilation while 

helping to decrease atelectasis, improve lung compliance and decrease intrapulmonary 



shunting. The administration of exogenous surfactant in neonates with pulmonary 

hemorrhage, pneumonia, sepsis, aspiration or pulmonary edema, who have clinical 

evidence of ARDS, may expedite recovery, diminish morbidity and lower the cost of care 

for these infants. 



BACKGROUND AND SIGNIFICANCE 
More than 500,000 infants are born premature each year and most will have 

respiratory distress syndrome at birth [6]. The administration of exogenous surfactant has 

proven to be efficacious in the treatment and prevention of neonatal RDS, a syndrome 

characterized by primary surfactant deficiency. It is, in fact, standard of care for the 

respiratory treatment of RDS, and is being investigated in the therapy of other lung 

diseases [7]. A recent meta-analysis performed by the Cochrane Neonatal Review 

Group stated: 

"Clinical trials have proven that surfactant therapy is effective in improving the 

immediate need for respiratory support and the clinical outcome of premature newborns 

[8]. Trials have studied a wide variety of surfactant preparations used either 

prophylactically or in the treatment of established respiratory distress syndrome. Using 

either treatment strategy, significant reductions in the incidence of pneumothorax as well 

as significant improvement in survival has been noted." [8]"Early surfactant 

administration has been shown to significantly decrease the risk of pneumothorax, 

pulmonary interstitial emphysema (PIE), chronic lung disease and neonatal mortality." 

[9] 

Surfactant administration has significantly improved the outcome of infants with 

RDS but despite this improvement approximately 30% of infants with birth weights < 

1,000 grams will develop BPD, often from secondary respiratory failure, leading to long 

term pulmonary and/or neurodeveolpmental disability or death in severe cases [4, 5]. 

Animal and human studies have demonstrated that surfactant deficiency and inactivation 



accompany other diseases, which can cause secondary respiratory decompensation in 

neonates who are recovering from RDS. [10] Secondary surfactant dysfunction (SSD) 

may be the result of many factors: 

• Inactivation of the surfactant by plasma proteins that pass into the alveolus 

• Inhibition or damage to the protein or phospholipid component of the surfactant 

by inflammatory mediators 

• Incorporation of surfactant into hyaline membranes 

• Alterations of the synthesis, storage, or release of surfactant as a result of damage 

to type II pneumocytes 

• Loss of surfactant caused by high volume mechanical ventilation 

• Interference with reuptake/recycling of surfactant phospholipids and proteins 

Secondary surfactant dysfunction (SSD) causes respiratory decompensation often 

leading to respiratory failure by decreasing compliance and functional residual capacity 

of the lung, resulting in atelectasis and pulmonary edema. Preliminary data demonstrate 

that the administration of exogenous surfactant may be safe and efficacious in 

ameliorating the respiratory decompensation seen in infants who develop pulmonary 

hemorrhages, pneumonia, sepsis, or pulmonary edema. These disease processes in 

neonates are similar to ARDS. Surfactant deficiency and inactivation have already been 

correlated with ARDS, suggesting injury to type II alveolar cells [11]. According to the 

1994 consensus definition, ARDS is the acute onset of respiratory failure in an adult or 

child with bilateral pulmonary infiltrates on chest radiograph, hypoxemia (quantified by 

Pa021 Fi02 of < 200), and absence of left atrial hypertension. [12] Risk factors include 

sepsis, pneumonia and aspiration of gastric contents. Trials are currently investigating the 
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administration of surfactant to adults and children with ARDS, but neonatologists have 

been slow to recognize this disease process in premature and term neonates. Neonatal 

care-givers are trained in the use of surfactant in primary surfactant deficiency (RDS) but 

largely do not consider the possibility of SSD with acute respiratory decompensation that 

occurs after the initial course of surfactant. The administration of exogenous surfactant in 

neonates with pulmonary hemorrhages, pneumonia, sepsis, aspiration or atelectasis who 

have clinical evidence of ARDS may expedite recovery, diminish morbidity and lower 

the cost of care for these infants. Studies are needed to analyze the safety and efficacy of 

surfactant in conditions, which may involve SSD in neonates who have recovered from 

RDS. 

SURF ACTANT DYSFUNCTION AND DEFICIENCY 
Pulmonary surfactant maintains normal lung function by lowering the surface tension 

at the air-liquid interface. Respiratory distress syndrome is directly related to surfactant 

deficiency unlike ARDS which is a more complex lung disease with surfactant deficiency 

and dysfunction along with secondary lung damage. ARDS patients have alveolar 

instability, atelectasis, and reduced pulmonary compliance leading to ventilation-

perfusion mismatch, intrapulmonary shunting, hypoxia and increased work of breathing 

with the need for mechanical ventilation [13]. Lung lavage studies and studies on 

autopsy have been able to show surfactant alterations in patients with ARDS type 

symptoms. 

Hallman and colleagues looked at bronchoalveolar lavage (BAL) samples in patients 

with ARDS and found these patients had abnormal surface properties [14]. Pison and 

colleagues also looked a BAL samples in patients with ARDS and found a decrease in 

surface tension [15]. Gregory and co-workers looked at BAL samples and found that 



patients at highest risk for developing ARDS had lower surface tensions [16]. These 

studies and others indicate that surfactant dysfunction and alterations in surface tension 

correlate with respiratory severity in ARDS [13]q 

Studies have also shown alterations in surfactant composition in patients with ARDS. 

There are decreased quantities of both the lipid components of surfactant and the 

surfactant proteins [16-18]. The biochemical and biophysical status of surfactant was 

analyzed in 32 infants with RDS who received surfactant, 12 infants with RDS who did 

not receive surfactant and 8 infants without RDS [19]. Surfactant therapy resulted in the 

rapid rise of surfactant protein B and albumin with stable surfactant function. A rise in 

surfactant protein A and albumin occurred more slowly over 48 hours. Higher levels were 

associated with decreases in respiratory severity with a rapid fall in the ventilatory index. 

These researchers stated that surfactant replacement in infants with RDS increases the 

surfactant concentrations and reduces lung injury. They found that infants with 

subsequent relapse had surfactant dysfunction and not deficiency [19]. Several studies 

have shown decreased levels of surfactant protein A which is important in host defense, 

facilitating phagocytosis by macrophages [16, 17,20-22]. Beresford and Shaw, 2003, 

looked at BAL samples in premature infants who died in the first two weeks of life 

compared to those who survived and found lower levels of surfactant protein B [23]. 

Merrill and colleagues also found decreased levels of surfactant protein B in tracheal 

aspirates from premature infants < 30 weeks gestation, who required mechanical 

ventilation beyond the first week of life and experienced a secondary respiratory 

deterioration measured by a worsening RSS [24]. Merrill and colleagues analyzed 247 

tracheal aspirate samples in a prospective study of 68 infants between 23-30 weeks 



gestation who remained intubated at 7-84 days of life [24]. They found that 75% of 

premature infants < 30 weeks gestation who still required mechanical ventilation beyond 

the first week of life had dysfunctional surfactant associated with both infection and 

respiratory deterioration measured by their respiratory severity score [24]. They also 

showed an association with a decrease in both surfactant protein B and surfactant protein 

C. These findings supported the timing and mechanism for secondary surfactant 

dysfunction or post surfactant slump [24]. Surfactant proteins playa crucial role in 

normal surfactant function and metabolism and further investigations related to these 

proteins and composition of surfactant preparations may be critical to recovery in many 

patients with ARDS. 

The phospholipids and surfactant proteins must be actively recycled by the type II 

pneumocytes. Damage to the type II pneumocytes with lung injury impairs the secretory 

and recycling pathways and leads to surfactant deficiency. Exposure to 85-100% oxygen 

has been shown to cause type II cell hypoplasia and death [25]. Decreased amounts of 

surfactant will allow for pulmonary edema with leads to a viscous circle of inactivation 

and edema formation [26]. With the decreased amount of surfactant the alveoli collapse 

and mechanical ventilation leads to over expansion and damage to normal lung in attempt 

to recruit the injured lung, again leading to further injury and edema. Further research 

regarding dosing amount and administration timing are needed to learn how to break this 

cycle. 

Multiple substances have been shown to interfere with surfactant function. Surfactant 

function is affected by surfactant inactivation with the earliest study showing inactivation 

of surfactant by plasma or serum [27]. Pulmonary edema was first correlated with 
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surfactant inactivation by Avery and Said relating it to hyaline membrane formation [28]. 

Albumin, globulins and fibrinogen mix with surfactant interfering with its absorptive 

properties which increases surface tension [29, 30]. These substances compete for the 

surface area. Surfactant has since been shown to be inactivated by oxygen free radicals, 

proteins, amino acids, lipids and toxins [16, 17, 31-36]. Takasuke and colleagues looked 

at clinical and biochemical factors associated with surfactant dysfunction and found that 

pulmonary hemorrhage inhibited surfactant activity [37]. Ongoing inactivation in some 

patients may indicate the need for multiple doses during the acute stages of disease. 

Optimal timing for treatment in premature infants who have recovered from RDS but 

have a respiratory decompensation later in their recovery is unknown. 

RESPIRATORY SEVERITY 
There have been many indices used to assess respiratory severity in adults, children 

and neonates. In neonates respiratory severity has been associated with risk of death from 

respiratory failure [38, 39]. Commonly used parameters of respiratory failure have 

included the alveolar-arterial oxygen tension differences, the ratio of arterial to alveolar 

oxygen tension, and the oxygen index. All of these parameters require arterial blood gas 

analysis to obtain the Pa02. Arterial blood gas analysis is not always possible and other 

parameters are being used or modified to assess respiratory severity in neonates including 

the RSS, VEl and the MVI. 

The RSS [Fraction of inspired oxygen (Fi02) x MAP] is a modification of the oxygen 

index (01 = [(Fi02) x (MAP) x 100]/ Pa02) without the need for Pa02 values, allowing 

for a simple measure of the severity of lung disease in intubated patient with the same 

oxygen saturation goals. Mean airway pressure (MAP) has a direct relationship to 

oxygenation. MAP is the pressure within the airway during a single respiratory cycle 



[40]. Increases in oxygenation are directly related to increases in MAP and higher MAP 

is required when compliance of the lung is low, such as infants with respiratory 

decompensation. A decrease in MAP has been used in evaluating prophylactic surfactant 

in the treatment ofRDS [41,42]. As MAP and Fi02improve the RSS scores are lowered 

showing an overall improvement. 

The Ventilatory Index (VI) is an indicator of oxygenation and is similar to the oxygen 

index. Several studies looking at initial and secondary surfactant treatment and 

respiratory severity have defined VI as Fi02 X MAP/Pa02) [19, 37, 43, 44]. These took 

into consideration both MAP and Fi02 but required arterial blood gas analysis to obtain 

the Pa02 [19, 37, 43, 44]. These studies used the term VI as an indicator of oxygenation 

[44] All of these studies found an improvement in VI after surfactant dosing. The higher 

the VI the poorer the ventilation achieved. The VI has been used to look at pulmonary 

severity but is not considered as accurate as looking at PC02 and PIP [45, 46]. Peak 

inspiratory pressure is the primary factor used to deliver tidal volume on ventilated 

neonates. Respiratory rate is one of the primary determinants of minute ventilation. High 

frequency ventilation allows for high rates and low PIP to reduce trauma to the lungs. A 

modification of the VI (MVI) analyzes the PIP, PC02 and rate [PC02X PIP x RRllOOO] 

[47,48]. The MVI has been used in congenital diaphragmatic hernia (CD H) research to 

predict prognosis. These studies looked at the MVI in relationship to lung injury 

secondary to mechanical ventilation and showed that higher scores were predictive of 

higher mortality [49, 50]. One study was able to show that MVI was more predictive of 

outcome than PC02 alone and stated it was the most powerful predictor of survival 

followed by a lower PC02 [51]. These studies showed through multivariate analysis that 



both MVI and PC02 were statistically significant and independent predictors of 

survival[50]. One study looking at MVI in the prognosis of surgical patients did not find 

any prognostic value [48). Some of these studies defined the MVI as: [Peak Inspiratory 

Pressure (PIP) x RR ][50). Others define it as the [PIP x PC02x VR] divided by 1,000 

[48, 52-57]. There is very little research in the literature on the use of the index other 

than in these patients. 

The Ventilatory Efficiency Index (VEl) is an indicator of efficiency of CO2 

elimination [58]. The VEl was used to allow for a direct comparison ofPC02 with 

changes in the ventilator. The VEl is defined as alveolar ventilation (VA) divided by the 

difference in ~P (PIP - PEEP), multiplied by the frequency of the ventilator. Alveolar 

ventilation is the ratio of carbon dioxide (C02) production to the mole fraction of alveolar 

PC02 [VA =3800/PaC02 where 3800 is a constant so that when used in the formula VEl 

= 3800/[PIP - PEEP] x VR x PaC02 and is an indicator of CO2 elimination [44, 58-60]. 

This index allows comparison of respiratory status when both ventilator pressures and 

PC02 values vary [58, 61]. It also allows for a measurement of changing lung function 

over time since VEl will increase as pulmonary function improves. There is no research 

looking at VEl in infants on High Frequency Ventilation (HFV). 

All three of these scores have been used to assess respiratory severity in patient. 

They take into account pulmonary dynamics and changes in both respiratory status and 

ventilator settings. Infants with secondary surfactant dysfunction and deficiency may 

have underlying lung injury. The use of surfactant may improve the severity allowing 

some improvement in ventilator pressures and oxygen needs while the lungs heal. 



SURFACTANT REPLACEMENT AND OUTCOMES IN ARDS 
Surfactant replacement studies have been done in both animals and humans looking 

specifically at ARDS caused by aspirations and pneumonia. Animal studies using 

surfactant therapy in ARDS have demonstrated significant improvements in oxygenation 

and pulmonary function [62-64]. Pathology studies in ARDS have found diffuse alveolar 

damage, neutrophils, macrophages, erythrocytes, hyaline membranes and edema in the 

alveolar space and disruption in the alveolar epithelium similar to infants with RDS. 

Studies on adults with ARDS haves shown that natural surfactant replacement improves 

gas exchange and increases oxygenation [65-70]. Despite these studies a 2004 Cochrane 

review showed no effect on early mortality in 9 randomized controlled trials looking at 

secondary surfactant for ARDS [71]. Study data could not be pooled and no other 

comments related to outcomes could be made. Surfactant replacement trials are currently 

being done in infants and children. These studies have all shown improvement in both 

lung compliance and oxygenation and are summarized below. 

HUMAN RESEARCH: OLDER INFANTS AND CHILDREN 
Surfactant studies in pediatrics have been mostly case studies or small series research. 

Perez-Benavides treated seven children with severe ARDS and showed a rapid 

improvement [72]. Perez-Benavides in 1995 published their research looking at ARDS 

in pediatric patients after the administration of artificial surfactant (Exosurf) [72]. Seven 

patients ranging from 11 months to 10 years of age who were admitted to the pediatric 

intensive care unit with ARDS were given artificial surfactant. A retrospective analysis of 

five patients with ARDS was used as the control group. Although surfactant therapy did 

not appear to improve mortality in this group, there was a statistical significant 

improvement in their pulmonary dynamic compliance with no difference in mortality in 
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the surfactant treated children. These patients also stabilized earlier allowing for 

decreased ventilator support. 

A case study by Moreno [73] in 1996 showed clinical improvement in a 6 week old 

neonate who received surfactant after developing RSV-induced ARDS. The infant had a 

history of prematurity but had no respiratory pathology in the neonatal period. Within 48 

hours after intubation, there was progressive deterioration in the infanf s respiratory 

status, and despite the use of high ventilator settings and nitric oxide, the infant continued 

to deteriorate. The decision was made to administer a porcine-minced lung surfactant 

(Curosurf). After the second dose of surfactant the infant had a dramatic improvement in 

oxygenation, with an increase in Pa02 from 56 mmHg to 114 mmHg. This improvement 

continued with subsequent doses of surfactant, which allowed for a rapid reduction in 

ventilator settings. The infant received a total of 4 doses of Curosurf, over a 36 hour 

period of time. 

A study by Lopez-Herce and colleagues in 1999 looked at the efficacy of surfactant 

in acute respiratory distress syndrome in infants and children [74]. Twenty patients from 

1 month of age to 16 years with ARDS due to acute systemic, pulmonary or cardiac 

disease were treated with up to 6 doses of surfactant. Patients with systemic or pulmonary 

diseases showed a significant improvement in oxygenation, with an increase in 

Pa02/Fi02 ratio by 20% and a significant decrease from 36.9 to 27.1 in the oxygen index 

(01) [(mean airway pressure x Fi02/Pa02], beginning with the first dose administered. 

Improvement was seen between 30 minutes and 4 hours after surfactant administration, 

with 75% of the patients showing improvement within the first hour after treatment. 

There was no significant difference seen in the Pa02/Fi02 ratio or 01 in infants with 



ARDS due to cardiac disease. They were able to show that surfactant leads to moderate 

improvement in children with ARDS. 

Wilson in 1996 reported the results of a multi centered trial involving six pediatric 

intensive care units[56]. The study was an uncontrolled, observational study and utilized 

a convenience sample. Twenty-nine patients, between the ages of 1 month and 16 years 

were given surfactant (Infasurf) for acute hypoxic respiratory failure. Ten of the children 

were under six months of age. Retreatment with Infasurf was allowed at any time 

between 8 to 24 hours if criteria were met, up to a total of four doses. Twenty-four out of 

the 29 patients had an immediate improvement in oxygenation, ventilatory index and a 

decrease in ventilator support. The complications included air leaks in three patients and 

three episodes of hypoxia with dosing. Mortality rate was 14% compared to 72% and 

87% reported by DeBruin in1992 and Timmons in1995 respectively [75,76]. In a second 

randomized controlled trial by Wilson and colleagues, 42 children treated with surfactant 

for ARDS showed a rapid improvement in oxygenation and a decrease in ventilator days 

and length of stay in the Pleu with no difference in mortality [77]. 

Acute respiratory distress syndrome (ARDS) frequently develops in children after 

infections, pneumonia's, shocks, bums and trauma [45]. Yapicioglu, et al in 2003 

published the results of a prospectively designed study investigating the efficacy of 

surfactant in 12 children treated with surfactant for ARDS [45]. These children were 

between 5 and 10 years of age and received up to two dose of surfactant intratracheally. 

They analyzed VI defined as PaC02 x PIP x Respiratory rate/ 1000 and found a 

significant improvement in children treated with surfactant. These children had a 



significant improvement in oxygenation and ventilation post surfactant dosing with a 

decreased need for ventilator support and an increased survival time. 

Hermon and colleagues looked at surfactant replacement in seven older children 

(median age 9 months) who had ARDS [78]. There was a significant decrease in 

oxygenation index and the hypoxemia score. They found that a single dose of surfactant 

improved pulmonary function but that the second dose did not show further benefit. In a 

randomized, controlled trial by Tibby and colleagues, 19 ventilated infants with 

respiratory syncytial virus were randomized to either surfactant or placebo [57]. The 01 

and VI were evaluated in this study as an indication of gas exchange. Infants with an 01 

less than 5 or VI less than 20 were excluded from the study. Both 01 and VI transiently 

increased with surfactant dosing but then decreased. 01 decreased in both the surfactant 

treated and control group with the surfactant group having a more rapid drop. VI 

decreased significantly in the surfactant group. Infants in the surfactant group had a 

significant improvement in both oxygenation and ventilation. 

Infants and children with ARDS have profound hypoxemia and respiratory failure. 

The incidence of ARDS in the pediatric population has been reported to be 0.8 to 4.4% 

with a mortality rate of 50-60% [75, 79]. Studies in older infants and children are 

showing significant improvement in respiratory severity, oxygenation and ventilation, 

however these studies are small. The evidence is apparent that larger, randomized 

controlled trials are needed to prove surfactant is effective and improves outcomes in 

neonates, infants and children with ARDS. Further trials will continue to increase 

knowledge and improve the therapeutic strategies in secondary surfactant therapy. 



SIGNIFICANCE OF SECONDARY SURFACTANT DYSFUNCTION IN TERM AND 
PRETERM INFANTS 

Surfactant therapy has been used to treat term infants with respiratory disorders other 

than primary surfactant deficiency, including meconium aspiration syndrome [80-83], 

pneumonia [84, 85], pulmonary hemorrhage [86-88], early chronic lung disease [61], 

respiratory failure[22, 80, 89, 90], RSV [73] and Group B Streptococcal infection [91, 

92]. Lotze and colleagues, 1993, studied 56 term infants with respiratory failure requiring 

extracorporeal membrane oxygenation (ECMO). This was a blinded, randomized, 

controlled study with random assignment to surfactant or no surfactant while on ECMO. 

They found improved pulmonary mechanics, an increase in surfactant protein A content 

in tracheal aspirates, improvement in disease state and a decrease in time on ECMO [22]. 

A second multicentered study of surfactant use in term infants with meconium aspiration 

syndrome (MAS), sepsis or idiopathic persistent pulmonary hypertension of the newborn 

(PPHN) demonstrated a decrease need for ECMO in the group of infants who received 

surfactant therapy [80]. 

Premature infants have decreased amounts of surfactant as compared to the term 

infant and their surfactant is more susceptible to inactivation by inhibitors and by plasma 

dilution of the hypophase (thin layer of fluid and surfactant covering lung epithelium) 

[93]. Premature infants may recover from their primary respiratory distress syndrome 

only to develop a secondary surfactant dysfunction with an acute lung injury such as 

ARDS. This may in tum lead to atelectasis and the increased need for mechanical 

ventilation posing a risk of volutrauma or barotrauma to the immature lung with resulting 

prolonged ventilator exposure and BPD. Damage to the type II pneumocytes in the lungs 

leads to surfactant deficiency. 



Odita in 2001 reviewed chest radiographs of 94 infants with the diagnosis of RDS 

who were treated with surfactant [94]. Thirty four infants had radiographic evidence of 

clearance of RDS within 3 days of initial surfactant treatment (mean gestational age 32.6 

weeks). Twenty nine infants failed to respond to surfactant as measured by no 

radiographic improvement (mean gestational age 25.4 weeks). Thirty one of 34 infants 

had initial improvement in radiographs, but developed recurrent lung opacities within 10 

days after the initial improvement from RDS (mean gestational age 27.7 weeks). 

Importantly, the group with recurrent opacities had a significantly higher incidence of 

BPD (72%) than the group that had no radiographic response to surfactant (50% BPD). 

Sobel (1994) also investigated premature infants who initially responded positively to 

surfactant but had subsequent respiratory deterioration [95]. These infants also developed 

lung opacities on chest radiographs and had an increased incidence ofBPD. The 

incidence of BPD was higher in these infants that developed lung opacities following 

initial surfactant therapy. The etiology of the secondary respiratory decompensation is 

multifactorial and may include inflammation due to aspiration, lung edema from 

barotrauma or patent ductus arteriosus, atelectasis, or infection. 

Harms and Herting (1994) published a report of two former premature infants (24 and 

26 weeks gestation at birth) diagnosed at three and twelve weeks of age with ARDS, as a 

consequence of chlamydial pneumonia [84]. Both infants were treated with surfactant 

(Survanta) and within 2 hours after administration, there was an improvement in 

Pa02/Fi02 ratio and a decrease in the PIP required. Both infants were treated with an 

additional dose of surfactant (Survanta) ten hours later and survived without developing 

chronic lung disease. 



A pilot study by Pandit (1995) reported on ten premature infants between 7-30 days 

of life, who were receiving oxygen and had diffuse haziness on chest radiographs [61]. 

They were given a single dose of surfactant to evaluate the effect on oxygenation and 

ventilation. There was a significant decrease in the oxygen requirement after therapy, 

which was sustained for 24 hours. Oxygen requirements increased after this time, but 

remained significantly lower than that required prior to treatment. There was also a trend 

toward improvement in ventilation [61]. 

In one pilot study 28 term and preterm infants with pneumonia, meconium aspiration 

or RDS were given 1-3 additional surfactant doses [96]. These infants were less than 4 

days of age and were placed on HF JV for clinical deterioration after initial surfactant 

therapy. Only the 13 preterm infants in the study showed significant improvement in 

ventilatory and blood gas parameters with secondary surfactant administration while on 

HFJV. 

Merrill and colleagues (2004) studied the effects of two secondary doses of surfactant 

on extremely low gestational age infants who remained ventilated at 7-10 days of age 

[97]. They also studied infants with respiratory deterioration at 5-21 days of age and the 

effects of up to two secondary doses of surfactant. Thirty-one extremely low birth weight 

infants qualified for secondary surfactant. These infants tolerated dosing and had a 

significant improvement in their respiratory severity scores. They concluded that 

secondary surfactant administration in ventilated low gestational age infants improves 

respiratory status [97]. 

A recent study by Katz and Klein (2006) evaluated repeated surfactant dosing in 

retrospective cohort of extremely low birth-weight patients over a 3 year time frame [98]. 

1Z. 



They defined respiratory failure after 6 days of age as postsurfactant slump. Twenty-five 

patients required secondary surfactant dosing after treatment from RDS and 70% of these 

patients showed a significant improvement in both lung disease and respiratory severity. 

They stated that a repeat course of surfactant for postsurfactant slump was beneficial on a 

short term basis. 

As with ARDS patients, premature infants may develop acute lung injury and damage 

to the surfactant system. These secondary episodes of acute lung injury carry significant 

risk for the preterm neonate struggling to develop respiratory competence. Premature 

infants who have a respiratory decompensation from pneumonia or sepsis are at risk for 

surfactant dysfunction due to injury to the Type II alveolar cells. Atelectasis, capillary 

leak of fluid and protein, alveolar inflammation, and the release of inflammatory 

mediators may cause surfactant inhibition and contribute to the development of BPD in 

premature infants. 

Mechanical ventilator pressures and the resulting volutrauma causes elastosis and 

fibrosis at the gas exchanging units and alveolar ducts [99]. Particularly important is the 

deposition of collagen and elastin that leads to dramatic structural changes seen in BPD. 

An increase in saccule diameter and alveolar septal thickness is a result of the ongoing 

inflammation in BPD. Although secondary surfactant deficiency or inhibition may not be 

the sole determinant of the damage seen with BPD, surfactant administration during 

secondary insults may acutely improve pulmonary function and help mitigate the 

inflammatory cascade. Limited case studies have demonstrated a positive response to 

surfactant administration in infants and children who have had clinical evidence of SSD 

or ARDS. 



All of these studies solidify the need for further research to evaluate the efficacy and 

safety of administering surfactant in neonates with clinical conditions who may have a 

component of secondary surfactant deficiency. Alternative therapies that acutely improve 

compliance and decrease barotrauma, volutrauma, and ventilatory requirements are 

limited. Commonly used therapies of lasix and dexamethasone have well known risks of 

electrolyte disturbances, metabolic alkalosis, nephrocalcinosis, hypertension, poor growth 

(catabolism) and poor long-term neurological outcome. A second round of surfactant 

therapy in neonates with ARDS-type insults may offer significant short-term benefits to 

lung compliance as well as decreasing the ventilatory requirements by improving 

pulmonary function. Long term benefits may involve fewer days of mechanical 

ventilation and shorter hospital stays. Surfactant administration may also help minimize 

use of other therapies that have more worrisome side effects. 

PRELIMINARY STUDIES 
Case Study 
A retrospective, descriptive case series was completed on 3 premature infants who 

had received 1-2 doses of Infasurf (Forest Laboratories, Inc.) between 13 and 18 days of 

life for an acute respiratory deterioration and after initial surfactant treatment for RDS 

[100]. Blood gases and ventilatory settings were reviewed before and after the secondary 

surfactant administration. Chest radiographs were reviewed and interpreted by pediatric 

radiologists who were unaware of the secondary surfactant dosing. 

Baby girl A was hom at 26 weeks gestation, 835 grams and was given Infasurf on 

DOL 14 for respiratory decompensation with marked respiratory acidosis and the need 

for high frequency oscillatory ventilation (HFOV). The chest X-ray (CXR) prior to 

dosing showed diffuse bilateral airspace disease consistent with pneumonia. One dose of 



surfactant was administered 2 hours after being placed on HFOV, with improvement in 

pC02 to the 40' s. She was weaned to conventional ventilation within 15 hours. The 

repeat CXR 24 hours later showed improved aeration. This infant again decompensated 

on DOL 16, requiring the use of high frequency jet ventilation (HFJV) with an end

expiratory pressure of9. The infant continued to worsen despite HFJV, and on DOL 18 

received a second dose of surfactant. The infant subsequently weaned on HF JV to 

conventional ventilation within 24 hours and the CXR expansion improved, from low 

lung volumes with diffuse disease, to mild hyperinflation 24 hours later. She did not 

receive steroids or respiratory inhalants before or during secondary surfactant dosing, but 

had been on daily furosemide since DOL 9. 

Baby Boy B was born at 24 5/7 weeks gestation, 695 grams and was given Infasurf 

on DOL 17 for respiratory decompensation following presumed infection and 

pneumonia. The chest X-ray prior to dosing showed a marked worsening aeration with 

almost complete opacification on the right and diffuse lung disease on the left. The infant 

received 2 doses of surfactant 14 hours apart with a dramatic drop in pe02 with 

surfactant administration while the ventilator rate and Fi02 were also decreasing. Within 

48 hours of dosing, the infant was extubated to CP AP. The follow up CXR 24 hours after 

the first dose, showed improved aeration with minor atelectasis in the right lower lobe 

and bilateral diffuse lung disease. The infant did not receive steroids, diuretics or 

respiratory inhalants before or during secondary surfactant dosing. 

Baby Girl C was born at 26 weeks gestation, 720 grams and was given Infasurf on 

DOL 11 secondary to respiratory decompensation with an inability to oxygenate on 

conventional ventilation and a subsequent change to HFJV. The infant initially responded 



well to HFJV on an end expiratory pressure of 6 with improvement in oxygenation but 

went on to develop significant C02 retention over the next 12 hours. CXR prior to dosing 

showed increased opacifications bilaterally. An echocardiogram completed at that time 

showed no PDA. On DOL 12, the infant received 1 dose of surfactant with a decrease in 

PC02 within 1 hour of dosing. HFJV was quickly weaned to conventional ventilation, 

with continued weaning of Fi02, peak inspiratory pressures and rate over the next 12 

hours while arterial blood gases (ABGs) were improving. At 24 hours after surfactant 

both oxygenation and ventilation began to worsen, but the infant did not receive 

additional doses. The CXR at 24 hours showed increasing opacification consistent with 

pneumonia. The infant did not receive diuretics, respiratory inhalants or additional 

steroids during the course of secondary surfactant treatment. 

A few studies have demonstrated a positive response to secondary surfactant 

administration in infants and children who have had clinical evidence of respiratory 

failure [74, 84, 91]. Our case series also reports favorable short term improvements in 

multiple ventilatory and blood gas parameters in neonates between 1-3 weeks of age with 

secondary surfactant administration. 

Pilot Study 
A prospective pilot study was performed by Bissinger and Carlson to study the effects 

of secondary surfactant administration on oxygen and ventilatory requirements of 

neonates who had respiratory decompensation after recovery from primary RDS. Entry 

criteria included infants admitted with RDS who were 7 days to 3 months of age, with 

birth weights greater than or equal to 500 grams. Infants then qualified if they 

demonstrated recovery from RDS with a secondary respiratory decompensation defined 

prospectively as an acute pulmonary decompensation after 6 days of age, which was non-



cardiac in origin and accompanied by diffuse parenchymal lung disease on chest x-ray, in 

conjunction with sustained increase in fraction of inspired oxygen (Fi02; 2 20%) and 

mean airway pressure (MAP; 22 cm) above base-line for at least 4 hours prior to 

surfactant administration. Infants meeting all entry criteria received surfactant within 

four hours of the qualifying decompensation and again 12 hours later. Two surfactants 

were used for the study (Curosurf and Survanta) and infants were assigned on an 

alternating basis. Oxygen and ventilatory requirements were compared before and after 

administration at 2, 12 and 24 hours. 

Twenty neonates qualified for secondary surfactant administration. Mean values 

(range): birth weight, 813 g (520-1200 g); gestation, 25 weeks (24-29 weeks); and 

postnatal age at study entry, 20 days (7-77 days). The PC02, pH, MAP and Fi02 all 

improved significantly at 12 and 24 hours after surfactant administration. This 

improvement was maintained in all patients during the 24 hour period. Infants who 

received Curosurf had noted improvement in pH and PC02 within 2 hours of surfactant 

administration. The rates of adverse events were low (desaturations with dosing), and no 

serious adverse events were documented. X-rays were read by the pediatric radiologist in 

a blinded fashion with improved aeration noted on 50% of the x-rays. 

These findings suggest that secondary surfactant administration may be effective in 

reducing short term oxygen and ventilatory requirements in neonates who have a 

respiratory decompensation after recovery from initial RDS. Secondary surfactant 

replacement may improve outcomes in this subset of patients and further randomized 

controlled trials are needed to confirm these preliminary findings. Changes in PC02, pH, 

MAP and Fi02 can all be influenced with changes in ventilator changes. To further 



analyze the data and assess the significance of these findings respirator severity scores 

and other indicators of ventilatory efficiency need to be analyzed. 



THEORETICAL FRAMEWORK 
The question of whether there is a secondary surfactant deficiency or surfactant 

dysfunction in premature infants is beginning to be studied and addressed in the 

literature. The conceptual model below uses the proposed pathogenic sequence of events 

proposed by Lewis and Jobe in 1993 and Jobe and Ikegami in 1998 and expands on this 

model to include surfactant replacement and pulmonary improvement[13, 101]. Lewis 

and Jobe (1993) summarized the role of altered surfactant in describing the 

pathophysiology of ARDS and continued to develop this model looking at inflammation, 

type II pneumocytes, alveolar capillary integrity and surfactant metabolism. This model 

was expanded to include surfactant replacement and pulmonary improvement to guide 

the research [101]. This model helps explain and predict the cause of secondary 

respiratory failure leading to SSD and response from secondary surfactant dosing. 

There is a precipitating lung injury, either a direct injury to the lung or an indirect 

injury secondary to systemic disease. As previously stated the direct injuries are 

commonly caused by pneumonia, aspiration of gastric contents, near-drowning, 

inhalation injury and reperfusion injury. Common indirect causes include sepsis, as the 

highest risk and severe trauma with shock [102]. This lung injury can precipitate 

surfactant deficiency or dysfunction through 3 processes: Alveolar capillary damage, 

Alteration of type II pneumocytes and Inflammation of cell activation. Alterations in 

surfactant function lead to problems with lung mechanics and gas exchange with resultant 

respiratory failure. 
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FIGURE 1: Sequence of Events in Surfactant Dysfunction and Deficiency. 

The alveolar capillary barrier is made up of the microvascular endothelium and the 

alveolar epithelium. Capillary alveolar damage leads to an increase vascular endothelial 

and alveolar epithelial permeability leading to pulmonary edema with an influx of plasma 

inhibitors. Pulmonary edema and changes in surfactant metabolism can lead to surfactant 

dilution and inactivation of surfactant. Blood proteins, fibrinogen, lipids and cholesterol 

in the alveolar fluid interact with surfactant, inhibiting its activity and impairing surface 

activity with a subsequent increase in surface tension. Plasma and blood proteins absorb 

and block the air water interface, also inhibiting surfactant activity. Alveolar capillary 

damage can also lead to alterations in Type II pneumocytes leading to alterations in 

surfactant metabolism and the formation of abnormal surfactant aggregates. 

Type I cells make up 90 % of the alveolar surface and the cuboidal type II cells make 

up the remaining 10%. Type II cells are more resistant to injury than the Type I cells. 



With lung damage type II cells de differentiate into type I cells. Surfactant is 

continuously synthesized and recycled in the Type II cells. Damage to Type II alveolar 

cells leads to alterations in the synthesis, secretion, recycling and quantitative or 

qualitative composition of surfactant being produced and alters the metabolism leading to 

surfactant deficiency. Alterations in surfactant activity result in further surfactant 

dysfunction [10, 101, 103]. Surfactant can be removed from the functional pool in the 

alveoli by the formation of hyaline membranes. 

Surfactant may be damaged or inactivated by enzymes or inflammatory mediators 

found in plasma proteins that leak into the alveoli. Damaged Type II pneumocytes 

secrete small surfactant aggregates which have depleted or altered phospholipids and 

protein content leading to decreased surface activity. Phosphatidylinositol and 

spingomyelin are increased with decreased amounts of phosphat idyl glycerol and 

saturated phosphatidylcholine leading to alveolar instability and decreased pulmonary 

compliance [13]. Metabolism and function of surfactant is affected by this change in 

composition. Alterations in the phospholipids profiles area an indication of abnormal 

surfactant metabolic pathways [101]. In addition, damage to Type II alveolar cells can 

alter or destroy surfactant or prevent recycling of surfactant. Injury to Type II cells 

impairs the removal of edema from the alveolar space. Edema and inflammation 

inactivate surfactant. Alveolar filling may be increased from the pulmonary edema 

and/or atelectasis from surfactant dysfunction leading to a decrease in the functional 

residual capacity and compliance and increased ventilation-perfusion mismatch [13, 101]. 

Edema, inflammation and injury lead to the formation of hyaline membranes with the 



deposits of fibrin and debris. Even with surfactant replacement there may be delayed 

clearance of fibrin from the alveoli in complex lung injuries [101]. 

Lung injury leads to inflammatory cell activation. Lytic enzymes cause chemical 

degradation and along with reactive oxidants degrade and alter essential phospholipids 

which reduces surfactant surface activity and increases surface tension. Degradation of 

phospholipids leads to an increase in lysophospholipids and free fatty acids. These 

enzymes cause biochemical degradation of the surfactant proteins. This changes the 

functional ability of surfactant. Release of inflammatory mediators will increase the 

production of substances that promote local systemic inflammation. Early response 

cytokienes include TNF alpha and Interleukin (IL) 1. IL 6 and IL8 are released through 

neutrophil activation. Inflammatory mediators affect the activity of surfactant through 

damage to surfactant phospholipids and proteins and alteration of the function of type II 

cells in surfactant synthesis. 

Abnormalities in lung mechanics and gas exchange with lung injury may be 

explained by surfactant deficiency or dysfunction. An alteration in surfactant synthesis 

and recycling depletes surfactant stores. Further inhibition and inactivation of surfactant 

precipitates respiratory failure. Alveolar instability leads to a decrease in functional 

residual capacity resulting in the collapse of alveoli and subsequent atelectasis with 

bilateral alveolar infiltrates on X-ray. Decreased compliance with increased surface 

tension increases the infants' work of breathing or respiratory effort requiring increased 

ventilatory support and oxygen. Surfactant deficiency and dysfunction lead to 

intrapulmonary shunting with further ventilatory/perfusion mismatch and hypoxia. 

Hyperoxia leads to further lung injury. Infants in respiratory failure often require 85-



100% oxygen which can kill type II cells. A high level of oxygen leads to the production 

of oxygen free radicals and increases the presence of inflammatory mediators, further 

worsening surfactant synthesis and function. The need for mechanical ventilation at high 

pressures and volumes due to the cyclic opening and closing of atelectatic alveoli can 

cause lung injury (barotraumas and volutrauma) and worsen the inflammatory cascade 

within the lung [104]. Secondary surfactant administration in these infants may improve 

FRC and compliance and decrease intrapulmonary shunting as evidenced by 

improvement in ventilation, oxygenation and pulmonary function. 



MANUSCRIPT ONE 

SURFACTANT 

Introduction 
Swiss physiologist, Kurt von Neergaard was the first to publish the concept that 

respiratory distress in premature infants was due to the absence, not the presence of 

something (1). His paper in 1929 outlined the retractile forces of the lung and the 

dependent surface tension in the alveoli which led to a huge body of research describing 

the composition, metabolism and role of surfactant (1). Surfactant deficiency was later 

identified in 1959 by Avery and Mead who demonstrated decreased amounts of surface 

active properties in the lung extracts of infants who died of Respiratory Distress 

Syndrome (RDS) compared to infants who died of other causes (2). Over the last 20 

years, surfactant replacement therapy has contributed to a decrease in mortality and 

morbidity in premature infants with RDS. It has changed the management ofRDS in the 

Neonatal Intensive Care unit, improved outcomes and is beginning to be used with other 

neonatal respiratory diseases. 

Surfactant Composition, Metabolism and Function 
The composition, metabolism and function of surfactant have been studied 

extensively with several published reviews and symposiums (3,4, 5, and 6). Surfactant is 

a complex phospholipid produced and secreted by the Type II alveolar cells in the lung. 

It is synthesized and recycled through complex metabolic pathways. Surface active 

properties decrease the surface tension at the air-water interfaces in the alveoli, 

preventing collapse during the entire respiratory cycle (4, 6, 7). Surfactant also plays a 



role in host defense and improves mucociliary clearance with removal of particles from 

the lungs (6,8). 

Surfactant is composed of 6 phospholipids and 4 apoproteins. The components of 

surfactant are 80-86% phospholipids, 8% neutral lipids and 6-12 % proteins (3,9,10). 

Saturated phosphatidylcholine (PC or lecithin) accounts for 70% of the phospholipid 

portion of surfactant, with dipalmitoylphosphatidylcholine (DPPC) accounting for 600/0 

of the phosphatidylcholine (3). This disaturated phospholipid, DPPC, is critical for 

lowering the surface tension and can reduce it to almost zero (3). Although DPPC is the 

primary component for surface activity, alone it adsorbs poorly to the air-liquid interfaces 

within the alveoli. The presence of the surfactant proteins and other unsaturated 

phospholipids aid in the adsorption and surface active properties of surfactant (3). The 

amount ofDPPC in the lungs is dependent on lung development, with an increase seen at 

22 weeks gestation (3). Sphingomyelin is a phospholipid seen in inverse proportions 

relative to phosphatidylcholine, with levels of sphingomyelin decreasing with lung 

maturity. The ratio of lecithin (phosphatidylcholine) to sphingomyelin is used to 

determine lung maturity. 

Phosphatidylglycerol (PG) and phosphatidylinositol (PI) are acidic phospholipids 

that aid in DPPC adsorption, with the amounts of each of these substances affected by 

lung development and lung injury. They account for about 10% of total lipids (6). During 

initial surfactant development in the fetus, phosphatidylinositol is the primary acidic 

phospholipid, with increases of phosphatidylglycerol seen in the more mature lung after 

34-35 weeks gestation (3,11). The presence ofPG in the amniotic fluid is an important 

determinate of lung maturity. 



As with phospholipid composition, the protein content of surfactant has been 

identified through lung lavage or minced lung extract. There are 4 unique surfactant 

apoproteins (SP-A, SP-B, SP-C and SP-D) that have been identified in extracted lung 

fluid. SP-A and SP-D are hydrophilic, related to the collagenous lectins (colletins) and 

while not critical to surface activity are involved with down- regulating the inflammatory 

response of the lung (3,7,8). SP-A, discovered in 1972, accounts for the majority of 

surfactant proteins and functions as a host defense molecule in the alveoli, interacting 

with the immune cells of the lungs (3). It binds endotoxin as well as a wide range of 

gram-positive and gram-negative organisms and promotes phagocytosis by alveolar 

macrophages (3,6). In the presence of SP-B and SP-C, it plays a major role in promoting 

the adsorption of surfactant phospholipids at the air-liquid interface. SP-A plays a key 

role in the regulation of secretions and recycling of surfactant by alveolar Type II cells 

and increases the resistance to surface inhibition (12). SP-D is similar to SP-A in 

structure and function, binding bacteria and fungi (3). Although it does not playa role in 

surface activity, SP-D plays an important role in phospholipid homeostasis and in lung 

defense against bacteria, fungi and viruses (8,10). SP-B and SP-C are hydrophobic 

proteins that improve the surface activity of surfactant phospholipids and are thought to 

be a critical component of natural surfactants. Both of these proteins are important for 

the rapid spreading and adsorption of phospholipids onto the alveolar surface. SP-B, 

along with SP-A is essential for tubular myelin formation and along with SP-C promotes 

the adsorption ofDPPC (3,4,7). SP-B is critical for the stability of surfactant and due to 

this stabilizing ability, a SP-B deficiency is fatal in infants. 



The process of surfactant metabolism and re-cycling is complex. There are 2 types of 

alveolar cells. Type I cells are the gas exchanging units and Type II cells are responsible 

for surfactant synthesis and release. Precursors of surfactant are carried to the epithelial 

cells via the circulatory system and enter by diffusion through the capillary endothelium. 

After passage through the Golgi complex, synthesis of dipalmitoylphosphatidylcholine 

(DPPC) takes place in the endoplasmic reticulum of the Type II alveolar cells (1). The 

DPPC and hydrophobic proteins SP-B and SP-C are packaged with the lamellar bodies, 

the storage and secretory granules within Type II cells. This accounts for the intracellular 

pool of surfactant (6). Once secreted into the hypophase (a thin fluid layer covering the 

distal epithelium of the lung), the lamellar bodies, along with SP-A and calcium unravel 

to form the large aggregates of tubular myelin (1,3,4). Tubular myelin is a rich lipid 

material made up of monolayers and contains all surfactant components (6). Layers of 

phospholipids including DPPC, unsaturated PC and PG are released from the tubular 

myelin at the air-liquid interface and along with the surfactant proteins spread on the 

surface of the alveoli, forming a film between the alveoli and capillaries which will 

reduce surface tension. This bipolar monolayer of phospholipid molecules is dependent 

on the small apoproteins (SP-B and SP-C), to maintain stability during the respiratory 

cycle. During exhalation there is a reduction in surface tension and the monolayer 

becomes enriched with DPPC, with inhalation and alveolar expansion, there is release 

and re-spreading of the surfactant (3,10). About 90-95% of the surfactant is recycled and 

reprocessed into the Type II alveolar cells for re-secretion (3,7). This is a dynamic 

process, and with the surface area changes during the respiratory cycle, there is continual 

turnover of surfactant at the alveolar level. There are differences in the size and 



functional role of these surfactant aggregates, with the large aggregates being the surface-

active portion of surfactant and the precursors of the surface film at the air-liquid 

interface in the alveoli. Once these large aggregates are used up, small aggregates with 

no surface active properties and lesser amounts of the surfactant proteins appear in the 

alveolus (13). Surfactant is then either cleared from the lungs or recycled back into the 

lamellar bodies. 

The most important physiological function of surfactant is the effect it has on lung 

mechanics. By lowering the surface tension within the alveolus at the air-liquid interface, 

there is stabilization of lung volumes at low transpulmonary pressures. Surfactant will 

prevent collapse of the airways on expiration and allow for lower opening pressures to 

inflate the lung. Overall, there is less overdistension of alveoli, decreasing the risks of 

alveolar rupture as surfactant decreases the negative pressure needed to open the airways 

and the work of breathing (14). Surfactant promotes the gas exchange between the alveoli 

and capillaries, and plays a role in host defense mechanisms through the action of SP-A 

and SP-D. Adverse effects of surfactant therapy include transient decreases in blood 

pressure, cerebral blood flow velocity, oxyhemoglobin concentration and activity as well 

as an increase in intraventricular hemorrhage (9). 

Surfactant Replacement Therapy 
Research on surfactant composition has been extensive and clinical studies have 

been done to determine the amount, method of administration and timing of therapy in 

neonates with primary RDS. There are two types of exogenous surfactant products 

available. These are natural surfactants derived from animal sources and synthetic 

surfactants (see Table 1). These surfactant products differ in composition and the 

presence of surfactant-associated proteins. The early surfactant products were synthetic, 



consisting only of phospholipids, specifically DPPC. These products were protein free, 

with various amounts of phospholipids, and limited beneficial effects. Pneumactant 

(ALEC®; Britannia Pharmaceuticals, UK) contained DPPC and PG, but there were 

difficulties initially in diluting the powder for administration, and the product was re

formulated. As of2000, it is no longer available for clinical use (15). Colfosceril 

palmitate (Exosurf®; Glaxo Wellcome, USA), also a protein-free synthetic product 

containing DPPC, has been widely studied alone and in comparison with other surfactant 

products but is no longer available in the United States (16-22). The new generation of 

synthetic products includes Lucinactant (Surfaxin®; Discovery Labs Warrington, Pa.) 

and Recombinant SP-C surfactant (Venticute®; AL TANA Pharrna AG, Konstanz, 

Germany). Surfaxin contains a synthesized peptide that mimics SP-B. Sinapultide or 

KL4 is the peptide in Surfaxin designed to imitate the actions of SP-B in lowering surface 

tension and facilitating oxygen exchange (23). Lusupultide is the recombinant surfactant 

protein C present in Venticute. 

Natural surfactant products vary in the origin of lung material, with products 

containing either lung lavage extract or minced lung extract. Beractant (Survanta®; Ross 

Labs Columbus, Ohio), Poractant alpha (Curosurf®; Dey, Inc. Napa Valley, Ca) and 

surfactant TA (Surfacten®); Mitsubishi Pharrna, Tokoyo, Japan), are examples of the 

minced lung extracts, derived from cows, calves or pigs. Calfactant CLSE (Infasurf®; 

Forest Pharmaceuticals, St. Louis, Mo.) and Bovine Lipid surfactant (bLES®; BLES 

Biochemicals Inc, London, Ontario, Canada) are derived from bovine lung lavage. In the 

United States, the current biological surfactants used in neonates with RDS include 



Infasurf®, Survanta®, and Curosurf®. Natural surfactant from mamrllalian lungs has 

been shown to be most efficacious in treatment of neonatal RDS. 

Surfactant: Natural Total Total Phospholipids SP-B SP-C 

Proteins 

Survanta® <0.5% 25mg/ml 0.01 0.99 mg/ml 

1.0 mg/ml DPPC 50%, PG mg/ml 

Infasurf® 0.65 mg/ml 35mg/ml 0.26 0.39 mg/ml 

DPPC 53% mg/m! 

Curosurf® 1.0 mg/ml 80mg/ml 0.3 0.7 mg/ml 

DPPC 35% mg/ml 

Surfactant: Synthetic 

Exosurf® N/A 13.5 mg/ml No No 
84.5% DPPC 
Hexadecanol (9.5%) 
Tyloxapol( 6%) 

Surfaxin® KL4 DPPC 75% Synthetic SP-B 
(synthetic protein 
SP-B) analogue KL4 

(0.8mg) 
Table 1: Composition of Natural and Synthetic Surfactants used in the United States 

The most abundant phospholipid in the exogenous preparations of surfactant is 

dipalmitoylphosphatidylcholine (DPPC), with additional phospholipids, neutral lipids and 

fatty acids in smaller concentrations (15). Surfactant proteins, SP-B and SP-C, critical to 

the surface active properties and activity of surfactant are also found in preparations of 

natural surfactant. However, due to the purification process used in preparing surfactant, 

none of the currently available surfactant products contain the hydrophilic proteins SP-A 

or SP-D (9). The amount of phospholipids and surfactant proteins SP-B and SP-C varies 

in the exogenous surfactant products currently available. The phospholipid content of the 



surfactant products ranges from 25 mg/ml to 80mg/ml (See Table 1). DPPC is the main 

component, with the addition of PG in Survanta and Surfacten. The lung mince extracts 

contain less that 10% of SP-B compared to what is found in the lung wash extracts (9). 

These variations in surfactant product composition may explain differences in clinical 

response seen in trials for RDS, and may be important in the treatment of other 

respiratory diseases in the future. 

Surfactant Administration and Dosing 
Surfactant administration has been studied using bolus, lavage and aerosolization. 

The majority of surfactant studies have used intratracheal bolus administration in divided 

doses and total volume of surfactant standardized by patient body weight for calculating 

the dose (11, 24-27). Bolus administration using a dual lumen endotracheal tube or 

catheter has been shown to be effective and may cause less adverse events (28). The use 

of a valve attached to the endotracheal tube which allows administration of surfactant 

without interruption of the mechanical ventilator has also been utilized. Early studies 

using aerosolized surfactant showed an inability to deliver an adequate amount to the 

lungs (29). Lavage therapy uses larger volumes of dilute surfactant in a "washing out" 

procedure, where surfactant is removed by suctioning at the end of the procedure (15). 

Intra-amniotic administration of surfactant has also been studied. Women with 

spontaneous rupture of membranes between 24 and 32 weeks gestation were given 

aminophylline, a respiratory stimulant, and surfactant was administered close to the fetal 

nose and mouth, through an endoscope passed through the cervical canal during active 

preterm labor. There were no fetal or maternal complications, but the researchers were 

unable to demonstrate conclusively the distribution of surfactant to the distal airways 

(30,31). Nasopharyngeal administration of surfactant in preterm infants prior to the 



delivery of the shoulders followed by mask continuous positive airway pressure (CPAP) 

has also been studied (32). Animal studies have suggested that delivery of surfactant to a 

fluid filled lung may allow for more uniform distribution. A small pilot study on preterm 

infants less than 30 weeks showed rapid weaning to room air with CP AP and decrease 

need for mechanical ventilation (32). The difficulties with this method of administration 

include infants with breech presentations and those born by Caesarean section. Further 

studies are needed. 

Adverse events from administration include transient hypoxia and bradycardia 

because of the initial airway obstruction. Reflux of surfactant, increase in carbon dioxide 

levels, tachycardia, gagging and mucous plugging have also been reported (9). Slow 

administration and careful monitoring are essential. It is important to understand the 

specific recommendations for preparation and positioning for each of the different 

surfactant products. Lack of compliance and understanding of the differences in methods 

of warming, mixing and infant positioning may affect the physiologic properties of the 

surfactant product and therefore function. Preparation, administration and dosing can be 

found in product package inserts. 

Surfactant Comparision 

Distinct biochemical differences in the surfactants may playa role in different 

clinical responses to the drugs. The exogenous surfactants vary in composition and 

function from alveolar surfactant. The first generation of commercially available 

surfactants, lack many of the components of natural surfactants specifically the surfactant 

apoproteins. Numerous studies have shown differences in the activities of the surfactant 

replacement products in laboratory comparisons (33-36). The addition of SP-B showed a 

significant improvement in function. The first natural surfactant (animal-derived) was 



reported in a non-randomized study in 1980 (37). Huge randomized control trials after 

this publication evaluated surfactant use for the treatment of RDS and found that it 

improved lung function and mortality (19). From these early studies, large randomized 

controlled trials for safety and efficacy were completed showing that surfactant therapy 

for RDS decreased mortality by 40% and reduced the occurrence of pneumothorax (1). 

Current studies have shown that all natural surfactants are superior to the first generation 

of synthetic products (38,39). These studies show an immediate response of the natural 

surfactants with improved oxygenation and lung compliance with a decrease in 

pneumothorax and mortality (9). There is also a more rapid onset of action with a rapid 

ability to wean the ventilator and oxygen concentration. This may be due to the lack of 

surfactant proteins, specifically SP-B in these older synthetic surfactant products. The 

delay in the effect of the first generation synthetic surfactants may be related to the 

process of recycling with clinical effects being seen after it combines with the infant's 

endogenous apoproteins. 

The two newer synthetic surfactants, Surfaxin and Venticute are composed of 

totally synthesized components and contain synthetic proteins. As stated earlier, Surfaxin 

is prepared with a SP-B protein analogue and Venticute uses recombinant SP-C protein. 

Research on the safety and efficacy of Surfaxin has been done and further studies using 

Surfaxin in the treatment of RDS and Bronchopulmonary Dysplasia in premature infants 

and meconium aspiration syndrome in full-term infants are currently underway. 

Venticute which contains rSP-C has been studied in the treatment of Acute Respiratory 

Distress Syndrome (ARDS) in adult patients and in animal studies. Further studies are 

needed in both the pediatric and adult population, as well as the extremely low birth 



weight premature infant. This new generation of synthetic surfactant replacement 

therapy holds promise for future use without potential infectious disease and immune 

implications. 

There have been several randomized controlled trials comparing the natural 

surfactants. The first compared Survanta with Infasurf and the second compared Survanta 

with Curosurf (40, 41). In both trials, the Survanta treated infants had higher oxygen 

requirements and mean airway pressures at 24 to 48 hours after dosing. The Infasurf 

group showed a longer interval for dosing indicating a longer treatment effect. A meta

analysis of 5 studies was done comparing Curosurf and Survanta in the treatment of RDS 

(42). Curosurfwhich is recovered from minced porcine lungs contains SP-B, SP-C, and 

increased concentrations of total phospholipids as compared to Survanta. The results of 

this meta-analysis suggested that Curosurf may act more rapidly, have fewer 

complications related to dosing and improve survival when compared to treatment with 

Survanta. 

The differences in the commercially available surfactants may be important when 

treating different disease processes with one surfactant being more beneficial compared 

to another due to its composition. In addition, there may be benefits with the 

administration of SP-A and SP-D, which have important roles in host defense as well as 

surfactant secretion and re-uptake (1). Future surfactant research will need to focus on the 

extremely low birth weight infant, as there may be developmental differences in the lungs 

that affect surfactant function. Currently there is no evidence that has established the 

superiority of one surfactant product over another (9). 



Expanded uses for Surfactant 
Surfactant activity can be affected by several factors; (a) through removal of 

surfactant from the functional pool in the alveoli with the formation of hyaline 

membranes, (b) damage or inactivation by enzymes or inflammatory mediators, (c) 

inactivation by plasma proteins in the alveolus, increased amounts of the smaller 

aggregates of surfactant with decreased surfactant protein activity and changes in 

phospholipid content, (d) alteration or destruction of the surfactant or lack of recycling 

of surfactant due to damage to the Type II alveolar cells, (e) loss of surfactant due to high 

volume ventilation (13,43). Surfactant therapy in the neonatal population for respiratory 

disorders other than the specific treatment of RDS is being investigated. The respiratory 

disorders include meconium aspiration syndrome (44), pneumonia (45), early chronic 

lung disease (46), respiratory failure (26,47-49), Respiratory Syncytial virus (49) and 

Group B Streptococcal infection (50). Surfactant has been shown to be inactivated in 

diseases such as meconium aspiration syndrome, pulmonary hemorrhage and conditions 

associated with increased pulmonary alveolar capillary permeability, such as pneumonia 

(51). 

Surfactant activity is inhibited by proteins, bilirubin, free fatty acids, bile salts, 

triglycerides and cholesterol found in meconium (51, 52). These components decrease 

surfactant's ability to lower surface tension (52). Meconium also decreases production of 

SP-A and SP-B (15). Meconium aspiration syndrome (MAS) is characterized by 

chemical pneumonitis, mechanical airway obstruction and surfactant inactivation leading 

to decreased air exchange and lung compliance (25). Studies have shown that this 

inactivation of surfactant by meconium can be overcome with the addition of exogenous 

surfactant. Surfactant is also thought to improve mucociliary clearance by increasing 



ciliary beat frequency and decreasing mucous viscosity (53, 54). With l\1AS the airways 

are often partially or completely obstructed making dose concentration and mode of 

delivery important. Studies have shown that larger doses are needed and that it often 

takes a second or third dose before improvement is seen (25, 44, 48). Lavage therapy 

may be more beneficial than bolus in MAS. The thick particulate meconium blocks the 

airways leading to atelectasis or hyperexpansion, ventilation perfusion mismatch and air 

leaks. Lavage therapy utilizes the detergent properties of surfactant in removing 

meconium and debris from the airway with a subsequent increase in alveolar surfactant, 

improving gas exchange (55-57). Surfactant administration, both bolus or lavage, in 

infants with MAS has been shown to reduce air leaks, decrease the need for 

extracorporeal membrane oxygenation (EeMO), and decrease the days on the ventilator, 

days on oxygen and length of stay (15, 51). Further research is needed to determine the 

timing, method and dosing of surfactant administration. SP-A and SP-B has been 

reported to be decreased in infants with MAS, which may also be important in deciding 

which type of surfactant would be most efficacious. 

Surfactant may be altered by infections such as pneumonia and sepsis. Viral and 

bacterial pneumonias can affect both surfactant composition and function. Viruses have 

been shown to alter Type II pneumocytes (15). Lavage studies have shown abnormalities 

in both the lipid and protein composition of surfactant in patients who have pneumonia or 

infection (58, 59). The influx of plasma proteins from increased alveolar permeability 

inactivates surfactant (60). Several neonatal studies have shown that surfactant is 

beneficial in the treatment of pneumonia and bronchiolitis resulting in improved 

oxygenation, lung compliance and ventilation (45, 61-63). One study showed that 



multiple doses of surfactant were significant but dosing appeared to be most valuable 

when initiated early in the treatment of respiratory distress because of the rapid 

improvement in oxygenation (48). Surfactant replacement therapy improves lung 

function and oxygenation and restores surface tension (64-66). 

Pulmonary hemorrhage leads to hemoglobin and plasma in the alveoli that impairs the 

surface tension lowering properties of surfactant (15). A retrospective study looking at 

infants who received surfactant after a pulmonary hemorrhage showed improvement in 

ventilation and oxygenation (67). Pulmonary hemorrhage did not reoccur in these 

patients. A study by Seeger et al showed different sensitivities to fibrinogen, albumin and 

hemoglobin among different types of surfactants (36). Survanta and Curosurf activity 

were significantly inhibited by all levels of proteins studied, including fibrinogen, 

hemoglobin, and albumin (36). Infasurf activity was not affected by albumin or 

hemoglobin, and only moderately inhibited by high levels of fibrinogen (36). Surfaxin 

has been shown to have superior resistance to inactivation by oxidation and plasma 

components such as fibrinogen and c-reactive protein. This may prove to be beneficial in 

treating infants with pneumonia or pulmonary hemorrhage. 

Premature infants may develop acute lung injury and damage to the surfactant system 

after recovery from their initial RDS, similar to ARDS. ARDS is a syndrome of acute 

lung injury seen in the pediatric and adult population, caused by a variety of insults to the 

lung (10). It is characterized by an acute onset of refractory hypoxemia with pulmonary 

edema, loss of lung volume, worsening lung compliance requiring high ventilatory 

pressures and diffuse alveolar infiltrates on chest radiographs (10,15). Secondary 

episodes of acute lung injury in neonates are multifactorial, including inflammation due 



to aspiration or sepsis, lung edema from barotrauma or patent ductus arteriosus, 

pulmonary hemorrhage, or pneumonia. Surfactant inactivation or dysfunction can lead to 

this Secondary Surfactant Deficiency (SSD). The authors' case series reported that 

exogenous surfactant may be beneficial in selected infants with secondary respiratory 

failure from various etiologies (68). A recent pilot study was completed administering 

surfactant to premature infants who experienced a secondary respiratory failure after 

recuperation from primary RDS (68). The findings from this study suggest that secondary 

surfactant dosing may be effective in reducing oxygen and ventilatory requirements in 

this group of neonates. 

With injury to the lung there may be contamination of the surfactant and/or disruption 

of type II cell activity leading to decreased amounts of available DPPC and proteins with 

a subsequent decrease in surface activity. As research continues, one type of surfactant 

may prove to be more desirable than another for treating a specific disease process, thus 

leading to better outcomes. Current trials with surfactant include comparing the different 

surfactants, timing of surfactant and delivery of surfactant. Studies are also examining 

other uses for surfactant in relationship to nitric oxide, congenital diaphragmatic hernia, 

cystic fibrosis, asthma and liquid ventilation. 

Conclusion 
Understanding surfactant composition, metabolism and function is essential for all 

health care providers. Surfactant replacement therapy has proven to be critical in caring 

for premature infants with RDS. Newer research indicates there may be a role for 

surfactant therapy in the treatment of secondary respiratory diseases in the neonatal, 

pediatric and adult populations. Understanding surfactant function and composition may 

be the key to choosing the best product for different respiratory diseases in the future. 



The ability to administer the hydrophilic proteins, SP-A and SP-D, may change the way 

we currently treat respiratory diseases. The development of the newer synthetic 

surfactants with surfactant like proteins or the addition of proteins to natural surfactants 

holds much promise for improved outcomes. 
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MANUSCRIPT TWO 

SECONDARY SURFACTANT DYSFUNCTION AND DEFICIENCY 

Introduction 
More than 500,000 infants are born prematurely each year and most will have 

respiratory distress syndrome (RDS) at hirth[6]. After recovery, premature infants can 

have a secondary respiratory decompensation that results in acute deterioration reflected 

by necessary increases in oxygen and ventilator support[ 1]. The requirements for 

respiratory support often continue for weeks[2, 3]. In 30% of low birth weight infants, 

lung disease will progress to bronchopulmonary dysplasia (BPD), defined as a continuing 

requirement for supplemental oxygen and lor positive pressure ventilatory support at 36 

weeks postmenstrual age[ 4, 5]. This progressive respiratory failure is probably 

multifactorial secondary to oxygen toxicity, volutrauma associated with mechanical 

ventilation, infection, patent ductus arteriosus (PDA), and inflammation, resulting in 

arrest of alveolar development and interstitial fibrosis[ 4]. In some infants, this respiratory 

decompensation can lead to respiratory failure and subsequent death. 

Secondary episodes of respiratory failure often lead to acute lung injury and 

damage to the surfactant system carrying significant risk for the preterm infant struggling 

to develop respiratory competence. Merrill et al. analyzed 248 tracheal samples in 68 

infants who remained ventilated after 7 days oflife[24]. They found that 75% of infants < 

30 weeks gestation who remained intubated had dysfunctional surfactant associated with 

both infection and respiratory deterioration measured by their respiratory severity score 



(RSS). Alterations in surfactant function caused by alveolar capillary damage, alterations 

in Type II pneumocytes and inflammatory cell activation lead to problems with lung 

mechanics and gas exchange. Surfactant replacement distributes a more uniform tidal 

volume among the alveoli and might reduce the damage caused by mechanical ventilation 

while helping to decrease atelectasis, improve lung compliance and decrease pulmonary 

shunting. 

Surfactant therapy has been proven effective in the management of infants with 

initial RDS, but little research has been done on secondary events that can lead to 

surfactant dysfunction or deficiency (SDD) in these premature infants. Surfactant 

dysfunction and deficiency may accompany other diseases such as meconium aspiration 

syndrome, pulmonary hemorrhage, neonatal pneumonia, sepsis, and persistent pulmonary 

hypertension of the newborn and studies looking at surfactant replacement in these 

diseases have shown clinical improvement[22, 72, 73, 78, 82-84, 86-88, 92, 105-117]. 

There are only a few small studies looking at secondary SDD in premature infants who 

have recovered from RDS. These studies have looked at the effects of secondary 

surfactant for infants who have diffuse haziness on chest x-rays or remained ventilated 

after a week of age[97, 98, 118, 119]. A recent study by Katz and Klein (2006) evaluated 

repeated surfactant dosing in a retrospective cohort of extremely low birth weight infants 

over a three year time frame [98]. They identified 25 patients with post-surfactant slump 

after 6 days of life, who received secondary surfactant dosing after treatment for RDS. A 

significant improvement in both lung disease and respiratory severity was documented in 

70% of these patients. All of these studies solidify the need for further research to 



evaluate the efficacy and safety of administering surfactant to infants with secondary 

SDD. 

Previous studies, as well as our own case series, report that exogenous surfactant 

my be beneficial in selected infants with secondary respiratory decompensation from 

various etiologies [84,97,98, 108, 109, 113, 117-119]. This preliminary evidence 

suggests that exogenous surfactant may be useful in treating secondary respiratory 

disorders that occur after recovery from RDS and may expedite recovery, diminish 

morbidity and lower the cost of care. The objective of this study was to look at the effect 

of secondary surfactant on a population of premature infants with respiratory 

decompensation after recovery from RDS. Secondary surfactant administration may 

improve functional residual capacity, compliance and decrease intrapulmonary shunting 

as evidenced by improvement in ventilation, oxygenation and pulmonary function. The 

study was designed to look at changes in respiratory severitY by analyzing oxygenation, 

ventilation and effects on pulmonary function. 

Methodology 
This prospective, non-randomized, un-blinded, pilot study, in which infants acted 

as their own control, was designed to evaluate the short term efficacy of surfactant 

administration to neonates who experience respiratory decompensation similar to adult 

respiratory distress syndrome (ARDS) after recuperation from primary RDS. 

Eligibility and Entry Criteria 
Infants were eligible for the study if they were ~ 7 days but::; 3 months of life, 

with birth weights> 500 grams and an admitting diagnosis ofRDS. Prospective 

informed consent was obtained from the parents to enable rapid administration of 

surfactant at the time of respiratory decompensation.. Infants qualified for the study if 



they met the eligibility criteria and then demonstrated an acute pulmonary 

decompensation that was non-cardiac in origin, accompanied by bilateral, diffuse 

parenchymal lung disease on chest x-ray and required an increased amount of respiratory 

support as defined as: 

• Infant on a nasal cannula, hood oxygen or nasal continuous positive airway 

pressure (CPAP) who required re-intubation and mechanical ventilation due to 

respiratory deterioration; or 

• Infant on minimal ventilator settings who required increased ventilatory support 

defined as an increase in both mean airway pressure (MAP) ~ 2 above the infant's 

baseline, and in absolute Fi02 by 20% or more above baseline and sustained for 4 

hours; or 

• Infant who required high frequency ventilation at the time of the respiratory 

decompensation. 

Infants were excluded for the following reasons: congenital heart disease or lethal 

congenital anomalies, untreated PDA by cardiac echo or with clinical evidence of a PDA, 

untreated pulmonary air leak, hematocrit less than 30 %, or participation in other 

respiratory clinical trials. Patients with a hematocrit less than 30 % were first transfused 

and stabilized before being entered into the trial. 

Surfactant and Study Protocol 
In this pilot study, three different surfactants, Survanta, Infasurf and Curosurf, 

were used because they contained different amounts of surfactant proteins and 

phospholipids. Due to subsequent problems obtaining Infasurf in our institution, only 

one patient received Infasurf (I) at the beginning of the study. All other patients received 



either Survanta (S) or Curosurf(C). Patients were given S or C on an alternating basis 

( quasi-randomization). 

Infants received 4cc/kg of Survanta, 3cc/kg of Infasurf or 2.5 cc/kg of Curosurf 

(1.25cc/kg on second dose) per manufacturer recommendations for the treatment of RDS. 

A standardized method for administering the surfactant based on Neonatal Intensive Care 

Unit (NICU) protocol was utilized throughout the study. Infants were manually bagged 

for surfactant administration, and all adverse events were documented. 

Infants were eligible to receive 2 doses during the 24-hour study period. The first 

dose was administered within 4 hours of qualification, and the second dose was 12 hours 

after the first dose. Patients who remained intubated 12 hours after the first administration 

and whose MAP was> 7 and Fi02 > .40 qualified for the second administration. Infants 

were placed back on the ventilator immediately after surfactant administration, and 

ventilator settings were adjusted to meet the following blood gas goals: pC02 of 45-65, as 

required to keep the pH > 7.25 after treating metabolic acidosis and oxygen saturations 

of 92-96%, in accordance with NICU standards at our institution. If excessive chest rise 

or tidal volumes were noted after surfactant administration, settings were adjusted 

immediately. 

Adverse events of desaturations, bradycardia, and endotracheal tube occlusion 

associated with each surfactant administration were recorded on a case report form and 

an adverse event log. Desaturations, as adverse events, were documented whenever 

oxygen saturations were less than 10 points below baseline for> 2 minutes, despite 

manual ventilation with 1000/0 oxygen. Bradycardia was defined as a drop in heart rate of 

>20% below baseline, lasting more than two minutes despite manual ventilation. Serious 



adverse events that occurred within 4 hours of surfactant administration were also 

recorded. Serious adverse events were defined as: Grade III or IV intraventricular 

hemorrhage; significant bronchospasm requiring treatment with a bronchodilator; 

Radiographic or other evidence of air leak, PIE or pulmonary hemorrhage; and sustained 

changes in heart rate or blood pressure of> 20%. 

Outcome Assessment 
The primary outcome was a change in respiratory status at 12 and 24 hours 

following secondary surfactant therapy. Changes in oxygenation and ventilation were 

measured by partial pressure of oxygen (Pa02), partial pressure of carbon dioxide 

(PC02), pH, MAP, Fi02, intermittent mandatory ventilation (IMV), and Delta P (~P). 

Secondary data analysis was performed to look at respiratory severity in response to 

surfactant administration. This secondary analysis was performed to insure that changes 

in the Pa02, PC02, pH, and Fi02 were related to improvement due to surfactant dosing 

and not changes in the ventilator settings. Changes in pulmonary function were measured 

by analyzing changes over time with the ventilatory efficiency index (VEl), modified 

ventilatory index (MVI) and the respiratory severity score (RSS). These measurements 

were documented prior to surfactant administration and at 12 and 24 hours post-

administration. 

The VEl was used to allow for a direct comparison of PC02 with changes in the 

ventilator. The VEl is defined as alveolar ventilation divided by the difference in ~p 

(PIP - PEEP), multiplied by the frequency of the ventilator. Alveolar ventilation is the 

ratio of carbon dioxide (C02) production to the mole fraction of alveolar PC02 [120]. 

This index allows comparison of respiratory status when both ventilator pressures and 

PC02 values vary [118, 120]. Since VEl will increase as pulmonary function improves, 



it allows for a measurement of changing lung function over time. Infants on High 

Frequency Ventilation (HFV) were excluded from VEl analysis since research has not 

been done using this analysis in these situations. 

The MVI allows for analysis of the PIP, PC02, and rate and gives an indication of 

oxygenation and improvement in lung function. It has been used in congenital 

diaphragmatic hernia (CDH) research to predict prognosis [49, 121] and one study was 

able to show that MVI was more predictive of outcome than PC02 alone [51]. Since 

high MVI scores have been related to lung injury secondary to mechanical ventilation, a 

response to surfactant would be indicated by a reduction in MVI. To calculate MVI 

multiply PC02 X PIP X ventilator rate and divide by 1000 [47,48, 117]. 

A respiratory severity score has recently been used to measure the severity of 

each patient's lung disease and response to surfactant therapy. The RSS is a modification 

of oxygen index without the need for Pa02 values, allowing for a simple measure of 

severity of lung disease in intubated patients with the same oxygen saturation goals[24, 

98]. It is calculated as the Fraction of inspired oxygen (Fi02) x MAP. Increases in 

oxygenation are directly related to increases in MAP and in infants with respiratory 

decompensation with poor lung compliance, a higher MAP is often required. A positive 

response to surfactant would be indicated by a reduction in RSS through improvement in 

MAP and Fi02. 

Whenever possible, Arterial Blood Gases (ABGs) were obtained for analysis; 

however, indwelling arterial lines are not always available in this population of infants. 

An arterial puncture was attempted twice in any infant without an arterial line. If an 

ABG was not obtained at this time, a venous or capillary blood gas (VBG/CBG) was 



accepted for analysis. Blood gases were obtained within 1 hour of surfactant 

administration, and then after surfactant administration at 1-2 hours, 12 hours and 24 

hours (12 hours after the second administration). 

X-rays were also reviewed by pediatric radiologists blinded to the study, pre-

administration and 24 hours post-administration to look for improvement. 

Statistical Analysis 
To analyze changes over time, analysis of variance (ANOVA) for repeated 

measures was utilized. Post hoc analysis utilizing paired t-tests were performed when the 

ANOV A was significant. Significance levels were set to alpha = 0.05. For the purposes 

of statistical analysis, patients were compared over 3 time periods: Pre-surfactant; 12 

hours after dose 1 but before dose 2; and 12 hours after dose 2 (corresponding with 24 

hours after dose 1). Results were analyzed using SPSS (SPSS Inc., Chicago, IL, USA). 

This study was approved by the Human Investigations Review Board at the 

Medical University of South Carolina (MUSC). 

Results 
Demographic Data 

The Neonatal services at MUSC admit an average of940 preterm infants (23-37 

weeks gestation) each year. Approximately 37% (348) will be admitted with a diagnosis 

of RDS and of these 770/0 will be treated with surfactant. Between January 2001 and 

November 2002, 51 infants were consented for the study. All of these infants had 

received Survanta for primary RDS at birth. Twenty of these infants had qualifying 

events related to blood stream infections or pneumonia and received secondary surfactant 

treatment. Nine infants received Survanta (S), 10 infants received Curosurf (C) and 1 

infant received Infasurf (I). Seventeen of the infants entered into the study between 7 and 

30 days of age. Three infants developed respiratory failure later in their hospital course 



and entered the study at 32, 45 and 77 days. Table 1 lists important characteristics of the 

20 infants. 

Characteristic Mean (Std Deviation) Range 

Maternal Age 28 (6.5) 18-41 

Gestation Age (Weeks) 25 (1.2) 24-29 

Birth Weight (Grams) 813 (163.8) 520-1200 

Apgar at 1 minute 4 (2) 1-9 

Apgar at 5 minutes 6 (2) 1-9 

Number of doses of surfactant at birth 3 (1) 1-4 

Age in days at entry into study 20 (16.6) 7-77 

Table 1: Maternal and Infant Demographics (n=20) 

Sixteen (80%) of the 20 mothers received prenatal care, and four were unknown. 

Twelve (60%) had no maternal illness, 4 (20%) were diagnosed with chorioamnionitis, 

and 4 (20%) with hypertension. Preterm labor was present in 16 (80%) of the mothers. 

Only 1 patient was exposed to ruptured membranes for fewer than 18 hours; 16 patients 

(800/0) were exposed between 18 and 24 hours. Maternal steroids were given to 18 (90%) 

of the mothers, with 1 not receiving steroids and 1 unknown. Sixteen infants (80%) were 

inborn, with 4 (20%) being transported in from another hospital. Seven infants (35%) 

were born by vaginal delivery and 13 (65%) by cesarean section. 

Primary Outcome Variables: Oxygenation and Ventilation 
One way ANOV A of secondary surfactant effects on dependent variables within 

subjects before initial surfactant administration and at 12 and 24 hours was performed. A 

significant difference was found in PC02 (p<O.OOl), pH (p<O.OOI), MAP (p<0.05), and 



Fi02 (p<0.05) at both 12 and 24 hours after surfactant administration. There was no 

significant difference in IMV or ~P. 

Paired T -tests were preformed to identify the difference between groups after the 

ANOV A indicated a significant difference existed. The results of this analysis indicated 

a significant improvement for pe02, pH, MAP, and Fi02, when comparing values prior 

to dosing and after secondary surfactant administration at both 12 and 24 hours. This 

improvement was maintained in all patients for at least 24 hours after the first surfactant 

administration. The response to surfactant therapy for both peo2 and pH are reflected in 

Figures 1 and 2. Similar results were found with both MAP and Fi02. These values 

represented means for all 20 infants during 3 periods of time, showing improvement in 

their respiratory status following secondary surfactant administration. No patients 

deteriorated during this time. 



c 
U'J 
N 

I 

70 

+ 60 
t: 
CU 
(1) 

:E .. 
C') 

:r: 
E 
E 50 

40 

I 
Prior to Surfactant 12 Hours after first 12 Hours after second 

dose dose (24 Hours after 
first dose) 

Figure 1: Mean change in peo2 over time. 

Figure 1 displays the change over time of peo2 . There was a significant decrease 

in peo2 from a mean of 63 mm Hg prior to surfactant dosing to 52 mm Hg 12 hours after 

the dose (21 %, P =0.006) and 47 mm Hg 24 hours after the first dose correlating with 12 

hours after the second dose (34%, p=O.OOI). This improvement in peo2 was found even 

when controlling for ventilatory changes. 
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Figure 2: Mean change in pH over time 

Figure 2 displays the change over time of pH. There is a significant increase over 

time from pre-surfactant to 12 hours (p=0.005), and this increase was sustained at 24 

hours (p=O.OOl). None of the infants received bicarbonate treatment during the time of 

secondary administration. The overall pH was increased by 2% (0.13) from pre-surfactant 

to post-surfactant administration. 

We observed improvement in MAP and Fi02 (p<0.05) over the same time period. 

There was a significant decrease of7% (0.6 cm of water) in MAP over time from pre-

surfactant to 12 hours post surfactant (p=0.02), and this decrease was sustained at 24 

hours (p=0.004). There is a significant decrease in Fi02 over time from pre-surfactant to 

12 hours post surfactant (p=0.028), and this decrease was sustained at 24 hours 

(p=0.031). The mean overall drop in Fi02 was 10 mmHg (15%) from pre-surfactant to 

post-surfactant administration. 



Secondary Data Analysis: Pulmonary Function 
The ANOV A showed a significant difference in MVI (p<0.004) and RSS 

(p<O. 001) at both 12 and 24 hours after surfactant administration. There was no 

significant difference in VEL Paired t-test results for both MVI and RSS were significant 

when comparing scores prior to dosing and at 12 (p<0.005) and 24 hours (p<0.004) after 

the first dose. There was no significant difference when comparing changes from 12 to 

24 hours~ however the improvement was sustained during this time frame. MVI scores 

decreased significantly indicating improvement in pulmonary function reflected by 

improvement in PC02, PIP and ventilator rate. RSS scores also decreased significantly 

indicating an improvement in the severity of respiratory disease (Figure 3). Seventy-five 

percent of the infants had a significant improvement in their RSS and in 50% of these, 

there was greater than fifteen percent improvement in RSS. 
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Figure 3: Mean change in RSS over time 

Figure 3: Respiratory severity scores (RSS) in infants (n=20) treated with surfactant after 
respiratory decompensation. There was a significant reduction in the mean RSS prior to 
surfactant dosing and at 12 and 24 hours (p<O.OOl). There was no significant 
improvement in RSS from 12 to 24 hours. 

Surfactant 
Secondary analysis compared Sand C groups to changes in ventilatory responses 

prior to surfactant dosing and at 1-2, 12 and 24 hours after dosing. No differences were 

found between the two groups when comparing Fi02, MAP, ~P, IMV, VEl, MVI or RSS 

1-2 hours after dosing. However, a significant difference was noted between the two 

groups 1-2 hours after surfactant administration for PC02 and pH. Figure 4 compares the 

two groups of infants and displays changes over time for PC02. There was a significant 

decrease in PC02 (p<.005) and a significant increase in pH (p=.006) 1-2 hours after 

surfactant administration in the Curosurf group compared with the Survanta group. There 

was no significant difference between Sand C groups at 12 or 24 hours. 
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Figure 4: Comparison of type of surfactant and change in PC02. There was a 
significance decrease in PC02 at 1-2 hours after surfactant dosing (p < 0.005) with a 
more rapid change noted in the Curosurf group. This difference between surfactants was 
not sustained and there was no difference between the two surfactants at 12 or 24 hours 
post dosing. 

Chest radiographs were read by pediatric radiologists in a blinded fashion before 

the first surfactant administration and 24 hours later. Diffuse parenchymal lung disease 

was confirmed in all cases for infants admitted to the study. Nineteen infants had follow-

up x-rays 24 hours after surfactant administration. Fifty percent of these x-rays showed 

an overall improvement in aeration, 25% were unchanged, and 200/0 had increased 

opacities. 

Adverse Events 
There were 6 adverse events reported during the study dosing. Four infants (20%) 

had an episode of de saturation to 80% lasting approximately 2 minutes, after the first 

dose and 2 infants (10%) had desaturations of the same magnitude after the second dose. 

One of these infants with an occluded endotracheal tube after the surfactant dosing, 



responded to an increase in PIP for 5 minutes. The serious adverse events documented 

during the study included 2 infants who had unstable saturations before dosing, with 

desaturations to 50-600/0 with dosing (1 S, 1 e). Of infants receiving secondary surfactant 

dosing, 3 infants died, two from necrotizing enterocolitis (1 e, 1 I ) and 1 from 

overwhelming pseudomonas sepsis (S). Although these infants died 10 days, 12 days and 

192 days after the study this outcome data was reported as a serious adverse event. Other 

serious adverse events such as IVH, bronchospasm, or air leak were not observed. 

Discussion 
In this pilot trial, analysis of oxygenation and ventilation demonstrated an 

improvement when compared pre- and post surfactant administration. There was a 

sigriificant improvement in oxygenation with an ability to wean MAP and Fi02, 

consistent with previous studies evaluating prophylactic surfactant in the treatment of 

RDS [41, 42]. There was improvement in both pH and peo2 without significant changes 

in IMV, or ~P during the 24 hours after surfactant administration, suggesting that the 

improvement may have been due to the surfactant dosing. 

Analysis of pulmonary function demonstrated an improvement in MVI and RSS 

at 12 and 24 hours. Accurate measures of the severity of respiratory disease are important 

both clinically and epidemiologically with significant improvements in MVI and RSS 

indicating improvement in pulmonary function and lung disease. Discrepancy between 

the intensity of mechanical ventilation and the severity of respiratory disease can have 

serious consequences. Blood gases can be misleading, when impaired gas exchange, with 

increased pe02levels, are due to inappropriate ventilator settings, leading to inadvertent 

positive end expiratory pressure (PEEP) or obstruction of the pulmonary circulation. 

Even in severe lung disease, a high PEEP would probably result in improvement in Pa02 



at any Fia2.. Variables such as MVI measure the intensity of therapy taking into account 

variations in ventilator management by incorporating both therapies (ventilator rate and 

PIP) and response to therapy (PCa2). Both MVI and RSS are less provider dependent 

than some of the others parameters measured. 

This study showed that repeat surfactant therapy significantly improved 

oxygenation, ventilation and reduced the severity of lung disease in this group of infants. 

Despite these findings, 3 infants did not demonstrate an improvement in their RSS. Lack 

of response to secondary surfactant may be related to injury to the lung prior to the 

surfactant dosing, increased alveolar capillary permeability and secondary surfactant 

inactivation by the proteins that leaked in to the alveolar space. Structural immaturity of 

the lung or other pathophysiologic conditions unrelated to surfactant deficiency may also 

affect response to surfactant. All of the infants in this study decompensated secondary to 

pneumonia or sepsis. Premature infants with a respiratory decompensation from 

pneumonia or sepsis are at risk for SDD due to injury to Type II alveolar cells. 

Atelectasis, capillary leak of fluid and protein, alveolar inflammation, and the release of 

inflammatory mediators may cause surfactant dysfunction, leading to deficiency and 

contributing to the development ofBPD. There have been several small studies 

demonstrating that infants with sepsis or pneumonia who received secondary surfactant 

have improvement in gas exchange [98, 108, 113, 122]. This study adds to that growing 

body of evidence. 

When looking at the group as a whole, infants did not have improvement in 

ventilation and oxygenation in the first hour after surfactant administration. However, in 

our small sample size, a significant difference in both pca2 and pH was noted 1-2 hours 



after surfactant administration when comparing the Survanta to Curosurf group. Infants 

in the Curosurf group had significant improvement in both PC02 and pH immediately 

after administration. This improvement may be related to surfactant properties or 

composition. Significant improvement was noted in both groups at 12 hours, and this 

significance was sustained at 24 hours. Future studies comparing surfactants may be 

important in infants with secondary respiratory failure secondary to SDD. 

The administration and dosing requirements for surfactants in infants with SDD is 

unknown. Experimental studies have shown that response to surfactant may depend on 

the type of pulmonary injury and the degree of surfactant dysfunction or inhibition. [123]. 

Response to surfactant may also be influenced by the timing of treatment [123], the type 

of surfactant used [124], the way surfactant is administered [123], the volume of the dose 

and the number of doses[125]. The majority of surfactant studies have used bolus 

administration in divided doses with the total volume of surfactant standardized by 

patient body weight for calculating dose [109, 126-129]. Bolus administration using a 

dual lumen endotracheal tube or catheter has been shown to be effective and may cause 

fewer adverse events [130]. For treatment of respiratory decompensation other than 

RDS, there was no benefit seen with more than two additional doses and the benefit from 

a single dose appears to persist for approximately 12 hours [114, 115]. Based on these 

studies, we chose to administer 2 bolus doses of surfactant, consistent with 

recommendations for infants with RDS. Clinical deterioration and the need for increased 

ventilatory support seen in some infants 12 hours after administration may indicate the 

need for additional surfactant treatment or the doses may not be large enough for infants 



with SDD. Further research is needed to determine the most effective dose, frequency 

and method of administration in this group of infants. 

The few adverse events related to dosing were limited to desaturations and 

bradycardia, which were easily managed by increasing peak pressure or Fi02 during 

administration. The 3 infants who later died in the study were reported as serious adverse 

events; however these deaths may be associated with coincidental pathology or multi

organ failure, or perceived treatment futility due to pre-existing diagnoses instead of 

unsupportable respiratory failure. The pilot study shows that secondary surfactant 

administration may be tolerated without serious adverse events. 

There were several limitations to this study. It was a prospective, non

randomized pilot trial which could introduce biases into outcome measures. An 

unblended medical team could lead to differences in ventilator management in the study 

patients and there was no control group. It is important to point out that the pilot trial 

was designed to improve later study design and power analysis in determining outcome 

parameters most sensitive to treatment and adverse events associated with secondary 

surfactant administration. 

The study also allowed for a large heterogeneous study group with different 

respiratory etiologies to identify types of patients who may benefit from secondary 

surfactant dosing. Only 4 of the infants had BPD upon entry into the study. At the time of 

respiratory decompensation all the infants were diagnosed with either pneumonia or 

confirmed sepsis. None of these infants had a diagnosed PDA on entry into the study or 

within a week after the study. Also none of these infants required lasix or steroids before, 

during or immediately after (within 3 days) of the trial. Although our results are 



encouraging, larger randomized controlled trials are needed to see if secondary surfactant 

administration can effectively treat this vulnerable patient population. 

Another limitation of the study was our inability to obtain arterial gases in each 

patient. The age of this infant population made obtaining arterial results difficult as most 

of the infant did not have arterial access at the time of decompensation. The majority of 

patients received an initial ABG followed by CBGs or VBGs. We, therefore, could not 

analyze differences in Pa02 and had to compare pH and PC02 values from a pre-dosing 

ABG with a post-surfactant administration CBG or VBG. It was important to take into 

consideration that PC02 levels are elevated and pH levels lower in VBG or CBG 

samples, compared to arterial levels. Therefore if surfactant decreases PC02 values post

administration, then comparing lower PC02 in a pre-administration ABG to a post

administration VBG would tend to minimize the effect of the surfactant, and the bias 

would be against surfactant having an effect. This would tend to underestimate the 

treatment effect, but would not overestimate it. A similar bias against surfactant effect on 

pH would apply. This technical difficulty could be overcome by placing an arterial line, 

which might be considered in the design of a larger trial. 

Respiratory failure in premature infants is a complex pathophysiologic process with 

many different causes. Although there are limitations in current research, there is a small 

but growing body of evidence that surfactant treatment for respiratory decompensation is 

promising. With increased survival of very low birth weight infants it is important to 

outline strategies that will improve care. Premature infants often have several episodes of 

respiratory decompensation during their hospital course that impact long-term outcomes, 

such as length of stay and incidence ofBPD .. In addition, non-pulmonary pathology 



leading to multi-organ failure despite the administration of surfactant, may negatively 

impact outcomes despite initial pulmonary improvement. Although secondary surfactant 

administration may improve oxygenation and ventilation on a short-term basis, it is 

unknown whether these improvements will be sustained long-term. 

Conclusion 
Although this was a small non-randomized pilot study, we found that surfactant 

was efficacious for improving gas exchange and decreasing ventilatory support in 

premature infants with presumed secondary SDD. This trial suggests that premature 

infants> 7 days of life, with a secondary respiratory decompensation may derive short 

term benefits from exogenous surfactant administration, resulting in improved 

oxygenation, ventilation and pulmonary function without serious adverse events. Long 

term benefits may involve fewer days of mechanical ventilation and shorter hospital 

stays. Large, prospective, randomized controlled studies are needed to understand the role 

of surfactant in treating infants with SDD. Researchers need to look at both short- and 

long-term clinical outcomes and begin to evaluate the efficacy of administering surfactant 

to neonates who experience respiratory failure after recuperation from their initial RDS. 
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SUMMARY AND CONCLUSION 

Respiratory Distress Syndrome is a developmental disorder that has an increased 

incidence and severity with decreasing gestation age. The clinical pattern in the first week 

of life usually includes episodes of respiratory decompensation necessitating an increased 

need for inspired oxygen and ventilatory support. Most infants will recover from RDS; 

however approximately 30% of these infants will go on to develop BPD or respiratory 

failure secondary to oxygen toxicity, volutrauma associated with mechanical ventilation, 

infection, PDA and inflammation. Premature infants are at increased risk for secondary 

SDD due to a decrease in the secretion of surfactant phospholipids in the lungs and a 

longer recycling time of surfactant [131]. Their surfactant also has decreased biophysical 

function and is more sensitive to inactivation by inhibitors due to the decreased amounts 

of surfactant proteins [131]. Additional studies are needed to see if there is a role for 

surfactant treatment in premature infants after the first week of life that have respiratory 

decompensation or failure requiring mechanical ventilation. 

To understand secondary SDn in preterrn infants it is important to not only 

understand the effects of diseases on the lungs but also the composition and actions of 

surfactants in the lung and how they are affected by these diseases. Infants who develop a 

secondary respiratory decompensation due to SnD often require mechanical ventilation. 

Mechanical ventilation leads to volutrauma and barotrauma and the increased need for 

oxygen causes oxygen toxicity. This causes damage to the type II pneumocytes leading 

to alterations in the synthesis, storage and release of surfactant which is already delayed 



in premature infants. Sepsis, pneumonia, atelectasis and PDA's in these infants lead to 

capillary leak of fluids and proteins, pulmonary edema and alveolar inflammation. This 

leads to inhibition and inactivation of surfactant. Release of inflammatory mediators also 

leads to interference with surfactant function and processing. Infants who appear to 

recover from RDS but then have a slow deterioration with a continued RDS picture (post

surfactant slump) may have decreased amounts of surfactant with an increased 

susceptibility to inactivation. These may be especially important in the extremely 

premature infants whose surfactant continue to function poorly despite initial surfactant 

replacement for RDS. Surfactant replacement may be beneficial in all of these infants. 

There are currently no large, randomized controlled trials looking at secondary 

SDD in premature infants who have recovered from their initial RDS but go on to 

develop secondary respiratory deterioration or failure. This work includes the first 

prospective pilot study looking at the effects of surfactant on premature infants who have 

recovered from RDS but who later have a respiratory decompensation consistent with 

SDD. The findings suggest that surfactant given to these patients may provide short term 

improvement in oxygenation, ventilation and pulmonary function. Secondary lung 

injuries where surfactant has become deficient or inactive may be treated with 

endogenous surfactant. Further research is needed to see if there is a decrease in the 

incidence of BPD, days in the hospital and mortality in these patients. 

It is important to note that there are several limitations to the current work 

including the fact that this was a non-randomized, non-controlled, unblinded study with a 

small sample size. Respiratory failure is a complex, pathophysiologic process with many 

different causes and the long term impact of secondary surfactant administration on infant 



outcomes is limited. Non-pulmonary pathology may lead to multi-organ failure despite 

the administration of surfactant. It is also not known which of the many surfactant 

properties will account for the potential benefits of surfactant administration in this group 

of neonates. 

The uses of surfactant for other diseases in neonates that lead to SDD are being 

studied. Future research is needed to look at the dosage, administration and timing of 

surfactant for infants with SDD. These infants may need larger doses than infants with 

RDS due to pulmonary damage. Bolus administration needs to be compared to lavage 

administration in this group of patients. Surfactant timing may need to be individualized 

for ~ach patient based on RSS or MVI. Providing a standardized dosing pattern for 

infants with varying degrees of pulmonary injury may not be the best method. Exogenous 

surfactant composition may need further research to look at the need for additional 

surfactant proteins and products that reduce surfactant inhibition. These newer 

surfactants may be more resistant to inhibition and provide surfactant proteins A and D 

for host defense. The next generation of surfactants may lead to designer surfactants for 

individual patients and diseases. The next step will be a randomized, controlled trial 

analyzing surfactant protein composition and the effects of secondary surfactant dosing 

on oxygenation, ventilation and pulmonary function in premature infants who recover 

from RDS but go on to develop a secondary decompensation. 
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