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Abstract 

Fish and shellfish are a beneficial food source due to their high protein 
content, low saturated fat content, and low cholesterol content; they possess 
beneficial omega-3 fatty acids and antioxidants such as vitamin E and selenium. 
Recent studies identified a decreased risk of sudden cardiac death in seafood 
consumers. 

Per capita seafood consumption increased 270/0 from 1975 to 1990, with 
nearly 95% of the U.S. population consuming some kind of fish or shellfish 
product each year. But seafood consumption may pose health risks which need 
to be weighed against benefits. One of potential risks is the toxicity of 
methylmercury. Mercury accumulates dramatically in the aquatic food web, 
where nearly all is converted into methylmercury. Almost all fish and shellfish 
contain at least trace amounts of methylmercury, and seafood consumption is 
the source of nearly all human methylmercury exposure. Major methylmercury 
poisonings provide evidence that the health effect of greatest concern from 
methylmercury exposure is neurotoxicity in the fetus and infant. 

Exposure assessments are the crucial step in identifying populations at 
risk of deleterious effects. Although several methods are currently available to 
project exposure, additional techniques may be necessary to accurately 
characterize exposure. One major complication in assessing exposure is the 
fact that all contributing factors are subject to variability, uncertainty, or to both. 
Variability describes heterogeneity in a well-characterized population, while 
uncertainty accounts for partial ignorance about a characteristic. 

Unfortunately, current exposure estimation techniques fail to 
simultaneously represent the full range and probability of exposures, account for 
dependencies among variables, and partition effects of variability from 
uncertainty. Thus, an innovative statistical methodology is developed here to 
overcome these deficiencies. Statistical techniques are also utilized to 
determine those input variables that are most critical to exposure. 

The different methods discussed and developed here may be used to 
estimate contaminant exposure from seafood consumption. Among other 
contaminants and marine species, methylmercury exposure from the 
consumption of Northern lobster, Homarus americanu5, is currently of interest. 
Lobster is one of the more commonly consumed marine species, and it has the 
potential to bioaccumulate high methylmercury levels. 



Issue 

Chapter 1 

INTRODUCTION 

Seafood consumption is associated with documented health benefits, yet 

high levels of methylmercury exposure from seafood consumption present 

potential health risks. In order to weigh seafood consumption benefits properly 

against possible risks, it is necessary to evaluate exposure using modern 

mathematical means. 

Rationale 

Fish and shellfish are a beneficial food source due to their high protein 

content, low saturated fat content, and low cholesterol content; they possess 

substantial amounts of beneficial omega-3 fatty acids and antioxidants such as 

vitamin E and selenium (Egeland and Middaugh, 1997). Two recent studies both 

concluded that men who consume at least eight ounces (one serving) of fish or 

shellfish per week decrease the risk of sudden cardiac death by 50-60% 

compared with those who consumed less fish and shellfish (Daviglus et al., 

1997; Albert et al., 1998). 

Consumption of fish and shellfish has risen over the last 25 years. In fact, 

per capita seafood consumption increased 27% from 1975 to 1990 as Americans 



became more and more health conscious (Ruffle et a/., 1994; EPA, 1997c; 

Johnson and Dore, 1993). Nearly 95% of the U.S. population consume some 

kind of fish product each year (Rupp et a/., 1980; Lipfert et a/., 1996). 

2 

But seafood consumption may pose health risks which need to be 

weighed against the benefits. One of these potential risks is the toxicity of 

methylmercury. Mercury accumulates most efficiently in the aquatic food web, 

where almost all is converted into the organic form of methylmercury. Almost all 

fish contain at least trace amounts of methylmercury, and fish consumption is the 

source of nearly all human methylmercury exposure (ATSDR, 1993; Marsh et a/., 

1995; Lipfert et a/., 1996). 

The first major methylmercury poisoning as a result of seafood 

consumption occurred in Minamata, Japan. In 1953 human health effects, 

including developmental effects, were recorded (ATSDR, 1993; EPA, 1997b). 

The toxic effects included high rates of developmental abnormalities in newborns 

and young children, the hospitalization of hundreds of poisoning victims, and 

even death (Eisler, 1987). 

In 1971-1972 Iraq experienced a large poisoning event (Lee, 1972; Rom, 

1992; EPA, 1997b). The U.S. sent to Iraq grain treated with organa-mercurial 

fungicide. The U.S. intended the grain to be used as seed; the hungry citizens of 

Iraq made bread with the grain, not realizing it was toxic. The poisoning 

produced adverse effects, including developmental outcomes, similar to those 

observed in Minamata (Lee, 1972; ATSDR, 1993; Waldron and Scott, 1994; 

EPA, 1997b). 



Both the Minamata and Iraqi poisonings provide evidence that the health 

effect of greatest concern from methylmercury exposure is neurotoxicity in the 

fetus and infant. Methylmercury is a potent neurotoxicant for young children, 

especially the fetus, since the central nervous system is rapidly developing 

during this stage of life (ATSDR, 1993; EPA, 1994, 1997b). Methylmercury 

easily crosses both the placental barrier and the blood-brain barrier (ATSDR, 

1993; EPA, 1994). 

Two major long-term epidemiological studies in the Seychelles Islands 

and the Faroe Islands evaluated the relationship between fetal methylmercury 

exposure from high fish consuming populations and neurotoxic effects in 

childhood development (Davidson et a/., 1995, 1998; Myers et a/., 1995; 

Grandjean et a/., 1997). Neither study identified significant developmental 

abnormalities in children from mothers consuming vast amounts of seafood. 

3 

The Environmental Protection Agency (EPA) is extremely concerned 

about risks from mercury exposure. In fact, EPA recently published the Mercury 

Study Report to Congress (1997b) consisting of eight volumes with over 1,800 

pages which stirred enormous discussion among federal and state agencies. It 

is estimated that natural and anthropogenic sources contribute approximately 

equal amounts of mercury to the environment. The Mercury Study Report 

provides an assessment of anthropogenic mercury emissions and the health and 

environmental implications from those emissions. This includes the potential 

hazard of methylmercury exposure to humans and wildlife from the consumption 

of contaminated seafood. Combustion point sources such as coal-fired utility 



boilers, waste incinerators, and commercial/industrial boilers account for over 

85% of the U.S. anthropogenic mercury emission. EPA notes the link between 

anthropogenic releases of mercury and methylmercury levels in fish. 

4 

Exposure assessments are the crucial step in identifying populations at 

risk of deleterious effects, and several methods are currently available to project 

exposure. Traditionally exposure was determined using point estimates, but 

more recently Monte Carlo simulation techniques have been used to 

characterize exposure. One major complication in assessing exposure is the 

fact that all contributing factors are subject to variability and uncertainty. 

Variability, or true biologic variability, describes heterogeneity or diversity in a 

well-characterized population, while uncertainty accounts for partial ignorance or 

lack of total knowledge about a characteristic. It is useful to distinguish between 

variability and uncertainty because uncertainty may be reduced through 

additional measurement or study, while true biologic variability is irreducible. 

Unfortunately, current exposure estimation techniques fail to represent the 

full range and probability of exposures, fail to account for dependencies among 

the variables used to predict exposure, and do not separate the effects of 

variability from uncertainty. Point estimates do not render information as to 

where the estimates lie on the distribution of exposures, and no current 

simulation technique simultaneously accounts for dependencies among input 

variables while distinguishing between variability and uncertainty. Thus, an 

innovative statistical methodology is developed here to overcome these 

deficiencies. 
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Several methods have been used to predict the degree of methylmercury 

exposure from the consumption of variuos seafood species; for example, EPA 

(1997c) used point estimates, Lipfert et alto (1996) traditional Monte Carlo 

simulations, Balthis et at. (1996) hierarchical Monte Carlo simulations, and 

Macintosh et at. (1994) and Carrington et al. (1997) used two-dimensional Monte 

Carlo simulations. This effort is intended to identify the circumstances that are 

most appropriate for each of several exposure estimation techniques. Risk 

assessors may use this information to select the most appropriate exposure 

estimation techniques for a given problem. All of the methods mentioned above 

along with the new methodology developed here are compared using identical 

data sets to predict methylmercury exposure from the consumption of Northern 

lobster, Homarus americanus. Lobster is the most desired seafood, and it is also 

one of the more commonly consumed marine species (NOAA, 1991). Northern 

lobster take approximately five to seven years to attain the minimum legal 

harvest weight of one pound; consequently, they have the potential to 

bioaccumulate high methylmercury levels. 

Objectives 

The primary goal of this research is to estimate methylmercury exposure 

from seafood consumption while considering the uncertainty and variability for 

each input variable and dependencies among input variables. To accomplish 

this the following tasks were performed: 



1. Develop a simulation technique to account simultaneously for both 

variability and uncertainty within individual input variables and 

dependencies among input variables. 

One major complication in assessing exposure is the fact that all 

contributing factors are subject to variability, uncertainty, or to both. Throughout 

this report the term variability is used to represent true biological variability. 

Variability describes heterogeneity or diversity in a well-characterized 

population. Uncertainty accounts for partial ignorance or lack of a complete 

knowledge about a characteristic. Parameter uncertainty quantifies the 

uncertainty resulting from the estimation of input parameters. This uncertainty 

may result from small sample sizes, sampling error (both random and 

systematic), or measurement error (IAEA, 1989; Morgan and Henrion, 1990). 
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Some investigators refer to variability as Type A Uncertainty and 

uncertainty as Type B Uncertainty (IAEA, 1989; Hoffman and Hammonds, 1994}. 

It is useful to distinguish between variability and uncertainty because uncertainty 

may be reduced through additional measurement or study, while true biologic 

variability is irreducible. 

In addition to variability and uncertainty, it is necessary to account for 

dependencies among input variables. Dependencies among input variables 

occur when two or more variables are correlated. For example, a relationship 

exists between body weight and food consumption. 

In the past, NOS has relied on methods of exposure estimation that 

account for dependencies, yet fail to differentiate between variability and 



uncertainty. Additional exposure estimation techniques distinguish between 

variability and uncertainty without considering dependencies. But under certain 

circumstances, it may be beneficial to simultaneously account for dependencies 

while distinguishing between variability and uncertainty. Thus, an innovative 

exposure estimation technique was developed. 

2. Perform an uncertainty analysis to rank contributions to the overall 

uncertainty from uncertainties in individual input variables. Include a 

sensitivity analysis to determine how changes in individual input 

variables influence the outcome. 
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It is useful to determine those input variables that are most critical to a 

model's output. Uncertainty analysis techniques quantify the potential reduction 

in uncertainty from the acquisition of additional data for each input variable. 

Sensitivity analysis ranks the influence of fluctuations in the individual input 

values on the outcome. The most sensitive variables should be characterized by 

reliable data. The results obtained from the uncertainty and sensitivity analyses 

provide direction for future research efforts, such that maximum benefit may be 

obtained. Results from the uncertainty analysis may be used to direct the 

collection of additional data in order to reduce the greatest amount of 

uncertainty, while results from the sensitivity analyses may be used to identify 

variables that require an accurate characterization because they exert the most 

influence on the outcome. 



3. Perform a detailed analysis of methylmercury exposure from the 

consumption of Northern lobster, Homarus americanus. 

The techniques presented in tasks 1 and 2 above were used to predict 

methylmercury exposure from the consumption of Northern lobster. One of the 

missions of the National Ocean Service in Charleston is to conduct multi­

disciplinary research activities related to environmental contaminants and their 

impact on public health and risk assessment; the exposure analyses proposed 

here assist in this charge. 

4. Fit mercury concentration distributions for some of the most frequently 

consumed marine species. Perform simulations with these 

distributions to characterize methylmercury exposure from the 

consumption of multiple species. 
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Fish consumption advisories offer consumption guidelines that protect 

individuals from adverse toxic effects. Unfortunately, fish consumption 

advisories are often calculated under the assumption that individuals consume 

only a single species. Ignoring exposure to methylmercury from multiple species 

will cause the total risk to be underestimated, and this may lead to the 

overestimation of safe consumption quantities. It could cause individuals who 

consume multiple seafood species to be under-protected. To help remedy this 

problem, distributions of methylmercury concentrations were fitted for multiple 

species. As an example of potential benefits from these distributions, a 



simulation was performed to characterize methylmercury exposure from the 

consumption of these most frequently consumed species. 
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Chapter 2 

REVIEW OF THE LITERATURE 

History 

Mercury has been known to be toxic for a long time. The Chinese have 

known of the hazardous effects of mercury since 3000 B.C., and during the 18th 

and 19th centuries the deleterious effects of mercury were commonly observed in 

syphilis patients treated with mercurial ointments, mirror makers who used an 

amalgam of mercury and tine to silver mirrors, and hat makers who treated felt 

with mercuric nitrate (Rom, 1992; Waldron and Scott, 1994). 

The first major mercury poisoning as a result of seafood consumption 

occurred in Minamata, Japan. Initially, many animals, e.g., cats, dogs, crows, 

waterfowl, and pigs, from the area were noted to have irregular behavior followed 

by death; an unusual number of dead fish were floating in the bay (Eisler, 1987). 

In 1953 human health effects such as paresthesia (tingling sensation in 

extremities), loss of hearing and vision, slurred speech, muscle weakness, 

personality changes (irritability and depression), memory loss, and sleeping 

difficulties were recorded (Officer and Ryther, 1981; ATSDR, 1993; EPA, 1997b). 

The most alarming effect was that some infants from mothers who consumed 

mercury contaminated seafood during pregnancy experienced varying degrees 
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of neuronal damage. For example, approximately 60/0 of the babies born in the 

Minamata region at this time had cerebral palsy, compared to 0.50/0 elsewhere 

(Eisler, 1987). The consequences also included 111 documented mercury 

poisonings by 1960, 41 deaths by 1965, and over 1 ,800 verified human mercury 

pOisoning victims by 1982 from a regional population of 200,000 (Eisler, 1987). 

The total number of victims is difficult to establish and thus remains unconfirmed. 

Not until 1968 did the Japanese government officially announce that 

mercury from industrial waste was the cause of the "Minamata Disease" (Officer 

and Ryther, 1981). Between 260 and 600 tons of mercury were discharged into 

Minamata Bay from 1932 to 1968 by an acetaldehyde plant, which used 

inorganic mercury (Eisler, 1987). The plant discontinued discharging mercury 

after 1971. 

The second major mercury poisoning event occurred in Iraq from 1971-

1972 (Lee, 1972; Rom, 1992; EPA, 1997b). A large quantity of grain was treated 

with an organo-mercurial fungicide to prevent fungal disease prior to 

germination. Although the grain was intended to be used as seed; hungry Iraqi 

citizens made bread with the toxic grain. Adverse consequences, particularly the 

developmental abnormalities, paralleled those observed in Minamata (ATSDR, 

1993; EPA, 1997b). The poisoning eventually resulted in over 6,500 persons 

being hospitalized and more than 500 deaths primarily from central nervous 

system failure (Lee, 1972; ATSDR, 1993; Waldron and Scott, 1994; EPA, 

1997b). 
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The Japanese and Iraqi poisonings spurred awareness of the toxic effects 

from mercury. In 1967 the Swedish Medical Board banned the sales of fish from 

approximately 40 rivers and lakes because of high mercury concentrations in fish 

(Lee, 1972). In 1969 the United States and Canada were informed of potentially 

dangerous mercury concentrations in fish when a zoology student at the 

University of Western Ontario notified authorities in Canada about mercury levels 

above 7 parts per million (ppm) in fish from Lake St. Clair and the St. Clair River, 

which connect Lake Huron and Lake Erie. By April 2, 1970 the United States 

Food and Drug Administration (FDA) set the mercury guideline for commercial 

seafood at 0.5 ppm. 

Within six months of FDA's new guideline announcement, 33 states had 

reported mercury hazards and 16 states had some type of ban. A temporary 

ban followed in the tuna industry. Canned tuna, from supermarket shelves, was 

found to contain levels of mercury above the 0.5 ppm guideline, and once the 

Food and Drug Administration confirmed these findings, 12.5 million cans of tuna 

were removed from supermarket shelves (Jukes, 1975). 

Early in 1971 FDA discovered that approximately 90% of the swordfish 

tested for mercury contained levels which exceeded 0.5 ppm, with most 

swordfish in the range 0.75-0.99 ppm (Officer and Ryther, 1981). This was one 

of the most destructive mercury contamination findings to the fish industry. From 

1970 to 1971 U.S. swordfish landings toppled from 1.6 million pounds to just 

23,000 pounds (Lipton, 1986). 
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Eight years later, in 1978, the U.S. Courts changed FDA's guideline from 

0.5 ppm to 1 ppm after considering the evidence that the 1 ppm guideline would 

not result in a significant increase in adverse effects. The U.S. Courts also 

considered the fact that a large portion of the mercury in seafood comes from 

natural sources. 

Characteristics of Mercury 

Mercury is found in the environment primarily in three forms. Pure 

mercury is called metallic or elemental mercury. Inorganic mercury is mercury 

that has combined with elements such as chlorine or sulfur to form mercuric 

chloride or mercuric sulfide (cinnabar), respectively. Mercury also combines with 

carbon to form organic mercury compounds such as methylmercury. Mercury is 

naturally transformed from one form to another. 

Mercury enters the environment in approximately equal amounts from 

both natural and anthropogenic sources (ATSDR, 1993). Natural sources of 

mercury include both terrestrial and oceanic volcanic activity, natural weathering 

of the earth's crust, and hot springs which commonly release cinnabar (Eisler, 

1987; ATSDR, 1993). Anthropogenic sources of mercury have caused a 

significant change in the environmental distribution of mercury. The principal 

anthropogenic source of mercury is the emission from the combustion of coal or 

garbage (ATSDR, 1993; EPA, 1997b). Mercury is mined and used in industry to 

manufacture chlorine gas, sodium hydroxide, thermometers, barometers, 

batteries, and electrical switches (Lee, 1972; ATSDR, 1993; EPA, 1993, 1997b). 
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It is often used to control slime in the pulp and paper mill industry and to extract 

gold (Lee, 1972; ATSDR, 1993; EPA, 1993, 1997b). In the dental industry, 

mercury currently makes up about 50% of dental amalgams (ATSDR, 1993; 

Richardson and Allan, 1996). Agricultural uses were first introduced in the 

United States in the 1920s (Lee, 1972). In agriculture, numerous pesticides 

contain organiC and inorganic mercury, while mercury containing fungicides 

prevent fungal diseases in plants, fruits, vegetables, and seeds prior to 

germination (Lee, 1972; ATSDR, 1993; EPA, 1997d). The use of mercury in 

fungicides has been banned since the 1970s (ATSDR, 1993). 

Mercury research in the aquatic environment was very limited before 

1970. Consequently by 1970, when rigorous research started, it was not 

possible to find the "natural" background level of mercury in water because 

agriculture and industry had been using mercury for approximately 20 years 

(Lee, 1972). Eisler (1987) proposes that concentration changes in oceanic 

waters have been insignificant. 

Most of the mercury released into the hydrosphere is in the form of the 

inorganic salt or metallic mercury (Lee, 1972). Microorganisms in the 

hydrosphere convert inorganic and elemental mercury to methylmercury, and 

methylmercury is readily absorbed by aquatic organisms. Persistent chemicals, 

such as methylmercury, have a high potential for bioaccumulation. Older fish 

typically have higher levels because they have had more time to accumulate the 

chemicals. Methylmercury is bioaccumulated near the bottom of the aquatic 

food webs as small creatures eat plants and microorganisms that contain 



methylmercury, and it is biomagnified up to 100,000 times the concentration in 

the water as trophic levels increase to the top predators in aquatic food webs 

(ATSDR, 1993). Thus, top predators usually have contaminant concentrations 

which exceed concentrations in other fish because predators store most of the 

methylmercury from the fish they consume. 

Pharmacokinetics 

Most lipophilic toxins accumulate in the fatty tissues of fish; in addition, 

methylmercury binds to protein, and thus it also accumulates in the edible 

portions of fish (Lee, 1972; EPA, 1994; Marsh et a/., 1995). This means that 

methylmercury, unlike other contaminants, cannot be removed simply by 

trimming off the fatty parts of fish (EPA, 1994). 
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Approximately 950/0 of methylmercury ingested from fish consumption is 

absorbed, although methylmercury has no known physiologic function in humans 

(Lee, 1972; WHO, 1990; ATSDR, 1993; EPA, 1996). After ingestion, 

methylmercury is absorbed through the gastrointestinal (GI) tract into the blood, 

and from the blood, it can affect all parts of the body. Methylmercury easily 

passes through the phospholipid bilayer because it is lipophilic. Due to the ability 

to penetrate all membranes and to bind to protein, methylmercury is essentially 

found in all human body tissues; however, the human body concentrates 

methylmercury in the brain, liver, and kidneys, with the highest concentration in 

the kidneys (Lee, 1972; ATSDR, 1993; EPA, 1994, 1996). Thus, methylmercury 

is the most toxic form of mercury to humans because it accumulates in the most 
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sensitive tissues (ATSDR, 1993). The distribution process takes between four to 

six days to complete in humans (EPA, 1996). 

Once inside, most human tissues slowly transform organic mercury 

compounds, such as methylmercury, into inorganic mercury via the oxidation 

reduction cycle (ATSDR, 1993; EPA, 1994). The inorganic mercury can either 

be stored in the tissue or excreted in the urine or feces (ATSDR, 1993). 

Methylmercury crosses the placental barrier with fetal organs often 

exhibiting higher concentrations than the corresponding maternal organs 

(ATSDR, 1993; EPA, 1994). In addition, methylmercury has been found in 

breast milk with a concentration of about five percent of that found in the 

mother's blood (McKinney, 1981; ATSDR, 1993; EPA, 1994). 

Methylmercury has a half-life between 70-79 days in humans and 

between 500 and 1 ,000 days in many marine species, which contributes to the 

bioaccumulation problem in marine species (Lee, 1972; ATSDR, 1993; EPA, 

1996). Inorganic mercury has a half life between 42-60 days in humans 

(ATSDR, 1993). 

Ingested methylmercury is primarily eliminated in the feces (bile), although 

some is discharged during lactation (ATSDR, 1993; EPA, 1994, 1996). 

Essentially all mercury excreted in the feces is in the form of inorganic mercury, 

as methylmercury and elemental mercury are reabsorbed prior to excretion 

(ATSDR, 1993; EPA, 1996). 
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Acute Toxicity 

Acute exposures to methylmercury are a concern because of the ability of 

fish to bioaccumulate methylmercury and the large sizes of some seafood meals 

(EPA, 1994). An acute exposure may be particularly harmful to susceptible 

populations like the developing fetus or infants (EPA, 1994). Clarkson (1997), a 

leading authority on methylmercury toxicity, reported that peak exposure, rather 

than chronic exposure, was the best determinant of deleterious effects. Acute 

high level exposures to methylmercury may result in detrimental effects such as 

renal damage or failure, gastrointestinal damage, cardiovascular collapse, shock, 

and death (EPA, 1994). The Agency for Toxic Substances and Disease Registry 

(ATSDR) reported 10 to 60 mg of methylmercury per kilogram of body weight as 

the acute lethal dose for individuals of all ages (ATSDR, 1993). 

Chronic Toxicity 

Studies of the Japanese and Iraqi poisonings have revealed that one of 

the most sensitive organs for methylmercury toxicity is the central nervous 

system (CNS). The human brain retains mercury longer than most other organs 

and can accumulate a mercury level four to five times higher than that found in 

the blood (McKinney, 1981). Common neuronal adverse effects include 

decreased performance on behavioral tests (e.g., the Denver Developmental 

Screen Test), personality changes (irritability, shyness, and nervousness), 

memory loss, insomnia, paresthesia, weakness, ataxia (loss of coordinated 

muscle movement), slurred speech, loss of speech, loss of vision, loss of 
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hearing, neuronal degeneration, tremors, paralysis, coma, and death (Lee, 1972; 

Eisler, 1987; Rom, 1992; ATSDR, 1993). 

Another sensitive organ for methylmercury toxicity is the kidney, although 

the CNS is usually more sensitive than the kidney (ATSDR, 1993; EPA, 1994). 

Common adverse effects include renal damage and failure. 

Developmental Toxicity 

The Environmental Protection Agency (EPA) defines developmental 

toxicity as "adverse effects on the developing organism that may result from 

exposure prior to conception (either parent), during prenatal development, or 

postnatally to the time of sexual maturation" (1994, p. 5-12). 

Methylmercury is a potent neurotoxicant for young children, especially the 

fetus, since the central nervous system is rapidly developing during this stage of 

life (ATSDR, 1993; EPA, 1994, 1997b). Some plausible reasons for the 

increased sensitivity of the eNS in the neonate are that methylmercury destroys 

microtubules, disturbs sulfhydryl enzyme systems, and reduces RNA in nerve 

cells of the dorsal root ganglia and cerebellum (McKinney, 1981; Marsh et al., 

1987; ATSDR, 1993; EPA, 1994). Cell division and migration are obstructed 

without microtubules; consequently, the development of the nervous system may 

results in abnormalities. This hypothesis is supported by autopsy data from 

Japanese and Iraqi children who were prenatally exposed to methylmercury. 

The children's autopsies revealed significant central nervous system 

abnormalities without regional specificity; adults exposed to methylmercury 



19 

poisonings exhibited a high degree of regional specificity in CNS abnormalities 

(EPA, 1994). Methylmercury particularly seems to disrupt microtubules in the 

developing cerebellum; consequently, the increased sensitivity of neonates 

compared to adults may be explained because mitosis and migration of granule 

cells in the cerebellum typically end shortly after birth (ATSDR, 1993). 

Additional factors contribute to the increased sensitivity of neonates. 

Children seem to exhibit an increased absorption and longer retention of mercury 

(ATSDR, 1993). This phenomenon may be explained in the fetus because both 

the blood-brain barrier and the transport system within the blood-brain barrier 

are not fully mature (ATSDR, 1993). Additionally, enzyme detoxification systems 

are not entirely mature until two to three months after birth (ATSDR, 1990). The 

Environmental Protection Agency also advises that children may have an 

enhanced susceptibility because the human immune system is immature up to 

12 years of age (ATSDR, 1990). Additionally, animal studies have shown that 

females and infants excrete mercury slower than males and adults, respectively 

(ATSDR, 1993; EPA, 1994). Although children typically consume less than 

adults, they often consume more per kilogram body weight than adults (EPA, 

1994, 1997c). ATSDR (1993) indicates that children may be more sensitive to 

neurotoxic effects because a higher percentage of methylmercury is stored in the 

brains of young children than adults. 

Typical neurologic signs from neonatal and childhood exposure to 

methylmercury include paresthesia, neuromuscular weakness, incoordination, 

inability to move, blindness, inability to speak, seizures, irritability, mental 
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retardation, delayed development, cerebral palsy, congenital malformation of the 

cerebellum, congenital malformation of the visual cortex, and death {Lee, 1972; 

Rom, 1992; ATSDR, 1993; EPA, 1994}. ATSDR {1993} remarks that the 

prevailing central nervous system pathological feature from methylmercury 

poisoning is degeneration of the cerebellum. While some of the adult effects of 

methylmercury toxicity are reversible, most of the developmental effects are 

permanent structural changes in the brain {EPA, 1994}. 

Animals prenatally and lactationally exposed develop immunotoxicity, liver 

toxicity, kidney damage, and eNS effects similar to those detected in human 

infants {ATSDR, 1993}. 

Mutagenicity 

ATSDR (1993) reports that methylmercury may have some mutagenic 

potential. Study results have been mixed, but methylmercury concentrations 

have been shown to be correlated with chromosome aberrations (ATSDR, 1993). 

Carcinogenicity 

EPA (1996) has classified methylmercury as a Class C carcinogen, 

indicating possible human carcinogenicity. This assignment is, however, based 

on insufficient data in humans and limited evidence in animals (EPA, 1996). 
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Special Susceptibilities 

As described under the heading Developmental Toxicity, the fetus and 

infant have an increased risk of adverse neurological effects from methylmercury 

exposure (ATSDR, 1993). 

It has also been suggested that the elderly, ill, malnourished (particularly 

those with insufficient levels of zinc, glutathione, antioxidants, or selenium), and 

individuals with impaired kidney, CNS, or liver function also have an elevated 

susceptibility to methylmercury toxicity (ATSDR, 1993). 

Sport and subsistence fishers are at an increased risk, but not an 

increased susceptibility, due to unusually high consumption rates. 

Interactive Effects 

Selenium, which bioaccumulates in an atomic ratio of approximately 

one-to-one with methylmercury in seafood, may reduce the toxicity of 

methylmercury (Calabrese, 1981; McKinney, 1981; ATSDR, 1993; EPA, 1996). 

Selenium treatment was sometimes able to decrease common renal, neurologic, 

and fetal effects (Calabrese, 1981). 

Epidemiological Studies 

Marsh ef ale (1987) provided the research that most influenced the current 

reference dose (RfD). The authors studied neurologic effects of the Iraqi 

poisoning on 81 mother-child pairs. Methylmercury exposure was estimated 

from maternal hair samples. The neurologic effects that were considered 

included delayed onset of walking (after 18 months), delayed onset of talking 
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(after 24 months), mental symptoms, seizures, cranial nerve signs, involuntary 

movement, as well as impairment in limb tone strength, deep tendon reflexes, 

plantar responses, coordination, dexterity, primitive reflexes, sensation, and 

posture. Delayed walking, delayed talking, cerebral palsy, altered muscle tone, 

and altered deep tendon reflexes were detected in children exposed in utero. 

The neurologic signs detected in the mothers included paresthesia, ataxia, 

reduced visual fields, and hearing impairments. The significant problem with 

using this study to justify the RfD is that extremely high levels of methylmercury 

were consumed in a relatively short period of time, and fish consumers typically 

have long-term rather than short-term exposure. In addition, these women were 

exposed to methylmercury from grain consumption, not fish consumption. 

Lipfert et al. (1996) investigated the probability of neurological effects from 

consuming fish with high methylmercury levels. The two neurological effects 

they studied were adult paresthesia and congenital neurological effects. The 

study assumed a daily consumption rate of 24.7 g/day, which consisted of 4.5 

g/day canned tuna, 10.3 glday freshwater finfish, and 9.9 g/day other marine 

seafood. A Monte Carlo simulation was performed to estimate exposure levels. 

The results showed that adults were more than ten times below the level of 

exposure that caused adult paresthesia in the Iraqi poisoning. However, the 

results for congenital neurological effects were just under the levels which 

caused similar effects in Iraq, consequently the authors advised that pregnant 

women should avoid frequent consumption of predatory freshwater sportfish. 
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Cree Indian infants from northern Quebec were studied by McKeown­

Eyssen et al. (1983) because Cree Indians typically consume large amounts of 

seafood. The authors studied 247 children for abnormalities that would be 

consistent with methylmercury exposure. The most common abnormalities were 

altered deep tendon reflexes and altered muscle tone. It was noted that each 

additional 10 Jlg of fetal methylmercury exposure per gram of fetal weight 

resulted in a sevenfold increase in the prevalence of muscle tone or reflex 

abnormalities. The principal weakness of this study was the failure to account 

for the confounding factors of maternal smoking and alcoholism. 

Studies of fetal exposure to methylmercury also were performed in New 

Zealand in the late 1980s by Kjellstrom, Kennedy, Wallis, and Mantell (EPA, 

1996, 1997d). Approximately 11,000 mothers were surveyed to find 

consumption patterns and demographic data. The survey produced 31 high 

seafood consuming mothers that were matched with low seafood consuming 

mothers by ethnic group, maternal age, child's birthplace, and child's birth date. 

Exposure was then estimated using maternal hair samples. Children were 

studied at age four using the Denver Developmental Screen Test (DDST), which 

identifies abnormalities in gross motor skills, fine motor skills, language skills, 

and personal-social skills. Each area was scored as normal, questionable, or 

abnormal. The high exposure group resulted in 2 abnormal and 14 questionable 

scores, while the low exposure group had 1 abnormal and 4 questionable 

scores. The fine motor and language skills were the most common 

developmental delays. Standard vision and sensory tests revealed delayed 
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development in 52% of the children from the high consumption group and only 

17% from the control group. It is interesting to note that children from the high 

consumption mothers were more likely to be born prematurely (before 37 weeks) 

and to have low birth weights « 2,500 g). The results of this study were limited 

due to the presence of confounding variables and a low participation rate of 

44%. 

The New Zealand study was followed up two years later when the children 

were age six (EPA, 1996, 1997d). Sixty-one children from high consumption 

mothers were compared to three control groups. Mothers from each control 

group had both fish consumption rates and mercury hair levels less than mothers 

from the study group. Confounding was controlled by using linear multiple 

regression and by matching children from high consumption mothers to three 

controls by maternal age, smoking status, ethnic group, place of residence, and 

the child's gender. The children were tested using various academic, 

psychological, and behavioral tests. Average maternal mercury hair levels of 

13-15 mglkg during gestation were associated with decreased test scores, but 

the small sample size limited the power to identify differences among the lower 

exposure groups. EPA (1996) feels that this study did not use the most 

appropriate tests for detecting methylmercury effects. 

Recently a study was carried out in the Republic of the Seychelles 

(Davidson et a/., 1995, 1998; Marsh et a/., 1995; Myers et a/., 1995; Shamlaye et 

a/., 1995). This particular population was selected because a diet with a median 

of 12 fish meals per week during pregnancy results in high exposure levels. In 
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addition, potential confounding factors such as extreme alcohol consumption, 

high infant mortality rates, and small population sizes are not a problem with the 

Seychellois. Methylmercury exposure during gestation was estimated using 

maternal hair samples for 740 mother-infant pairs. Children were examined 

periodically from 6 Y2 months through 66 months using a neurologic examination, 

a revised DDST, the Fagan test of visual recognition memory, and the Bayley 

Scales of Infant Development for both mental and psychomotor development. 

No association between fetal methylmercury exposure and neurodevelopment 

through 66 months of age was identified. 

In the Faroe Islands, Grandjean etal. (1992,1995, 1997) examined the 

potential effects of fetal and infant methylmercury exposure. The confounding 

effect from alcohol consumption was not a problem as Faroese women typically 

do not consume alcohol during pregnancy. The primary source of 

methylmercury exposure for the Faroese is from eating pilot whale meat. Fetal 

methylmercury exposure was estimated using maternal hair samples and cord 

blood samples taken at birth, while infant methylmercury exposure was 

estimated using hair samples from the child taken at both twelve months and 

seven years of age. Over 900 infants born between 1986 and 1987 were 

examined at age seven using a battery of physical exams, neurophysiological 

tests, and neuropsychological tests. Grandjean et al. found some association 

between increased mercury exposure and a decreased performance in language 

skills, even at levels of exposure currently considered safe. It was reported that 

doubling mercury exposure could potentially cause a two month delay in several 
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developmental areas. This study had some likely sources of bias: the exposure 

was primarily from the consumption of pilot whale meat which has high levels of 

other contaminants such as PCBs that produce effects similar to mercury; the 

reported associations were weak and possibly statistically significant only 

because of the large sample size; and the authors made no multiple comparison 

correction to account for the numerous test that were performed. 

Summary of Risk Values 

Table 2-1 presents different risk values. Risk assessors and risk 

managers may use any of these risk values in risk assessments and the decision 

making process, albeit in the U.S. the Environmental Protection Agency's 

reference dose (RfD) is typically selected among these values. 

EPA's Reference 0.1 J.lg/kg/day for populations including women of 
Dose (RfD) childbearing potential and young children 

FDA's Acceptable 
0.47 J.lg/kg/day for the average adult 

Daily Intake (ADI) 

ATSDR's Minimal 0.5 J.lg/kg/day for populations including women of 
Risk Level (MRL) childbearing potential and young children 

WHO/IPCS's Value 0.47 J.lglkg/day for adults 

Table 2-1. Summary of Risk Values 

The reference dose estimates the daily exposure that protects even the 

most sensitive subgroup from harmful effects over a lifetime. EPA recommends 

an oral RfD of 0.1 J.lg of methylmercury per kilogram of body weight per day for 

the ingestion of methylmercury (EPA, 1996). The RfD for methylmercury is 
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based on developmental neurologic abnormalities primarily from the Iraqi 

poisoning (EPA, 1994; EPA, 1996; EPA, 1997b). Neurologic abnormalities in 

adults were also considered, but developmental endpoints were more sensitive 

(EPA, 1996). This finding is verified by epidemiological data from the Minamata 

poisoning showing healthy females who gave birth to brain damaged children 

(ATSDR, 1993; Lee, 1972). An uncertainty factor of ten was applied to the RfD 

for the use of a lowest-observable-adverse-effect level (LOAEL). This 

uncertainty factor is more conservative that the uncertainty factor used just a few 

years ago, and the use of this more conservative uncertainty factor resulted in 

the reduction of the RfD from 0.3 to 0.1 J,lg/kgld. 

It is interesting that EPA's Reference Dose is approximately five times 

more conservative than the other daily intake recommendations in Table 2-1, 

since some of the other risk values are also intended to protect the most 

sensitive subgroups of the population. 

The Food and Drug Administration has offered an Acceptable Daily Intake 

(ADI) of 0.47 J,l9 of methylmercury per kilogram of body weight per day. The ADI 

is approximately five times greater than the RfD in part because the ADI is only 

designed to protect the average adult (excluding the fetus and infants), while the 

reference dose is designed to protect even the most sensitive subgroups 

(including the fetus). Studies suggest that the fetus is up to five times more 

sensitive than adults to methylmercury toxicity (Marsh et al., 1987; EPA, 1994). 
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ATSDR's Minimal Risk Level (MRL) estimates the daily exposure that is 

likely to be without an appreciable risk of deleterious noncancerous effects for a 

chronic duration of exposure, one year or longer. ATSDR (1998) recommends 

an MRL of 0.5 J.lg of methylmercury per kilogram of body weight per day for 

chronic oral exposures to methylmercury. The MRL for methylmercury is based 

on developmental delays observed in Seychellois children (Davidson et a/., 

1995; Marsh et al., 1995; Myers et a/., 1995; Shamlaye et a/., 1995). Even 

though ATSDR did not characterize any of the reported decreases in children's 

activity levels at 29 months of age as adverse, the midpoint of all hair levels, 

rather than the maximum level, was used for the no-observable-adverse-effect 

level (NOAEL) because activity levels appeared to decrease with increasing 

mercury hair concentrations in boys above the overall median value (ATSDR, 

1998). No uncertainty factor was applied to the MRL. 

The MRL is approximately equal to the ADI, despite the fact that the two 

values are designed for different populations. The MRL is intended to protect 

sensitive subgroups such as the fetus, while the ADI is calculated to protect the 

average adult. 

WHO/IPCS calculated a daily methylmercury intake of 0.47 J.lg of 

methylmercury per kilogram of body weight per day (EPA, 1997b). WHO/IPCS's 

recommendation is almost identical to FDA's Acceptable Daily Intake, as both 

are designed to protect adults from adverse effects. 



Chapter 3 

METHODS 

Exposure Equations 

Using risk assessment and risk management to set fish consumption 

advisories is a very difficult process due to all of the factors which must be 

considered. It should be noted that throughout this section the term fish is used 

to denote both fish and shellfish. Fish consumption may pose health risks which 

need to be weighed properly against the benefits; economic and social impacts 

also weigh heavily on the decision making process (EPA, 1994). Different state 

governments and federal agencies use numerous methods to calculate the risk 

to human health from seafood consumption (EPA, 1994). 

EPA (1994) estimates the exposure to a contaminant from seafood 

consumption using the following equation: 

E = Cm ·CR 
m BW ( 3.1 ) 

where: 

Em = Exposure to contaminant m from fish consumption (J.lg/kg/day), 

Cm = Concentration of contaminant m in a given species of fish (J.lglg) , 

CR = Consumer consumption rate of a given species of fish (g/day), and, 

BW = Consumer body weight (kg). 
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Equation ( 3.1 ) is useful for calculations involving a single species, yet the 

equation needs to be modified as follows to account for multiple species: 

( 3.2 ) 

BW BW 

where: 

Em = Exposure to contaminant m from fish consumption (J1,g/kg/day), 

Cmj = Concentration of contaminant m in species j (J1,g/g), 

CRj = Consumer consumption rate of species j (g/day), and, 

BW = Consumer body weight (kg). 

Uncertainty Analysis 

An evaluation of uncertainty is necessary, yet frequently ignored (Morgan 

and Henrion, 1990; EPA, 1992, 1994; Hoffman and Hammonds, 1994; 

Carrington and Bolger, 1998). An uncertainty analysis ranks the contributions to 

overall uncertainty from uncertainties in the input variables. It is especially 

important to consider uncertainty under the following circumstances: when 

deciding where future research efforts will result in the maximum benefit, when 

expert judgement is used due to a lack of data, or when uncertain information 

from multiple sources must be merged (Morgan and Henrion, 1990; EPA, 

1997a). 
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Uncertainty analysis may lead to a reduction in the scope of the analysis 

by identifying the variables of concern. This may assist in determining where to 

focus future efforts and money (McKone and Bogen, 1991; EPA, 1992, 1994). 

Sensitivity is the simplest type of uncertainty analysis (IAEA, 1989; 

Morgan and Henrion, 1990; EPA, 1997a). A sensitivity analysis determines how 

changes in individual input variables influence the outcome. Thus, the sensitivity 

analysis identifies the main contributors to the variation and uncertainty in the 

outcome. The most elementary measure of sensitivity is formed by noting how 

the output changes when a single input variable is changed from the minimum 

value to the maximum value while holding all other input variables constant at 

their nominal values (IAEA, 1989; Morgan and Henrion, 1990; EPA, 1992). The 

nominal value is the "best guess" for an input variable. Frequently the mean, 

median, or mode is used as the nominal value. Similarly, another common 

sensitivity measure is formed by noting how the output changes when a single 

input variable is varied a certain percentage while holding all other input 

variables constant at their nominal values (Morgan and Henrion, 1990; 

Thompson et al., 1992; Finley and Paustenbach, 1994). The relationship 

between uncertainty and sensitivity is displayed in Figure 3-1. 



Input variable Output variable 

low input --=============-:4r===v
1

ery low output 
uncertainty -- A\ uncertainty 

low input = 
uncertainty 

high input ~ 
uncertainty 

high input 
uncertainty 

high sensitivity 

low sensitivity 

low sensitivity 

high output 
uncertainty 

low output 
uncertainty 

very high output 
uncertainty 
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Figure 3-1. A Simple Illustration of the Relationship Between Uncertainty and Sensitivity 

These approaches are most useful as screening techniques to determine 

those input variables that have the greatest effect on the outcome (IAEA, 1989; 

Morgan and Henrion, 1990; EPA, 1992). In fact, in many cases a small number 

of input variables account for the bulk of the variation in the output (Morgan and 

Henrion, 1990; Iman and Helton, 1991). Non-sensitive input variables can be 

considered as constants in the modeling equation; less-sensitive input variables 

may be estimated from less precise data, while highly-sensitive input variables 

require the most precise and reliable data (Morgan and Henrion, 1990; Finley 
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and Paustenbach, 1994; EPA, 1997a). Thus, confidence in the results would be 

high if the most sensitive input variables are characterized by dependable data 

and low if the most sensitive input variables are based on limited or uncertain 

data. 

Unfortunately these two sensitivity measures do not consider 

dependencies between input variables. These techniques are also somewhere 

between a local and a global approach. Where a local approach evaluates the 

response of the function only in the proximity of the nominal scenario, a global 

approach makes use of the entire input and output data sets. 

More sophisticated methods of ranking uncertainty use a truly global 

approach. Global techniques may be applied to determine the contribution to 

overall uncertainty from individual input variables. 

The simplest global method to rank contributions to overall uncertainty is 

to compute the sample (Pearson's) correlation coefficient between each input 

variable and the outcome (IAEA, 1989; Morgan and Henrion, 1990; Iman and 

Helton, 1991; EPA, 1997a). The sample correlation coefficient (r) measures the 

degree of linear relationship between two variables; thus r provides a meaningful 

measure of the degree to which an input variable and the output variable change 

together. If the absolute value of the correlation coefficient for an input variable 

and the output variable is high (close to one), then the uncertainty and variability 

for this input variable have a significant impact on the outcome variable. 

Unfortunately the correlation coefficient only considers the linear relationship 

between two variables, without considering effects from other variables. For 



example, two highly correlated input variables could both have similar sample 

correlation coefficients with the output, even though only one of the two input 

variables is primarily responsible for the uncertainty. 
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The partial correlation coefficient measures the degree of linear 

relationship between the output and an input variable that cannot be explained 

by linear relationships between the remaining input variables (lman and Helton, 

1988,1991; IAEA, 1989; Morgan and Henrion, 1990; EPA, 1997a). Thus, the 

partial correlation coefficient determines the portion of the output uncertainty that 

is uniquely accounted for by uncertainty from a single input variable. Both the 

correlation coefficient and partial correlation coefficient measure linear 

relationships; if the relationship is not linear then these methods will 

underestimate the predictability of the output from an input variable. 

Spearman's rank-order correlation coefficient measures any monotonic, 

rather than just linear, relationship (Iman and Helton, 1988, 1991; IAEA, 1989; 

Morgan and Henrion, 1990; Sargent and Wainwright, 1996; EPA, 1997a). 

Spearman's rank-order correlation coefficient is basically Pearson's correlation 

coefficient calculated using rankings of values rather than the actual values. 

Rank values are determined for the variable of interest by ordering the data from 

lowest to highest and replacing the lowest value with a rank of 1 , the second 

lowest with a rank of 2, and so on. This process is repeated for the values of 

each variable where a correlation is desired. 

Benefits analogous to those obtained from using the partial correlation 

coefficient rather than Pearson's correlation coefficient lead to using the partial 
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rank-order correlation coefficient rather than Spearman's rank-order correlation 

coefficient (IAEA, 1989; Iman and Helton, 1988, 1991). The partial rank-order 

correlation coefficient is basically the partial correlation coefficient calculated 

using rank values rather than actual values. 

These approaches characterize the uncertainty associated with linear or 

non-linear, monotonic relationships quite well, yet one caveat is the failure to 

deal with non-monotonic relationships. Uncertainty analyses where 

relationships are non-monotonic may be inaccurate and should be regarded with 

suspicion. 

Methods of Exposure Estimation 

Exposure is defined as contact between a contaminant and one or more 

outer boundaries (e.g., mouth nose, skin) of an individual (EPA, 1992). Several 

methods are available to estimate exposure. The ideal situation is to use as 

simple a method as possible without oversimplifying the problem, as significant 

components of the problem may be neglected. 

Point estimation is the simplest method used to estimate exposure. The 

point estimate is calculated by assigning a single value (e.g., the mean, 95th 

percentile, or maximum value) to each input variable (IAEA, 1989; Morgan and 

Henrion, 1990; McKone and Bogen, 1991; Ryan, 1991). Many researchers use 

the mean or median values of the input variables to produce a central estimate 

for the output. The upper percentiles such as the 95th percentile or the 



theoretical maximum are frequently used as input values to obtain an upper 

estimate of the output. 
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Point estimation is useful as a screening technique (IAEA, 1989; Morgan 

and Henrion, 1990; Finley and Paustenbach, 1994). Potentially important 

sources of exposure may be identified by choosing conservative values to 

overpredict exposure. Maximum values or 95th percentiles are frequently used 

as inputs values; if the maximum values or 95th percentiles reveal no appreciable 

risk of deleterious effects, then more sophisticated methods of estimation would 

waste both time and money (Hattis and Burmaster, 1994; EPA, 1997a). More 

advanced techniques are also unnecessary when the cost of remediation is low 

(Hattis and Burmaster, 1994; EPA, 1997a). 

The primary weakness of point estimation is that no information is 

provided as to where the estimate lies on the output distribution. The mean or 

median values do not necessarily produce good estimates of central tendency; 

likewise the 95th percentiles or maximum values often greatly overestimate the 

upper percentiles of the output variable (Burmaster and von Stackelberg, 1991; 

EPA, 1992; Thompson et a/., 1992; Finley and Paustenbach, 1994; Hattis and 

Burmaster, 1994; Keenan et a/., 1994; Cohen et a/., 1996; Thompson and 

Graham, 1996). 

It is becoming evident that risk assessment techniques need to evolve 

from point estimates to probabilistic methods (Burmaster and von Stackelberg, 

1991; EPA, 1992, 1997a; Finley and Paustenbach, 1994; Keenan et a/., 1994; 

Thompson and Graham, 1996). Unlike point estimation, probabilistic methods 
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account for variability by characterizing each input variable as a probability 

density function (PDF) or cumulative distribution function (CDF). These 

techniques yield a PDF or CDF for the output variable. The output probability 

distribution supplies a complete picture of potential outcomes. This is a 

tremendous elaboration on the point estimation method because the probability 

density function shows the relative likelihood of occurrence for each outcome 

value or even ranges of outcome values. Probabilistic methods may be 

advantageous when conservative point estimates reveal a potential problem, 

when an uncertainty analysis is necessary, or when remediation is expensive 

(Finley and Paustenbach, 1994; EPA, 1997a). 

One of the principal probabilistic methods is called Monte Carlo 

simulation. The technique was developed in 1946 by Stanislaw Ulam, who first 

applied the method to assist the U.S. government with the development of the 

hydrogen bomb (Rugen and Callahan, 1996). Monte Carlo methods are used to 

simulate output distributions based on input distributions (Sargent and 

Wainwright, 1996; Palisade Corporation, 1997a). Using commercial software, 

e.g., Crystal Ball (Decisioneering, Inc., Denver, CO), @Risk (Palisade 

Corporation, Newfield, NY), or Analytica (Decisioneering, Inc., Denver, CO), a 

value is randomly selected from each of the input distributions, which provides a 

single estimate of the output (Metzger et al., 1998). This constitutes a single 

iteration. Iterations are run in large batches, typically with 1 ,000 iterations per 

batch. By convention, a sufficient number of iterations is achieved when the 

upper percentiles of the distribution do not change significantly (e.g., <3%) from 



38 

one batch to the next (Palisade Corporation, 1997a). After a sufficient number of 

iterations, typically between 1 ,000 to 15,000, all of the output estimates form the 

output distribution. This method of simulation is here referred to as traditional 

Monte Carlo or Monte Carlo simulation. An illustration of the procedure is given 

in Figure 3-2. 

Randomly select a value for each input variable 

No 

Traditional Monte Carlo simulation completed 

Figure 3-2. Traditional Monte Carlo Simulation Procedure 

Models involving input variables that have either variability or uncertainty, 

but not both, are appropriate for traditional Monte Carlo simulations. The 

traditional Monte Carlo has also been shown to be the appropriate method for 

modeling averages of the output (Frey and Rhodes, 1996). Under these 

conditions, results from the traditional analysis and from more sophisticated 

methods that account for both variability and uncertainty are similar; thus the 

extra effort required to distinguish variability and uncertainty is essentially wasted 

under these circumstances. This is because the variability in an average is less 

than the variability in individual measurements. Thus, variability is so small 



compared to uncertainty that the input distribution essentially reduces to one 

involving only uncertainty. 
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Traditional Monte Carlo simulations are typically less sensitive than point 

estimates to changes in a single input value; consequently, errors in input values 

for point estimates generally result in greater changes to the output than errors in 

input distributions for Monte Carlo simulations. 

The traditional Monte Carlo method does require more time and resources 

than point estimation. Another deficiency is the independent selection of input 

values, as dependencies exist among input variables in most models. 

Many researchers recognize the need to account for dependencies 

among input variables (IAEA, 1989; Morgan and Henrion, 1990; Smith et al., 

1992; Burmaster and Anderson, 1994; Bukowski et al., 1995; Frey and Rhodes, 

1996; EPA, 1997a). Several Monte Carlo simulation software products currently 

employ techniques for assigning correlation between input variables by using 

rank-order correlation (Morgan and Henrion, 1990). The random values for the 

input variables will approximately have the desired correlation. An estimated 

correlation between input variables is required prior to running the simulation. 

A more exact approach of resolving this problem uses hierarchical 

simulations. Hierarchical Monte Carlo simulations are similar to traditional Monte 

Carlo simulations, except that hierarchical simulations account for dependencies 

among input variables by selecting input values in a sequential fashion (Voit et 

al., 1993, 1995; Finley and Paustenbach, 1994; Balthis et al., 1996; Balthis, 

1998). 
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To execute a hierarchical Monte Carlo simulation, dependent distributions 

are assigned to input variables. For example, human body weight and human 

seafood consumption are both dependent on age; thus age-specific distributions 

for body weight and consumption are developed. For each iteration of the 

example above, an age would first be randomly selected, then random values 

from the corresponding age-specific distributions for body weight and 

consumption would be selected. This eliminates potential problems such as 

selecting an individual with a low body weight and a high consumption rate. The 

hierarchical Monte Carlo steps are displayed in Figure 3-3. 

No 

Select a dependent distribution for each input 
variable that is correlated with other input variables 

such that relationships are maintained 

Randomly pick an input value from each dependent 
distribution selected above and from any remaining 

input distributions 

Hierarchical Monte Carlo simulation completed 

Figure 3-3. Hierarchical Monte Carlo Simulation Procedure 

In the same way that the traditional Monte Carlo simulation is generally 

better than point estimates for showing the true probability of risk, a hierarchical 



Monte Carlo simulation typically characterizes risk more accurately than a 

traditional Monte Carlo simulation. 

Hierarchical methods are particularly appropriate when dependencies 

among input variables are strong and/or non-linear. 

Unfortunately hierarchical Monte Carlo methods require considerably 

more data points than traditional Monte Carlo methods because several 

dependent distributions, rather than just a single distribution, must be modeled 

for each input variable. Hierarchical Monte Carlo techniques also fail to 

distinguish between variability and uncertainty. 
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It is becoming apparent that variability and uncertainty need to be 

differentiated, and Monte Carlo simulations are a suitable statistical tool for this 

purpose (IAEA, 1989; Morgan and Henrion, 1990; Burmaster and Anderson, 

1994; Hoffman and Hammonds, 1994; McKone, 1994; Rowe, 1994; Bogen, 

1995; Bukowski et al., 1995; Cronin et a/., 1995; EPA, 1997a; Murphy, 1998; 

Werckman and Wainwright, 1998). Techniques called two-dimensional Monte 

Carlo (2DMC) are currently emerging that account for both variability and 

uncertainty (Hoffman and Hammonds, 1994; Macintosh et al., 1994; Burmaster 

and Wilson, 1996; Cohen et al., 1996; Frey and Rhodes, 1996; Price et al., 

1996; Murphy, 1998; Werckman and Wainwright, 1998). The original two­

dimensional technique was developed by Frey in 1992 as a tool for 

environmental policy decisions (Cohen et al., 1996; Frey and Rhodes, 1996). 

Since this time, two-dimensional simulations have been used to study 

cancer risks, exposure, emission characterization, and effects of remediation 



(Macintosh et al., 1994; Bogen, 1995; Cohen et a/., 1996; Frey and Rhodes, 

1996; Price et a/., 1996). 
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Input variables with only variability or uncertainty are simply characterized 

by PDFs similar to input variables in traditional Monte Carlo simulations, while 

input variables with both variability and uncertainty are represented as 

"distributions of distributions". The variability is characterized by depicting input 

variables using PDFs, while certain PDF parameters are also assigned PDFs to 

account for uncertainty. 

The sampling scheme is now two-dimensional. First, an outer loop is run 

to select the uncertainty values (PDF parameters). Next, the uncertainty values, 

or PDF parameters, are now frozen while an inner loop is run to account for 

variability. Thus, the inner loop consists of running several iterations of the 

whole model using the selected PDF parameters. The whole process is 

repeated for a specified number of outer iterations in order to provide a portrait of 

how uncertainty varies the output distribution, where each set of PDF parameters 

represents uncertainty. Typically an inner loop has between 1 ,000 and 15,000 

iterations, while an outer loop has between 50 and 2,500 iterations. The two­

dimensional simulation scheme is presented in Figure 3-4. 



No 

No 

Outer Loop - Uncertainty 
Select PDF parameter values 

Inner Loop - Variability 
Select a value for each input variable in the model 

using the outer loop PDF parameter values 

Two-dimensional Monte Carlo simulation completed 

Figure 3-4. Two-Dimensional Monte Carlo Simulation Procedure 
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In the literature, variables with only variability or uncertainty are referred to 

as first-order random variables, while variables with both variability and 

uncertainty are referred to as second-order random variables. 

Two-dimensional Monte Carlo simulations are appropriate in the following 

situations: when input variables exhibit both variability and uncertainty, when 

future research efforts must be determined in order to reduce the maximum 

amount of uncertainty, or when risk managers desire that uncertainty be 
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addressed in the risk assessment (EPA, 1992; Haimes et al., 1994; Macintosh et 

al.,1994). Monte Carlo guidelines from EPA (1997a) suggest that an analysis of 

uncertainty and variability is only necessary if the differentiation could improve 

the results, if time and recourses are available for a complex analysis, or if the 

project warrants this level of effort. 

Neither hierarchical nor two-dimensional Monte Carlo simulations account 

for dependencies among input variables while distinguishing between variability 

and uncertainty. A new approach called the hierarchical two-dimensional Monte 

Carlo accounts for dependencies among input variables and separates the 

effects from variability and uncertainty. 

As with hierarchical simulations, it is first necessary to model dependent 

distributions for the input variables in hierarchical two-dimensional simulations. 

Next, an outer loop is run to select the uncertainty values (PDF parameters), and 

then the uncertainty values are frozen while an inner loop is run to account for 

variability. The initial step of each inner loop iteration is to select dependent 

distributions for the input variables. A specified number of inner loop iterations is 

performed, and then the whole process is repeated until a specified number of 

outer loop iterations have been completed. The outer loop values are used to 

characterize how uncertainty varies the output distribution. The hierarchical two­

dimensional simulation steps are displayed in Figure 3-5. 



No 

No 

Outer Loop - Uncertainty 
Select PDF parameter values 

Select a dependent distribution for each input 
variable that is correlated with other input variables 

such that relationships are maintained 

Inner Loop - Variability 
Chose a value from each dependent distribution 

selected above and from any remaining input 
distributions in the model using the outer loop 

PDF parameter values 

Hierarchical two-dimensional Monte Carlo 
simulation completed 

Figure 3-5. Hierarchical Two-Dimensional Monte Carlo Simulation Procedure 
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Probabilistic methods other than Monte Carlo simulations may be used to 

account for uncertainty while estimating exposure. Fuzzy number theory and 

Bayesian procedures are two alternate methods. Fuzzy number theory is 
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principally used with data that rely on opinion or interpretation (Yager, 1982; 

Morgan and Henrion, 1990; Burmaster and Wilson, 1996). For example, if 

individuals were asked to recall the number of seafood servings they had 

consumed in the last year, then the answers obtained would be "fuzzy" due to 

both recall capabilities and the interpretation of "serving". Fuzzy set theory 

defines the process for simple mathematical techniques (e.g., addition, 

subtraction, multiplication, and division) that can be applied to standard statistical 

techniques (Dubois and Prade, 1978). 

Bayesian methods are used to define input distributions (Morgan and 

Henrion, 1990; Brand and Small, 1995). Bayesian procedures start with a prior 

distribution that is based on any available information, including expert opinion. 

Each time new information becomes available a posterior distribution is formed, 

based on all previous information and the new information. The posterior 

distributions can then be used with the Monte Carlo simulation methods 

described above. Morgan and Henrion (1990) point out that Bayesian methods 

often yield final results comparable to classical statistical approaches. Bayesian 

methods are most useful when data are continually monitored or updated 

(Morgan and Henrion, 1990). 

Distribution Approximation 

The input distribution represents both uncertainty in the estimate and 

biological variation in the human or fish populations. 
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It has been suggested that the reduction of uncertainty may currently be 

more important than the development of more sophisticated models (McKone 

and Ryan, 1989; McKone and Bogen, 1991). One way to reduce uncertainty is 

by accurately depicting input distributions (Bukowski, 1995; Seiler and Alvarez, 

1996). It is critical to characterize input variables correctly when using Monte 

Carlo simulations as even slight errors can propagate into radically biased results 

(Seiler and Alvarez, 1996). 

Traditionally, the normal and lognormal distributions have been used to 

model fish consumption (Hattis and Burmaster, 1992; Ruffle et al., 1994). But 

Rupp et al. (1980) reported that the NPD seafood consumption data were found 

to be neither normally nor lognormally distributed because of the long right tails; 

thus, increased flexibility is required to model consumption distributions. 

Input distributions, particularly for hierarchical methods, may be symmetric 

or skewed to the right or left. Several classic statistical distributions are available 

to model input distributions of varying shape, although a single statistical 

distribution is typically not flexible enough to model symmetric, left skewed, and 

right skewed distributions. A relatively new distribution, the S-distribution, has 

been shown to be capable of modeling distributions that are symmetric or 

skewed in either direction (Voit, 1992, 1996; Voit and Rust, 1992; Voit and Yu, 

1994; Voit etal., 1995; Yu and Voit, 1995; Balthis etal., 1996; Balthis, 1998; Voit 

and Schwacke, 1998). In fact, S-distributions have already successfully 

modeled seafood consumption, mercury concentrations in seafood, and body 

weights (Voit et al., 1995; Balthis et al., 1996; Balthis, 1998); consequently, the 
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S-distribution is appropriate to model distributions for this project due to its high 

degree of flexibility. 

The S-distribution uses the ordinary differential equation 

( 3.3 ) 

where: 

F = cumulative distribution function (dependent variable) and 

x = random variable (independent variable). 

The S-distribution is characterized by four parameters that need to be 

estimated. The spread of the distribution is determined by a, which is always 

greater than zero. The shape of the distribution is determined by g and h, where 

g is always less than h. And the location of the distribution is determined by the 

initial value of the differential equation, Fo , which is between zero and one. 

Typically Xo has been selected such that F(Xo)=O.5, or, in other words, the initial 

value is at the median, Xo (Voit, 1992; Voit and Yu, 1994; Voit et a/., 1995; 

Balthis et a/., 1996; Balthis, 1998; Voit and Schwacke, 1998). 

The standard S-distribution is a special case where a=1 and Xo=O. With 

a median at zero, the standard S-distribution is characterized exclusively by the 

shape parameters g and h. L.H. Schwacke from the Medical University of South 

Carolina developed Equation ( 3.4 ) to approximate quantile t for the standard 

S-distribution. This equation is based on the rational approximation for quantiles 

of the normal distribution as published by Hastings (1955). The parameter 

values for a1, a2, a3, b1, b2, and b3 are listed in Appendix A. 
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where ~ = ~In( t! ) ( 3.4 ) 

Quantiles from the standard S-distribution are easily converted to quantiles of 

the four parameter S-distribution using Equation ( 3.5 ) (Voit and Schwacke, 

1998). 

Q(t)= sQ(t) + Xo , where Xo = Median ( 3.5 ) 
a 

The four S-distribution parameter values were estimated using a Mathcad 

(Mathsoft, Inc., Cambridge, MA) program developed by Schwacke (see Appendix 

A). The data to be fit to an S-distribution were read into the program; then the 

program systematically tested different combinations of the four parameters 

searching for the combination that produced the minimum difference between 

the actual data values and the S-distribution. 

The majority of the distributions in this dissertation are modeled with the 

S-distribution, yet the methods presented here are independent of the 

distributions selected to model the input and output variables. The National 

Ocean Service preferred to have some of the distributions modeled with classic 

statistical distributions, and some were modeled with classic distributions 

because of computational limitations or a superior fit. 



Chapter 4 

ANALYTICAL SOLUTIONS 

Monte Carlo simulations are used because an exact solution is 

unobtainable for many problems, although an exact solution may be obtained 

under special circumstances. The exact solutions and hierarchical two­

dimensional Monte Carlo simulation results were compared for hypothetical 

problems in this chapter. 

In this report point values are denoted without an underscore, first-order 

random variables with a single underscore, and second-order random variables 

with a double underscore. 

If the variable X is a normally distributed random variable dependent upon 

the PDF parameters l! and 0", then the expected value of X can be obtained 

using conventional methods for computing the expected value of a conditional 

random variable as shown in Equation (4.1 ) (Hogg and Craig, 1978; Burmaster 

and Wilson, 1996). The expected value of X2 is given in Equation ( 4.2 ). 

E ~] = ll[ I x . f xl ~,,, (xill. <J ) dx ] f ~,,, (J.L. <J ) d Il d<J ( 4.1 ) 
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( 4.2 ) 

For this exercise it was assumed that the PDF parameters y and cr were 

independent, consequently f~,a 6.t, cr) = f~ (J.t). fa (cr). 

Example 1 

For the first illustration suppose the outcome is equal to a single 

hierarchical two-dimensional variable, X. Suppose X - Normal Distribution (y, 0'), 

where half the time y - Triangular Distribution (a=100, b=10) and 0' - Triangular 

Distribution (a=3, b=0.3) and half the time y - Triangular Distribution (a=103, 

b=10) and 0' - Triangular Distribution (a=3, b=0.3). In each of these triangular 

distributions, the parameter 'a' represents the peak of the distribution, and the 

endpoints are given by a + b. The Triangular Distribution(a=1 00, b=10) is 

displayed in Figure 4-1 as an example. 
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Figure 4-1. Triangular Distribution (a=100, b=10) 
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The outcome distribution was obtained by solving each two-dimensional 

part of the hierarchical two-dimensional problem; thus, the outcome distribution 

in this illustration was characterized using the different distributions for the PDF 

parameters J! and cr. After obtaining the two-dimensional solutions, the 

hierarchical two-dimensional problem was reduced to a simple hierarchical 

problem, or in other words, the two-dimensional analytical solutions reduced the 

problem from one involving second-order random variables to one with only 

single-order random variables. The mean of the outcome distribution was 

calculated using the means from the two-dimensional analytical solutions in 

Equation ( 4.3 ). 

(4.3 ) 

where: 

Pi = The proportion of the outcome distribution from the ith two-dimensional 

component and 

Jli = The mean of the ith two-dimensional component. 

Unfortunately, there was no mathematical means of calculating the 

standard deviation of the outcome distribution given the two-dimensional 

analytical solutions. To overcome this problem, the two-dimensinal analytical 

solutions were used to simulate the output distribution using an extremely high 

number of iterations (e.g., n=250,OOO). The sample standard deviation from the 

simulation was used to approximate the standard deviation of the outcome 

distribution, as the sample standard deviation is an asymptotically unbiased 
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estimator of the population standard deviation. Decisioneering's Crystal Ball 

Version 4.0c was used to perform the simulations and then to fit the simulated 

output to classic statistical distributions. Distribution parameters were calculated 

using maximum-likelihood estimators (Sargent and Wainwright, 1996). Potential 

distributions were compared using standard goodness-of-fit tests such as the 

Kolmogorov-Smirnov test and the Anderson-Darling test, which compared the fit 

between a distribution and the actual data values (Sargent and Wainwright, 

1996; Palisade Corporation, 1997b). The Kolmogorov-Smirnov test put more 

weight on the fit in the mid-range of the distribution, whereas the Anderson-

Darling test placed more importance on the fit in the tails of the distribution 

(Sargent and Wainwright, 1996; Palisade Corporation, 1997b). Graphs of the 

actual values superimposed with the fitted distributions, such as those seen in 

Figure 5-8 through Figure 5-16, were also used to compare potential 

distributions. 

The two-dimensional problem using g - Triangular (a=1 00, b=10) and a -

Triangular Distribution (a=3, b=0.3) was first solved. 

The probability density function for a symmetrical triangular distribution is 

given in Equation ( 4.4 ). 

f(x)= b-I~-al, 
b 

where a-b :::; x :::; a+b (4.4 ) 

Inserting Equation ( 4.4 ) in Equation ( 4.1 ) resulted in Equation ( 4.5 ), 

noting that the portion of Equation (4.1 ) enclosed in brackets is equal to 

E[X] = Jl for a normal distribution. 



fv] 1S10 3

S
·3 10 -/Jl-1 001 0.3 -/cr - 3/ 

E~ = Jl . . dcr dJl 
- 90 2.7 10

2 
0.3

2 ( 4.5 ) 

Equation ( 4.5 ) rendered the solution E~] = 100. 

Inserting Equation ( 4.4 ) in Equation ( 4.2 ) resulted in Equation ( 4.6 ), 

noting that the portion of Equation ( 4.2 ) enclosed in brackets is equal to 

E[X2] = (Jl2 + cr2) for a normal distribution. 

fV-2] 1S10 3

J
.31..2 2) 1o-I~-100I O.3-1<J-31 

E ~ = \}l + cr· 2 • 2 dcr dJl 
90 2.7 10 0.3 

(4.6 ) 

Equation ( 4.6 ) produced E~2] = 10025.68. Using the above two 

solutions and the fact that Var[X] = E[X2] - (E[X])2, it was determined that 

x - Normal Distribution (J.L=100.00, cr=5.07). 

The analytical two-dimensional solution was next compared with 
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simulated results from Crystal Ball. First, it was necessary to decide how many 

iterations were required for the two-dimensional Monte Carlo simulations. 

Twenty preliminary simulations were run using a normal distribution (Jl=100, 

0=3.33) (see Appendix B for additional distribution information). Seventy-five 

percent of the preliminary simulations stabilized by 200 iterations, 90% by 250 

iterations, and all simulations by 300 iterations, where stabilization was defined 

as the mean, median, standard deviation, and every fifth percentile changing 

less than 50/0 from one batch of 50 to the next. Based on these results, it was 

decided that the inner loop and the outer loop of the two-dimensional Monte 

Carlo simulations would contain 250 iterations. 



A two-dimensional simulation was performed for X using!! - Triangular 

Distribution (a=100, b=10) and 0' - Triangular Distribution (a=3, b=0.3). The 

simulated results were fit to a normal distribution as previously described. The 

fitted normal distribution (Jl=99.98, a=5.02) was very similar to the analytical 

solution (Jl=100.00, 0'=5.07); thus, the two-dimensional simulation results 

appeared to be consistent with the analytical solution. 

The same procedure was followed using g - Triangular Distribution 
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(a=103, b=10) and cr - Triangular Distribution (a=3, b=0.3). The resulting 

analytical solution was X - Normal Distribution (Jl=103, a=5.07). The two­

dimensional simulation produced a Normal (Jl=102.96, a=5.13). Once again, the 

analytical solutions compared well with the two-dimensional simulation results. 

The mean of the output distribution, 101.50, was calculated using the 

two-dimensional analytical solutions and Equation ( 4.3). To estimate the 

standard deviation of the output distribution, 200,000 hierarchical iterations were 

run assuming that X was distributed normally with a mean of 100.00 and a 

standard deviation of 5.07 half the time and with a mean of 103.00 and a 

standard deviation of 5.07 the other half of the time. The hierarchical output was 

best fit by a Normal Distribution (Jl=1 01.50, 0'=5.28). 

The hierarchical two-dimensional simulation was obtained by combining 

the two-dimensional simulation results. A normal distribution with a mean of 

101.47 and a standard deviation of 5.29 provided the most accurate fit. Thus, 

the analytical solutions and the simulated results were remarkably similar. 
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Example 2 

For the second illustration Z = X·Y, where X and Y, were normally 

distributed. X was defined as in Example 1 and Y - Normal Distribution (g, a), 

where one-third of the time g - Normal Distribution (Jl=100, a=3) and 

a - Uniform Distribution (min=2.9, max=3.1) and two-thirds of the time 

g - Lognormal Distribution (Jl=104, a=4) and (j - Uniform Distribution (min=2.5, 

max=3.0). 

The two-dimensional solutions were obtained for Y in the same manner 

as those for X in Example 1. The two-dimensional problem for g - Normal 

Distribution (Jl=100, a=3) and a - Uniform Distribution (min=2.9, max=3.1) was 

solved fi rst. 

Equations ( 4.7 ) and ( 4.8 ) contain the probability density function for the 

normal distribution and the uniform distribution respectively (see Appendix B for 

additional distribution information). 

-(Y-J.ll 

f{y) = 1 . e 2,,2 where -00 :s;; y :s;; 00 

.J21t o a 
( 4.7) 

1 
g(y) = ., where min::; y ::; max 

max-min 
(4.8 ) 

Inserting Equations ( 4.7 ) and ( 4.8 ) into Equation ( 4.1 ) resulted in 

Equation ( 4.9 ), noting that the portion of Equation ( 4.1 ) enclosed in brackets is 

equal to E[Y] = Jl for a normal distribution. 
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00 3.1 [1 ij!-10of )( 1 ) 
Efy] = f f {j.t)..&. e - 23

2 dcr d~ 
-00 2.9 27t ·3 3.1- 2.9 

( 4.9 ) 

Equation ( 4.9 ) rendered the solution E[Y] = 100. 

Inserting Equations ( 4.7 ) and ( 4.8 ) in Equation ( 4.2 ) resulted in 

Equation ( 4.10 ), noting that the portion of Equation ( 4.2 ) enclosed in brackets 

is equal to E[y2] = (Jl2 + 0'2) for a normal distribution. 

( 4.10) 

Equation ( 4.10 ) produced E~2] = 10018.00. Using the above two 

solutions and the fact that Var[Y] = E[y2] - (E[y])2, it was determined that 

Y - Normal Distribution (Jl=100.00, 0'=4.24). 

The analytical two-dimensional solution was again compared with 

simulated results from Crystal Ball. The inner loop and the outer loop of the 

two-dimensional Monte Carlo simulations had 250 iterations. The simulated 

results were accurately fit by a normal distribution (Jl=99.97, 0'=4.34). The 

analytical solution appeared to be consistent with the two-dimensional 

simulation results as both distributions were similar. 

The same procedure was followed Y - (U,O'), where u- Lognormal 

Distribution (Jl=104, 0'=4) and 0' - Uniform Distribution (min=2.S, max=3.0). 

Equation ( 4.11 ) contains the probability density function for the 

lognormal distribution. The equations for JlLN and O'LN are given in Appendix B 

under the Lognormal Distribution. 



-{In (y }-~LN 1 
f(y)= 1 . e 2<JEN 

.J21t . cr . X LN 

where 0 ~ y ~ 00 ( 4.11 ) 

Inserting Equations ( 4. 11 ) and ( 4.8 ) into Equation ( 4.1 ) resulted in 

Equation ( 4.12 ). 

Efy] = f f 6.t) e 2.0.0384
2 dcr d~ 00 30 [ 1 ~-4.6441 )( 1 ) 

o 2.5 .J21t ·0.0384 . Jl 3.0 - 2.5 
( 4.12 ) 

Equation ( 4.12 ) rendered the solution E[Y] = 104. 

Inserting Equations ( 4.11 ) and ( 4.8 ) in Equation ( 4.2 ) resulted in 

Equation ( 4.13 ). 

Eb:2 ]= J J 4t 2 + cr2
) e - 2.0.0384

2 1 dcr d~ 00 3.0 [ 1 ~-4.6441 )( ) 

o 2.5 .J21t ·0.0384 . f.l 3.0 - 2.5 
( 4.13 ) 

Equation ( 4.13 ) produced E[Y2] = 10839.58. Using the above two 

solutions and the fact that Var[Y] = E[y2] - (E[y])2, it was determined that 

Y - Normal Distribution (Jl=104.00, cr=4.86). 

The two-dimensional simulation was accurately fit by a Normal 

58 

(Jl=1 03.81, cr=4.82). Once again, the analytical solutions compared well with the 

two-dimensional simulation results. 

The analytical solutions now reduced the second-order problem to a first-

order problem. In other words, Z was now characterized by four potential 

combinations of the PDF parameters for X and Y. Assuming that X and Y were 

stochastically independent and employing the relationship 



E[Z2] = Var[Z] + (E[Z])2, the E~] was computed using Equation ( 4.14 ) and the 

Var~] using Equation ( 4.15 ). 

Eg]=E~Y] 
= E~]· Err] 
= f..l x • f..l y 

Var~] = E~2 y2]_ (E~ y])2 

= E~2]. E[y2]_ f..l; . f..l~ 

= (Var~]+ E~f)· (Var[y]+ E[y]2)_ Jl; . Jl~ 

= (cr; + Jl;)' (cr~ + Jl~)- Jl; . Jl~ 
= cr2 . cr2 + II 2 . cr2 + II 2 . cr2 

x Y ~y x ~x y 

( 4.14 ) 

( 4.15 ) 

Equations ( 4.14 ) and ( 4.15 ) were used to obtain the hierarchical 

distributions for potential combinations of X and Y. For each of these 
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combinations, simulated data were fit to classic statistical distributions in Crystal 

Ball; in each situation the normal distribution fit the data well. The hierarchical 

distributions are given in Table 4-1. 

* ** Combination of X and V Distribution 

Xl and Y1 Normal Distribution (Jl=10,000, cr=661.32) 

X1 and Y2 Normal Distribution (Jl=10,400, cr=717.09) 

X2 and Y1 - - Normal Distribution (f..l=10,300, cr=669.55) 

X2 and Y2 Normal Distribution (Jl=10,712, 0=727.03) 

* x1 - Normal Distribution(J.1=100, 0'=5.07), x2 - Normal Distribution(J.1=103, 0'=5.07) 
** 

Y1 - Normal Distribution(J.1=100, 0'=4.24), Y2 - Normal Distribution(J.1=104, 0'=4.86) 

Table 4-1. Hierarchical Distributions for Potential Combinations of X and Y 
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The mean of the output distribution, 10420.67, was calculated using 

means from Table 4-1 and Equation ( 4.3). To estimate the standard deviation 

of the output distribution, 600,000 hierarchical iterations were run using the 

distributions in Table 4-1. The hierarchical output was accurately fit by a 

Lognormal Distribution (J.l=10,420.67, a=746.27). 

A hierarchical two-dimensional Monte Carlo simulation was run using 250 

iterations for both the inner and outer loop. A lognormal distribution with a mean 

of 10,421.93 and a standard deviation of 746.54 provided the most accurate fit; 

thus the analytical solutions and the simulated results were again remarkably 

similar. 



Chapter 5 

DESCRIPTION OF DATA 

Body Weight Data 

Many researchers use point estimates for body weight, such as those in 

Table 5-1 obtained from EPA's Exposure Factors Handbook (1990). The 

averages presented in Table 5-1 are derived from the second National Health 

and Nutrition Examination Survey (NHANES II) conducted from 1976 to 1980. 

Average Male Average Female Average Body Weight 
Age Group Body Weight Body Weight for Males and Females 

(yrs) (kg} (kg) Combined (kg} 
<3 11.9 11.2 11.6 
3 to 6 17.6 17.1 17.4 
o to 6 14.8 14.2 14.5 
6 to 9 25.3 24.6 25.0 
9 to 12 35.7 36.2 36.0 
12 to 15 50.5 50.7 50.6 
15 to 18 64.9 57.4 61.2 
18 to 25 73.7 60.6 67.2 
25 to 35 78.7 64.2 71.5 
35 to 45 80.8 67.1 74.0 
45 to 55 81.0 67.9 74.5 
55 to 65 78.8 67.9 73.4 
65 to 75 74.8 66.6 70.7 
18 to 45 - 64 -
18 to 75 78.1 65.4 71.8 

Table 5-1. Body Weights Presented in EPAls Exposure Factor Handbook 
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The third National Health and Nutrition Examination Survey (NHANES III) 

has since been completed. NHANES III included the examination of 30,818 

individuals from 1988 to 1994 (NCHS, 1994, 1996). The participants ranged 

from 2 months to 90 years of age. 

Although NHANES III is more recent, several risk assessors continue to 

use body weights from NHANES II (Brainard and Burmaster, 1992; Finley et al., 

1994; Burmaster and Crouch, 1997; Balthis, 1998). Based on a 1994 review by 

Finley et al. the NHANES II study represents the most complete and reliable 

body weight data for the U.S. Figure 5-1 presents a comparison of body weight 

distributions between NHANES II and III by age class. These comparisons were 

limited to ages 12-69 because NHANES II had a more limited age range than 

NHANES III and National Ocean Service lacked infant data from NHANES II. 

Body weight distributions are fairly constant, as demonstrated in Figure 5-1, with 

a low level of uncertainty (EPA, 1994; Finley et al., 1994; Cohen et al., 1996; Rai 

et al., 1996). This research will use NHANES III because it is more recent, larger 

in scope, and doesn't seem to differ significantly from NHANES II. 
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o 50 100 150 200 0 50 

Weight (kg) 
100 150 200 

NHANES II 
NHANES III 

Figure 5-1. Observed Relative Frequency Distributions Comparing Body Weights from 
NHANES II (thin line) and NHANES III (thick line) by Age Class 

The following subgroups of the U.S. populations were oversampled during 

NHANES III in order to better understand their nutritional status: infants from two 

months to five years old, adults over 60 years old, black Americans, and 
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Mexican-Americans (NCHS, 1994). To account for this oversampling, a random 

sample of 7,500 individuals was selected based on proportions of the U.S. 

population in each race, gender, and age class. This subgroup was used to 

model a single distribution for all body weights. 

In addition, a random sample of over 14,000 individuals was selected to 

be representative of racial proportions in each gender and age class. These 

14,000 body weights were used to model age and gender-specific body weight 

distributions for hierarchical simulations. The age-specific body weight 

distributions for females and males can be seen in Figure 5-2 and Figure 5-3, 

respectively. S-distributions have been superimposed upon each histogram in 

these figures. The parameter values that characterize the S-distributions in 

Figure 5-2 and Figure 5-3 are contained in Table 5-2 and Table 5-3 

respectively. 
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Figure 5-2. Observed Relative Frequency Distributions of NHANES III Female Body 
Weights by Age Class with Fitted S-Distributions Superimposed (see Table 5-2 for 
parameter values) 
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Figure 5-3. Observed Relative Frequency Distributions of NHANES III Male Body Weights 
by Age Class with Fitted S-Distributions Superimposed (see Table 5-3 for parameter 
values) 
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Class a g h Median 
Ages 1-2 0.37573 0.5 2.5 12.03760 
Ages 3-5 3.09031 0.8 0.9 17.16166 
Ages 6-11 0.06033 0.2 2.2 30.38003 
Ages 12-19 0.42865 0.8 1.0 56.56892 
Ages 20-29 0.75949 0.8 0.9 62.12824 
Ages 30-39 0.16128 0.7 1.1 67.65988 
Ages 40-49 0.34464 0.8 1.0 68.75156 
Ages 50-59 0.06321 0.6 1.9 72.20282 
Ages 60-69 0.09037 0.7 1.7 69.11739 
Ages 70-79 0.45518 1.0 1.2 65.73622 
Ages 80+ 0.10536 0.8 2.0 59.83721 

Table 5-2. S-Oistribution Parameter Values Characterizing Female Body Weights by Age 
Class 

Class a 9 h Median 
Ages 1-2 0.45927 0.6 2.6 12.56484 
Ages 3-5 1.26019 0.8 1.1 17.33495 
Ages 6-11 0.59251 0.8 1.0 30.43149 
Ages 12-19 0.36377 0.9 1.1 61.70202 
Ages 20-29 0.33824 0.7 0.9 74.59208 
Ages 30-39 0.68023 0.8 0.9 78.92429 
Ages 40-49 0.34207 0.8 1.0 81.99774 
Ages 50-59 0.15322 0.9 1.5 84.06716 
Ages 60-69 0.09441 0.8 1.9 82.68983 
Ages 70-79 0.06477 0.6 2.4 77.93952 
Ages 80+ 0.13576 0.9 1.8 70.93637 

Table 5-3. S-Oistribution Parameter Values Characterizing Male Body Weights by Age 
Class 

Consumption Data 

Estimating seafood consumption can be a difficult task due to 

interindividual variability, age-dependent consumption rates, and the infrequent 

consumption of seafood (Rupp, 1980; EPA, 1997c). In the early 1970s the Tuna 

Research Institute and the National Marine Fisheries Service commissioned 
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NPD Research, Inc., to conduct a seafood consumption survey with these 

problems in mind (Rupp et al., 1980; Stanford Research Institute, 1980; Ruffle et 

al., 1994). According to a 1980 Stanford Research Institute (SRI) review and two 

1994 reviews, the 1973-1974 survey conducted by NPD Research is the most 

reliable source of data on U.S. fish consumption (Stanford Research Institute, 

1980; Finley et al., 1994; Ruffle et al., 1994). EPA (1997c) used NPD data in the 

Report to Congress as a major long-term study characterizing dietary intake of 

seafood. Over 7,650 families (23,213 individuals), from the 9,950 families 

originally contacted, completed the survey. Each month from September 1973 

to August 1974 fish consumption data were collected from one-twelfth of the 

participants for a one month period. The survey collected demographic 

information, consumption date, species consumed, amount consumed, and 

whether the seafood was recreationally caught or commercially purchased. 

SRI (1980) determined that the survey was conducted appropriately, but 

an absence of documentation concerning the questionnaire, coding, and quality 

control procedures makes it difficult to confirm this claim. Two possible sources 

of bias in the NPD database are that no one member households were surveyed 

and data were only retained for individuals who consumed fish (940/0 of 

population) (Stanford Research Institute, 1980). 

Seafood consumption seems to be more correctly recalled than most 

other food consumption (EPA, 1997c). It is particularly advantageous to be 

studying lobster consumption because most individuals remember eating lobster, 

as opposed to their recollection of other seafood consumption. 
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Seafood consumption rates are dependent upon gender and body weight, 

and body weight is dependent on age (EPA, 1994). Previous studies using the 

NPD data have adopted the following three age classes to characterize seafood 

consumption: infants (1-11 years old), teens (12-18 years old), and adults (19-

98 years old) (Rupp, 1980; Rupp et a/., 1980; Ruffle et a/., 1994). Ruffle et al. 

(1994) regard the NPD data as appropriate for use in Monte Carlo simulations. 

One potential use is the development of age and gender-specific consumption 

rate distributions for hierarchical simulations. 

Both the infant and teen lobster consumption patterns were comparable 

between genders. Thus, neither infant nor teen distributions were gender­

specific. Adult lobster consumption patterns did differ between genders; 

consequently, gender-specific consumption distributions were obtained for 

adults. During the observation period, 641 individuals in the NPD survey 

consumed Northern lobster (see Appendix C). Age and gender-specific lobster 

consumption is displayed in Figure 5-4. S .. distributions have been 

superimposed upon each histogram in this figure. The parameter values that 

characterize the S-distributions in Figure 5-4 are contained in Table 5-4. 

Distributions were modeled using grams of lobster consumed per month due to a 

superior fit. Thus, the random values obtained from these distributions were 

multiplied by the appropriate constant to obtain grams of lobster consumed per 

day. 

The teen, adult female, and adult male data did have one flaw in that 

large proportions of each data set consisted of identical values. It is highly 
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suspicious that the majority of individuals in each age and gender class 

consumed equivalent amounts of lobster. For example, 60% of the adult 

females consumed exactly 150 g of lobster with each lobster meal. Using the 

fact that approximately four and a half pounds of live lobster yield one pound of 

edible meat, this corresponds to consuming a one and a half pound lobster for 

adult female meals. This is most likely the result of NPD participants reporting 

that they consumed a particular size lobster (e.g., small, average, or large) with a 

meal. To help account for this lack of variability each teen and adult lobster 

consumption rate was replaced by randomly selecting a value from a uniform 

distribution centered at the reported consumption rate. The uniform distribution 

for teen consumption rates extended half an ounce above and below each 

reported value, and the uniform distribution for adult consumption rates extended 

one ounce above and below each reported value. The consumption rates with 

the added variation are plotted in Figure 5-4. 



71 

Females & Males Age 1-11 Females and Males Age 12-18 
0.3 ..,.----------------. 0.3 ..,.------- - ---------, 

0.2 0.2 

0.1 0.1 
>-
U 
s::: 
CD ::s 0.0 0.0 
tT 0 100 200 300 400 500 0 100 200 300 400 500 
CD 
~ 

II. 
CD Females Age 19-98 Males Age 19-98 
> 0.3 0 .3 
;. 
ca -CD 
a: 0.2 0 .2 

0.1 0 .1 

0.0 ~-.b:1!l,..l.il...LLl:;:l::!:t::L':~~~.I:.b--l 0.0 +-U~J,...U-li-4Ll.dLb;O.~~~-' 
o 100 200 300 400 500 o 100 200 300 400 500 

Northern Lobster Consumption (g/month) 

Figure 5-4. Observed Relative Frequency Distributions of Northern Lobster Consumption 
by Consumer Gender and Age Class with Fitted S-Distributions Superimposed (see Table 
5-4 for parameter values) 

Class ex g h Median 
Females & Males Age 1-11 0.16405 1.1 1.3 102.15685 
Females & Males Age 12-18 0.01890 0.7 1.7 117.56379 
Females Age 19-98 0.01419 0.7 2.5 156.85875 
Males Age 19-98 0.06519 0.9 1.1 193.94634 

Table 5-4. S-Distribution Parameter Values Characterizing Northern Lobster Consumption 
by Gender and Age Class 

The infant and teen distributions seem to fit the data reasonably well, but 

the adult female and male distributions lack the extreme peak seen in the data. 

Eleven classic distributions were fit to the data using Decisioneering's Crystal 
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Ball Version 4.0c. Crystal Ball calculated distribution parameters using 

maximum-likelihood estimators (Sargent and Wainwright, 1996). The classic 

statistical distributions resulted in adult female and male consumption 

distributions similar to those observed in Figure 5-4. 

The distribution fit may be improved by dividing both the adult female and 

the adult male consumption rates into two separate components. Consumption 

rates for adult females were separated into those above and those below 180 

g/month. The adult male consumption rates were divided at 250 g/month. Each 

of these groups was fit to a distribution, and the resulting distributions more 

accurately resembled the adult female and adult male consumption data as 

evidenced by Figure 5-5 and Figure 5-6. The parameter values for the 

S-distributions in these figures are provided in Table 5-5. 
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Figure 5-5. Lobster Consumption for Adult Females modeled with two S-Distributions 
(see Table 5-5 for parameter values) 
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Figure 5-6. Lobster Consumption for Adult Males modeled with two S-Distributions (see 
Table 5-5 for parameter values) 

Class a g h Median 

Adult Females consuming 
0.04000 1.1 3.0 141 .15835 

under 180 _g/month 
Adult Females consuming 

0.00580 0.2 2.8 307.08436 
over 180 g/month 
Adult Males consuming 

0.03294 1.1 3.0 179.17789 
under 250 g/month 
Adult Males consuming 

0.00353 0.0 2.5 413.48989 
over 250 g/month 

Table 5-5. S-Distribution Parameter Values Characterizing Lobster Consumption Using 
Two Distributions for Adult Females and Adult Males 

It is noted that the tails of the two S-distributions overlap in both Figure 5-

5 and Figure 5-6. The tails are simply a characteristic of the distributions. The 

problem was considered to be negligible as the overlap is for such a small 

portion of the curves. 

When an adult female or adult male was selected in a hierarchical Monte 

Carlo iteration, then the proportion of consumption values in each of the two 
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groups was used to select one of the two distributions to characterize age and 

gender-dependent consumption rates. Eighty-four percent of the adult females 

consumed less than 180 g of lobster per month, and 86% of the adult males 

consumed less than 250 g/month. 

The difference in exposure from hierarchical Monte Carlo simulations as a 

result of modeling adult female consumption and adult male consumption with 

either one or two distributions is presented in Figure 5-7. A more in depth 

explanation of the hierarchical simulation process is found in Chapters 3 and 6. 

Although the distributions in Figure 5-5 and Figure 5-6 fit the adult consumption 

data more accurately, the distributions in Figure 5-4 were used to characterize 

consumption for adult females and adult males in all subsequent simulations as 

negligible differences are seen in Figure 5-7. In addition, the single distribution 

in Figure 5-4 most likely depicts true lobster consumption more correctly, as 

lobsters vary in weight and individuals consume different lobster parts and 

portions. 
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Figure 5-7. Empirical Distributions from Hierarchical Monte Carlo Simulations Using a 
Single Distribution (solid line) and Two Distributions (dashed line) to Characterize Lobster 
Consumption for Both Adult Females and Adult Males 

Contaminant Data 

The contaminant data to be used for this dissertation are from a 

comprehensive survey of trace elements in seafood (Hall et al. , 1978). The 

National Marine Fisheries Service collected tissues for 204 species of finfish , 

Mollusca, and Crustacea from numerous U.S. coastal locations for this survey. 

At the time of the survey, these 204 species constituted approximately 95% of 

the total volume of consumed seafood. Each sample was analyzed for 15 

contaminants, including mercury. 

The Environmental Protection Agency used the NMFS trace element data 

to characterize mercury concentrations for marine species in the Mercury Study 

Report to Congress (1997c). EPA (1997c) concluded that mercury 

concentrations in the database were comparable to levels obtained in more 
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recent studies, even though the NMFS data were primarily collected in the 

1970s. 

Distributions of mercury concentrations in the most frequently consumed 

seafood may be developed using the NMFS survey of trace elements. Table 5-

6 shows some of the most commonly consumed species (EPA, 1997b, 1997c). 

Number Mean 
Seafood Common Name Scientific Name Sampled (ppm) 

Albacore Tuna Thunnus a/a/unga 131 0.264 
Canned Tuna Skipjack Tuna Katsuwonus pe/amis 70 0.136 

Yellowfin Tuna Thunnus a/bacares 115 0.218 
Alaska Shrimp (Sidestripe) Panda/opsis dispar 26 0.042 
Brown Shrimp Penaeus aztecus 63 0.048 

Shrimp 
Ocean Shrimp Panda/us jordani 12 0.053 
Pink Shrimp Penaeus duorarum 48 0.031 
Pink Shrimp (Northern) Panda/us borealis 76 0.024 
White Shrimp Penaeus setiferus 99 0.054 

Pollock Alaska Pollock Theragra cha/cogramma 145 0.066 
Chinook Salmon {King) Oncorhynchus tshawytscha 265 0.063 
Chum Salmon (Keta) Oncorhynchus keta 138 0.030 

Salmon Coho Salmon (Silver) Oncorhynchus kisutch 173 0.038 
Pink Salmon Oncorhynchus gorbuscha 94 0.019 
Sockeye Salmon (Red) Oncorhynchus nerka 148 0.027 

Cod 
Atlantic Cod Gadus marhua 134 0.114 
Pacific Cod Gadus macrocephalus 122 0.127 

Clams 
Hard Clam Mercenaria mercenaria 157 0.034 
Soft Clam Mya a rena ria 33 0.027 
Fourspot Flounder Para/ichthys ob/ongus 72 0.090 
Gulf Flounder Paralichthys albigutta 40 0.147 
Southern Flounder Paralichthys lethostigma 42 0.078 

Flounder 
Summer Flounder Paralichthys dentatus 59 0.127 
Windowpane Flounder Scophthalmus aquosus 59 0.151 
Winter Flounder Pleuronectes americanus 172 0.066 
Witch Flounder Glyptocepha/us cynogjossus 71 0.083 
Yellowtail Flounder Pleuronectes ferrugineus 114 0.067 
Blue Crab Callinectes sapidus 57 0.123 

Crab 
Dungeness Crab Cancer magister 51 0.173 
King Crab Paralithodes camtschaticus 62 0.071 
Tanner Crab Chionoecetes bairdi 49 0.102 

Scallops Sea Scallop (Smooth) Placopecten magellanicus 104 0.101 

Table 5-6. Number Sampled and Mean Mercury Concentration for the Most Frequently 
Consumed Marine Species in the NMFS Survey of Trace Elements 
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The individual species were combined into the general seafood groups 

listed in the first column of Table 5-6, as most consumers are not familiar with 

the particular species of fish and shellfish. EPA (1997b, 1997c) combined 

species in a similar manner. Histograms of the mercury concentrations for these 

groups are presented in Figure 5-8 through Figure 5-16. Each histogram has 

been superimposed with a classic statistical distribution which characterizes the 

mercury concentrations. The statistical distributions and parameter values 

associated with each seafood group are displayed in Table 5-7. 

These distributions were obtained by entering the actual contaminant data 

into Decisioneering's Crystal Ball Version 4.0c. Crystal Ball calculated 

distribution parameters using maximum-likelihood estimators (Sargent and 

Wainwright, 1996). Eleven classic statistical distributions were compared using 

standard goodness-ot-fit tests such as the Kolmogorov-Smirnov test and the 

Anderson-Darling test, which assess the fit between a distribution and the actual 

data values (Sargent and Wainwright, 1996; Palisade Corporation, 1997b). The 

Kolmogorov-Smirnov test put more weight on the fit in the mid-range of the 

distribution, whereas the Anderson-Darling test placed more importance on the 

fit in the tails of the distribution (Sargent and Wainwright, 1996; Palisade 

Corporation, 1997b). Graphs of the actual contaminant values superimposed 

with the fitted distributions were also used to compare potential distributions. 

Figure 5-8 demonstrates that S-distributions could have been used to 

model mercury concentrations, but classic statistical distributions were fit to the 

data at the request of NOS. In addition, the classic distributions more accurately 
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fit data where most of the values were at or near a concentration of zero (Le., 

shrimp, pollock, clams, flounder, and crab). 

The Extreme Value, Logistic, and Weibull distributions were truncated in 

the left tail at zero to prevent negative concentrations. The probability density 

functions and parameters that characterize each statistical distribution are 

provided in Appendix B. 
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Figure 5-8. Observed Relative Frequency Distribution of Tuna with Fitted Extreme Value 
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parameter values) 
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Figure 5-9. Observed Relative Frequency Distribution of Shrimp with Fitted Weibull 
Distribution Superimposed (see Table 5-7 for parameter values) 
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Figure 5-10. Observed Relative Frequency Distribution of Pollock with Fitted Exponential 
Distribution Superimposed (see Table 5-7 for parameter values) 
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Figure 5-11. Observed Relative Frequency Distribution of Salmon with Fitted Extreme 
Value Distribution Superimposed (see Table 5-7 for parameter values) 
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Figure 5-12. Observed Relative Frequency Distribution of Cod with Fitted Extreme Value 
Distribution Superimposed (see Table 5-7 for parameter values) 
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Figure 5-13. Observed Relative Frequency Distribution of Clams with Fitted Extreme Value 
Distribution Superimposed (see Table 5-7 for parameter values) 

0.3 -y----------------------, 

~ 
0 
C 0.2 
eI) 
~ 
e-
el) 
a.. 

LL. 
eI) 

> .. 
0.1 as 

Q) 
a: 

0.0 ~JL~~~MU~~:Ji[:O~~~;::;;;c~=-=J 
0.0 Q1 Q2 Q3 Q4 0.5 

Mercury Concentration (ppm) 

Figure 5-14. Observed Relative Frequency Distribution of Flounder with Fitted 
Exponential Distribution Superimposed (see Table 5-7 for parameter values) 
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Figure 5-15. Observed Relative Frequency Distribution of Crab with Fitted Weibull 
Distribution Superimposed (see Table 5-7 for parameter values) 
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Figure 5-16. Observed Relative Frequency Distribution of Scallops with Fitted Logistic 
Distribution Superimposed (see Table 5-7 for parameter values) 

82 



83 

Group Distribution and Parameters 

Extreme Value(mode=0.15191, scale=0.11288) 

Tuna or 

S-Distribution(a=40.53566, g=0.8, h=1.0, median=0.18934) 

Shrimp Weibull(location=-0.00013, scale=0.03373, shape=O. 71878851) 

Pollock Exponential(rate=15.15789) 

Salmon Extreme Value(mode=0.02486, scale=0.02482) 

Cod Extreme Value(mode=O.08223, scale=0.06286) 

Clams Extreme Value(mode=0.01698, scale=0.02397) 

Flounder Exponential(rate=11.03533) 

Crabs Weibu 1I(location=-O. 00099, scale=O. 12235, shape= 1 .15059144) 

Scallops Logistic(mean=O.10486, scale=0.02240) 

Table 5-7. Distributions and Parameter Values Characterizing Mercury Concentrations in 
the Most Frequently Consumed Seafood Groups 

The NMFS survey of trace elements includes 642 Northern lobsters (see 

Appendix D) sampled primarily from the eight sites displayed in Figure 5-17. 

The association between mercury concentration and lobster weight is displayed 

in Figure 5-18. Throughout the U.S., a lobster must weigh at least one pound to 

be legally harvested, and in addition, Maine imposes an upper harvest limit of 

four pounds. The 642 lobsters from the NMFS data range in weight from less 

than one pound to nearly 20 pounds, therefore to be practical only the 507 

lobsters that weighed between 0.4 kg (0.9 pounds) and 1.8 kg (4.0 pounds) were 

used for these research analyses. Figure 5-19 displays the lobster weight 

versus the mercury concentration for the 507 lobsters studied. 
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Figure 5-17. Sampling Sites for Northern Lobsters in the National Marine Fisheries Service 
Survey of Trace Elements 
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For these research analyses four weight classes, based on the weight 

classes typically used in commercial sales, will be adopted to form weight­

specific mercury concentration distributions. The four classes will be 

distinguished as follows: small (0.9 Ibs. ~ Weight < 1 ~ Ibs.), regular 

(1 % Ibs. ~ Weight < 134 Ibs.), large (1 34 Ibs. ~ Weight < 2Y2 Ibs.), and jumbo 
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(2Y2 Ibs. ~ Weight < 4 Ibs.). The weight-specific mercury concentrations can be 

seen in Figure 5-20. S-distributions have been superimposed upon each 

histogram in this figure. The parameter values that characterize the 

S-distributions in Figure 5-20 are contained in Table 5-8. 
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Figure 5-20. Observed Relative Frequency Distributions of Mercury Concentrations by 
Northern Lobster Weight Class with Fitted 5-Distributions Superimposed (see Table 5-8 
for parameter values) 

Class a 9 h Median 
Small 4.56876 0.4 1.5 0.36062 
Regular 9.59494 0.8 1.4 0.41088 
Large 2.87699 0.5 2.9 0.48445 
Jumbo 2.61099 0.5 2.3 0.68915 

Table 5-8. 5-Distribution Parameter Values Characterizing Mercury Concentration by 
Northern Lobster Weight Class 

87 



Chapter Overview 

Chapter 6 

COMPARISON OF METHODS 

This chapter contains a comparison of the five methods used to 

characterize mercury exposure from the consumption of Northern lobster. All of 

the exposures in this chapter apply to the general population; some additional 

scenarios and sub-groups of the general population are discussed in Chapter 7. 

It is easy to become confused when comparing so many methods; 

therefore, a brief outline of this chapter is provided below for the benefit of the 

reader. 

Point Estimates .............................................................................. 89 

Traditional Monte Carlo Simulations .............................................. 90 

Hierarchical Monte Carlo Simulations ............................................ 94 

Two-Dimensional Monte Carlo Simulations .................................. 99 

Hierarchical Two-Dimensional Monte Carlo Simulations .............. 111 

Discussion of Methods ................................................................... 117 

Uncertainty Analysis ...................................................................... 118 
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Point Estimates 

Two point estimates of Equation ( 3.1 ) were performed as a part of this 

research; one estimated the central tendency and one the upper percentiles. 

The central tendency was estimated using the median values (0.478 f,.lg/g for 

mercury concentration, 4.932 glday for consumption rate, and 66.85 kg for body 

weight). The resulting exposure was 0.035 f,.lg/kg/day. 

The upper tail of exposure was estimated using the 95th percentile for 

mercury concentration and consumption rate because they appear in the 

numerator of Equation ( 3.1 ) and the 5th percentile for body weight because it 

appears in the denominator. Thus, the following values were used: 1.042 f,.lg/g 

for mercury concentration, 12.712 g/day for consumption rate, and 16.4 kg for 

body weight. The resulting exposure was 0.808 f,.lglkg/day. 

Just as point estimates only use a few values to characterize exposure, 

the sensitivity measure applied here simply uses a few values to characterize 

uncertainty and ignores all of the additional sample information. 

A Sensitivity Index was formed using Equation ( 6.1 ), where Emin is the 

minimum exposure and Emax is the maximum exposure using the 1st and the 99th 

percentiles of the actual data for a variable of interest and the median values for 

all remaining variables (Hoffman and Gardner, 1983). It takes the form: 

Sensitivity Index = 1 _ Em;n 

Emax 
( 6.1 ) 
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The 1st and 99th percentiles were used in place of the minimum and maximum 

values because Equation ( 6.1 ) is very sensitive to extreme values. With the 

large size of the data sets that were used to characterize the input distributions, it 

was more likely to have extreme minimum and maximum values. The 1 st and 

99th percentiles removed the effect of extreme outliers while still accounting for 

nearly all of a variable's range. The most sensitive variables will have a 

Sensitivity Index near one, while less sensitive variables have an Index value 

closer to zero. 

The most sensitive variable was consumption rate with a Sensitivity Index 

of 0.98, then mercury concentration with a Sensitivity Index of 0.94, and finally 

body weight with a Sensitivity Index of 0.91. Although the sensitivity of the 

variables was ranked, the Sensitivity Indices did not differ too much for all three 

input variables. Thus all of the input variables seemed to evoke a significant 

effect on exposure. 

The Sensitivity Index does lend a rough idea of uncertainty, but the 

correlation coefficients will provide a more accurate characterization of 

uncertainty as discussed earlier. Before the correlation coefficients can be 

computed, it is necessary to obtain the simulated data; thus, the other measures 

of uncertainty will be discussed after the simulations. 

Traditional Monte Carlo Simulations 

First, it was necessary to decide how many iterations were required for the 

traditional Monte Carlo simulation. Preliminary simulations were run using the 
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gamma distribution (location=O.O, scale=0.17, shape=3.06) to model mercury 

concentration, the logistic distribution (mean=5.42, scale=1.59) to model lobster 

consumption, and the logistic distribution (mean=62.36, scale=12.80) to model 

body weight (see Appendix B for additional distribution information). These 

distributions were obtained by entering the actual data values into Palisade's 

BestFit Version 2.0d. BestFit generates and compares 22 classic statistical 

distributions in a manner similar to that described for Crystal Ball in the 

Contaminant Data section of Chapter 5 (Palisade Corporation, 1997b). 

Distribution parameters were calculated using maximum-likelihood estimators, 

and then potential distributions were compared using the Kolmogorov-Smirnov 

test, the Anderson-Darling test, and graphs of the actual values superimposed 

with the fitted distribution (Palisade Corporation, 1997b). Fifty preliminary 

simulations using the selected distributions were carried out using Palisade's 

@ Risk Version 3.5. All preliminary simulations stabilized by 3,500 iterations, 

where stabilization was defined as the mean, median, standard deviation, and 

every fifth percentile changing less than 3% from one batch of 100 to the next. 

Based on these results, it was decided that 10,000 iterations would be used for 

the traditional Monte Carlo simulation because the additional time and computer 

memory requirements associated with a few thousand iterations were negligible. 

A diagram of the traditional Monte Carlo process specific to this problem is given 

in Figure 6-1. 



Select mercury 
concentration (em) 

No 

Begin new iteration 

Select rate of 
consumption (CR) 

Compute exposure using 
Equation (3.1) 

Traditional Monte Carlo 
simulation completed 

Select body weight 
(BW) 

Figure 6-1. Traditional Monte Carlo Simulation Procedure Specific to This Research 
Problem 

The traditional Monte Carlo simulation resulted in 0.038, 0.161, 0.351, 

and 0.498 Jlg/kg/day for the 50th
, 95th

, 99th
, and 99.5th percentiles respectively. 

The central tendency point estimate is comparable to the median (50th 
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percentile), yet the upper percentile point estimate is over five times greater than 

the 95th percentile from the traditional simulation. The distribution of simulated 

exposures is given in Figure 6-2. The simulated exposures were fit to classic 

statistical distributions using Crystal Ball and SAS (SAS Institute, Inc., Cary, NC). 

SAS became necessary with the large number of exposures from the two-

dimensional and hierarchical two-dimensional simulations. Using Crystal Ball, a 

lognormal distribution (Jl=0.0587, 0'=0.0759) most accurately fit the data. This is 
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logical as the multiplication of several input variables tends to produce an output 

variable with lognormal characteristics, regardless of the input variable 

distributions (Burmaster and Hull, 1997). The empirical distribution of the 

exposure data is provided in Figure 6-3, where the probability associated with an 

exposure represents the percent of simulated exposures below the referenced 

exposure. 
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Figure 6-2. Exposures Resulting from the Traditional Monte Carlo Simulation 
Superimposed with a Lognormal PDF 
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Figure 6-3. Empirical Distribution from Traditional Monte Carlo Simulation Data 

Approximately 12.8% of the simulated results surpassed EPA's Reference 

Dose (0.1 Jlg/kg/day), yet only 0.5% surpassed ATSDR's Minimal Risk Level (0.5 

Jlg/kg/day) . 

Hierarchical Monte Carlo Simulations 

As with the traditional simulation, 10,000 iterations were performed for the 

hierarchical Monte Carlo simulation. Again, this is a bit conservative, but the 

additional time and computer memory requirements were negligible for the 

additional iterations. 

A consumer age class and gender along with a lobster weight class had to 

be selected at the beginning of each hierarchical simulation iteration. The age 

was chosen based on the proportion of individuals in each age class from the 

1993 Current Population Survey (NCHS, 1996), and each gender had an equal 
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probability of selection. The probability of selecting a lobster weight class was 

based on the proportion of lobsters from each weight class that were caught in 

Maine waters during 1997 as reported by the Maine Lobster Institute at the 

University of Maine {personal communication}. 

A diagram of the hierarchical Monte Carlo process specific to this problem 

is given in Figure 6-4. 

Select lobster weight 

Select weight­
specific mercury 

concentration (Cm) 

No 

Select age and 
gender-specific rate 
of consumption (CR) 

Compute exposure using 
Equation (3.1) 

Yes 

Hierarchical Monte Carlo 
simulation completed 

Select age and 
gender-specific 

body weight (8W) 

Figure 6-4. Hierarchical Monte Carlo Simulation Procedure Specific to This Research 
Problem 

The hierarchical Monte Carlo simulation resulted in 0.032, 0.117, 0.213, 

and 0.256 fJ,g/kg/day for the 50th
, 95th

, 99th
, and 99.Sth percentiles respectively. 



96 

The central tendency point estimate is comparable to the median (50th 

percentile), yet the upper percentile point estimate is almost seven times greater 

than the 95th percentile from the hierarchical simulation. The distribution of 
/ 

exposures from the simulation is given in Figure 6-5. Using Crystal Ball, a 

lognormal distribution (Jl=O.0454, cr=O.0503) most accurately fit the data. The 

empirical distribution of the exposure data is provided in Figure 6-6. 
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Figure 6-5. Exposures Resulting from the Hierarchical Monte Carlo Simulation 
Superimposed with a Lognormal PDF 
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Figure 6-6. Empirical Distribution from Hierarchical Monte Carlo Simulation Data 

The correlation between lobster consumption rate and consumer body 

weight should be stronger with the hierarchical simulation than the traditional 

simulation. The utility of the hierarchical method is evident as the correlation 

coefficient between consumption rate and body weight was 0.32 using the 

hierarchical simulation data, yet only -0.01 using the traditional simulation data. 

The relationship between consumption rate and body weight from both the 

traditional and hierarchical simulations is displayed in Figure 6-7 and Figure 6-8, 

respectively. 
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Figure 6-8. Association Between Northern Lobster Consumption Rate and Consumer 
Body Weight using Hierarchical Monte Carlo Simulation Data with the Linear Regression 
Line Superimposed 

The distribution of exposures from the hierarchical simulation has less 

probability in the higher exposures than the distribution from the traditional 

simulation, as evidenced by Figure 6-9. For example, only 7.5% of the 

98 
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hierarchical simulation exposures exceeded EPA's Reference Dose (0.1 

Jlg/kg/day), whereas 12.8% of the traditional simulation exposures did. And 

fewer than 0.1 % of the hierarchical simulation results surpassed ATSDR's 

Minimal Risk Level (0.5 Jlg/kg/day), yet 0.5% of the traditional simulation results 

exceeded this level. In other words, approximately one of every 200 traditional 

simulation iterations surpassed ATSDR's Minimal Risk Level, whereas only 

about one of every 3,500 hierarchical simulation iterations did. 
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Figure 6-9. A Comparison of Exposure PDFs from Traditional and Hierarchical Simulation 
Data 

Two-Dimensional Monte Carlo Simulations 

Again it was first necessary to first decide how many iterations were 

required for the two-dimensional simulation. The preliminary simulations 
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previously described in the Traditional Monte Carlo Simulations section were 

used to estimate the required number of inner loop iterations. Fifty-eight percent 

of the preliminary simulations stabilized by 1 ,700 iterations and 880/0 by 1 ,800 

iterations. Thus based on these results, it was decided that the inner loop of the 

two-dimensional Monte Carlo simulation would contain 1 ,800 iterations. 

Estimating the number of iterations required for the outer loop was more 

involved. First, it was decided that only mercury concentration and lobster 

consumption rate would have uncertainty, as uncertainty associated with body 

weight is negligible (EPA, 1994; Finley et al., 1994; Cohen et al., 1996; Rai et al., 

1996). 

It was also assumed that the uncertainty due to limited sample sizes was 

manifest in the location, rather than the shape, of the input distribution. Thus, 

the S-distribution would have uncertainty associated only with the initial value of 

the differential equation, where the median was used for the initial value in this 

research. 

A parametric bootstrap technique was employed to estimate the 

uncertainty associated with the median (Frey and Rhodes, 1996, 1998; 

Werckman and Wainwright, 1998). The parametric bootstrap quantifies the 

sampling error introduced by calculating a statistic from a limited sample size. 

The n sample data points, x={X1,X2 , ••• ,xn }, are assumed to be a random 

sample from some unknown probability distribution that will be referred to as the 
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parent distribution or simply P. A, the parameter of interest, is some function or 

characteristic of the parent distribution such that A = f(P). 

The unknown parent distribution, P, is estimated by P , the distribution 

that best characterizes the sample data points, x. The sample data points may 

also be used to calculate the statistic ~, an estimate of the parameterA . 

The parametric bootstrap determines the effect if x were n different 

... 
random samples from P. Thus, each bootstrap consists of drawing n random 

samples from the parent distribution, P, and computing ~ from the sample. A 

large number, nb, of bootstrap samples are selected, and the statistic of interest 

is calculated from each bootstrap sample. The nb estimates are then used to 

characterize the uncertainty introduced by calculating the statistic from a limited 

sample size of n. 

For this research, the parent distribution was obtained by fitting the n data 

values to the most appropriate classical distribution. One thousand bootstraps of 

n random samples were then drawn from this parent distribution, and the median 

was computed from each bootstrap sample. The combined bootstrap samples 

thus resulted in 1 ,000 median estimates, all of which were combined to form a 

distribution of medians. The normal distribution accurately modeled the median 

values each time. Each distribution of medians was used to characterize the 

location uncertainty associated with limited sample sizes in the two-dimensional 

simulation. The process is reviewed in Figure 6-10. The bootstrap technique 
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was performed using the complete data set for the two-dimensional simulation 

and also subsets of the data for the hierarchical two-dimensional simulation. 

No 

" 
Estimate a parent distribution, P , 

using the n data points 

" 
Randomly select n sample pOints from P 

Calculate the median of the n sample points 

Combine all median estimates to form a 
distribution of medians 

Figure 6-10. The Bootstrap Procedure Used to Characterize Uncertainty in the Median 

The parent distributions, trials per sample, and the resulting distributions 

used to represent median uncertainty for mercury concentration and lobster 

consumption rate are listed in Table 6-1 (see Appendix 8 for additional 

distribution information). 80th the parent and median uncertainty distributions 

were obtained using Crystal Ball in the same manner described in the 

Contaminant Data section of Chapter 5. 



Trials per Median 
Parent Distribution Sample Uncertainty 

Mercury Concentration 
Weibull 

507 
Normal 

(0.039, 0.526, 1.68) (0.462, 0.00239) 

Lobster Consumption Logistic 
638 

Normal 
Rate (164.88,48.22) (164.700, 0.828) 

Table 6-1. Median Uncertainty Distributions Resulting from Bootstrapping Mercury 
Concentration and Consumption Rate Distributions 

The number of trials necessary for stabilization in the outer loop of the 

two-dimensional simulation was now estimated using the median uncertainty 

distributions. The distribution of medians for teen consumption had the most 

variability with a standard deviation and mean of approximately 13 and 124 
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glmonth respectively. Consequently, fifty simulations using a normal distribution 

(mean=124, standard deviation=13) were performed with @Risk (see Appendix 

B for additional distribution information). Stabilization was defined as the mean, 

median, standard deviation, and every fifth percentile changing less than 1.50/0 

from one batch of 100 to the next. Stabilization was defined more conservatively 

here than for the estimation of the inner loop sample size because only one 

distribution was used to estimate the outer loop sample size. Sixty percent of the 

simulations stabilized by 600 iterations, 84% by 700 iterations, and 920/0 by 800 

iterations. Based on these results, it was decided that the outer loop of the two-

dimensional Monte Carlo simulation would contain 800 iterations. 

Each two-dimensional Monte Carlo simulation now resulted in 1,440,000 

total iterations. Due to computational limitations, each two-dimensional and 

hierarchical two-dimensional simulation had to be performed in 16 batches with 
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an outer loop sample size of 50 and the full inner loop sample size of 1 ,800. 

Every batch required approximately 30-45 minutes to run, extract, and save the 

results. Over 200 megabytes were necessary to store the data and simulation 

information from each two-dimensional Monte Carlo simulation. A diagram of 

the two-dimensional Monte Carlo process specific to this problem is given in 

Figure 6-11. 



Select mercury 
concentration (Cm) 

No 

No 

Begin new outer loop iteration 

Select median values to be 
used as parameters in 

S-distributions 

Begin new inner loop iteration 

Select rate of 
consumption (CR) 

Compute exposure using 
Equation (3.1) 

Yes 

Yes 

Two-dimensional Monte 
Carlo simulation completed 

Select body weight 
(8W) 

Figure 6-11. Two-Dimensional Monte Carlo Simulation Procedure Specific to This 
Research Problem 
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Each inner loop in a two-dimensional simulation produced a distribution of 

exposures. In the literature, the different inner loop distributions are often 

referred to as alternate realizations. Figure 6-12 contains a sample of ten 

alternate realizations of exposure from the two-dimensional simulation. The 
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uncertainty is evident as the curves are not identical. Exposures at every fifth 

percentile (i.e., 0.00, 0.05, 0.10, ... , 1.00), called icosatiles, were calculated and 

stored for each inner loop. This resulted in 800 exposure estimates at each 

icosatile. In Figure 6-13, the median exposure at each icosatile is given as a 

solid line, and ninety-five percent of the exposures at each icosatile lie between 

the dashed lines. Thus 95 percent of the realizations fall within the 95th 

percentile boundaries. Figure 6-13 may be interpreted in one of the following 

two ways: 95 percent of the alternate realizations had somewhere between 12 

and 14% of the individuals exceeding an exposure of 0.10 J..lg/kg/day, or 95 

percent of the alternate realizations resulted in a 90th percentile somewhere 

between 0.11 and 0.12 J..lg/kg/day. The maximum exposures (probability=1.00 in 

Figure 6-13) were not graphed as the values were too large. The median of the 

maximum exposures was 1.15 J..lg/kg/day, and the upper and lower 95th 

percentiles were 1.97 and 0.71 J..lg/kg/day respectively. 
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Figure 6-12. A Sample of Ten Alternate Realizations from the Two-Dimensional Monte 
Carlo Simulation 
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Figure 6-13. The Median Empirical Distribution (solid line) with 95th Percentiles (dashed 
lines) for the Two-Dimensional Monte Carlo Simulation 

The two-dimensional simulation resulted in 0.037, 0.161, 0.362, and 

0.497 J.1g/kglday for the 50th
, 95th

, 99th
, and 99.5th percentiles respectively. It is 

interesting that these exposure percentiles are nearly identical to those obtained 
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from the traditional Monte Carlo simulation. In addition to the percentiles, the 

distribution of exposures from this simulation was essentially identical to the 

distribution of exposures from the traditional simulation, which is logical since the 

two-dimensional simulation method only differs from the traditional method by 

distinguishing between variability and uncertainty. Using SAS, it was determined 

that the two-dimensional exposures were most accurately fit by a lognormal 

distribution (~=0.0574, 0"=0.0747). 

Approximately 12.60/0 of the simulated results surpassed EPA's Reference 

Dose (0.1 ~g/kg/day), yet only 0.50/0 exceeded ATSDR's Minimal Risk Level (0.5 

~g/kg/day). 

The uncertainty associated with limited sample sizes was not great in the 

two-dimensional simulation as evidenced by the close fit of the 95th percentile 

bands in Figure 6-13. This is not surprising as the sample sizes were very large. 

Over 500 mercury concentrations were used, with an analytical cost of $75 per 

lobster and additional costs for collecting the lobsters. Over 600 individuals who 

consumed Northern lobster were located, but recall that these 600 individuals 

came from a sample of 23,213 seafood consumers. 

In order to see how the two-dimensional simulation performs with more 

uncertainty, a second two-dimensional simulation was run using reduced sample 

sizes. The entire process was repeated assuming that only 25 mercury 

concentrations were obtained and only 50 lobster consumers were located. The 
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distributions of medians used to characterize uncertainty associated with the 

limited sample sizes in this simulation are given in Table 6-2. 

Trials per Median 
Data Distribution Sample Uncertainty 

Reduced Mercury Weibull 
25 Normal 

Concentration Data Set (0.039, 0.526, 1.68) (0.462, 0.0592) 

Reduced Consumption Logistic 
50 Normal 

Rate Data Set (164.88, 48.22) (163.187,9.477) 

Table 6-2. Median Uncertainty Distributions Resulting from Bootstrapping the Reduced 
Data Sets for Mercury Concentration and Consumption Rate 

Figure 6-14 contains a sample of ten alternate realizations of exposure 

from this two-dimensional simulation. The uncertainty from the reduced sample 

sizes is evident as the curves are considerably different. Once again, exposures 

at the icosatiles were calculated and stored for each inner loop. In Figure 6-15, 

the median exposure at each icosatile is given as a solid line, and ninety-five 

percent of the exposures at each icosatile lie between the dashed lines. Thus 95 

percent of the realizations fall within the 95th percentile boundaries. Figure 6-15 

may be interpreted in one of the following two ways: 95 percent of the alternate 

realizations had somewhere between 8 and 170/0 of the individuals exceeding an 

exposure of 0.10 Ilg/kg/day, or 950/0 of the alternate realizations resulted in a 90th 

percentile somewhere between 0.09 and 0.14 Ilglkg/day. The maximum 

exposures (probability=1.00 in Figure 6-15) were not graphed as the values 

were too large. The median of the maximum exposures was 1.12 Jlg/kg/day, and 

the upper and lower 95th percentiles were 2.08 and 0.65 Jlglkg/day respectively. 
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Figure 6-14. A Sample of Ten Alternate Realizations from the Two-Dimensional Monte 
Carlo Simulation Using Reduced Sample Sizes 
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Figure 6-15. The Median Empirical Distribution (solid line) with 95th Percentiles (dashed 
lines) for the Two-Dimensional Monte Carlo Simulation Using Reduced Sample Sizes 

The median curve in Figure 6-15 is nearly identical to the median curve in 

Figure 6-13. As expected, the prominent difference resulting from the reduced 

sample size simulation was the expansion of the 95th percentile boundaries. 
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The two-dimensional simulation using the reduced data sets resulted in 

0.036,0.161,0.359, and 0.493 J..lg/kg/day for the 50th
, 95th

, 99th
, and 99.Sth 

percentiles respectively. These exposure percentiles are nearly identical to 

those obtained from the traditional and the two-dimensional simulation using the 

complete data sets. In addition to the percentiles, the distribution of exposures 

from this simulation was essentially identical to the distribution of exposures from 

the complete data two-dimensional simulation. The two-dimensional exposures 

from the reduced sample sizes were most accurately fit by a lognormal 

distribution (J..l=0.OS80, a=0.0803). 

Approximately 12.6% of the simulated results exceeded EPA's Reference 

Dose (0.1 J..lg/kg/day), and only 0.5% surpassed ATSDR's Minimal Risk Level 

(0.5 J..lg/kg/day). 

Hierarchical Two-Dimensional Monte Carlo Simulations 

As with the two-dimensional simulations, each hierarchical two­

dimensional Monte Carlo simulation had 1 ,800 inner loop iterations and 800 

outer loop iterations. A more complete explanation of how these sample sizes 

were obtained is given in the section Two-Dimensional Monte Carlo Simulations. 

Once again, it was also assumed that uncertainty due to limited sample 

sizes was manifest in the location of the input distributions. Thus, the 

uncertainty associated with the median was estimated using the same 

parametric bootstrap technique previously described. For each dependent 

distribution (e.g., small lobsters or female adult consumption), one thousand 
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bootstraps of n values from the parent distribution were obtained, where n was 

the number of data points used to estimate the parent distribution. The 1,000 

median estimates were combined to form a distribution of medians; the 

distribution of medians was used to characterize location uncertainty associated 

with limited sample sizes in the hierarchical two-dimensional simulation. The 

normal distribution accurately modeled the median values each time. The 

process is outlined in Figure 6-10. 

The parent distributions, trials per sample, and the resulting distributions 

used to represent median uncertainty for mercury concentrations by lobster 

weight class are listed in Table 6-3 and the corresponding information for lobster 

consumption rate by gender and age class are listed in Table 6-4 (see Appendix 

B for additional distribution information). Both the parent and median uncertainty 

distributions were estimated with Crystal Ball. 

Trials per Median 
Parent Distribution Sample Uncertainty 

Small Lobsters Gamma 
167 

Normal 
(0.04, 0.16, 2.35) (0.359, 0.00816) 

Regular Lobsters Logistic 
120 

Normal 
(0.43, 0.13) (0.435, 0.00840) 

Large Lobsters Logistic 
103 

Normal 
(0.49,0.14) (0.499, 0.00492) 

Jumbo Lobsters Logistic 
117 

Normal 
(0.70, 0.18) (0.711,0.0115) 

Table 6-3. Median Uncertainty Distributions Resulting from Bootstrapping Mercury 
Concentration Distributions by Lobster Weight Class 
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Parent Trials per Median 
D istri bution Sample Uncertainty 

Logistic Normal 
Infant Consumption 

(103.76, 25.23) 
42 

(103.744,7.518) 

Teen Consumption 
Logistic 

32 
Normal 

(122.19, 41.45) (124.318, 13.112) 

Female Adult Consumption 
Logistic 

316 
Normal 

(155.07, 40.44) (156.527, 0.964) 

Male Adult Consumption 
Extreme Value 

251 
Normal 

(165.23,78.03) (193.754,2.824) 

Table 6-4. Median Uncertainty Distributions Resulting from Bootstrapping Lobster 
Consumption Rate Distributions by Gender and Age Class 

Each hierarchical two-dimensional Monte Carlo simulation resulted in 

1 ,440,000 total iterations. Due to computational limitations, each simulation had 

to be performed in 16 batches with an outer loop sample size of 50 and the full 

inner loop sample size of 1 ,800. Every batch required approximately 30-45 

minutes to run, extract, and save the results. Over 200 megabytes were 

necessary to store the data and simulation information from each hierarchical 

two-dimensional Monte Carlo simulation. 

A diagram of the hierarchical two-dimensional process specific to this 

research is given in Figure 6-16. 
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Figure 6-16. Hierarchical Two-Dimensional Monte Carlo Simulation Procedure Specific to 
This Research Problem 

Figure 6-17 contains a sample of ten alternate realizations of exposure 

from this hierarchical two-dimensional simulation. The alternate realizations 



115 

differ due to the uncertainty from limited sample sizes. Once again, exposures 

at the icosatiles were stored for each inner loop. In Figure 6-18, the median 

exposure at each icosatile is given by a solid line, and ninety-five percent of the 

exposures at each icosatile lie between the dashed lines. Thus 95 percent of the 

realizations fall within the 95th percentile boundaries. Figure 6-18 may be 

interpreted in one of the following two ways: 95 percent of the alternate 

realizations had somewhere between 7 and 10% of the individuals exceeding an 

exposure of 0.10 Jlg/kg/day, or 95% of the alternate realizations resulted in a 90th 

percentile somewhere between 0.085 and 0.10 Jlg/kg/day. The maximum 

exposures (probability=1.00 in Figure 6-18) were not graphed as the values 

were too large. The median of the maximum exposures was 0.48 J-lglkg/day, and 

the upper and lower 95th percentiles were 0.80 and 0.33 Jlglkglday respectively . 
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Figure 6-17. A Sample of Ten Alternate Realizations from the Hierarchical Two­
Dimensional Monte Carlo Simulation 
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Figure 6-18. The Median Empirical Distribution (solid line) with 95th Percentiles (dashed ' 
lines) for the Hierarchical Two-Dimensional Monte Carlo Simulation 

The median curve in Figure 6-18 is nearly identical to the empirical 

distribution for hierarchical simulation exposures in Figure 6-6. 

The hierarchical two-dimensional simulation resulted in 0.033, 0.122, 

0.216, and 0.265 J.lg/kg/day for the 50th
, 95th

, 99th
, and 99.5th percentiles 

respectively. These exposure percentiles are nearly identical to those obtained 

from the hierarchical Monte Carlo simulation. In addition to the percentiles, the 

distribution of exposures from this simulation was essentially identical to the 

distribution of exposures from the hierarchical simulation, which is logical as the 

hierarchical aspect of these methods alters the exposure distributions in a similar 

manner. Using SAS, the hierarchical two-dimensional exposures were most 

accurately fit by a lognormal distribution (J.l=0.0468, a=0.0514). 
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Approximately 8.2% of the simulated results exceeded EPA's Reference 

Dose (0.1 J.1g/kg/day), and fewer than 0.1 % surpassed ATSDR's Minimal Risk 

Level (0.5 J.1g/kg/day). 

Discussion of Methods 

Each of the methods in this chapter used to characterize exposure is 

appropriate under certain circumstances. As previously discussed, the ideal 

situation is to utilize as simple a method as possible without oversimplification of 

the problem. 

The upper percentile point estimate exceeded all risk values as given in 

Chapter 2; consequently, a potential problem was identified and the use of 

probabilistic methods was justified. 

The traditional Monte Carlo simulation did not characterize exposure as 

accurately as the hierarchical Monte Carlo simulation because of the strong 

dependencies among the input variables. Significant differences, particularly in 

the higher exposures, were noted in simulation results from these two methods 

as discussed earlier in this chapter in the Hierarchical Monte Carlo Simulations 

section. In brief, the hierarchical Monte Carlo method resulted in fewer 

exposures exceeding the risk values. 

The two-dimensional Monte Carlo simulations did not contribute notable 

improvements as the uncertainty associated with limited sample sizes was 

negligible. In addition, the results were quite similar to the traditional Monte 

Carlo simulation results. 
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Likewise, the hierarchical two-dimensional Monte Carlo technique did not 

produce significantly different results from the hierarchical Monte Carlo method 

as result of negligible uncertainty. 

Thus as a result of strong dependencies among input variables and a low 

uncertainty from limited sample sizes, the hierarchical Monte Carlo method was 

most appropriate for this research. 

Uncertainty Analysis 

The sensitivity analysis was discussed in the section Point Estimates. 

With the simulated data, it is now possible to carry out the remaining uncertainty 

analysis. 

Table 6-5 through Table 6-10 display the different correlation coefficients 

for each of the simulation methods. A rank of importance for each input variable, 

with 1 being the most important, is given in parentheses following the correlation 

coefficients in the tables. Recall that the larger the absolute value of the 

correlation coefficient, the stronger the relationship between the input and output 

variable. 

The correlation coefficients obtained with the traditional Monte Carlo 

simulation data are found in Table 6-5. 
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Mercury Consumption 
Concentration Rate Body Weight 

Pearson Correlation Coefficient 0.41 (2) 0.33 (3) -0.42 (1) 

Spearman Rank-Order 
0.62 (1) 0.56 (2) -0.45 (3) 

Correlation Coefficient 

Partial Correlation Coefficient 0.48 (2) 0.39 (3) -0.50 (1) 

Partial Rank-Order Correlation 
0.88 (1) 0.85 (2) -0.81 (3) 

Coefficient 

Table 6-5. Correlation Coefficients for Each Input Variable and Exposure Using Traditional 
Monte Carlo Simulation Data (Rank of Importance Given in Parentheses) 

Both the Pearson correlation coefficients and the partial correlation 

coefficients resulted in the same ranks of importance for the input variables, yet 

these ranks differed from those obtained using the Spearman rank-order 

correlation coefficients and the partial rank-order correlation coefficients. As 

mentioned in the Methods Chapter, both the Pearson and partial correlation 

coefficients test for linear relationships, where the Spearman and partial rank-

order correlation coefficients use ranks to test for monotonic relationships. 

In order to determine which relationships were linear and which were not, 

each of the relationships was fit with linear and non-linear functions given in 

Table 6-6. Each of the non-linear functions in Table 6-6 can be converted to 

the form of the linear function, thus linear regression techniques may still be 

applied. The different fits were compared using the coefficient of determination 

(~), which gives the percent of the variation that can be explained by the fitted 

curve; consequently, better fits have higher f values. In every instance, the 

power transformation provided the best fit among the non-linear functions. 



Linear y=a+b·x 

Exponential y = a. ebx 

Log base 10 y = a + b . log{x) 

Log base e y = a + b .In{x) 

Power y=a·xb 

Table 6-6. Linear and Non-Linear Functions 

Exposure was assigned as the independent variable (y) and the input 

variable of interest as the dependent variable (x), although the relationship 

remains unchanged even if the independent and dependent variables were 

switched. 
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The coefficient of determination between exposure and mercury 

concentration was 0.17 for both the linear and power functions. For exposure 

and lobster consumption rate, ~ was 0.11 for both the linear and power 

functions. These relationships can essentially be considered linear as no 

significant improvement was observed with the non-linear curves. Although the 

ranks of importance differed using the different correlation coefficients, the rank 

of importance for mercury concentration was always higher than that for 

consumption rate. Thus, all correlation coefficients maintained a consistent 

relationship between these two linear associations. 

The coefficient of determination between exposure and body weight was 

0.18 for the linear and 0.39 for the power function. The significant improvement 

in ~ for the power function means that the non-linear curve characterized this 



relationship more accurately than the linear model. Both the linear and non­

linear curves can be seen in Figure 6-19. 
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These results were not surprising as an examination of Equation ( 3.1 ) 

reveals that exposure has a linear relationship with each of the input variables, 

except body weight. Exposure and body weight are inversely related, or in other 

words, they share a non-linear relationship that is characterized using a power 

function with an exponent of -1 . 

Recall that ranks from the Spearman and partial rank-order correlation 

coefficients are more accurate and reliable than those obtained using the 

Pearson and partial correlation coefficients for non-linear, monotonic 

relationships. Based on both the Spearman and partial rank-order correlation 

coefficients, the input variable of most importance was mercury concentration, 

followed by consumption rate, and finally body weight. The partial rank-order 

correlation coefficients showed that all three of the input variables contribute 

similar amounts to the overall uncertainty. 

It should be noted that eight points ranging from 1.01 - 2.61 J,lg/kg/day 

were not plotted in Figure 6-19. All of these outlying points were from iterations 

using a body weight of approximately 7 kg, the minimum acceptable body weight. 
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Figure 6-19. Association Between Exposure and Body Weight using Traditional Monte 
Carlo Simulation Data with the Linear Regression Line (solid line) and the Regression Line 
from the Power Function (dashed line) Superimposed 

The correlation coefficients obtained with the hierarchical Monte Carlo 

simulation data are found in Table 6-7. 

Mercury Consumption 
Concentration Rate Body Weight 

Pearson Correlation Coefficient 0.56 (1) 0.29 (3) -0.39 (2) 

Spearman Rank- Order 
0.67 (1) 0.41 (2) -0.32 (3) 

Correlation Coefficient 

Partial Correlation Coefficient 0.69 (1) 0.59 (3) -0.66 (2) 

Partial Rank- Order Correlation 
0.86 (1) 0.81 (2) -0.77 (3) 

Coefficient 

Table 6-7. Correlation Coefficients for Each Input Variable and Exposure Using 
Hierarchical Monte Carlo Simulation Data (Rank of Importance Given in Parentheses) 

Both the Pearson correlation coefficients and the partial correlation 

coefficients resulted in the same ranks of importance for the input variables, yet 

these ranks differed from those obtained using the Spearman rank- order 
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correlation coefficients and the partial rank-order correlation coefficients. Thus, 

linear and non-linear functions were again fit to each of the relationships. 

The coefficient of determination between exposure and mercury 

concentration was 0.31 for both the linear and power functions. For exposure 

and lobster consumption rate, f was 0.08 for the linear function and 0.09 for the 

power function. Once again, these relationships can be considered linear as no 

significant improvement was observed with the non-linear functions. Although 

the ranks of importance differed using the different correlation coefficients, the 

rank of importance for mercury concentration was always higher than that for 

consumption rate. Thus, all correlation coefficients maintained a consistent 

relationship between these two linear associations. 

The coefficient of determination between exposure and body weight was 

0.15 for the linear and 0.24 for the power function. The significant improvement 

in f for the power function means that the non-linear curve characterized this 

relationship more accurately than the linear model; thus ranks from the 

Spearman and partial rank-order correlation coefficients are more accurate and 

reliable than those obtained using the Pearson and partial correlation 

coefficients. Both the linear and non-linear curves can be seen in Figure 6-20. 

Based on both the Spearman and partial rank-order correlation coefficients, the 

input variable of most importance was mercury concentration, followed by 

consumption rate, and finally body weight. All three of the input variables 

contributed similar amounts to the overall uncertainty as evidenced by the partial 
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rank-order correlation coefficients. These results agree with those obtained 

from the traditional Monte Carlo simulation data. 
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Figure 6-20. Association Between Exposure and Body Weight using Hierarchical Monte 
Carlo Simulation Data with the Linear Regression Line (solid line) and the Regression Line 
from the Power Function (dashed line) Superimposed 

A slight depression in the general shape of the points is observed 

between approximately 20 and 50 kg in Figure 6-20. This is not observed in 

Figure 6-19; consequently, some new feature of the hierarchical simulation is 

most likely responsible. The age and gender-specific body weight distributions 

were first investigated. It is noted that males and females between the ages of 

six and eleven are most likely to have a body weight between 20 and 50 kg as 

seen in Figure 5-2 and Figure 5-3. The age and gender-specific consumption 

rates come from the same distribution for all children under twelve years of age. 

In Equation ( 3.1 ), higher body weights result in reduced exposure. Thus, the 

depression is most likely attributable to the fact that body weights for children 

ages 6-11 are two to three times greater than those for children ages 1-5, while 
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lobster consumption rates for children ages 1-11 come from the same 

distribution. 

This is an indication of the advantages of hierarchical simulations. With 

smaller and smaller class sizes for age-specific body weights and age-specific 

consumption rates, the slight depression observed in Figure 6-20 would most 

likely disappear. 

The correlation coefficients obtained using results from two-dimensional 

Monte Carlo simulations are found in Table 6-8 and Table 6-9. 

Mercury Consumption 
Concentration Rate Body Weight 

Pearson Correlation Coefficient 0.41 (2) 0.34 (3) -0.45 (1) 

Spearman Rank-Order 
0.62 (1) 0.55 (2) .. 0.45 (3) 

Correlation Coefficient 

Partial Correlation Coefficient 0.50 (2) 0.43 (3) -0.53 (1) 

Partial Rank-Order Correlation 
0.88 (1) 0.85 (2) -0.80 (3) 

Coefficient 

Table 6-8. Correlation Coefficients for Each Input Variable and Exposure Using Two­
Dimensional Monte Carlo Simulation Data from the Complete Data Set (Rank of Importance 
Given in Parentheses) 

Mercury Consumption 
Concentration Rate Body Weight 

Pearson Correlation Coefficient 0.42 (2) 0.35 (3) -0.45 (1) 

Spearman Rank-Order 
0.63 (1) 0.54 (2) -0.44 (3) 

Correlation Coefficient 

Partial Correlation Coefficient 0.50 (2) 0.44 (3) -0.53 (1) 

Partial Rank-Order Correlation 
0.88 (1) 0.85 (2) -0.79 (3) 

Coefficient 

Table 6-9. Correlation Coefficients for Each Input Variable and Exposure Using Two­
Dimensional Monte Carlo Simulation Data from the Reduced Data Set (Rank of Importance 
Given in Parentheses) 
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Both the Pearson correlation coefficients and the partial correlation 

coefficients resulted in the same ranks of importance for the input variables, yet 

once again these ranks differed from those obtained using the Spearman rank­

order correlation coefficients and the partial rank-order correlation coefficients. 

The relationships among the variables were identical to those obtained using the 

traditional simulation data. Mercury concentration and lobster consumption rate 

had a linear association with exposure, while body weight had a non-linear, 

monotonic relationship with exposure. Thus ranks from the Spearman and 

partial rank-order correlation coefficients were used to evaluate uncertainty. 

Both the Spearman and partial rank-order correlation coefficients identified the 

input variable of most importance as mercury concentration, followed by 

consumption rate, and finally body weight. All three of the input variables 

contributed similar amounts to the overall uncertainty as evidenced by the partial 

rank-order correlation coefficients. 

Once again, the similarity among the traditional Monte Carlo and the two­

dimensional Monte Carlo was evident as all of these methods resulted in nearly 

identical correlation coefficients. 

The correlation coefficients obtained using results from hierarchical two­

dimensional Monte Carlo simulation are found in Table 6-10. 
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Mercury Consumption 
Concentration Rate Body Weight 

Pearson Correlation Coefficient 0.56 (1) 0.29 (3) -0.41 (2) 

Spearman Rank-Order 
0.66 (1) 0.41 (2) -0.34 (3) 

Correlation Coefficient 

Partial Correlation Coefficient 0.69 (1) 0.60 (3) -0.67 (2) 

Partial Rank-Order Correlation 
0.86 (1) 0.81 (2) -0.78 (3) 

Coefficient 

Table 6-10. Correlation Coefficients for Each Input Variable and Exposure Using 
Hierarchical Two-Dimensional Monte Carlo Simulation Data (Rank of Importance Given in 
Parentheses) 

Both the Pearson correlation coefficients and the partial correlation 

coefficients resulted in the same ranks of importance for the input variables, yet 

these ranks differed from those obtained using the Spearman rank-order 

correlation coefficients and the partial rank-order correlation coefficients. The 

relationships among the variables were identical to those obtained using the 

hierarchical simulation data. Mercury concentration and lobster consumption 

rate had a linear association with exposure, while body weight had a non-linear, 

monotonic relationship with exposure. Thus ranks from the Spearman and 

partial rank-order correlation coefficients were again used to evaluate 

uncertainty. Both the Spearman and partial rank-order correlation coefficients 

identified the input variable of most importance as mercury concentration, 

followed by consumption rate, and finally body weight. All three of the input 

variables contributed similar amounts to the overall uncertainty as evidenced by 

the partial rank-order correlation coefficients. 
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The similarity between the hierarchical Monte Carlo and hierarchical two-

dimensional Monte Carlo was evident as both methods resulted in nearly 

identical correlation coefficients. 

Both the Spearman and partial rank-order correlation coefficients from 

each of the simulation techniques resulted in mercury concentration as the input 

variable of most importance followed by consumption rate then body weight. But 

within each simulation method, the partial rank-order correlation coefficients did 

not differ much for all three input variables. 



Chapter 7 

ADDITIONAL SCENARIOS OF INTEREST 

Women of Childbearing Age 

As discussed in Chapter 2, the subgroup most sensitive to methylmercury 

toxicity consists of the unborn child; consequently, methylmercury exposure for 

women of childbearing age is of particular interest. A hierarchical simulation 

comprising only women of childbearing age (i.e., 15-44) was used to explore this 

scenario (EPA, 1997b). 

The histogram of exposures characterizing women of childbearing age is 

provided in Figure 7-1. The data were most accurately fit by a gamma 

distribution (L=O.0001, a=O.0206, ~=1.7065). EPA's Reference Dose (0.1 

fl9/kg/day) was exceeded by 3.3% of the simulated exposures, yet none of the 

simulated exposures surpassed ATSDR's Minimal Risk Level (0.5 fl9/kg/day). 

Recall that both the RfD and the MRL are intended to protect the most sensitive 

subgroups of the population. 
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Figure 7-1. Exposures Characterizing Women of Childbearing Age with the Fitted Gamma 
Distribution Superimposed 

Young Children 

In addition to the fetus, children are particularly sensitive to methylmercury 

toxicity through age four; consequently, methylmercury exposure for young 

children is of special interest (EPA, 1997b). A hierarchical simulation comprising 

only children ages 1-4 was used to explore this scenario. 

The histogram of exposures characterizing young children is provided in 

Figure 7-2. The data were most accurately fit by a lognormal distribution 

(Jl=0.1053, a=0.0998). EPA's Reference Dose (0.1 Jlglkg/day) was exceeded by 

38.2% of the simulated exposures, and 0.3% of the simulated exposures 

surpassed ATSDR's Minimal Risk Level (0.5 Jlg/kg/day). Recall that both of 

these risk values are intended to protect the most sensitive subgroups of the 

population. Although a surprisingly high proportion of iterations exceeded the 



RfD, it should be noted that this simulation characterized children ages one 

through four who consumed Northern lobster during a given month . 
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Figure 7-2. Exposures Characterizing Children Age 1-4 with the Fitted Lognormal 
Distribution Superimposed 

Distinct Monthly Consumption Patterns 
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The exposures resulting from the consumption of one lobster per month , 

two lobsters per month, three lobsters per month , and four lobsters per month 

are also of interest. These scenarios were explored using four distinct 

hierarchical simulations. A diagram of the hierarchical simulation process used 

to estimate exposure from the consumption of n lobsters per month is given in 

Figure 7-3. 



Select lobster weight 

No 

Select weight­
specific mercury 

concentration (Cmj) 

No 

Begin new iteration 

Select age and gender 

Assign a rate of 
consumption specific 
to age, gender, and 
lobster weight (CRj) 

Compute exposure using 
Equation (3.2) 

Yes 

Hierarchical Monte Carlo 
simulation completed 

Select age and 
gender-specific 

body weight (8W) 

Figure 7-3. Hierarchical Monte Carlo Simulation Procedure Used to Estimate Exposure 
from the Consumption of n Lobsters per Month 
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For these simulations, the age and gender-specific lobster consumption 

distributions were replaced with point estimates of consumption specific to age, 

gender, and lobster weight as seen in Table 7-1. Below each consumption rate 

is the size of the lobster used to calculate the consumption rate; these 
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consumption rates were obtained by examination of the age and gender-specific 

consumption rates. 

Small Regular Large Jumbo 
Lobster Lobster Lobster Lobster 

Females & Males 3.314 g/day - - -Age 1-11 (1.00 lb.) 
Females & Males 3.314 g/day 4.142 g/day 5.799 g/day 8.285 g/day 
Age 12-18 (1.00 lb.) (1.25 lb.) (1.75 lb.) (2.50 lb.) 
Females 3.728 g/day 4.971 g/day 6.628 g/day 9.942 g/day 
Age 19-98 (1.12Slb.) (1.50 lb.) (2.00 lb.) (3.00 lb.) 
Males 4.139 g/day 5.795 g/day 8.281 g/day 13.252 g/day 
Age 19-98 (1.249 lb.) (1.749 lb.) (2.499 lb.) (3.999 lb.) 

Table 7-1. Lobster Consumption Rates Specific to Age, Gender, and Lobster Weight 

Equation ( 3.2 ) was used to calculate exposure for simulations involving 

the consumption of more than one lobster. 

The histogram of exposures resulting from the consumption of one lobster 

per month is given in Figure 7-4. The data were most accurately fit by a 

lognormal distribution (Jl=0.0414, 0"=0.0383). EPA's Reference Dose (0.1 

Jlg/kg/day) was exceeded by 5.9% of the simulated exposures, yet none of the 

simulated exposures surpassed ATSDR's Minimal Risk Level (0.5 Jlg/kg/day). 



0.25 

0.20 
>-
U 
C 
Q) 
::s C'" 0.15 
Q) 
a-

LL 
Q) 
> 0.10 
;: 
as 
Q) 
a:: 

0.05 

0.00 
0.0 

" 
~ 
r" 

I'" 

~ 

. r!; \ 
I ~, 

, I'" 
1-

I- ~. 

134 

~ 
~ 

~ 
0.1 0.2 0.3 0.4 0.5 

Exposure ()lglkglday) 

Figure 7-4. Exposures Resulting from the Consumption of One Lobster per Month with 
the Fitted Lognormal Distribution Superimposed 

The histogram of exposures resulting from the consumption of two 

lobsters per month is given in Figure 7-5. The data were most accurately fit by a 

lognormal distribution (J.1=0.0819, cr=0.0558). EPA's Reference Dose (0.1 

J.1g/kg/day) was exceeded by 24.7% of the simulated exposures, while only 0.1 % 

of the simulated exposures surpassed ATSDR's Minimal Risk Level (0.5 

J.1g/kg/day) . 
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Figure 7-5. Exposures Resulting from the Consumption of Two Lobsters per Month with 
the Fitted Lognormal Distribution Superimposed 

The histogram of exposures resulting from the consumption of three 

lobsters per month is given in Figure 7-6. The data were most accurately fit by a 

lognormal distribution (JJ,=0.1226, 0'=0.0717). EPA's Reference Dose (0.1 

JJ,g/kg/day) was exceeded by 53.00/0 of the simulated exposures, while only 0.6% 

of the simulated exposures surpassed ATSDR's Minimal Risk Level (0.5 

JJ,g/kg/day). 
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Figure 7-6. Exposures Resulting from the Consumption of Three Lobsters per Month with 
the Fitted Lognormal Distribution Superimposed 

The histogram of exposures resulting from the consumption of four 

lobsters per month is given in Figure 7-7. The data were most accurately fit by a 

lognormal distribution (~=0.1613, cr=0.0872). EPA's Reference Dose (0.1 

~g/kg/day) was exceeded by 76.0% of the simulated exposures, while only 1.70/0 

of the simulated exposures surpassed ATSDR's Minimal Risk Level (0.5 

~g/kg/day). 
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Figure 7-7. Exposures Resulting from the Consumption of Four Lobsters per Month with 
the Fitted Lognormal Distribution Superimposed 

All four of the lognormal exposure distributions are overlaid in Figure 7-8 

below. 
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2 lobsters per month 
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4 lobsters per month 
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Figure 7-8. Lognormal Distributions of Exposure Resulting from the Consumption of One, 
Two, Three, and Four Lobsters per Month 

The importance of the risk value is evident from these analyses. The 

simulation for more than one lobster per month resulted in a large proportion of 

exposures exceeding EPA's Reference Dose; however, even the simulation for 

four lobsters per month did not result in a high percentage of exposures 

exceeding ATSDR's Minimal Risk Level. 



Chapter 8 

EXPOSURE FROM MULTIPLE SPECIES 

Almost all fish and shellfish contain at least trace amounts of 

methylmercury; consequently, in order to adequately characterize total 

methylmercury exposure it is necessary to consider multiple species. 

Distributions characterizing methylmercury concentrations are provided for the 

nine most frequently consumed marine species in the Contaminant Data section 

of Chapter 5. These nine species constitute approximately 75% of the total 

seafood consumption (Johnson and Dors, 1997). 

Annual consumption of the most frequently consumed species was 

estimated using information provided by Johnson and Don~ (1998) and Jacobs et 

al. (1998). The annual per capita consumption was 11.2 pounds per year for 

these nine species (Johnson and Dors, 1997). Annual consumption rates (see 

Table 8-1) for each age and gender class were calculated using U.S. population 

data and the annual per capita consumption for these species. 
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Annual 
Consumption Meals per Year 

Infants Age 1-11 6lbs/yr 24 4.0-oz meals/year 
Females Age 12-18 9lbs/yr 24 6.0-oz meals/year 
Males Age 12-18 10lbs/yr 24 6.7-oz meals/year 
Females Age 19-98 11 Ibs/yr 24 7.3-oz meals/year 
Males Age 1 9-98 14lbs/yr 24 9.3-oz meals/year 

Table 8-1. Approximate Annual Consumption of the Most Frequently Consumed Marine 
Species 

For this simulation it was assumed that each individual consumed two 

meals of the most frequently consumed species each month. Consequently, in 

order to characterize annual consumption each iteration in the simulation 

consisted of 24 meals. The probability of consuming a specific species for a 

meal was based on 1997 annual per capita consumption statistics for the U.S. 

population (Johnson and Dore, 1997). The percent of annual consumption 

among these nine species is provided in Table 8-2. A species is easily selected 

in Crystal Ball using a custom distribution with these percents (Sargent and 

Wainwright, 1996). 

Percent of Annual 
Species Consumption 
Tuna 28.57% 

Shrimp 22.320/0 
Pollock 14.29% 

Salmon 12.50% 

Cod 8.930/0 
Clams 4.46% 

Flounder 3.57% 

Crab 2.680/0 
Scallops 2.68% 

Table 8-2. Percent of Annual Consumption Among the Nine Most Frequently Consumed 
Marine Species 



A hierarchical simulation was used to characterize methylmercury 

exposure from the consumption of the most frequently consumed marine 

species. Exposure was calculated using Equation ( 3.2). A histogram of the 

simulated exposures resulting from consumption of the most frequently 

consumed marine species is given in Figure 8-1. The data were most 

accurately fit by a lognormal distribution (Jl=0.0257, a=0.0108). EPA's 
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Reference Dose (0.1 Jlg/kg/day) was exceeded by only 0.1 % of the simulated 

exposures, and none of the simulated exposures surpassed ATSDR's Minimal 

Risk Level (0.5 Jlg/kglday). The iterations that exceeded the RfD shared some 

interesting characteristics. First, the average body weight was 22.5 Ibs, with all 

weights less than 30 Ibs. These iterations also had a high proportion of tuna 

meals, the species with the greatest potential for high concentrations among the 

nine most frequently consumed species. Tuna meals constituted 40% of the 

seafood meals for these iterations versus 29% for all of the iterations. 
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Figure 8-1 . Exposures Resulting from the Consumption of the Most Frequently Consumed 
Marine Species with the Fitted Lognormal Distribution Superimposed 



Chapter 9 

CONCLUSIONS 

Seafood consumption is associated with documented health benefits, yet 

high levels of methylmercury exposure from seafood consumption present 

potential health risks. In order to weigh seafood consumption benefits properly 

against possible risks, methylmercury exposure was evaluated using several 

methods. 

As a part of this research a new simulation technique, the hierarchical 

two-dimensional Monte Carlo method, was developed. This method is most 

appropriate when dependencies among input variables are strong and the 

uncertainty from limited sample sizes is high. 

Each of the techniques used to characterize exposure is appropriate 

under certain circumstances: 

• Point estimates as a screening technique or if the cost of remediation 

is low, 

• Traditional simulations with weak dependencies among input variables 

and low uncertainty from limited sample sizes, 

• Hierarchical simulations with strong dependencies among input 

variables and low uncertainty from limited sample sizes, 



144 

• Two-dimensional simulations with weak dependencies among input 

variables and high uncertainty from limited sample sizes, and 

• Hierarchical two-dimensional simulations with strong dependencies 

among input variables and high uncertainty from limited sample sizes. 

A decision tree for these techniques is provided in Figure 9-1. 



No 

Use traditional Use Use 
Monte Carlo two-dimensional hierarchical 
method to Monte Carlo Monte Carlo 

characterize method to method to 
exposure characterize characte rize 

exposure exposure 

Figure 9-1. Decision Tree for Exposure Characteristic Methods 

Use pOint 
~-.. estimates to 

characterize 
exposure 

Use 
hierarchical 

two-dimensional 
Monte Carlo 
method to 

characterize 
exposure 
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The different methods were all employed to execute a detailed analysis of 

methylmercury exposure from the consumption of Northern lobster. 

Point estimates demonstrated that methylmercury exposure from Northern 

lobster consumption could potentially exceed current risk values; consequently, 

probabilistic methods were employed to further characterize exposure. 
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The most appropriate probabilistic method was the hierarchical simulation 

due to strong dependencies among input variables and negligible uncertainty 

given the large sample sizes. Seven and a half percent of the exposures from 

the hierarchical simulation exceeded EPA's Reference Dose (0.1 J.lg/kg/day) and 

fewer than 0.1 % surpassed ATSDR's Minimal Risk Level (0.5 Jlg/kg/day). 

A sensitivity analysis revealed that the most sensitive variable was lobster 

consumption rate, then mercury concentration, and finally body weight. Although 

the sensitivities were ranked, sensitivity indices from all three input variables 

were quite similar. Based on the Spearman and partial rank-order correlation 

coefficients, the greatest contribution to overall uncertainty was from uncertainty 

in mercury concentration, then lobster consumption, and finally body weight. But 

the partial rank-order correlation coefficients did not differ much for all three of 

the input variables. 

Three additional scenarios were explored using the lobster data. First, 

methylmercury exposure in women of childbearing age was characterized using 

a hierarchical Monte Carlo simulation. EPA's Reference Dose (0.1 Jlg/kg/day) 

was exceeded by 3.30/0 of the simulated exposures, yet none of the simulated 

exposures surpassed ATSDR's Minimal Risk Level (0.5 Jlg/kg/day). 

Next, methylmercury exposure was characterized for children between 

one and four years of age. EPA's Reference Dose was exceeded by 38.2% of 

the simulated exposures, and 0.3% of the simulated exposures surpassed 

ATSDR's Minimal Risk Level. 
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Finally, hierarchical simulations were used to explore the exposures 

resulting from the consumption of one, two, three, or four lobsters per month. 

EPA's Reference Dose was exceeded by 5.9% of the simulated exposures from 

the consumption of one lobster per month, 24.7% of the simulated exposures 

from the consumption of two lobsters per month, 53.00/0 of the simulated 

exposures from the consumption of three lobsters per month, and 76.00/0 of the 

simulated exposures from the consumption of four lobsters per month. However, 

none of the simulated exposures from the consumption of one lobster per month 

were greater than ATSDR's Minimal Risk Level, and the MRL was surpassed by 

only 0.1 % of the simulated exposures from the consumption of two lobsters per 

month, 0.60/0 of the simulated exposures from the consumption of three lobsters 

per month, and 1.7% of the simulated exposures from the consumption of four 

lobsters per month. 

Although an alarmingly high proportion of iterations exceeded the risk 

values in some of the scenarios, it should be remembered that these simulations 

characterized individuals who consumed Northern lobster during a given month. 

And this is a small proportion of the U.S. population, particularly when 

considering young children and teens. 

Distributions of mercury concentration for the nine most frequently 

consumed marine species were used in a hierarchical Monte Carlo simulation to 

characterize mercury exposure from multiple species. EPA's Reference Dose 

was exceeded by only 0.1 % of the simulated exposures, and none of the 

simulated exposures surpassed ATSDR's Minimal Risk Level. Again it should be 



remembered that this simulation was performed for the population consuming 

two meals of these species each month. 

Future Directions 
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The hierarchical, two-dimensional, and hierarchical two-dimensional 

Monte Carlo simulation techniques could benefit from a set of standard 

guidelines. Some guidelines are emerging for the traditional simulation, but the 

more advanced simulation techniques lack guidelines. As these advanced 

simulation techniques become more accepted it will be necessary to develop 

some "Rules of Thumb." For example, what constitutes "high" uncertainty from 

limited sample sizes and what is a "strong" dependency among input variables. 

The immediate future could also be used to improve the multiple species 

simulation. Better estimates of seafood consumption patterns and additional 

species could greatly benefit this simulation. 

Several federal agencies are currently collaborating to carry out the Fourth 

National Health and Nutrition Examination Survey (NHANES IV). As a part of 

this survey, the mercury concentration will be measured in hair and blood from 

several thousand individuals. Hair mercury concentrations provide a biological 

record of dietary exposure over a period of several months, while mercury 

concentrations in the blood account for more recent exposures. These 

biomarkers could be compared to exposures estimated using each participant's 

reported seafood consumption pattern. 
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These techniques could also be used to estimate exposure from 

additional species/contaminant combinations. Some examples might include the 

following: shark and mercury, swordfish and mercury, oysters and vibrio 

species, crabs and vibrio species, shrimp and salmonella, or clams and hepatitis. 

These methods should be applied beyond the exposure assessment for 

problems such as the identification of sources of methylmercury exposure, 

pharmacokinetic differences in the way individuals distribute and eliminate 

methylmercury, and the detrimental effects caused by different methylmercury 

exposures. 

Beyond these seafood safety applications, one can imagine countless 

potential research problems where these techniques would be beneficial. 



Appendices 



Appendix A 

S-Distribution Approximation 

Read a vector (v) containing values to be fit to the S-distribution with parameters g, hand 
a. 

v := READPRN ("C:females.txt") 

N = rows(v) 

N =699 

i =O .. N-l 

Sort the values into increasing order. 

v = sort(v) 

Define function to return true (1) if x is an integer or false (0) otherwise. 

is_int( x) = 1 if floor( x)=x 

o otherwise 

Function which returns quantiles for an array of samples (v) of size N. 

sample_quantile( num_samples, sample_array) : = qqo E--- 0 

Read in coefficient tables from files. 

cO = READPRN("eO_tab.pm") 
dO = READPRN ("dO_tab.pm" ) 
eI= READPRN ("eI_tab.pm") 
dl = READPRN ("dl_tab.prn") 
e2 = READPRN ("e2_tab.pm" ) 
d2 = READPRN ("d2_tab.pm" ) 

JlStand '= READPRN( "means.pm') 
ostand '= READPRN( "vars.pm') 

for ii E 1 .. num_samples - 1 

qq 

100 
ii·----

num_samples I 
k E--------·num_samp es 

100 

qq .. ":- sample arraYfl ( k) otherwise 
11 - oor 
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The tolerance level must be set low, but not too low, to use the Minerr function (play with 
this if Minerr is not working). 

TOL = 0.0000001 

findparams( J.l, (j , q) best_sa_far <--- 999999.0 

o 
save.;.-

o 
for j E 1 .. rows ( cO) - 1 

for k E 1 ., coIs( cO) - 1 

if cO. k7=O 
j, 

astand. k 
j, 

J.lStand. k 
d

' j, me lan.;- J.l - ~~~ 
a 

i SSE <c'- 0 
I 

for p E l .. raws(q) - 1 

1 
t<c-- In --~---

( 100) 
\P' rows (q) 

100 

2 
cO. k + cl. k·t + c2. k·t 

j, j, J, t - ~~~~~~~~~ 
2 3 

1 + dO. k·t + dl. k· t + d2. k't 
SSE.;.- SSE + q - median + ~~~~j~, ~~~j ,~~-j, 

I P 

I save 

mean( v) = 60.599370529 

var(v) = 160.39027886 

if SSE <best_sa_far 

best_sa_far <c-- SSE 

save <c'-
cO. 0 

J, 

median 

var(v) 

SSE 



inds . = findparams ( mean ( v) , var ( v) , sample_quantiles (N , v) ) 

These values are the a, g, h, median, variance, and SSE respectively. 

0.105358547 

inds= 

0.8 

2 

59.837211194 

160.39027886 

145.682017351 

The following files are used in the program above: 
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cO_tab.prn 

0 0 0.1 0.2 0.3 0.4 0.5 0.6 

0.5 -16.0782 -19.3456 -43.9177 -67.5421 -120.7135 0 0 

0.6 -14.1874 -16.1664 -29.5752 -50.0000 -64.8229 -89.4550 0 

0.7 -13.2792 -13.9004 -25.1160 -49.4289 -60.2234 -47.8074 -82.5436 

0.8 -12.4774 -12.4042 -22.1274 -39.8493 -26.9283 -30.1601 -41.7719 

0.9 -11.8214 -11.4243 -20.6917 -17.4161 -18.2573 -21.2805 -27.2799 

1.0 -22.5524 -24.6408 -12.6391 -12.9219 -14.1493 -16.3527 -20.0003 

1.1 -11.0149 -10.0768 -10.0791 -10.6350 -11.6767 -13.2922 -15.7286 

1.2 -8.6097 -8.4160 -8.6278 -9.1553 -9.9962 -11.2142 -12.9534 

1.3 -7.4102 -7.3959 -7.6338 -8.0893 -8.7687 -9.7147 -11.0151 

1.4 -6.6312 -6.6703 -6.8896 -7.2737 -7.8280 -8.5807 -9.5880 

1.5 -6.3959 -6.1134 -6.3031 -6.6251 -7.0822 -7.6929 -8.4947 

1.6 -5.6334 -5.6668 -5.8254 -6.0950 -6.4755 -6.9790 -7.6309 

1.7 -5.2800 -5.2981 -5.4272 -5.6527 -5.9720 -6.3926 -6.9318 

1.8 -4.9878 -4.9876 -5.0898 -5.2779 -5.5475 -5.9025 -6.3548 

1.9 -4.7419 -4.7225 -4.7999 -4.9562 -5.1848 -5.4870 -5.8708 

2.0 -4.5328 -4.4935 -4.5483 -4.6771 -4.8714 -5.1305 -5.4594 

2.1 -4.3539 -4.2942 -4.3282 -4.4330 -4.5983 -4.8216 -5.1056 

2.2 -4.2004 -4.1197 -4.1342 -4.2177 -4.3582 -4.5515 -4.7986 

2.3 -4.0689 -3.9663 -3.9623 -4.0268 -4.1457 -4.3136 -4.5297 

2.4 -3.9571 -3.8298 -3.8094 -3.8566 -3.9567 -4.1026 -4.2925 

2.5 -3.8630 -3.7123 -3.6729 -3.7041 -3.7875 -3.9144 -4.0820 

2.6 -3.7855 -3.6077 -3.5507 -3.5670 -3.6353 -3.7457 -3.8940 

2.7 -3.7240 -3.5160 -3.4412 -3.4434 -3.4981 -3.5937 -3.7253 

2.8 -3.6787 -3.4363 -3.3430 -3.3316 -3.3737 -3.4562 -3.5732 

2.9 -3.6495 -3.3679 -3.2551 -3.2302 -3.2607 -3.3315 -3.3723 

3.0 -3.6381 -3.2893 -3.1763 -3.1383 -3.1578 -3.2178 -3.3103 
,-

0.7 0.8 0.9 1 

0 0 0 0 

0 0 0 0 

0 0 0 0 

-80.0119 0 0 0 

-40.0255 -79.1746 0 0 

-26.3769 -39.4612 -79.2615 0 

-19.5511 -26.1032 -39.4504 -79.9157 

-15.4983 -19.4361 -26.1471 -39.7619 

-12.8308 -15.4614 -19.5123 -26.3855 

-10.9481 -12.8313 -15.5486 -19.7132 

-9.5507 -10.9660 -12.9180 -15.7203 

-8.4738 -9.5760 -11.0471 -13.0645 

-7.6193 -8.5014 -9.6496 -11.1715 

-6.9253 -7.6467 -8.5671 -9.7550 

-6.3512 -6.9513 -7.7048 -8.6565 

-5.8687 -6.3753 -7.0027 -7.7808 

-5.4580 -5.8907 -6.4207 -7.0677 

-5.1045 -5.4780 -5.9312 -6.4766 

-4.7973 -5.1227 -5.5142 -5.9797 

-4.5282 -4.8139 -5.1553 -5.5568 

-4.2908 -4.5434 -4.8435 -5.1931 

-4.0799 -4.3046 -4.5704 -4.8775 

-3.8938 -4.0926 -4.3296 -4.6013 

-3.7224 -3.9033 -4.1158 -4.3580 

-3.5698 -3.7332 -3.9249 -4.1422 

-3.4333 -3.5799 -3.7537 -3.9497 

1.1 1.2 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

-80.7941 0 

-40.2157 -81.3899 

-26.7099 -40.5533 

-19.9659 -26.9495 

-15.9219 -20.1431 

-13.2263 -16.0526 

-11.3014 -13.3209 

-9.8593 -11.3683 

-8.7404 -9.9054 

-7.8487 -8.7713 

-7.1230 -7.8688 

-6.5223 -7.1357 

-6.0179 -6.5300 

-5.5893 -6.0224 

-5.2213 -5.5919 

-4.9023 -5.2227 

-4.6237 -4.9032 

-4.3784 -4.6245 

-4.1611 -4.3793 

1.3 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-81.1595 

-40.4751 

-26.8979 

-20.0920 

-15.9963 

-13.2604 

-11.3063 

-9.8446 

-8.7136 

-7.8154 

-7.0873 

-6.4866 

-5.9841 

-5.5582 

-5.1933 

-4.8775 

-4.6021 

1.4 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-80.0115 

-39.9045 

-26.5059 

-19.7873 

-15.7471 

-13.0527 

-11.1322 

-9.6986 

-8.5913 

-7.7134 

-7.0014 

-6.4147 

-5.9236 

-5.5072 

-5.1502 

-4.8412 

I 

--L 

01 
~ 



c1_tab.prn 

0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

0.5 -128.9238 -108.3040 -730.0920 -949.0040 -1162.335 0 0 0 

0.6 -113.8897 -93.8430 -393.8961 -966.7443 -748.4182 -407.6449 0 0 

0.7 -114.3825 -77.3803 -318.4160 -845.7238 -895.9203 -282.2945 -236.5673 0 

0.8 -108.7077 -69.3206 -265.2759 -616.6134 -213.2339 -143.5262 -129.3513 -169.5211 

0.9 -102.6505 -66.1493 -242.8841 -125.0218 -87.4687 -72.4890 -70.0455 -82.6352 

1.0 -346.9992 -197.4961 -80.6665 -57.3893 -45.6158 -40.0958 -39.5374 -45.3084 

1.1 -96.6167 -61.3251 -43.4412 -33.2251 -27.2451 -24.1985 -23.7331 -26.6600 

1.2 -53.7587 -37.7009 -27.9248 -21.6982 -17.7605 -15.5697 -15.0473 -16.6052 

1.3 -36.6526 -26.5021 -19.8117 -15.3025 -12.3121 -10.5379 -9.9444 -10.7860 

1.4 -27.6862 -20.2021 -15.0154 -11.4052 -8.9367 -7.3996 -6.7660 -7.2003 

1.5 -27.8563 -16.2829 -11.9473 -8.8727 -6.7261 -5.3418 -4.6871 -4.8720 

1.6 -19.0735 -13.6909 -9.8795 -7.1493 -5.2176 -3.9382 -3.2740 -3.2954 

1.7 -16.7906 -11.9042 -8.4337 -5.9370 -4.1554 -2.9525 -2.2836 -2.1926 

1.8 -15.2198 -10.6404 -7.3987 -5.0641 -3.3909 -2.2448 -1.5744 -1.4020 

1.9 -14.1293 -9.7368 -6.6455 -4.4254 -2.8314 -1.7286 -1.0578 -0.8251 

2.0 -13.3855 -9.0903 -6.0953 -3.9553 -2.4189 -1.3488 -0.6784 -0.3997 

2.1 -12.9036 -8.6367 -5.6953 -3.6088 -2.1145 -1.0689 -0.3988 -0.0843 

2.2 -12.6296 -8.3308 -5.4105 -3.3558 -1.8913 -0.8638 -0.1938 0.1485 

2.3 -12.5276 -8.1448 -5.2162 -3.1767 -1.7303 -0.7160 -0.0454 0.3193 

2.4 -12.5792 -8.0388 -5.0950 -3.0553 -1.6191 -0.6126 0.0592 0.4419 

2.5 -12.7707 -8.0591 -5.0350 -2.9815 -1.5472 -0.5443 0.1291 0.5267 

2.6 -13.0964 -8.1378 -5.0273 -2.9471 -1.5074 -0.5047 0.1716 0.5814 

2.7 -13.5612 -8.2869 -5.0658 -2.9465 -1.4947 -0.4883 0.1917 0.5885 

2.8 -14.1769 -8.5064 -5.1465 -2.9751 -1.5042 -0.4914 0.1937 0.6236 

2.9 -14.9514 -8.7970 -5.2667 -3.0297 -1.5339 -0.5108 0.7995 0.6190 

3.0 -15.9216 -8.8868 -5.4232 -3.1089 -1.5806 -0.5442 0.1544 0.5850 

0.8 0.9 1 1.1 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

-141.8257 0 0 0 

-64.4267 -134.8628 0 0 

-35.5513 -58.9826 -140.0213 0 

-21.4985 -32.9696 -60.6065 -149.1029 

-13.7740 -20.5073 -34.5656 -65.0684 

-9.1514 -13.5456 -22.1170 -37.8921 

-6.1988 -9.2582 -15.0287 -24.7563 

-4.2140 -6.4296 -10.5401 -17.1009 

-2.8277 -4.4675 -7.4903 -12.1253 

-1.8316 -3.0569 -5.3173 -8.6651 

-1.1005 -2.0174 -3.7195 -6.1562 

-0.5571 -1.2387 -2.5215 -4.2916 

-0.1501 -0.6496 -1.6116 -2.8860 

0.1551 -0.2021 -0.9168 -1.8189 

0.3830 0.1380 -0.3853 -1.0065 

0.5511 0.3948 0.0208 -0.3885 

0.6725 0.5867 0.3292 0.0802 

0.7569 0.7272 0.5609 0.4334 

0.8119 0.8271 0.7324 0.6968 

0.8430 0.8944 0.8561 0.8902 

0.8549 0.9355 0.9418 1.0289 

0.8509 0.9553 0.9968 1.1242 

1.2 1.3 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

-150.3056 0 

-66.5511 -131.7519 

-39.2439 -58.6304 

-25.7665 -34.3072 

-17.7223 -22.0294 

-12.3903 -14.5817 

-8.6393 -9.6194 

-5.9123 -6.1513 

-3.8964 -3.6710 

-2.3938 -1.8798 

-1.2709 -0.5833 

-0.4322 0.3531 

0.1923 1.0272 

0.6545 1.5051 

0.9937 1.8412 

1.2395 2.0719 

1.4124 2.2243 

1.5308 2.3186 
_L-~ ---

1.4 

0 

0 
! 

0 I 

I 

0 

0 

0 

0 

0 

0 

0 

-93.1573 

-40.3498 

-22.4327 

-13.2748 

-7.7286 

-4.0932 

-1.6238 

0.0759 

1.2458 

2.0415 

2.5842 

2.9373 

3.1591 

3.2874 

3.3499 

3.3654 

~ 

CJ1 
CJ1 



c2_tab.prn 

0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

0.5 172.2301 143.4900 811.0143 997.5759 1168.7229 0 0 0 

0.6 158.6212 129.7058 466.8316 1057.2712 792.2605 447.3281 0 0 

0.7 163.7989 112.3872 395.6855 974.9946 984.0244 318.5643 283.6795 0 

0.8 160.6653 104.4986 344.1948 745.8210 259.8198 177.3937 163.2180 219.3787 

0.9 156.3971 102.5124 326.7606 169.5908 120.1693 100.9847 98.4704 115.5945 

1.0 511.3211 299.5162 121.0186 87.7758 71.3882 64.0490 63.6703 71.7390 

1.1 154.9734 99.9256 72.5960 57.4099 48.8656 44.8110 44.5525 48.9383 

1.2 93.2771 67.2241 51.7958 42.3153 36.6158 33.7183 33.3555 35.9206 

1.3 68.2970 51.3671 40.5625 33.5735 29.1949 26.8374 26.3291 27.8906 

1.4 54.9976 42.2340 33.6965 28.0083 24.3424 22.2690 21.6475 22.6019 

1.5 55.9173 36.4169 29.1541 24.2281 20.9859 19.0772 18.3683 18.9259 

1.6 41.9856 32.4812 25.9882 21.5380 18.5647 16.7551 15.9783 16.2583 

1.7 38.4751 29.7095 23.6996 19.5578 16.7602 15.0126 14.1792 14.2556 

1.8 36.0485 27.7103 22.0060 18.0646 15.3831 13.6729 12.7916 12.7112 

1.9 34.3690 26.2564 20.7321 16.9186 14.3120 12.6228 11.6993 11.4951 

2.0 33.2427 25.2023 19.7694 16.0312 13.4688 11.7881 10.8271 10.5224 

2.1 32.5471 24.4567 19.0445 15.3401 12.8002 11.1182 10.1226 9.7345 

2.2 32.2046 23.9549 18.5075 14.8028 12.2678 10.5773 9.5493 9.0916 

2.3 32.1647 23.6575 18.1236 14.3914 11.8441 10.1397 9.0804 8.5626 

2.4 32.4051 23.4996 17.8672 14.0822 11.5110 9.7856 8.6960 8.1265 

2.5 32.9099 23.5730 17.7215 13.8599 11.2521 9.5006 8.3816 7.7663 

2.6 33.6768 23.7574 17.6734 13.7125 11.0565 9.2743 8.1251 7.4694 

2.7 34.7226 24.0791 17.7145 13.6313 10.9158 9.0976 7.9181 7.2638 

2.8 36.0777 24.5413 17.8390 13.6089 10.8223 8.9642 7.7529 7.0261 

2.9 37.7652 25.1489 18.0438 13.6410 10.7726 8.8684 6.5528 6.8653 

3.0 39.8660 25.3717 18.3244 13.7250 10.7610 8.8060 7.5281 6.7656 
---- --- -------- --------

L-___ 
~----- ----

0.8 0.9 1 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

192.5710 0 0 

96.8051 185.4251 0 

60.9806 90.8408 189.7074 

42.8279 57.7968 91.9021 

32.2922 41.3101 58.9527 

25.5990 31.6374 42.5954 

21.0508 25.3623 32.8861 

17.7952 20.9970 26.4694 

15.3715 17.8027 21.9168 

13.5124 15.3779 18.5268 

12.0525 13.4880 15.9177 

10.8865 11.9861 13.8646 

9.9433 10.7758 12.2228 

9.1728 9.7908 10.8967 

8.5391 8.9826 9.8173 

8.0154 8.3166 8.9336 

7.5815 7.7656 8.2073 

7.2218 7.3091 7.6091 

6.9238 6.9305 7.1153 

6.6781 6.6170 6.7077 

6.4764 6.3582 6.3712 

6.3128 6.1457 6.0948 
,---

1.1 1.2 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

197.6921 0 

95.7532 198.4169 

61.8686 96.7166 

44.9543 62.7739 

34.7578 45.5830 

27.8959 35.0346 

22.9478 27.8283 

19.2198 22.5857 

16.3325 18.6286 

14.0563 15.5775 

12.2416 13.1937 

10.7831 11.3157 

9.6047 9.8271 

8.6482 8.6411 

7.8692 7.6926 

7.2332 6.9306 

6.7130 6.3160 

6.2869 5.8211 

5.9386 5.4201 

1.3 

0 

0 

0 

0 

0 

0 

0 

0 

0 

180.9534 

88.6407 

57.3918 

41.2967 

31.2949 

24.4307 

19.4577 

15.7457 

12.9272 

10.7643 

9.0921 

7.7893 

6.7727 

5.9721 

5.3394 

4.8375 

4.4380 

1.4 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

145.1284 

70.7196 

45.1930 

31.9333 

23.7018 

18.1112 ' 
I 

14.1288 

11.2157 

9.0518 

7.4309 I 

6.1936 I 

5.2533 i 

4.5306 
I 

3.9724 I 

3.5384 I 

3.2001 I 

-L 

(Jl 
0) 



dO_tab.prn 

0 0 0.1 0.2 0.3 0.4 0.5 0.6 

0.5 18.2137 14.0624 53.5421 49.4545 34.6011 0 0 

0.6 19.8140 15.3204 40.7767 68.5313 41.5286 15.6668 0 

0.7 23.3263 15.7318 42.4980 85.9595 70.9000 19.3007 11.2758 

0.8 25.8385 16.7307 43.9122 81.2734 26.4411 16.0102 11.7288 

0.9 28.0299 18.3261 48.0667 24.2365 16.3486 12.5946 10.5264 

1.0 94.1145 56.2058 21.9572 15.6826 12.3501 10.4102 9.2517 

1.1 33.1810 21.4641 15.6375 12.3243 10.3050 9.0475 8.2759 

1.2 22.6014 16.4789 12.8491 10.5692 9.0941 8.1432 7.5652 

1.3 18.3306 14.0467 11.3117 9.5092 8.3066 7.5181 7.0392 

1.4 16.0806 12.6522 10.3617 8.8123 7.7602 7.0629 6.6384 

1.5 17.1077 11.7803 9.7337 8.3286 7.3636 6.7188 6.3233 

1.6 14.0142 11.2139 9.3035 7.9812 7.0667 6.4508 6.0696 

1.7 13.5291 10.8432 9.0045 7.7272 6.8395 6.2380 5.8611 

1.8 13.2565 10.6084 8.7991 7.5407 6.6641 6.0667 5.6877 

1.9 13.1387 10.4751 8.6633 7.4053 6.5281 5.9278 5.5419 

2.0 13.1445 10.4213 8.5825 7.3108 6.4239 5.8151 5.4192 

2.1 13.2553 10.4338 8.5470 7.2494 6.3461 5.7243 5.3159 

2.2 13.4607 10.5032 8.5504 7.2161 6.2906 5.6524 5.2296 

2.3 13.7557 10.6254 8.5883 7.2082 6.2544 5.5971 5.1583 

2.4 14.1428 10.7837 8.6577 7.2224 6.2360 5.5565 5.1002 

2.5 14.6249 11.0195 8.7573 7.2575 6.2334 5.5292 5.0546 

2.6 15.2092 11.2921 8.8860 7.3121 6.2457 5.5143 5.0201 

2.7 15.9099 11.6162 9.0440 7.3859 6.2720 5.5111 4.9962 

2.8 16.7469 11.9970 9.2320 7.4782 6.3115 5.5188 4.9820 

2.9 17.7374 12.4407 9.4510 7.5891 6.3644 5.5368 4.5091 

3.0 18.9238 12.7181 9.7015 7.7194 6.4299 5.5650 4.9812 

0.7 0.8 0.9 1 

0 0 0 0 

0 0 0 0 

0 0 0 0 

9.4763 0 0 0 

9.3270 8.6550 0 0 

8.5973 8.3157 8.3454 0 

7.8716 7.7647 7.9266 8.3315 

7.2799 7.2494 7.4573 7.8790 

6.8136 6.8158 7.0361 7.4522 

6.4421 6.4554 6.6723 7.0736 

6.1397 6.1520 6.3560 6.7349 

5.8881 5.8917 6.0763 6.4257 

5.6752 5.6650 5.8256 6.1394 

5.4928 5.4658 5.5990 5.8728 

5.3353 5.2895 5.3938 5.6250 

5.1989 5.1333 5.2081 5.3962 

5.0806 4.9950 5.0407 5.1866 

4.9787 4.8729 4.8908 4.9965 

4.8911 4.7659 4.7571 4.8256 

4.8167 4.6726 4.6390 4.6733 

4.7543 4.5921 4.5354 4.5387 

4.7032 4.5234 4.4455 4.4209 

4.6777 4.4658 4.3682 4.3186 

4.6312 4.4186 4.3027 4.2307 

4.6090 4.3808 4.2482 4.1561 

4.6078 4.3522 4.2039 4.0938 

1.1 1.2 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

8.4142 0 

7.9656 8.3162 

7.5674 7.9096 

7.2040 7.5358 

6.8608 7.1698 

6.5306 6.8019 

6.2123 6.4330 

5.9080 6.0701 

5.6213 5.7216 

5.3552 5.3953 

5.1118 5.0958 

4.8920 4.8258 

4.6959 4.5858 

4.5224 4.3747 

4.3704 4.1906 

4.2383 4.0313 

4.1243 3.8940 

4.0268 3.7772 

3.9444 3.6778 

1.3 

0 

0 

0 

0 

0 

0 

0 

0 

0 

7.7626 

7.4114 

7.0543 

6.6784 

6.2869 

5.8918 

5.5071 

5.1448 

4.8126 

4.5145 

4.2513 

4.0212 

3.8229 

3.6521 

3.5059 

3.3814 

3.2757 

1.4 I 

0 

0 
i 

0 I 

0 

0 

0 • 

0 

0 

0 

0 

6.7456 

6.4283 

6.0817 

5.7109 

5.3303 

4.9567 

4.6039 

4.2811 

3.9928 

3.7409 

3.5199 

3.3310 

3.1692 

3.0316 

2.9144 

2.8151 

....... 
01 
--...,J 



d1_tab.prn 

0 0 0.1 0.2 0.3 0.4 0.5 0.6 

0.5 29.2034 19.9516 88.3916 72.9399 41.2941 0 0 

0.6 28.5472 19.9058 60.4030 110.3760 53.1470 14.2160 0 

0.7 30.5096 18.2183 56.6642 115.8462 89.8645 19.0595 8.0390 

0.8 30.4138 17.4725 52.3078 97.9678 27.4073 13.9735 8.4537 

0.9 29.7080 17.3842 51.3232 22.8935 13.4887 9.0204 6.5682 

1.0 98.6481 51.7511 18.6970 11.7635 8.0931 5.9682 4.7133 

1.1 28.9456 16.8437 10.8458 7.4511 5.3950 4.1252 3.3607 

1.2 16.7728 10.8684 7.3897 5.2210 3.8305 2.9447 2.4177 

1.3 11.7788 7.9174 5.4745 3.8811 2.8306 2.1518 1.7491 

1.4 9.0733 6.1797 4.2714 2.9977 2.1456 1.5902 1.2607 

1.5 8.9750 5.0429 3.4514 2.3765 1.6513 1.1761 0.8929 

1.6 6.3179 4.2479 2.8602 1.9182 1.2802 0.8603 0.6084 

1.7 5.5251 3.6642 2.4158 1.5677 0.9925 0.6130 0.3834 

1.8 4.9406 3.2201 2.0709 1.2918 0.7639 0.4150 0.2021 

1.9 4.4972 2.8733 1.7962 1.0694 0.5781 0.2534 0.0536 

2.0 4.1552 2.5967 1.5730 0.8867 0.4247 0.1195 ~0.0696 

2.1 3.8891 2.3726 1.3883 0.7341 0.2959 0.0069 -0.1730 

2.2 3.6816 2.1884 1.2333 0.6046 0.1863 -0.0888 -0.2607 

2.3 3.5210 2.0359 1.1017 0.4934 0.0918 -0.1711 -0.3358 

2.4 3.4000 1.9047 0.9885 0.3968 0.0096 -0.2427 -0.4009 

2.5 3.3127 1.8028 0.8902 0.3118 -0.0630 -0.3057 -0.4577 

2.6 3.2553 1.7143 0.8041 0.2363 -0.1277 -0.3616 -0.5078 

2.7 3.2263 1.6402 0.7280 0.1685 -0.1859 -0.4118 -0.5524 

2.8 3.2254 1.5792 0.6601 0.1069 -0.2389 -0.4574 -0.5926 

2.9 3.2514 1.5297 0.5992 0.0504 -0.2877 -0.4991 -0.6516 

3.0 3.3085 1.4457 0.5437 -0.0019 -0.3331 -0.5378 -0.6628 

0.7 0.8 0.9 1 

0 0 0 0 

0 0 0 0 

0 0 0 0 

5.5452 0 0 0 

5.1601 4.3961 0 0 

4.0262 3.7728 3.9052 0 

2.9808 2.9253 3.1835 3.7540 

2.1754 2.1904 2.4627 2.9883 

1.5740 1.6108 1.8636 2.3283 

1.1207 1.1597 1.3834 1.7890 

0.7720 0.8051 0.9974 1.3475 

0.4982 0.5219 0.6837 0.9815 

0.2793 0.2927 0.4256 0.6749 

0.1017 0.1050 0.2117 0.4166 

~0.0443 ~0.0502 0.0333 0.1988 

~0.1655 ~0.1794 ~0.1159 0.0153 

-0.2672 -0.2876 -0.2410 -0.1389 

-0.3530 -0.3788 -0.3462 -0.2682 

-0.4262 -0.4561 -0.4348 -0.3765 

-0.4891 -0.5219 -0.5097 -0.4671 

-0.5436 -0.5784 -0.5732 -0.5430 

-0.5912 -0.6272 -0.6274 -0.6069 

-0.6319 -0.6697 -0.6740 -0.6608 

-0.6705 -0.7071 -0.7143 -0.7066 

-0.7042 -0.7402 -0.7494 -0.7458 

-0.7346 -0.7699 -0.7804 -0.7797 

1.1 1.2 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

3.6773 0 

2.9209 3.3663 

2.3036 2.6898 

1.7931 2.1305 

1.3618 1.6500 

0.9928 1.2289 

0.6759 0.8595 

0.4048 0.5387 

0.1747 0.2646 

-0.0189 0.0341 

-0.1806 -0.1569 

-0.3149 -0.3133 

-0.4258 -0.4402 

-0.5173 -0.5428 

-0.5928 -0.6254 

-0.6553 -0.6920 

-0.7072 -0.7459 

-0.7507 -0.7896 

-0.7873 -0.8254 

1.3 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2.5868 

2.0480 

1.5775 

1.1554 

0.7772 

0.4445 

0.1591 

-0.0796 

-0.2749 

-0.4318 

-0.5562 

-0.6539 

-0.7301 

-0.7896 

-0.8359 

-0.8720 

-0.9005 

1.4 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1.4414 

1.0518 

0.6953 

0.3710 

0.0838 

~0.1619 

-0.3651 

-0.5282 

-0.6559 

-0.7536 

-0.8278 

-0.8829 

-0.9237 

-0.9536 

-0.9753 

-0.9911 

.....r.. 
01 
00 



d2_tab.prn 

0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

0.5 -1.2160 -0.2358 2.1134 6.0892 7.7824 0 0 0 

0.6 -1.5808 -0.6615 -0.6338 1.1119 3.8782 2.3948 0 0 

0.7 -1.9638 -0.8476 -1.7714 -1.1306 1.6261 1.2438 1.1394 0 

0.8 -2.1419 -0.9709 -2.3318 -2.9170 -0.1982 0.2945 0.4830 0.5744 

0.9 -2.2122 -1.0709 -2.7426 -0.8735 -0.2777 -0.0089 0.1280 0.1973 

1.0 -7.7756 -3.4823 -1.0441 -0.4939 -0.2179 -0.0705 0.0041 0.0286 

1.1 -2.2795 -1.1474 -0.6075 -0.3171 -0.1536 -0.0644 -0.0249 -0.0265 

1.2 -1.3054 -0.7272 -0.4021 -0.2117 -0.1005 -0.0411 -0.0205 -0.0348 

1.3 -0.8977 -0.5122 -0.2809 -0.1406 -0.0581 -0.0158 -0.0055 -0.0255 

1.4 -0.6716 -0.3808 -0.2002 -0.0892 -0.0241 0.0077 0.0122 -0.0103 

1.5 -0.6548 -0.2914 -0.1420 -0.0498 0.0036 0.0285 0.0295 0.0064 

1.6 -0.4314 -0.2261 -0.0976 -0.0186 0.0266 0.0467 0.0454 0.0226 

1.7 -0.3582 -0.1760 -0.0624 0.0070 0.0461 0.0626 0.0599 0.0377 

1.8 -0.3016 -0.1359 -0.0334 0.0285 0.0628 0.0765 0.0728 0.0515 

1.9 -0.2562 -0.1027 -0.0089 0.0470 0.0774 0.0888 0.0844 0.0640 

2.0 -0.2186 -0.0746 0.0122 0.0632 0.0903 0.0998 0.0947 0.0751 

2.1 -0.1867 -0.0500 0.0310 0.0777 0.1018 0.1096 0.1040 0.0851 

2.2 -0.1590 -0.0281 0.0479 0.0908 0.1123 0.1186 0.1123 0.0941 

2.3 -0.1344 -0.0082 0.0634 0.1029 0.1220 0.1267 0.1199 0.1021 

2.4 -0.1121 0.0104 0.0778 0.1142 0.1310 0.1343 0.1269 0.1094 

2.5 -0.0914 0.0276 0.0916 0.1249 0.1395 0.1413 0.1333 0.1160 

2.6 -0.0718 0.0444 0.1048 0.1352 0.1476 0.1480 0.1392 0.1220 

2.7 -0.0528 0.0608 0.1177 0.1451 0.1554 0.1543 0.1448 0.1274 

2.8 -0.0340 0.0772 0.1305 0.1549 0.1630 0.1605 0.1501 0.1326 

2.9 -0.0149 0.0937 0.1433 0.1647 0.1704 0.1664 0.1517 0.1374 

3.0 0.0050 0.1109 0.1563 0.1744 0.1779 0.1722 0.1600 0.1420 

0.8 0.9 1 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0.2230 0 0 

0.0094 -0.0591 0 

-0.0698 -0.1646 -0.3267 

-0.0875 -0.1892 -0.3533 

-0.0806 -0.1807 -0.3380 

-0.0644 -0.1597 -0.3071 

-0.0453 -0.1345 -0.2710 

-0.0260 -0.1085 -0.2335 

-0.0077 -0.0834 -0.1969 

0.0093 -0.0599 -0.1621 

0.0248 -0.0382 -0.1298 

0.0387 -0.0187 -0.1004 

0.0512 -0.0012 -0.0740 

0.0623 0.0144 -0.0507 

0.0722 0.0281 -0.0302 

0.0810 0.0402 -0.0123 

0.0888 0.0509 0.0033 

0.0959 0.0603 0.0168 

0.1022 0.0685 0.0285 

0.1079 0.0759 0.0386 

0.1132 0.0824 0.0475 

0.1180 0.0882 0.0552 

1.1 1.2 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

-0.5808 0 

-0.5499 -0.7647 

-0.5034 -0.6995 

-0.4515 -0.6311 

-0.3978 -0.5604 

-0.3444 -0.4887 

-0.2929 -0.4182 

-0.2446 -0.3509 

-0.2002 -0.2889 

-0.1604 -0.2332 

-0.1253 -0.1843 

-0.0946 -0.1422 

-0.0682 -0.1065 

-0.0456 -0.0763 

-0.0262 -0.0510 

-0.0098 -0.0299 

0.0043 -0.0123 

0.0163 0.0025 

0.0265 0.0148 

1.3 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-0.7911 

-0.7145 

-0.6352 

-0.5530 

-0.4702 

-0.3901 

-0.3159 

-0.2495 

-0.1917 

-0.1427 

-0.1017 

-0.0678 

-0.0400 

-0.0173 

0.0013 

0.0166 

0.0291 

1.4 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-0.6383 

-0.5646 

-0.4866 

-0.4066 

-0.3284 

-0.2558 

-0.1912 

-0.1357 

-0.0892 

-0.0512 

-0.0202 

0.0047 

0.0246 

0.0405 

0.0532 

0.0634 

-4. 

(]1 
(0 



means.prn 

0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

0.5 0.6247 0.7754 1.0255 1.5236 3.0129 0 0 0 

0.6 0.5184 0.6178 0.7643 1.0068 1.4894 2.932 0 0 

0.7 0.4429 0.512 0.6069 0.7478 0.9804 1.4426 2.823 0 

0.8 0.3864 0.4365 0.5017 0.5918 0.7251 0.9448 1.3804 2.6796 

0.9 0.3422 0.3795 0.4263 0.4874 0.5712 0.6949 0.8979 1.2992 

1.0 0.3063 0.335 0.3695 0.4126 0.4682 0.5441 0.6553 0.837 

1.1 0.277 0.2994 0.3251 0.356 0.3941 0.443 0.5089 0.6044 

1.2 0.2529 0.27 0.2894 0.3118 0.3382 0.3702 0.4105 0.4636 

1.3 0.2319 0.2453 0.26 0.2762 0.2944 0.3152 0.3395 0.3688 

1.4 0.214 0.2246 0.2354 0.2469 0.2591 0.2721 0.2858 0.3004 

1.5 0.1982 0.2066 0.2145 0.2223 0.23 0.2373 0.2436 0.2484 

1.6 0.185 0.1909 0.1964 0.2014 0.2056 0.2085 0.2094 0.2074 

1.7 0.1725 0.177 0.1807 0.1834 0.1848 0.1843 0.1812 0.1742 

1.8 0.1621 0.1649 0.1668 0.1676 0.1668 0.1636 0.1574 0.1466 

1.9 0.1523 0.1541 0.1546 0.1538 0.151 0.1457 0.137 0.1233 

2.0 0.1435 0.1444 0.1436 0.1414 0.1372 0.1301 0.1193 0.1033 

2.1 0.1353 0.1353 0.1338 0.1304 0.1248 0.1163 0.1038 0.0859 

2.2 0.1282 0.1273 0.1248 0.1205 0.1138 0.104 0.0901 0.0707 

2.3 0.1215 0.1201 0.1168 0.1115 0.1038 0.0929 0.0778 0.0571 

2.4 0.1156 0.1133 0.1094 0.1034 0.0948 0.083 0.0668 0.045 

2.5 0.1099 0.1072 0.1026 0.0959 0.0866 0.0739 0.0569 0.0341 

2.6 0.1048 0.1015 0.0963 0.0891 0.0791 0.0657 0.0479 0.0242-

2.7 0.0997 0.0962 0.0906 0.0828 0.0722 0.0582 0.0396 0.0152 

2.8 0.0956 0.0914 0.0853 0.077 0.0659 0.0512 0.0321 0.007 

2.9 0.0915 0.0868 0.0804 0.0716 0.06 0.0448 0.0251 -0.0006 

3.0 0.0872 0.0825 0.0759 0.0666 0.0545 0.0389 0.0187 -0.0075 
---

0.8 0.9 1 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

2.4935 0 0 

1.1943 2.2541 0 

0.7587 1.0598 1.9473 

0.539 0.6584 0.8875 

0.4057 0.4554 0.5301 

0.3157 0.3318 0.3485 

0.2505 0.248 0.2373 

0.2008 0.1869 0.1613 

0.1615 0.1402 0.1056 

0.1295 0.1031 0.0627 

0.1029 0.0727 0.0283 

0.0803 0.0473 0 

0.0608 0.0256 -0.0238 

0.0439 0.0069 -0.0443 

0.0289 -0.0095 -0.0621 

0.0156 -0.024 -0.0778 

0.0037 -0.037 -0.0917 

-0.0071 -0.0487 -0.1042 

-0.0169 -0.0592 -0.1155 

-0.0258 -0.0688 -0.1258 

-0.034 -0.0776 -0.1352 

-0.0415 -0.0857 -0.1438 

1.1 1.2 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

1.5539 0 

0.6664 1.0474 

0.3653 0.381 

0.211 0.1519 

0.1155 0.0325 

0.0496 -0.0429 

0.0007 -0.096 

-0.0374 -0.1363 

-0.0683 -0.1683 

-0.0939 -0.1947 

-0.1158 -0.2171 

-0.1347 -0.2364 

-0.1513 -0.2534 

-0.166 -0.2685 

-0.1792 -0.282 

-0.1912 -0.2943 

-0.202 -0.3055 

-0.2119 -0.3157 

-0.221 -0.3252 

1.3 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.3893 

0.0083 

-0.1279 

-0.2026 

-0.2524 

-0.2892 

-0.3185 

-0.3429 

-0.3637 

-0.3819 

-0.398 

-0.4126 

-0.4258 

-0.4378 

-0.4489 

-0.4591 

-0.4686 

1.4 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-0.4785 i 

-0.4868 

-0.5025 

-0.5193 

-0.536 

-0.5521 

-0.5675 

-0.582 

-0.5958 

-0.6087 

-0.6209 

-0.6324 

-0.6432 

-0.6534 

-0.663 

-0.6721 

~ 

0'> o 



vars.prn 

0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 

0.5 3.8354 6.1674 11.2917 26.1852 108.0407 0 0 0 0 0 0 0 0 0 0 

0.6 2.7338 4.0546 6.5326 11.9863 27.8603 115.2357 0 0 0 0 0 0 0 0 0 

0.7 2.0616 2.8938 4.3023 6.9479 12.7807 29.7898 123.5903 0 0 0 0 0 0 0 0 

0.8 1.6205 2.1856 3.0757 4.5848 7.4255 13.7021 32.0474 133.458 0 0 0 0 0 0 0 

0.9 1.315 1.721 2.3274 3.2846 4.9118 7.983 14.7884 34.7378 145.354 0 0 0 0 0 0 

1.0 1.0946 1.399 1.8359 2.4905 3.5277 5.296 8.6456 16.0951 38.0166 160.0575 0 0 0 0 0 

1.1 0.9297 1.1661 1.4953 1.9693 2.6821 3.8153 5.7563 9.4499 17.7051 42.1229 178.8015 0 0 0 0 

1.2 0.8028 0.9921 1.2489 1.6076 2.1263 2.9099 4.1625 6.3203 10.452 19.7485 47.444 203.6587 0 0 0 

1.3 0.7034 0.8585 1.0647 1.3459 1.7405 2.3145 3.1872 4.5918 7.0306 11.7409 22.4405 54.6512 38.4263 0 0 

1.4 0.6238 0.7534 0.9232 1.1501 1.4613 1.9009 2.5451 3.533 5.1384 7.9562 13.467 26.1654 65.0299 291.0825 0 

1.5 0.5591 0.6693 0.8119 0.9997 1.2524 1.6015 2.099 2.8354 3.9779 5.8596 9.2157 15.906 31.6907 81.4843 383.1573 

1.6 0.5053 0.6008 0.7228 0.8814 1.0917 1.3773 1.7757 2.3503 3.2125 4.572 6.856 11.0316 19.6294 40.8653 112.9058 

1.7 0.4608 0.5443 0.6502 0.7866 0.9654 1.2048 1.5336 1.9986 2.6798 3.7218 5.4045 8.3198 13.8795 26.0902 59.9632 

1.8 0.4228 0.497 0.5903 0.7094 0.8641 1.0692 1.3473 1.735 2.2933 3.1295 4.4449 6.6489 10.673 19.0219 40.6055 

1.9 0.3906 0.457 0.5402 0.6456 0.7816 0.9604 1.2007 1.5321 2.0036 2.6996 3.7759 5.543 8.694 15.0724 31.3312 

2.0 0.3629 0.4229 0.4979 0.5923 0.7135 0.8718 1.0832 1.3725 1.7804 2.3771 3.2899 4.7712 7.383 12.6328 26.153 

2.1 0.339 0.3937 0.4618 0.5473 0.6566 0.7987 0.9874 1.2444 1.6048 2.1286 2.9252 4.2104 6.4677 11.0166 22.9615 

2.2 0.3179 0.3683 0.4307 0.5089 0.6084 0.7375 0.9083 1.1401 1.4639 1.933 2.6442 3.7895 5.8026 9.8891 20.8534 

2.3 0.2995 0.3461 0.4037 0.4758 0.5674 0.6858 0.8421 1.0539 1.3491 1.7762 2.423 3.4653 5.3036 9.0708 19.3879 

2.4 0.2831 0.3266 0.3802 0.4471 0.532 0.6416 0.7862 0.9818 1.2543 1.6484 2.2456 3.2101 4.9196 8.4578 18.328 

2.5 0.2687 0.3094 0.3595 0.4221 0.5014 0.6037 0.7386 0.9209 1.1751 1.5429 2.1012 3.0057 4.6176 7.9868 17.5371 

2.6 0.2557 0.2941 0.3413 0.4001 0.4747 0.5708 0.6975 0.869 1.1081 1.4547 1.982 2.8393 4.3759 7.6173 16.9318 

2.7 0.2443 0.2805 0.3251 0.3807 0.4512 0.5421 0.662 0.8243 1.0511 1.3802 1.8824 2.702 4.1795 7.3221 16.4586 

2.8 0.2336 0.2682 0.3106 0.3635 0.4304 0.5169 0.631 0.7857 1.002 1.3168 1.7985 2.5876 4.0178 7.0827 16.082 

2.9 0.2242 0.2572 0.2976 0.3481 0.412 0.4946 0.6038 0.7519 0.9595 1.2623 1.727 2.4911 3.883 6.886 15.7778 

3.0 0.2159 0.2472 0.2858 0.3343 0.3956 0.4749 0.5798 0.7223 0.9225 1.2152 1.6656 2.4091 3.7697 6.7226 15.5288 
--

--'-
0> 
--'-



Appendix B 

Classic Statistical Distributions 

Exponential Distribution 

Parameters: rate (A) 

PDF: f(x)= {~e-).x 

Guidelines: A > 0 

if x >0 

if x < 0 

Extreme Value Distribution 

Parameters: mode (m), scale (a) 

PDF: f(x)=.!.ozoe oz for -oo<X<oo 
a 

(x-mJ 
where z = e a 

Left-Truncated PDF: 

1 -z -·z·e 

f(x)= 1~ F(min) 
o 

if min < x 

if min ~ x 

where F(min) is the CDF evaluated at the 
truncated value (min) 

Guidelines: a > 0 

Note that the Extreme Value Distribution is also known as the Gumbel 
Distribution 

Gamma Distribution 

Parameters: location (L), scale (a), shape (~) 

PDF: 
(X-LJ 

(x - Lf-1 
• e -~ 

f(x) = r(}3)o a~ if x> L 

o if x <L 



Left-Truncated PDF: 

(X-L) 
(x-Lf-1 ·e- a 

f(x)= r(J3). uP 

1- F(min) 
o 

if x> min ~ L 

if x <min 

where F(min) is the CDF evaluated at the truncated value (min) 

Guidelines: ~ > 0, a. > 0 

Logistic Distribution 

Parameters: mean (Jl), scale (a.) 

PDF: f(x)= Z for - 00 < x < 00 

a· (1 + Z) 

where z = e (x:f1.) 

Left-Truncated PDF: 

Z 

f(x)= a.(1+zf 
1- F(min) 

o 

if min < x 

if min ~ x 

where F(min) is the CDF evaluated at the 
truncated value (min) 

Guidelines: a. > 0 

Lognormal Distribution 

Parameters: mean (Jl), standard deviation (0') 

-(In(X}~LN f 
1 . e 20EN 

f(x)= .j2n. (J . X 
LN 

PDF: 

o 

Guidelines: cr > 0 

if x > 0 

if x <0 
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Normal Distribution 

Parameters: mean (Jl), standard deviation (cr) 

-(x-Ilf 

t{x)= 1 . e 2.T 
.J21t-cr 

PDF: for - 00 < x < 00 

Left-Truncated PDF: 

Guidelines: cr > 0 

Weibull Distribution 

-(X-Il f 
1 2.T ----e 

t{x)= .fiit·cr 
1- F(min) 

o 

if min < x 

if min ~ x 

where F(min) is the CDF evaluated at the 
truncated value (min) 

Parameters: location (L), scale (a), shape (~) 

PDF: if x> L 

if x ~ L 

Left-Truncated PDF: 

f{x)= 
if x> min;;::: L 

1- F(min) 
o if x ~ min 

where F(min) is the CDF evaluated at the truncated 
value (min) 

Guidelines: a > 0, ~ > 0 
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Appendix C 

Data Characterizing Consumption of Northern Lobster 

Infant Consumption 
Consumption 

Gender Age (g/month) 
F 2 79 
F 3 48 
F 3 79 
F 3 79 
F 4 79 
F 5 79 
F 6 114 
F 7 114 
F 7 114 
F 7 114 
F 8 114 
F 9 82 
F 9 114 
F 10 217 
M 1 46 
M 2 8 
M 2 79 
M 2 79 
M 2 158 
M 4 79 
M 4 79 
M 4 79 
M 4 79 
M 4 158 
M 5 79 
M 5 204 
M 6 11 
M 6 228 
M 7 114 
M 8 80 
M 8 180 
M 9 114 
M 10 67 
M 10 114 
M 10 114 
M 11 114 
M 11 114 
M 11 143 
M 11 164 
U 3 79 
U 7 114 
U 10 114 

Teen Consumption 
Consumption 

Gender Age (g/month) 
F 12 38 
F 12 120 
F 12 120 
F 12 240 
F 13 9 
F 13 120 
F 13 213 
F 14 9 
F 14 22 
F 14 70 
F 14 120 
F 14 151 
F 14 240 
F 15 64 
F 15 70 
F 15 120 
F 16 120 
F 16 240 
F 16 360 
F 17 38 
F 17 120 
M 12 157 
M 13 58 
M 13 92 
M 13 157 
M 14 92 
M 14 157 
M 17 92 
M 17 157 
M 17 157 
M 17 157 
M 17 157 
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Adult Female Consumption 
Consumption Consumption Consumption Consumption 

Age (g/month) Age (g/month) Age (g/month) Age (g/month) 
19 150 25 150 29 172 34 88 
19 150 25 150 30 30 34 150 
19 150 26 88 30 106 35 150 
19 150 26 150 30 150 35 150 
20 88 26 150 30 150 35 150 
20 150 26 150 30 150 35 150 
20 150 26 150 30 150 35 150 
21 47 26 238 30 150 35 150 
21 150 26 300 30 150 35 180 
22 88 27 58 30 150 36 9 
22 88 27 88 30 150 36 83 
22 150 27 88 30 150 36 150 
22 150 27 150 30 150 36 150 
23 9 27 150 30 300 36 150 
23 88 27 150 31 14 36 150 
23 150 27 150 31 23 36 188 
23 150 27 150 31 40 36 300 
23 150 27 150 31 150 37 88 
23 150 27 150 31 150 37 150 
23 150 27 150 31 150 37 150 
23 150 27 150 31 150 37 150 
23 150 27 150 31 150 37 176 
23 184 27 150 31 150 37 300 
23 300 28 88 31 150 38 88 
23 300 28 150 31 212 38 150 
24 150 28 150 31 300 38 150 
24 150 28 150 31 450 38 150 
24 150 28 150 32 88 38 150 
24 150 28 150 32 150 38 387 
24 150 28 150 32 150 38 426 
24 150 28 150 32 150 39 88 
24 150 28 150 32 150 39 150 
24 150 28 150 32 150 39 150 
24 150 28 165 32 150 39 238 
24 150 28 300 32 192 39 450 
24 150 28 412 32 249 40 88 
24 150 28 450 32 300 40 150 
24 540 29 60 33 150 40 150 
25 150 29 88 33 150 40 150 
25 150 29 150 33 150 40 150 
25 150 29 150 33 150 40 150 
25 150 29 150 33 150 40 238 
25 150 29 150 33 150 40 387 
25 150 29 150 33 150 41 88 
25 150 29 150 33 150 41 88 



Adult Female Consumption (cont.) 
Consumption Consumption 

Age . (g/month) Age (g/month) 
41 150 50 300 
41 150 51 47 
41 150 51 88 
42 88 51 88 
42 150 51 150 
42 150 51 150 
42 150 51 150 
42 150 51 150 
42 150 51 150 
43 55 51 150 
43 150 51 300 
43 150 52 88 
43 150 52 150 
43 150 52 150 
43 150 52 150 
43 250 52 300 
44 150 52 321 
44 150 53 78 
44 150 53 150 
44 150 53 150 
45 150 53 150 
45 264 53 150 
45 286 53 150 
46 39 53 150 
46 88 53 387 
46 150 53 434 
47 216 54 80 
47 387 54 88 
48 96 54 88 
48 150 54 90 
48 150 54 150 
48 150 54 150 
48 150 54 150 
48 300 55 91 
48 450 55 156 
49 150 55 624 
49 150 56 91 
49 150 56 99 
50 17 56 156 
50 88 56 156 
50 88 56 156 
50 150 56 156 
50 150 56 312 
50 150 56 462 
50 150 57 91 

Age 
57 
57 
57 
57 
58 
58 
58 
58 
58 
58 
59 
59 
59 
59 
59 
59 
59 
59 
59 
60 
60 
60 
61 
61 
62 
62 
62 
63 
63 
63 
63 
64 
65 
65 
65 
66 
67 
67 
68 
68 
69 
69 
70 
74 
76 

Consumption 
(g/month) 

156 
156 
156 
226 
156 
156 
156 
156 
156 
156 
156 
156 
156 
156 
156 
156 
156 
156 
312 
96 
156 
312 
156 
156 
40 
55 
156 
91 
156 
156 
405 
156 
156 
156 
312 
156 
37 

312 
156 
156 
91 

468 
156 
91 
167 

Age 
I 78 

167 

Consumption 
(glmonth) 
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168 

Adult Male Consumption 
Consumption Consumption Consumption Consumption 

Age (g/month) Age (g/month) Age (g/month) Age (g/month) 
19 190 28 190 32 190 42 111 
19 1253 28 190 32 190 42 190 
20 111 28 190 32 190 42 190 
20 190 28 190 32 190 42 190 
20 190 28 288 32 190 42 570 
20 380 28 380 32 380 43 104 
21 68 29 190 33 111 43 190 
21 190 29 190 33 190 43 190 
22 190 29 190 33 190 43 190 
22 190 29 190 33 190 43 190 
23 190 29 190 33 222 44 111 
23 190 29 190 34 190 44 190 
23 190 29 190 34 190 44 317 
24 190 29 190 34 190 45 111 
24 190 30 111 34 190 45 190 
24 190 30 146 35 111 45 190 
24 190 30 190 35 190 45 190 
25 22 30 190 35 190 45 680 
25 190 30 190 35 190 46 190 
25 190 30 190 35 190 46 190 
25 190 30 190 35 190 46 190 
25 190 30 190 36 111 46 190 
25 190 30 190 36 190 46 222 
26 111 30 222 36 190 47 570 
26 190 30 492 36 190 47 722 
26 190 31 51 36 190 48 21 
26 190 31 111 36 190 48 190 
26 190 31 190 37 186 48 760 
26 190 31 190 37 380 49 190 
26 380 31 190 38 111 49 190 
27 190 31 190 38 132 49 190 
27 190 31 190 38 190 49 190 
27 190 31 190 39 11 49 380 
27 190 31 190 39 190 50 111 
27 190 31 190 39 190 50 190 
27 190 31 190 39 190 50 380 
27 190 31 222 39 190 51 111 
27 190 31 268 40 111 51 492 
27 380 31 312 40 190 52 190 
28 76 31 380 40 405 52 190 
28 111 32 18 41 190 52 380 
28 190 32 38 41 190 52 492 
28 190 32 111 41 190 53 111 
28 190 32 190 41 190 53 111 
28 190 32 190 41 190 53 190 
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Adult Male Consumption (cont.) 
Consumption Consumption 

Age (g/month) Age (g/month) 
53 190 59 587 
53 190 60 203 
53 190 60 203 
53 190 60 203 
53 300 60 203 
53 380 61 203 
54 114 61 203 
54 190 61 294 
54 190 62 48 
54 190 63 52 
54 190 64 62 
55 52 64 203 
55 118 64 203 
55 203 64 203 
56 15 66 72 
56 106 66 203 
56 203 66 203 
56 203 67 203 
56 282 69 203 
57 110 70 118 
57 118 70 203 
57 118 70 632 
57 203 73 118 
57 203 74 118 
57 203 77 216 
57 203 77 216 
57 406 
57 406 
57 406 
58 118 
58 118 
58 128 
58 230 
59 62 
59 118 
59 203 
59 203 
59 203 
59 203 
59 203 
59 203 
59 203 
59 203 
59 406 
59 406 



Appendix D 

Data Characterizing Northern Lobster Mercury Concentrations 

Me~u~ Me~u~ Merou~ Merou~ 
Weight Concentration Weight Concentration Weight Concentration Weight Concentration 

(kg) (ppm) (kg) . (ppm) (kg) (ppm) (kg) (ppm) 
0.339 0.610 0.417 0.700 0.450 0.570 0.482 0.365 
0.339 0.743 0.418 0.325 0.451 0.563 0.482 0.475 
0.347 0.637 0.420 0.310 0.452 0.385 0.483 0.130 
0.364 0.597 0.420 0.723 0.452 0.665 0.483 0.170 
0.366 1.155 0.422 0.570 0.453 0.505 0.483 0.570 
0.367 0.490 0.422 0.663 0.453 0.657 0.483 0.733 
0.370 0.688 0.425 0.325 0.453 0.785 0.484 0.180 
0.370 0.688 0.425 0.843 0.454 0.190 0.484 0.530 
0.373 0.195 0.426 0.180 0.454 0.250 0.485 0.220 
0.375 0.537 0.428 0.075 0.454 0.280 0.485 0.260 
0.378 0.950 0.429 0.680 0.454 0.750 0.486 1.228 
0.380 0.135 0.429 0.685 0.455 0.193 0.487 0.367 
0.380 0.655 0.430 0.100 0.456 0.140 0.489 0.108 
0.383 0.713 0.430 0.300 0.458 0.615 0.490 0.200 
0.385 0.320 0.432 0.100 0.458 0.882 0.490 0.255 
0.389 0.625 0.433 0.150 0.459 0.315 0.492 0.720 
0.390 0.215 0.434 0.195 0.459 0.967 0.493 0.170 
0.390 0.547 0.435 0.370 0.460 0.370 0.493 0.743 
0.390 0.680 0.435 0.503 0.460 0.420 0.496 0.420 
0.394 0.690 0.436 0.395 0.461 0.200 0.496 0.555 
0.395 0.385 0.436 0.527 0.462 0.313 0.496 0.935 
0.395 0.780 0.436 0.860 0.463 0.175 0.497 0.585 
0.395 0.790 0.438 0.795 0.465 0.150 0.500 0.417 
0.397 0.180 0.438 0.950 0.468 0.150 0.501 0.475 
0.400 0.185 0.439 0.200 0.468 0.205 0.503 0.270 
0.401 0.500 0.439 0.530 0.468 0.273 0.504 1.380 
0.402 0.170 0.439 0.933 0.468 0.530 0.507 0.135 
0.404 0.193 0.440 0.340 0.469 0.492 0.507 0.520 
0.405 0.460 0.440 0.370 0.470 0.050 0.507 1.050 
0.406 0.410 0.440 0.500 0.470 0.135 0.510 0.253 
0.407 0.405 0.442 0.228 0.470 0.835 0.510 0.260 
0.408 0.490 0.444 0.513 0.473 0.383 0.511 0.303 
0.410 0.180 0.445 0.840 0.474 0.683 0.513 0.210 
0.410 0.185 0.446 0.337 0.476 0.425 0.514 0.480 
0.411 0.207 0.446 0.753 0.477 0.175 0.515 0.250 
0.411 0.320 0.448 0.183 0.478 0.195 0.516 0.200 
0.411 0.615 0.448 0.700 0.478 0.660 0.516 0.565 
0.412 0.130 0.449 0.210 0.479 0.090 0.521 0.255 
0.413 0.190 0.449 0.487 0.481 0.183 0.524 0.605 
0.414 0.413 0.449 0.490 0.482 0.345 0.525 0.485 
0.415 0.435 0.450 0.500 0.482 0.360 0.526 0.165 
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AAercu~ AAercu~ AAercu~ AAercu~ 
Weight Concentration Weight Concentration Weight Concentration Weight Concentration 

(kg) (ppm) (kg) (ppm) (kg) (ppm) {kg) (ppm) 
0.529 0.180 0.582 0.290 0.650 0.370 0.778 0.550 
0.529 0.430 0.582 0.415 0.653 0.550 0.778 0.557 
0.532 0.595 0.583 0.125 0.655 1.0B1 0.780 0.505 
0.535 0.158 0.589 0.110 0.658 0.220 0.783 1.603 
0.538 0.175 0.589 0.465 0.658 0.750 0.784 0.200 
0.539 0.325 0.589 0.475 0.662 0.200 0.786 0.515 
0.539 0.470 0.590 0.625 0.663 0.475 0.787 0.100 
0.539 0.495 0.596 0.147 0.667 0.330 0.787 0.430 
0.540 0.145 0.596 0.295 0.668 0.700 0.790 0.760 
0.542 0.225 0.596 0.465 0.669 0.180 0.792 0.110 
0.544 0.285 0.601 0.550 0.670 0.160 0.792 0.145 
0.545 0.330 0.602 0.645 0.675 0.445 0.793 0.500 
0.546 0.320 0.604 0.630 0.675 0.705 0.794 0.450 
0.547 0.335 0.605 0.305 0.680 0.485 0.805 0.423 
0.547 0.340 0.605 0.560 0.680 0.555 0.808 0.360 
0.548 0.210 0.607 0.435 0.684 0.310 0.B08 0.453 
0.549 0.370 0.60B 0.145 0.687 0.145 0.811 1.240 
0.549 0.385 0.60B 0.765 0.690 0.310 0.815 0.085 
0.552 0.385 0.609 0.220 0.690 1.020 0.815 0.B20 
0.553 0.225 0.609 0.225 0.691 0.073 0.816 0.435 
0.553 0.305 0.609 0.287 0.692 0.487 0.818 0.670 
0.553 0.317 0.609 0.555 0.695 0.530 0.819 0.728 
0.553 0.345 0.610 0.240 0.700 0.365 0.B22 0.190 
0.553 0.485 0.610 0.320 0.704 0.147 0.824 0.165 
0.556 0.300 0.611 0.247 0.704 0.257 0.824 0.495 
0.560 0.280 0.611 0.270 0.704 0.273 0.826 0.263 
0.562 0.335 0.617 0.495 0.707 0.730 0.829 0.107 
0.567 0.350 0.620 0.575 0.709 0.360 0.831 0.390 
0.567 0.370 0.622 0.550 0.711 0.667 0.831 0.858 
0.567 0.425 0.624 0.450 0.717 0.892 0.834 0.590 
0.567 0.575 0.630 0.510 0.718 0.313 0.835 0.125 
0.568 0.770 0.630 0.530 0.723 0.290 0.836 0.285 
0.569 0.450 0.632 0.323 0.723 0.460 0.836 0.720 
0.571 0.133 0.632 0.400 0.724 0.663 0.842 0.505 
0.572 0.535 0.632 0.440 0.725 0.820 0.842 0.537 
0.573 0.300 0.635 1.200 0.731 0.067 0.850 0.535 
0.573 0.515 0.636 0.370 0.737 0.610 0.851 0.605 
0.577 0.115 0.640 0.527 0.737 0.630 0.851 0.703 
0.577 0.470 0.642 0.445 0.746 0.490 0.851 0.860 
0.578 0.185 0.644 0.430 0.746 0.497 0.855 0.087 
0.579 0.440 0.644 0.540 0.751 0.240 0.861 0.420 
0.579 0.545 0.647 0.307 0.762 0.573 0.868 0.145 
0.580 0.533 0.648 0.250 0.765 0.490 0.869 0.502 
0.581 0.595 0.648 0.623 0.766 0.225 0.870 0.117 
0.582 0.280 0.649 0.520 0.766 0.258 0.878 0.975 
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Me~u~ Me~u~ Me~u~ Me~u~ 
Weight Concentration Weight Concentration Weight Concentration Weight Concentration 

(kg) (ppm) (kg) (ppm) (kg) (ppm) (kg) (ppm) 
0.879 0.290 1.030 0.180 1.205 0.430 1.504 0.770 
0.879 0.360 1.034 0.590 1.209 0.950 1.505 0.295 
0.881 0.110 1.035 0.433 1.217 0.665 1.505 1.250 
0.881 0.713 1.035 0.670 1.219 0.750 1.515 0.270 
0.882 0.450 1.035 0.675 1.219 0.885 1.517 0.440 
0.883 0.605 1.036 0.165 1.220 0.713 1.525 0.725 
0.885 0.485 1.038 0.580 1.226 0.470 1.531 0.820 
0.893 0.340 1.049 0.585 1.227 0.755 1.531 1.130 
0.895 0.450 1.049 0.645 1.229 0.590 1.535 0.540 
0.906 0.762 1.049 0.730 1.233 0.285 1.544 0.610 
0.907 0.270 1.050 0.310 1.233 0.905 1.545 0.907 
0.907 0.280 1.062 0.905 1.234 0.880 1.556 1.385 
0.907 0.380 1.063 0.845 1.244 0.750 1.559 0.673 
0.907 0.420 1.064 0.710 1.247 0.695 1.566 0.550 
0.907 0.445 1.065 0.450 1.247 0.710 1.567 1.570 
0.908 0.365 1.073 0.268 1.247 0.823 1.573 0.993 
0.913 0.565 1.077 0.215 1.261 0.570 1.575 0.385 
0.913 0.597 1.080 0.655 1.276 0.457 1.578 0.627 
0.919 0.575 1.092 0.390 1.286 0.773 1.585 0.795 
0.920 0.445 1.097 0.347 1.290 0.317 1.588 0.297 
0.921 0.507 1.106 0.515 1.295 0.663 1.593 0.665 
0.921 0.777 1.106 0.725 1.299 0.550 1.596 0.370 
0.923 1.015 1.111 0.163 1.300 1.110 1.597 0.675 
0.928 0.250 1.120 0.445 1.304 0.900 1.598 1.010 
0.933 0.780 1.121 0.280 1.305 0.850 1.610 0.477 
0.933 1.040 1.134 0.470 1.305 0.880 1.610 0.710 
0.936 0.263 1.135 0.300 1.312 0.253 1.619 0.710 
0.937 1.065 1.145 1.265 1.316 0.975 1.630 1.043 
0.940 0.570 1.149 0.810 1.332 0.775 1.644 0.680 
0.948 0.310 1.155 1.050 1.353 0.865 1.648 0.765 
0.962 0.542 1.156 0.555 1.353 1.400 1.651 0.220 
0.964 0.130 1.159 0.492 1.389 0.970 1.656 0.610 
0.978 0.410 1.163 0.230 1.390 1.018 1.658 0.625 
0.978 0.552 1.168 0.287 1.393 0.492 1.670 1.678 
0.978 0.660 1.171 0.785 1.400 0.620 1.680 0.527 
0.978 0.715 1.172 0.802 1.403 0.570 1.687 0.795 
0.987 0.660 1.175 0.210 1.405 0.667 1.687 0.845 
0.992 0.397 1.175 0.505 1.405 0.870 1.701 0.340 
0.993 0.470 1.176 0.320 1.406 1.265 1.704 0.250 
1.007 0.150 1.180 1.550 1.440 0.565 1.710 0.590 
1.010 1.030 1.189 0.590 1.460 0.710 1.715 1.120 
1.021 0.400 1.191 0.400 1.490 0.325 1.718 0.920 
1.021 0.500 1.193 0.425 1.490 0.820 1.724 0.540 
1.021 0.530 1.204 0.580 1.491 0.763 1.744 0.320 
1.023 0.555 1.204 1.150 1.503 0.480 1.765 1.185 
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Memu~ Memu~ Memu~ 
Weight Concentration Weight Concentration Weight Concentration 

(kg) (ppm) (kg) (ppm) (kg) (ppm) 

1.768 1.295 2.130 0.863 2.938 0.713 
1.772 1.053 2.142 1.157 2.958 1.100 
1.781 0.800 2.155 0.410 2.983 0.815 
1.788 0.350 2.155 0.555 3.055 0.935 
1.801 0.840 2.155 1.197 3.063 0.700 
1.808 1.520 2.177 0.950 3.075 0.650 
1.809 0.720 2.197 1.020 3.092 1.783 
1.829 1.485 2.235 0.723 3.175 1.710 
1.833 0.667 2.241 0.795 3.187 0.890 
1.834 0.417 2.250 1.103 3.214 2.310 
1.843 0.660 2.258 0.623 3.226 0.905 
1.844 0.800 2.280 0.710 3.317 1.065 
1.856 1.630 2.282 0.335 3.350 0.750 
1.901 1.140 2.282 1.190 3.359 0.925 
1.909 0.645 2.307 0.740 3.469 0.935 
1.910 0.725 2.310 0.580 3.483 1.000 
1.914 0.360 2.346 0.713 3.512 1.280 
1.914 0.542 2.381 0.365 3.544 0.440 
1.920 0.950 2.399 1.607 3.880 0.910 
1.928 0.465 2.446 0.730 3.973 0.860 
1.942 0.605 2.470 1.100 4.082 0.420 
1.950 0.637 2.481 1.003 4.239 1.178 
1.954 0.550 2.523 0.685 4.351 1.013 
1.955 0.635 2.523 1.550 4.798 0.870 
1.956 0.525 2.535 0.420 4.876 1.900 
1.956 0.827 2.557 0.600 5.811 1.310 
1.958 0.837 2.566 0.710 6.004 1.220 
1.970 1.000 2.579 1.295 7.627 0.990 
1.984 0.777 2.608 0.415 
1.986 0.915 2.608 0.650 
1.993 1.070 2.676 1.160 
1.996 1.430 2.688 0.817 
2.013 0.460 2.693 0.625 
2.025 1.635 2.723 1.015 
2.037 0.505 2.805 1.070 
2.058 1.160 2.807 1.030 
2.070 1.080 2.809 1.000 
2.071 1.220 2.811 1.425 
2.076 0.927 2.823 1.018 
2.076 0.965 2.834 0.810 
2.078 1.185 2.850 1.820 
2.082 0.480 2.855 1.055 
2.084 0.730 2.863 0.705 
2.115 0.430 2.863 1.065 
2.127 1.120 2.904 1.025 



Appendix E 

Monte Carlo Simulations Using Crystal Ball 

A basic familiarity of Excel and Crystal Ball is assumed. 

Traditional Monte Carlo Simulations 
Crystal Ball is a user-friendly add-in for Microsoft Excel used to run 

Monte Carlo simulations. Steps for the traditional Monte Carlo simulation 
procedure are not given here as the procedure is outlined in the Crystal Ball 
users manual (Sargent and Wainwright, 1996). 

Hierarchical Monte Carlo Simulations 
The first step in the hierarchical simulation is to randomly select a value or 

level for the dependent variables (e.g., age and gender for this research). This is 
easily accomplished by assigning a percent to each possible class or value using 
a custom distribution in Crystal Ball (Sargent and Wainwright, 1996). 

Next, a value is randomly selected from the hierarchical distributions 
specific to the dependent values selected above (Le., age-specific or gender­
specific distributions). In this research, the S-distribution parameters were 
required at this time for the specific distribution of interest. Specific quantiles of 
the S-distribution were estimated using the approximation equations given in 
Chapter 3 and Appendix A. 

The appropriate parameter values were assigned using either a nested IF 
function or a logical function TRUE in Excel. An example of each is given below 
for the assignment of one of four age-dependent parameter values. For the 
example, the parameter value is 0.5 if cell A 1 equals one, 0.6 if A 1 equals two, 
0.7 if A 1 equals three, and 0.8 if A 1 equals four. 

Nested IF: =IF(A1=1, 0.5, IF(A1=2, 0.6, IF(A1=3, 0.7, 0.8))) 

TRUE: =((A 1 =1 )*0.5)+((A 1 =2)*0.6)+((A 1 =3)*0.7)+((A 1 =4)*0.8) 

The IF can only be nested seven times, but the TRUE function has no 
such limitation. In addition, the TRUE function evaluates more quickly and 
efficiently in Excel. 

The values from the nested IF or the TRUE function can now be used in 
the parameter fields of the input variables (Le., Crystal Ball assumption cells) as 
described in the users manual (Sargent and Wainwright, 1996). Once a cell 
reference has been entered in any parameter field, two radio buttons become 
available in the assumption window. Select the radio button "dynamic" so that 
the parameter field will be recalculated for each iteration in the simulation. 
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Two-Dimensional Monte Carlo Simulations 
The easiest way to run a two-dimensional simulation is using the Two­

Dimensional Simulation Extender included with Crystal Ball Pro (Werckman and 
Wainwright, 1998). Documentation for this Extender is provided in the previous 
reference. 

Unfortunately, the Extender does have the following limitations: the 
maximum number of outer loop iterations is 100, the maximum number of inner 
loop iterations is 1000, and only values for the output variable can be extracted 
or saved. 

The two-dimensional simulations were performed in this research by first 
selecting parameter values for each of the outer loops. The uncertainty 
distributions characterizing the parameter values can be assigned to cells in the 
worksheet. The references for these cells can now be entered in the parameter 
fields of the input variables. Select the radio button "static" to have these 
parameter values calculated only once for the entire outer loop. 

Now separate simulations, similar to the traditional simulation, are 
performed for each outer loop. The copy and paste functions can be used to set 
up several outer loop simulations to run consecutively. 

Hierarchical Two-Dimensional Monte Carlo Simulations 
As with the two-dimensional simulation, the first step in hierarchical two­

dimensional simulation is to select parameter values for each of the outer loops 
using the uncertainty distributions. This can be accomplished using the process 
described in the Two-Dimensional Monte Carlo Simulations section of this 
appendix. Remember to select the radio button "static" to have these parameter 
values calculated only once for the entire outer loop. 

Next, a value or level is randomly selected for the dependent variables 
(e.g., age and gender for this research) using custom distributions in Crystal Ball 
(Sargent and Wainwright, 1996). 

A value is now randomly selected from the input distributions specific to 
the dependent values selected above (i.e., age-specific or gender-specific 
distributions), where the parameters for each input distribution are obtained 
using the nested IF function or the logical function TRUE as described in the 
Hierarchical Monte Carlo Simulations section of this appendix. Remember to 
select the radio button "dynamic" for these assumption cells so that the 
parameter field is updated each iteration. 

Separate simulations are performed for each outer loop. The copy and 
paste functions can be used to set up several outer loop simulations to be run 
consecutively. 
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