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ABSTRACT 

 

CONNOR ALLEN WEST. Determination of N-Linked Glycosylation Changes in 

Hepatocellular Carcinoma and the Associated Glycoproteins for Enhanced 

Biomarker Discovery and Therapeutic Targets (Under the direction of RICHARD 

DRAKE) 

 

With hepatocellular carcinoma (HCC) remaining as the fifth most common cancer 

in the world, causing more than 700,000 deaths annually, the need for reliable, 

early stage diagnoses and preventive treatments is crucial. While serum 

glycoproteins are hepatic in origin, making them excellent targets for HCC 

biomarkers, they can originate from both cancerous and non-cancerous regions 

and direct analysis of cancerous tissue itself is lacking. To counteract this, I 

hypothesized that direct tissue analysis combined with proteomic analysis could 

be utilized to identify more potential targets specific to HCC for early detection. 

This was done with a primary focus on glycosylation—as most clinically approved 

biomarkers are glycoproteins—and examined direct tissue glycomics in 

conjunction with glycoproteomic techniques through two specific aims: 1) 

Determining patterns of N-linked glycan changes in HCC tissue using MALDI 

imaging mass spectrometry to compare to previously published serum changes 

and 2) identifying glycopeptides containing changes in observed patterns of N-

linked glycans in HCC samples using a targeted glycoproteomic approach. In 

Aim 1, HCC tissue was examined using MALDI imaging mass spectrometry to 
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verify changes in glycosylation via direct tissue analysis. Here, it was found that 

increased branching and fucosylation were directly associated with the 

cancerous tissue when compared to normal or cirrhotic. To further identify 

changes in glycosylation, two methods (one novel and one adapted for imaging) 

were implemented on tissue to further classify N-linked glycan isoforms through 

linkage analysis, specifically for sialic acids and core fucose. Again, it was shown 

that core fucose is most directly related to HCC tissue, thus confirming serum 

findings in the literature. For Aim 2, the novel method of determining core 

fucosylation was used in conjunction with glycoproteomic techniques to further 

elucidate the core fucosylated glycoproteins of interest. With the tag left behind 

following the enzymatic cleavage, targeted glycoproteomics was used to 

determine glycoproteins of interest while eliminating some biases inherent in the 

method, such as low ionization efficiencies for more complex N-glycans. This 

work outlines the first in-depth analysis of HCC tissue specifically regarding N-

glycan changes, a novel application to determine N-glycan isoforms, and the 

application of these methods for glycoproteomic enhancement. With these 

findings, new trends in glycosylation related to the disease state could be further 

uncovered, as well as provide new biomarker candidates or therapeutic targets 

for future studies. 
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1.1. Introduction to Hepatocellular Carcinoma 

1.1.1. Background, Mortality and Standard of Care 

Liver cancer causes more than 700,000 deaths annually, making it the fifth 

most common cancer overall and second most common cause of cancer-related 

death worldwide [1, 2]. Over the last 10 years in the United States of America 

(USA), liver cancer has seen the greatest increase in mortality among any cancer 

type. In the Annual Report to the Nation on the Status of Cancer, between 1975 

and 2012, mortality from liver cancer increased at an annual rate of 2.8 percent 

in men and 2.2 percent in women [3]. Indeed, the occurrence of liver cancer is 

predicted to continue rising in the United States and will exceed 50,000 cases by 

the year 2021. This will result in greater mortality rates than breast or colorectal 

cancer [4].  

Hepatocellular carcinoma (HCC) is the most abundant form of liver 

cancer, occurring in 75 percent of all liver cases, followed by 

Cholangiocarcinoma in the bile duct (10 to 20 percent), and Liver Angiosarcoma 

(approximately 1 percent), and Hepatoblastomas [5]; 80 to 90 percent of HCC 

cases stem from cirrhotic livers, while the remaining 10 to 20 percent become 

cancerous directly from years of chronic inflammation or fibrosis. Men are three 

times more likely to develop HCC as women with cirrhosis-inducing risks higher 

in the male population, although chemically-induced HCC is still lower in women 

with the mechanism still not clearly understood [6].  Asian populations are most 

prone to development of the disease due to higher incidences of chronic hepatitis 

infections in the Asia-Pacific region and differences in viral infection age, followed 



 

3 
 

by African Americans, Hispanics, and then whites [7, 8]. Survival rates of HCC 

are abysmally low: Early-stage diagnoses have five-year survival rates of 

approximately 30 percent, while late-stage diagnoses are as low as 3.7 percent 

[9]. 

 Related to the low survival rates of liver cancer patients, there are few 

treatments and even fewer curative options, especially for those patients with 

large lesions. While there are chemotherapeutic possibilities and ablation and 

resection techniques for lesions smaller than 3-5cm in size, there few curative 

options (survival longer than 60 months). The curative options currently available 

are surgical resection of small lesions and transplantation [10]. For each patient, 

a variety of factors such as hepatic reserve, hepatic function, and lesion size, 

determines which method is most viable. By most standards, patients with fewer 

and smaller lesions, as well as ample hepatic reserves, are often good 

candidates for resection, with five-year survival and disease-free survival rates at 

39 and 26 percent respectively [10, 11]. Resection, however, is usually available 

to only 10 to 37 percent of patients at the time of diagnosis [11], and 

transplantation availability is even lower. Transplantation is the most successful 

form of curative therapy for liver cancer patients with overall and disease-free 

survival rates at 85 and 92 percent, respectively, but complications from immune 

rejection and a lack of organ donors results in transplantations being less 

common as a treatment technique [10, 11]. 

Chemotherapeutic options for liver cancer are limited and used primarily in 

those who are not candidates for resection. The frontline agent for those with 
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non-ablatable tumors is the multi-kinase inhibitor sorafenib, sold under the brand 

name Nexavar.  Sorafenib is a general tyrosine and serine/threonine protein 

kinase inhibitor with activity against vascular endothelial growth factor (VEGF) 

and platelet-derived growth factor (PDGF) receptors as well as intracellular 

kinases B-Raf and Raf-1 [9]. Agents that specifically target one growth receptor, 

such as enhanced VEGF receptor inhibitors have failed to show activity against 

liver cancer [4]. It is noted that the activity of sorafenib against liver cancer is 

limited, with improved survival times of only a few months [12]. These bleak 

treatment options—both in their availability and efficacy—highlight the necessity 

for early detection of liver cancer, which allows for surgical intervention. Figure 1 

details the clinically relevant outcomes of hepatocellular carcinoma as a function 

of time of diagnosis. 

 

1.1.2. Liver Cancer Subtypes 

 With the heterogeneity of hepatocellular carcinoma being as robust and 

diverse as it is, further classification was needed to accurately identify the 

mechanism of action for the disease. In 2009, a genomic-based study of 

approximately 600 western and eastern cases of viral-related HCC was done to 

develop a new class of molecular subtyping: S1, S2, and S3 [13]. Each 

classification correlated in terms of clinical parameters, but S1 showed 

dysregulation of the WNT pathway, which was surprisingly independent of β-

catenin activation but rather dependent on the activation of TGFβ. S2 

demonstrated increased proliferation and upregulated MYC and AKT activation.  
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S3 was indicative of hepatocyte differentiation. Along with other factors, this 

classification system has been used to enhance biomarker targets through 

affected signaling pathways [14]. Through these different molecular 

classifications, therapeutic targets are more easily identified through the 

mechanism of which the disease operates; however, further studies are needed 

to elucidate truly viable targets for chemotherapeutic options.  

 Other groups have further expanded on this work, performing a 

comprehensive genomic analysis on hepatocellular carcinoma samples relative 

to the subtyping classification introduced by Hoshida [15]. This group performed 

clustering analysis and found three distinct clusters of molecular subtypes 

varying, differing from the previous subtyping classification system. The first 

integrated cluster found increased macrovascular invasion while containing the 

lowest fraction of differentiated samples based on the Hoshida classification, with 

relatively low amountds of CDKN2A silencing, CTNNB1 mutation, and TERT 

promoter mutation. These tumors, however, included more silencing of miR-122 

and over-expression of MYBL2, PLK1 and MK167. Conversely, the second and 

third cluster experienced high CDKN2A silencing via DNA hypermethylation, 

higher rates of TERT promoter and CTNNB1 mutation. Cluster 2 contained lower 

grade tumors and less microvascular invasion while Cluster 3 had higher genetic 

instability and TP53 mutation. Cluster 1 was found to be associated 

predominately with subtype 2 and Cluster 3 was found to primarily associated 

with subtype 3 for the Hoshida classification, further evaluating the underlying 

genetic modifications for the subtypes of HCC. 
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1.1.3. Disease Etiology 

1.1.3.1. Risk Factors 

 Being the most common form of liver cancer, HCC has  

many known risk factors, such as chronic infection with hepatitis B virus (HBV) 

and hepatitis C virus (HCV), alcohol abuse, obesity, aflatoxin exposure, and 

many other metabolic diseases [16, 17]. These risk factors induce a progressive 

inflammatory response, resulting in liver fibrosis and eventually cirrhosis, which is 

the true risk factor for HCC. This process occurs in multiple cycles of necrosis 

and regeneration, often leading to genetic instability [15]. Because of this genetic 

heterogeneity, the pathways involved in hepatocarcinogenesis are not fully clear, 

resulting in a lack of diagnostic and therapeutic options [18]. Therefore, the 

survival rates of primary liver cancer are low, generally with a 0.95 ratio of 

mortality to occurrence and five-year survival rates as low as 11 percent [19, 20]. 

 Hepatitis viral infections remain the largest risk factor for liver cancer, with 

HBV accounting for 50 percent of all HCC and 70 to 80 percent of those cases 

arising from cirrhosis of the liver [21]. There is risk associated for those who test 

positive for the hepatitis B surface antigen (HBsAg), although the risk is still 

loosely correlated to the level of viral DNA. However, this risk can be 

compounded by other factors like family history, coinfection, and exposure to 

aflatoxins [22]. In contrast, HCV increases the chances of developing 

hepatocellular carcinoma 15- to 20-fold due to increased fibrosis and cirrhosis 

[23, 24]. 

 Second to viral infection, environmental factors also play an important role 
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in the development of hepatocellular carcinoma. The most predominant risk, 

especially with the rise of the western diet, is that of obesity and diabetes which 

often lead to non-alcoholic fatty liver disease (NAFLD) [25]. Nearly 30 to 40 

percent of men and 15 percent of women in the United States have some varying 

level of NAFLD, and this risk is increased with the presence of type 2 diabetes 

mellitus (T2DM) [26]. NAFLD also contains a more severe form, non-alcoholic 

steatohepatitis (NASH), which increases the risk of developing cirrhosis and liver 

related diseases.  

 Also, associated with HCC development is aflatoxin exposure, a natural 

mycotoxin produced by the Aspergillus species. Aflatoxin B1 (AFB1) is the most 

carcinogenic for HCC development, involved in the cytochrome P-450 system 

and forming AFB1-albumin, AFB1-guanine and other protein adducts responsible 

for carcinogenic hepatic DNA mutations [27]. 

 

1.1.3.2. Common Signaling Pathways 

Multi-omic studies tackle the topic of characterizing HCC, including 

analyses in genomics, proteomics, transcriptomics, glycoproteomics, glycomics, 

and metabolomics.  While some studies have a broad focus and touch on multi-

omic approaches, others focus primarily on one to further elucidate possible 

changes and therapeutic targets between the cancerous region, cirrhotic tissue, 

and normal tissue. In broad studies, the focus is often on building a network that 

links many aspects of the specific cancer to determine affected pathways.  For 

example, Ressom et al. (2016) characterized 499 genes, 217 proteins, 296 
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glycoproteins, 41 N-glycans, and 48 metabolites that represented significant 

changes between HCC and cirrhotic tissue, enabling the creation of a network 

that identified the most dysregulated pathways [28]. These findings demonstrated 

that tRNA charging, epithelial adherin junction remodeling, ILK signaling, EIF2 

signaling, and glycolysis are significant pathways in the formation and 

maintenance of HCC.  While these broad-scale studies usually don’t lead to 

therapeutic targets, they provide a starting point for more specific –omic studies 

to move forward. Recently, one of the largest studies involved a genomic 

characterization of tissue across multiple platforms [15]. These researchers were 

able to corroborate and expand on the previous findings, determining genes 

altered more significant pathways such as β-catenin/WNT and RTK/RAS/PI(3)K 

and other factors such as TERT, TP53, CTNNB1 and immune checkpoints [15, 

29, 30].  These genomic studies of tissue are increasingly important in HCC as 

knowledge of the tumor heterogeneity increases. It has been well studied that 

HCC displays frequent heterogeneous growth patterns and features, often within 

the same tumor, making it difficult to accurately determine a specific pathway or 

gene that fits precisely for each case [30-32]. With the successes of alpha-

fetoprotein (AFP) as a viable serum biomarker, many studies have shifted to 

proteomic and glycomic studies of liver tissue in hopes of establishing a more 

encompassing method of detection or developing a therapeutic target. 

 

1.1.3.3. Origin of Disease Initiation 

 As stated above, HCC frequently develops in the presence of cirrhosis, 
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and results in cellular dysregulation such as loss of cell cycle control, loss of 

senescence, and dysregulation of apoptosis [33]. Different risk factors result in 

HCC in a variety of ways, but generally, patients with one or more risk factors 

develop fibrosis of the liver, which leads to cirrhosis, and ultimately, liver 

cancer—most often HCC [33]. 

 In the case of a viral infection, such as HBV or HCV, modes of initiation 

vary widely. For example, in the presence of HBV, many cell signaling pathways 

are affected by the virus such as a decrease in differentiation, an increase in 

proliferation, more genomic instability, and an increase in fibrogenic qualities 

[34]. These affected cellular pathways often lead to dysregulation of oncogenes 

and cell cycle regulators, resulting in increased chances for HCC development 

and complications. In contrast, HCV is a little more complicated when examining 

its role in HCC progression. The highly heterogeneous virus contains a multitude 

of subtypes, and while some have documented the increase rate of HCC in 

specific genotypic subtypes, the exact mechanism of HCV-induced HCC is still 

argued [35]. While it is generally agreed upon that HCV-induced HCC is the 

result of persistent inflammation and viral interference of cell signaling and must 

occur in the presence of cirrhosis, some have recently demonstrated a 

relationship between HCV-induced EGFR-ERK signaling and the progression of 

HCC [36, 37]. 

 In the case of a non-viral risk factor, such as NAFLD, inflammatory 

responses are generally the culprit for disease progression, with inflammation 

through the NF-κB pathway being largely responsible for the approximately 
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twenty percent of patients that develop fibrosis, progressing to cirrhosis, and 

ultimately HCC [38, 39]. 

 

1.1.4. Current Detection and Diagnosis of Liver Cancer 

1.1.4.1. Clinical Detection Approaches 

Current guidelines by the American Association for the Study of Liver 

Disease (AASLD), National Comprehensive Cancer Network (NCCN), and 

Department of Veterans Affairs (VA) recommend HCC surveillance with 

abdominal ultrasound (US) with or without AFP every six months in all patients 

with cirrhosis [11]. Although there is no randomized trial evaluating HCC 

surveillance in patients with cirrhosis, several prospective cohort studies have 

demonstrated an association between HCC surveillance and improvement in 

early detection and survival in patients with cirrhosis, after adjusting for known 

confounders and lead-time bias [40, 41]. Although the surveillance has efficacy, 

the majority of the patients in the USA are diagnosed beyond the early stage 

when curative therapies are no longer effective. In addition to poor sensitivity for 

early HCC detection, US and AFP are both prone to false positive results, 

leading to unnecessary patient anxiety and diagnostic testing [42, 43]. While 

some providers use alternative, expensive imaging modalities such as computed 

tomography (CT) and magnetic resonance imaging (MRI) in all cirrhosis patients 

(despite a dearth of supporting data), others have abandoned HCC surveillance 

from frustration about the poor accuracy, leading to underuse of HCC screening 

in clinical practice [44]. US is increasing in traction given the lack of contrasting 
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agents needed for accurate detection of HCC, improving the diagnosis in the 

elderly population where contrasting agents are restricted [45]. This 

methodology, however, is still not as accurate as needed and still not cost-

effective for many. Given the importance of early tumor detection for improving 

survival among HCC patients, there is a need for surveillance tests with higher 

sensitivity and specificity.  

Biomarkers were put into practice to enhance earlier detection through less 

invasive means. As mentioned previously, alpha-fetoprotein (AFP) is a widely 

used and clinically approved biomarker for detection of HCC. While commonly 

associated with gestation, this glycoprotein is often monitored in pregnant women 

while the fetal liver produces AFP throughout gestation and achieves normal 

adult levels by 8 to 12 months [46]. The role of AFP in humans is not widely 

understood, as it does not bind estrogen as with other organisms, however 

various isoforms have been shown to be promising biomarkers in the field of 

HCC progression with changes in the glycosylation site increasing its power to 

indicate of a cancerous state [47-50].  Comparison of the L1 isoform, which is not 

related to HCC, to the L3 isoform containing the additional core fucose residue, 

which is associated with the malignancy of HCC, can be helpful in determining 

cancerous presence and degree of severity. AFP measurements can be taken 

directly from serum, allowing for a less invasive and more cost-effective 

screening method [51-54]. Combining AFP detection with US screening 

increased screening sensitivity to 90.2 percent, making this combination the most 

preferred method for the detection of HCC [55]. Recent reports have indicated 
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that algorithms consisting of several clinical factors and patient information can 

be used to improve the performance of AFP [56, 57]. It is also noted that AFP 

may be associated with very specific types of HCC [30]. 

As with many cancers, outcome is greatly improved by early detection [58, 

59]. Overall survival of those detected with early cancers is less than 60 months 

but less than 20 months if the cancer is caught at a later stage [60]. Hence there 

is great significance in the development of methods for the early detection of 

HCC. 

 

1.2. Glycosylation 

1.2.1. General Principles of Glycosylation 

Glycosylation, or the covalent addition of a carbohydrate chain to a 

protein, occurs through site-specific and enzyme-directed modification post- or 

co-translationally [61-63]. Glycosylation occurs in four major forms: N-linked, O-

linked, glycosphingolipds (GSLs) and proteoglycans/glycosaminoglycans (GAGs) 

[64]. N-linked glycosylation involves attachment of the carbohydrate chain to an 

asparagine residue with a consensus sequence of N-X-S/T (where X can be any 

amino acid except proline) and O-linked glycosylation is the attachment of a 

carbohydrate chain to a serine or threonine residue.  This modification occurring 

on cell surface proteins is crucial for cell-cell adhesion, signaling, and other 

cellular processes [65] and because of this dynamic variability, it is often a target 

for investigation as many disease states alter glycosylation expression [4, 52, 

66]. Alteration of glycosylation can occur in many forms, such as overexpression 
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of specific glycoproteins associated with certain glycans, an increase or decrease 

of available sugar donors, and a change in glycosyltransferase and glycosidase 

enzymes [67].  Figure 2 details the different sugar residues involved in N- and O-

linked glycosylation, as well as the different nomenclature used in describing 

glycans. 

Aside from the forms of glycosylation listed above, there are other forms of 

glycoconjugates, such as proteoglycans and glycosphingolipids. Proteoglycans 

are built from a single or multiple glycosaminoglycans (a linear  

chain of repeating acidic disaccharide units) such as hyaluronan, chondroitin 

sulfate, keratin sulfate, and heparan sulfate [68]. Glycosphingolipids, on the other 

hand, are glycans attached to a lipid ceramide, which tend to contain a varying 

amount of core structures and gangliosides, and have been shown to regulate 

receptor tyrosine kinases [69]. In this dissertation, I will focus primarily on N-

linked glycosylation and its physiological, pathological, and functional role in 

mammals, as well as its role specifically in HCC. 

 

1.2.1.1. Mechanism of Protein N-Glycosylation 

 Protein glycosylation begins with the canonical hexosamine biosynthetic 

pathway (HBP) in the endoplasmic reticulum (ER). Along with playing a role in 

driving tumor growth and participating in the hallmarks of cancer, glucose, 

glutamine, fatty acids, and amino acids all play a role in the formation of uridine 

diphosphate N-acetylglucosamine (UDP-GlcNAc) through HBP which acts as the 

basis for protein glycosylation [70]. Briefly described by Chiaradonna et al., the  
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hexosamine pathway and glycolysis share the first two steps of glucose uptake 

and conversion to fructose-6-phosphate (F6P). Here, however, the paths diverge 

and glutamine fructose-6-phosphate amidotransferase (GFAT) is used in this 

rate-limiting step to transform the F6P to glucosamine-6-phosphate (G6P) with a 

byproduct of glutamate [71]. It is at this time that glucosamine entering the cell 

can also be converted using the GlcNAc kinase (GNK). Next, glucosamine-

phosphate N-acetyltransferase (GNPNAT) catalyzes with acetyl CoA to create N-

acetylglucosamine-6-phosphate (GlcNAc-6P) followed by a phosphomutase to 

create N-acetylglucosamine-1-phosphate (GlcNAc-1-P). Finally, uridine 

triphosphate (UTP) and GlcNAc-1-P produce UDP-GlcNAc through the UDP-N-

acetylglucosamine pyrophosphorylase (UAP1/AGX1) [71, 72].  

 To begin the synthesis of N-linked glycans, however, the UDP-GlcNAc 

must be used with the dolichol phosphate (Dol-P) to react with the UDP-GlcNAc 

glycotransferase to generate the precursor N-acetylglucosamine dolichol 

pyrophosphate (GlcNAc-Dol-PP) [73]. Once the membrane-bound GlcNAc-Dol-

PP is synthesized, sugar residues are attached on the cytosolic side in systemic 

fashion via multiple enzymes to create the first half of the precursor 

oligosaccharide which consists of two N-acetylglucosamines and five mannoses. 

This is then flipped from the cytosolic to luminal side of the ER via a flippase to 

initiate the final addition of sugar residues to create the final precursor 

oligosaccharide of two N-acetylglucosamines, nine mannose, and three glucose 

units [74]. The precursor oligosaccharide is then transferred from the Dol-PP 

onto an asparagine residue of a protein in the consensus sequence of N-X-S/T 
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where X cannot be proline. 

 Following the attachment of the precursor oligosaccharide, the N-linked 

glycan is then processed and trimmed. There are two different pathways by 

which this can be done: the glucosidase-independent and -dependent pathways. 

In the glucosidase-dependent pathway, processing occurs within the ER and is 

initiated by the trimming of glucose residues through the calnexin/calreticulin 

cycle. In contrast, the glucosidase-independent pathway occurs in the Golgi and 

utilizes an endomannosidase to cleave the Glucose1-3Mannose1 residue. The 

glycan is then processed to either create varying mannose structures or trimmed 

fully to five mannose structures and two N-acetylglucosamine structures. These 

glycans are then rebuilt to create more complex sugar structures of varying 

degrees and complexities [74, 75]. 

 As shown in Figure 3, there are a multitude of pathways where glycan 

reassembly can occur with different complexities and additions available. As 

stated above, the first available route would be for the N-glycan to become a high 

mannose type glycan within the cis-Golgi. This is a glycan that contains a varying 

degree of mannoses, typically between five and nine, and stems from the 

removal of mannoses from the preliminary oligosaccharide. The mannose are 

trimmed within the cis-Golgi and if the N-glycan moves beyond a high mannose 

type and is fully trimmed, it is transferred out of the cis-Golgi and into the medial-

Golgi. In the medial-Golgi, the N-glycan faces another turning point. At the first 

addition of an N-acetylglucosamine (GlcNAc), it will either continue to be 

processed to remove high mannose, or the GlcNAc will be built upon to create  
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Figure 3: Trimming and Processing of N-Linked Glycans.  Schematic shows 

the trimming and processing of N-linked glycans following attachment to the 

protein, as well as the possible pathways N-linked glycan processing can follow 
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what is known as a hybrid-type glycan: a half mannose, half complex glycan. 

However, if the mannoses are fully removed, the N-glycan moves from the 

medial-Golgi to the trans-Golgi where the final addition of sugar residues occur. 

Here, there are multiple options for the glycan to take: fucosylation, more 

branching, bisecting, and sialylation. Fucosylation occurs with the addition of a 

fucose residue through one of the many fucosyltransferases; increased 

branching occurs through the action of N-acetylgluosaminyltransferase (GnT) IV 

or GnT-V to create extra arms of GlcNAc and galactoses; bisecting occurs 

through GnT-III and adds a GlcNAc to the first mannose of the structure, creating 

a bisecting branch of the glycan; and finally, sialylation occurs through the 

galactose sialyltransferase (STGal) family of adding a sialic acid onto a 

galactose, or the sialic acid sialyltransferase (STSia) family for addition onto 

another sialic acid [75-77]. 

 Since this process is complex in nature, it is no surprise that many 

congenital disorders of glycosylation are likely to occur within this process, and 

many of these diseases arise from the dysregulation of enzymes responsible for 

glycosylation biosynthesis [74]. Some major classes of these congenital 

disorders of glycosylation (CDGs) within the N-linked glycosylation pathway are 

PMM2-CDG, characterized by dysregulation of the phosphomannomutase 2 

gene; MPI-CDG, characterized by the dysregulation of the phosphomannose 

isomerase gene, and ALG6-CDG, dysregulation of the ALG6 gene resulting in 

aberrant attachment of the final three glucose molecules [78]. These diseases 

can vary in severity and effect, ranging from intellectual defects and 
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developmental delays of the individual to hormonal and chemical deficiencies 

throughout their life. Increased understanding of the role of glycosylation has 

become of particular interest to many fields, not only for the physiological roles, 

but also for the pathological role that glycosylation can play. 

 

1.2.1.2. Physiological and Pathological Roles of N-Glycosylation 

 As stated above, glycosylation plays a vital role in many physiological 

pathways such as cell-cell adhesion, protein folding, transport, and cellular 

signaling [79]. In examining the major functions of N-linked glycosylation, the 

most relevant would be its major function: regulating protein folding. It is shown 

that when glycosylation is inhibited in eukaryotic cells, the most affected process 

is proper protein folding where proteins generated accumulate in a misfolded and 

nonfunctional state [80, 81]. For example, in-vitro studies have shown 

glycosylated and non-glycosylated versions of the same protein have different 

folding processes and N-glycans have been shown to alter conformational 

preferences near the site of glycosylation and move the protein towards more 

compact conformations, such as a compact β turn in the secondary structure 

[82]. Glycosylation has also been shown to act as a chaperone for incomplete 

proteins to enter the calnexin-calreticulin cycle to prevent movement from the ER 

to the Golgi apparatus until the protein either becomes fully folded or is degraded 

[74]. 

 Another major physiological role of N-glycosylation is its involvement with 

protein transport and targeting. In the secretory pathway, glycosylation also 
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assists in deciding when and how quickly proteins are secreted, as well as 

signaling for other proteins involved in the secretory pathway [82]. 

 Finally, the last major role that glycosylation plays is coordinating cell-cell 

interactions, both intrinsically and extrinsically. Glycans play a role in cell to cell 

recognition as well as cell-matrix interactions, as is the case for the adhesive 

selectin family, or the recognition of sialyl-Lewis X (sLex) by the family of 

selectins [80]. Carbohydrate interactions can also occur, acting as an adhesive to 

maintain biological interactions. [83] 

 As is the case with most broadly involved biological processes, this leaves 

a lot of room for error in systemic function, especially in terms of glucose 

regulation. It is due to this link that glycosylation has been shown to play a major 

role in pathological functions, not only related to CDGs, but in terms of tumor 

progression, metastasis, and non-mediated cell proliferation and other 

mechanisms of disease and overall human health [84-86]. 

 

1.2.1.2.1. N-Linked Glycans in Cancer 

 For many years, glycosylation has been well characterized and 

functionally studied, but it wasn’t until recent years that glycosylation has gained 

increased traction in the study of cancer, even though the first link between 

oncogenic transformation and glycosylation was described as early as 1949 [87]. 

Impaired glycosylation occurs in two principle mechanisms: incomplete synthesis 

and neo-synthesis. Incomplete synthesis typically occurs in earlier-taged cancers 

and results in truncation of complex glycans due to dysregulated 
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glycosylatransferases, while neo-synthesis is more common in advanced 

cancers and involves the induction of genes related to glycan biosynthesis, 

resulting in the increased expression of certain glycans [68]. These alterations in 

glycosylation typically correspond directly with nearly all the hallmarks of cancer 

(established by Weinberg in 2000) such as the evasion of growth suppressors, 

the dysregulation of metabolism, resistance to apoptosis, immortality, increased 

invasion, and metastasis [67, 88]. 

 Briefly examining the broader implications of glycosylation and its roles on 

each aspect of the hallmarks of cancer, trends emerge in the role glycosylation 

plays in cancer progression and maintenance. Beginning with proliferative 

signaling, studies have shown that N-glycan branching can mediate growth factor 

receptors to signal proliferative signaling [89] while numerous other growth 

factors are shown to be regulated through glycosylation as well [69]. Along with 

this, cell growth and survival has been shown to be regulated through 

glycosylation as well modification of the signaling for CD44 [90, 91]. In examining 

invasion and metastasis, dysregulation of MGAT5—responsible for the fourth 

branch of an N-glycan structure—has demonstrated a clear link for disruption of 

E-Cadherin, resulting in non-functional adherence junctions and cell-cell 

adhesion impairments, while MGAT3—responsible for the bisecting GlcNAc—

has been shown to influence interactions with galectins and growth factors [92-

96]. Finally, N-glycosylation has been demonstrated to be involved with the 

inflammatory pathway, with selectin binding specific glycosylated epitopes, 

initiating an immune response from leukocytes to the region of dysregulated 
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glycosylation [97, 98]. 

 As mentioned, glycosylation plays many roles in cancer progression, 

evasion, and metastasis, but further studies have revealed that specific moieties 

of N-glycans are the most highly associated with the hallmarks of cancer. The 

first class of glycans are those with increased core fucosylation, shown to have 

high metastatic potential in a variety of cancers [99-101]. The second major class 

of glycan are those that have increased levels of Sialylation to disrupt cellular 

adhesion as well as increase cellular signaling for a variety of factors [102]. 

Below, these two major classes and their specific relation to HCC will be 

discussed at greater length. 

 

1.2.1.2.2. Core Fucosylation 

 The first major glycan class found to be associated with physiological and 

disease pathways, including HCC, is that of core fucosylation. Fucosylation is the 

addition of a fucosyl sugar moiety, which is transferred onto a glycan structure 

from a guanosine diphosphate (GDP)-fucose via enzymatic activity. Therefore, 

dysregulation of fucosylation can occur through either dysregulation of the 

enzyme responsible or through the available synthesized GDP-fucose [103]. 

There are two separate types of fucosylation that can occur on an N-glycan: core 

fucosylation, where the fucose sugar moiety is attached at the base of the N-

glycan in an α1,6 linkage, and outer arm fucosylation, where the fucose sugar is 

placed anywhere else on the glycan at an α1,2/3/4 linkage. In humans, there are 

11 fucosyltransferases responsible for the addition of fucose on an N-linked 
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glycan; however, there is only one enzyme, termed fucosyltransferase-8 (FUT8), 

that is responsible for the core fucosylation [104]. Figure 4 demonstrates the 

potential sites of fucosylation on a complex N-glycan, as well as the potential 

linkage conformations of the fucose sugar residue. 

 The role of core fucosylation has been vastly studied, with effects 

following directly in line with those seen in glycosylation overall, such as cell 

signaling and inflammatory response. For example, core fucosylation has been 

shown to mediate the signaling of B cell receptors to activate signaling required 

for pre-B cell recognition [105, 106] and is essential for a multitude of growth 

factor receptor functions [107]. 

 Indeed, with the role that fucosylation plays within the signaling and 

immune response realm, this has become a popular area of research in terms of 

cancer treatment options. Specifically looking at core fucosylation, we have seen 

a multitude of studies demonstrating an increase in core fucosylation being 

associated with cancers, such as the metastatic potential of melanoma or non-

small cell lung cancer [99, 100], as well as a marked increase in HCC cases as 

well [101], leading researchers to hypothesize that fucosylation inhibition could 

potentially be a source of cancer therapy. Recently, an anti-fucosylation drug, 

known as 2-flurofucose (2FF), was developed and tested for its efficacy towards 

treating cancer progression [108]. Excitingly, in HepG2 cells, 2FF showed a 

striking decrease in core fucosylation, suppressing cell proliferation and integrin-

mediate cell migration, demonstrating the importance of core fucosylation in HCC 

formation and a promising lead for N-glycan based cancer therapeutics [109]. 
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Figure 4: Fucosylation Linkages and Enzymatic Activity.  Schematic 

shows the generic possible locations of fucosylation on an N-glycan, as well 

as the possible linkages in black and the possible enzymes responsible for 

this fucosylation in red. For clarity, FUT3/4/6 add a fucose to a non-terminal 

GlcNAc but not the first GlcNAc in a branch, while FUT7/9 add a fucose to the 

terminal GlcNAc in a branch 
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1.2.1.2.3. Sialylation 

 The second major class of glycan modifications is known as Sialylation. 

Sialylation is the addition of an N-acetylneuraminic acid (commonly referred to as 

Neu5Ac or sialic acid for short) onto either a galactose or another sialic acid via 

the action of a sialyltransferase (ST) acting on a CMP-Neu5Ac substrate within 

the Golgi. In humans, there are a number of STs that can be divided into two 

groups: those that catalyze the addition of sialic acid onto a galactose (ST6Gal-I, 

ST6Gal-II, ST3Gal-IV, and ST3Gal-VI) or onto another sialic acid to create a 

polySialylation chain on the glycan (ST8Sia-II and ST8Sia-IV) [77]. Similar to 

fucosylation, there are also additional linkage specificities associated with the 

attachment of sialic acid. Sialic acids attached to a galactose can be in either the 

α2,3 or α2,6 conformation, while sialic acids attached to another sialic acid will 

always be in the α2,8 conformation and must be attached to a sialic acid in the 

α2,6 conformation. Figure 5 demonstrates the potential sites of sialylation on a 

standard N-glycan, as well as the associated linkages and possible 

sialyltransferases for each potential site. 

Similar to fucosylation, the role of sialic acids in human health has been 

well studied, as well as their role in varying disease states. Sialic acid is a unique 

monosaccharide as it is negatively charged at physiological pH, enabling 

different interactions and modifications. A primary example of the role of sialic 

acids in general human physiology is their relationship with lectin binding that 

control key processes in health in disease. Sialic acid binding lectins, known as 

siglecs, play a key role in modulating immune response pathways through toll- 
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Figure 5: Sialylation Linkages and Enzymatic Activity.  Schematic shows 

the generic possible locations of sialylation on an N-glycan, as well as the 

possible linkages in black and the possible enzymes responsible for this 

sialylation in purple.  
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like receptor signaling, CD33 regulation, and dendritic cell expression 

[110]. In the regulation of these signaling pathways, linkage of the sialic acid is of 

critical importance, emphasizing the need to better understand the specific 

linkages of these sialic acid modifications. 

 More interestingly, however, and relevant to current public interest, is the 

role sialic acids play in viral infection. For example, the human influenza virus is 

heavily reliant on the haemagglutinin trimer protein binding to α2,6-linked sialic 

acids to adhere to the host cell for infection [111] while in contrast, the 

betacoronaviruses utilize 9-O-acetyl-sialic acid as a receptor [112]. Therefore, 

sialic acid-based therapeutics have become increasingly prevalent, such as the 

invention of oseltamivir (Tamiflu) to act as a competitive inhibitor for cell surface 

sialic binding [113]. 

 Aside from human health and viral infection, sialic acids have also been 

shown to play a role in cancer. Sialyl-Lewis X structures (Figure 6) are bound by 

selectins and mediate many functions of immune response and response to 

infection and injury. They become dysregulated in cancers, causing pro-

inflammatory responses and leukocytic rolling arrests, allowing for cancer 

survival and metastasis [114]. Additionally, hypersialylation has been linked to 

increased metastasis and invasion of cancer, with upregulation of ST6Gal-I being 

linked to oncogenic Ras activation in cancers through altered β1 integrin [115]. 

 The role sialic acid modification plays in relation to HCC disease 

progression, metastasis, and immune invasion will be discussed later, as well as 

a closer look at the role of sialic acids in cancer. 
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1.3 Aberrant Glycosylation in Hepatocellular Carcinoma 

As stated above, many current biomarkers are glycoprotein biomarkers—

such as AFP for HCC—with the glycosylation playing an important role in the 

detection of the disease. Previous work in serum by others has shown that many 

different structural motifs of these carbohydrate chains, or glycans, are 

associated with a disease state, such as increased branching, sialylation, 

fucosylation, or polylactosamine additions [52, 116-118]. Specifically for HCC, 

the addition of a core fucose (α1,6 linkage) to the associated N-glycosylation site 

on AFP is indicative of the disease [48]. Table 1 outlines some of the key studies 

related to the changes in glycosylation as it pertains to HCC. 

Unfortunately, the use of these glycoprotein biomarkers is limited due to 

the lack of specificity for the tumor region.  While serum is hepatic in origin and a 

viable option for biomarker detection of the disease, the sensitivity to detect early 

stage cases of HCC is still lacking.  An approach to more effectively detect earlier 

cases of HCC with higher degrees of specificity and sensitivity could be more 

site-directed analysis of tumor and stroma directly in clinical tissue specimens.   

 

1.3.1. Liver Cancer Glycomics 

Glycomics has quickly become an emerging trend in the field of cancer 

biomarker development, and HCC is no exception [119-149]. In most cases, 

glycan analysis has been done with serum and not directly from the cancer tissue 

itself [122, 134-149].  

Others have documented significant alterations in serum N-linked  
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Table 1: Key Studies Highlighting Changes in Glycosylation Related to HCC 
 
Glycan Modification 
Studies 

Examples of 
Modification 

References  

Core Fucosylation AFP-L3, FUT8, 
GP73, miR122 

Mehta, Herrera [4], Norton and 
Mehta [103], Zhou, Fukuda 
[109], Bernardi, Soffientini 
[150], Block, Comunale [151], 
Comunale, Lowman [152], 
Comunale, Rodemich-Betesh 
[153], Ma, Sanda [154], Wang, 
Sanda [155], Wang, Fukuda 
[156] 

 

Outer-arm 
Fucosylation 

α1,3/4 
fucosyltransferase, 
kinninogen, 
haptoglobin 

Goldman, Ressom [138], 
Comunale, Rodemich-Betesh 
[153], Mehta, Herrera [157], 
Kamada, Akita [158] 

 

Increased 
Branching 

GnT-V, GnT-IV, 
CD147/basigin-
integrinβ1 
interaction 

Kizuka and Taniguchi [159], 
Mehta, Norton [160], West, 
Wang [161], Cui, Huang [162] 

 

Sialylation MUC1, TF, sTF, 
Tn, sTn, ST6Gal-I, 
ST3Gal-IV, sialyl-
Lewisx 

Cao, Karsten [163], Chen, 
Wang [164], Gruszewska, 
Cylwik [165], Kongtawelert, 
Tangkijvanich [166], Mondal, 
Chatterjee [167], Powers, Holst 
[168] 

 

Polylactosamine JNK signaling, 
Stanniocalcin 1, 
CD147, β3GnT8 

Kwan-Shuen Chan, Oi-Ning 
Leung [169], Liu, Qiu [170] 
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glycosylation with the development of HCC [171-176]. Specifically, the alterations 

most often observed are increased levels of alpha-1,3 and alpha-1,6 linked 

fucosylation found on bi-, tri-, and tetra-antennary glycans and, to a lesser extent, 

alterations in high mannose and polylactosamine glycans [122, 139, 143, 149, 

151, 155, 173, 175, 177-191]. Many of these fucosylated proteins have been 

examined as biomarkers of HCC and are in the process of being commercialized. 

Results have shown that no one marker is sufficient to detect all HCC, but when 

these fucosylated glycoproteins are used as part of a diagnostic algorithm, area 

under the receiver operator characteristic curve (AUROCs) greater than 0.90 are 

obtained [155].  

As stated, one of the most observed cancer-associated glycosylation 

modifications is core fucosylation, though the exact reason is still unknown. 

Enzymatic activity was one of the first possibilities explored, as the increase of 

FUT8 through the β-catenin/WNT pathway is seen in many cancers, including 

some HCC cases [192]. Tissue staining with core fucose-binding lectins has 

been used to determine the role of core fucosylation in HCC; however, when 

comparing normal, cirrhotic, and HCC tissue staining, there does not appear to 

be a significant increase of fucosylation solely within HCC tissue, but an overall 

trend within all tissue types [4, 193]. Along with core fucosylation, another glycan 

modification in HCC is increased glycan-branching, resulting in an increased 

presence of tetra-antennary glycans.  These glycans are formed through β1,6 N-

acetylglucosaminyltransferase V (GnT-V or MGAT5) which results in an addition 

to tri-antennary glycans to form tetra-antennary structures [194]. This 
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modification, more so than core fucosylation, has been seen in HCC tissue 

specifically and could play a role in the cancer’s development and metastatic 

potential [195-197]. 

Prior work about the source cells of serum fucosylation has been 

performed by several groups (including the Mehta Lab) with unclear conclusions. 

Initial work suggested that the genes involved in the production of GDP-fucose, 

the substrate for the fucosylation reaction, were increased in HCC as compared 

to surrounding normal tissue [198]. Support that transformed hepatocytes are the 

source cells for fucosylated proteins comes from the Mehta lab’s recent work, 

where it was shown that as hepatocytes de-differentiate and undergo an 

epithelial to mesenchymal transition (EMT), they increase their level of 

fucosylation and up-regulate many of the genes involved in α1,6 linked 

fucosylation  [199]. This is consistent with studies in lung cancer, where the α1,6-

fucosyltransferase gene (FUT8) was involved in EMT [200]. It has also been 

shown that in a mouse model, deletion of FUT8 inhibits chemicals induced HCC 

by the down regulation of cancer-associated signaling pathways [156, 186]. 

Importantly, while these recent studies highlight the importance of fucosylation in 

cancer development, they do not offer any direct data on the source cell(s) for 

fucosylation in human disease.  

Although a simple query, the fundamental question of the source of 

increased serum fucosylation has remained unanswered. As stated, Dr. Mehta’s 

group has previously performed glycan analysis on HCC tissue following 

homogenization and HPLC-based glycan analysis [201]. In that study, two 
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surprising things were noticed: First, there was a much higher level of 

fucosylation observed in normal liver tissue as compared to human serum 

depleted of immunoglobulins (highly abundant non-liver derived serum protein). 

And second, while 8 out of 16 tissue pairs did have increased levels of 

fucosylation, statistically there was no change in fucosylated glycans when HCC 

tissue was compared to either normal liver tissue (from an independent liver) or 

from distal un-transformed tissue [201]. However, that study had two major flaws. 

First, there was no matching serum to allow for the analysis of both serum and 

tissue, so it could not be determined which of these patients had elevated fucose. 

Second, the glycan profile of hepatocytes and other liver cells have been 

determined and were found to be substantially different. That is, while liver tissue 

from normal individuals contains high levels of fucosylation (Figure 7A), purified 

human hepatocytes from the same individual have very little fucose (Figure 7B). 

In contrast, liver sinusoidal endothelial cells (LSEC)—another liver cell type—

contain high levels of fucosylated glycan (Figure 7C). This high level of 

fucosylation within LSEC can confound the results when tissue is homogenized 

and examined in a mixed population. Therefore, although a HCC tumor may be 

primarily composed of transformed hepatocytes, adjacent liver tissue used for 

comparison will contain a mix of cells; thus, any comparison is not a “like for like” 

evaluation. This is true for glycan analysis, proteomic analysis, and expression 

data. This will be addressed for the first time using orthogonal methods. In 

regards to glycan analysis of tissue, recent laboratory members proposed a new 

method: MALDI imaging mass spectrometry (MALDI-IMS) [202]. Briefly, this  
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Figure 7: Serum Analysis of Liver Tissue and Cells. (A) Desialylated 

N-linked glycan profile of liver tissue from a normal individual;(B) purified 

hepatocytes from that same individual or (C) liver sinusoidal endothelial 

cells from that same individual (LSEC). Arrow points to the bi-antennary 

fucosylated peak, the only fucosylated peak observed in hepatocytes. 

While liver tissue has high levels of fucosylation, as do LSEC, 

hepatocytes have low levels. 
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method bypasses the need for microdissection and solubilization of tissue prior to 

analysis [160, 203-206].  

Figure 8 presents an example of the type of data observed with MALDI-

glycan imaging of HCC tissue. Figure 8A is the tissue following H&E staining and 

the large tumor is clearly visible, surrounded by non-malignant tissue. Figure 8B 

shows the distribution of one glycan, the tetra-antennary galactosylated branched 

glycan (A4G4), in red. As this panel shows, the A4G4 glycan is found 

predominantly in the tumor region with little observed outside of the tumor. 

Similarly, the fucosylated version of this glycan (A4G4F1), was also found 

predominantly within the tumor region (Figure 8C in green). However, as Figure 

8D highlights, these glycans are differentially localized within the tumor, with the 

branched glycan without fucose predominantly in the inside of the tumor while 

the fucosylated branched glycan is on the outside of the tumor.  

 

1.3.2. Liver Cancer Glycoproteomics 

Tissue proteomics have long been studied in many disease states, with 

excised tissue being homogenized and digested for protein analysis and 

comparative studies against normal tissue samples. Because of the availability of 

serum and its hepatic origin, many proteomic analyses have been done using 

serum, though tissue proteomics is of equal importance. Through these studies, 

links can be established between what is seen in serum and in tissue. Utilizing 

both top-down and bottom-up proteomics, researchers have been determining 

specific serum-derived proteins associated with disease state, tissue  
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A. B.

C.
D.

Figure 8: MALDI-Glycan imaging of HCC Tissue. A) H&E stain of HCC tissue with 

surrounding non-malignant tissue. B) Localization of a glycan with a m/z value of 

2393.840, which we have shown to be a tetra-antennary glycan. Red areas highlight 

localization of this glycan. C) Localization of a glycan with a m/z value of 2539.957, 

which has been shown to be a tetra-antennary glycan with a single fucose residue. 

Greens areas highlight areas of localization. D). Overlay of Panels B and C which show 

distinct localization of these glycans within tissue.  
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morphology, and progression. 

As stated previously, AFP is a clinical biomarker that arose through 

proteomic research; however, others were also found to indicate HCC presence. 

Osteopontin, a biomarker that is measured in plasma, has also been studied in 

tissue and an increase in both osteopontin and Bcl-2 has been found in surgically 

resected HCC patients, indicating a co-dependence between the two in the 

tumorigenesis of HCC [207-209]. Along with osteopontin, peroxiredoxin 3 (PRX3) 

was also identified as a marker for HCC, and has shown an increase of 

expression on both the mRNA and protein levels in 94.9 percent of HCC cases 

[210]. In tissue analysis, PRX3 has been shown to indicate poor differentiation as 

associated with progression of the disease. Unfortunately, while these two 

markers have shown promising possibilities in the detection of HCC, they failed 

to detect HCC in the presence of high levels of cirrhosis, making them 

inappropriate for clinical application. With many proteins associated with HCC 

are found to be glycosylated, glycomic studies have become more relevant—

both in serum and liver tissue analysis—to better understand the role and 

function glycosylation plays in HCC progression and the viability of glycoproteins 

as a therapeutic agent. More broadly in the glycoproteomic field, others have well 

characterized total serum glycosylation in HCC and found many associated 

modifications. For example, serum concentrations of core fucosylated 

haptoglobin have been examined to determine efficiency of detecting early stage 

HCC, as well as distinguishing HCC versus cirrhosis more efficiently than 

previously marketed AFP-L3 [211, 212]. 
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Additionally, techniques to view glycoproteins and the associated glycan 

modification have become increasingly more prevalent, with targeted proteomics 

demonstrating its value in terms of serum evaluation and site-specific 

glycosylation. These studies have further confirmed changes in glycosylation for 

HCC as compared to normal, such as increased branching, hyper-sialylation and 

hyper-fucosylation causing an increased variety in N-glycosylation of haptoglobin 

in HCC and cirrhotic patients, or distinguishing those with chronic liver disease 

versus HCC [138, 213-216]. This will be further discussed later when examining 

the targeted glycoproteomics associated with cancer-specific HCC tissue. 

 

1.4. Mass Spectrometry 

 Mass spectrometry has remained at the forefront of the analytical field for 

molecular analysis since its introduction in the late 1800s. Beginning with J.J. 

Thomson, he revolutionized the field in 1897 with the discovery of electrons and 

adopting the mass to charge ratio, where today these values are then converted 

to a mass spectrum that compares intensity of the ion to the mass to charge 

value. Mass spectrography was inducted into the scientific community in 1884 

and used in Thomson’s earlier experiments and in the early 1900s, more modern 

techniques were developed and the term “mass spectrometry” was coined to 

describe the field of study. Since then, the field has expanded to the variety of 

applications and techniques that we use today, such as drug testing for discovery 

and absorption properties; forensic analysis for trace amounts of evidence or 

explosive, arson, or drug abuse presence; environmental analysis to test water 
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quality, pollution contamination, and pesticide screening; and clinically, for drug 

therapy monitoring, peptide examination for diagnostic purposes, and many 

more. 

 

1.4.1. General Principles of Mass Spectrometry 

 Mass spectrometry functions under the basic principle of conversion of the 

analyte of interest into gaseous ions that can then be sorted by their mass to 

charge ratios and relative quantities [217]. The intricacies of a mass 

spectrometer vary greatly depending on the type of mass spectrometer (more 

details below), but the basic components remain relatively standard: the ion 

source, the mass analyzer, and the mass detector system. 

 The ion source is involved in the ionization of the analyte and the transport 

of the ions to the mass analyzer. Simply, the ion source is the beginning of the 

mass spectrometry process where the ions are first generated [218]. Ionization is 

one of the key differences in techniques of mass spectrometry with a variety of 

options and types relevant to the instrument. Some examples of different 

ionization techniques used with biological samples are electron ionization (EI)—

termed a hard ionization technique due to the fragmentation of the ion of interest, 

electrospray ionization (ESI), matrix-assisted laser desorption/ionization (MALDI), 

and desorption electrospray ionization (DESI)—all termed soft ionization 

techniques due to the little amounts of fragmentation and the residual amounts of 

energy imparted into the molecule of interest [219]. 

 Once ions are generated, before they are detected and recorded, they will 
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pass through the mass analyzer, used to determine the characteristics of the ion 

and its mass to charge ratio (m/z), a dimensionless parameter relating the 

elementary charges to the mass of the ion, and separate them according to these 

parameters using a generated field. Mass analyzers generally vary by the type of 

field generated (static or dynamic, as well as magnetic or electrical), and these 

factors are what account for the mass spectrometers resolving power, or how 

accurately it can separate the closest related ions, on different instruments [220]. 

 Finally, the last component of mass spectrometry is utilization of the mass 

detector. The mass detector records the relative abundance of the ions being 

resolved and converts the charge or current produced into a signal, which is then 

converted into a mass spectrum to be analyzed. Mass detectors vary by 

instrument and amplification techniques are often required. The signal output can 

also vary based on the mass analyzer. 

 Below, I will outline a more in-depth analysis of the types of mass 

spectrometry pertinent to this dissertation, as well as details surrounding the 

specific mass spectrometers used. 

 

1.4.1.1. MALDI Imaging Mass Spectrometry 

 The first major type of mass spectrometry used in this dissertation is 

MALDI imaging mass spectrometry (MALDI-IMS). In recent years, imaging mass 

spectrometry has emerged as one of the top areas of mass spectrometry and 

has nearly 900 related publications to date [221]. 

 MALDI-IMS works under the basic principles of MALDI mass 
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spectrometry, but on a larger scale of adding a two-dimensional aspect to a 

sample, allowing for multiple points of analysis. Briefly, a Nd:YAG laser is used to 

strike the molecules coated in an ionizing matrix, resulting in a gaseous form of 

the analyte without fragmentation or decomposition. Most imaging mass 

spectrometers can analyze a variety of analytes, such as glycans, metabolites, 

drugs, lipids, proteins, and peptides, with the most important variable being 

matrix choice. Matrix choice varies depending on the need for the analyte, such 

as the ease of sublimation from the solid phase to the gaseous phase, or the 

absorption of the laser wavelength used by the instrument [222]. Examples of 

some matrix options used for imaging experiments, specifically in examining N-

glycans, are 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic 

acid (CHCA) [76]. In this dissertation, CHCA was used primarily to examine N-

glycans in the positive ion mode. 

 Once the matrix is applied to the sample, the laser is used to ionize the 

sample in a pixelated fashion. The distance between the pixels is determined by 

the user pre-analysis and a mass spectra will be generated for each spot of the 

laser. Following completion of the run, every mass spectra collected will then be 

compiled into one average mass spectra that shows relative abundance of all 

peaks found throughout the analysis. Software such as FlexImaging (Bruker), 

can then be used to create a false color image at each peak of interest, allowing 

for pixels of higher relative abundance to appear more intense on the image, 

while pixels of lower relative abundance appear less intense, similarly to a heat 

map [223]. Figure 9 demonstrates a simplified approach to imaging mass 
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spectrometry and the data visualization process. 

 Imaging mass spectrometry offers several clinical benefits, combining the 

advantages of both mass spectrometry and microscopy together onto one 

platform. In general, processing times are lower than that of traditional 

immunohistochemistry and pathology processes and allow for multiple molecules 

to be analyzed at once, rather than a single analyte of interest. It is also more 

successful in analyzing histomorphologically ambiguous tissue regions, and able 

to discriminate classifications within clinical tissue more accurately. 

Improvements to the reproducibility of the method have grown with 

implementation of the mechanical sprayers, showing consistent reproducible 

data within complex biological replicates with errors reported in parts per million 

(ppm). With the clinical implications of this technique are continuously growing, 

the technique is approved through the Clinical Laboratory Improvement 

Amendments (CLIA) [224]. 

 

1.4.1.2. Liquid Chromatography Coupled Tandem Mass Spectrometry 

 In contrast to imaging mass spectrometry, liquid chromatography-mass 

spectrometry (LC-MS) offers a sensitive analysis of analytes and separation of 

these analytes. Synergistically combining mass spectrometry principles with the 

capabilities of a high/ultra-performance liquid chromatography (HPLC/UPLC) 

system allows for enhanced analytical capabilities. 

 The first portion of the analysis begins with the sample being separated  
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Figure 9: Simplified Imaging Mass Spectrometry Workflow. Diagram 

represents a simplified workflow for imaging mass spectrometry, specifically 

for an enzymatic imaging experiment. Top half represents the simplified 

steps in sample preparation to imaging, while the bottom half represents the 

actual imaging process and data analysis and results portion. 
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via a liquid chromatography step. Samples are injected into a mobile organic 

phase and utilizing a C18 stationary phase, peptides are captured and eluted  on 

a gradient of the mobile phase, allowing for separation of analytes by mass. 

Following the separation of the analytes, the HPLC system is then coupled to a 

mass spectrometry system to undergo mass analysis of the analytes, similarly to 

what was described above in the general principles section. Typically, 

electrospray ionization is used to effectively couple the liquid phase analytes to 

the gaseous phase for mass analysis [225]. 

 Often associated with LC-MS systems is the ability to do tandem mass 

spectrometry experiments (MS/MS or MS2). As stated above, the initial mass 

spectrometry analysis will separate ions by their mass to charge ratio; however, 

the second mass spectrometry analysis involves a further fragmentation of these 

ions for further quantification of analytes. This can be done through a variety of 

methods, such as collision-induced dissociation (CID), higher energy collision-

induced dissociation (HCD), or electron-transfer dissociation (ETD), depending 

on the type of information desired [226-228].  Figure 10 shows a simplified model 

of the LC-MS workflow, as well as a more in-depth look at the mass spectrometer 

portion of an LC-MS/MS experiment. 

 

1.4.2. Mass Spectrometers in Dissertation 

1.4.2.1. Bruker SolariX 7T FT-ICR 

The first mass spectrometer, and most frequently used in the dissertation,  
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Figure 10: Simplified LC-MS/MS Workflow. Diagram represents a simplified 

workflow for the LC-MS/MS protocol beginning with sample preparation, 

through enzymatic digestion and separation via HPLC, to the MS/MS 

experiment and data analysis.  
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is the Bruker SolariX 7T FT-ICR. Most of the mass spectrometry imaging 

analyses in this dissertation were performed on this instrument. 

 This mass spectrometer is unique in the fact that it is a MALDI Fourier 

Transform Ion Cyclotron Resonance (FT-ICR) instrument, allowing for higher 

mass resolution and resolving power, which comes with the cost of slower 

sample acquisition time. With the key metric being frequency, ions are better 

resolved, with the ability to separate more closely related ions, however this 

comes at the cost of a slightly longer analysis time. Briefly, ions are ionized and 

focused into a beam with DC and RF voltages, then proceed through the 

quadrupole, excluding ions outside of a specific m/z range of interest. Ions not 

excluded then pass to the hexapole. The ions are then focused into the ICR cell 

and the 7T magnet, where electrodes produce a cyclic motion of the ions to be 

converted to a frequency metric, causing them to separate, but keep a small 

electrical field to keep ions within the ICR cell. Finally, ions are excited by an RF 

frequency sweep and detected via the mass detector plate [229-231].  

 

1.4.2.2. Bruker RapifleX TissueTyper MALDI-TOF 

 The second imaging mass spectrometer used in this dissertation is the 

Bruker RapifleX TissueTyper MALDI-TOF. This instrument comes equipped with 

improved laser technology for high throughput and better pixel-to-pixel 

reproducibility. This laser is capable of a 5μm focus, allowing for square imaging 

pixels with almost complete tissue coverage and no pixel-to-pixel interference. 

TOF mass analyzer is specialized for linear and reflector measurements in 
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positive/negative ion mode. This instrument was used after initial optimization for 

faster and higher spatial resolution imaging. 

 This instrument operates through a MALDI time-of-flight (TOF) system, 

allowing for faster acquisition time though a lower mass resolving power. Briefly, 

the laser induces an ionization particle cloud, known as the plume, and ions are 

extracted via a small electrical field. The free ions then pass into a field-free 

vacuum path until reaching the mass detector, where the time of flight is 

measured and used to calculate the mass to charge ratio, as typical matrices 

result in a standard charge state of one, causing smaller ions to separate from 

larger ions in a fixed field distance. The RapifleX offers two forms of mass 

detection: linear and reflector. In linear mode, ions travel down the path just 

once, but reflector mode reflects the ions back at a slightly different angle utilizing 

a reflectron. A reflectron creates a charged field for the ions to pass through, 

separating out similar mass clusters while also reversing the direction for the 

second part of the ion flight path. This allows for more ion separation and higher 

mass resolving power than a linear TOF instrument [232-234].  

 

1.4.2.3. ThermoFisher Orbitrap Fusion Lumos 

The final mass spectrometer used in this dissertation is the ThermoFisher 

Orbitrap Fusion Lumos LC-MS/MS system. This instrument is a tribrid mass 

spectrometrer with HCD, ETD, and UVPD capabilities, as well as 1,000,000 full 

width at half maximum (FWHM) ultra-high resolution characterization. This 

instrument will be used primarily for glycoproteomic analysis of tryptic peptide 
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fragments still containing glycan structures attached. This will allow for peptide 

sequence, glycan structure, and site specific localization of the glycan on the 

peptide. 

The first mass analyzer is the quadrupole (Q1) which allows for filtering of 

the ions, like described above. The second mass analyzer is the Orbitrap, which 

generates an electrostatic field and causes the ions to move in a complex spiral 

pattern. This current pattern is then Fourier transformed to create a mass 

spectrum, allowing the Orbitrap to function as a mass detector as well. Finally, 

the instrument contains a linear ion trap (LIT), which houses the ion storage, 

isolation, and collision-induced dissociation capabilities. The combination of the 

Orbitrap acting as a mass analyzer and detector, along with the pulsed ionization 

techniques that generate an extremely long flight path, results in a very high 

mass resolving power, while also introducing more advanced collisional 

fragmentation techniques, making this instrument ideally suited for proteomic 

analysis of biological material [218, 219, 235-237]. 

 

1.5. Broad Overview 

 While tissue analysis of HCC has become more prevalent, there are still 

necessary steps required to link what is known regarding serum and tissue for 

more accurate biomarker discovery. Biomarker discovery and analysis is moving 

in the right direction, focusing more on the patient-specific tissue sections than 

simple circulating serum or plasma. However, most studies still fail to 

acknowledge the complex heterogeneity and morphology found within HCC 
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tissue. In many cases, a tissue block or section is obtained and homogenized for 

analysis. This method disregards all pathological and histological complexities 

within the tissue, often including normal adjacent tissue or cirrhotic tissue in the 

analysis. This is where many tissue analyses are lacking, in that they could 

possibly include patterns and expressions that are not associated with the 

cancer. This leads to challenges in the development of robust biomarkers, and 

contributes to their inability to detect earlier stages of liver cancer and disease. In 

the future, linking serum glycoproteomics to specific tissue glycomics within the 

cancerous region itself will become increasingly important. The utilization of 

MALDI imaging techniques provides a substantial basis for further analysis and 

helps determine protein and glycosylation changes in specific regions that can be 

correlated to disease states. In combining this technique with other –omic 

approaches, there is the possibility to develop more sensitive and specific 

biomarkers for enhanced detection of HCC. 

 The work outlined in this dissertation combines well-characterized and 

novel glycomic techniques in the field of imaging mass spectrometry and 

targeted glycoproteomic studies linked specifically to tissue histopathology. This 

novel work simultaneously addresses some challenges to the field in terms of 

tissue glycomics while maintaining all benefits afforded through this technique, 

such as determination of linkage specificity within an imaging mass spectrometry 

workflow, as well as further characterizing specific glycan modifications in 

cancerous tissue via targeted glycoproteomic techniques specific to areas of 

interest. Additionally, this work opens the door to many further investigations, as 
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this work was primarily studied in the liver and geared toward HCC, but these 

techniques could be applied to many other disease states and tissue types, 

enhancing all human glycome data and relationships to health and disease.  
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Chapter 2: Hypothesis 
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While most constituents of serum are hepatic in origin and includes a 

clinically relevant biomarker for hepatocellular carcinoma (HCC), the sensitivity 

and specificity of biomarkers for early HCC cases are still lacking. One potential 

biomarker is core fucosylated alpha-fetoprotein (AFP-L3), which is FDA approved 

for the diagnosis of HCC, and there are now many other glycosylaton varients 

that are being developed as biomarkers of HCC [153]. However, it  is difficult to 

determine the exact source of these upregulated N-glycan modifications via 

circulating serum, giving rise to uncertainty of whether these modifications are 

originating solely from the cancer or other parts of the organ as well [238]. In the 

case of HCC, the heterogeneity of the cancer leads to variable expression for N-

glycoproteoforms, contributing to the lack of early diagnostic methods, as current 

methods lack the required sensitivity and specificity for tissue specific biomarkers 

[239]. Therefore, it is imperative to find biomarkers more specific to the 

cancerous tissue itself. Matrix-assisted laser desorption/ionization (MALDI) 

imaging mass spectrometry bridges this gap by providing a direct spatial analysis 

of the N-glycans in clinical samples. By linking currently studied glycomic 

modifications in cancers with spatially localized analysis of HCC tissue, it is 

possible to bridge the gap between overall tissue features and cancer specific 

trends. In doing so, it is also possible to determine associated glycoproteins for 

further diagnostic markers and therapeutic targets, shifting therapy from curative 

to preventative, especially before progression to late-stage cancer. The scope of 

this work provides a novel and informative look at site-specific N-glycan 

modifications within HCC. In general, the ability to associate known glycan 
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changes with the corresponding glycoprotein it was originally attached to is 

difficult due to sample complexity or the amount of sample needed. Here, by 

combining well-established MALDI imaging capabilities for spatial analysis on 

liver tissue with region-directed glycoproteomic analysis via MALDI imaging, 

enhanced biomarker capabilities are possible. 

Here, I optimized a method for identifying more specific hepatocellular 

carcinoma biomarkers that combines previously studied serum glycoproteomics 

with novel methodology in tissue glycomics. Using this approach, we will be able 

to determine specific glycosylation changes in tissue and characterize 

glycoproteins associated with these changes in HCC tissue. Therefore, I 

hypothesized that glycomic tissue imaging using MALDI imaging mass 

spectrometry can be used in conjunction with glycoproteomic techniques to 

identify biomarkers for early detection and diagnosis specific to HCC. I tested this 

hypothesis through the following specific aims: 1) determining and characterizing 

the patterns of N-linked glycan changes in HCC via MALDI imaging mass 

spectrometry to compare to previously studied changes in serum and 2) using 

these identified changes in glycosylation to enhance targeted glycoproteomics for 

improved biomarker target identification. 

 

2.1. Specific Aim 1  

Determine patterns of N-linked glycan changes in hepatocellular 

carcinoma tissue using MALDI imaging mass spectrometry to compare to 

previously found changes in serum 
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The overall goal of Aim 1 was to utilize the well-established MALDI Fourier 

transform ion cyclotron resonance (FT-ICR) and time-of-flight (TOF) imaging 

mass spectrometry method to examine N-glycosylation changes in specific HCC 

regions of liver tissue and validate these results with those previously studied in 

serum. In terms of MALDI imaging mass spectrometry, the ability to examine liver 

tissue in a spatially conserved manner is an innovation in the proteomic field 

[240]. Through enzymatic release of the N-glycans and matrix application, the N-

glycans stay localized to the area they are released from and are free to be 

ionized and measured by mass spectrometry instrumentation [241]. This allows 

one to not only see the present structures and their location, but also give relative 

abundance and intensity of those glycans. As an added benefit, we can scan a 

whole range of mass values at a high sensitivity, providing more informative 

glycan data than other methods. Finally, localization of the analytes is used to 

determine pinpoint locations of interest within the HCC tissue for further 

glycoprotein analysis. Additionally, new enzymes and methods were further 

optimized in conjunction with the previously established method to characterize 

the N-glycans found in tissue, as well as differentiate mass based on N-glycan 

characteristic and structure. 

 

2.2. Specific Aim 2 

Identify glycopeptides containing changes in observed patterns of N-linked 

glycans in hepatocellular carcinoma samples via the ThermoFisher Orbitrap 

Fusion Lumos Tribrid Mass Spectrometer 
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 The overall goal of Aim 2 was to link what is known regarding the tissue 

glycomics via imaging and determine the glycoprotein and glycopeptides 

responsible for carrying the modifications of interest. For further glycoprotein 

analysis, a recently developed method utilizing Orbitrap mass spectrometry has 

been established. This method, known as HCD-PD-ETD (higher-energy collision 

dissociation-accurate mass- product-dependent electron transfer dissociation), 

allows for the examination of N-glycan structures and the associated protein it 

was originally attached to [227]. While this method is effective, it is inefficient for 

large scale studies, as the number of glycosylated proteins and associated 

glycans would be nearly impossible to analyze sensitively and with significance. 

However, by regionalized expression analysis via MALDI imaging, a more 

thorough and selective analysis can occur in only tissue regions of interest, 

generally those expressing the trends of N-glycan changes found specifically in 

HCC. By examining only these regions, the less-important proteins associated 

with HCC N-glycan modification were ignored and, therefore, reduced the 

possible suspects for potential biomarkers and therapeutic targets. This 

methodology increased our ability to perform glycoprotein studies, such as 1) 

looking at multiple proteins and glycoforms, 2) maintaining glycan information 

and associated protein information, and 3) confirming that the N-glycan or 

glycoprotein modification is directly related to the cancer. Thus, this technique 

was novel in providing the first comprehensive look at N-glycan modification and 

associated protein characterization in a site-directed manner for HCC, and in the 

future, other types of cancer as well. 
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Chapter 3: Changes in 
Glycosylation of Hepatocellular 

Carcinoma via MALDI-IMS  
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As noted previously, the first aim of the project was to examine the N-

linked glycan changes in HCC as compared to previously studied changes in 

serum. The following chapter details the process and results of examining 

hepatocellular carcinoma tissues for the cancerous regions specifically, looking 

at the changes in N-glycosylation, as well as identifying trends in a patient 

sample cohort. This bulk of this chapter was included as part of a publication 

published in the Journal of Proteome Research in October of 2018. Contributions 

in writing, experiments, data analysis, and final approval were done by myself, 

with intellectual and minor editorial contributions from others on the publication 

[161]. 

 

3.1. Abstract  

Hepatocellular carcinoma (HCC) remains as the fifth most common cancer 

in the world and accounts for more than 700,000 deaths annually. Changes in 

serum glycosylation have long been associated with this cancer but the source of 

that material is unknown and direct glycan analysis of HCC tissues has been 

limited. Our laboratory previously developed a method of in situ tissue based N-

linked glycan imaging that bypasses the need for microdissection and 

solubilization of tissue prior to analysis. We used this methodology in the analysis 

of 138 HCC tissue samples and compared the N-linked glycans in cancer tissue 

with either adjacent untransformed or tissue from patients with liver cirrhosis but 

no cancer. Ten glycans were found significantly elevated in HCC tissues as 

compared to cirrhotic or adjacent tissue. These glycans fell into two major 



 

59 
 

classes, those with increased levels of fucosylation and those with increased 

levels of branching with or without any fucose modifications.  In addition, 

increased levels of fucosylated glycoforms were associated with a reduction in 

survival time.  This work supports the hypothesis that the increased levels of 

fucosylated N-linked glycans in HCC serum are produced directly from the 

cancer tissue.  

 

3.2. Introduction 

Changes in N-linked glycosylation are known to occur with the 

development of many cancers, including hepatocellular carcinoma (HCC) [119, 

122, 129, 242-251]. In previous work, serum was examined for protein 

glycoforms that are altered in liver cancer and significant alterations in serum N-

linked glycosylation with the development of HCC were documented [151, 180, 

181, 191, 252-257]. Specifically, the alterations are increased levels of alpha-1,3 

and alpha-1,6 linked fucosylation found on bi, tri and tetra-antennary glycans and 

to a lesser extent alterations in high mannose and tetra-antennary glycans[151, 

180, 181, 191, 252-257]. Importantly, many of these changes are now being 

developed as serum-based biomarkers of HCC. However, the origins of these 

glycans in human HCC are unknown and glycan analysis of tissue is complicated 

by the mixing of different cell types and the loss of protein during processing. To 

address these limitations, the lab has previously developed a method of tissue-

based glycan imaging that allows for both qualitative and quantitative in situ N-

linked glycan analysis on tissue using matrix-assisted laser desorption/ionization 
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mass spectrometry imaging (MALDI-MSI) [195, 258-260].  This method bypasses 

the need for microdissection and solubilization of tissue prior to analysis. When 

matrix is applied across the tissue section, desorption can be targeted to specific 

“points” in a pattern and the data rasterized. The resulting spectra can then be 

used to generate two-dimensional heat maps of hundreds of glycans directly 

from the surface of a tissue section. These molecular maps display the relative 

abundance and spatial distribution of these molecules. Thus, MALDI tissue 

profiling has the power to link the molecular detail of mass spectrometry with 

molecular histology, generating mass spectra correlated to locations within a thin 

tissue section. This method is becoming a robust technique for the analysis of 

glycan in situ [195, 258-266]. In this study, we used this methodology in the 

analysis of two tissue microarrays (TMA). The first TMA consisted of 48 HCC 

tissue samples, 22 cirrhotic tissue samples and 5 healthy control tissue samples. 

The second TMA consisted of 90 HCC tissue samples and 90 control adjacent 

tissue samples. MALDI glycan imaging has identified 10 glycans that were 

significantly increased in the HCC TMA samples when compared to cirrhotic 

tissue (TMA #1) or to non-transformed adjacent tissue (TMA #2).  These glycans 

fell into two major classes, those with increased levels of fucosylation and those 

with increased levels of branching without any fucose modifications. The 

relevance of this finding to serum based biomarkers and the potential prognostic 

role of these glycans is discussed.  
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3.3. Materials and Methods 

3.3.1. Materials  

Trifluoroacetic acid, Harris-modified hematoxylin, and α-cyano-4-

hydroxycinnamic acid (CHCA) were obtained from Sigma Aldrich (St. Louis, MO).  

HPLC grade methanol, ethanol, acetonitrile, xylene, hydrogen peroxide and 

water were obtained from Fisher Scientific (Pittsburgh, PA). Tissue Tack 

microscope slides were purchased from Polysciences Inc (Warrington, PA).  

Citraconic anyhydride and SafeClear II was purchased from Thermo Scientific 

(Bellefonte, PA). Recombinant Peptide N-Glycosidase F (PNGase F) from 

Flavobacterium menigosepticum was obtained, expressed, and purified as 

previously described [267], but is also available commercially as PNGase F 

PrimeTM from Bulldog Bio (Portsmouth, NH). Universal Antigen Retrieval Reagent 

was purchased from R&D Systems (Minneapolis, MN).  

 

3.3.2. Tissues and Tissue Microarrays  

Normal and hepatocellular carcinoma whole liver tissue samples were 

purchased from ProSci Inc. (Poway, CA) and cirrhotic whole liver tissue was 

purchased from BioChain (Newark, CA). All tissue microarray (TMA) slides were 

purchased from US Biomax (Rockville, MD) as unstained formalin fixed paraffin 

embedded (FFPE).   

The first TMA (Catalog Number: BC03117) contained 80 cores. Forty-

eight cases of HCC with a history of Hepatitis B virus (HBV) infection, five cases 

of cholangiocellular carcinoma with a history of Hepatitis B virus (HBV) infection, 
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22 cases of liver cirrhosis with a history of Hepatitis B virus (HBV) infection and 

five normal hepatic tissue cores.  These cores were 1.5 mm in diameter and 5 

μm thick.  For the purpose of this study, the cholangiocellular carcinoma tissue 

was included in any analysis.  

 The second TMA slide (Catalog Number: HLiv-HCC180Sur-04) contained 

90 cases of HCC with tumors ranging from stage 1 (early) to 4 (late) and grades 

G1 (well-differentiated) to G3 (poorly differentiated). All HCC tissues had 

matched un-transformed adjacent tissue.  Along with this, survival data and 

pathology diagnosis was included for each case.  The cores were cut at a 1.5 

mm diameter and a thickness of 4 μm.  

 

3.3.3. Washes for Deparaffinization  

As described previously [259], FFPE TMA slides were heated at 60°C for 

1 hr and cooled to room temperature prior to deparaffinization.  The slides were 

washed with xylene to remove the paraffin and then rehydrated using a series of 

water and ethanol washes. Antigen retrieval was performed using citraconic 

anhydride (Thermo Scientfic) as the buffer and placed in a vegetable steamer for 

30 minutes. The buffer was then cooled to room temperature and buffer 

exchange was performed to replace the slides in 100% water.  Finally, the slides 

were desiccated until dry. 
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3.3.4. Enzymatic Digestion and Matrix Deposition 

A M3 TM-SprayerTM Tissue MALDI Sample Preparation System (HTX 

Technologies, LLC) was used to spray 0.5 mL of 0.1 µg/µl aqueous solution 

PNGase F as previously described [259]. Following the spray, the slides were 

placed in a humidified chamber and incubated at 37°C for 2 hours.  Slides were 

then desiccated and dried prior to matrix application.  The matrix used was α-

cyano-4-hydroxycinnamic acid (0.042 g CHCA in 6 mL 50% acetonitrile/49.9% 

water/0.1% TFA) and sprayed using the same M3 TM-Sprayer. 

 

3.3.5. N-Glycan Imaging using MALDI-IMS  

The slides were analyzed for released N-glycan ions using a Solarix dual 

source 7T FTICR mass spectrometer (Bruker Daltonics, m/z 500-5000) with a 

SmartBeam II laser operating at 1000 Hz and with a laser spot size of 25 μm. 

200 laser shots were collected for each pixel, with a time domain of 512K.  This 

resulted in a resolving power of 160,000 at m/z 400. A total of 23,145 positions 

were collected for TMA #1 and 44,533 positions collected for TMA #2. 

Afterwards, the data was analyzed using FlexImaging 4.0 (Bruker Daltonics) and 

SCiLS Lab (Bruker Daltonics, version 2017b) to create images and determine 

regions of differentially expressed glycans, all normalized to total ion current.  A 

signal to noise (S/N) ratio of 9 was used and peaks were manually picked within 

FlexImaging 4.0. The resulting glycans were given composition using an in-

house database based on collected m/z values and checked against the 

database from GlycoWorkbench based on m/z and composition [268]. Possible 
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and likely structures for visual representation were built using GlycoWorkbench 

as well. 

 

3.3.6. Lectin Histochemistry  

The tissue slides were deparaffinized by using PROTOCOL SafeClear II 

clearing agent, then rehydrated in a series of ethanol washes at 3 minutes per 

each step (100%, 90%, 70%) and fully hydrated in deionized water for 5 minutes. 

Endogenous peroxidase activity was blocked using 3% hydrogen peroxide, 

followed by a 92°C heated antigen retrieval using Universal Antigen Retrieval 

Reagent (Dako, Carpinteria, CA).  The slides were then fixed with 4% 

formaldehyde solution followed by a permeabilization step using 0.5% IGEPAL 

CA-630. Following the permeabilization step, for blocking non-specific binding, 

the slides were blocked once again with serum-free protein block (Dako), 

supplemented with Streptavidin/Biotin blocking solution to block endogenous 

biotin, biotin receptors, and streptavidin binding sites in tissues (Vector 

Laboratory, Burlingame, CA).  Streptavidin horseradish peroxidase ready to use 

solution (Vector Laboratory) was used to detect biotinylated recombinant Aleuria 

aurantia N224Q (rAAL N224Q) lectin bound to the tissue, and visualization was 

further developed using 3,3’-diaminobenzidine (DAB) Chromogen (Dako). The 

N224Q lectin is a modified Aleuria aurantia lectin with increased binding to core 

fucosylated glycan (Herrera et al., manuscript submitted). Lectin was applied for 

1 hour at room temperature at a concentration of 0.5 µg/mL in background 

reducing antibody diluent (Dako, Carpeinteria, CA). After incubation, slides were 



 

65 
 

washed with TBS (pH 7.6) for 5 minutes in room temperature and repeated three 

times. Data on this lectin can be found in [193, 269, 270]. Finally, the slides were 

counterstained with Harris-modified hematoxylin (Fisher Scientific, Hampton, NH) 

for increased visualization. Annotation was done digitally using Aperio 

ImageScope (Leica Biosystems, Buffalo Grove, IL) for positive pixel signal 

algorithm based on lectin staining. 

 

3.3.7. Statistical analysis 

For all peaks (m/z values) mean intensity values were determined for each 

individual TMA spot.  To facilitate statistical analysis, original data was 

transformed by log based on 10. Further descriptive statistics and statistical 

inference are all based on the log-transformed data. 

 To compare difference of glycan between HCC tissues and cirrhotic 

tissue, we applied t-test or Wilcoxon rank sum test, appropriately on data 

distribution. For tumor tissue and its adjacent tissue comparison, paired t-test or 

Wilcoxon rank sum test was also selected based on glycan data distribution.  

Two-sided hypothesis test was selected, p-value less than 0.05 was considered 

statistically significant.   Receiver Operator Curves (ROC) curves were 

constructed, area under curve (AUC) was considered as discriminant ability, 

standard error of AUC was derived from bootstrap. 

 For survival analysis, the median of the specific glycan was used as a 

cutoff line to classify patients who were above the median as being in the high 

group and the rest as the low group (choosing mean as cutoff derived similar 
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results, because the mean and median were similar in 3 concerned glycans). We 

plotted the Kaplan-Meier survival curves of the high and low group, and log-rank 

test was applied to check survival difference between two groups. The Cox 

Proportional hazard model was used for further analysis. 

 

3.4. Results  

3.4.1. Increased Complex and Fucosylated N-Glycans in Liver Tissues 

We, and others, have previously correlated changes in glycosylation in the 

serum of individuals with the development of HCC [151, 180, 181, 191, 252-257] 

[122, 176, 184, 187, 188, 190, 271-274].  To determine the glycan changes that 

occur directly in HCC tissue we utilized a MALDI based glycan imaging 

methodology [259] to examine the N-linked glycans that alter with the 

development of HCC.  In our initial experiments, we examined five sections of 

HCC tissue obtained from patients with hepatitis B virus (HBV) - associated 

HCC, three sections of normal tissue and three sections of cirrhotic tissue. Figure 

11 shows the workflow of the tissue analysis and Figure 12 shows the results of 

a representative normal, cirrhotic and HCC tissue.  In this figure, specific N-linked 

glycans are shown and their relative abundance presented via a heat map of 

individual glycan intensities across each tissue, where blue is low abundance 

and red is high abundance.  Figure 13 shows the same sections stained with 

hematoxylin and eosin staining in both a 1X and 10X magnification confirming 

diagnosis.  In Figure 12, three N-linked glycans that were found in all tissues and  
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Figure 11: Workflow of Tissue-based Glycan Analysis. Generalized 

workflow for slide prep and MALDI IMS imaging 
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Figure 12: Detection of N-Glycans in Normal, Cirrhotic and HCC Tissues. 

While certain glycans are found in all tissues (A-C), some glycans are found 

predominantly in the HCC tissue (C-E). Images were acquired with 150 µm 

raster step size on a Bruker 7T solariX XR ICR FTMS system. Ion intensities 

are normalized to the TIC of each ion across the tissue. Color scale bars are 

included and autocorrected for the range of intensities plotted. For glycans, 

red triangle, fucose; blue square, N-acetylglucosamine; green circles, 

mannose; yellow circles, galactose.  
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Figure 13: Hematoxylin and Eosin Staining of Varying Tissue Types. 

H&E staining at 1x and 10x magnification for normal (A), cirrhotic (B), 

and HCC tissue (C). 
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three N-linked glycans that were elevated in the HCC as compared to the normal 

or cirrhotic tissue are presented. As Figure 12A-C shows, high mannose glycans 

such as Man 7, Man 8 (Figure 12A&B) and simple bi-antennary type glycans 

without substantial fucosylation (Figure 12C) can be found equally in normal, 

cirrhotic and HCC tissue.  In contrast, glycans such as a tetra-antennary glycan 

without fucosylation (Figure 12D) or tetra-antennary glycan with single (Figure 

12E) and multiple fucose residues (Figure 12F) are found predominantly in the 

HCC tissue as compared to the normal or cirrhotic tissue. It is noted that these 

mass values (glycan) were not observed without the application of PNGase F 

(data not shown).  

 

3.4.2. Analysis in Human Liver Tissue Microarray Set 

 To determine whether these N-glycan changes seen in the HCC tissue 

could be observed in a larger set of tissue samples, we examined two 

independent tissue microarrays (TMAs), one consisting of 48 HCC, 22 cirrhotic, 

and 5 normal tissue cases and another TMA consisting of 90 samples with HCC 

and 90 tissue samples of the adjacent untransformed tissue. Clinical and patient 

information for these samples are provided in Table 2 and 3. Figure 14 shows 

both TMAs, demonstrating the imaging data received from the workflow. Table 4 

presents a list of all the potential glycans found in both TMAs.  Elevations in 

specific glycans was determined by examining the mean intensity values of each 

glycan structure in the HCC tissue and in the cirrhotic tissue for  
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Table 2: Patient Characteristics for TMA #1. Characteristics of TMA #1 including 

number, diagnosis, etiology, age, gender, grade and stage 
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Table 3: Patient Characteristics for TMA #2. Characteristics of TMA #2 including 

number, diagnosis, etiology, age, gender, grade, stage, and survival time 
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Table 4: Master List of N-Linked Glycans. Table showing all found N-glycans, 

including mass, error, and structure 
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TMA #1 or the un-transformed adjacent tissue in TMA #2.  A mean intensity 

value increase of 1.5-fold in the HCC sample as compared to the appropriate 

control tissue was considered elevated.  Similarly, if the intensity was 0.5 times 

that of the appropriate control tissue, the structure levels were decreased. Figure 

15 highlights the observation that many of the 61 observed glycans were seen in 

20-40% of the HCC tissue samples and often in less than 5% of the control 

tissue.  

Two glycans that were observed as elevated in over 50% of the TMA 

samples, were a tetra-antennary glycan (glycan #15 in Figure 15) and a tetra-

antennary glycan with two fucose residues (glycan #16 in Figure 15). As this 

family of glycan - tetra-antennary glycan with and without fucosylation - were 

observed in many of the samples, we further examined the level of this family of 

glycans in the TMAs.  The level of the tetra-antennary glycan lacking fucose 

(Figure 14A), the tetra-antennary glycan with a single (Figure 14B) and double 

fucose residues (Figure 14C) in both the TMAs are shown. As before, darker red 

colors represent a higher intensity for the specific glycan while more blue tones 

represent less intensity. The mean values of signal intensities for specific glycans 

found in the HCC tissue as compared to the cirrhotic tissue (in TMA#1) or 

between the HCC tissue and the adjacent non-transformed tissue (TMA#2) were 

compared. Table 5 presents glycans (selected by lowest p value) that were 

significantly elevated (p<0.05) in the HCC tissue as compared to the cirrhotic 

(TMA #1) or adjacent non-transformed tissue (TMA #2) as well as a glycan that 

was not altered in the HCC tissue.  A master list of all N-glycan m/z values is  
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Table 5: Glycans Altered in HCC Versus Cirrhosis or Adjacent Tissue. 

1) Observed mass to charge ratio value 2) The proposed glycan structure based 
upon the m/z value. 3) The composition of the identified M/Z value. 4) P value 
comparing the HCC to cirrhotic tissue. Analysis by students T-test. 5) P value 
comparing the HCC to adjacent tissue.  
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provided (Table 4). As Table 5 shows, nine out of ten glycans that were elevated 

in the HCC tissue were fucosylated glycan, The glycans with the lowest p value 

were tetra-antennary glycans, with or without fucosylation. To further explore the 

branched and fucosylated glycome in these two TMAs, we examined the five 

tetra-antennary glycan that were altered in the TMA’s by scatter plot and by 

AUROC analysis.  Figure 16 shows these data for TMA #1 and Figure 17 shows 

these data for TMA #2. As these figures show, alterations in specific tetra-

antennary glycoforms could be observed in both TMAs. For example, a glycan at 

m/z 2685.969, proposed as a di-fucosylated tetra-antennary glycan, was 

elevated in HCC tissue in both TMA #1 and TMA #2 (Figure 16B and 17B).  

Similarly, the tetra- antennary glycan (m/z 2393.840) devoid of fucosylation was 

also altered in both TMAs (Figure 16D and 17D).  In contrast, TMA #1 had 

greater alterations in a tetra-antennary glycan with three fucose residues, as 

compared to TMA #2 (Figure 16A and 17A). Other versions of the tetra-

antennary glycan family were also observed in both TMAs (Figure 16C and 17C).  

 Increased fucosylation seen by MALDI-MSI was further confirmed by 

lectin histochemistry. Figure 18 shows the lectin histochemistry staining for one 

of the TMAs using a recombinant Aleuria aurantia lectin (AALN224Q) lectin 

which has enhanced binding to branched and core alpha 1,6 lined fucosylated 

glycan and reduced binding to alpha 1,2 linked fucose [275, 276]. Figure 18, 

shows a side by side comparison of the lectin histochemistry and the MALDI 

imaging for one of the most prominent fucosylated glycan (m/z 2685.969; see 

Table 5), supporting the classification as fucosylated structures.  
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Figure 16: Analysis of Human Liver TMA #1. Proposed glycan structure, log 

transformed intensity scatter plot with the red diamond indicating mean and 

associated p-value, and Receiver Operating Characteristic (ROC) curve with 

AUC value for select structures.  In panels A-E, analysis was done comparing 

HCC versus cirrhotic samples. A, B, C, and E utilized a student t-test for their 

p-value while D utilized a Wilcoxon Rank Sum Test.  
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Figure 17: Analysis of Human Liver TMA #2. Proposed glycan 

structure, log transformed intensity scatter plot with the red diamond 

indicating mean and associated p-value, and Receiver Operating 

Characteristic (ROC) curve with AUC value for select structures.  In 

panels A-E, analysis was done comparing HCC versus cirrhotic 

samples. A, B, C, and E utilized a student t-test for their p-value while D 

utilized a Wilcoxon Rank Sum Test. 
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As fucosylation was a prominent feature of the altered glycan in HCC, with 

33/61 of the proposed glycan structures containing fucose, fucosylation levels 

were further explored. To accurately determine the elevated levels of the 

fucosylated glycans seen between HCC and adjacent tissue, we examined the 

difference between the adjacent and HCC tissue of each individual patient in the 

matched tissue set TMA and determined the percentage of patients with elevated 

levels of each of these glycans in both their HCC tissue and their matched 

normal adjacent tissue. Elevation was again determined by using mean intensity 

values of these glycans in both the HCC and non-transformed adjacent tissue 

and if the value was 1.5 times that of normal levels, the patient was considered to 

have elevated levels of that glycan. As Figure 19 shows, 96% of patients had 

increased levels of at least one fucosylated structure. Those patients were then 

categorized into the number of these highly branched and/or fucosylated 

structures they were presenting, with patients demonstrating increased levels in 

anywhere from one fucosylated structure to all 33 found within the TMA.   

 

3.4.3. Association of Specific N-Glycans with Survival 

 For the patient-matched TMA (TMA #2), survival data were available 

allowing for the determination of an association between glycan and outcome. 

This was done for the three major glycans observed in the HCC tissue: a tetra-

antennary glycan (m/z 2393.840), a tetra-antennary glycan with a single fucose 

(m/z 2539.957) and a tetra-antennary glycan with two fucose residues (m/z 

2685.969).  Patients with glycan expression greater than the median level in all  
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Figure 19: Patients Demonstrating Elevated Levels of Fucosylated Glycans. 

A total of 33 fucosylated glycans were found elevated in the patient-matched TMA.  

Comparing HCC to the un-transformed adjacent tissue, a 1.5x relative intensity 

increase in HCC tissue was used to classify patients as elevated. Of the 89 patients 

able to be analyzed, 96% (85 patients) demonstrated elevated levels of at least one 

of these fucosylated structures (left). Of these 85 patients, they were further 

classified into varying classes based on the number of fucosylated structures they 

had elevated levels for. 27% (23 patients) had elevated levels of one to four 

fucosylated structures, 25% (21 patients) had elevated levels off five to eight 

structures, with 8% of patients showing elevated levels of 19 or more of these 

fucosylated structures with one patient showing elevated levels all 33 fucosylated 

structures found. 
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tissue (both tumor and adjacent normal) were classified as high. There was no 

association with these glycans between the levels observed in the normal 

adjacent tissue and patient outcome (data not shown). In addition, as Figure 20A 

shows, the level of the m/z 2393.840 glycan was also not associated with patient 

outcome. The mean time of survival was 29 months in those with high or low 

levels of the m/z 2393.840 glycan. In contrast, as Figures 20B and 20C show, 

patients with high levels of the m/z 2539.957 or m/z 2685.969 glycans were 

associated with shorter survival times. For the m/z 2539.957 glycan, those with 

high levels had a median survival time of 25 months, while patients with lows 

levels of this glycan had a median survival time of 35 months. Similarly, for the 

m/z 2685.969 glycan, those with high levels had a median survival time of 25 

months, while patients with low levels of this glycan had a median survival time of 

32 months. Cox proportional hazard model analysis showed patients with one 

unit increase of the m/z 2685.969 glycan would enhance the hazard(risk) about 

3-fold, p=0.0334. One unit increase of the m/z 2539.957 glycan would increase 

hazard about 8-fold, p=0.0078.  There was no association between these glycans 

and stage or grade of HCC (data not shown).  

 

3.5. Discussion 

Alterations in glycosylation have been long observed with HCC [185, 277-

281].  Much of this work was shown in serum, with little analysis directly in the 

HCC tissue itself or has been analyzed following dissection of tissue and the 

mixing of the multiple hepatic (and non-) cell types. Here we utilized MALDI-IMS 
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glycan imaging to identify the glycans that occur directly in 138 HCC patient 

tissue samples. In our analysis of both TMA’s, there were 61 glycans that were 

found to be upregulated in at least one HCC tissue sample (See Table 4). In 

addition, there were 10 glycans that were significantly (p<0.05) increased in at 

least 30% of the HCC tissue samples as compared to either cirrhotic or adjacent 

tissue (see Figure 15). 

Our previous MALDI glycan imaging developmental work had utilized a 

small number of HCC tissue samples and a 16 patient HCC TMA [195]. In that 

study, alterations in both branching and fucosylation were observed but the 

sample size was too small to determine the significance of the changes detected. 

Here, we have extended that work through an analysis of a larger number of 

samples and also with the association with outcome data regarding the observed 

glycans. 

 Surprisingly, only two major classes of glycan were observed in HCC 

tissue as compared to either cirrhotic tissue or adjacent untransformed tissue. 

The first was a tetra-antennary glycan structures and the second was an 

increase in the level of fucosylation.  It is noted that the tetra-antennary glycan 

was only observed in HCC tissue and not in adjacent tissue or cirrhotic tissue. 

The tetra-antennary glycan is formed through the action of alpha-1,6-

mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase A (MGAT5), 

which has been associated with many cancers through mutations of the 

telomerase reverse transcriptase (hTERT) [282] and through activation of the 

Ras/Raf pathway [66].  
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The second major alteration observed in the HCC tissue was increased 

fucosylation. This glycan change has been observed in the serum for many 

years, but a clear understanding of where this material derives was not known.  

However, glycan analysis of tumor derived material was unable to identify 

fucosylation as being increased in HCC [198, 201]. This was most likely the 

result of the method used, which involved homogenization of tissue and mixing of 

cell types. In contrast, by using the MALDI glycan imaging method we were able 

to observe increased levels of fucosylation on independent sample sets. Most 

often on tetra-antennary glycan but also to a lesser extent on bi-antennary and 

tri-antennary glycan. Indeed, there is now significant evidence that transformed 

hepatocytes are the source cells for serum fucosylated proteins. Recent work 

showed that as hepatocytes undergo an epithelial–mesenchymal transition 

(EMT), they increase the genes, such as alpha-1,6-fucosyltransferase gene 

(FUT8), which are involved in fucosylation [199]. This is consistent with lung 

cancer, where FUT8 increased as a direct result of an EMT [200]. In addition, a 

recent report has indicated that HCC downregulates miR-122 and leads to the 

upregulation of FUT8 [15]. It is also noted that the deletion of FUT8 in a mouse 

model inhibits chemical induced HCC by the down regulation of cancer 

associated signaling pathways [156, 186].  Together, this data suggests very 

strongly that fucosylation originates from the cancer itself and prior analytical 

glycan tools were not able to detect this change within the tumor. In addition, 

over 95% of the HCC samples analyzed had increased levels of one or more 

fucosylated glycan, while normal adjacent tissue did not, supporting the 
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hypothesis that fucosylation is an event associated with the general act of cellular 

transformation.  

In addition, we observed only a few sialylated structures by MALDI-glycan 

imaging and it is possible that these 1) were not detected by our method or 2) we 

had sialic acid loss following ionization. It is also highly likely that both things are 

true and methods to stabilize sialic acids will be required for analysis of these 

structures [262].  

While the identity of the proteins containing these changes are unknown, 

several proteins have been characterized as containing the glycans shown to be 

up-regulated in HCC tissue. For example, we have recently shown that low 

molecular weight (LWM) kininogen contains fucosylated tetra-antennary glycan 

and that this protein can act as a serum biomarker of HCC [155]. Additionally, 

serum fucosylated haptoglobin and fucosylated fibronectin have been shown to 

contain branched fucosylated tetra-antennary glycan in HCC [272].  

Lastly, heterogeneity was observed in the glycans associated with HCC 

and it is assumed that this most likely is the result of the underlying genetic 

heterogeneity found with the disease [15]. In conclusion, I have shown that two 

major glycan changes are associated with HCC, increased branching and 

increased fucosylation. Hopefully, in the future, these glycan changes can be 

exploited for the early detection of HCC and potentially in the treatment of HCC.  

While many of these changes are novel and exciting developments in 

terms of N-glycan modifications for HCC, there are still challenges associated 

with these changes. For example, while we were able to identify an increase in 
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fucosylation across the board for HCC tissue specifically, one challenge of 

imaging mass spectrometry is that the technique is only able to identify predictive 

structural components based on m/z, not linkage. Where this is extremely 

relevant is in looking at core fucosylation specifically. Imaging mass spectrometry 

techniques are unable to accurately identify whether the fucosylation modification 

is core or outer arm, and as discussed previously, FUT8 and core fucosylation 

are fundamentally more related to cancer progression and HCC in the literature. 

The lectin staining does support the hypothesis that fucosylation is occurring in 

the HCC tissue (Figure 18). Therefore, this led us to further investigate the 

possibility of determining core versus outer arm fucosylation while still 

maintaining all the benefits afforded to us through imaging. 
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 Alluded to in the previous chapter, the inability to determine core versus 

outer arm fucosylation in an imaging mass spectrometry experiment caused a 

disconnect in associating previously studied N-glycan changes in hepatocellular 

carcinoma with new-found data. Therefore, it was imperative to develop a new 

method for the determination of core versus outer arm fucosylation while 

maintaining all the benefits of an imaging mass spectrometry experiment. The 

chapter below was partially included as part of a publication that was accepted 

with revisions in the Journal of Proteome Research in March of 2020. 

Contributions in writing, imaging experiments, data analysis, and final approval 

were done by myself, with intellectual, minor editorial, and enzyme production 

and validation were done by others on the publication (Hongyan Liang, Richard 

Drake, and Anand Mehta). 

 

4.1. Abstract 

 Specific alterations in N-linked glycans, such as core fucosylation, are 

associated with many cancers and other disease states. Because of the many 

possible anomeric linkages associated with fucosylated N-glycans, determination 

of specific anomeric linkages and site of fucosylation (i.e., core versus outer arm) 

can be difficult to elucidate.   A new MALDI mass spectrometry imaging workflow 

in formalin-fixed clinical tissues is described using recombinant Endoglycosidase 

F3 (Endo F3), an enzyme with a specific preference for cleaving core fucosylated 

N-glycans attached to glycoproteins.  In contrast to the broader substrate 

enzyme Peptide-N-Glycosidase F (PNGaseF), Endo F3 cleaves between the two 
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core N-acetylglucosamine residues at the protein attachment site. On tissue, this 

results in a mass shift of 349.137 a.m.u. for core fucosylated N-glycans when 

compared to N-glycans released with standard PNGaseF. Endo F3 can be used 

singly and in combination with PNGaseF digestion of the same tissue sections. 

Initial results in liver and prostate tissues indicate core fucosylated glycans 

associated to specific tissue regions while still demonstrating a diverse mix of 

core and outer arm fucosylated glycans throughout all regions of tissue. By 

determining these specific linkages while preserving localization, more targeted 

diagnostic biomarkers for disease state is possible without the need for 

microdissection or solubilization of the tissue. 

 

4.2. Introduction 

It is well established that many aspects of the molecular development and 

progression of cancer are directly linked to changes in glycosylation [119-121, 

123-129]. In most cases, glycan analysis has been done with serum and not 

directly from the cancer tissue itself [122, 134-149]. Serum is often used as it is 

easily obtained, but it is limited in that it is comprised of dilute levels of tumor-

derived material. Thus, direct tissue analysis is preferred. However, the mixing of 

different cell types, and the loss of protein during processing complicate glycan 

analysis of tissue, often leading to misleading data and misrepresentation of 

tumor specific analysis. To combat this, the lab has previously developed a 

method of tissue-based glycan imaging that allows for both qualitative and 

quantitative in situ N-linked glycan analysis on tissue using matrix-assisted laser 



 

93 
 

desorption/ionization mass spectrometry imaging (MALDI IMS) [258]. This 

method was co-developed in 2013 by the Drake and Mehta laboratories, and has 

continued to evolve [195, 259, 260] to allow for better analysis of sialylated 

glycan [262] and for the simultaneous analysis of glycan and protein [261].  

However, a major limitation of the MALDI-TOF imaging methods is the inability to 

obtain true structural and linkage information of a PNGase F released glycan. To 

address this limitation, we began to examine other enzymes that may allow for 

more structural information via imaging mass spectrometry.  

In 1982, a novel glycosidase preparation from Flavobacterium 

meningosepticum, designated Endo-b-N-acetylglucosaminidase F was described 

[283] and found to include three distinct endoglycosidase activities, termed Endo 

F1, Endo F2, and Endo F3[284]. These three endoglycosidases cleave the b(1-4) 

link between the two core GlcNAc of asparagine-linked glycans, but have 

specificities for distinct oligosaccharide structures [285]. For example, Endo F1 

cleaves high mannose) and hybrid structures, but not complex oligosaccharides 

and core fucosylation of hybrid structures reduces the rate of cleavage by 

50-fold. Endo F2 cleaves primarily complex glycan with core fucosylation having 

little impact upon glycan cleavage. In contrast, Endo F3 has no activity on 

oligomannose and hybrid molecules it has a reported 400-fold increase in activity 

toward core fucosylated structures as compared to tri-antennary structures at a 

pH of 4.5, thus reducing the amount of non-specific N-glycan cleavage [286]. 

With this in mind, Endo F3 was applied to different MALDI IMS workflows alone 

or in conjunction with PNGase F. This workflow would allow for the structural 
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characterization of core fucosylated glycans in tissue while maintaining the 

localization of N-glycans in tissue. 

Fucosylatransferase 8 (FUT8), the only known enzyme responsible for 

core fucosylation, has been implicated in a variety of settings including non-small 

cell lung cancer, melanoma, and hepatocellular carcinoma demonstrating an 

increase in invasion and metastasis for patients with elevated levels of FUT8 or 

core fucosylated N-glycans[99-101]. These previous studies show the 

importance of determining core fucosylation as opposed outer arm fucosylation in 

terms of N-linked glycosylation and the clinical relevance of this methodology 

described below. 

 

4.3. Materials and Methods 

4.3.1. Cloning, Expression, and Purification of Endo F3  

The cDNA fragment encoding the Endo F3 gene was amplified by PCR 

from the genomic DNA of Elizabethkingia meningoseptica (UniProtKB – P36913) 

without the N-terminus signal sequence. Additionally, a His tag (x10) was added 

to its C-terminus. Amplified DNA fragments were cloned into pQE-60 by 

NcoI/BlpI (Genscript, Piscataway, NJ). The constructed plasmid, pQE-60-Endo 

F3-10xHis, was transformed into BL21 (DE3). The transformants were cultured in 

LB broth supplemented with 100 µg/ml Ampicillin. Cultures were grown at 37oC 

until the cells reached an A600nm of about 0.5, 0.5 mM IPTG were added to the 

culture to induce protein overproduction at 20oC. The next day, the cells were 

harvested by centrifugation. The cell pellets were re-suspended in PBS with 
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added Pierce protease inhibitor tablets (ThermoFisher Scientific, Waltham, MA), 

stored at -20oC. Omnicleave endonuclease (Lucigen Corporation, Middleton, WI) 

and MgCl2 were added to thawed cell suspension. The cell suspension was 

incubated at room temperature for at least one hour with rocking. The cells were 

lysed using a French Press (GlenMills Inc., Clifton, NJ) per the manufacturer’s 

instructions. The cell lysis was applied to HisTrap FF (GE Healthcare, Pittsburgh, 

PA) and washed with 20 mM sodium phosphate, 0.5 M NaCl, 20 mM imidazole 

(pH 7.4). Bound His-tagged protein was eluted with a gradient from 150 to 500 

mM imidazole in 20 mM sodium phosphate, 0.5 M NaCl (pH 7.4). The purified 

Endo F3 was desalted and concentrated with 20 mM Tris-HCl, 50 mM NaCl (pH 

7.5) using Spin-X UF Concentrator (10kDa; Corning). The protein purity was 

confirmed using SDS-PAGE. 

 

4.3.2. In-Solution Digestion by Endo F3  

Human Fetuin-A (Assaypro, St. Charles, MO) or RNase B (New England 

BioLabs) were incubated with Endo F3 at an enzyme-to-protein-ration of 1:5 

(w/w) at 37oC for 3 hours. For our purposes, 1μg of Endo F3 was added to 5μg of 

protein at a pH of 4.5. 

 

4.3.3. Glycan Sequencing  

Human Fetuin-A was run on SDS-PAGE gel, stained and cut out. The gel 

pieces were alkylated in the dark for 30 minutes with iodoacetamide, fixed in a 

solution of 10% methanol 7% acetic acid for one hour, washed in acetonitrile, 
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followed by subsequent steps of 20 mM ammonium bicarbonate (pH 7.0) and 

acetonitrile before being dried in a speed-vac. PNGase F (PNGASE F PrimeTM, 

N-Zyme Scientifics, Doylestown, PA) or Endo F3 was diluted with corresponding 

buffer and allowed to absorb into and cover the gel pieces, then incubated 

overnight at 37oC. The glycans were eluted from the gel pieces by sonication in 

Milli-Q water, dried down and labeled with a 2AB dye as previously described 

[287]. The labeled glycans were subsequently enriched from free 2AB dye using 

paper chromatography and filtered using PTFE syringe filter unit. Fluorescently 

labeled glycans were then separated on normal phase Waters Alliance HPLC 

system as previously described [287]. Samples were further digested with 

Sialidase for calculation of glucose unit (GU) value and compared to GlycoStore 

database [288]. 

 

4.3.4. On-Slide Tissue Preparation and Imaging 

Multiple formalin-fixed paraffin-embedded (FFPE) blocks of tissue were 

obtained for optimization and analysis. Tissue microarray (TMA) slides were 

purchased from US Biomax (Rockville, MD) while all other tissue blocks 

(prostate, cervix, and liver) were provided by the Medical University of South 

Carolina Biorepository and Tissue Analysis Shared Resource (Charleston, SC). 

The FFPE blocks were sectioned on to slides at 5μm then prepped for imaging 

as previously described [289]. Briefly, the slides were washed and deparaffinized 

by heating at 60°C for one hour, then washed sequentially in xylene, a dilution of 

ethanol, and water. The slides then underwent antigen retrieval using citraconic 
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anhydride and placed in a steam chamber for 30 minutes. Finally, buffer 

exchange was performed and desiccated. Enzyme was then applied to the slides 

using an M3 TM-SprayerTM Tissue MALDI Sample Preparation System (HTX 

Technologies, LLC) at 0.1μg/μl. PNGase F was sprayed in HPLC water while 

Endo F3 was sprayed in a solution of 87μM acetic acid (pH 4.43) for better 

efficiency. The slides were then placed in a humidity chamber and incubated at 

37°C for 2 hours then desiccated. Finally, matrix was applied (α-cyano-4-

hydroxycinnamic acid, 0.042g CHCA in 6 mL 50% acetonitrile/49.9% water/0.1% 

trifluoroacetic acid) using the same M3 TM-Sprayer. 

 As previously described, tissues were analyzed via imaging N-glycans 

using both a MALDI FTICR mass spectrometer (SolariX Dual Source, 7T, Bruker 

Daltonics, m/z 500-5000). The data was then analyzed and visualized using 

FlexImaging 5.0 and SCiLS Lab 2017b (Bruker Daltonics). Finally, glycans were 

built and validated against the database in GlycoWorkbench, as well as built for 

graphical interpretation [258, 268]. 

 

4.3.5. N-Glycan Removal 

In cases where F3 was applied first, glycans were collected from the slide 

and analyzed as previously described [290]. Briefly, the slides were placed in 

100% ethanol for removal of matrix, then placed in series of dilutions of ethanol 

(95% and 70%). Next, the slides were placed in a high pH cleaning solution 

(10mM Tris, pH 8.98), HPLC grade water, then a low pH cleaning solution 

(citraconic buffer, pH 3), then HPLC grade water again. The slides were then 
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desiccated and dried. Following the cleaning, the tissues were then prepped for 

PNGase F application following the same tissue preparation and glycan imaging 

protocol as previously described (40), however the dewaxing and antigen 

retrieval steps were omitted, beginning with enzyme application on the tissue.  

 

4.4. Results 

4.4.1. In-solution analysis of Endo F3 activity on N-Linked Glycans 

The deglycosylation activity of the purified recombinant Endo F3 was 

tested initially using two well characterized glycoproteins, RNase B and Fetuin-A, 

to confirm the activity of Endo F3 acting on core fucosylated glycans only (Figure 

21). Human Fetuin-A is a circulating plasma glycoprotein with two N-linked and 

three O-linked carbohydrate side chains [291]. The heterogeneity of Fetuin-A is 

mainly due to extensive modification with variable amounts of sialic acids; some 

less abundant glycoforms were found to be core-fucosylated [292]. RNase B is a 

well characterized glycoprotein from bovine pancreas that only contains non 

core-fucosylated high mannose N-glycans attached to a single N-linked 

glycosylation site [293]. As shown by the SDS-PAGE, the recombinant Endo F3 

will cleave Fetuin-A but not RNase B as shown by the band shift on the gel, 

which is consistent with Endo F3 reported sensitivity and specificity. In contrast, 

treatment with PNGase F leads to a band shift of RNase B. This supports the 

claim that we can differentially cleave glycans on proteins based on the 

composition of the glycans attached to them, specifically ignoring high mannose 

glycans that don’t contain a core fucose modification. 
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Figure 21: SDS-PAGE Analysis of N-Glycans by PNGase F or Endo F3. A) 

Cartoon description of Endo F3 vs. PNGase F cleavage on core fucosylated 

N-linked glycans. For glycans, red triangle, fucose; blue square, N-

acetylglucosamine; green circles, mannose; yellow circles, galactose. B) SDS-

PAGE analysis of Endo F3 and PNGase F digestion of human Fetuin-A or 

RNase B.  
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The glycan profile of Fetuin-A was also investigated by normal phase 

HPLC. The chromatograms are shown in Figure 22. A standard curve using the 

homopolymer dextran was used to convert the elution time into glucose units is 

shown at the bottom of the figure. Among PNGase F released glycans, sialic acid 

removal simplified the profiles and further treatment with bovine kidney 

fucosidase (result not show) removed peaks at GU 7.70, representing a 

biantennary glycan with a core a-1,6-linked fucose (F(6)A2G2) that only 

contributed 2.2% of the total glycan profile. On the other hand, the three major 

glycans released by Endo F3 are all core fucosylated biantennary with variable 

amounts of sialic acids that represented 83.0% of the total glycan profile; with the 

removal of sialic acids, the three species were combined into one peak at GU 

7.20 which is F(6)A2G2*, considering that with Endo F3 digestion, one GlcNAc 

and the core a-1,6-linked fucose was left on the protein as opposed to the 

cleavage at the asparagine residue for PNGase F (Figure 21A). 

 

4.4.2. On-Tissue Analysis of Endo F3 Digestion using MALDI Imaging Mass 

Spectrometry 

Keeping the conserved GlcNAc and fucose residue in mind, we then 

applied the enzyme to the well-established tissue imaging protocol as described 

above (Figure 23). With the differential cleavage of Endo F3 as compared to 

PNGase F, we see a mass shift of 349.137 m/z for core fucosylated glycans. 

When applied, we see the downward shift in the mass spectra of core 

fucosylated N-glycans while effectively prohibiting cleavage of N-glycans that do  
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Figure 23: Generalized Workflow of Endo F3 and PNGase F Treatments. 

Begin by cutting tissue from FFPE block at 5μm on to slide; I) Heat slide at 

60°C for one hour; II) Dewax in series of xylene, ethanol dilutions and water, 

antigen retrieval in citraconic buffer; III) Apply Endo F3 to tissue; IV) Incubate 

in humidity chamber at 37°C for 2 hours; V) Apply CHCA matrix to tissue; VI) 

Image on MALDI-FT-ICR; VII) Clear matrix and glycans with ethanol dilutions, 

high pH and low pH washes; VII) Apply PNGase F to tissue; IX) Incubate in 

humidity chamber at 37°C for 2 hours; X) Apply CHCA matrix to tissue; XI) 

Image on MALDI-FT-ICR 
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not contain a core fucose residue, similar to what was observed via HPLC 

(Figure 24).  The benefit of tissue imaging is the conservation of spatial 

localization for the analytes without the need for microdissection or solubilization, 

and this work maintains this advantage as shown in Figure 25. Following analysis 

of Endo F3 application on tissue, we found over 30 N-linked glycans to be core 

fucosylated (Tables 6 and 7) and the main N-glycans found to be core 

fucosylated are demonstrated in Table 8. These N-glycans also showed 

localization to specific regions of the tissue. For Figure 25, a prostate cancer 

tissue section (Figure 26) underwent a variety of treatments where the first 

column of images represents masses for the tissue following a general PNGase 

F digestion, the second column represents an Endo F3 digestion, and finally the 

last column represents an Endo F3 digestion, wash, and sequential PNGase F 

digestion as described above. As shown in the first row of Figure 25, we see the 

distribution of the N-glycan A2G2F (1809.6393 predicted m/z) with PNGase F 

digestion (Figure 25A), a serial tissue section with Endo F3 digestion (Figure 

25B) and that same tissue section washed and a sequential PNGase F digestion 

applied (Figure 25C).  These results show that we are not getting any PNGase F 

cleavage activity on the glycans with our Endo F3 digestion, but still able to 

achieve the same spatial distribution of the glycans following an Endo F3 

digestion, albeit at a lower overall intensity relative to the initial PNGase F 

digestion. The second row of Figure 25 shows the truncated N-glycan F(6)A2G2 

(1460.5023 predicted m/z) following the same treatments. Figure 25D shows that 

we do not observe this mass following PNGase F digestion, however in 25E, we  



 

104 
 

   

Δ349.162 m/z

Δ349.150 m/z

PNGase F

Endo F3

Figure 24. Full Mass Spectra for Prostate Cancer Tissues Treated with Endo 

F3 and PNGase F.. Further N-glycan identification from the coFull example mass 

spectra are represented for PNGase F (blue, top) and for Endo F3 (green, bottom) 

applied prostate cancer tissues. Two major PNGase F fucosylated glycans and 

their Endo F3 counterparts are highlighted, along with the observed corresponding 

mass shiftrresponding mass spectra peaks can be found in Supplemental Table 1 

for PNGase F and Supplemental Table 2 for Endo F3. 
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Figure 25: Prostate Cancer Tissues Analyzed with Multiple Enzymes. Prostate 

cancer tissue section undergoing PNGase F treatment (A,D,G), Endo F3 treatment 

(B, E, H) or sequential PNGase F treatment following a wash of the Endo F3 treated 

tissue (C, F, I). A known core fucosylated glycan, A2G2F distribution is shown for 

the PNGase F mass of 1809.6393 m/z (A, B, C) and for the Endo F3 treated mass 

shift of 1460.5023 m/z (D, E, F). Finally, high mannose glycan Man8 (1743.5810 

m/z) distribution is shown (G, H, I). Scale bar and intensity bar are included. 
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Figure 26: Hematoxylin and Eosin Stain of Prostate Cancer Tissue 
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  Table 6: Master List of N-Linked Glycans with PNGase F. Master list of all N-

linked glycans found using PNGase F treatment, along with the corresponding 

mass error and compositional structure. 
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Table 7: Master List of N-Linked Glycans with Endo F3. Master list of all N-linked 

glycans found using Endo F3 treatment, along with the corresponding mass error and 

compositional structure. 
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see this mass following the Endo F3 digestion as expected. We are also able to 

efficiently remove the Endo F3 cleaved glycans following washes and PNGase F 

application as shown by 25F. Finally, in the third row of Figure 25, we show the 

distribution of the N-glycan Man8 (1743.5810 predicted m/z) which should never 

contain a core fucose. Again, we see a similar situation to the first row, with 

PNGase F cleavage (Figure 25G), no cleavage with Endo F3 (Figure 25H), and a 

less efficient salvage with a sequential PNGase F digestion (Figure 25I). To be 

certain that the effectiveness of the Endo F3 digestion was not tissue specific, we 

also preformed similar digestions on multiple tissue types (Figure 27).  

 

4.4.3. Endo F3 Application to Patient Tumor Microarray  

With the ability to determine core versus outer arm fucosylation, we then 

wanted to apply this technique to patient samples to determine the relevancy of 

this technique for determining clinically relevant factors. As previously described, 

core fucose is implicated in many cancer progressions, so we applied the Endo 

F3 followed by PNGase F protocol to a purchased hepatocellular carcinoma TMA 

set (US Biomax) as previously analyzed by our group [161]. In Figure 28, we see 

two different fucosylated glycans implicated in the paper, A2G2F and A4G4F 

(1809.6393 and 2539.9037 predicted m/z respectively). Figures 28A and 28B 

represent F(6)A2G2 and F(6)A4G4 in their reduced forms following Endo F3 

digestion (1460.5023 and 2190.7667 predicted m/z respectively) while 28C and 

28D represent the sequential wash and PNGase F digestion for non-core 

fucosylated A2G2F and A4G4F. In examining the results, we see that there are  
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Figure 27: Multiple Tissue Types Treated with Endo F3. Cervical cancer 

tissue as well as hepatocellular carcinoma tissue were treated with Endo F3 and 

analyzed for core fucosylated glycans shown to the left with the parent glycan 

structures shown in the brackets. 
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Figure 28: Patient TMA Treated with Multiple Enzymatic Digestions. Patient 

TMAs treated with Endo F3 (A and B) followed with a PNGase F digestion (C 

and D) are shown with two prominent core fucosylated glycans of F(6)A2G2 and 

F(6)A4G4 abundance shown (1809.6393 and 2539.9037 m/z respectively). (+) 

indicates cancerous tissue while (-) indicates normal, untransformed tissue.  
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TMA cores that contain relatively more of the core fucosylated versions of the 

glycans while some contain relatively more non-core fucosylated glycans. While 

this is not an absolute quantitation and more direct analysis will be required to 

determine the abundance of core vs. outer arm fucosylation, this work shows 

promise that we can further parse out the underlying mechanisms and difference 

resulting from the tumor heterogeneity between patients.  

 

4.4.4. Core Fucosylation and Patient Survival Outcomes 

Because this study utilized the same patient tumor microarrays studied 

previously, I was afforded numerous benefits, specifically in terms of direct 

comparison to previous studies, as well maintaining the patient survival 

characteristics. In previously published results involving this tumor microarray, it 

was shown that survival probability is decreased in patients with elevated levels 

of A4G4F (m/z 2539.904) and A4G4F2 (m/z 2685.968) [161], however when 

examined under the dual-enzymatic conditions described above, elevated levels 

of the glycan above involving no core fucosylation shows no significant difference 

in survival probability (Figure 29, middle and right panel), thus demonstrating the 

effectiveness and relevance of the dual-enzymatic approach. In contrast, the left 

panel of Figure 29 demonstrates a bisecting, core fucosylated N-glycan 

(A3G1F2, 1996.724 m/z) that was never previously implicated in having a 

significant effect on patient survival. When examined via Endo F3, however, we 

see that there is a significant difference in survival probability for patients above 

the median level as compared to those below the median value. This N-glycan is  
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a prime example of those that may not be apparently obvious when looking at all 

glycans together, but when further classifying the structures of these glycans can 

reveal new potential differentiating structures. Along with this, further studies are 

needed and ongoing regarding patient outcomes and tumor grading and scoring 

in terms of core versus outer arm fucosylation. 

 

4.4.5. Combined Application of PNGase F and Endo F3 

To further explore the process of the dual enzyme cleavage, initial 

experiments were conducted to determine the possibility of mixing both PNGase 

F and Endo F3 in one spray. The enzymes were initially combined at a 3:1, 1:1 or 

1:3 ratio of Endo F3 and PNGase F and it was found that the lower concentration 

of Endo F3 was better suited for cleaving both core and non-core fucosylated N-

glycans (data not shown). From this, the enzyme concentration of Endo F3 was 

lowered further, and experiments were done to show a 1:20 ratio of Endo F3 to 

PNGase.  This demonstrated the best spectra regarding efficient cleavage of all 

N-glycans of interest (Figure 30). Efficiency and control experiments are still 

needed; however, this is a promising start to further optimizing the dual 

enzymatic workflow. 

  

4.5. Discussion 

As we know, fucosylation of N-linked glycans has been associated with 

several types of cancer [294], especially changes in the addition of core a-1,6-

linked fucose is associated with the development of hepatocellular carcinoma  
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m/z 2539.9037

m/z 2190.7887

Tumor

Non-
Tumor

Figure 30: Mixture of PNGase F and Endo F3. Representative 

images of Endo F3 and PNGase F mixed at an approximate ratio of 

1:20 respectively (middle). Hematoxylin and eosin stain included (left), 

as well as structure and m/z (right) for distribution of the green N-

glycan (m/z 2539.9037) and red N-glycan (m/z 2190.7887) 
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 (HCC) [295]. Comparing to PNGase F, Endo F3 is working more efficiently and 

selectively on core a-1,6-linked fucosylated structures. Without the interference 

and noises of all the other complex glycans released by PNGase F, we can focus 

on the core a-1,6-linked fucosylated structures when comparing patients’ 

samples to healthy controls. This was demonstrated above in Figure 25, showing 

that comparing core versus outer arm fucosylation does vary patient to patient, 

though the underlying mechanism is still unclear. 

The most notable benefit of this work is the addressing of one major 

drawback to the applied methods for MALDI imaging mass spectrometry. With 

the ability to distinguish between the anomeric linkages of the fucose additions of 

the glycans, more in-depth analysis of tissue is capable without the use of serial 

sections or other structural elucidation techniques that lose the spatial 

localization afforded with imaging, such as proteomic analysis or ion mobility 

[296]. 

Additionally, this methodology has the potential to improve glycopeptide 

analysis in the field of proteomics. With the residual HexNAc and Fucose residue 

left following the Endo F3 cleavage, this could be utilized in proteomic analysis 

as a more specific precursor ion. Used appropriately, this precursor ion could be 

indicative of glycopeptides that contained core fucosylated N-glycans, further 

elucidating the structural motifs of the attached N-glycans with well-established 

and easy to perform proteomic analyses, such as electron-transfer dissociation 

(ETD). 
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While this technique can effectively determine core fucosylated N-glycans, 

the protocol will still require further optimization to reach efficiency levels similar 

to that of the PNGase F. As it stands now, the PNGase F digestion is working on 

N-glycans substantially more efficiently than the Endo F3 digestion, rendering 

quantitative analysis difficult. However, despite the flaw in quantitative analysis, 

the qualitative abilities of the data are able to further elucidate the localization 

and relative abundance of these core fucosylated glycans. With this information, 

more distinct patterns and features can be acquired from the tissue imagine, 

allowing for more comprehensive analysis of tissue imaging and glycosylation as 

it relates to tumor heterogeneity. 

  



 

119 
 

 
 
 
 
 
 
 
 
 
 
 

Chapter 5: Determination of 
Sialic Acid Linkage via MALDI-

IMS 
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5.1. Introduction 

 As referenced previously in chapter three, one significant challenge in 

examining the changes in glycosylation via MALDI imaging mass spectrometry is 

the inherent misrepresentation of sialylated N-glycan species. Compared to other 

glycosidic bonds, sialic acids are among the least stable, with loss and decay 

very common following the ionization step in a MALDI imaging mass 

spectrometry experiment [297]. Further, the presence of a strong negative 

charge on sialic acids increases ionization inefficiencies, particularly when 

experiments are conducted in positive ion mode, as most N-glycan experiments 

are [297]. Because of these challenges presented, in order to accurately 

quantitate changes in sialylated N-glycans for biomarker analysis, sialic acids on 

N-glycans must be stabilized for true representation of sialylated species in the 

human N-glycome. For example, the loss of one sialic acid on a bi-antennary 

glycan would result in an apparent increase in the non-sialylated bi-antennary 

glycan, thus implying a lower population of sialylated species and a 

miscalculated increase in the unmodified bi-antennary glycan. This being said, 

qualitative analysis is still passable, with increases in more complex glycans 

being associated with the tumor regardless of sialylation state, allowing for 

differentiation of tumor versus non-tumor via N-glycan analysis. However, the 

true identity of these glycans will continue to remain elusive without determining 

the accurate sialylation state on these higher branched structures. With this 

being the case, many groups have strived to further stabilize these sialic acids on 
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N-glycans and differentiate the specific glycosidic linkages of the sialic acid on 

the N-glycan. 

 In this chapter, I will discuss the application of two different chemical 

derivatization techniques that were adapted from previously published articles. 

The first method that will be discussed is ethyl esterification (EE), adapted from 

Reiding et. al. in 2014 [241]. This technique creates an EE reaction on α2,6 

linked sialic acids while performing lactonization on the α2,3 sialic acids, allowing 

for stabilization of the sialic acid to the galactose and differentiating the two 

linkage varieties by change in mass. The second method is a double amidation 

reaction (AA) performed on tissue, adapted from Holst et. al. in 2016 [262]. While 

utilizing many of the same materials, this method varies slightly from the EE 

method through substituting ethanol for dimethylamine, resulting an initial 

dimethylamidation reaction, followed by a secondary amidation reaction via 

ammonia in water. In α2,6 sialic acids, this results in the formation of an amide 

group, while in α2,3 sialic acids, the lactone is reopened by the second reaction 

and an amine group is added. Again, this method allows for stabilization of sialic 

acids to prevent pre- and post-source ionization decay and allows for elucidation 

of the linkage of the sialic acid through the resulting mass shift. In this chapter, I 

will discuss the initial experiments using these two methods, the rationale behind 

choosing one method over the other, the application to human liver tissue, and 

potential applications of the methodology. 
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5.2. Materials and Methods 

5.2.1. Tissue Samples and Relevant Materials 

 Formalin-fixed paraffin-embedded (FFPE) tissue blocks of whole tissue 

(specifically prostate and liver) were obtained from the Medical University of 

South Carolina Hollings Cancer Center Biorepository and Tissue Analysis 

Shared Resource. A set of 12 tissue microarray (TMA) FFPE slides containing 

varying patient data were obtained from collaborators in Heidelberg, Germany. 

 For the chemical derivatization, 1-Hydroxybenzotriazole hydrate (HOBt) 

with dimethylamine and approximately 20 percent water was purchased from 

Sigma-Aldrich (St. Louis, MO). 1-(3-dimethylaminopropyl)-3-ethylcarbodimide 

(EDC) was purchased from Alfa Aesar (Haverhill, MA) and stored in a sealed bag 

with drierite and sealed with parafilm due to its moisture and air sensitivity. 

Finally, dimethyl sulfoxide (DMSO) and 28 to 30 percent ammonia in water was 

purchased from Fisher Scientific (Hampton, NH). Additionally, cover glass was 

purchased from ThermoFisher Scientific (Waltham, MA) to secure solutions to 

tissue. 

 

5.2.2. Washes and Rehydration 

 Washes and dehydration steps were performed similarly to what was 

described in Section 3.3.3. 
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5.2.3. Ethyl Esterification Chemical Derivatization 

 Ethyl esterification was adapted from Reiding et. al. (2014) for direct tissue 

analysis. Briefly, immediately following the deparaffinization and rehydration 

washes, a mixture of EDC and HOBt was made for on-tissue derivatization. To 

create the EE solution of 0.25 M EDC and 0.25 M HOBt, 0.675g of HOBt was 

combined with 0.959g of EDC, 1mL of HPLC H2O, and 20mL of 200-proof 

ethanol. A glass mailer was then filled with the EE solution and the slide fully 

immersed. The lid was then parafilmed shut to prevent any evaporation of the 

solution and the glass mailer placed into a 37°C oven for one hour. Finally, the 

slide was carefully removed to avoid tissue disruption as much as possible and a 

series of washes were used to remove the reagents. These washes consisted of 

two minutes in 200-proof EtOH twice, 10 minutes in Carnoy’s Solution (60 

percent ethanol, 30 percent chloroform, and 10 percent acetic acid) twice, two 

minutes in HPLC H2O, two minutes in 200-proof EtOH twice, and a rinse of 1 

percent trifluoracetic acid (TFA) in 200-proof EtOH for 30 seconds. It is important 

to note that following each wash step, the solutions were replaced to remove the 

reagents as completely as possible. The slide was then taken directly, without 

the chance to dry, for further tissue processing using the experimental MALDI 

imaging workflow. 

 

5.2.3.1. Reaction Schematic 

 As stated above, the EE method utilizes EDC, HOBt, and ethanol to 

derivatize sialic acids through either the esterification on α2,6 linked sialic acids 
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or the removal of water from α2,3 sialic acids, both of which cause a discernable 

shift in m/z in a MALDI imaging experiment. In α2,6 sialic acids, the exposed 

carboxylic acid reacts with the ethanol through the action of the EDC and HOBt, 

resulting in an esterification reaction and the mass shift of approximately 28.05 

a.m.u. (+46.07 for the addition of the ethanol and -18.02 for the loss of water). EE 

acts as a protective group for the sialic acid, allowing for less in-source decay. 

Conversely, α2,3 linked sialic acids perform a lactonization event with the 

neighboring galactose, where the exposed carboxylic acid is joined with an 

exposed hydroxyl group, creating a more stable glycosidic bond and a mass shift 

of -18.02 a.m.u. from the loss of water in the lactone formation. Figure 31 

provides a more in-depth look at the structural changes associated with EE and 

highlights the differences based on sialic acid linkages. 

 

5.2.4. Amidation-Amidation Chemical Derivatization 

  Adapted from Holst et. al. in 2016, the AA reaction was performed as 

described with three slight modifications: 1) the reaction volume was reduced to 

200μL, 2) a washing step was added between the first and second amidation, 

and 3) the amount of HOBt was adjusted for 20 percent water composition. 

Briefly, reaction solution 1 was created by combining 22μL of EDC, 42.2mg of 

HOBt, 15.8μL of dimethylamine, and 0.5mL of DMSO to create a 0.25/0.5/0.25 M 

solution of EDC, HOBt, and dimethylamine, respectively. 200μL of reaction 

solution 1 was then applied to the tissue using a pipette tip, careful to completely 

cover the tissue without disruption. The tissue was then covered with a glass  
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Figure 31: Ethyl Esterification Derivatization of Sialic Acids. Chemical 

structures of α2,3 and α2,6 sialic acids are shown above, as well as the 

modification made during the Ethyl Esterification chemical derivatization 

process. Changes are highlighted in red, and the conditions for the 

derivatization and associated mass shift are shown as well. 
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coverslip and placed into a either a pyrex petri dish with parafilm or a pyrex 

container with airtight sealing capabilities. The container was then placed inside 

a 60°C oven for 1 hour. 

 Following incubation, the slides were then removed and the coverslip was 

gently removed, careful to not disrupt the tissue adherence to the slide. The slide 

was then placed perpendicularly on a paper towel to remove the majority of the 

reaction solution. To remove the rest, a vacuum flask apparatus was set up to 

allow for suctioning of remaining liquid in a more precise manner. Using a pipette 

tip and with as close contact as possible without touching the tissue, the 

remainder of the visible liquid was aspirated, though it is important to note that 

over-drying the tissue was avoided as it causes reagents to adhere more to the 

tissue. 200μL of DMSO was applied to the tissue and then aspirated in a similar 

fashion as described above, and this process was repeated a total of two more 

times.  

 Next, the second reaction was prepared with 350μL of DMSO and 150μL 

of 28 to 30 percent ammonia in water. The second reaction solution was then 

applied in a similar fashion to the first, with all tissue covered and a coverslip 

placed over the tissue to seal. The slide was then placed inside the pyrex 

chamber to protect from evaporation and placed in the 60°C oven for 2 hours. 

Washing of the slide was performed exactly as described above. Finally, the slide 

was then rinsed in a series of washes as described in section 5.2.3. (ethanol, 

Carnoy’s, water, and TFA). The slides then proceeded directly to further 

processing without being allowed to dry.  
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5.2.4.1. Reaction Schematic 1 

 In contrast to the EE reaction, the AA reaction utilizes dimethylamine 

instead of ethanol. In examining α2,3 sialic acids, the reaction mechanism is 

unchanged, creating a lactone between the sialic acid and neighboring galactose 

and resulting in a loss of water. However, in α2,6 linked sialic acids, the 

carboxylic acid reacts with the dimethylamine, creating a stable dimethylamide 

group and a loss of water, resulting in a mass shift of approximately +27.05 

a.m.u. Figure 32 highlights the structural changes of both sialic acid and the 

change in mass for each. 

 

5.2.4.2. Reaction Schematic 2 

 Unlike EE, the AA reaction has a second reaction step, resulting in 

amidation of the α2,3 linked sialic acids as well. In this step, the lactone formed 

from the first reaction is hydrolyzed and the ammonia creates a stable amide 

group on the newly formed carboxylic acid. This results in a total mass difference 

of -0.984 a.m.u. for α2,3 linked sialic acids following both reactions. The α2,6 

linked sialic acids remain completely unchanged throughout the duration of the 

second reaction. Figure 33 details the conditions and structural changes for the 

α2,3 linked sialic acids and the resulting mass differences. 

 

5.2.5. Tissue Preparation and N-Glycan Imaging 

 For the tissues that underwent the EE chemical derivatization, they were 

then treated as previously described in sections 3.3.3. to 3.3.5., proceeding  
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Figure 32: Reaction Schematic for Amidation-Amidation Reaction #1. 

Schematic of sialic acid derivatization via amidation-amidation reaction. Top: 

reaction scheme for α2,6 linked sialic acids; Bottom: reaction scheme for 

α2,3 linked sialic acids. Shown for addition of EDC, HOBt, and 

dimethylamine. Changes in α2,6 sialic acids are highlighted in red while 

changes in α2,3 sialic acids are highlighted in blue. 
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Figure 33: Reaction Schematic for Amidation-Amidation Reaction #2. 

Schematic of sialic acid derivatization via amidation-amidation reaction. Top: 

reaction scheme for α2,6 linked sialic acids; Bottom: reaction scheme for α2,3 

linked sialic acids. Shown for addition of ammonium hydroxide to further 

distinguish α2,3 linked sialic acids. Changes in α2,6 sialic acids are highlighted in 

red while changes in α2,3 sialic acids are highlighted in blue. 
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through an antigen retrieval step, enzymatic digestion and matrix deposition, and 

N-glycan imaging on both the MALDI FT-ICR and MALDI-TOF systems [259, 

267]. 

 For tissues that underwent the AA reaction, a standard decloaker was 

used to proceed with antigen retrieval. Briefly, the overall basin and slide holder 

jars were filled to the appropriate level, and a mailer containing the slides was 

filled with approximately 20 mL of citraconic buffer (as described in section 

3.3.3.) to completely fill the mailer and one snap of the lid was left open to 

prevent bursting of the mailer and to allow steam to exit. The decloaker 

parameters were set to 115°C for 15 minutes with a pressure setting of 5.4 psi. 

The slides were placed in the decloaker for the preheating and allowed to run the 

full cycle. Finally, once the cycle was finished and the decloaker had cooled to 

95°C, the mailer was then cooled and washed similar to the process described in 

section 3.3.3. The reason for the shift in method was due to two factors: 1) the 

vegetable steamer previously used was no longer functional and 2) other 

members of the lab performed analysis on decloaker settings compared to 

vegetable steamer and rice cooker settings and found that these settings were 

optimal for tissues with high fat content or for tissues that had undergone a 

chemical stabilization (data not shown). The rest of the tissue processing 

occurred similarly to sections 3.3.4. and 3.3.5. 
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5.3. Results 

5.3.1. Ethyl Esterification On-tissue 

 Initially, the method for EE was created for released glycans, so the 

method was adapted for on-tissue application with the adjustments being made 

by myself in collaboration with Dr. Peggi Angel for the washing procedure. Once 

the protocol was adapted and applied to tissue, the first test was to determine the 

efficiency of stabilization for sialic acids post-imaging analysis. In Figure 34, initial 

experiments were done to show the efficiency of sialic acid stabilization and 

differentiation, mainly looking to examine the overall retention of sialylated 

species and the associated mass shifts corresponding to the linkage of the sialic 

acid. An example glycan that is mono-sialylated, mono-fucosylated, and bi-

antennary (2100.7347 m/z, A2G2F1S1) is shown without EE, the chemical 

derivatization for an α2,3 sialic acid, and for an α2,6 sialic acid. The localization 

of the sialylated species is clearly visible in the prostate FFPE tissue, 

demonstrating the preference to smooth muscle and collagen [76]; however, 

when looking at the chemically derived masses, there is a slight variation to the 

localization. Not only do we see a higher representation of the N-glycan along the 

sides of the tissue, we see representatively similar amounts of sialylated species 

following the chemical derivatization, supporting the claim that sialylated species 

are indeed more stabilized following the protocol, as well as differentiated by 

mass as to be expected (approximately +28 a.m.u. for α2,6 and -18 a.m.u. for 

α2,3). 
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 While this was a promising start for derivatizing on tissue, these initial 

experiments were performed on the MALDI FT-ICR platform, which is known to 

image sialylated species more efficiently than a time-of-flight platform. Therefore, 

it was imperative to better prove the stabilization aspect by examining higher 

sialylated species than a mono-sialylated N-glycan. As mentioned previously, 

higher sialylated species may lose some sialic acid modifications while retaining 

others, resulting in a misrepresentation of sialylated N-glycans. So, to determine 

the efficiency of on-tissue stabilization, three N-glycans were examined with 

varying amounts of sialic acid modifications (A2G2S1, 1954.6768 m/z; A2G2S2, 

2245.7722 m/z; and A3G3S3, 2923.9896 m/z). Figure 35 shows the same 

prostate FFPE tissue that underwent both EE and no modification to the tissue. 

When examining these three N-glycans, the stabilization is clearly visible when 

comparing the left half of the images with the right. On the left, as the number of 

sialic acid modifications increase, a clear loss of signal is shown, demonstrating 

reduced abundance of these sialylated N-glycan species, particularly the tri-

sialylated N-glycan. In contrast, the right half of the images show a greater 

retention in signal of these multi-sialylated glycans, even showing a clear 

localization pattern for the tri-sialylated N-glycan that was not even discernable 

without the chemical modification. Therefore, we were able to clearly show a 

stabilization effect stemming from this N-glycan derivatization on tissue as 

compared to untreated tissue, as well as determine specific N-glycan linkages 

based on the corresponding mass shift post-treatment. 
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Figure 35: Stabilization of Multi-Sialylated Tissue Glycans by EE. MALDI-

FT-ICR IMS data from the same ethyl esterified prostate tissue is shown for 

mono-, di-, and tri-sialylated bi-antennary glycans. Images in each panel on 

the left side represent non-ethyl esterified glycans, and the right side images 

are after EE. Also shown for the EE examples are the α-2,6 sialic acid linkage 

structures 
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5.3.2. Amidation-Amidation On-tissue 

 In addition to applying the ethylation reaction on tissue, myself and 

another member of the lab worked toward adapting the method from Holst et. al. 

(2016) for on-tissue analysis. Using a combination of the paper adaptation and 

slight adjustments made from the ethylation reaction protocol, a working 

amidation procedure was once again validated on FFPE prostate tissue. Table 9 

demonstrates example changes in parent N-glycan masses according to sialic 

acid linkages, while Figure 36 demonstrates the N-glycan amidation spectra and 

the resulting images from prostate FFPE tissue section. Figure 36A shows a non-

amidated spectra on top in blue and an amidated spectra on the bottom in red for 

the mono-sialylated bi-antennary (A2G2S1) N-glycan (1954.6768 m/z). Here, it is 

clearly shown that the amidation results in a higher overall signal, implying 

stabilization of the sialylated N-glycan. Figure 36B is an overlay of the α2,3 linked 

N-glycan in red and the α2,6 linked N-glycan in green, demonstrating the 

implications in localization we can see in FFPE tissue through differentiating the 

linkage specifities of the same N-glycan. Figure 36D shows a similar spectrum as 

to 36A, but for the mono-sialylated, mono-fucosylated, bi-antennary (A2G2S1F1) 

N-glycan (2100.7347 m/z). Again, we can see an increase in intensity for the 

peaks of the amidated tissue, implying stabilization. Finally, we see the overlay of 

the α2,3 linked N-glycan in red and the α2,6 linked N-glycan in green in Figure 

36E. This distribution is localized completely differently from 36B, showing how 

differentiating these glycans even further can dictate trends in understanding 

tissue N-glycan localization in terms of disease state, tissue morphology, etc. 
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Figure 36: Amidation-Amidation Chemical Derivatization On-Tissue. Amidation-amidation 

reaction done on prostate FFPE tissue and the resulting spectra and images following analysis via 

MALDI imaging mass spectrometry. A) Spectra for N-glycan A2G2S with and without amidation-

amidation. The top spectra in blue represents the non-derivatized N-glycan, with one or two sodium 

ions. The bottom spectra in red represents the mass shift resulting from the chemical derivatization. 

Sialic acids angled to the left indicate α2,3 linkage while angled to the right represents α2,6 linkage. 

B) Resulting image overlay showing localization of the α2,3 linked N-glycan, m/z = 1953.741 (red, -1 

m.u.), and α2,6 linked, 1981.782 (green, +27 m.u.). C) Hematoxylin and eosin stain of the tissue 

section analyzed. D) Spectra for the fucosylated N-glycan A2G2S1F1 with and without the 

amidation-amidation reaction. Top spectra in blue is non-derivatized and the bottom spectra in red is 

showing the mass shift following derivatization. E) Resulting image overlay showing localization of 

α2,3 linked N-glycan, m/z = 2099.810 (red, -1 m.u.) and α2,6 linked, m/z = 2127.832 (green, =27 

m.u.). 
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 Similar to the EE validation, it was also important to further confirm that 

this method will increase sialic acid stability by examining multi-sialylated N-

glycan structures. Figure 37 is set up comparably to Figure 35 and examines N-

glycans with one, two, and three sialic acids before and after amidation. The left 

column of images represents the non-amidated tissue and a drop in signal 

intensity and clarity is clearly visible in the di- and tri-sialylated N-glycans. 

However, when looking at the amidated tissue, we see a continuation of signal 

intensity when comparing the mono-sialylated N-glycan to the di-sialylated, and 

even the tri-sialylated shows a distinct localization pattern and higher intensity as 

compared to the non-amidated tissue. These studies validated the use of 

amidation to not only differentiate sialic acid linkage, but to also stabilize multi-

sialylated N-glycan species, allowing for more accurate qualitative and 

quantitative N-glycan analysis. Therefore, this methodology was then used to 

examine sialic acid difference in HCC tissue.   

 

5.3.3. Amidation-Amidation on FFPE Human Liver Tissue 

 Amidation derivatization was then applied to HCC tissues to further 

characterize the N-glycome of HCC, in addition to the fucosylation 

characterization demonstrated in chapter four. Figure 38 shows the amidation 

protocol applied to the same FFPE HCC tissue that was used in Figure 27 in 

chapter four. A and C demonstrate the mono-sialylated A2G2S1 N-glycan while 

B and D demonstrate the mono-sialylated and mono-fucosylated A2G2S1F1 N-

glycan. A and B both show the α2,6 linkage for the sialic acid and C and D  
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Figure 37: Stabilization of Multi-Sialylated Tissue Glycans by AA. MALDI-FT-

ICR IMS data from the same amidated prostate tissue is shown for mono-, di-, 

and tri-sialylated bi-antennary glycans. Images in each panel on the left side 

represent non-amidated glycans, and the right side images are after AA. Also 

shown for the AA examples are the α-2,6 sialic acid linkage structures 
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E F G 

Figure 38: AA Chemical Derivatization of HCC Tissue. Following optimization 

of the amidation-amidation conditions, the derivatization was then applied to 

representative hepatocellular carcinoma tissues, seen above. The top row shows 

two different sialylated N-glycan species, one with and without a core fucose, 

with the α2,6 linked sialic acid species in the left two images and the α2,3 linked 

sialic acid species in the right two images. The bottom row shows a di-sialylated 

N-glycan with the left demonstrating 2 α2,6 linked sialic acids, the middle 

representing a mix of both, and the right showing 2 α2,3 linked sialic acids. 
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demonstrate the α2,3 linkage for the sialic acid. When comparing the α2,6 to the 

α2,3 in the tissue, the overall intensity is decreased for the α2,3 specific N-glycan 

species; however, localization is not changed by sialic acid linkage, but rather 

whether there was a fucose residue present on the structure. Additionally, when 

examining the bi-sialylated N-glycan shown in E, F, and G, the presence of one 

or two α2,6 sialic acids results in an intense signal localized to the tumor region 

of the tissue; however, the presence of two α2,3 sialic acids is not seen 

anywhere in the tissue, driving the importance of linkage specificity and the 

possible importance of α2,6 linked sialic acids in HCC. 

 In conjunction with single tissue imaging applications, the amidation 

protocol was also applied to TMAs to examine multiple tissues at once to further 

characterize the changes in terms of tissue type, morphology, or by patient. 

Unfortunately, the TMA utilized in chapters three and four was not available for 

amidation. However, as previously mentioned, a collaborator in Heidelberg, 

Germany sent us a set of twelve TMAs of varying tissue types, pathologies, and 

number for which to examine the N-glycome. With this set, the amidation 

derivatization was applied to a few of these TMAs to examine the implications of 

sialic acid linkages on a broader scale. In Figure 39, the key to the TMA and the 

tissue types is shown to the right, with representative images of the same mono-

sialylated N-glycans as shown previously, with and without the fucose residue. 

Comparable to what was seen in Figure 38, the α2,6 linked sialic acid structures 

were much more intense than the α2,3 sialic acid structures, regardless of tissue 

morphology, pathology, or patient, as shown on the left side of Figure 39. Further  
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Figure 39: AA Chemical Derivatization of Human Liver TMA. Amidation-

amidation was applied to a human liver tissue microarray with varying tissue 

types (see keys to the right) and the resulting changes in sialylation are shown to 

the right. In general, α2,6 sialylation was much more prominent than α2,3 sialic 

acid regardless of additional modifications or tissue morphology type. 
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studies are planned to continue analysis of these TMA sets to further distinguish 

the differentiation of fucosylation or sialylation in HCC tissues, as well as 

examine these trends at a patient-by-patient basis as was done in chapter three. 

 

5.4. Discussion 

 As briefly touched upon in the introduction, the need to further 

characterize sialylation is backed by ever-growing developments in the role 

sialylation plays in disease states, particularly in cancer development, 

progression, invasion, and metastasis. As reviewed by many groups, alterations 

in sialic acids are consistent in many aspects of cancer biology, such as reduced 

adhesion of tumor cells to the ECM to promote invasion and metastasis, the 

masking of innate immunity pathways in the complement system to promote 

tumor survival, and alterations in immune cell receptors and selectins [298-300]. 

Further, hyper-sialylation and sialic acid linkage specificity has been implicated in 

several specific cancers, such as ovarian cancer, prostate, oral cancer, and even 

HCC [77, 163-166, 301-304]. These implications were the main driver of the work 

in this chapter, specifically in examining those sialic acid changes in HCC. 

 On the broadest scale, total and free sialic acid has been examined in liver 

disease. In looking at the total sialic acid, the different etiologies of liver disease 

were not significantly different, but compared to normal controls, the total sialic 

acid concentration was decreased remarkably. In contrast, the free sialic acid 

concentrations varied between etiologies, showing that nonalcoholic cirrhotic liver 

serum contained less free sialic acid than those of a toxic etiology [165]. The total 
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sialic acid concentration has also been shown to differentiate 

cholangiocarcinoma from HCC with a sensitivity of 82.6 percent and a sensitivity 

of 83.1 percent [166].  

In a more specific view of HCC, sialyltransferase regulation, mucin 

expression, Thomsen-Friedenreich (TF/Tn) antigen expression, and linkage 

specification has been examined for the disease state. Previously, the ST6Gal 

family of sialyltransferases were shown to be upregulated in HCC but not 

cirrhosis, implying that the alteration of α2,6 sialylation of liver glycoproteins 

happens during neoplastic transformation and can be useful in identifying 

potential biomarkers for early stage HCC [305]. Additionally, the ST6Gal family 

has been shown to modulate chemotherapeutic responses for HCC cells, 

reducing the efficacy of docetaxel treatment in-vivo. These results imply that that 

this sialyltransferase may play a role in maintaining cancerous cell survival in 

HCC, consistent with previous reports of upregulation of ST6Gal-I and increased 

prevalence of α2,6 sialic acids [164]. Finally, other groups have examined the 

expression of mucins and TF/Tn related antigens, where MUC1, MUC2, TF, Tn, 

sialosyl-Tn, and α2,6 linked sialic acids were not readily expressed in normal 

hepatocyte cells, while HCC showed upregulation of all but MUC2 after 

comparing expression between normal and HCC tissue to confirm that the results 

were not from an incomplete glycosylation event [163]. This and all the previous 

findings are consistent with what we have seen in our liver cancer tissues, with 

an upregulation of total α2,6 sialic acid apparent as opposed to the α2,3 

conformation, leading to a promising start in further characterizing HCC’s total N-
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glycome and adding more information to further distinguish tumor from non-tumor 

in HCC (especially in combination with additional fucosylation studies). 

To further discuss the rationale behind choosing the AA chemical 

derivatization over the EE, the decision lies in the continued benefits of an amide 

addition as opposed to an ethyl-ester group. Research by Dr. Vivian Lu in the 

Drake lab has shown that replacement of the second amidation from ammonia to 

an propargyl amine or azide depending on the linkages results in a mass shift as 

well as an added benefit with this modification. With these propargyl amine or 

azide group attachments to the terminal sialic acids, this opens the door for 

potential “click chemistry” reactions, allowing for bioconjugation of additional 

molecules to the sialic acids [306]. For example, ongoing work by Dr. Lu has 

demonstrated effective conjugation of markers such as GFP to the sialic acids 

on-tissue, as well as the conjugation to magnetic beads off tissue. This 

conjugation to the sialic acids provides an enhanced benefit when looking at 

proteomics, allowing for a more targeted approach to the glycoprotein carriers of 

these modified sialic acids, further optimizing the enrichment of specific N-glycan 

modifications and their protein carriers. This work is still being conducted with a 

manuscript in process demonstrating the effectiveness of these clickable sialic 

acid targets. 
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Chapter 6: Enhanced 
Glycoproteomic Analysis of 

Liver Cancer Tissues 
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6.1. Introduction 

 While defining the N-glycome in human disease, specifically HCC, is 

important, the clinical relevance of these modifications to glycosylation is 

integrally linked with the glycoprotein on which the modification is occurring. 

Therefore, it is imperative to not only determine the modification of interest, but 

also correctly identify the protein of interest. Intact glycoproteomics, i.e. 

simultaneous analysis of a glycopeptide singly or in mixtures, has increased in 

popularity, with multiple techniques developed within the last decade [172, 213, 

215, 272, 307-314]. However, there are inherent difficulties of intact glycoprotein 

analysis that have made this progress slow-moving. For example, the complexity 

of an intact glycopeptide structure, the low abundance of glycopeptides in 

respect to the total protein concentration, and the low ionization efficiency of 

these glycopeptides all provide challenges in the intact analysis of these 

glycoproteins [315]. However, as discussed in chapter one, many techniques 

have recently been developed to combat these challenges, such as CID, HCD, 

ETD and a combination of these methods [213, 219, 226, 312, 316]. 

 Early studies of glycoproteomics utilized collision-induced dissociation, a 

technique where ions are accelerated and collide with a neutral molecule (such 

as helium, nitrogen, or argon) to release their kinetic energy internally and 

fragment the molecule. CID uses a lower collisional energy, ideally suited for 

preferential glycan fragmentation while leaving the peptide backbone largely 

unmodified [317]. One drawback, however, is the low m/z cutoff, making the 

identification of larger glycan structures more difficult. Similar to CID, HCD 
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effectively fragments the sugar structure while also fragmenting a portion of the 

peptide backbone, producing B- and Y-type ions for improved peptide 

identification [308]. Unlike CID, however, HCD does not suffer from the low m/z 

cutoff, making this technique better suited for more complex and higher mass 

glycans. It is also able to be performed in a stepwise function, changing the 

collisional energy and obtaining different information over the varying range of 

collisional energies [310]. While this works for characterization of the glycan 

moiety, it is ineffective in terms of completely identifying the peptide of interest, 

as well as locating the site of glycosylation on the peptide. Conversely, ETD is 

most effective for examining the protein or peptide backbone while leaving the 

post-translational modifications intact. Briefly, ETD causes fragmentation of 

large, positively charged molecules through the transfer of an electron, resulting 

in cleavage to the C- and Z-type ions, providing an advantage for longer, intact 

peptides and proteins [310]. ETD provides a unique approach when combined 

with other collisional techniques, allowing for a combination of glycan 

identification and site-specific localization on associated glycopeptides. 

Unfortunately, while many experiments to date have utilized these techniques for 

protein glycosylation studies, very little has been reported in terms of disease or 

human health implications. 

 As stated above, one of the many challenges of these techniques is the 

low abundance of these glycopeptides following tryptic digest, which introduces 

difficulties in detection and quantification. Therefore, many studies include an 

enrichment approach of some kind to enhance glycopeptide abundance in the 
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sample. One enrichment technique commonly used for proteomics is lectin 

affinity chromatography, where a specific lectin is used to bind glycoproteins 

carrying the lectin-target glycan of interest initially, thus reducing the pool of 

potential proteins. For example, Aleuria aurantia Lectin (AAL) is commonly used 

to enrich for fucosylated glycans, further narrowing the proteomic hits of a 

sample [318]. While these are extremely effective, they often require the 

homogenization of a sample, so they are largely ineffective when looking at 

region-specific tissue samples for proteomics. 

 The following work outlines the combination of imaging mass spectrometry 

techniques with glycoproteomic approaches to enhance glycopeptide 

identification for specific N-glycan changes. More specifically, this new 

methodology combines the previously discussed enzymatic derivatization of core 

fucosylation on tissue for imaging purposes to enhance detection and 

characterization of core fucosylated glycopeptides in cancer tissues. With the use 

of the unique GlcNAc-Fuc tag left on specific core fucosylated peptides, the 

normally complex glycopeptide spectra are more easily interpreted and reduce 

ionization complications of larger and more complex core fucosylated N-glycans. 

  

6.2. Materials and Methods 

6.2.1. Tissue Samples and Relevant Materials 

 FFPE liver cancer tissues were obtained from the Medical University of 

South Carolina Hollings Cancer Center Biorepository and Tissue Analysis 

Shared Resource. Endoglycosidase F3 was obtained, expressed, and purified by 
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the Mehta laboratory. Pierce Microplate BCA Protein Assay Kit and C18 ZipTip 

cartridges were purchased from ThermoFisher Scientific (Waltham, MA). Trypsin 

was purchased from Promega (Madison, WI) at five bottles of 20μg of trypsin. All 

other solutions and solvents made are generic varieties. For our purposes, 

solvents were purchased from Fisher Scientific (Hampton, NH). 

 

6.2.2. Imaging Characterized N-Glycans 

 The imaging of the core fucosylated N-glycans was done exactly as 

described in section 4.3.4.  

 

6.2.3. Segmentation Analysis 

 After imaging the core fucosylated N-glycans, regions of core fucosylation 

were established using segmentation analysis. Segmentation was performed 

using Bruker SCiLS 2017 software (Billerica, MA). Segmentation analysis is a 

program within SCiLS Lab that allows for parsing specific features found in 

multiple areas of the tissue and hierarchically clustering them based on these 

features. Figure 40 demonstrates an example of this segmentation analysis. 

Briefly, the segmentation analysis was done under the parameters of weak 

denoising, bisecting k-means, and Manhattan distribution metric. The results 

were then parsed into two main groups: those containing core fucosylation and 

those that did not. The results that were achieved by this segmentation are 

demonstrated in Figure 41. By overlaying this information with the imaging data  
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Figure 41: Segmentation of Endo F3 Applied HCC Tissue. Segmentation analysis 

done following imaging of tissue applied with Endo F3. All components of the analysis 

were done with core fucosylated associated masses, with red indicating regions 

where core fucose was not present, while green indicates regions of the tissue in 

which core fucosylated N-glycans were found. 
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acquired, regions within the tissue containing core fucosylation were identified 

and excised from the tissue. 

 

6.2.4. Tissue Extraction and Enrichment 

 Once the regions of tissue that contained the core fucosylation were 

identified via segmentation analysis, the tissue of interest was extracted. This 

was done by precisely scraping large tissue sections that were not of interest 

(tumor tissue containing core fucosylated N-glycans) off the slide with a straight 

edge razor. Next, the regions of interest were circled using a glass scratching 

pen. The rest of the tissue was then scraped away using the tip of the straight 

edge razor, leaving only tissue regions of interest left on the slide. Finally, the 

regions of interest were scraped from the slide and placed in an Eppendorf tube.  

 

6.2.5. Tryptic Digestion 

 In-solution tryptic digest was performed as previously described with minor 

modifications [319]. As the tissue had already undergone antigen retrieval for 

imaging, this process was skipped in solution. The tissue was brought up in 50μL 

of 25mM ammonium bicarbonate (AMBIC), ensuring that the pH was between 

seven and eight. Next, 50μL of triflouroethanol (TFE) was added and the tissue 

solution was sonicated in a bath for 15 minutes, ensuring that most of the tissue 

was dissolved in the solution. The sample was then spun down briefly, 

parafilmed shut and incubated on a thermoshaker at 60°C and 300rpm. 
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 Next, Dithiothreitol (DTT) and tris-2(-carboxyethyl)-phosphine (TCEP) 

were added to create an end concentration of 25mM DTT and 10mM TCEP (1μL 

of 1M TCEP and 5μL of 500mM DTT, stock solutions both in AMBIC). The 

sample was then parafilmed shut and incubated at 60°C for 30 minutes. 

Following the incubation, the sample was cooled to room temperature and 

iodoacetamide (IAA) was added to make a final IAA concentration of 50mM 

(approximately 10.6μL of a 500mM stock solution in AMBIC). The sample was 

then covered with aluminum foil and allowed to incubate in the dark for 40 

minutes. 

 Following the IAA incubation, 50mM AMBIC was added to reduce the total 

concentration of TFE to 10 percent of the total solution (383.4μL of 50mM 

AMBIC). This solution was then sonicated for five minutes and briefly spun down. 

Finally, 2μg of trypsin was added, then the sample was parafilmed shut and 

incubated overnight at 37°C. From here, the sample could be stored at -20°C 

until further proteomic analysis was ready. 

 

6.2.6. Protein Quantification 

 To ensure that enough protein was obtained from the isolated tissue 

sections, a protein quantification assay was performed to determine total protein 

amount in the sample. Protein quantification was vital, as the sample clean up 

required a minimum of 10μg of total protein to ensure correct proportions. The 

sample was quantified using the reducing agent-compatible Pierce Microplate 

BCA Protein Assay Kit from Thermo Scientific (Catalog #23252). Protocol was 



 

155 
 

followed as provided by the kit; the results were read on the microplate reader 

and protein amounts were determined based off the standard curve created. 

Once the protein concentration was determined to be at least 10μg, the sample 

then proceeded to clean-up via ZipTip. 

 

6.2.7. Sample Clean-up 

 The sample was then de-salted via C18 ZipTip cartridges, capable of 

binding a total of 10μg peptide per sample. Briefly, the sample was first dried in 

the speed vacuum and brought back up in 30μL of 0.1 percent triflouroacetic acid 

(TFA). Next, 50μL of the four necessary solutions were created in separate 

tubes. First was the wetting solution of 75 percent acetonitrile (ACN) and 0.1 

percent TFA, then the equilibrium solution of 0.1 percent TFA, followed by the 

wash solution of 0.1 percent TFA and finally the elution solution of 75 percent 

ACN and 0.1 percent TFA. 

 Once all the solutions were made, the ZipTip was hydrated using 10μL of 

the wetting solution, solution wasthen discarded, and repeated two more times. 

Next, the tip was then equilibrated using 10μL of the equilibrium solution, three 

times.. Then the peptides were bound to the C18 by pulling up 10μL of the 

sample and slowly pipetting back down for a total of 30 times, careful to not 

introduce any air bubbles to allow for maximum binding. After the 30 cycles, the 

sample solution was then dispensed back into the sample tube. 

 Next, the tip was washed three times using 10μL of the washing solution. 

Finally, the sample was eluted from the tip using the elution solution. 10μL of 
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elution solution was carefully pulled into the tip as slowly as possible and 

dispensed into a clean tube, again with caution to not introduce any air into the 

tip, as this would decrease elution quantity. This process was then repeated a 

minimum of three times to ensure full elution of the peptides. The sample was 

then dried down in the speed vacuum and stored at -20°C for further proteomic 

analysis. 

 

6.2.8. Orbitrap Fusion Lumos Analysis 

 Peptides were separated and analyzed on an EASY nLC 1200 System 

(ThermoFisher) in-line with the Orbitrap Fusion Lumos Tribrid mass spectrometer 

(ThermoFisher) with instrument control software version 4.2.28.14. 2μg of tryptic 

peptides were pressure loaded at 1,180 bar and peptides were separated on a 

C18 reversed phase column (Acclaim PepMap RSLC, 75µm x 50cm (C18, 2µm, 

100 Å) ThermoFisher) using a gradient of 5 percent to 40 percent B in 180 min 

(Solvent A: 5 percent acetonitrile/0.1 percent formic acid; Solvent B: 80 percent 

acetonitrile/0.1 percent formic acid) at a flow rate of 300nL/min with a column 

heater set to 50°C. 

Mass spectra were acquired in data-dependent mode with a high 

resolution (60,000) FTMS survey scan, mass range of 375-1575 m/z, followed by 

tandem mass spectra (MS/MS) of the most intense precursors with a cycle time 

of 3 seconds. The automatic gain control target value was 4.0e5 for the survey 

MS scan. Fragmentation was performed with a precursor isolation window of 1.6 

m/z, a maximum injection time of 22 ms, and HCD collision energy of 35 percent. 
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Monoisotopic-precursor selection was set to “peptide”. Apex detection was not 

enabled. Precursors were dynamically excluded from resequencing for 30 

seconds and a mass tolerance of 10 ppm. Precursor ions with charge states that 

were undetermined or greater than 5 were excluded.  

 

6.2.9. Protein and Peptide Identification 

 Proteome Discoverer version 1.4.0.288 (ThermoFisher) was used to 

determine protein and peptide identification from the sample run. Briefly, the raw 

data underwent two major processing nodes: Spectrum Selector and Sequest 

HT. For the Spectrum Selector, lower limits were 15 minutes retention time and 

precursor mass of 350 Da and upper limits were 200 minutes with a precursor 

mass of 5000 Da. Signal to noise (S/N) ratio for the fourier-transform was 1.5, 

with the MS2 activation set at higher-energy collision-dissociation. For the 

Sequest HT node, the protein database searched was SPTR_092718_Human, 

with the enzyme being Trypsin, a max missed cleavage site of 2, minimum 

peptide length of 7 and maximum peptide length of 144. The mass tolerances 

were set at 20 ppm for the precursor and 0.02 Da for the fragment. Finally, three 

dynamic modifications and one static modification was included in the search. 

For the dynamic modifications, oxidation (+15.995 Da M), deamidated (+0.984, N 

or Q), and HexNAc+dHex (+349.137 Da, N) were examined, while the static 

modification was carbamidomethyl (+57.021 Da, C). This node searched a total 

of 173,778 sequences. This search resulted in a total of 117,992 search inputs 

with 1146 protein groups, 8992 merged proteins, and 3826 peptides.  
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6.3. Results 

 Initially, following the analysis, representative spectra containing the 

modification of interest were pulled and annotated according to their b and y ions 

left from the HCD fragmentation pattern. Figure 42 demonstrates an example of 

one peptide. This specific peptide contains 37 amino acids in the sequence 

ASLQFLQNYTALASAVDAMDFINDATDVNDALGYVTR (corresponding to 

Collagen alpha-1(VI)) with the Endo F3 modification occurring on the asparagine 

in the eighth position of the sequence. The top of the figure represents the 

sequence as well as the corresponding b and y ion fragments resulting from the 

fragmentation of this peptide sequence. The bottom part of the figure 

demonstrates the relative abundance of these ions in the spectra, sorted by 

mass to charge ratio. For example, the mass value for y1 is 175.12 m/z, 

corresponding to the amino acid of arginine, while the mass value for y2 is 276.17 

m/z, corresponding to both arginine and threonine, and so on. These spectra are 

what allows for the assignment of amino acids per retention peak via LC/MS, 

allowing for proper peptide identification while still maintaining the modification. 

Following the assignment of peptide amino acids, the data was then 

processed to return a protein identification search, where peptides containing the 

tag modification left behind by Endo F3 cleavage were assigned to proteins, and 

functional protein groups were established. Table 10 provides a list of all 

peptides found to contain the core fucose modification (35 total tagged peptides), 

as well as the peptide spectrum matches, number of proteins associated with the 

peptide, the protein groups, the accessions, where the modification occurs as  
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Figure 42: Annotation of Representative MS/MS Spectrum.   
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well as any other modifications, the cross-correlation score, overall mass, 

charge, mass to charge ratio, retention time, and mixed cleavages. All peptide 

sequences had a cross-correlation value above 2 and most had a relatively low 

normalized score difference (all but one were less than 0.05), demonstrating that 

while the sample was not enriched for the core fucosylated glycopeptides any 

further than the segmentation analysis, confidence in these modified peptides 

was high. 

Finally, the accession numbers associated with the searched peptides 

were used to determine likely protein identification. Table 11 demonstrates the 

accession number associated with a modified peptide, the protein corresponding 

to that accession number, as well as the molecular function of the protein. From 

the table, it is clear that a vast majority of the peptides found were associated 

with collagen proteins, specifically collagen alpha-1(VI), while many of the other 

glycoproteins found were connected with other types of glycosylation, such as 

glycosaminoglycans found on Biglycan, Decorin, or Asporin, as well as other 

extracellular matrix-associated proteins, such as Prolargin. These findings are 

consistent with what was expected regarding this specific tissue, as many of the 

regions of core fucosylation were along these “collagen highways,” implying that 

many of these core fucosylated proteins should indeed be associated with 

collagen binding or the extracellular matrix. 

Interestingly, while many glycoproteins were as expected, there were also 

some protein groups that were surprising, such as redox-based regulation, DNA 

binding, and even synaptic regulation. Further studies will need to be done to  
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determine the accuracy or reliability of these glycoproteins’ association with 

HCC, though the initial results are promising in demonstrating new and more 

specific glycoprotein changes associated with HCC progression and early 

diagnosis. 

 

6.4. Discussion 

 The work above demonstrates a highly promising start for enhanced 

biomarker identification for liver cancer specifically. Traditional serum 

glycoproteomic analysis has been examined before in HCC, as well as the use of 

endoglycosidases to determine core fucosylation in hepatic serum via the 

HexNAc+Fuc tag [144, 152, 320-323], however this work effectively 

demonstrates the first use of endglycosidase F3 activity via an imaging platform 

for enhancing glycoproteomic targets within a sample without further enrichment. 

While further enrichment would undoubtedly yield a larger result of more specific 

proteins due to the exclusion of less abundant peaks in an LC-MS/MS 

experiment, the workflow above demonstrated a promising start. 

 In terms of findings within this chapter, ultimately the glycoproteins found 

were novel in terms of enhancement for tissue-specific glycoproteins; however, 

further studies would need to be done to compare these findings with those in 

serum. For example, while the initial experiments yielded promising results, many 

known and well established glycoproteins found in HCC serum, such as alpha-

fetoprotein, were absent from this list, implying that this pool of glycoproteins 

would be separate from those found in circulating serum [324]. While this is less 
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ideal for the identification of a more specific biomarker, these findings could still 

open a pathway for other drug or therapeutic targets within HCC that were 

previously unknown from lack of direct HCC tissue analysis. Interestingly, the 

upregulation of ECM-related glycoproteins is consistent with newly published 

studies, such as one that found that patients with HCC had significantly higher 

collagen-III levels and a marked increase in the collagen-III/MMP-1 ratio (CMR) 

[325]. The continued study of these fucosylated ECM glycoproteins could provide 

a functional link between HCC progression and earlier diagnosis, especially 

when examined in a panel with other known markers such as serum AFP levels. 

 However, before absolute certainty could be assigned to glycoproteins 

found via this method, the strategy would require further refinement. As this was 

only one tissue sample, pools would be relevant to examine through this method 

to accurately assess whether these glycoproteins are patient-specific or generally 

found throughout the disease state. Cirrhotic controls would also be essential to 

assess presence of these glycoproteins as compared to a “normal” control state 

for patients. 

 Future directions with this work, beside further optimization for the 

methodology, would be application to other disease states. While HCC is a 

logical starting choice, as serum is hepatic in origin, many other diseased tissue 

types have not been examined in such a specific manner, despite core 

fucosylation being implicated in a multitude of disease states. With application of 

this method to other disease states, new glycoprotein targets could be implicated 
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in disease progression, initiation, or metastasis, opening a new field of potential 

therapeutics for a variety of disease types. 
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Chapter 7: Conclusions, 
Limitations, and Future Studies 
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7.1. Overall Findings 

 With HCC research remaining primarily in the realm of serum analysis and 

showing great promise in the field of glycomics, the need for more extensive 

examination of HCC tissue is greatly apparent. The work presented in this 

dissertation is outlined by three key areas: 1) examining the changes in N-

glycosylation of HCC tissue specifically, determining an upregulation in 

fucosylation and complex glycosylation; 2) developing methods to further 

characterize N-glycan isoforms while maintaining imaging applications, 

specifically for determining core versus outer arm fucosylation and differentiation 

of sialic acid linkages; and 3) applying these characterizations and the resulting 

tags and/or mass shifts combined with the imaging methodology for enhanced 

glycoproteomic analysis of core fucosylated glycoproteins. Below, the broader 

implications, conclusions, limitations, and future directions are discussed for each 

key area. 

 

7.2. Changes in N-Glycans of Hepatocellular Carcinoma via MALDI-IMS 

7.2.1. Conclusions 

 At the completion of Specific Aim 1, the changes in N-glycan distribution 

and abundance were examined within HCC tissue specifically, as well as 

compared to normal and cirrhotic tissue. The conclusions of chapter three are as 

follows: 1) there were more than 60 N-glycans upregulated in HCC tissue as 

opposed to normal or cirrhotic (over the 138 patient samples examined), 2) there 
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were two major classes of upregulated glycans: increased fucosylation and 

increased branching, 3) fewer sialylated species of N-glycans were found than 

expected, and 4) increased branching and fucosylation are inversely associated 

with patient survival. 

 The first conclusion demonstrates an overall examination of the N-

glycome for direct HCC tissue. While tissue analysis of HCC tissue via MALDI-

IMS had been done previously in the lab [195], this research was novel for 

examining HCC tissue in a larger cohort, allowing for further conclusions about 

disease-state trends rather than purely associating results with a single patient-

specific tissue. The two separate tissue microarrays, along with the larger tissue 

sections previously examined, gave a much more comprehensive understanding 

of cancerous, cirrhotic, and normal tissue types, providing increased accuracy in 

determining N-glycosylation trends.  

 The findings from these patient imaging experiments revealed two major 

types of N-glycosylation within HCC tissue. The first, fucosylation, was 

overexpressed in 96 percent of patients, with a range of 1 to 33 fucosylated N-

glycans over-expressed in each patient. This finding was consistent with the 

literature, showing that fucosylation is related to HCC progression and was 

validated in a large sample cohort. The second type of N-glycan modification was 

that of increased branching, where tetra-antennary glycan structures were found 

primarily in HCC tissue alone. This is also consistent with previous findings, as 

the enzyme responsible for tetra-antennary N-glycans (MGAT5) has been 
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associated with many cancers previously through both hTERT and the Ras/Raf 

pathway [326] 

 Similarly, the associated patient survival data was key in determining the 

integral findings of this chapter. With these purchased tissue microarrays, we 

were also provided patient survival data, as well as grading, staging, and etiology 

of each patient sample. This, in turn, allowed for a larger variety of analyses, 

providing an in-depth look at the role N-glycans play in HCC progression and 

survival. While grading and staging showed no correlation with N-glycan 

expression, an increase in N-glycan branching and fucosylation was shown to 

have an inverse effect on patient survival; the highly-expressed presence of 

these N-glycan types reduced overall survival time by an average of 19 months. 

This novel finding is one of the first key links between N-glycan expression and 

overall survival for patients with HCC. 

 

7.2.2. Limitations and Future Research 

 As discussed in chapter three, the largest limitation with these imaging 

experiments was our inability to determine direct linkages within the N-glycans, 

providing doubt in determining what N-glycan structures exactly were associated 

with the HCC tissue. For example, while fucosylation was demonstrated in 96 

percent of patients, we were unable to determine whether these N-glycans were 

core fucosylated or outer arm fucosylated, as either could have varying 

implications within the disease state. This limitation was in part addressed 

throughout chapter four, although further work would need to be done to ensure 
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validation of this method (more information to follow in section 7.2.2.) Similarly, 

the lack of sialylation found within the tissue was problematic, as the resulting N-

glycome did not accurately represent the true N-glycome of HCC. As discussed 

in chapter five, this could result in a misrepresentation of N-glycan distribution, 

although ultimately the amount of sialylation would not affect the general trends 

of increased fucosylation and branching found in chapter three. 

 One other limitation found when examining the larger cohort of patient 

data was the sheer volume of glycan heterogeneity within each patient. While we 

were clearly able to establish trends in the glycosylation patterns, the individual 

glycan profile still widely varied between patients. This made it difficult to 

accurately assess specific N-glycan changes, relying on broad trends instead. 

Other members of the Mehta lab are working to address this, but briefly, this 

could be combatted through examination of the N-glycome for different liver 

genetic subtypes. If each subtype is analyzed for changes in glycosylation as 

compared to any normal tissue of the same genetic subtype, more conclusions 

for specific changes of glycosylation can be attributed to different subtypes. This 

could ultimately lead to a more efficient method for classification of each genetic 

subtype of patient, as well as increase therapeutic effects. By knowing an HCC 

patient’s genetic subtype, different therapies could be used to combat the type of 

progression or disease infiltration (as discussed in chapter one). 

 Finally, one future direction that could improve this research for future 

biomarker studies is to compare these tissue findings to matching serum 

samples. While many studies have been done to examine serum glycosylation 
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trends for HCC as compared to cirrhotic or normal, the literature is lacking direct 

tissue analysis corresponding to associated patient serum. If matched tissue and 

serum samples could be obtained, a side-by-side analysis could reveal more 

direct trends associated with HCC, as well as match trends in serum 

glycosylation to direct HCC tissue glycosylation changes. This could also assist 

in determining more specific trends for the genetic subtypes of HCC, providing 

more specific analysis of the genetic disease state from a readily obtainable and 

less invasive fluid biomarker such as serum. 

 

7.3. Enzymatic and Chemical Characterization of N-Glycans for MALDI-IMS 

7.3.1. Conclusions 

 Looking at the enzymatic and chemical derivatization methods established 

in chapters four and five, several major conclusions can be drawn regarding the 

efficiencies of these methods, as well as their applicability to HCC and relevance 

in a biological context. For the enzymatic characterization using Endo F3, the 

primary conclusions are as follows: 1) we were able to accurately apply Endo F3 

as an enzymatic digestion on tissue to preferentially cleave core fucosylated N-

glycans, and 2) we were able to establish this methodology in a sequential and 

combined fashion to allow for more in-depth analysis of isomeric linkages of 

fucosylation for N-linked glycans. 

 The first conclusion regarding application of Endo F3 to tissue for 

identifying core fucosylated N-glycans is completely novel; it is the first 

application of this enzyme to tissue sections for imaging mass spectrometry to 
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examine differential cleavage. With the enzyme cleaving at a different position on 

the N-glycan, the mass shift enables visualization of these core fucose structures 

on tissue while still maintaining all benefits afforded through imaging. 

Additionally, preference to core fucosylation was established via HPLC analysis 

and throughout the method development process, allowing this new method for 

tissue imaging to be widely applied throughout our lab and others. 

 Along with the application of the singular enzyme to tissue for analysis, the 

second conclusion effectively demonstrated that Endo F3 can be used both 

sequentially and concurrently with PNGase F, resulting in less sample 

preparation and usage, while still maintaining the increased evaluation of the 

fucosylation linkages on N-glycans. Sequentially, it was shown that we can apply 

Endo F3 first, analyze via MALDI imaging, then wash it away and apply PNGase 

F to the same tissue, enabling a direct comparison between core fucosylation to 

outer arm fucosylation on the same sample. Serendipitously, it was also 

discovered that using both Endo F3 and PNGase F concurrently, provided the 

Endo F3 concentration is relatively low compared to the PNGase F 

concentration, works exceedingly well in examining both sets of data within the 

same imaging experiment. This is even more beneficial than the former as this 

removes any variability from experiment to experiment, allowing for more direct 

quantitative analyses between the core and outer arm fucosylation. 

 As for the chemical derivatization of sialic acids on tissue for imaging 

analysis, two major conclusions were drawn regarding this established 

methodology on HCC tissues: 1) it was established that the amidation-amidation 



 

173 
 

reaction is overall more effective at stabilization, with an increased prevalence of 

multi-sialylated species and 2) while α2,6-linked sialic acids were overall more 

abundant in the tumor tissue of HCC, particularly with fucosylation involved, there 

was no direct evidence supporting specific sialylated species being directly 

related to tumor versus alternative disease or normal tissue state. 

 Experiments demonstrated a clear benefit to using amidation over ethyl 

esterification, with Figure 35 and 37 clearly showing the efficiencies of both these 

methods on prostate tissue. For non-derivatized versus derivatized in both 

methods, it is apparent that amidation resulted in a better stabilization for tissue. 

This is also applicable to the HCC tissue. While there is no data for ethyl 

esterification on liver tissue specifically, amidation of the liver tissue worked 

extremely efficiently, allowing us to see the differential mass shift associated with 

the linkage of the sialic acid. 

 Interestingly, for the second conclusion, while consistent with findings in 

the literature, there was no apparent association between sialylation and HCC 

progression or diagnosis. Figure 39 demonstrated an overall bias toward the α2,6 

conformation, however when compared to different tissue morphologies provided 

in the tissue microarray, the overall findings were inconclusive at establishing a 

link between sialylation and disease progression. 

 

7.3.2. Limitations and Future Research 

 In terms of the characterization of core fucosylation, one major limitation 

with the research is the activity of the enzyme. While Endo F3 has been shown to 
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have a much higher prevalence to core fucosylated structures under the right 

enzyme conditions, it is also still able to cleave tri-antennary N-glycans without a 

fucose. This complicates the analysis of core fucosylation, with this methodology 

not being able to identify that cleaved N-glycans were core fucosylated with an 

absolute certainty. The conformation via HPLC and the optimization of the 

method conditions greatly support the enzymes’ cleavage of core fucose, 

however this fact can still not be ignored. 

 For future studies regarding the methodology of Endo F3 on tissue, it 

would be helpful to further validate core fucose preference via lectin 

histochemistry. With previous work done in the Mehta lab, a mutated 

recombinant lectin was created that preferentially binds to core fucose, providing 

an additional confirmation of core fucose [275]. While this lectin is also not 

absolutely core fucose specific, this could provide further validation when stained 

on tissue that has been treated with Endo F3. This validation could also occur 

through a proteomic lens. As discussed in chapter six, the Endo F3 tag left 

behind is efficient in identifying glycopeptides containing core fucose; however, if 

this idea was applied to examine just HexNAc tags without the fucose, the 

efficiency of Endo F3 cleaving tri-antennary glycans without a core fucose could 

be further examined. This could ultimately lead to a greater understanding of the 

enzyme activity and cleavage of N-glycans. 

 Regarding the derivatization of the sialic acids, I believe that further 

studies are required before any concrete ideas connecting sialylation and liver 

cancer can be determined. Similar to what was done in chapter three, validation 
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of sialylation on a patient matched TMA would not only provide more information 

for a broader patient sense, but also allow for more analysis of sialylation 

comparing to survival data. As stated above, the overall levels of sialylation were 

lower than expected, so if the same TMA was examined using these stabilization 

techniques, the resulting N-glycome could shift, revealing new trends as it 

pertains to an overall population with HCC, as well as associated survival times, 

grading, and staging of the tumors. 

 

7.4. Enhanced Glycoproteomic Analysis of Hepatocellular Carcinoma 

Tissues 

7.4.1. Conclusions 

 From the initial glycoproteomic experiments, the primary conclusions 

found were 1) imaging with Endo F3 and using this analysis for preferential 

selection of tissue adds benefit in examining core fucosylated glycoproteins, and 

2) the remaining HexNAc+Fuc tag following Endo F3 digestion can effectively be 

used with tissue for enhanced proteomic analysis of core fucosylated 

glycoproteins. 

 When Endo F3 was imaged on tissue, segmentation analysis allowed for 

differentiating core fucose-containing regions of the tissue from those without 

major areas of core fucosylation. This, combined with isolation of the regions of 

interest via manual microdissection, allowed for enhancement of target 

glycopeptides without any further enrichment. The resulting glycoprotein analysis 

revealed 47 total peptides with the associated tag of HexNAc+Fuc, leading to 
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confident identification of 28 glycoproteins associated with core fucosylation. 

While this does not encompass the full spectrum of glycoproteins with core 

fucosylation, this is a promising start for early work without further enrichment 

methods.  

 

7.4.2. Limitations and Future Research 

 The major limitation associated with this section of my research is the 

overall sample size and population and the lack of enrichment within the sample. 

While promising data was obtained without the need for further enrichment, this 

would ultimately aid in the most accurate and comprehensive look at the core 

fucosylated glycopeptides in HCC tumor tissue specifically.  

For example, enrichment via lectin, such as Concanavalin A, would enrich 

for all glycopeptides in solution, thus reducing the background noise of this 

method and increase identification of less abundant glycopeptides that may have 

too little intensity to be picked up. Additionally, with this method shown to have 

promising results, adapting the specific parameters could yield better results. 

With the Orbitrap Fusion Lumos having capabilities for higher-energy collision 

dissociation product-dependent electron transfer dissociation, the resulting tag 

could be utilized more specifically in a product-dependent fashion, thus 

enhancing the sample for the glycopeptides containing this tag. 

In future studies, a more in-depth look at various tissues from multiple 

sources in one pool would be extremely beneficial in determining the glycoprotein 

most related to HCC tissue specifically. A study that contained pooled HCC 
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tissues, cirrhotic tissues, and normal tissues would greatly enhance the results of 

this experiment in examining the trends of a wider sample population rather than 

in one individual. 

Additionally, it would also be relevant to examine associated serum along 

with tissue via this method. While others have examined core fucosylated 

glycoproteins in serum, if patient-matched serum and tissue were examined 

concurrently, specific proteins in tissue could ultimately be targeted in serum and 

validated as a potential biomarker candidate in the future. By combining these 

two orthogonal methodologies, these findings could be applied more efficiently to 

the field of biomarker discovery and enhancing possible therapeutic targets, as 

well as elucidate previously unknown underlying mechanisms of HCC. 

 

7.5. Conclusions and Final Thoughts 

 Overall, the work presented in this dissertation demonstrates a novel 

examination of N-glycan changes associated within hepatocellular carcinoma 

and presents novel methodologies for examining isomeric linkages of N-glycans 

while still maintaining an imaging mass spectrometry analysis platform. 

Additionally, initial enhancement of targeted glycoproteomics was also 

presented, showing an improvement from previous literature examples through 

the combination of both imaging studies and glycoproteomic analysis. Ultimately, 

this work provides new imaging analyses and a sturdy foundation for 

identification of glycoproteins associated directly with HCC tumors for increased 

biomarker possibilities and therapeutic capabilities. 
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