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ABSTRACT

CONNOR ALLEN WEST. Determination of N-Linked Glycosylation Changes in
Hepatocellular Carcinoma and the Associated Glycoproteins for Enhanced
Biomarker Discovery and Therapeutic Targets (Under the direction of RICHARD

DRAKE)

With hepatocellular carcinoma (HCC) remaining as the fifth most common cancer
in the world, causing more than 700,000 deaths annually, the need for reliable,
early stage diagnoses and preventive treatments is crucial. While serum
glycoproteins are hepatic in origin, making them excellent targets for HCC
biomarkers, they can originate from both cancerous and non-cancerous regions
and direct analysis of cancerous tissue itself is lacking. To counteract this, |
hypothesized that direct tissue analysis combined with proteomic analysis could
be utilized to identify more potential targets specific to HCC for early detection.
This was done with a primary focus on glycosylation—as most clinically approved
biomarkers are glycoproteins—and examined direct tissue glycomics in
conjunction with glycoproteomic techniques through two specific aims: 1)
Determining patterns of N-linked glycan changes in HCC tissue using MALDI
imaging mass spectrometry to compare to previously published serum changes
and 2) identifying glycopeptides containing changes in observed patterns of N-
linked glycans in HCC samples using a targeted glycoproteomic approach. In

Aim 1, HCC tissue was examined using MALDI imaging mass spectrometry to



verify changes in glycosylation via direct tissue analysis. Here, it was found that
increased branching and fucosylation were directly associated with the
cancerous tissue when compared to normal or cirrhotic. To further identify
changes in glycosylation, two methods (one novel and one adapted for imaging)
were implemented on tissue to further classify N-linked glycan isoforms through
linkage analysis, specifically for sialic acids and core fucose. Again, it was shown
that core fucose is most directly related to HCC tissue, thus confirming serum
findings in the literature. For Aim 2, the novel method of determining core
fucosylation was used in conjunction with glycoproteomic techniques to further
elucidate the core fucosylated glycoproteins of interest. With the tag left behind
following the enzymatic cleavage, targeted glycoproteomics was used to
determine glycoproteins of interest while eliminating some biases inherent in the
method, such as low ionization efficiencies for more complex N-glycans. This
work outlines the first in-depth analysis of HCC tissue specifically regarding N-
glycan changes, a novel application to determine N-glycan isoforms, and the
application of these methods for glycoproteomic enhancement. With these
findings, new trends in glycosylation related to the disease state could be further
uncovered, as well as provide new biomarker candidates or therapeutic targets

for future studies.
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Chapter 1: Literature Review



1.1. Introduction to Hepatocellular Carcinoma
1.1.1. Background, Mortality and Standard of Care

Liver cancer causes more than 700,000 deaths annually, making it the fifth
most common cancer overall and second most common cause of cancer-related
death worldwide [1, 2]. Over the last 10 years in the United States of America
(USA), liver cancer has seen the greatest increase in mortality among any cancer
type. In the Annual Report to the Nation on the Status of Cancer, between 1975
and 2012, mortality from liver cancer increased at an annual rate of 2.8 percent
in men and 2.2 percent in women [3]. Indeed, the occurrence of liver cancer is
predicted to continue rising in the United States and will exceed 50,000 cases by
the year 2021. This will result in greater mortality rates than breast or colorectal
cancer [4].

Hepatocellular carcinoma (HCC) is the most abundant form of liver
cancer, occurring in 75 percent of all liver cases, followed by
Cholangiocarcinoma in the bile duct (10 to 20 percent), and Liver Angiosarcoma
(approximately 1 percent), and Hepatoblastomas [5]; 80 to 90 percent of HCC
cases stem from cirrhotic livers, while the remaining 10 to 20 percent become
cancerous directly from years of chronic inflammation or fibrosis. Men are three
times more likely to develop HCC as women with cirrhosis-inducing risks higher
in the male population, although chemically-induced HCC is still lower in women
with the mechanism still not clearly understood [6]. Asian populations are most
prone to development of the disease due to higher incidences of chronic hepatitis

infections in the Asia-Pacific region and differences in viral infection age, followed



by African Americans, Hispanics, and then whites [7, 8]. Survival rates of HCC
are abysmally low: Early-stage diagnoses have five-year survival rates of
approximately 30 percent, while late-stage diagnoses are as low as 3.7 percent
[9].

Related to the low survival rates of liver cancer patients, there are few
treatments and even fewer curative options, especially for those patients with
large lesions. While there are chemotherapeutic possibilities and ablation and
resection techniques for lesions smaller than 3-5cm in size, there few curative
options (survival longer than 60 months). The curative options currently available
are surgical resection of small lesions and transplantation [10]. For each patient,
a variety of factors such as hepatic reserve, hepatic function, and lesion size,
determines which method is most viable. By most standards, patients with fewer
and smaller lesions, as well as ample hepatic reserves, are often good
candidates for resection, with five-year survival and disease-free survival rates at
39 and 26 percent respectively [10, 11]. Resection, however, is usually available
to only 10 to 37 percent of patients at the time of diagnosis [11], and
transplantation availability is even lower. Transplantation is the most successful
form of curative therapy for liver cancer patients with overall and disease-free
survival rates at 85 and 92 percent, respectively, but complications from immune
rejection and a lack of organ donors results in transplantations being less
common as a treatment technique [10, 11].

Chemotherapeutic options for liver cancer are limited and used primarily in

those who are not candidates for resection. The frontline agent for those with



non-ablatable tumors is the multi-kinase inhibitor sorafenib, sold under the brand
name Nexavar. Sorafenib is a general tyrosine and serine/threonine protein
kinase inhibitor with activity against vascular endothelial growth factor (VEGF)
and platelet-derived growth factor (PDGF) receptors as well as intracellular
kinases B-Raf and Raf-1 [9]. Agents that specifically target one growth receptor,
such as enhanced VEGF receptor inhibitors have failed to show activity against
liver cancer [4]. It is noted that the activity of sorafenib against liver cancer is
limited, with improved survival times of only a few months [12]. These bleak
treatment options—both in their availability and efficacy—highlight the necessity
for early detection of liver cancer, which allows for surgical intervention. Figure 1
details the clinically relevant outcomes of hepatocellular carcinoma as a function

of time of diagnosis.

1.1.2. Liver Cancer Subtypes

With the heterogeneity of hepatocellular carcinoma being as robust and
diverse as it is, further classification was needed to accurately identify the
mechanism of action for the disease. In 2009, a genomic-based study of
approximately 600 western and eastern cases of viral-related HCC was done to
develop a new class of molecular subtyping: S1, S2, and S3 [13]. Each
classification correlated in terms of clinical parameters, but S1 showed
dysregulation of the WNT pathway, which was surprisingly independent of [3-
catenin activation but rather dependent on the activation of TGF(3. S2

demonstrated increased proliferation and upregulated MYC and AKT activation.
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S3 was indicative of hepatocyte differentiation. Along with other factors, this
classification system has been used to enhance biomarker targets through
affected signaling pathways [14]. Through these different molecular
classifications, therapeutic targets are more easily identified through the
mechanism of which the disease operates; however, further studies are needed
to elucidate truly viable targets for chemotherapeutic options.

Other groups have further expanded on this work, performing a
comprehensive genomic analysis on hepatocellular carcinoma samples relative
to the subtyping classification introduced by Hoshida [15]. This group performed
clustering analysis and found three distinct clusters of molecular subtypes
varying, differing from the previous subtyping classification system. The first
integrated cluster found increased macrovascular invasion while containing the
lowest fraction of differentiated samples based on the Hoshida classification, with
relatively low amountds of CDKN2A silencing, CTNNB1 mutation, and TERT
promoter mutation. These tumors, however, included more silencing of miR-122
and over-expression of MYBL2, PLK1 and MK167. Conversely, the second and
third cluster experienced high CDKN2A silencing via DNA hypermethylation,
higher rates of TERT promoter and CTNNB1 mutation. Cluster 2 contained lower
grade tumors and less microvascular invasion while Cluster 3 had higher genetic
instability and TP53 mutation. Cluster 1 was found to be associated
predominately with subtype 2 and Cluster 3 was found to primarily associated
with subtype 3 for the Hoshida classification, further evaluating the underlying

genetic modifications for the subtypes of HCC.



1.1.3. Disease Etiology
1.1.3.1. Risk Factors

Being the most common form of liver cancer, HCC has
many known risk factors, such as chronic infection with hepatitis B virus (HBV)
and hepatitis C virus (HCV), alcohol abuse, obesity, aflatoxin exposure, and
many other metabolic diseases [16, 17]. These risk factors induce a progressive
inflammatory response, resulting in liver fibrosis and eventually cirrhosis, which is
the true risk factor for HCC. This process occurs in multiple cycles of necrosis
and regeneration, often leading to genetic instability [15]. Because of this genetic
heterogeneity, the pathways involved in hepatocarcinogenesis are not fully clear,
resulting in a lack of diagnostic and therapeutic options [18]. Therefore, the
survival rates of primary liver cancer are low, generally with a 0.95 ratio of
mortality to occurrence and five-year survival rates as low as 11 percent [19, 20].

Hepatitis viral infections remain the largest risk factor for liver cancer, with
HBV accounting for 50 percent of all HCC and 70 to 80 percent of those cases
arising from cirrhosis of the liver [21]. There is risk associated for those who test
positive for the hepatitis B surface antigen (HBsAg), although the risk is still
loosely correlated to the level of viral DNA. However, this risk can be
compounded by other factors like family history, coinfection, and exposure to
aflatoxins [22]. In contrast, HCV increases the chances of developing
hepatocellular carcinoma 15- to 20-fold due to increased fibrosis and cirrhosis
[23, 24].

Second to viral infection, environmental factors also play an important role



in the development of hepatocellular carcinoma. The most predominant risk,
especially with the rise of the western diet, is that of obesity and diabetes which
often lead to non-alcoholic fatty liver disease (NAFLD) [25]. Nearly 30 to 40
percent of men and 15 percent of women in the United States have some varying
level of NAFLD, and this risk is increased with the presence of type 2 diabetes
mellitus (T2DM) [26]. NAFLD also contains a more severe form, non-alcoholic
steatohepatitis (NASH), which increases the risk of developing cirrhosis and liver
related diseases.

Also, associated with HCC development is aflatoxin exposure, a natural
mycotoxin produced by the Aspergillus species. Aflatoxin B1 (AFB1) is the most
carcinogenic for HCC development, involved in the cytochrome P-450 system
and forming AFB1-albumin, AFB1-guanine and other protein adducts responsible

for carcinogenic hepatic DNA mutations [27].

1.1.3.2. Common Signaling Pathways

Multi-omic studies tackle the topic of characterizing HCC, including
analyses in genomics, proteomics, transcriptomics, glycoproteomics, glycomics,
and metabolomics. While some studies have a broad focus and touch on multi-
omic approaches, others focus primarily on one to further elucidate possible
changes and therapeutic targets between the cancerous region, cirrhotic tissue,
and normal tissue. In broad studies, the focus is often on building a network that
links many aspects of the specific cancer to determine affected pathways. For

example, Ressom et al. (2016) characterized 499 genes, 217 proteins, 296



glycoproteins, 41 N-glycans, and 48 metabolites that represented significant
changes between HCC and cirrhotic tissue, enabling the creation of a network
that identified the most dysregulated pathways [28]. These findings demonstrated
that tRNA charging, epithelial adherin junction remodeling, ILK signaling, EIF2
signaling, and glycolysis are significant pathways in the formation and
maintenance of HCC. While these broad-scale studies usually don'’t lead to
therapeutic targets, they provide a starting point for more specific —omic studies
to move forward. Recently, one of the largest studies involved a genomic
characterization of tissue across multiple platforms [15]. These researchers were
able to corroborate and expand on the previous findings, determining genes
altered more significant pathways such as p-catenin/WNT and RTK/RAS/PI(3)K
and other factors such as TERT, TP53, CTNNB1 and immune checkpoints [15,
29, 30]. These genomic studies of tissue are increasingly important in HCC as
knowledge of the tumor heterogeneity increases. It has been well studied that
HCC displays frequent heterogeneous growth patterns and features, often within
the same tumor, making it difficult to accurately determine a specific pathway or
gene that fits precisely for each case [30-32]. With the successes of alpha-
fetoprotein (AFP) as a viable serum biomarker, many studies have shifted to
proteomic and glycomic studies of liver tissue in hopes of establishing a more

encompassing method of detection or developing a therapeutic target.

1.1.3.3. Origin of Disease Initiation

As stated above, HCC frequently develops in the presence of cirrhosis,



and results in cellular dysregulation such as loss of cell cycle control, loss of
senescence, and dysregulation of apoptosis [33]. Different risk factors result in
HCC in a variety of ways, but generally, patients with one or more risk factors
develop fibrosis of the liver, which leads to cirrhosis, and ultimately, liver
cancer—most often HCC [33].

In the case of a viral infection, such as HBV or HCV, modes of initiation
vary widely. For example, in the presence of HBV, many cell signaling pathways
are affected by the virus such as a decrease in differentiation, an increase in
proliferation, more genomic instability, and an increase in fibrogenic qualities
[34]. These affected cellular pathways often lead to dysregulation of oncogenes
and cell cycle regulators, resulting in increased chances for HCC development
and complications. In contrast, HCV is a little more complicated when examining
its role in HCC progression. The highly heterogeneous virus contains a multitude
of subtypes, and while some have documented the increase rate of HCC in
specific genotypic subtypes, the exact mechanism of HCV-induced HCC is still
argued [35]. While it is generally agreed upon that HCV-induced HCC is the
result of persistent inflammation and viral interference of cell signaling and must
occur in the presence of cirrhosis, some have recently demonstrated a
relationship between HCV-induced EGFR-ERK signaling and the progression of
HCC [36, 37].

In the case of a non-viral risk factor, such as NAFLD, inflammatory
responses are generally the culprit for disease progression, with inflammation

through the NF-kB pathway being largely responsible for the approximately

10



twenty percent of patients that develop fibrosis, progressing to cirrhosis, and

ultimately HCC [38, 39].

1.1.4. Current Detection and Diagnosis of Liver Cancer
1.1.4.1. Clinical Detection Approaches

Current guidelines by the American Association for the Study of Liver
Disease (AASLD), National Comprehensive Cancer Network (NCCN), and
Department of Veterans Affairs (VA) recommend HCC surveillance with
abdominal ultrasound (US) with or without AFP every six months in all patients
with cirrhosis [11]. Although there is no randomized trial evaluating HCC
surveillance in patients with cirrhosis, several prospective cohort studies have
demonstrated an association between HCC surveillance and improvement in
early detection and survival in patients with cirrhosis, after adjusting for known
confounders and lead-time bias [40, 41]. Although the surveillance has efficacy,
the majority of the patients in the USA are diagnosed beyond the early stage
when curative therapies are no longer effective. In addition to poor sensitivity for
early HCC detection, US and AFP are both prone to false positive results,
leading to unnecessary patient anxiety and diagnostic testing [42, 43]. While
some providers use alternative, expensive imaging modalities such as computed
tomography (CT) and magnetic resonance imaging (MRI) in all cirrhosis patients
(despite a dearth of supporting data), others have abandoned HCC surveillance
from frustration about the poor accuracy, leading to underuse of HCC screening

in clinical practice [44]. US is increasing in traction given the lack of contrasting
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agents needed for accurate detection of HCC, improving the diagnosis in the
elderly population where contrasting agents are restricted [45]. This
methodology, however, is still not as accurate as needed and still not cost-
effective for many. Given the importance of early tumor detection for improving
survival among HCC patients, there is a need for surveillance tests with higher
sensitivity and specificity.

Biomarkers were put into practice to enhance earlier detection through less
invasive means. As mentioned previously, alpha-fetoprotein (AFP) is a widely
used and clinically approved biomarker for detection of HCC. While commonly
associated with gestation, this glycoprotein is often monitored in pregnant women
while the fetal liver produces AFP throughout gestation and achieves normal
adult levels by 8 to 12 months [46]. The role of AFP in humans is not widely
understood, as it does not bind estrogen as with other organisms, however
various isoforms have been shown to be promising biomarkers in the field of
HCC progression with changes in the glycosylation site increasing its power to
indicate of a cancerous state [47-50]. Comparison of the L1 isoform, which is not
related to HCC, to the L3 isoform containing the additional core fucose residue,
which is associated with the malignancy of HCC, can be helpful in determining
cancerous presence and degree of severity. AFP measurements can be taken
directly from serum, allowing for a less invasive and more cost-effective
screening method [51-54]. Combining AFP detection with US screening
increased screening sensitivity to 90.2 percent, making this combination the most

preferred method for the detection of HCC [55]. Recent reports have indicated
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that algorithms consisting of several clinical factors and patient information can
be used to improve the performance of AFP [56, 57]. It is also noted that AFP
may be associated with very specific types of HCC [30].

As with many cancers, outcome is greatly improved by early detection [58,
59]. Overall survival of those detected with early cancers is less than 60 months
but less than 20 months if the cancer is caught at a later stage [60]. Hence there
is great significance in the development of methods for the early detection of

HCC.

1.2. Glycosylation
1.2.1. General Principles of Glycosylation

Glycosylation, or the covalent addition of a carbohydrate chain to a
protein, occurs through site-specific and enzyme-directed modification post- or
co-translationally [61-63]. Glycosylation occurs in four major forms: N-linked, O-
linked, glycosphingolipds (GSLs) and proteoglycans/glycosaminoglycans (GAGs)
[64]. N-linked glycosylation involves attachment of the carbohydrate chain to an
asparagine residue with a consensus sequence of N-X-S/T (where X can be any
amino acid except proline) and O-linked glycosylation is the attachment of a
carbohydrate chain to a serine or threonine residue. This modification occurring
on cell surface proteins is crucial for cell-cell adhesion, signaling, and other
cellular processes [65] and because of this dynamic variability, it is often a target
for investigation as many disease states alter glycosylation expression [4, 52,

66]. Alteration of glycosylation can occur in many forms, such as overexpression
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of specific glycoproteins associated with certain glycans, an increase or decrease
of available sugar donors, and a change in glycosyltransferase and glycosidase
enzymes [67]. Figure 2 details the different sugar residues involved in N- and O-
linked glycosylation, as well as the different nomenclature used in describing
glycans.

Aside from the forms of glycosylation listed above, there are other forms of
glycoconjugates, such as proteoglycans and glycosphingolipids. Proteoglycans
are built from a single or multiple glycosaminoglycans (a linear
chain of repeating acidic disaccharide units) such as hyaluronan, chondroitin
sulfate, keratin sulfate, and heparan sulfate [68]. Glycosphingolipids, on the other
hand, are glycans attached to a lipid ceramide, which tend to contain a varying
amount of core structures and gangliosides, and have been shown to regulate
receptor tyrosine kinases [69]. In this dissertation, | will focus primarily on N-
linked glycosylation and its physiological, pathological, and functional role in

mammals, as well as its role specifically in HCC.

1.2.1.1. Mechanism of Protein N-Glycosylation

Protein glycosylation begins with the canonical hexosamine biosynthetic
pathway (HBP) in the endoplasmic reticulum (ER). Along with playing a role in
driving tumor growth and participating in the hallmarks of cancer, glucose,
glutamine, fatty acids, and amino acids all play a role in the formation of uridine
diphosphate N-acetylglucosamine (UDP-GIcNAc) through HBP which acts as the

basis for protein glycosylation [70]. Briefly described by Chiaradonna et al., the
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hexosamine pathway and glycolysis share the first two steps of glucose uptake
and conversion to fructose-6-phosphate (F6P). Here, however, the paths diverge
and glutamine fructose-6-phosphate amidotransferase (GFAT) is used in this
rate-limiting step to transform the F6P to glucosamine-6-phosphate (G6P) with a
byproduct of glutamate [71]. It is at this time that glucosamine entering the cell
can also be converted using the GIcNAc kinase (GNK). Next, glucosamine-
phosphate N-acetyltransferase (GNPNAT) catalyzes with acetyl CoA to create N-
acetylglucosamine-6-phosphate (GIcNAc-6P) followed by a phosphomutase to
create N-acetylglucosamine-1-phosphate (GIcNAc-1-P). Finally, uridine
triphosphate (UTP) and GIcNAc-1-P produce UDP-GIcNAc through the UDP-N-
acetylglucosamine pyrophosphorylase (UAP1/AGX1) [71, 72].

To begin the synthesis of N-linked glycans, however, the UDP-GIcNAc
must be used with the dolichol phosphate (Dol-P) to react with the UDP-GIcNAc
glycotransferase to generate the precursor N-acetylglucosamine dolichol
pyrophosphate (GIcNAc-Dol-PP) [73]. Once the membrane-bound GlcNAc-Dol-
PP is synthesized, sugar residues are attached on the cytosolic side in systemic
fashion via multiple enzymes to create the first half of the precursor
oligosaccharide which consists of two N-acetylglucosamines and five mannoses.
This is then flipped from the cytosolic to luminal side of the ER via a flippase to
initiate the final addition of sugar residues to create the final precursor
oligosaccharide of two N-acetylglucosamines, nine mannose, and three glucose
units [74]. The precursor oligosaccharide is then transferred from the Dol-PP

onto an asparagine residue of a protein in the consensus sequence of N-X-S/T
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where X cannot be proline.

Following the attachment of the precursor oligosaccharide, the N-linked
glycan is then processed and trimmed. There are two different pathways by
which this can be done: the glucosidase-independent and -dependent pathways.
In the glucosidase-dependent pathway, processing occurs within the ER and is
initiated by the trimming of glucose residues through the calnexin/calreticulin
cycle. In contrast, the glucosidase-independent pathway occurs in the Golgi and
utilizes an endomannosidase to cleave the Glucose1-3Mannose1 residue. The
glycan is then processed to either create varying mannose structures or trimmed
fully to five mannose structures and two N-acetylglucosamine structures. These
glycans are then rebuilt to create more complex sugar structures of varying
degrees and complexities [74, 75].

As shown in Figure 3, there are a multitude of pathways where glycan
reassembly can occur with different complexities and additions available. As
stated above, the first available route would be for the N-glycan to become a high
mannose type glycan within the cis-Golgi. This is a glycan that contains a varying
degree of mannoses, typically between five and nine, and stems from the
removal of mannoses from the preliminary oligosaccharide. The mannose are
trimmed within the cis-Golgi and if the N-glycan moves beyond a high mannose
type and is fully timmed, it is transferred out of the cis-Golgi and into the medial-
Golgi. In the medial-Golgi, the N-glycan faces another turning point. At the first
addition of an N-acetylglucosamine (GIcNAc), it will either continue to be

processed to remove high mannose, or the GIcNAc will be built upon to create
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Figure 3: Trimming and Processing of N-Linked Glycans. Schematic shows
the trimming and processing of N-linked glycans following attachment to the

protein, as well as the possible pathways N-linked glycan processing can follow
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what is known as a hybrid-type glycan: a half mannose, half complex glycan.
However, if the mannoses are fully removed, the N-glycan moves from the
medial-Golgi to the trans-Golgi where the final addition of sugar residues occur.
Here, there are multiple options for the glycan to take: fucosylation, more
branching, bisecting, and sialylation. Fucosylation occurs with the addition of a
fucose residue through one of the many fucosyltransferases; increased
branching occurs through the action of N-acetylgluosaminyltransferase (GnT) IV
or GnT-V to create extra arms of GIcNAc and galactoses; bisecting occurs
through GnT-lll and adds a GIcNAc to the first mannose of the structure, creating
a bisecting branch of the glycan; and finally, sialylation occurs through the
galactose sialyltransferase (STGal) family of adding a sialic acid onto a
galactose, or the sialic acid sialyltransferase (STSia) family for addition onto
another sialic acid [75-77].

Since this process is complex in nature, it is no surprise that many
congenital disorders of glycosylation are likely to occur within this process, and
many of these diseases arise from the dysregulation of enzymes responsible for
glycosylation biosynthesis [74]. Some major classes of these congenital
disorders of glycosylation (CDGs) within the N-linked glycosylation pathway are
PMM2-CDG, characterized by dysregulation of the phosphomannomutase 2
gene; MPI-CDG, characterized by the dysregulation of the phosphomannose
isomerase gene, and ALG6-CDG, dysregulation of the ALG6 gene resulting in
aberrant attachment of the final three glucose molecules [78]. These diseases

can vary in severity and effect, ranging from intellectual defects and
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developmental delays of the individual to hormonal and chemical deficiencies
throughout their life. Increased understanding of the role of glycosylation has
become of particular interest to many fields, not only for the physiological roles,

but also for the pathological role that glycosylation can play.

1.2.1.2. Physiological and Pathological Roles of N-Glycosylation

As stated above, glycosylation plays a vital role in many physiological
pathways such as cell-cell adhesion, protein folding, transport, and cellular
signaling [79]. In examining the major functions of N-linked glycosylation, the
most relevant would be its major function: regulating protein folding. It is shown
that when glycosylation is inhibited in eukaryotic cells, the most affected process
is proper protein folding where proteins generated accumulate in a misfolded and
nonfunctional state [80, 81]. For example, in-vitro studies have shown
glycosylated and non-glycosylated versions of the same protein have different
folding processes and N-glycans have been shown to alter conformational
preferences near the site of glycosylation and move the protein towards more
compact conformations, such as a compact 3 turn in the secondary structure
[82]. Glycosylation has also been shown to act as a chaperone for incomplete
proteins to enter the calnexin-calreticulin cycle to prevent movement from the ER
to the Golgi apparatus until the protein either becomes fully folded or is degraded
[74].

Another major physiological role of N-glycosylation is its involvement with

protein transport and targeting. In the secretory pathway, glycosylation also
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assists in deciding when and how quickly proteins are secreted, as well as
signaling for other proteins involved in the secretory pathway [82].

Finally, the last major role that glycosylation plays is coordinating cell-cell
interactions, both intrinsically and extrinsically. Glycans play a role in cell to cell
recognition as well as cell-matrix interactions, as is the case for the adhesive
selectin family, or the recognition of sialyl-Lewis X (sLe*) by the family of
selectins [80]. Carbohydrate interactions can also occur, acting as an adhesive to
maintain biological interactions. [83]

As is the case with most broadly involved biological processes, this leaves
a lot of room for error in systemic function, especially in terms of glucose
regulation. It is due to this link that glycosylation has been shown to play a major
role in pathological functions, not only related to CDGs, but in terms of tumor
progression, metastasis, and non-mediated cell proliferation and other

mechanisms of disease and overall human health [84-86].

1.2.1.2.1. N-Linked Glycans in Cancer

For many years, glycosylation has been well characterized and
functionally studied, but it wasn’t until recent years that glycosylation has gained
increased traction in the study of cancer, even though the first link between
oncogenic transformation and glycosylation was described as early as 1949 [87].
Impaired glycosylation occurs in two principle mechanisms: incomplete synthesis
and neo-synthesis. Incomplete synthesis typically occurs in earlier-taged cancers

and results in truncation of complex glycans due to dysregulated
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glycosylatransferases, while neo-synthesis is more common in advanced
cancers and involves the induction of genes related to glycan biosynthesis,
resulting in the increased expression of certain glycans [68]. These alterations in
glycosylation typically correspond directly with nearly all the hallmarks of cancer
(established by Weinberg in 2000) such as the evasion of growth suppressors,
the dysregulation of metabolism, resistance to apoptosis, immortality, increased
invasion, and metastasis [67, 88].

Briefly examining the broader implications of glycosylation and its roles on
each aspect of the hallmarks of cancer, trends emerge in the role glycosylation
plays in cancer progression and maintenance. Beginning with proliferative
signaling, studies have shown that N-glycan branching can mediate growth factor
receptors to signal proliferative signaling [89] while numerous other growth
factors are shown to be regulated through glycosylation as well [69]. Along with
this, cell growth and survival has been shown to be regulated through
glycosylation as well modification of the signaling for CD44 [90, 91]. In examining
invasion and metastasis, dysregulation of MGAT5—responsible for the fourth
branch of an N-glycan structure—has demonstrated a clear link for disruption of
E-Cadherin, resulting in non-functional adherence junctions and cell-cell
adhesion impairments, while MGAT3—responsible for the bisecting GIcNAc—
has been shown to influence interactions with galectins and growth factors [92-
96]. Finally, N-glycosylation has been demonstrated to be involved with the
inflammatory pathway, with selectin binding specific glycosylated epitopes,

initiating an immune response from leukocytes to the region of dysregulated
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glycosylation [97, 98].

As mentioned, glycosylation plays many roles in cancer progression,
evasion, and metastasis, but further studies have revealed that specific moieties
of N-glycans are the most highly associated with the hallmarks of cancer. The
first class of glycans are those with increased core fucosylation, shown to have
high metastatic potential in a variety of cancers [99-101]. The second major class
of glycan are those that have increased levels of Sialylation to disrupt cellular
adhesion as well as increase cellular signaling for a variety of factors [102].
Below, these two major classes and their specific relation to HCC will be

discussed at greater length.

1.2.1.2.2. Core Fucosylation

The first major glycan class found to be associated with physiological and
disease pathways, including HCC, is that of core fucosylation. Fucosylation is the
addition of a fucosyl sugar moiety, which is transferred onto a glycan structure
from a guanosine diphosphate (GDP)-fucose via enzymatic activity. Therefore,
dysregulation of fucosylation can occur through either dysregulation of the
enzyme responsible or through the available synthesized GDP-fucose [103].
There are two separate types of fucosylation that can occur on an N-glycan: core
fucosylation, where the fucose sugar moiety is attached at the base of the N-
glycan in an a1,6 linkage, and outer arm fucosylation, where the fucose sugar is
placed anywhere else on the glycan at an a1,2/3/4 linkage. In humans, there are

11 fucosyltransferases responsible for the addition of fucose on an N-linked
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glycan; however, there is only one enzyme, termed fucosyltransferase-8 (FUT8),
that is responsible for the core fucosylation [104]. Figure 4 demonstrates the
potential sites of fucosylation on a complex N-glycan, as well as the potential
linkage conformations of the fucose sugar residue.

The role of core fucosylation has been vastly studied, with effects
following directly in line with those seen in glycosylation overall, such as cell
signaling and inflammatory response. For example, core fucosylation has been
shown to mediate the signaling of B cell receptors to activate signaling required
for pre-B cell recognition [105, 106] and is essential for a multitude of growth
factor receptor functions [107].

Indeed, with the role that fucosylation plays within the signaling and
immune response realm, this has become a popular area of research in terms of
cancer treatment options. Specifically looking at core fucosylation, we have seen
a multitude of studies demonstrating an increase in core fucosylation being
associated with cancers, such as the metastatic potential of melanoma or non-
small cell lung cancer [99, 100], as well as a marked increase in HCC cases as
well [101], leading researchers to hypothesize that fucosylation inhibition could
potentially be a source of cancer therapy. Recently, an anti-fucosylation drug,
known as 2-flurofucose (2FF), was developed and tested for its efficacy towards
treating cancer progression [108]. Excitingly, in HepG2 cells, 2FF showed a
striking decrease in core fucosylation, suppressing cell proliferation and integrin-
mediate cell migration, demonstrating the importance of core fucosylation in HCC

formation and a promising lead for N-glycan based cancer therapeutics [109].
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Figure 4: Fucosylation Linkages and Enzymatic Activity. Schematic
shows the generic possible locations of fucosylation on an N-glycan, as well
as the possible linkages in black and the possible enzymes responsible for
this fucosylation in red. For clarity, FUT3/4/6 add a fucose to a non-terminal
GIcNAc but not the first GIcNAc in a branch, while FUT7/9 add a fucose to the

terminal GIcNAc in a branch
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1.2.1.2.3. Sialylation

The second major class of glycan modifications is known as Sialylation.
Sialylation is the addition of an N-acetylneuraminic acid (commonly referred to as
NeubAc or sialic acid for short) onto either a galactose or another sialic acid via
the action of a sialyltransferase (ST) acting on a CMP-Neu5Ac substrate within
the Golgi. In humans, there are a number of STs that can be divided into two
groups: those that catalyze the addition of sialic acid onto a galactose (ST6Gal-I,
ST6Gal-ll, ST3Gal-IV, and ST3Gal-VI) or onto another sialic acid to create a
polySialylation chain on the glycan (ST8Sia-Il and ST8Sia-IV) [77]. Similar to
fucosylation, there are also additional linkage specificities associated with the
attachment of sialic acid. Sialic acids attached to a galactose can be in either the
02,3 or 02,6 conformation, while sialic acids attached to another sialic acid will
always be in the a2,8 conformation and must be attached to a sialic acid in the
a2,6 conformation. Figure 5 demonstrates the potential sites of sialylation on a
standard N-glycan, as well as the associated linkages and possible
sialyltransferases for each potential site.

Similar to fucosylation, the role of sialic acids in human health has been
well studied, as well as their role in varying disease states. Sialic acid is a unique
monosaccharide as it is negatively charged at physiological pH, enabling
different interactions and modifications. A primary example of the role of sialic
acids in general human physiology is their relationship with lectin binding that
control key processes in health in disease. Sialic acid binding lectins, known as

siglecs, play a key role in modulating immune response pathways through toll-
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Figure 5: Sialylation Linkages and Enzymatic Activity. Schematic shows
the generic possible locations of sialylation on an N-glycan, as well as the
possible linkages in black and the possible enzymes responsible for this

sialylation in purple.
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like receptor signaling, CD33 regulation, and dendritic cell expression
[110]. In the regulation of these signaling pathways, linkage of the sialic acid is of
critical importance, emphasizing the need to better understand the specific
linkages of these sialic acid modifications.

More interestingly, however, and relevant to current public interest, is the
role sialic acids play in viral infection. For example, the human influenza virus is
heavily reliant on the haemagglutinin trimer protein binding to a2,6-linked sialic
acids to adhere to the host cell for infection [111] while in contrast, the
betacoronaviruses utilize 9-O-acetyl-sialic acid as a receptor [112]. Therefore,
sialic acid-based therapeutics have become increasingly prevalent, such as the
invention of oseltamivir (Tamiflu) to act as a competitive inhibitor for cell surface
sialic binding [113].

Aside from human health and viral infection, sialic acids have also been
shown to play a role in cancer. Sialyl-Lewis X structures (Figure 6) are bound by
selectins and mediate many functions of immune response and response to
infection and injury. They become dysregulated in cancers, causing pro-
inflammatory responses and leukocytic rolling arrests, allowing for cancer
survival and metastasis [114]. Additionally, hypersialylation has been linked to
increased metastasis and invasion of cancer, with upregulation of ST6Gal-I being
linked to oncogenic Ras activation in cancers through altered 1 integrin [115].

The role sialic acid modification plays in relation to HCC disease
progression, metastasis, and immune invasion will be discussed later, as well as

a closer look at the role of sialic acids in cancer.
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1.3 Aberrant Glycosylation in Hepatocellular Carcinoma

As stated above, many current biomarkers are glycoprotein biomarkers—
such as AFP for HCC—uwith the glycosylation playing an important role in the
detection of the disease. Previous work in serum by others has shown that many
different structural motifs of these carbohydrate chains, or glycans, are
associated with a disease state, such as increased branching, sialylation,
fucosylation, or polylactosamine additions [52, 116-118]. Specifically for HCC,
the addition of a core fucose (a1,6 linkage) to the associated N-glycosylation site
on AFP is indicative of the disease [48]. Table 1 outlines some of the key studies
related to the changes in glycosylation as it pertains to HCC.

Unfortunately, the use of these glycoprotein biomarkers is limited due to
the lack of specificity for the tumor region. While serum is hepatic in origin and a
viable option for biomarker detection of the disease, the sensitivity to detect early
stage cases of HCC is still lacking. An approach to more effectively detect earlier
cases of HCC with higher degrees of specificity and sensitivity could be more

site-directed analysis of tumor and stroma directly in clinical tissue specimens.

1.3.1. Liver Cancer Glycomics

Glycomics has quickly become an emerging trend in the field of cancer
biomarker development, and HCC is no exception [119-149]. In most cases,
glycan analysis has been done with serum and not directly from the cancer tissue
itself [122, 134-149].

Others have documented significant alterations in serum N-linked
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Table 1: Key Studies Highlighting Changes in Glycosylation Related to HCC

Glycan Modification Examples of References

Studies Modification
Core Fucosylation AFP-L3, FUTS, Mehta, Herrera [4], Norton and
GP73, miR122 Mehta [103], Zhou, Fukuda

[109], Bernardi, Soffientini
[150], Block, Comunale [151],
Comunale, Lowman [152],
Comunale, Rodemich-Betesh
[153], Ma, Sanda [154], Wang,
Sanda [155], Wang, Fukuda

[156]
Outer-arm a1,3/4 Goldman, Ressom [138],
Fucosylation fucosyltransferase, Comunale, Rodemich-Betesh
kinninogen, [153], Mehta, Herrera [157],
haptoglobin Kamada, Akita [158]
Increased GnT-V, GnT-1V, Kizuka and Taniguchi [159],
Branching CD147/basigin- Mehta, Norton [160], West,
integrin31 Wang [161], Cui, Huang [162]
interaction
Sialylation MUCH1, TF, sTF, Cao, Karsten [163], Chen,

Tn, sTn, ST6Gal-I, Wang [164], Gruszewska,
ST3Gal-lV, sialyl-  Cylwik [165], Kongtawelert,

Lewis* Tangkijvanich [166], Mondal,
Chatterjee [167], Powers, Holst
[168]
Polylactosamine JNK signaling, Kwan-Shuen Chan, Oi-Ning

Stanniocalcin 1, Leung [169], Liu, Qiu [170]
CD147, B3GnT8
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glycosylation with the development of HCC [171-176]. Specifically, the alterations
most often observed are increased levels of alpha-1,3 and alpha-1,6 linked
fucosylation found on bi-, tri-, and tetra-antennary glycans and, to a lesser extent,
alterations in high mannose and polylactosamine glycans [122, 139, 143, 149,
151, 155, 173, 175, 177-191]. Many of these fucosylated proteins have been
examined as biomarkers of HCC and are in the process of being commercialized.
Results have shown that no one marker is sufficient to detect all HCC, but when
these fucosylated glycoproteins are used as part of a diagnostic algorithm, area
under the receiver operator characteristic curve (AUROCs) greater than 0.90 are
obtained [155].

As stated, one of the most observed cancer-associated glycosylation
modifications is core fucosylation, though the exact reason is still unknown.
Enzymatic activity was one of the first possibilities explored, as the increase of
FUTS8 through the B-catenin/WNT pathway is seen in many cancers, including
some HCC cases [192]. Tissue staining with core fucose-binding lectins has
been used to determine the role of core fucosylation in HCC; however, when
comparing normal, cirrhotic, and HCC tissue staining, there does not appear to
be a significant increase of fucosylation solely within HCC tissue, but an overall
trend within all tissue types [4, 193]. Along with core fucosylation, another glycan
modification in HCC is increased glycan-branching, resulting in an increased
presence of tetra-antennary glycans. These glycans are formed through 31,6 N-
acetylglucosaminyltransferase V (GnT-V or MGATS) which results in an addition

to tri-antennary glycans to form tetra-antennary structures [194]. This
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modification, more so than core fucosylation, has been seen in HCC tissue
specifically and could play a role in the cancer’s development and metastatic
potential [195-197].

Prior work about the source cells of serum fucosylation has been
performed by several groups (including the Mehta Lab) with unclear conclusions.
Initial work suggested that the genes involved in the production of GDP-fucose,
the substrate for the fucosylation reaction, were increased in HCC as compared
to surrounding normal tissue [198]. Support that transformed hepatocytes are the
source cells for fucosylated proteins comes from the Mehta lab’s recent work,
where it was shown that as hepatocytes de-differentiate and undergo an
epithelial to mesenchymal transition (EMT), they increase their level of
fucosylation and up-regulate many of the genes involved in a1,6 linked
fucosylation [199]. This is consistent with studies in lung cancer, where the a1,6-
fucosyltransferase gene (FUT8) was involved in EMT [200]. It has also been
shown that in a mouse model, deletion of FUT8 inhibits chemicals induced HCC
by the down regulation of cancer-associated signaling pathways [156, 186].
Importantly, while these recent studies highlight the importance of fucosylation in
cancer development, they do not offer any direct data on the source cell(s) for
fucosylation in human disease.

Although a simple query, the fundamental question of the source of
increased serum fucosylation has remained unanswered. As stated, Dr. Mehta’s
group has previously performed glycan analysis on HCC tissue following

homogenization and HPLC-based glycan analysis [201]. In that study, two
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surprising things were noticed: First, there was a much higher level of
fucosylation observed in normal liver tissue as compared to human serum
depleted of immunoglobulins (highly abundant non-liver derived serum protein).
And second, while 8 out of 16 tissue pairs did have increased levels of
fucosylation, statistically there was no change in fucosylated glycans when HCC
tissue was compared to either normal liver tissue (from an independent liver) or
from distal un-transformed tissue [201]. However, that study had two major flaws.
First, there was no matching serum to allow for the analysis of both serum and
tissue, so it could not be determined which of these patients had elevated fucose.
Second, the glycan profile of hepatocytes and other liver cells have been
determined and were found to be substantially different. That is, while liver tissue
from normal individuals contains high levels of fucosylation (Figure 7A), purified
human hepatocytes from the same individual have very little fucose (Figure 7B).
In contrast, liver sinusoidal endothelial cells (LSEC)—another liver cell type—
contain high levels of fucosylated glycan (Figure 7C). This high level of
fucosylation within LSEC can confound the results when tissue is homogenized
and examined in a mixed population. Therefore, although a HCC tumor may be
primarily composed of transformed hepatocytes, adjacent liver tissue used for
comparison will contain a mix of cells; thus, any comparison is not a “like for like”
evaluation. This is true for glycan analysis, proteomic analysis, and expression
data. This will be addressed for the first time using orthogonal methods. In
regards to glycan analysis of tissue, recent laboratory members proposed a new

method: MALDI imaging mass spectrometry (MALDI-IMS) [202]. Briefly, this
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Figure 7: Serum Analysis of Liver Tissue and Cells. (A) Desialylated
N-linked glycan profile of liver tissue from a normal individual;(B) purified
hepatocytes from that same individual or (C) liver sinusoidal endothelial
cells from that same individual (LSEC). Arrow points to the bi-antennary
fucosylated peak, the only fucosylated peak observed in hepatocytes.
While liver tissue has high levels of fucosylation, as do LSEC,

hepatocytes have low levels.
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method bypasses the need for microdissection and solubilization of tissue prior to
analysis [160, 203-206].

Figure 8 presents an example of the type of data observed with MALDI-
glycan imaging of HCC tissue. Figure 8A is the tissue following H&E staining and
the large tumor is clearly visible, surrounded by non-malignant tissue. Figure 8B
shows the distribution of one glycan, the tetra-antennary galactosylated branched
glycan (A4G4), in red. As this panel shows, the A4G4 glycan is found
predominantly in the tumor region with little observed outside of the tumor.
Similarly, the fucosylated version of this glycan (A4G4F1), was also found
predominantly within the tumor region (Figure 8C in green). However, as Figure
8D highlights, these glycans are differentially localized within the tumor, with the
branched glycan without fucose predominantly in the inside of the tumor while

the fucosylated branched glycan is on the outside of the tumor.

1.3.2. Liver Cancer Glycoproteomics

Tissue proteomics have long been studied in many disease states, with
excised tissue being homogenized and digested for protein analysis and
comparative studies against normal tissue samples. Because of the availability of
serum and its hepatic origin, many proteomic analyses have been done using
serum, though tissue proteomics is of equal importance. Through these studies,
links can be established between what is seen in serum and in tissue. Utilizing
both top-down and bottom-up proteomics, researchers have been determining

specific serum-derived proteins associated with disease state, tissue
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Figure 8: MALDI-Glycan imaging of HCC Tissue. A) H&E stain of HCC tissue with
surrounding non-malignant tissue. B) Localization of a glycan with a m/z value of
2393.840, which we have shown to be a tetra-antennary glycan. Red areas highlight
localization of this glycan. C) Localization of a glycan with a m/z value of 2539.957,
which has been shown to be a tetra-antennary glycan with a single fucose residue.
Greens areas highlight areas of localization. D). Overlay of Panels B and C which show

distinct localization of these glycans within tissue.
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morphology, and progression.

As stated previously, AFP is a clinical biomarker that arose through
proteomic research; however, others were also found to indicate HCC presence.
Osteopontin, a biomarker that is measured in plasma, has also been studied in
tissue and an increase in both osteopontin and Bcl-2 has been found in surgically
resected HCC patients, indicating a co-dependence between the two in the
tumorigenesis of HCC [207-209]. Along with osteopontin, peroxiredoxin 3 (PRX3)
was also identified as a marker for HCC, and has shown an increase of
expression on both the mRNA and protein levels in 94.9 percent of HCC cases
[210]. In tissue analysis, PRX3 has been shown to indicate poor differentiation as
associated with progression of the disease. Unfortunately, while these two
markers have shown promising possibilities in the detection of HCC, they failed
to detect HCC in the presence of high levels of cirrhosis, making them
inappropriate for clinical application. With many proteins associated with HCC
are found to be glycosylated, glycomic studies have become more relevant—
both in serum and liver tissue analysis—to better understand the role and
function glycosylation plays in HCC progression and the viability of glycoproteins
as a therapeutic agent. More broadly in the glycoproteomic field, others have well
characterized total serum glycosylation in HCC and found many associated
modifications. For example, serum concentrations of core fucosylated
haptoglobin have been examined to determine efficiency of detecting early stage
HCC, as well as distinguishing HCC versus cirrhosis more efficiently than

previously marketed AFP-L3 [211, 212].
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Additionally, techniques to view glycoproteins and the associated glycan
modification have become increasingly more prevalent, with targeted proteomics
demonstrating its value in terms of serum evaluation and site-specific
glycosylation. These studies have further confirmed changes in glycosylation for
HCC as compared to normal, such as increased branching, hyper-sialylation and
hyper-fucosylation causing an increased variety in N-glycosylation of haptoglobin
in HCC and cirrhotic patients, or distinguishing those with chronic liver disease
versus HCC [138, 213-216]. This will be further discussed later when examining

the targeted glycoproteomics associated with cancer-specific HCC tissue.

1.4. Mass Spectrometry

Mass spectrometry has remained at the forefront of the analytical field for
molecular analysis since its introduction in the late 1800s. Beginning with J.J.
Thomson, he revolutionized the field in 1897 with the discovery of electrons and
adopting the mass to charge ratio, where today these values are then converted
to a mass spectrum that compares intensity of the ion to the mass to charge
value. Mass spectrography was inducted into the scientific community in 1884
and used in Thomson'’s earlier experiments and in the early 1900s, more modern
techniques were developed and the term “mass spectrometry” was coined to
describe the field of study. Since then, the field has expanded to the variety of
applications and techniques that we use today, such as drug testing for discovery
and absorption properties; forensic analysis for trace amounts of evidence or

explosive, arson, or drug abuse presence; environmental analysis to test water
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quality, pollution contamination, and pesticide screening; and clinically, for drug
therapy monitoring, peptide examination for diagnostic purposes, and many

more.

1.4.1. General Principles of Mass Spectrometry

Mass spectrometry functions under the basic principle of conversion of the
analyte of interest into gaseous ions that can then be sorted by their mass to
charge ratios and relative quantities [217]. The intricacies of a mass
spectrometer vary greatly depending on the type of mass spectrometer (more
details below), but the basic components remain relatively standard: the ion
source, the mass analyzer, and the mass detector system.

The ion source is involved in the ionization of the analyte and the transport
of the ions to the mass analyzer. Simply, the ion source is the beginning of the
mass spectrometry process where the ions are first generated [218]. lonization is
one of the key differences in techniques of mass spectrometry with a variety of
options and types relevant to the instrument. Some examples of different
ionization techniques used with biological samples are electron ionization (El)—
termed a hard ionization technique due to the fragmentation of the ion of interest,
electrospray ionization (ESI), matrix-assisted laser desorption/ionization (MALDI),
and desorption electrospray ionization (DESI)—all termed soft ionization
techniques due to the little amounts of fragmentation and the residual amounts of
energy imparted into the molecule of interest [219].

Once ions are generated, before they are detected and recorded, they will
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pass through the mass analyzer, used to determine the characteristics of the ion
and its mass to charge ratio (m/z), a dimensionless parameter relating the
elementary charges to the mass of the ion, and separate them according to these
parameters using a generated field. Mass analyzers generally vary by the type of
field generated (static or dynamic, as well as magnetic or electrical), and these
factors are what account for the mass spectrometers resolving power, or how
accurately it can separate the closest related ions, on different instruments [220].

Finally, the last component of mass spectrometry is utilization of the mass
detector. The mass detector records the relative abundance of the ions being
resolved and converts the charge or current produced into a signal, which is then
converted into a mass spectrum to be analyzed. Mass detectors vary by
instrument and amplification techniques are often required. The signal output can
also vary based on the mass analyzer.

Below, | will outline a more in-depth analysis of the types of mass
spectrometry pertinent to this dissertation, as well as details surrounding the

specific mass spectrometers used.

1.4.1.1. MALDI Imaging Mass Spectrometry

The first major type of mass spectrometry used in this dissertation is
MALDI imaging mass spectrometry (MALDI-IMS). In recent years, imaging mass
spectrometry has emerged as one of the top areas of mass spectrometry and
has nearly 900 related publications to date [221].

MALDI-IMS works under the basic principles of MALDI mass
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spectrometry, but on a larger scale of adding a two-dimensional aspect to a
sample, allowing for multiple points of analysis. Briefly, a Nd:YAG laser is used to
strike the molecules coated in an ionizing matrix, resulting in a gaseous form of
the analyte without fragmentation or decomposition. Most imaging mass
spectrometers can analyze a variety of analytes, such as glycans, metabolites,
drugs, lipids, proteins, and peptides, with the most important variable being
matrix choice. Matrix choice varies depending on the need for the analyte, such
as the ease of sublimation from the solid phase to the gaseous phase, or the
absorption of the laser wavelength used by the instrument [222]. Examples of
some matrix options used for imaging experiments, specifically in examining N-
glycans, are 2,5-dihydroxybenzoic acid (DHB) and a-cyano-4-hydroxycinnamic
acid (CHCA) [76]. In this dissertation, CHCA was used primarily to examine N-
glycans in the positive ion mode.

Once the matrix is applied to the sample, the laser is used to ionize the
sample in a pixelated fashion. The distance between the pixels is determined by
the user pre-analysis and a mass spectra will be generated for each spot of the
laser. Following completion of the run, every mass spectra collected will then be
compiled into one average mass spectra that shows relative abundance of all
peaks found throughout the analysis. Software such as FlexImaging (Bruker),
can then be used to create a false color image at each peak of interest, allowing
for pixels of higher relative abundance to appear more intense on the image,
while pixels of lower relative abundance appear less intense, similarly to a heat

map [223]. Figure 9 demonstrates a simplified approach to imaging mass
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spectrometry and the data visualization process.

Imaging mass spectrometry offers several clinical benefits, combining the
advantages of both mass spectrometry and microscopy together onto one
platform. In general, processing times are lower than that of traditional
immunohistochemistry and pathology processes and allow for multiple molecules
to be analyzed at once, rather than a single analyte of interest. It is also more
successful in analyzing histomorphologically ambiguous tissue regions, and able
to discriminate classifications within clinical tissue more accurately.
Improvements to the reproducibility of the method have grown with
implementation of the mechanical sprayers, showing consistent reproducible
data within complex biological replicates with errors reported in parts per million
(ppm). With the clinical implications of this technique are continuously growing,
the technique is approved through the Clinical Laboratory Improvement

Amendments (CLIA) [224].

1.4.1.2. Liquid Chromatography Coupled Tandem Mass Spectrometry

In contrast to imaging mass spectrometry, liquid chromatography-mass
spectrometry (LC-MS) offers a sensitive analysis of analytes and separation of
these analytes. Synergistically combining mass spectrometry principles with the
capabilities of a high/ultra-performance liquid chromatography (HPLC/UPLC)
system allows for enhanced analytical capabilities.

The first portion of the analysis begins with the sample being separated
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Figure 9: Simplified Imaging Mass Spectrometry Workflow. Diagram
represents a simplified workflow for imaging mass spectrometry, specifically
for an enzymatic imaging experiment. Top half represents the simplified
steps in sample preparation to imaging, while the bottom half represents the

actual imaging process and data analysis and results portion.
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via a liquid chromatography step. Samples are injected into a mobile organic
phase and utilizing a C18 stationary phase, peptides are captured and eluted on
a gradient of the mobile phase, allowing for separation of analytes by mass.
Following the separation of the analytes, the HPLC system is then coupled to a
mass spectrometry system to undergo mass analysis of the analytes, similarly to
what was described above in the general principles section. Typically,
electrospray ionization is used to effectively couple the liquid phase analytes to
the gaseous phase for mass analysis [225].

Often associated with LC-MS systems is the ability to do tandem mass
spectrometry experiments (MS/MS or MS?). As stated above, the initial mass
spectrometry analysis will separate ions by their mass to charge ratio; however,
the second mass spectrometry analysis involves a further fragmentation of these
ions for further quantification of analytes. This can be done through a variety of
methods, such as collision-induced dissociation (CID), higher energy collision-
induced dissociation (HCD), or electron-transfer dissociation (ETD), depending
on the type of information desired [226-228]. Figure 10 shows a simplified model
of the LC-MS workflow, as well as a more in-depth look at the mass spectrometer

portion of an LC-MS/MS experiment.

1.4.2. Mass Spectrometers in Dissertation

1.4.2.1. Bruker SolariX 7T FT-ICR

The first mass spectrometer, and most frequently used in the dissertation,
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Figure 10: Simplified LC-MS/MS Workflow. Diagram represents a simplified
workflow for the LC-MS/MS protocol beginning with sample preparation,
through enzymatic digestion and separation via HPLC, to the MS/MS

experiment and data analysis.
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is the Bruker SolariX 7T FT-ICR. Most of the mass spectrometry imaging
analyses in this dissertation were performed on this instrument.

This mass spectrometer is unique in the fact that it is a MALDI Fourier
Transform lon Cyclotron Resonance (FT-ICR) instrument, allowing for higher
mass resolution and resolving power, which comes with the cost of slower
sample acquisition time. With the key metric being frequency, ions are better
resolved, with the ability to separate more closely related ions, however this
comes at the cost of a slightly longer analysis time. Briefly, ions are ionized and
focused into a beam with DC and RF voltages, then proceed through the
quadrupole, excluding ions outside of a specific m/z range of interest. lons not
excluded then pass to the hexapole. The ions are then focused into the ICR cell
and the 7T magnet, where electrodes produce a cyclic motion of the ions to be
converted to a frequency metric, causing them to separate, but keep a small
electrical field to keep ions within the ICR cell. Finally, ions are excited by an RF

frequency sweep and detected via the mass detector plate [229-231].

1.4.2.2. Bruker RapifleX TissueTyper MALDI-TOF

The second imaging mass spectrometer used in this dissertation is the
Bruker RapifleX TissueTyper MALDI-TOF. This instrument comes equipped with
improved laser technology for high throughput and better pixel-to-pixel
reproducibility. This laser is capable of a 5um focus, allowing for square imaging
pixels with almost complete tissue coverage and no pixel-to-pixel interference.

TOF mass analyzer is specialized for linear and reflector measurements in
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positive/negative ion mode. This instrument was used after initial optimization for
faster and higher spatial resolution imaging.

This instrument operates through a MALDI time-of-flight (TOF) system,
allowing for faster acquisition time though a lower mass resolving power. Briefly,
the laser induces an ionization particle cloud, known as the plume, and ions are
extracted via a small electrical field. The free ions then pass into a field-free
vacuum path until reaching the mass detector, where the time of flight is
measured and used to calculate the mass to charge ratio, as typical matrices
result in a standard charge state of one, causing smaller ions to separate from
larger ions in a fixed field distance. The RapifleX offers two forms of mass
detection: linear and reflector. In linear mode, ions travel down the path just
once, but reflector mode reflects the ions back at a slightly different angle utilizing
a reflectron. A reflectron creates a charged field for the ions to pass through,
separating out similar mass clusters while also reversing the direction for the
second part of the ion flight path. This allows for more ion separation and higher

mass resolving power than a linear TOF instrument [232-234].

1.4.2.3. ThermoFisher Orbitrap Fusion Lumos

The final mass spectrometer used in this dissertation is the ThermoFisher
Orbitrap Fusion Lumos LC-MS/MS system. This instrument is a tribrid mass
spectrometrer with HCD, ETD, and UVPD capabilities, as well as 1,000,000 full
width at half maximum (FWHM) ultra-high resolution characterization. This

instrument will be used primarily for glycoproteomic analysis of tryptic peptide
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fragments still containing glycan structures attached. This will allow for peptide
sequence, glycan structure, and site specific localization of the glycan on the
peptide.

The first mass analyzer is the quadrupole (Q1) which allows for filtering of
the ions, like described above. The second mass analyzer is the Orbitrap, which
generates an electrostatic field and causes the ions to move in a complex spiral
pattern. This current pattern is then Fourier transformed to create a mass
spectrum, allowing the Orbitrap to function as a mass detector as well. Finally,
the instrument contains a linear ion trap (LIT), which houses the ion storage,
isolation, and collision-induced dissociation capabilities. The combination of the
Orbitrap acting as a mass analyzer and detector, along with the pulsed ionization
techniques that generate an extremely long flight path, results in a very high
mass resolving power, while also introducing more advanced collisional
fragmentation techniques, making this instrument ideally suited for proteomic

analysis of biological material [218, 219, 235-237].

1.5. Broad Overview

While tissue analysis of HCC has become more prevalent, there are still
necessary steps required to link what is known regarding serum and tissue for
more accurate biomarker discovery. Biomarker discovery and analysis is moving
in the right direction, focusing more on the patient-specific tissue sections than
simple circulating serum or plasma. However, most studies still fail to

acknowledge the complex heterogeneity and morphology found within HCC
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tissue. In many cases, a tissue block or section is obtained and homogenized for
analysis. This method disregards all pathological and histological complexities
within the tissue, often including normal adjacent tissue or cirrhotic tissue in the
analysis. This is where many tissue analyses are lacking, in that they could
possibly include patterns and expressions that are not associated with the
cancer. This leads to challenges in the development of robust biomarkers, and
contributes to their inability to detect earlier stages of liver cancer and disease. In
the future, linking serum glycoproteomics to specific tissue glycomics within the
cancerous region itself will become increasingly important. The utilization of
MALDI imaging techniques provides a substantial basis for further analysis and
helps determine protein and glycosylation changes in specific regions that can be
correlated to disease states. In combining this technique with other —omic
approaches, there is the possibility to develop more sensitive and specific
biomarkers for enhanced detection of HCC.

The work outlined in this dissertation combines well-characterized and
novel glycomic techniques in the field of imaging mass spectrometry and
targeted glycoproteomic studies linked specifically to tissue histopathology. This
novel work simultaneously addresses some challenges to the field in terms of
tissue glycomics while maintaining all benefits afforded through this technique,
such as determination of linkage specificity within an imaging mass spectrometry
workflow, as well as further characterizing specific glycan modifications in
cancerous tissue via targeted glycoproteomic techniques specific to areas of

interest. Additionally, this work opens the door to many further investigations, as
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this work was primarily studied in the liver and geared toward HCC, but these
techniques could be applied to many other disease states and tissue types,

enhancing all human glycome data and relationships to health and disease.
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Chapter 2: Hypothesis
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While most constituents of serum are hepatic in origin and includes a
clinically relevant biomarker for hepatocellular carcinoma (HCC), the sensitivity
and specificity of biomarkers for early HCC cases are still lacking. One potential
biomarker is core fucosylated alpha-fetoprotein (AFP-L3), which is FDA approved
for the diagnosis of HCC, and there are now many other glycosylaton varients
that are being developed as biomarkers of HCC [153]. However, it is difficult to
determine the exact source of these upregulated N-glycan modifications via
circulating serum, giving rise to uncertainty of whether these modifications are
originating solely from the cancer or other parts of the organ as well [238]. In the
case of HCC, the heterogeneity of the cancer leads to variable expression for N-
glycoproteoforms, contributing to the lack of early diagnostic methods, as current
methods lack the required sensitivity and specificity for tissue specific biomarkers
[239]. Therefore, it is imperative to find biomarkers more specific to the
cancerous tissue itself. Matrix-assisted laser desorption/ionization (MALDI)
imaging mass spectrometry bridges this gap by providing a direct spatial analysis
of the N-glycans in clinical samples. By linking currently studied glycomic
modifications in cancers with spatially localized analysis of HCC tissue, it is
possible to bridge the gap between overall tissue features and cancer specific
trends. In doing so, it is also possible to determine associated glycoproteins for
further diagnostic markers and therapeutic targets, shifting therapy from curative
to preventative, especially before progression to late-stage cancer. The scope of
this work provides a novel and informative look at site-specific N-glycan

modifications within HCC. In general, the ability to associate known glycan
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changes with the corresponding glycoprotein it was originally attached to is
difficult due to sample complexity or the amount of sample needed. Here, by
combining well-established MALDI imaging capabilities for spatial analysis on
liver tissue with region-directed glycoproteomic analysis via MALDI imaging,
enhanced biomarker capabilities are possible.

Here, | optimized a method for identifying more specific hepatocellular
carcinoma biomarkers that combines previously studied serum glycoproteomics
with novel methodology in tissue glycomics. Using this approach, we will be able
to determine specific glycosylation changes in tissue and characterize
glycoproteins associated with these changes in HCC tissue. Therefore, |
hypothesized that glycomic tissue imaging using MALDI imaging mass
spectrometry can be used in conjunction with glycoproteomic techniques to
identify biomarkers for early detection and diagnosis specific to HCC. | tested this
hypothesis through the following specific aims: 1) determining and characterizing
the patterns of N-linked glycan changes in HCC via MALDI imaging mass
spectrometry to compare to previously studied changes in serum and 2) using
these identified changes in glycosylation to enhance targeted glycoproteomics for

improved biomarker target identification.

2.1. Specific Aim 1
Determine patterns of N-linked glycan changes in hepatocellular
carcinoma tissue using MALDI imaging mass spectrometry to compare to

previously found changes in serum
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The overall goal of Aim 1 was to utilize the well-established MALDI Fourier
transform ion cyclotron resonance (FT-ICR) and time-of-flight (TOF) imaging
mass spectrometry method to examine N-glycosylation changes in specific HCC
regions of liver tissue and validate these results with those previously studied in
serum. In terms of MALDI imaging mass spectrometry, the ability to examine liver
tissue in a spatially conserved manner is an innovation in the proteomic field
[240]. Through enzymatic release of the N-glycans and matrix application, the N-
glycans stay localized to the area they are released from and are free to be
ionized and measured by mass spectrometry instrumentation [241]. This allows
one to not only see the present structures and their location, but also give relative
abundance and intensity of those glycans. As an added benefit, we can scan a
whole range of mass values at a high sensitivity, providing more informative
glycan data than other methods. Finally, localization of the analytes is used to
determine pinpoint locations of interest within the HCC tissue for further
glycoprotein analysis. Additionally, new enzymes and methods were further
optimized in conjunction with the previously established method to characterize
the N-glycans found in tissue, as well as differentiate mass based on N-glycan

characteristic and structure.

2.2. Specific Aim 2
Identify glycopeptides containing changes in observed patterns of N-linked
glycans in hepatocellular carcinoma samples via the ThermoFisher Orbitrap

Fusion Lumos Tribrid Mass Spectrometer
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The overall goal of Aim 2 was to link what is known regarding the tissue
glycomics via imaging and determine the glycoprotein and glycopeptides
responsible for carrying the modifications of interest. For further glycoprotein
analysis, a recently developed method utilizing Orbitrap mass spectrometry has
been established. This method, known as HCD-PD-ETD (higher-energy collision
dissociation-accurate mass- product-dependent electron transfer dissociation),
allows for the examination of N-glycan structures and the associated protein it
was originally attached to [227]. While this method is effective, it is inefficient for
large scale studies, as the number of glycosylated proteins and associated
glycans would be nearly impossible to analyze sensitively and with significance.
However, by regionalized expression analysis via MALDI imaging, a more
thorough and selective analysis can occur in only tissue regions of interest,
generally those expressing the trends of N-glycan changes found specifically in
HCC. By examining only these regions, the less-important proteins associated
with HCC N-glycan modification were ignored and, therefore, reduced the
possible suspects for potential biomarkers and therapeutic targets. This
methodology increased our ability to perform glycoprotein studies, such as 1)
looking at multiple proteins and glycoforms, 2) maintaining glycan information
and associated protein information, and 3) confirming that the N-glycan or
glycoprotein modification is directly related to the cancer. Thus, this technique
was novel in providing the first comprehensive look at N-glycan modification and
associated protein characterization in a site-directed manner for HCC, and in the

future, other types of cancer as well.
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Chapter 3: Changes in
Glycosylation of Hepatocellular
Carcinoma via MALDI-IMS
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As noted previously, the first aim of the project was to examine the N-
linked glycan changes in HCC as compared to previously studied changes in
serum. The following chapter details the process and results of examining
hepatocellular carcinoma tissues for the cancerous regions specifically, looking
at the changes in N-glycosylation, as well as identifying trends in a patient
sample cohort. This bulk of this chapter was included as part of a publication
published in the Journal of Proteome Research in October of 2018. Contributions
in writing, experiments, data analysis, and final approval were done by myself,
with intellectual and minor editorial contributions from others on the publication

[161].

3.1. Abstract

Hepatocellular carcinoma (HCC) remains as the fifth most common cancer
in the world and accounts for more than 700,000 deaths annually. Changes in
serum glycosylation have long been associated with this cancer but the source of
that material is unknown and direct glycan analysis of HCC tissues has been
limited. Our laboratory previously developed a method of in situ tissue based N-
linked glycan imaging that bypasses the need for microdissection and
solubilization of tissue prior to analysis. We used this methodology in the analysis
of 138 HCC tissue samples and compared the N-linked glycans in cancer tissue
with either adjacent untransformed or tissue from patients with liver cirrhosis but
no cancer. Ten glycans were found significantly elevated in HCC tissues as

compared to cirrhotic or adjacent tissue. These glycans fell into two major
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classes, those with increased levels of fucosylation and those with increased
levels of branching with or without any fucose modifications. In addition,
increased levels of fucosylated glycoforms were associated with a reduction in
survival time. This work supports the hypothesis that the increased levels of
fucosylated N-linked glycans in HCC serum are produced directly from the

cancer tissue.

3.2. Introduction

Changes in N-linked glycosylation are known to occur with the
development of many cancers, including hepatocellular carcinoma (HCC) [119,
122, 129, 242-251]. In previous work, serum was examined for protein
glycoforms that are altered in liver cancer and significant alterations in serum N-
linked glycosylation with the development of HCC were documented [151, 180,
181, 191, 252-257]. Specifically, the alterations are increased levels of alpha-1,3
and alpha-1,6 linked fucosylation found on bi, tri and tetra-antennary glycans and
to a lesser extent alterations in high mannose and tetra-antennary glycans[151,
180, 181, 191, 252-257]. Importantly, many of these changes are now being
developed as serum-based biomarkers of HCC. However, the origins of these
glycans in human HCC are unknown and glycan analysis of tissue is complicated
by the mixing of different cell types and the loss of protein during processing. To
address these limitations, the lab has previously developed a method of tissue-
based glycan imaging that allows for both qualitative and quantitative in situ N-

linked glycan analysis on tissue using matrix-assisted laser desorption/ionization
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mass spectrometry imaging (MALDI-MSI) [195, 258-260]. This method bypasses
the need for microdissection and solubilization of tissue prior to analysis. When
matrix is applied across the tissue section, desorption can be targeted to specific
“points” in a pattern and the data rasterized. The resulting spectra can then be
used to generate two-dimensional heat maps of hundreds of glycans directly
from the surface of a tissue section. These molecular maps display the relative
abundance and spatial distribution of these molecules. Thus, MALDI tissue
profiling has the power to link the molecular detail of mass spectrometry with
molecular histology, generating mass spectra correlated to locations within a thin
tissue section. This method is becoming a robust technique for the analysis of
glycan in situ [195, 258-266]. In this study, we used this methodology in the
analysis of two tissue microarrays (TMA). The first TMA consisted of 48 HCC
tissue samples, 22 cirrhotic tissue samples and 5 healthy control tissue samples.
The second TMA consisted of 90 HCC tissue samples and 90 control adjacent
tissue samples. MALDI glycan imaging has identified 10 glycans that were
significantly increased in the HCC TMA samples when compared to cirrhotic
tissue (TMA #1) or to non-transformed adjacent tissue (TMA #2). These glycans
fell into two major classes, those with increased levels of fucosylation and those
with increased levels of branching without any fucose modifications. The
relevance of this finding to serum based biomarkers and the potential prognostic

role of these glycans is discussed.
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3.3. Materials and Methods
3.3.1. Materials

Trifluoroacetic acid, Harris-modified hematoxylin, and a-cyano-4-
hydroxycinnamic acid (CHCA) were obtained from Sigma Aldrich (St. Louis, MO).
HPLC grade methanol, ethanol, acetonitrile, xylene, hydrogen peroxide and
water were obtained from Fisher Scientific (Pittsburgh, PA). Tissue Tack
microscope slides were purchased from Polysciences Inc (Warrington, PA).
Citraconic anyhydride and SafeClear Il was purchased from Thermo Scientific
(Bellefonte, PA). Recombinant Peptide N-Glycosidase F (PNGase F) from
Flavobacterium menigosepticum was obtained, expressed, and purified as
previously described [267], but is also available commercially as PNGase F
Prime™ from Bulldog Bio (Portsmouth, NH). Universal Antigen Retrieval Reagent

was purchased from R&D Systems (Minneapolis, MN).

3.3.2. Tissues and Tissue Microarrays

Normal and hepatocellular carcinoma whole liver tissue samples were
purchased from ProSci Inc. (Poway, CA) and cirrhotic whole liver tissue was
purchased from BioChain (Newark, CA). All tissue microarray (TMA) slides were
purchased from US Biomax (Rockville, MD) as unstained formalin fixed paraffin
embedded (FFPE).

The first TMA (Catalog Number: BC03117) contained 80 cores. Forty-
eight cases of HCC with a history of Hepatitis B virus (HBV) infection, five cases

of cholangiocellular carcinoma with a history of Hepatitis B virus (HBV) infection,
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22 cases of liver cirrhosis with a history of Hepatitis B virus (HBV) infection and
five normal hepatic tissue cores. These cores were 1.5 mm in diameter and 5
pum thick. For the purpose of this study, the cholangiocellular carcinoma tissue
was included in any analysis.

The second TMA slide (Catalog Number: HLiv-HCC180Sur-04) contained
90 cases of HCC with tumors ranging from stage 1 (early) to 4 (late) and grades
G1 (well-differentiated) to G3 (poorly differentiated). All HCC tissues had
matched un-transformed adjacent tissue. Along with this, survival data and
pathology diagnosis was included for each case. The cores were cutata 1.5

mm diameter and a thickness of 4 um.

3.3.3. Washes for Deparaffinization

As described previously [259], FFPE TMA slides were heated at 60°C for
1 hr and cooled to room temperature prior to deparaffinization. The slides were
washed with xylene to remove the paraffin and then rehydrated using a series of
water and ethanol washes. Antigen retrieval was performed using citraconic
anhydride (Thermo Scientfic) as the buffer and placed in a vegetable steamer for
30 minutes. The buffer was then cooled to room temperature and buffer
exchange was performed to replace the slides in 100% water. Finally, the slides

were desiccated until dry.
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3.3.4. Enzymatic Digestion and Matrix Deposition

A M3 TM-Sprayer™ Tissue MALDI Sample Preparation System (HTX
Technologies, LLC) was used to spray 0.5 mL of 0.1 pg/ul aqueous solution
PNGase F as previously described [259]. Following the spray, the slides were
placed in a humidified chamber and incubated at 37°C for 2 hours. Slides were
then desiccated and dried prior to matrix application. The matrix used was a-
cyano-4-hydroxycinnamic acid (0.042 g CHCA in 6 mL 50% acetonitrile/49.9%

water/0.1% TFA) and sprayed using the same M3 TM-Sprayer.

3.3.5. N-Glycan Imaging using MALDI-IMS

The slides were analyzed for released N-glycan ions using a Solarix dual
source 7T FTICR mass spectrometer (Bruker Daltonics, m/z 500-5000) with a
SmartBeam Il laser operating at 1000 Hz and with a laser spot size of 25 pm.
200 laser shots were collected for each pixel, with a time domain of 512K. This
resulted in a resolving power of 160,000 at m/z 400. A total of 23,145 positions
were collected for TMA #1 and 44,533 positions collected for TMA #2.
Afterwards, the data was analyzed using Flexlmaging 4.0 (Bruker Daltonics) and
SCILS Lab (Bruker Daltonics, version 2017b) to create images and determine
regions of differentially expressed glycans, all normalized to total ion current. A
signal to noise (S/N) ratio of 9 was used and peaks were manually picked within
Flexlmaging 4.0. The resulting glycans were given composition using an in-
house database based on collected m/z values and checked against the

database from GlycoWorkbench based on m/z and composition [268]. Possible
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and likely structures for visual representation were built using GlycoWorkbench

as well.

3.3.6. Lectin Histochemistry

The tissue slides were deparaffinized by using PROTOCOL SafeClear Il
clearing agent, then rehydrated in a series of ethanol washes at 3 minutes per
each step (100%, 90%, 70%) and fully hydrated in deionized water for 5 minutes.
Endogenous peroxidase activity was blocked using 3% hydrogen peroxide,
followed by a 92°C heated antigen retrieval using Universal Antigen Retrieval
Reagent (Dako, Carpinteria, CA). The slides were then fixed with 4%
formaldehyde solution followed by a permeabilization step using 0.5% IGEPAL
CA-630. Following the permeabilization step, for blocking non-specific binding,
the slides were blocked once again with serum-free protein block (Dako),
supplemented with Streptavidin/Biotin blocking solution to block endogenous
biotin, biotin receptors, and streptavidin binding sites in tissues (Vector
Laboratory, Burlingame, CA). Streptavidin horseradish peroxidase ready to use
solution (Vector Laboratory) was used to detect biotinylated recombinant Aleuria
aurantia N224Q (rAAL N224Q) lectin bound to the tissue, and visualization was
further developed using 3,3’-diaminobenzidine (DAB) Chromogen (Dako). The
N224Q lectin is a modified Aleuria aurantia lectin with increased binding to core
fucosylated glycan (Herrera et al., manuscript submitted). Lectin was applied for
1 hour at room temperature at a concentration of 0.5 yg/mL in background

reducing antibody diluent (Dako, Carpeinteria, CA). After incubation, slides were
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washed with TBS (pH 7.6) for 5 minutes in room temperature and repeated three
times. Data on this lectin can be found in [193, 269, 270]. Finally, the slides were
counterstained with Harris-modified hematoxylin (Fisher Scientific, Hampton, NH)
for increased visualization. Annotation was done digitally using Aperio
ImageScope (Leica Biosystems, Buffalo Grove, IL) for positive pixel signal

algorithm based on lectin staining.

3.3.7. Statistical analysis

For all peaks (m/z values) mean intensity values were determined for each
individual TMA spot. To facilitate statistical analysis, original data was
transformed by log based on 10. Further descriptive statistics and statistical
inference are all based on the log-transformed data.

To compare difference of glycan between HCC tissues and cirrhotic
tissue, we applied t-test or Wilcoxon rank sum test, appropriately on data
distribution. For tumor tissue and its adjacent tissue comparison, paired t-test or
Wilcoxon rank sum test was also selected based on glycan data distribution.
Two-sided hypothesis test was selected, p-value less than 0.05 was considered
statistically significant. Receiver Operator Curves (ROC) curves were
constructed, area under curve (AUC) was considered as discriminant ability,
standard error of AUC was derived from bootstrap.

For survival analysis, the median of the specific glycan was used as a
cutoff line to classify patients who were above the median as being in the high

group and the rest as the low group (choosing mean as cutoff derived similar
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results, because the mean and median were similar in 3 concerned glycans). We
plotted the Kaplan-Meier survival curves of the high and low group, and log-rank
test was applied to check survival difference between two groups. The Cox

Proportional hazard model was used for further analysis.

3.4. Results
3.4.1. Increased Complex and Fucosylated N-Glycans in Liver Tissues

We, and others, have previously correlated changes in glycosylation in the
serum of individuals with the development of HCC [151, 180, 181, 191, 252-257]
[122, 176, 184, 187, 188, 190, 271-274]. To determine the glycan changes that
occur directly in HCC tissue we utilized a MALDI based glycan imaging
methodology [259] to examine the N-linked glycans that alter with the
development of HCC. In our initial experiments, we examined five sections of
HCC tissue obtained from patients with hepatitis B virus (HBV) - associated
HCC, three sections of normal tissue and three sections of cirrhotic tissue. Figure
11 shows the workflow of the tissue analysis and Figure 12 shows the results of
a representative normal, cirrhotic and HCC tissue. In this figure, specific N-linked
glycans are shown and their relative abundance presented via a heat map of
individual glycan intensities across each tissue, where blue is low abundance
and red is high abundance. Figure 13 shows the same sections stained with
hematoxylin and eosin staining in both a 1X and 10X magnification confirming

diagnosis. In Figure 12, three N-linked glycans that were found in all tissues and
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A: Tissue Preparation
» TMA: TMAs were obtained through US
_ Biomax. Sections were cut at 5 pm.

[ '; . 2228 | » Tissue: Liver tissue samples were
iz [ ; received from University of California
San Diego

#» Samples were heated prior to
dewaxing. Dewaxing utilized washes of
xylenes, ethanol, and water

B: N-Glycan Release and MALDI Matrix Application

# Tissues were antigen retrieved in ~4.5

yi mM citraconic buffer pH 3 using a

0 ( vegetable steamer. Slides were cooled by
exchanging buffer with water after

" retrieval.

B » Sections were sprayed with 0.1
ﬂ; N ." pg/ul PNGase F using a TM-

Sprayer (HTX Technologies).

n » Slides were incubated for 2 hours at
H 37.5°Cin a closed cell culture dish with 5
- ‘ - mL of water.
» a-Cyano-4-hydroxycinnamic acid
H matrix (7 mg/mLin 50% ACN/0.1%

TFA) was sprayed onto slides using
a TM-Sprayer (HTX imaging).

C: MALDI IMS

» TMA and #» Images were visualized in
j tissue FlexImaging 4.0,
sections were normalized by total ion
imaged on a current.
solariX™ FT- » Data was analyzed using
ICRin SCiLS lab software
positive ion

Figure 11: Workflow of Tissue-based Glycan Analysis. Generalized

workflow for slide prep and MALDI IMS imaging
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Figure 12: Detection of N-Glycans in Normal, Cirrhotic and HCC Tissues.
While certain glycans are found in all tissues (A-C), some glycans are found
predominantly in the HCC tissue (C-E). Images were acquired with 150 pym
raster step size on a Bruker 7T solariX XR ICR FTMS system. lon intensities
are normalized to the TIC of each ion across the tissue. Color scale bars are
included and autocorrected for the range of intensities plotted. For glycans,
red triangle, fucose; blue square, N-acetylglucosamine; green circles,

mannose; yellow circles, galactosegg



Figure 13: Hematoxylin and Eosin Staining of Varying Tissue Types.
H&E staining at 1x and 10x magnification for normal (A), cirrhotic (B),

and HCC tissue (C).
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three N-linked glycans that were elevated in the HCC as compared to the normal
or cirrhotic tissue are presented. As Figure 12A-C shows, high mannose glycans
such as Man 7, Man 8 (Figure 12A&B) and simple bi-antennary type glycans
without substantial fucosylation (Figure 12C) can be found equally in normal,
cirrhotic and HCC tissue. In contrast, glycans such as a tetra-antennary glycan
without fucosylation (Figure 12D) or tetra-antennary glycan with single (Figure
12E) and multiple fucose residues (Figure 12F) are found predominantly in the
HCC tissue as compared to the normal or cirrhotic tissue. It is noted that these
mass values (glycan) were not observed without the application of PNGase F

(data not shown).

3.4.2. Analysis in Human Liver Tissue Microarray Set

To determine whether these N-glycan changes seen in the HCC tissue
could be observed in a larger set of tissue samples, we examined two
independent tissue microarrays (TMAs), one consisting of 48 HCC, 22 cirrhotic,
and 5 normal tissue cases and another TMA consisting of 90 samples with HCC
and 90 tissue samples of the adjacent untransformed tissue. Clinical and patient
information for these samples are provided in Table 2 and 3. Figure 14 shows
both TMAs, demonstrating the imaging data received from the workflow. Table 4
presents a list of all the potential glycans found in both TMAs. Elevations in
specific glycans was determined by examining the mean intensity values of each

glycan structure in the HCC tissue and in the cirrhotic tissue for
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Table 2: Patient Characteristics for TMA #1. Characteristics of TMA #1 including

number, diagnosis, etiology, age, gender, grade and stage

Disease Diagnosis HCC! Cirrhosis’
Number 48 )
Etiology% (HBV/HCV/other)* 100/0/10 100/0/0
Age (mean, SD)* 51.6 (9.9) 51.0 (8.4)
Gender (M/F) ° 40/8 19/3
Grade® 2.09 (0.66)
Stage” 2.67 (0.55)

1&2) Disease diagnosis was determined by MRI (1) or by liver biopsy (2). 3) For Etiology: HBV,
hepatitis B virus; HCV, hepatitis C virus; other, liver disease consisting of cryptogenic liver
disease or alcohol induced liver disease. 4) Mean age of groups. 5) Mean gender of the groups. 6)
Grade of tumor as defined by American Joint Committee on Cancer (AJCC) TNM surgical
grading. Mean value and standard deviation indicated. 7) Tumor staging information as defined
by AJCC TNM clinical staging. Mean value and standard deviation indicated.
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Table 3: Patient Characteristics for TMA #2. Characteristics of TMA #2 including

number, diagnosis, etiology, age, gender, grade, stage, and survival time

Disease Diagnosis HCcl NoL djacentz
Number 90 90
Etiology% (HBV/HCV/other) 3 Unknown Unknown
Age (mean, SD) 4 53.9 (10.0) 53.9 (10.0)
Gender (M/F)® 81/9 81/9

Grade (mean, SD) ® 2.21(047) -

Stage (mean, SD) ’ 2.40 (0.75)
Survival time8 (with range) 33.3(1-80) -—-

1&2) Disease diagnosis was determined by MRI (1) or by liver biopsy (2). 3) For Etiology: HBV,
hepatitis B virus; HCV, hepatitis C virus; other, liver disease consisting of cryptogenic liver
disease or alcohol induced liver disease. 4) Mean age of groups. 5) Mean gender of the groups 6)
Grade of tumor as defined by AJCC TNM surgical grading. Mean value and standard deviation
indicated. 7) Tumor staging information as defined by AJCC TNM clinical staging. Mean value
and standard deviation indicated. 8) Mean survival time in months with range given.
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Table 4: Master List of N-Linked Glycans. Table showing all found N-glycans,

including mass, error, and structure

Centroid [m/z] =+ [Da] Centroid [m/z] =+ [Da] Centroid [m/z]  + [Da]
933.31458 0.04667 1809.6332 0.05429 2421.8766 0.07266
1079.3618 0.05397 1850.6558 0.05552 2465.8777 0.07398
1087.3769 0.05437 1866.6663 0.056 2466.8952 0.07401
1095.3658 0.05477 1905.6195 0.05717 2487.8291 0.07463
1118.374  0.03355 1910.6938 0.05732 2539.957 0.0762
1136.3933  0.03409 1954.6818 0.05864 2633.9132 0.07902
1239.4149 0.03718 1976.6594  0.0593 2684.9645 0.08055
1257.4145 0.03772 2012.7242 0.06038 2685.9689 0.08058
1282.438 0.03847 2020.654 0.06062 27429741 0.08229
1298.4354 0.03895 2028.7019 0.06086 2758.9912 1 0.08277
1339.4629 0.04018 2056.7582  0.0617 2787.0606 0.08361
1419.4633 0.04258 2100.7265 0.06302 2830.9955 0.14155
1444.4933  0.04333 2122.7173 0.06368 2832.0464 0.08496
1460.5039 0.04382 2158.8017 0.06476 2853.0197 0.08559
1485.5274 0.04457 2174.8057 0.06524 2889.0319 0.08667
1501.5314  0.04505 2231.7913  0.06695 2905.0211 0.08715
1562.5343  0.04688 2275.8647 0.06828 2977.031 0.08931
1581.5054 0.04745 2289.7287 0.06869 2978.0434 0.08934
1645.5608 0.04937 2319.8133  0.06959 2999.0364 0.08997
1647.5892  0.04943 2320.8242 0.06962 3035.1603 0.09105
1663.567  0.04991 2341.8106 0.07025 3051.0658 0.09153
1708.5922 0.05126 2377.8885 0.07134 3124.121  0.09372
1743.5755 0.05231 2393.84 0.07182 3197.1893 0.09592
1791.6204 0.05375 2413.868 0.07242 3270.1723 0.09811
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TMA #1 or the un-transformed adjacent tissue in TMA #2. A mean intensity
value increase of 1.5-fold in the HCC sample as compared to the appropriate
control tissue was considered elevated. Similarly, if the intensity was 0.5 times
that of the appropriate control tissue, the structure levels were decreased. Figure
15 highlights the observation that many of the 61 observed glycans were seen in
20-40% of the HCC tissue samples and often in less than 5% of the control
tissue.

Two glycans that were observed as elevated in over 50% of the TMA
samples, were a tetra-antennary glycan (glycan #15 in Figure 15) and a tetra-
antennary glycan with two fucose residues (glycan #16 in Figure 15). As this
family of glycan - tetra-antennary glycan with and without fucosylation - were
observed in many of the samples, we further examined the level of this family of
glycans in the TMAs. The level of the tetra-antennary glycan lacking fucose
(Figure 14A), the tetra-antennary glycan with a single (Figure 14B) and double
fucose residues (Figure 14C) in both the TMAs are shown. As before, darker red
colors represent a higher intensity for the specific glycan while more blue tones
represent less intensity. The mean values of signal intensities for specific glycans
found in the HCC tissue as compared to the cirrhotic tissue (in TMA#1) or
between the HCC tissue and the adjacent non-transformed tissue (TMA#2) were
compared. Table 5 presents glycans (selected by lowest p value) that were
significantly elevated (p<0.05) in the HCC tissue as compared to the cirrhotic
(TMA #1) or adjacent non-transformed tissue (TMA #2) as well as a glycan that

was not altered in the HCC tissue. A master list of all N-glycan m/z values is
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Table 5: Glycans Altered in HCC Versus Cirrhosis or Adjacent Tissue.

Observed m/z! Proposed Glycan2 P value TMA 13 | P value TMA 2*
2832.046 T é 0.00015 0.2105
2685.969 e G 1.23¢-07 7.59%-15
2539.957 “@ 0.00016 0.02739

A 0

2466.895 . é 0.0195 0.002727
2465.878 e m 0.2427 0.000654
2393.840 u{:: 3.11¢-08 9.33¢-16
2377.889 T 2.98e-08 6.71e-11
2174.806 oe el 0.03208 0.3902

2012.724 el 0.000281 0.000105
1850.656 .e .<<: 0.000103 1.71e-09
1647.589 e 0.00633 0.00571

1) Observed mass to charge ratio value 2) The proposed glycan structure based
upon the m/z value. 3) The composition of the identified M/Z value. 4) P value
comparing the HCC to cirrhotic tissue. Analysis by students T-test. 5) P value
comparing the HCC to adjacent tissue.
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provided (Table 4). As Table 5 shows, nine out of ten glycans that were elevated
in the HCC tissue were fucosylated glycan, The glycans with the lowest p value
were tetra-antennary glycans, with or without fucosylation. To further explore the
branched and fucosylated glycome in these two TMAs, we examined the five
tetra-antennary glycan that were altered in the TMA'’s by scatter plot and by
AUROC analysis. Figure 16 shows these data for TMA #1 and Figure 17 shows
these data for TMA #2. As these figures show, alterations in specific tetra-
antennary glycoforms could be observed in both TMAs. For example, a glycan at
m/z 2685.969, proposed as a di-fucosylated tetra-antennary glycan, was
elevated in HCC tissue in both TMA #1 and TMA #2 (Figure 16B and 17B).
Similarly, the tetra- antennary glycan (m/z 2393.840) devoid of fucosylation was
also altered in both TMAs (Figure 16D and 17D). In contrast, TMA #1 had
greater alterations in a tetra-antennary glycan with three fucose residues, as
compared to TMA #2 (Figure 16A and 17A). Other versions of the tetra-
antennary glycan family were also observed in both TMAs (Figure 16C and 17C).
Increased fucosylation seen by MALDI-MSI was further confirmed by
lectin histochemistry. Figure 18 shows the lectin histochemistry staining for one
of the TMAs using a recombinant Aleuria aurantia lectin (AALN224Q) lectin
which has enhanced binding to branched and core alpha 1,6 lined fucosylated
glycan and reduced binding to alpha 1,2 linked fucose [275, 276]. Figure 18,
shows a side by side comparison of the lectin histochemistry and the MALDI
imaging for one of the most prominent fucosylated glycan (m/z 2685.969; see

Table 5), supporting the classification as fucosylated structures.
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Figure 16: Analysis of Human Liver TMA #1. Proposed glycan structure, log
transformed intensity scatter plot with the red diamond indicating mean and
associated p-value, and Receiver Operating Characteristic (ROC) curve with
AUC value for select structures. In panels A-E, analysis was done comparing
HCC versus cirrhotic samples. A, B, C, and E utilized a student t-test for their

p-value while D utilized a Wilcoxon Rank Sum Test.
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Figure 17: Analysis of Human Liver TMA #2. Proposed glycan
structure, log transformed intensity scatter plot with the red diamond
indicating mean and associated p-value, and Receiver Operating
Characteristic (ROC) curve with AUC value for select structures. In
panels A-E, analysis was done comparing HCC versus cirrhotic
samples. A, B, C, and E utilized a student t-test for their p-value while D

utilized a Wilcoxon Rank Sum Test.
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As fucosylation was a prominent feature of the altered glycan in HCC, with
33/61 of the proposed glycan structures containing fucose, fucosylation levels
were further explored. To accurately determine the elevated levels of the
fucosylated glycans seen between HCC and adjacent tissue, we examined the
difference between the adjacent and HCC tissue of each individual patient in the
matched tissue set TMA and determined the percentage of patients with elevated
levels of each of these glycans in both their HCC tissue and their matched
normal adjacent tissue. Elevation was again determined by using mean intensity
values of these glycans in both the HCC and non-transformed adjacent tissue
and if the value was 1.5 times that of normal levels, the patient was considered to
have elevated levels of that glycan. As Figure 19 shows, 96% of patients had
increased levels of at least one fucosylated structure. Those patients were then
categorized into the number of these highly branched and/or fucosylated
structures they were presenting, with patients demonstrating increased levels in

anywhere from one fucosylated structure to all 33 found within the TMA.

3.4.3. Association of Specific N-Glycans with Survival

For the patient-matched TMA (TMA #2), survival data were available
allowing for the determination of an association between glycan and outcome.
This was done for the three major glycans observed in the HCC tissue: a tetra-
antennary glycan (m/z 2393.840), a tetra-antennary glycan with a single fucose
(m/z 2539.957) and a tetra-antennary glycan with two fucose residues (m/z

2685.969). Patients with glycan expression greater than the median level in all
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PATIENTS OVEREXPRESSING FUCOSYLATED STRUCTURES

5 to 8 Structures
25%

1 to 4 Structures
27%

0 Structures
4%
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. 96% .
19+ Structures '
8%

14 to 18 Structures 9 to 13 Structures
15% 21%

Figure 19: Patients Demonstrating Elevated Levels of Fucosylated Glycans.
A total of 33 fucosylated glycans were found elevated in the patient-matched TMA.
Comparing HCC to the un-transformed adjacent tissue, a 1.5x relative intensity
increase in HCC tissue was used to classify patients as elevated. Of the 89 patients
able to be analyzed, 96% (85 patients) demonstrated elevated levels of at least one
of these fucosylated structures (left). Of these 85 patients, they were further
classified into varying classes based on the number of fucosylated structures they
had elevated levels for. 27% (23 patients) had elevated levels of one to four
fucosylated structures, 25% (21 patients) had elevated levels off five to eight
structures, with 8% of patients showing elevated levels of 19 or more of these
fucosylated structures with one patient showing elevated levels all 33 fucosylated

structures found.
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tissue (both tumor and adjacent normal) were classified as high. There was no
association with these glycans between the levels observed in the normal
adjacent tissue and patient outcome (data not shown). In addition, as Figure 20A
shows, the level of the m/z 2393.840 glycan was also not associated with patient
outcome. The mean time of survival was 29 months in those with high or low
levels of the m/z 2393.840 glycan. In contrast, as Figures 20B and 20C show,
patients with high levels of the m/z 2539.957 or m/z 2685.969 glycans were
associated with shorter survival times. For the m/z 2539.957 glycan, those with
high levels had a median survival time of 25 months, while patients with lows
levels of this glycan had a median survival time of 35 months. Similarly, for the
m/z 2685.969 glycan, those with high levels had a median survival time of 25
months, while patients with low levels of this glycan had a median survival time of
32 months. Cox proportional hazard model analysis showed patients with one
unit increase of the m/z 2685.969 glycan would enhance the hazard(risk) about
3-fold, p=0.0334. One unit increase of the m/z 2539.957 glycan would increase
hazard about 8-fold, p=0.0078. There was no association between these glycans

and stage or grade of HCC (data not shown).

3.5. Discussion

Alterations in glycosylation have been long observed with HCC [185, 277-
281]. Much of this work was shown in serum, with little analysis directly in the
HCC tissue itself or has been analyzed following dissection of tissue and the

mixing of the multiple hepatic (and non-) cell types. Here we utilized MALDI-IMS
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glycan imaging to identify the glycans that occur directly in 138 HCC patient
tissue samples. In our analysis of both TMA's, there were 61 glycans that were
found to be upregulated in at least one HCC tissue sample (See Table 4). In
addition, there were 10 glycans that were significantly (p<0.05) increased in at
least 30% of the HCC tissue samples as compared to either cirrhotic or adjacent
tissue (see Figure 15).

Our previous MALDI glycan imaging developmental work had utilized a
small number of HCC tissue samples and a 16 patient HCC TMA [195]. In that
study, alterations in both branching and fucosylation were observed but the
sample size was too small to determine the significance of the changes detected.
Here, we have extended that work through an analysis of a larger number of
samples and also with the association with outcome data regarding the observed
glycans.

Surprisingly, only two major classes of glycan were observed in HCC
tissue as compared to either cirrhotic tissue or adjacent untransformed tissue.
The first was a tetra-antennary glycan structures and the second was an
increase in the level of fucosylation. It is noted that the tetra-antennary glycan
was only observed in HCC tissue and not in adjacent tissue or cirrhotic tissue.
The tetra-antennary glycan is formed through the action of alpha-1,6-
mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase A (MGATS),
which has been associated with many cancers through mutations of the
telomerase reverse transcriptase (hTERT) [282] and through activation of the

Ras/Raf pathway [66].
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The second major alteration observed in the HCC tissue was increased
fucosylation. This glycan change has been observed in the serum for many
years, but a clear understanding of where this material derives was not known.
However, glycan analysis of tumor derived material was unable to identify
fucosylation as being increased in HCC [198, 201]. This was most likely the
result of the method used, which involved homogenization of tissue and mixing of
cell types. In contrast, by using the MALDI glycan imaging method we were able
to observe increased levels of fucosylation on independent sample sets. Most
often on tetra-antennary glycan but also to a lesser extent on bi-antennary and
tri-antennary glycan. Indeed, there is now significant evidence that transformed
hepatocytes are the source cells for serum fucosylated proteins. Recent work
showed that as hepatocytes undergo an epithelial-mesenchymal transition
(EMT), they increase the genes, such as alpha-1,6-fucosyltransferase gene
(FUTS), which are involved in fucosylation [199]. This is consistent with lung
cancer, where FUTS8 increased as a direct result of an EMT [200]. In addition, a
recent report has indicated that HCC downregulates miR-122 and leads to the
upregulation of FUT8 [15]. It is also noted that the deletion of FUT8 in a mouse
model inhibits chemical induced HCC by the down regulation of cancer
associated signaling pathways [156, 186]. Together, this data suggests very
strongly that fucosylation originates from the cancer itself and prior analytical
glycan tools were not able to detect this change within the tumor. In addition,
over 95% of the HCC samples analyzed had increased levels of one or more

fucosylated glycan, while normal adjacent tissue did not, supporting the

87



hypothesis that fucosylation is an event associated with the general act of cellular
transformation.

In addition, we observed only a few sialylated structures by MALDI-glycan
imaging and it is possible that these 1) were not detected by our method or 2) we
had sialic acid loss following ionization. It is also highly likely that both things are
true and methods to stabilize sialic acids will be required for analysis of these
structures [262].

While the identity of the proteins containing these changes are unknown,
several proteins have been characterized as containing the glycans shown to be
up-regulated in HCC tissue. For example, we have recently shown that low
molecular weight (LWM) kininogen contains fucosylated tetra-antennary glycan
and that this protein can act as a serum biomarker of HCC [155]. Additionally,
serum fucosylated haptoglobin and fucosylated fibronectin have been shown to
contain branched fucosylated tetra-antennary glycan in HCC [272].

Lastly, heterogeneity was observed in the glycans associated with HCC
and it is assumed that this most likely is the result of the underlying genetic
heterogeneity found with the disease [15]. In conclusion, | have shown that two
major glycan changes are associated with HCC, increased branching and
increased fucosylation. Hopefully, in the future, these glycan changes can be
exploited for the early detection of HCC and potentially in the treatment of HCC.

While many of these changes are novel and exciting developments in
terms of N-glycan modifications for HCC, there are still challenges associated

with these changes. For example, while we were able to identify an increase in
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fucosylation across the board for HCC tissue specifically, one challenge of
imaging mass spectrometry is that the technique is only able to identify predictive
structural components based on m/z, not linkage. Where this is extremely
relevant is in looking at core fucosylation specifically. Imaging mass spectrometry
techniques are unable to accurately identify whether the fucosylation modification
is core or outer arm, and as discussed previously, FUT8 and core fucosylation
are fundamentally more related to cancer progression and HCC in the literature.
The lectin staining does support the hypothesis that fucosylation is occurring in
the HCC tissue (Figure 18). Therefore, this led us to further investigate the
possibility of determining core versus outer arm fucosylation while still

maintaining all the benefits afforded to us through imaging.
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Chapter 4: Determination of

Core Fucosylation using
MALDI-IMS
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Alluded to in the previous chapter, the inability to determine core versus
outer arm fucosylation in an imaging mass spectrometry experiment caused a
disconnect in associating previously studied N-glycan changes in hepatocellular
carcinoma with new-found data. Therefore, it was imperative to develop a new
method for the determination of core versus outer arm fucosylation while
maintaining all the benefits of an imaging mass spectrometry experiment. The
chapter below was partially included as part of a publication that was accepted
with revisions in the Journal of Proteome Research in March of 2020.
Contributions in writing, imaging experiments, data analysis, and final approval
were done by myself, with intellectual, minor editorial, and enzyme production
and validation were done by others on the publication (Hongyan Liang, Richard

Drake, and Anand Mehta).

4.1. Abstract

Specific alterations in N-linked glycans, such as core fucosylation, are
associated with many cancers and other disease states. Because of the many
possible anomeric linkages associated with fucosylated N-glycans, determination
of specific anomeric linkages and site of fucosylation (i.e., core versus outer arm)
can be difficult to elucidate. A new MALDI mass spectrometry imaging workflow
in formalin-fixed clinical tissues is described using recombinant Endoglycosidase
F3 (Endo F3), an enzyme with a specific preference for cleaving core fucosylated
N-glycans attached to glycoproteins. In contrast to the broader substrate

enzyme Peptide-N-Glycosidase F (PNGaseF), Endo F3 cleaves between the two
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core N-acetylglucosamine residues at the protein attachment site. On tissue, this
results in a mass shift of 349.137 a.m.u. for core fucosylated N-glycans when
compared to N-glycans released with standard PNGaseF. Endo F3 can be used
singly and in combination with PNGaseF digestion of the same tissue sections.
Initial results in liver and prostate tissues indicate core fucosylated glycans
associated to specific tissue regions while still demonstrating a diverse mix of
core and outer arm fucosylated glycans throughout all regions of tissue. By
determining these specific linkages while preserving localization, more targeted
diagnostic biomarkers for disease state is possible without the need for

microdissection or solubilization of the tissue.

4.2. Introduction

It is well established that many aspects of the molecular development and
progression of cancer are directly linked to changes in glycosylation [119-121,
123-129]. In most cases, glycan analysis has been done with serum and not
directly from the cancer tissue itself [122, 134-149]. Serum is often used as it is
easily obtained, but it is limited in that it is comprised of dilute levels of tumor-
derived material. Thus, direct tissue analysis is preferred. However, the mixing of
different cell types, and the loss of protein during processing complicate glycan
analysis of tissue, often leading to misleading data and misrepresentation of
tumor specific analysis. To combat this, the lab has previously developed a
method of tissue-based glycan imaging that allows for both qualitative and

quantitative in situ N-linked glycan analysis on tissue using matrix-assisted laser
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desorption/ionization mass spectrometry imaging (MALDI IMS) [258]. This
method was co-developed in 2013 by the Drake and Mehta laboratories, and has
continued to evolve [195, 259, 260] to allow for better analysis of sialylated
glycan [262] and for the simultaneous analysis of glycan and protein [261].
However, a major limitation of the MALDI-TOF imaging methods is the inability to
obtain true structural and linkage information of a PNGase F released glycan. To
address this limitation, we began to examine other enzymes that may allow for
more structural information via imaging mass spectrometry.

In 1982, a novel glycosidase preparation from Flavobacterium
meningosepticum, designated Endo-B-N-acetylglucosaminidase F was described
[283] and found to include three distinct endoglycosidase activities, termed Endo
F1, Endo F2, and Endo F3[284]. These three endoglycosidases cleave the 3(1-4)
link between the two core GIcNAc of asparagine-linked glycans, but have
specificities for distinct oligosaccharide structures [285]. For example, Endo F1
cleaves high mannose) and hybrid structures, but not complex oligosaccharides
and core fucosylation of hybrid structures reduces the rate of cleavage by
50-fold. Endo F2 cleaves primarily complex glycan with core fucosylation having
little impact upon glycan cleavage. In contrast, Endo F3 has no activity on
oligomannose and hybrid molecules it has a reported 400-fold increase in activity
toward core fucosylated structures as compared to tri-antennary structures at a
pH of 4.5, thus reducing the amount of non-specific N-glycan cleavage [286].
With this in mind, Endo F3 was applied to different MALDI IMS workflows alone

or in conjunction with PNGase F. This workflow would allow for the structural
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characterization of core fucosylated glycans in tissue while maintaining the
localization of N-glycans in tissue.

Fucosylatransferase 8 (FUT8), the only known enzyme responsible for
core fucosylation, has been implicated in a variety of settings including non-small
cell lung cancer, melanoma, and hepatocellular carcinoma demonstrating an
increase in invasion and metastasis for patients with elevated levels of FUT8 or
core fucosylated N-glycans[99-101]. These previous studies show the
importance of determining core fucosylation as opposed outer arm fucosylation in
terms of N-linked glycosylation and the clinical relevance of this methodology

described below.

4.3. Materials and Methods
4.3.1. Cloning, Expression, and Purification of Endo F3

The cDNA fragment encoding the Endo F3 gene was amplified by PCR
from the genomic DNA of Elizabethkingia meningoseptica (UniProtKB — P36913)
without the N-terminus signal sequence. Additionally, a His tag (x10) was added
to its C-terminus. Amplified DNA fragments were cloned into pQE-60 by
Ncol/Blpl (Genscript, Piscataway, NJ). The constructed plasmid, pQE-60-Endo
F3-10xHis, was transformed into BL21 (DE3). The transformants were cultured in
LB broth supplemented with 100 ug/ml Ampicillin. Cultures were grown at 37°C
until the cells reached an Asoonm Of about 0.5, 0.5 mM IPTG were added to the
culture to induce protein overproduction at 20°C. The next day, the cells were

harvested by centrifugation. The cell pellets were re-suspended in PBS with
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added Pierce protease inhibitor tablets (ThermoFisher Scientific, Waltham, MA),
stored at -20°C. Omnicleave endonuclease (Lucigen Corporation, Middleton, WI)
and MgCl, were added to thawed cell suspension. The cell suspension was
incubated at room temperature for at least one hour with rocking. The cells were
lysed using a French Press (GlenMills Inc., Clifton, NJ) per the manufacturer’'s
instructions. The cell lysis was applied to HisTrap FF (GE Healthcare, Pittsburgh,
PA) and washed with 20 mM sodium phosphate, 0.5 M NaCl, 20 mM imidazole
(pH 7.4). Bound His-tagged protein was eluted with a gradient from 150 to 500
mM imidazole in 20 mM sodium phosphate, 0.5 M NaCl (pH 7.4). The purified
Endo F3 was desalted and concentrated with 20 mM Tris-HCI, 50 mM NaCl (pH
7.5) using Spin-X UF Concentrator (10kDa; Corning). The protein purity was

confirmed using SDS-PAGE.

4.3.2. In-Solution Digestion by Endo F3

Human Fetuin-A (Assaypro, St. Charles, MO) or RNase B (New England
BioLabs) were incubated with Endo F3 at an enzyme-to-protein-ration of 1:5
(w/w) at 37°C for 3 hours. For our purposes, 1ug of Endo F3 was added to 5ug of

protein at a pH of 4.5.

4.3.3. Glycan Sequencing
Human Fetuin-A was run on SDS-PAGE gel, stained and cut out. The gel
pieces were alkylated in the dark for 30 minutes with iodoacetamide, fixed in a

solution of 10% methanol 7% acetic acid for one hour, washed in acetonitrile,
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followed by subsequent steps of 20 mM ammonium bicarbonate (pH 7.0) and
acetonitrile before being dried in a speed-vac. PNGase F (PNGASE F Prime™,
N-Zyme Scientifics, Doylestown, PA) or Endo F3 was diluted with corresponding
buffer and allowed to absorb into and cover the gel pieces, then incubated
overnight at 37°C. The glycans were eluted from the gel pieces by sonication in
Milli-Q water, dried down and labeled with a 2AB dye as previously described
[287]. The labeled glycans were subsequently enriched from free 2AB dye using
paper chromatography and filtered using PTFE syringe filter unit. Fluorescently
labeled glycans were then separated on normal phase Waters Alliance HPLC
system as previously described [287]. Samples were further digested with
Sialidase for calculation of glucose unit (GU) value and compared to GlycoStore

database [288].

4.3.4. On-Slide Tissue Preparation and Imaging

Multiple formalin-fixed paraffin-embedded (FFPE) blocks of tissue were
obtained for optimization and analysis. Tissue microarray (TMA) slides were
purchased from US Biomax (Rockville, MD) while all other tissue blocks
(prostate, cervix, and liver) were provided by the Medical University of South
Carolina Biorepository and Tissue Analysis Shared Resource (Charleston, SC).
The FFPE blocks were sectioned on to slides at S5um then prepped for imaging
as previously described [289]. Briefly, the slides were washed and deparaffinized
by heating at 60°C for one hour, then washed sequentially in xylene, a dilution of

ethanol, and water. The slides then underwent antigen retrieval using citraconic
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anhydride and placed in a steam chamber for 30 minutes. Finally, buffer
exchange was performed and desiccated. Enzyme was then applied to the slides
using an M3 TM-Sprayer™ Tissue MALDI Sample Preparation System (HTX
Technologies, LLC) at 0.1ug/pl. PNGase F was sprayed in HPLC water while
Endo F3 was sprayed in a solution of 87uM acetic acid (pH 4.43) for better
efficiency. The slides were then placed in a humidity chamber and incubated at
37°C for 2 hours then desiccated. Finally, matrix was applied (a-cyano-4-
hydroxycinnamic acid, 0.042g CHCA in 6 mL 50% acetonitrile/49.9% water/0.1%
trifluoroacetic acid) using the same M3 TM-Sprayer.

As previously described, tissues were analyzed via imaging N-glycans
using both a MALDI FTICR mass spectrometer (SolariX Dual Source, 7T, Bruker
Daltonics, m/z 500-5000). The data was then analyzed and visualized using
Flexlmaging 5.0 and SCiLS Lab 2017b (Bruker Daltonics). Finally, glycans were
built and validated against the database in GlycoWorkbench, as well as built for

graphical interpretation [258, 268].

4.3.5. N-Glycan Removal

In cases where F3 was applied first, glycans were collected from the slide
and analyzed as previously described [290]. Briefly, the slides were placed in
100% ethanol for removal of matrix, then placed in series of dilutions of ethanol
(95% and 70%). Next, the slides were placed in a high pH cleaning solution
(10mM Tris, pH 8.98), HPLC grade water, then a low pH cleaning solution

(citraconic buffer, pH 3), then HPLC grade water again. The slides were then
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desiccated and dried. Following the cleaning, the tissues were then prepped for
PNGase F application following the same tissue preparation and glycan imaging
protocol as previously described (40), however the dewaxing and antigen

retrieval steps were omitted, beginning with enzyme application on the tissue.

4.4. Results
4.4.1. In-solution analysis of Endo F3 activity on N-Linked Glycans

The deglycosylation activity of the purified recombinant Endo F3 was
tested initially using two well characterized glycoproteins, RNase B and Fetuin-A,
to confirm the activity of Endo F3 acting on core fucosylated glycans only (Figure
21). Human Fetuin-A is a circulating plasma glycoprotein with two N-linked and
three O-linked carbohydrate side chains [291]. The heterogeneity of Fetuin-A is
mainly due to extensive modification with variable amounts of sialic acids; some
less abundant glycoforms were found to be core-fucosylated [292]. RNase B is a
well characterized glycoprotein from bovine pancreas that only contains non
core-fucosylated high mannose N-glycans attached to a single N-linked
glycosylation site [293]. As shown by the SDS-PAGE, the recombinant Endo F3
will cleave Fetuin-A but not RNase B as shown by the band shift on the gel,
which is consistent with Endo F3 reported sensitivity and specificity. In contrast,
treatment with PNGase F leads to a band shift of RNase B. This supports the
claim that we can differentially cleave glycans on proteins based on the
composition of the glycans attached to them, specifically ignoring high mannose

glycans that don’t contain a core fucose modification.
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Figure 21: SDS-PAGE Analysis of N-Glycans by PNGase F or Endo F3. A)
Cartoon description of Endo F3 vs. PNGase F cleavage on core fucosylated
N-linked glycans. For glycans, red triangle, fucose; blue square, N-
acetylglucosamine; green circles, mannose; yellow circles, galactose. B) SDS-
PAGE analysis of Endo F3 and PNGase F digestion of human Fetuin-A or

RNase B.
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The glycan profile of Fetuin-A was also investigated by normal phase
HPLC. The chromatograms are shown in Figure 22. A standard curve using the
homopolymer dextran was used to convert the elution time into glucose units is
shown at the bottom of the figure. Among PNGase F released glycans, sialic acid
removal simplified the profiles and further treatment with bovine kidney
fucosidase (result not show) removed peaks at GU 7.70, representing a
biantennary glycan with a core a-1,6-linked fucose (F(6)A2G2) that only
contributed 2.2% of the total glycan profile. On the other hand, the three major
glycans released by Endo F3 are all core fucosylated biantennary with variable
amounts of sialic acids that represented 83.0% of the total glycan profile; with the
removal of sialic acids, the three species were combined into one peak at GU
7.20 which is F(6)A2G2*, considering that with Endo F3 digestion, one GIcNAc
and the core a-1,6-linked fucose was left on the protein as opposed to the

cleavage at the asparagine residue for PNGase F (Figure 21A).

4.4.2. On-Tissue Analysis of Endo F3 Digestion using MALDI Imaging Mass
Spectrometry

Keeping the conserved GIcNAc and fucose residue in mind, we then
applied the enzyme to the well-established tissue imaging protocol as described
above (Figure 23). With the differential cleavage of Endo F3 as compared to
PNGase F, we see a mass shift of 349.137 m/z for core fucosylated glycans.
When applied, we see the downward shift in the mass spectra of core

fucosylated N-glycans while effectively prohibiting cleavage of N-glycans that do
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Figure 23: Generalized Workflow of Endo F3 and PNGase F Treatments.
Begin by cutting tissue from FFPE block at 5um on to slide; |) Heat slide at
60°C for one hour; Il) Dewax in series of xylene, ethanol dilutions and water,
antigen retrieval in citraconic buffer; Ill) Apply Endo F3 to tissue; 1V) Incubate
in humidity chamber at 37°C for 2 hours; V) Apply CHCA matrix to tissue; VI)
Image on MALDI-FT-ICR; VII) Clear matrix and glycans with ethanol dilutions,
high pH and low pH washes; VII) Apply PNGase F to tissue; IX) Incubate in
humidity chamber at 37°C for 2 hours; X) Apply CHCA matrix to tissue; XI)

Image on MALDI-FT-ICR
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not contain a core fucose residue, similar to what was observed via HPLC
(Figure 24). The benefit of tissue imaging is the conservation of spatial
localization for the analytes without the need for microdissection or solubilization,
and this work maintains this advantage as shown in Figure 25. Following analysis
of Endo F3 application on tissue, we found over 30 N-linked glycans to be core
fucosylated (Tables 6 and 7) and the main N-glycans found to be core
fucosylated are demonstrated in Table 8. These N-glycans also showed
localization to specific regions of the tissue. For Figure 25, a prostate cancer
tissue section (Figure 26) underwent a variety of treatments where the first
column of images represents masses for the tissue following a general PNGase
F digestion, the second column represents an Endo F3 digestion, and finally the
last column represents an Endo F3 digestion, wash, and sequential PNGase F
digestion as described above. As shown in the first row of Figure 25, we see the
distribution of the N-glycan A2G2F (1809.6393 predicted m/z) with PNGase F
digestion (Figure 25A), a serial tissue section with Endo F3 digestion (Figure
25B) and that same tissue section washed and a sequential PNGase F digestion
applied (Figure 25C). These results show that we are not getting any PNGase F
cleavage activity on the glycans with our Endo F3 digestion, but still able to
achieve the same spatial distribution of the glycans following an Endo F3
digestion, albeit at a lower overall intensity relative to the initial PNGase F
digestion. The second row of Figure 25 shows the truncated N-glycan F(6)A2G2
(1460.5023 predicted m/z) following the same treatments. Figure 25D shows that

we do not observe this mass following PNGase F digestion, however in 25E, we
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Figure 24. Full Mass Spectra for Prostate Cancer Tissues Treated with Endo
F3 and PNGase F.. Further N-glycan identification from the coFull example mass
spectra are represented for PNGase F (blue, top) and for Endo F3 (green, bottom)
applied prostate cancer tissues. Two major PNGase F fucosylated glycans and
their Endo F3 counterparts are highlighted, along with the observed corresponding
mass shiftrresponding mass spectra peaks can be found in Supplemental Table 1

for PNGase F and Supplemental Table 2 for Endo F3.
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Figure 25: Prostate Cancer Tissues Analyzed with Multiple Enzymes. Prostate
cancer tissue section undergoing PNGase F treatment (A,D,G), Endo F3 treatment
(B, E, H) or sequential PNGase F treatment following a wash of the Endo F3 treated
tissue (C, F, I). A known core fucosylated glycan, A2G2F distribution is shown for
the PNGase F mass of 1809.6393 m/z (A, B, C) and for the Endo F3 treated mass
shift of 1460.5023 m/z (D, E, F). Finally, high mannose glycan Man8 (1743.5810

m/z) distribution is shown (G, H, I). Scale bar and intensity bar are included.
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Figure 26: Hematoxylin and Eosin Stain of Prostate Cancer Tissue
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Table 6: Master List of N-Linked Glycans with PNGase F. Master list of all N-
linked glycans found using PNGase F treatment, along with the corresponding

mass error and compositional structure.

Composition Theoretical m/z Observed m/z Error in PPM
Hex5HexNAc2 + 1Na 1257.4226 1257.4337 8.8443
Hex6HexNAc2 + 1Na 1419.4754 1419.4974 15.5276
Hex4dHex1HexNAc3 + 1Na 1444.5071 1444.5368 20.5544
Hex3dHex1HexNAc4 + 1Na 1485.5337 1485.5605 18.0144
Hex4HexNAc4 + 1Na 1501.5286 1501.5592 20.4065
Hex7HexNAc2 + 1Na 1581.5282 1581.5788 31.9634
Hex4dHex1HexNAc4 + 1Na 1647.5865 1647.6356 29.7714
Hex5HexNAc4 + 1Na 1663.5814 1663.6206 23.5883
Hex3dHex1HexNAc5 + 1Na 1688.6131 1688.6569 25.9154
Hex4HexNAc5 + 1Na 1704.6080 1704.6473 23.0792
Hex8HexNAc2 + 1Na 1743.5810 1743.6242 24.7944
Hex5dHex1HexNAc4 + 1Na 1809.6393 1809.7042 35.8806
Hex4dHex1HexNAc5 + 1Na 1850.6659 1850.7334 36.4955
Hex9HexNAc2 + 1Na 1905.6338 1905.7078 38.8432
Hex5HexNAc4NeuAc1 + 2Na 1976.6666 1976.7341 34.1848
Hex5dHex1HexNAc5 + 1Na 2012.7187 2012.7656 23.3222
Hex6HexNAc5 + 1Na 2028.7136 2028.7927 38.9661
Hex5dHex1HexNAc4NeuAc1 + 2Na 2122.7245 2122.7869 29.3924
Hex5dHex2HexNAc5 + 1Na 2158.7766 2158.8272 23.4304
Hex6dHex1HexNAc5 + 1Na 2174.7715 2174.8578 39.6828
Hex4dHex2HexNAc5NeuAc1 + 1Na 2287.8192 2287.8214 0.9577
Hex6HexNAc5NeuAc1 + 1Na 2319.8090 2319.8982 38.4562
Hex6dHex2HexNAc5 + 1Na 2320.8294 2320.9157 37.2026
Hex6HexNAc5NeuAc1 + 2Na 2341.7988 2341.8272 12.1240
Hex6dHex1HexNAc6 + 1Na 2377.8509 2377.8963 19.0975
Hex7HexNAc6 + 1Na 2393.8458 2393.9259 33.4779
Hex9HexNAc3NeuAc1 + 2Na 2421.7984 2421.9534 64.0235
Hex6dHex3HexNAc5 + 1Na 2466.8873 2466.9264 15.8422
Hex6dHex1HexNAc5NeuAc1 + 2Na 2487.8567 2487.9189 25.0022
Hex7dHex1HexNAc6 + 1Na 2539.9037 2539.9544 19.9736
Hex7dHex2HexNAc6 + 1Na 2685.9616 2685.9904 10.7265
Hex8HexNAc7 + 1Na 2758.9780 2759.0200 15.2230
Hex6dHex3HexNAc5NeuAc1 + 2Na 2779.9725 2779.9808 3.0043
Hex7dHex3HexNAc6 + 1Na 2832.0195 2832.0103 3.2376
Hex8dHex1HexNAc7 + 1Na 2905.0359 2905.0798 15.1017
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Table 7: Master List of N-Linked Glycans with Endo F3. Master list of all N-linked
glycans found using Endo F3 treatment, along with the corresponding mass error and

compositional structure.

Composition Parent m/z Endo F3 Observed m/z | Errorin PPM
Theoretical m/z

Hex4HexNAc3 + 1Na 1647.5865 1298.4495 1298.4477 1.4086

Hex3HexNAc4 + 1Na 1688.6131 1339.4761 1339.4328 32.2955
Hex4dHex1HexNAc3 + 1Na 1793.6444 1444.5074 1444.5008 4.5891

Hex5HexNAc3 + 1Na 1809.6393 1460.5023 1460.5117 6.4505

Hex3dHex1HexNAc4 + 1Na 1834.6710 1485.5340 1485.4574 51.5565
Hex4HexNAc4 + 1Na 1850.6659 1501.5289 1501.5338 3.2906

Hex3HexNAc5 + 1Na 1891.6925 1542.5555 1542.5491 4.1678

Hex4dHex1HexNAc4 + 1Na 1996.7238 1647.5868 1647.5796 4.3694

Hex5HexNAc4 + 1Na 2012.7187 1663.5817 1663.6029 12.7262
Hex4HexNAc5 + 1Na 2053.7453 1704.6083 1704.5639 26.0758
Hex5HexNAc3NeuAc1 + 1Na 2100.7347 1751.5977 1751.5814 9.2995
Hex5dHex1HexNAc4 + 1Na 2158.7766 1809.6396 1809.6271 6.9180
Hex6HexNAc4 + 1Na 2174.7715 1825.6345 1825.6245 5.4660
Hex5dHex2HexNAc4 + 1Na 2304.8345 1955.6975 1955.6420 28.3935
Hex6dHex1HexNAc4 + 1Na 2320.8294 1971.6924 1971.6772 7.6934
Hex5HexNAc4NeuAc1 + 2Na 2325.8039 1976.6669 1976.6640 1.4408
Hex5dHex1HexNAc5 + 1Na 2361.8560 2012.7190 2012.7185 0.2579
Hex6HexNAc5 + 1Na 2377.8509 2028.7139 2028.7039 4.9386
Hex5HexNAc3NeuAc2 + 1Na 2391.8301 2042.6931 2042.6896 1.7178
Hex5HexNAc3NeuAc2 + 2Na 2413.8199 2064.6829 2064.6713 5.5883
Hex6HexNAc4NeuAc1 + 1Na 2465.8669 2116.7299 2116.7179 5.6875
Hex6HexNAc4NeuAc1 + 2Na 2487.8567 2138.7197 2138.7127 3.2580
Hex5HexNAc5NeuAc1 + 1Na 2506.8935 2157.7565 2157.7176 18.0368
Hex6dHex1HexNAc5 + 1Na 2523.9088 2174.7718 2174.7546 7.8900
Hex7HexNAc5 + 1Na 2539.9037 2190.7667 2190.8064 18.1128
Hex6dHex2HexNAc5 + 1Na 2669.9667 2320.8297 2320.8643 14.9046
Hex7dHex1HexNAc5 + 1Na 2685.9616 2336.8246 2336.7482 32.6850
Hex6HexNAc5NeuAc1 + 2Na 2690.9361 2341.7991 2341.8213 9.4936
Hex7HexNAc5 + 1Na 2742.9831 2393.8461 2393.8870 17.0942
Hex6dHex1HexNAc5NeuAc1 + 1Na 2815.0042 2465.8672 2465.8742 2.8392
Hex7dHex2HexNAc5 + 1Na 2832.0195 2482.8825 2482.8719 4.2729
Hex7dHex1HexNAc6 + 1Na 2889.0410 2539.9040 2539.9865 32.4937
Hex8HexNAc6 + 1Na 2905.0359 2555.8989 2555.9095 4.1516
Hex7dHex2HexNAc6 + 1Na 3035.0989 2685.9619 2685.9424 7.2745
Hex7dHex1HexNAc6NeuAc1 + 1Na 3180.1364 2830.9994 2831.1097 38.9442
Hex7dHex1HexNAc6NeuAc1 + 2Na 3202.1262 2852.9892 2853.0869 34.2560
Hex9HexNAc7 + 1Na 3270.1681 2921.0311 2921.1289 33.4885
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see this mass following the Endo F3 digestion as expected. We are also able to
efficiently remove the Endo F3 cleaved glycans following washes and PNGase F
application as shown by 25F. Finally, in the third row of Figure 25, we show the
distribution of the N-glycan Man8 (1743.5810 predicted m/z) which should never
contain a core fucose. Again, we see a similar situation to the first row, with
PNGase F cleavage (Figure 25G), no cleavage with Endo F3 (Figure 25H), and a
less efficient salvage with a sequential PNGase F digestion (Figure 25l). To be
certain that the effectiveness of the Endo F3 digestion was not tissue specific, we

also preformed similar digestions on multiple tissue types (Figure 27).

4.4.3. Endo F3 Application to Patient Tumor Microarray

With the ability to determine core versus outer arm fucosylation, we then
wanted to apply this technique to patient samples to determine the relevancy of
this technique for determining clinically relevant factors. As previously described,
core fucose is implicated in many cancer progressions, so we applied the Endo
F3 followed by PNGase F protocol to a purchased hepatocellular carcinoma TMA
set (US Biomax) as previously analyzed by our group [161]. In Figure 28, we see
two different fucosylated glycans implicated in the paper, A2G2F and A4G4F
(1809.6393 and 2539.9037 predicted m/z respectively). Figures 28A and 28B
represent F(6)A2G2 and F(6)A4G4 in their reduced forms following Endo F3
digestion (1460.5023 and 2190.7667 predicted m/z respectively) while 28C and
28D represent the sequential wash and PNGase F digestion for non-core

fucosylated A2G2F and A4G4F. In examining the results, we see that there are
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Figure 27: Multiple Tissue Types Treated with Endo F3. Cervical cancer
tissue as well as hepatocellular carcinoma tissue were treated with Endo F3 and
analyzed for core fucosylated glycans shown to the left with the parent glycan

structures shown in the brackets.
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Figure 28: Patient TMA Treated with Multiple Enzymatic Digestions. Patient
TMAs treated with Endo F3 (A and B) followed with a PNGase F digestion (C
and D) are shown with two prominent core fucosylated glycans of F(6)A2G2 and
F(6)A4G4 abundance shown (1809.6393 and 2539.9037 m/z respectively). (+)

indicates cancerous tissue while (-) indicates normal, untransformed tissue.
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TMA cores that contain relatively more of the core fucosylated versions of the
glycans while some contain relatively more non-core fucosylated glycans. While
this is not an absolute quantitation and more direct analysis will be required to
determine the abundance of core vs. outer arm fucosylation, this work shows
promise that we can further parse out the underlying mechanisms and difference

resulting from the tumor heterogeneity between patients.

4.4.4. Core Fucosylation and Patient Survival Outcomes

Because this study utilized the same patient tumor microarrays studied
previously, | was afforded numerous benefits, specifically in terms of direct
comparison to previous studies, as well maintaining the patient survival
characteristics. In previously published results involving this tumor microarray, it
was shown that survival probability is decreased in patients with elevated levels
of A4G4F (m/z 2539.904) and A4G4F2 (m/z 2685.968) [161], however when
examined under the dual-enzymatic conditions described above, elevated levels
of the glycan above involving no core fucosylation shows no significant difference
in survival probability (Figure 29, middle and right panel), thus demonstrating the
effectiveness and relevance of the dual-enzymatic approach. In contrast, the left
panel of Figure 29 demonstrates a bisecting, core fucosylated N-glycan
(A3G1F2, 1996.724 m/z) that was never previously implicated in having a
significant effect on patient survival. When examined via Endo F3, however, we
see that there is a significant difference in survival probability for patients above

the median level as compared to those below the median value. This N-glycan is
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a prime example of those that may not be apparently obvious when looking at all
glycans together, but when further classifying the structures of these glycans can
reveal new potential differentiating structures. Along with this, further studies are
needed and ongoing regarding patient outcomes and tumor grading and scoring

in terms of core versus outer arm fucosylation.

4.4.5. Combined Application of PNGase F and Endo F3

To further explore the process of the dual enzyme cleavage, initial
experiments were conducted to determine the possibility of mixing both PNGase
F and Endo F3 in one spray. The enzymes were initially combined at a 3:1, 1:1 or
1:3 ratio of Endo F3 and PNGase F and it was found that the lower concentration
of Endo F3 was better suited for cleaving both core and non-core fucosylated N-
glycans (data not shown). From this, the enzyme concentration of Endo F3 was
lowered further, and experiments were done to show a 1:20 ratio of Endo F3 to
PNGase. This demonstrated the best spectra regarding efficient cleavage of all
N-glycans of interest (Figure 30). Efficiency and control experiments are still
needed; however, this is a promising start to further optimizing the dual

enzymatic workflow.

4.5. Discussion
As we know, fucosylation of N-linked glycans has been associated with
several types of cancer [294], especially changes in the addition of core a-1,6-

linked fucose is associated with the development of hepatocellular carcinoma

115



'l

m/z 2539.9037

Figure 30: Mixture of PNGase F and Endo F3. Representative

images of Endo F3 and PNGase F mixed at an approximate ratio of
1:20 respectively (middle). Hematoxylin and eosin stain included (left),
as well as structure and m/z (right) for distribution of the green N-

glycan (m/z 2539.9037) and red N-glycan (m/z 2190.7887)
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(HCC) [295]. Comparing to PNGase F, Endo F3 is working more efficiently and
selectively on core a-1,6-linked fucosylated structures. Without the interference
and noises of all the other complex glycans released by PNGase F, we can focus
on the core a-1,6-linked fucosylated structures when comparing patients’
samples to healthy controls. This was demonstrated above in Figure 25, showing
that comparing core versus outer arm fucosylation does vary patient to patient,
though the underlying mechanism is still unclear.

The most notable benefit of this work is the addressing of one major
drawback to the applied methods for MALDI imaging mass spectrometry. With
the ability to distinguish between the anomeric linkages of the fucose additions of
the glycans, more in-depth analysis of tissue is capable without the use of serial
sections or other structural elucidation techniques that lose the spatial
localization afforded with imaging, such as proteomic analysis or ion mobility
[296].

Additionally, this methodology has the potential to improve glycopeptide
analysis in the field of proteomics. With the residual HexNAc and Fucose residue
left following the Endo F3 cleavage, this could be utilized in proteomic analysis
as a more specific precursor ion. Used appropriately, this precursor ion could be
indicative of glycopeptides that contained core fucosylated N-glycans, further
elucidating the structural motifs of the attached N-glycans with well-established
and easy to perform proteomic analyses, such as electron-transfer dissociation

(ETD).
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While this technique can effectively determine core fucosylated N-glycans,
the protocol will still require further optimization to reach efficiency levels similar
to that of the PNGase F. As it stands now, the PNGase F digestion is working on
N-glycans substantially more efficiently than the Endo F3 digestion, rendering
quantitative analysis difficult. However, despite the flaw in quantitative analysis,
the qualitative abilities of the data are able to further elucidate the localization
and relative abundance of these core fucosylated glycans. With this information,
more distinct patterns and features can be acquired from the tissue imagine,
allowing for more comprehensive analysis of tissue imaging and glycosylation as

it relates to tumor heterogeneity.
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Chapter 5: Determination of
Sialic Acid Linkage via MALDI-
IMS
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5.1. Introduction

As referenced previously in chapter three, one significant challenge in
examining the changes in glycosylation via MALDI imaging mass spectrometry is
the inherent misrepresentation of sialylated N-glycan species. Compared to other
glycosidic bonds, sialic acids are among the least stable, with loss and decay
very common following the ionization step in a MALDI imaging mass
spectrometry experiment [297]. Further, the presence of a strong negative
charge on sialic acids increases ionization inefficiencies, particularly when
experiments are conducted in positive ion mode, as most N-glycan experiments
are [297]. Because of these challenges presented, in order to accurately
quantitate changes in sialylated N-glycans for biomarker analysis, sialic acids on
N-glycans must be stabilized for true representation of sialylated species in the
human N-glycome. For example, the loss of one sialic acid on a bi-antennary
glycan would result in an apparent increase in the non-sialylated bi-antennary
glycan, thus implying a lower population of sialylated species and a
miscalculated increase in the unmodified bi-antennary glycan. This being said,
qualitative analysis is still passable, with increases in more complex glycans
being associated with the tumor regardless of sialylation state, allowing for
differentiation of tumor versus non-tumor via N-glycan analysis. However, the
true identity of these glycans will continue to remain elusive without determining
the accurate sialylation state on these higher branched structures. With this

being the case, many groups have strived to further stabilize these sialic acids on
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N-glycans and differentiate the specific glycosidic linkages of the sialic acid on
the N-glycan.

In this chapter, | will discuss the application of two different chemical
derivatization techniques that were adapted from previously published articles.
The first method that will be discussed is ethyl esterification (EE), adapted from
Reiding et. al. in 2014 [241]. This technique creates an EE reaction on 02,6
linked sialic acids while performing lactonization on the a2,3 sialic acids, allowing
for stabilization of the sialic acid to the galactose and differentiating the two
linkage varieties by change in mass. The second method is a double amidation
reaction (AA) performed on tissue, adapted from Holst et. al. in 2016 [262]. While
utilizing many of the same materials, this method varies slightly from the EE
method through substituting ethanol for dimethylamine, resulting an initial
dimethylamidation reaction, followed by a secondary amidation reaction via
ammonia in water. In a2,6 sialic acids, this results in the formation of an amide
group, while in a2,3 sialic acids, the lactone is reopened by the second reaction
and an amine group is added. Again, this method allows for stabilization of sialic
acids to prevent pre- and post-source ionization decay and allows for elucidation
of the linkage of the sialic acid through the resulting mass shift. In this chapter, |
will discuss the initial experiments using these two methods, the rationale behind
choosing one method over the other, the application to human liver tissue, and

potential applications of the methodology.

121



5.2. Materials and Methods
5.2.1. Tissue Samples and Relevant Materials

Formalin-fixed paraffin-embedded (FFPE) tissue blocks of whole tissue
(specifically prostate and liver) were obtained from the Medical University of
South Carolina Hollings Cancer Center Biorepository and Tissue Analysis
Shared Resource. A set of 12 tissue microarray (TMA) FFPE slides containing
varying patient data were obtained from collaborators in Heidelberg, Germany.

For the chemical derivatization, 1-Hydroxybenzotriazole hydrate (HOBt)
with dimethylamine and approximately 20 percent water was purchased from
Sigma-Aldrich (St. Louis, MO). 1-(3-dimethylaminopropyl)-3-ethylcarbodimide
(EDC) was purchased from Alfa Aesar (Haverhill, MA) and stored in a sealed bag
with drierite and sealed with parafilm due to its moisture and air sensitivity.
Finally, dimethyl sulfoxide (DMSO) and 28 to 30 percent ammonia in water was
purchased from Fisher Scientific (Hampton, NH). Additionally, cover glass was
purchased from ThermoFisher Scientific (Waltham, MA) to secure solutions to

tissue.

5.2.2. Washes and Rehydration

Washes and dehydration steps were performed similarly to what was

described in Section 3.3.3.
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5.2.3. Ethyl Esterification Chemical Derivatization

Ethyl esterification was adapted from Reiding et. al. (2014) for direct tissue
analysis. Briefly, immediately following the deparaffinization and rehydration
washes, a mixture of EDC and HOBt was made for on-tissue derivatization. To
create the EE solution of 0.25 M EDC and 0.25 M HOBt, 0.675g of HOBt was
combined with 0.959g of EDC, 1mL of HPLC H-20, and 20mL of 200-proof
ethanol. A glass mailer was then filled with the EE solution and the slide fully
immersed. The lid was then parafilmed shut to prevent any evaporation of the
solution and the glass mailer placed into a 37°C oven for one hour. Finally, the
slide was carefully removed to avoid tissue disruption as much as possible and a
series of washes were used to remove the reagents. These washes consisted of
two minutes in 200-proof EtOH twice, 10 minutes in Carnoy’s Solution (60
percent ethanol, 30 percent chloroform, and 10 percent acetic acid) twice, two
minutes in HPLC H20, two minutes in 200-proof EtOH twice, and a rinse of 1
percent trifluoracetic acid (TFA) in 200-proof EtOH for 30 seconds. It is important
to note that following each wash step, the solutions were replaced to remove the
reagents as completely as possible. The slide was then taken directly, without
the chance to dry, for further tissue processing using the experimental MALDI

imaging workflow.

5.2.3.1. Reaction Schematic
As stated above, the EE method utilizes EDC, HOBt, and ethanol to

derivatize sialic acids through either the esterification on a2,6 linked sialic acids
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or the removal of water from 02,3 sialic acids, both of which cause a discernable
shift in m/z in a MALDI imaging experiment. In a2,6 sialic acids, the exposed
carboxylic acid reacts with the ethanol through the action of the EDC and HOB},
resulting in an esterification reaction and the mass shift of approximately 28.05
a.m.u. (+46.07 for the addition of the ethanol and -18.02 for the loss of water). EE
acts as a protective group for the sialic acid, allowing for less in-source decay.
Conversely, 02,3 linked sialic acids perform a lactonization event with the
neighboring galactose, where the exposed carboxylic acid is joined with an
exposed hydroxyl group, creating a more stable glycosidic bond and a mass shift
of -18.02 a.m.u. from the loss of water in the lactone formation. Figure 31
provides a more in-depth look at the structural changes associated with EE and

highlights the differences based on sialic acid linkages.

5.2.4. Amidation-Amidation Chemical Derivatization

Adapted from Holst et. al. in 2016, the AA reaction was performed as
described with three slight modifications: 1) the reaction volume was reduced to
200yL, 2) a washing step was added between the first and second amidation,
and 3) the amount of HOBt was adjusted for 20 percent water composition.
Briefly, reaction solution 1 was created by combining 22uL of EDC, 42.2mg of
HOBt, 15.8uL of dimethylamine, and 0.5mL of DMSO to create a 0.25/0.5/0.25 M
solution of EDC, HOBt, and dimethylamine, respectively. 200uL of reaction
solution 1 was then applied to the tissue using a pipette tip, careful to completely

cover the tissue without disruption. The tissue was then covered with a glass
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Figure 31: Ethyl Esterification Derivatization of Sialic Acids. Chemical
structures of 02,3 and 02,6 sialic acids are shown above, as well as the
modification made during the Ethyl Esterification chemical derivatization
process. Changes are highlighted in red, and the conditions for the

derivatization and associated mass shift are shown as well.
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coverslip and placed into a either a pyrex petri dish with parafilm or a pyrex
container with airtight sealing capabilities. The container was then placed inside
a 60°C oven for 1 hour.

Following incubation, the slides were then removed and the coverslip was
gently removed, careful to not disrupt the tissue adherence to the slide. The slide
was then placed perpendicularly on a paper towel to remove the majority of the
reaction solution. To remove the rest, a vacuum flask apparatus was set up to
allow for suctioning of remaining liquid in a more precise manner. Using a pipette
tip and with as close contact as possible without touching the tissue, the
remainder of the visible liquid was aspirated, though it is important to note that
over-drying the tissue was avoided as it causes reagents to adhere more to the
tissue. 200uL of DMSO was applied to the tissue and then aspirated in a similar
fashion as described above, and this process was repeated a total of two more
times.

Next, the second reaction was prepared with 350uL of DMSO and 150uL
of 28 to 30 percent ammonia in water. The second reaction solution was then
applied in a similar fashion to the first, with all tissue covered and a coverslip
placed over the tissue to seal. The slide was then placed inside the pyrex
chamber to protect from evaporation and placed in the 60°C oven for 2 hours.
Washing of the slide was performed exactly as described above. Finally, the slide
was then rinsed in a series of washes as described in section 5.2.3. (ethanol,
Carnoy’s, water, and TFA). The slides then proceeded directly to further

processing without being allowed to dry.
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5.2.4.1. Reaction Schematic 1

In contrast to the EE reaction, the AA reaction utilizes dimethylamine
instead of ethanol. In examining a2,3 sialic acids, the reaction mechanism is
unchanged, creating a lactone between the sialic acid and neighboring galactose
and resulting in a loss of water. However, in a2,6 linked sialic acids, the
carboxylic acid reacts with the dimethylamine, creating a stable dimethylamide
group and a loss of water, resulting in a mass shift of approximately +27.05
a.m.u. Figure 32 highlights the structural changes of both sialic acid and the

change in mass for each.

5.2.4.2. Reaction Schematic 2

Unlike EE, the AA reaction has a second reaction step, resulting in
amidation of the a2,3 linked sialic acids as well. In this step, the lactone formed
from the first reaction is hydrolyzed and the ammonia creates a stable amide
group on the newly formed carboxylic acid. This results in a total mass difference
of -0.984 a.m.u. for 02,3 linked sialic acids following both reactions. The 02,6
linked sialic acids remain completely unchanged throughout the duration of the
second reaction. Figure 33 details the conditions and structural changes for the

a2,3 linked sialic acids and the resulting mass differences.

5.2.5. Tissue Preparation and N-Glycan Imaging
For the tissues that underwent the EE chemical derivatization, they were

then treated as previously described in sections 3.3.3. to 3.3.5., proceeding
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Figure 32: Reaction Schematic for Amidation-Amidation Reaction #1.
Schematic of sialic acid derivatization via amidation-amidation reaction. Top:
reaction scheme for 02,6 linked sialic acids; Bottom: reaction scheme for
a2,3 linked sialic acids. Shown for addition of EDC, HOBt, and
dimethylamine. Changes in 02,6 sialic acids are highlighted in red while

changes in 02,3 sialic acids are highlighted in blue.
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Figure 33: Reaction Schematic for Amidation-Amidation Reaction #2.
Schematic of sialic acid derivatization via amidation-amidation reaction. Top:
reaction scheme for 02,6 linked sialic acids; Bottom: reaction scheme for 02,3
linked sialic acids. Shown for addition of ammonium hydroxide to further
distinguish 02,3 linked sialic acids. Changes in 02,6 sialic acids are highlighted in

red while changes in a2,3 sialic acids are highlighted in blue.
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through an antigen retrieval step, enzymatic digestion and matrix deposition, and
N-glycan imaging on both the MALDI FT-ICR and MALDI-TOF systems [259,
267].

For tissues that underwent the AA reaction, a standard decloaker was
used to proceed with antigen retrieval. Briefly, the overall basin and slide holder
jars were filled to the appropriate level, and a mailer containing the slides was
filled with approximately 20 mL of citraconic buffer (as described in section
3.3.3.) to completely fill the mailer and one snap of the lid was left open to
prevent bursting of the mailer and to allow steam to exit. The decloaker
parameters were set to 115°C for 15 minutes with a pressure setting of 5.4 psi.
The slides were placed in the decloaker for the preheating and allowed to run the
full cycle. Finally, once the cycle was finished and the decloaker had cooled to
95°C, the mailer was then cooled and washed similar to the process described in
section 3.3.3. The reason for the shift in method was due to two factors: 1) the
vegetable steamer previously used was no longer functional and 2) other
members of the lab performed analysis on decloaker settings compared to
vegetable steamer and rice cooker settings and found that these settings were
optimal for tissues with high fat content or for tissues that had undergone a
chemical stabilization (data not shown). The rest of the tissue processing

occurred similarly to sections 3.3.4. and 3.3.5.
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5.3. Results
5.3.1. Ethyl Esterification On-tissue

Initially, the method for EE was created for released glycans, so the
method was adapted for on-tissue application with the adjustments being made
by myself in collaboration with Dr. Peggi Angel for the washing procedure. Once
the protocol was adapted and applied to tissue, the first test was to determine the
efficiency of stabilization for sialic acids post-imaging analysis. In Figure 34, initial
experiments were done to show the efficiency of sialic acid stabilization and
differentiation, mainly looking to examine the overall retention of sialylated
species and the associated mass shifts corresponding to the linkage of the sialic
acid. An example glycan that is mono-sialylated, mono-fucosylated, and bi-
antennary (2100.7347 m/z, A2G2F1S1) is shown without EE, the chemical
derivatization for an a2,3 sialic acid, and for an a2,6 sialic acid. The localization
of the sialylated species is clearly visible in the prostate FFPE tissue,
demonstrating the preference to smooth muscle and collagen [76]; however,
when looking at the chemically derived masses, there is a slight variation to the
localization. Not only do we see a higher representation of the N-glycan along the
sides of the tissue, we see representatively similar amounts of sialylated species
following the chemical derivatization, supporting the claim that sialylated species
are indeed more stabilized following the protocol, as well as differentiated by
mass as to be expected (approximately +28 a.m.u. for a2,6 and -18 a.m.u. for

a2,3).
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While this was a promising start for derivatizing on tissue, these initial
experiments were performed on the MALDI FT-ICR platform, which is known to
image sialylated species more efficiently than a time-of-flight platform. Therefore,
it was imperative to better prove the stabilization aspect by examining higher
sialylated species than a mono-sialylated N-glycan. As mentioned previously,
higher sialylated species may lose some sialic acid modifications while retaining
others, resulting in a misrepresentation of sialylated N-glycans. So, to determine
the efficiency of on-tissue stabilization, three N-glycans were examined with
varying amounts of sialic acid modifications (A2G2S1, 1954.6768 m/z; A2G2S2,
2245.7722 m/z; and A3G3S3, 2923.9896 m/z). Figure 35 shows the same
prostate FFPE tissue that underwent both EE and no modification to the tissue.
When examining these three N-glycans, the stabilization is clearly visible when
comparing the left half of the images with the right. On the left, as the number of
sialic acid modifications increase, a clear loss of signal is shown, demonstrating
reduced abundance of these sialylated N-glycan species, particularly the tri-
sialylated N-glycan. In contrast, the right half of the images show a greater
retention in signal of these multi-sialylated glycans, even showing a clear
localization pattern for the tri-sialylated N-glycan that was not even discernable
without the chemical modification. Therefore, we were able to clearly show a
stabilization effect stemming from this N-glycan derivatization on tissue as
compared to untreated tissue, as well as determine specific N-glycan linkages

based on the corresponding mass shift post-treatment.
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Figure 35: Stabilization of Multi-Sialylated Tissue Glycans by EE. MALDI-
FT-ICR IMS data from the same ethyl esterified prostate tissue is shown for
mono-, di-, and tri-sialylated bi-antennary glycans. Images in each panel on
the left side represent non-ethyl esterified glycans, and the right side images
are after EE. Also shown for the EE examples are the a-2,6 sialic acid linkage

structures
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5.3.2. Amidation-Amidation On-tissue

In addition to applying the ethylation reaction on tissue, myself and
another member of the lab worked toward adapting the method from Holst et. al.
(2016) for on-tissue analysis. Using a combination of the paper adaptation and
slight adjustments made from the ethylation reaction protocol, a working
amidation procedure was once again validated on FFPE prostate tissue. Table 9
demonstrates example changes in parent N-glycan masses according to sialic
acid linkages, while Figure 36 demonstrates the N-glycan amidation spectra and
the resulting images from prostate FFPE tissue section. Figure 36A shows a non-
amidated spectra on top in blue and an amidated spectra on the bottom in red for
the mono-sialylated bi-antennary (A2G2S1) N-glycan (1954.6768 m/z). Here, it is
clearly shown that the amidation results in a higher overall signal, implying
stabilization of the sialylated N-glycan. Figure 36B is an overlay of the 02,3 linked
N-glycan in red and the a2,6 linked N-glycan in green, demonstrating the
implications in localization we can see in FFPE tissue through differentiating the
linkage specifities of the same N-glycan. Figure 36D shows a similar spectrum as
to 36A, but for the mono-sialylated, mono-fucosylated, bi-antennary (A2G2S1F1)
N-glycan (2100.7347 m/z). Again, we can see an increase in intensity for the
peaks of the amidated tissue, implying stabilization. Finally, we see the overlay of
the a2,3 linked N-glycan in red and the a2,6 linked N-glycan in green in Figure
36E. This distribution is localized completely differently from 36B, showing how
differentiating these glycans even further can dictate trends in understanding

tissue N-glycan localization in terms of disease state, tissue morphology, etc.
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Figure 36: Amidation-Amidation Chemical Derivatization On-Tissue. Amidation-amidation
reaction done on prostate FFPE tissue and the resulting spectra and images following analysis via
MALDI imaging mass spectrometry. A) Spectra for N-glycan A2G2S with and without amidation-
amidation. The top spectra in blue represents the non-derivatized N-glycan, with one or two sodium
ions. The bottom spectra in red represents the mass shift resulting from the chemical derivatization.
Sialic acids angled to the left indicate a2,3 linkage while angled to the right represents a2,6 linkage.
B) Resulting image overlay showing localization of the 02,3 linked N-glycan, m/z = 1953.741 (red, -1
m.u.), and 02,6 linked, 1981.782 (green, +27 m.u.). C) Hematoxylin and eosin stain of the tissue
section analyzed. D) Spectra for the fucosylated N-glycan A2G2S1F1 with and without the
amidation-amidation reaction. Top spectra in blue is non-derivatized and the bottom spectra in red is
showing the mass shift following derivatization. E) Resulting image overlay showing localization of
02,3 linked N-glycan, m/z = 2099.810 (red, -1 m.u.) and 02,6 linked, m/z = 2127.832 (green, =27

m.u.).
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Similar to the EE validation, it was also important to further confirm that
this method will increase sialic acid stability by examining multi-sialylated N-
glycan structures. Figure 37 is set up comparably to Figure 35 and examines N-
glycans with one, two, and three sialic acids before and after amidation. The left
column of images represents the non-amidated tissue and a drop in signal
intensity and clarity is clearly visible in the di- and tri-sialylated N-glycans.
However, when looking at the amidated tissue, we see a continuation of signal
intensity when comparing the mono-sialylated N-glycan to the di-sialylated, and
even the tri-sialylated shows a distinct localization pattern and higher intensity as
compared to the non-amidated tissue. These studies validated the use of
amidation to not only differentiate sialic acid linkage, but to also stabilize multi-
sialylated N-glycan species, allowing for more accurate qualitative and
quantitative N-glycan analysis. Therefore, this methodology was then used to

examine sialic acid difference in HCC tissue.

5.3.3. Amidation-Amidation on FFPE Human Liver Tissue

Amidation derivatization was then applied to HCC tissues to further
characterize the N-glycome of HCC, in addition to the fucosylation
characterization demonstrated in chapter four. Figure 38 shows the amidation
protocol applied to the same FFPE HCC tissue that was used in Figure 27 in
chapter four. A and C demonstrate the mono-sialylated A2G2S1 N-glycan while
B and D demonstrate the mono-sialylated and mono-fucosylated A2G2S1F1 N-

glycan. A and B both show the a2,6 linkage for the sialic acid and C and D
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Figure 37: Stabilization of Multi-Sialylated Tissue Glycans by AA. MALDI-FT-

ICR IMS data from the same amidated prostate tissue is shown for mono-, di-,
and tri-sialylated bi-antennary glycans. Images in each panel on the left side
represent non-amidated glycans, and the right side images are after AA. Also

shown for the AA examples are the a-2,6 sialic acid linkage structures
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Figure 38: AA Chemical Derivatization of HCC Tissue. Following optimization
of the amidation-amidation conditions, the derivatization was then applied to
representative hepatocellular carcinoma tissues, seen above. The top row shows
two different sialylated N-glycan species, one with and without a core fucose,
with the 02,6 linked sialic acid species in the left two images and the a2,3 linked
sialic acid species in the right two images. The bottom row shows a di-sialylated
N-glycan with the left demonstrating 2 02,6 linked sialic acids, the middle

representing a mix of both, and the right showing 2 a2,3 linked sialic acids.
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demonstrate the 02,3 linkage for the sialic acid. When comparing the a2,6 to the
a2,3 in the tissue, the overall intensity is decreased for the a2,3 specific N-glycan
species; however, localization is not changed by sialic acid linkage, but rather
whether there was a fucose residue present on the structure. Additionally, when
examining the bi-sialylated N-glycan shown in E, F, and G, the presence of one
or two 02,6 sialic acids results in an intense signal localized to the tumor region
of the tissue; however, the presence of two a2,3 sialic acids is not seen
anywhere in the tissue, driving the importance of linkage specificity and the
possible importance of a2,6 linked sialic acids in HCC.

In conjunction with single tissue imaging applications, the amidation
protocol was also applied to TMAs to examine multiple tissues at once to further
characterize the changes in terms of tissue type, morphology, or by patient.
Unfortunately, the TMA utilized in chapters three and four was not available for
amidation. However, as previously mentioned, a collaborator in Heidelberg,
Germany sent us a set of twelve TMAs of varying tissue types, pathologies, and
number for which to examine the N-glycome. With this set, the amidation
derivatization was applied to a few of these TMAs to examine the implications of
sialic acid linkages on a broader scale. In Figure 39, the key to the TMA and the
tissue types is shown to the right, with representative images of the same mono-
sialylated N-glycans as shown previously, with and without the fucose residue.
Comparable to what was seen in Figure 38, the 02,6 linked sialic acid structures
were much more intense than the a2,3 sialic acid structures, regardless of tissue

morphology, pathology, or patient, as shown on the left side of Figure 39. Further
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G1 Hepatocellular carcinoma G1
G2 Hepatocellular carcinoma G2
Ad Adenoma

FNH Focal nodular hyperplasia

NG Normal liver tissue

Muskel Muscle

G1 G1

Muskel Muskel G1
Ad Ad Ad Ad Ad
FNH FNH FNH FNH FNH
NG NG NG NG NG
NG NG NG NG NG
NG NG NG NG NG

Figure 39: AA Chemical Derivatization of Human Liver TMA. Amidation-
amidation was applied to a human liver tissue microarray with varying tissue
types (see keys to the right) and the resulting changes in sialylation are shown to
the right. In general, 02,6 sialylation was much more prominent than a2,3 sialic

acid regardless of additional modifications or tissue morphology type.
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studies are planned to continue analysis of these TMA sets to further distinguish
the differentiation of fucosylation or sialylation in HCC tissues, as well as

examine these trends at a patient-by-patient basis as was done in chapter three.

5.4. Discussion

As briefly touched upon in the introduction, the need to further
characterize sialylation is backed by ever-growing developments in the role
sialylation plays in disease states, particularly in cancer development,
progression, invasion, and metastasis. As reviewed by many groups, alterations
in sialic acids are consistent in many aspects of cancer biology, such as reduced
adhesion of tumor cells to the ECM to promote invasion and metastasis, the
masking of innate immunity pathways in the complement system to promote
tumor survival, and alterations in immune cell receptors and selectins [298-300].
Further, hyper-sialylation and sialic acid linkage specificity has been implicated in
several specific cancers, such as ovarian cancer, prostate, oral cancer, and even
HCC [77, 163-166, 301-304]. These implications were the main driver of the work
in this chapter, specifically in examining those sialic acid changes in HCC.

On the broadest scale, total and free sialic acid has been examined in liver
disease. In looking at the total sialic acid, the different etiologies of liver disease
were not significantly different, but compared to normal controls, the total sialic
acid concentration was decreased remarkably. In contrast, the free sialic acid
concentrations varied between etiologies, showing that nonalcoholic cirrhotic liver

serum contained less free sialic acid than those of a toxic etiology [165]. The total
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sialic acid concentration has also been shown to differentiate
cholangiocarcinoma from HCC with a sensitivity of 82.6 percent and a sensitivity
of 83.1 percent [166].

In a more specific view of HCC, sialyltransferase regulation, mucin
expression, Thomsen-Friedenreich (TF/Tn) antigen expression, and linkage
specification has been examined for the disease state. Previously, the ST6Gal
family of sialyltransferases were shown to be upregulated in HCC but not
cirrhosis, implying that the alteration of a2,6 sialylation of liver glycoproteins
happens during neoplastic transformation and can be useful in identifying
potential biomarkers for early stage HCC [305]. Additionally, the ST6Gal family
has been shown to modulate chemotherapeutic responses for HCC cells,
reducing the efficacy of docetaxel treatment in-vivo. These results imply that that
this sialyltransferase may play a role in maintaining cancerous cell survival in
HCC, consistent with previous reports of upregulation of ST6Gal-I and increased
prevalence of a2,6 sialic acids [164]. Finally, other groups have examined the
expression of mucins and TF/Tn related antigens, where MUC1, MUC2, TF, Tn,
sialosyl-Tn, and a2,6 linked sialic acids were not readily expressed in normal
hepatocyte cells, while HCC showed upregulation of all but MUC2 after
comparing expression between normal and HCC tissue to confirm that the results
were not from an incomplete glycosylation event [163]. This and all the previous
findings are consistent with what we have seen in our liver cancer tissues, with
an upregulation of total a2,6 sialic acid apparent as opposed to the 02,3

conformation, leading to a promising start in further characterizing HCC’s total N-
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glycome and adding more information to further distinguish tumor from non-tumor
in HCC (especially in combination with additional fucosylation studies).

To further discuss the rationale behind choosing the AA chemical
derivatization over the EE, the decision lies in the continued benefits of an amide
addition as opposed to an ethyl-ester group. Research by Dr. Vivian Lu in the
Drake lab has shown that replacement of the second amidation from ammonia to
an propargyl amine or azide depending on the linkages results in a mass shift as
well as an added benefit with this modification. With these propargyl amine or
azide group attachments to the terminal sialic acids, this opens the door for
potential “click chemistry” reactions, allowing for bioconjugation of additional
molecules to the sialic acids [306]. For example, ongoing work by Dr. Lu has
demonstrated effective conjugation of markers such as GFP to the sialic acids
on-tissue, as well as the conjugation to magnetic beads off tissue. This
conjugation to the sialic acids provides an enhanced benefit when looking at
proteomics, allowing for a more targeted approach to the glycoprotein carriers of
these modified sialic acids, further optimizing the enrichment of specific N-glycan
modifications and their protein carriers. This work is still being conducted with a
manuscript in process demonstrating the effectiveness of these clickable sialic

acid targets.
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Chapter 6: Enhanced
Glycoproteomic Analysis of
Liver Cancer Tissues
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6.1. Introduction

While defining the N-glycome in human disease, specifically HCC, is
important, the clinical relevance of these modifications to glycosylation is
integrally linked with the glycoprotein on which the modification is occurring.
Therefore, it is imperative to not only determine the modification of interest, but
also correctly identify the protein of interest. Intact glycoproteomics, i.e.
simultaneous analysis of a glycopeptide singly or in mixtures, has increased in
popularity, with multiple techniques developed within the last decade [172, 213,
215, 272, 307-314]. However, there are inherent difficulties of intact glycoprotein
analysis that have made this progress slow-moving. For example, the complexity
of an intact glycopeptide structure, the low abundance of glycopeptides in
respect to the total protein concentration, and the low ionization efficiency of
these glycopeptides all provide challenges in the intact analysis of these
glycoproteins [315]. However, as discussed in chapter one, many techniques
have recently been developed to combat these challenges, such as CID, HCD,
ETD and a combination of these methods [213, 219, 226, 312, 316].

Early studies of glycoproteomics utilized collision-induced dissociation, a
technique where ions are accelerated and collide with a neutral molecule (such
as helium, nitrogen, or argon) to release their kinetic energy internally and
fragment the molecule. CID uses a lower collisional energy, ideally suited for
preferential glycan fragmentation while leaving the peptide backbone largely
unmodified [317]. One drawback, however, is the low m/z cutoff, making the

identification of larger glycan structures more difficult. Similar to CID, HCD
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effectively fragments the sugar structure while also fragmenting a portion of the
peptide backbone, producing B- and Y-type ions for improved peptide
identification [308]. Unlike CID, however, HCD does not suffer from the low m/z
cutoff, making this technique better suited for more complex and higher mass
glycans. It is also able to be performed in a stepwise function, changing the
collisional energy and obtaining different information over the varying range of
collisional energies [310]. While this works for characterization of the glycan
moiety, it is ineffective in terms of completely identifying the peptide of interest,
as well as locating the site of glycosylation on the peptide. Conversely, ETD is
most effective for examining the protein or peptide backbone while leaving the
post-translational modifications intact. Briefly, ETD causes fragmentation of
large, positively charged molecules through the transfer of an electron, resulting
in cleavage to the C- and Z-type ions, providing an advantage for longer, intact
peptides and proteins [310]. ETD provides a unique approach when combined
with other collisional techniques, allowing for a combination of glycan
identification and site-specific localization on associated glycopeptides.
Unfortunately, while many experiments to date have utilized these techniques for
protein glycosylation studies, very little has been reported in terms of disease or
human health implications.

As stated above, one of the many challenges of these techniques is the
low abundance of these glycopeptides following tryptic digest, which introduces
difficulties in detection and quantification. Therefore, many studies include an

enrichment approach of some kind to enhance glycopeptide abundance in the
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sample. One enrichment technique commonly used for proteomics is lectin
affinity chromatography, where a specific lectin is used to bind glycoproteins
carrying the lectin-target glycan of interest initially, thus reducing the pool of
potential proteins. For example, Aleuria aurantia Lectin (AAL) is commonly used
to enrich for fucosylated glycans, further narrowing the proteomic hits of a
sample [318]. While these are extremely effective, they often require the
homogenization of a sample, so they are largely ineffective when looking at
region-specific tissue samples for proteomics.

The following work outlines the combination of imaging mass spectrometry
techniques with glycoproteomic approaches to enhance glycopeptide
identification for specific N-glycan changes. More specifically, this new
methodology combines the previously discussed enzymatic derivatization of core
fucosylation on tissue for imaging purposes to enhance detection and
characterization of core fucosylated glycopeptides in cancer tissues. With the use
of the unique GIcNAc-Fuc tag left on specific core fucosylated peptides, the
normally complex glycopeptide spectra are more easily interpreted and reduce

ionization complications of larger and more complex core fucosylated N-glycans.

6.2. Materials and Methods
6.2.1. Tissue Samples and Relevant Materials

FFPE liver cancer tissues were obtained from the Medical University of
South Carolina Hollings Cancer Center Biorepository and Tissue Analysis

Shared Resource. Endoglycosidase F3 was obtained, expressed, and purified by
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the Mehta laboratory. Pierce Microplate BCA Protein Assay Kit and C18 ZipTip
cartridges were purchased from ThermoFisher Scientific (Waltham, MA). Trypsin
was purchased from Promega (Madison, WI) at five bottles of 20ug of trypsin. All
other solutions and solvents made are generic varieties. For our purposes,

solvents were purchased from Fisher Scientific (Hampton, NH).

6.2.2. Imaging Characterized N-Glycans
The imaging of the core fucosylated N-glycans was done exactly as

described in section 4.3.4.

6.2.3. Segmentation Analysis

After imaging the core fucosylated N-glycans, regions of core fucosylation
were established using segmentation analysis. Segmentation was performed
using Bruker SCIiLS 2017 software (Billerica, MA). Segmentation analysis is a
program within SCILS Lab that allows for parsing specific features found in
multiple areas of the tissue and hierarchically clustering them based on these
features. Figure 40 demonstrates an example of this segmentation analysis.
Briefly, the segmentation analysis was done under the parameters of weak
denoising, bisecting k-means, and Manhattan distribution metric. The results
were then parsed into two main groups: those containing core fucosylation and
those that did not. The results that were achieved by this segmentation are

demonstrated in Figure 41. By overlaying this information with the imaging data
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Figure 41: Segmentation of Endo F3 Applied HCC Tissue. Segmentation analysis
done following imaging of tissue applied with Endo F3. All components of the analysis
were done with core fucosylated associated masses, with red indicating regions
where core fucose was not present, while green indicates regions of the tissue in

which core fucosylated N-glycans were found.
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acquired, regions within the tissue containing core fucosylation were identified

and excised from the tissue.

6.2.4. Tissue Extraction and Enrichment
Once the regions of tissue that contained the core fucosylation were

identified via segmentation analysis, the tissue of interest was extracted. This
was done by precisely scraping large tissue sections that were not of interest
(tumor tissue containing core fucosylated N-glycans) off the slide with a straight
edge razor. Next, the regions of interest were circled using a glass scratching
pen. The rest of the tissue was then scraped away using the tip of the straight
edge razor, leaving only tissue regions of interest left on the slide. Finally, the

regions of interest were scraped from the slide and placed in an Eppendorf tube.

6.2.5. Tryptic Digestion

In-solution tryptic digest was performed as previously described with minor
modifications [319]. As the tissue had already undergone antigen retrieval for
imaging, this process was skipped in solution. The tissue was brought up in 50uL
of 256mM ammonium bicarbonate (AMBIC), ensuring that the pH was between
seven and eight. Next, 50uL of triflouroethanol (TFE) was added and the tissue
solution was sonicated in a bath for 15 minutes, ensuring that most of the tissue
was dissolved in the solution. The sample was then spun down briefly,

parafiimed shut and incubated on a thermoshaker at 60°C and 300rpm.
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Next, Dithiothreitol (DTT) and tris-2(-carboxyethyl)-phosphine (TCEP)
were added to create an end concentration of 25mM DTT and 10mM TCEP (1uL
of 1M TCEP and 5puL of 500mM DTT, stock solutions both in AMBIC). The
sample was then parafilmed shut and incubated at 60°C for 30 minutes.
Following the incubation, the sample was cooled to room temperature and
iodoacetamide (IAA) was added to make a final IAA concentration of 50mM
(approximately 10.6uL of a 500mM stock solution in AMBIC). The sample was
then covered with aluminum foil and allowed to incubate in the dark for 40
minutes.

Following the IAA incubation, 50mM AMBIC was added to reduce the total
concentration of TFE to 10 percent of the total solution (383.4uL of 50mM
AMBIC). This solution was then sonicated for five minutes and briefly spun down.
Finally, 2ug of trypsin was added, then the sample was parafilmed shut and
incubated overnight at 37°C. From here, the sample could be stored at -20°C

until further proteomic analysis was ready.

6.2.6. Protein Quantification

To ensure that enough protein was obtained from the isolated tissue
sections, a protein quantification assay was performed to determine total protein
amount in the sample. Protein quantification was vital, as the sample clean up
required a minimum of 10ug of total protein to ensure correct proportions. The
sample was quantified using the reducing agent-compatible Pierce Microplate

BCA Protein Assay Kit from Thermo Scientific (Catalog #23252). Protocol was
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followed as provided by the kit; the results were read on the microplate reader
and protein amounts were determined based off the standard curve created.
Once the protein concentration was determined to be at least 10ug, the sample

then proceeded to clean-up via ZipTip.

6.2.7. Sample Clean-up

The sample was then de-salted via C18 ZipTip cartridges, capable of
binding a total of 10ug peptide per sample. Briefly, the sample was first dried in
the speed vacuum and brought back up in 30uL of 0.1 percent triflouroacetic acid
(TFA). Next, 50uL of the four necessary solutions were created in separate
tubes. First was the wetting solution of 75 percent acetonitrile (ACN) and 0.1
percent TFA, then the equilibrium solution of 0.1 percent TFA, followed by the
wash solution of 0.1 percent TFA and finally the elution solution of 75 percent
ACN and 0.1 percent TFA.

Once all the solutions were made, the ZipTip was hydrated using 10uL of
the wetting solution, solution wasthen discarded, and repeated two more times.
Next, the tip was then equilibrated using 10uL of the equilibrium solution, three
times.. Then the peptides were bound to the C18 by pulling up 10uL of the
sample and slowly pipetting back down for a total of 30 times, careful to not
introduce any air bubbles to allow for maximum binding. After the 30 cycles, the
sample solution was then dispensed back into the sample tube.

Next, the tip was washed three times using 10uL of the washing solution.

Finally, the sample was eluted from the tip using the elution solution. 10uL of
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elution solution was carefully pulled into the tip as slowly as possible and
dispensed into a clean tube, again with caution to not introduce any air into the
tip, as this would decrease elution quantity. This process was then repeated a
minimum of three times to ensure full elution of the peptides. The sample was
then dried down in the speed vacuum and stored at -20°C for further proteomic

analysis.

6.2.8. Orbitrap Fusion Lumos Analysis

Peptides were separated and analyzed on an EASY nLC 1200 System
(ThermoFisher) in-line with the Orbitrap Fusion Lumos Tribrid mass spectrometer
(ThermoFisher) with instrument control software version 4.2.28.14. 2ug of tryptic
peptides were pressure loaded at 1,180 bar and peptides were separated on a
C18 reversed phase column (Acclaim PepMap RSLC, 75um x 50cm (C18, 2um,
100 A) ThermoFisher) using a gradient of 5 percent to 40 percent B in 180 min
(Solvent A: 5 percent acetonitrile/0.1 percent formic acid; Solvent B: 80 percent
acetonitrile/0.1 percent formic acid) at a flow rate of 300nL/min with a column
heater set to 50°C.

Mass spectra were acquired in data-dependent mode with a high
resolution (60,000) FTMS survey scan, mass range of 375-1575 m/z, followed by
tandem mass spectra (MS/MS) of the most intense precursors with a cycle time
of 3 seconds. The automatic gain control target value was 4.0e5 for the survey
MS scan. Fragmentation was performed with a precursor isolation window of 1.6

m/z, a maximum injection time of 22 ms, and HCD collision energy of 35 percent.
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Monoisotopic-precursor selection was set to “peptide”. Apex detection was not
enabled. Precursors were dynamically excluded from resequencing for 30
seconds and a mass tolerance of 10 ppm. Precursor ions with charge states that

were undetermined or greater than 5 were excluded.

6.2.9. Protein and Peptide Identification

Proteome Discoverer version 1.4.0.288 (ThermoFisher) was used to
determine protein and peptide identification from the sample run. Briefly, the raw
data underwent two major processing nodes: Spectrum Selector and Sequest
HT. For the Spectrum Selector, lower limits were 15 minutes retention time and
precursor mass of 350 Da and upper limits were 200 minutes with a precursor
mass of 5000 Da. Signal to noise (S/N) ratio for the fourier-transform was 1.5,
with the MS2 activation set at higher-energy collision-dissociation. For the
Sequest HT node, the protein database searched was SPTR_092718 Human,
with the enzyme being Trypsin, a max missed cleavage site of 2, minimum
peptide length of 7 and maximum peptide length of 144. The mass tolerances
were set at 20 ppm for the precursor and 0.02 Da for the fragment. Finally, three
dynamic modifications and one static modification was included in the search.
For the dynamic modifications, oxidation (+15.995 Da M), deamidated (+0.984, N
or Q), and HexNAc+dHex (+349.137 Da, N) were examined, while the static
modification was carbamidomethyl (+57.021 Da, C). This node searched a total
of 173,778 sequences. This search resulted in a total of 117,992 search inputs

with 1146 protein groups, 8992 merged proteins, and 3826 peptides.
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6.3. Results

Initially, following the analysis, representative spectra containing the
modification of interest were pulled and annotated according to their b and y ions
left from the HCD fragmentation pattern. Figure 42 demonstrates an example of
one peptide. This specific peptide contains 37 amino acids in the sequence
ASLQFLQNYTALASAVDAMDFINDATDVNDALGYVTR (corresponding to
Collagen alpha-1(VI)) with the Endo F3 modification occurring on the asparagine
in the eighth position of the sequence. The top of the figure represents the
sequence as well as the corresponding b and y ion fragments resulting from the
fragmentation of this peptide sequence. The bottom part of the figure
demonstrates the relative abundance of these ions in the spectra, sorted by
mass to charge ratio. For example, the mass value for y1 is 175.12 m/z,
corresponding to the amino acid of arginine, while the mass value for y» is 276.17
m/z, corresponding to both arginine and threonine, and so on. These spectra are
what allows for the assignment of amino acids per retention peak via LC/MS,
allowing for proper peptide identification while still maintaining the modification.

Following the assignment of peptide amino acids, the data was then
processed to return a protein identification search, where peptides containing the
tag modification left behind by Endo F3 cleavage were assigned to proteins, and
functional protein groups were established. Table 10 provides a list of all
peptides found to contain the core fucose modification (35 total tagged peptides),
as well as the peptide spectrum matches, number of proteins associated with the

peptide, the protein groups, the accessions, where the modification occurs as
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Figure 42: Annotation of Representative MS/MS Spectrum.
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well as any other modifications, the cross-correlation score, overall mass,
charge, mass to charge ratio, retention time, and mixed cleavages. All peptide
sequences had a cross-correlation value above 2 and most had a relatively low
normalized score difference (all but one were less than 0.05), demonstrating that
while the sample was not enriched for the core fucosylated glycopeptides any
further than the segmentation analysis, confidence in these modified peptides
was high.

Finally, the accession numbers associated with the searched peptides
were used to determine likely protein identification. Table 11 demonstrates the
accession number associated with a modified peptide, the protein corresponding
to that accession number, as well as the molecular function of the protein. From
the table, it is clear that a vast majority of the peptides found were associated
with collagen proteins, specifically collagen alpha-1(VI), while many of the other
glycoproteins found were connected with other types of glycosylation, such as
glycosaminoglycans found on Biglycan, Decorin, or Asporin, as well as other
extracellular matrix-associated proteins, such as Prolargin. These findings are
consistent with what was expected regarding this specific tissue, as many of the
regions of core fucosylation were along these “collagen highways,” implying that
many of these core fucosylated proteins should indeed be associated with
collagen binding or the extracellular matrix.

Interestingly, while many glycoproteins were as expected, there were also
some protein groups that were surprising, such as redox-based regulation, DNA

binding, and even synaptic regulation. Further studies will need to be done to
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determine the accuracy or reliability of these glycoproteins’ association with
HCC, though the initial results are promising in demonstrating new and more
specific glycoprotein changes associated with HCC progression and early

diagnosis.

6.4. Discussion

The work above demonstrates a highly promising start for enhanced
biomarker identification for liver cancer specifically. Traditional serum
glycoproteomic analysis has been examined before in HCC, as well as the use of
endoglycosidases to determine core fucosylation in hepatic serum via the
HexNAc+Fuc tag [144, 152, 320-323], however this work effectively
demonstrates the first use of endglycosidase F3 activity via an imaging platform
for enhancing glycoproteomic targets within a sample without further enrichment.
While further enrichment would undoubtedly yield a larger result of more specific
proteins due to the exclusion of less abundant peaks in an LC-MS/MS
experiment, the workflow above demonstrated a promising start.

In terms of findings within this chapter, ultimately the glycoproteins found
were novel in terms of enhancement for tissue-specific glycoproteins; however,
further studies would need to be done to compare these findings with those in
serum. For example, while the initial experiments yielded promising results, many
known and well established glycoproteins found in HCC serum, such as alpha-
fetoprotein, were absent from this list, implying that this pool of glycoproteins

would be separate from those found in circulating serum [324]. While this is less
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ideal for the identification of a more specific biomarker, these findings could still
open a pathway for other drug or therapeutic targets within HCC that were
previously unknown from lack of direct HCC tissue analysis. Interestingly, the
upregulation of ECM-related glycoproteins is consistent with newly published
studies, such as one that found that patients with HCC had significantly higher
collagen-IIl levels and a marked increase in the collagen-lll/MMP-1 ratio (CMR)
[325]. The continued study of these fucosylated ECM glycoproteins could provide
a functional link between HCC progression and earlier diagnosis, especially
when examined in a panel with other known markers such as serum AFP levels.

However, before absolute certainty could be assigned to glycoproteins
found via this method, the strategy would require further refinement. As this was
only one tissue sample, pools would be relevant to examine through this method
to accurately assess whether these glycoproteins are patient-specific or generally
found throughout the disease state. Cirrhotic controls would also be essential to
assess presence of these glycoproteins as compared to a “normal” control state
for patients.

Future directions with this work, beside further optimization for the
methodology, would be application to other disease states. While HCC is a
logical starting choice, as serum is hepatic in origin, many other diseased tissue
types have not been examined in such a specific manner, despite core
fucosylation being implicated in a multitude of disease states. With application of

this method to other disease states, new glycoprotein targets could be implicated
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in disease progression, initiation, or metastasis, opening a new field of potential

therapeutics for a variety of disease types.
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Chapter 7: Conclusions,
Limitations, and Future Studies
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7.1. Overall Findings

With HCC research remaining primarily in the realm of serum analysis and
showing great promise in the field of glycomics, the need for more extensive
examination of HCC tissue is greatly apparent. The work presented in this
dissertation is outlined by three key areas: 1) examining the changes in N-
glycosylation of HCC tissue specifically, determining an upregulation in
fucosylation and complex glycosylation; 2) developing methods to further
characterize N-glycan isoforms while maintaining imaging applications,
specifically for determining core versus outer arm fucosylation and differentiation
of sialic acid linkages; and 3) applying these characterizations and the resulting
tags and/or mass shifts combined with the imaging methodology for enhanced
glycoproteomic analysis of core fucosylated glycoproteins. Below, the broader
implications, conclusions, limitations, and future directions are discussed for each

key area.

7.2. Changes in N-Glycans of Hepatocellular Carcinoma via MALDI-IMS
7.2.1. Conclusions

At the completion of Specific Aim 1, the changes in N-glycan distribution
and abundance were examined within HCC tissue specifically, as well as
compared to normal and cirrhotic tissue. The conclusions of chapter three are as
follows: 1) there were more than 60 N-glycans upregulated in HCC tissue as

opposed to normal or cirrhotic (over the 138 patient samples examined), 2) there
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were two major classes of upregulated glycans: increased fucosylation and
increased branching, 3) fewer sialylated species of N-glycans were found than
expected, and 4) increased branching and fucosylation are inversely associated
with patient survival.

The first conclusion demonstrates an overall examination of the N-
glycome for direct HCC tissue. While tissue analysis of HCC tissue via MALDI-
IMS had been done previously in the lab [195], this research was novel for
examining HCC tissue in a larger cohort, allowing for further conclusions about
disease-state trends rather than purely associating results with a single patient-
specific tissue. The two separate tissue microarrays, along with the larger tissue
sections previously examined, gave a much more comprehensive understanding
of cancerous, cirrhotic, and normal tissue types, providing increased accuracy in
determining N-glycosylation trends.

The findings from these patient imaging experiments revealed two major
types of N-glycosylation within HCC tissue. The first, fucosylation, was
overexpressed in 96 percent of patients, with a range of 1 to 33 fucosylated N-
glycans over-expressed in each patient. This finding was consistent with the
literature, showing that fucosylation is related to HCC progression and was
validated in a large sample cohort. The second type of N-glycan modification was
that of increased branching, where tetra-antennary glycan structures were found
primarily in HCC tissue alone. This is also consistent with previous findings, as

the enzyme responsible for tetra-antennary N-glycans (MGATS5) has been
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associated with many cancers previously through both hTERT and the Ras/Raf
pathway [326]

Similarly, the associated patient survival data was key in determining the
integral findings of this chapter. With these purchased tissue microarrays, we
were also provided patient survival data, as well as grading, staging, and etiology
of each patient sample. This, in turn, allowed for a larger variety of analyses,
providing an in-depth look at the role N-glycans play in HCC progression and
survival. While grading and staging showed no correlation with N-glycan
expression, an increase in N-glycan branching and fucosylation was shown to
have an inverse effect on patient survival; the highly-expressed presence of
these N-glycan types reduced overall survival time by an average of 19 months.
This novel finding is one of the first key links between N-glycan expression and

overall survival for patients with HCC.

7.2.2. Limitations and Future Research

As discussed in chapter three, the largest limitation with these imaging
experiments was our inability to determine direct linkages within the N-glycans,
providing doubt in determining what N-glycan structures exactly were associated
with the HCC tissue. For example, while fucosylation was demonstrated in 96
percent of patients, we were unable to determine whether these N-glycans were
core fucosylated or outer arm fucosylated, as either could have varying
implications within the disease state. This limitation was in part addressed

throughout chapter four, although further work would need to be done to ensure
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validation of this method (more information to follow in section 7.2.2.) Similarly,
the lack of sialylation found within the tissue was problematic, as the resulting N-
glycome did not accurately represent the true N-glycome of HCC. As discussed
in chapter five, this could result in a misrepresentation of N-glycan distribution,
although ultimately the amount of sialylation would not affect the general trends
of increased fucosylation and branching found in chapter three.

One other limitation found when examining the larger cohort of patient
data was the sheer volume of glycan heterogeneity within each patient. While we
were clearly able to establish trends in the glycosylation patterns, the individual
glycan profile still widely varied between patients. This made it difficult to
accurately assess specific N-glycan changes, relying on broad trends instead.
Other members of the Mehta lab are working to address this, but briefly, this
could be combatted through examination of the N-glycome for different liver
genetic subtypes. If each subtype is analyzed for changes in glycosylation as
compared to any normal tissue of the same genetic subtype, more conclusions
for specific changes of glycosylation can be attributed to different subtypes. This
could ultimately lead to a more efficient method for classification of each genetic
subtype of patient, as well as increase therapeutic effects. By knowing an HCC
patient’s genetic subtype, different therapies could be used to combat the type of
progression or disease infiltration (as discussed in chapter one).

Finally, one future direction that could improve this research for future
biomarker studies is to compare these tissue findings to matching serum

samples. While many studies have been done to examine serum glycosylation
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trends for HCC as compared to cirrhotic or normal, the literature is lacking direct
tissue analysis corresponding to associated patient serum. If matched tissue and
serum samples could be obtained, a side-by-side analysis could reveal more
direct trends associated with HCC, as well as match trends in serum
glycosylation to direct HCC tissue glycosylation changes. This could also assist
in determining more specific trends for the genetic subtypes of HCC, providing
more specific analysis of the genetic disease state from a readily obtainable and

less invasive fluid biomarker such as serum.

7.3. Enzymatic and Chemical Characterization of N-Glycans for MALDI-IMS
7.3.1. Conclusions

Looking at the enzymatic and chemical derivatization methods established
in chapters four and five, several major conclusions can be drawn regarding the
efficiencies of these methods, as well as their applicability to HCC and relevance
in a biological context. For the enzymatic characterization using Endo F3, the
primary conclusions are as follows: 1) we were able to accurately apply Endo F3
as an enzymatic digestion on tissue to preferentially cleave core fucosylated N-
glycans, and 2) we were able to establish this methodology in a sequential and
combined fashion to allow for more in-depth analysis of isomeric linkages of
fucosylation for N-linked glycans.

The first conclusion regarding application of Endo F3 to tissue for
identifying core fucosylated N-glycans is completely novel; it is the first

application of this enzyme to tissue sections for imaging mass spectrometry to
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examine differential cleavage. With the enzyme cleaving at a different position on
the N-glycan, the mass shift enables visualization of these core fucose structures
on tissue while still maintaining all benefits afforded through imaging.
Additionally, preference to core fucosylation was established via HPLC analysis
and throughout the method development process, allowing this new method for
tissue imaging to be widely applied throughout our lab and others.

Along with the application of the singular enzyme to tissue for analysis, the
second conclusion effectively demonstrated that Endo F3 can be used both
sequentially and concurrently with PNGase F, resulting in less sample
preparation and usage, while still maintaining the increased evaluation of the
fucosylation linkages on N-glycans. Sequentially, it was shown that we can apply
Endo F3 first, analyze via MALDI imaging, then wash it away and apply PNGase
F to the same tissue, enabling a direct comparison between core fucosylation to
outer arm fucosylation on the same sample. Serendipitously, it was also
discovered that using both Endo F3 and PNGase F concurrently, provided the
Endo F3 concentration is relatively low compared to the PNGase F
concentration, works exceedingly well in examining both sets of data within the
same imaging experiment. This is even more beneficial than the former as this
removes any variability from experiment to experiment, allowing for more direct
quantitative analyses between the core and outer arm fucosylation.

As for the chemical derivatization of sialic acids on tissue for imaging
analysis, two major conclusions were drawn regarding this established

methodology on HCC tissues: 1) it was established that the amidation-amidation
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reaction is overall more effective at stabilization, with an increased prevalence of
multi-sialylated species and 2) while a2,6-linked sialic acids were overall more
abundant in the tumor tissue of HCC, particularly with fucosylation involved, there
was no direct evidence supporting specific sialylated species being directly
related to tumor versus alternative disease or normal tissue state.

Experiments demonstrated a clear benefit to using amidation over ethyl
esterification, with Figure 35 and 37 clearly showing the efficiencies of both these
methods on prostate tissue. For non-derivatized versus derivatized in both
methods, it is apparent that amidation resulted in a better stabilization for tissue.
This is also applicable to the HCC tissue. While there is no data for ethyl
esterification on liver tissue specifically, amidation of the liver tissue worked
extremely efficiently, allowing us to see the differential mass shift associated with
the linkage of the sialic acid.

Interestingly, for the second conclusion, while consistent with findings in
the literature, there was no apparent association between sialylation and HCC
progression or diagnosis. Figure 39 demonstrated an overall bias toward the 02,6
conformation, however when compared to different tissue morphologies provided
in the tissue microarray, the overall findings were inconclusive at establishing a

link between sialylation and disease progression.

7.3.2. Limitations and Future Research
In terms of the characterization of core fucosylation, one major limitation

with the research is the activity of the enzyme. While Endo F3 has been shown to
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have a much higher prevalence to core fucosylated structures under the right
enzyme conditions, it is also still able to cleave tri-antennary N-glycans without a
fucose. This complicates the analysis of core fucosylation, with this methodology
not being able to identify that cleaved N-glycans were core fucosylated with an
absolute certainty. The conformation via HPLC and the optimization of the
method conditions greatly support the enzymes’ cleavage of core fucose,
however this fact can still not be ignored.

For future studies regarding the methodology of Endo F3 on tissue, it
would be helpful to further validate core fucose preference via lectin
histochemistry. With previous work done in the Mehta lab, a mutated
recombinant lectin was created that preferentially binds to core fucose, providing
an additional confirmation of core fucose [275]. While this lectin is also not
absolutely core fucose specific, this could provide further validation when stained
on tissue that has been treated with Endo F3. This validation could also occur
through a proteomic lens. As discussed in chapter six, the Endo F3 tag left
behind is efficient in identifying glycopeptides containing core fucose; however, if
this idea was applied to examine just HexNAc tags without the fucose, the
efficiency of Endo F3 cleaving tri-antennary glycans without a core fucose could
be further examined. This could ultimately lead to a greater understanding of the
enzyme activity and cleavage of N-glycans.

Regarding the derivatization of the sialic acids, | believe that further
studies are required before any concrete ideas connecting sialylation and liver

cancer can be determined. Similar to what was done in chapter three, validation
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of sialylation on a patient matched TMA would not only provide more information
for a broader patient sense, but also allow for more analysis of sialylation
comparing to survival data. As stated above, the overall levels of sialylation were
lower than expected, so if the same TMA was examined using these stabilization
techniques, the resulting N-glycome could shift, revealing new trends as it
pertains to an overall population with HCC, as well as associated survival times,

grading, and staging of the tumors.

7.4. Enhanced Glycoproteomic Analysis of Hepatocellular Carcinoma
Tissues
7.4.1. Conclusions

From the initial glycoproteomic experiments, the primary conclusions
found were 1) imaging with Endo F3 and using this analysis for preferential
selection of tissue adds benefit in examining core fucosylated glycoproteins, and
2) the remaining HexNAc+Fuc tag following Endo F3 digestion can effectively be
used with tissue for enhanced proteomic analysis of core fucosylated
glycoproteins.

When Endo F3 was imaged on tissue, segmentation analysis allowed for
differentiating core fucose-containing regions of the tissue from those without
major areas of core fucosylation. This, combined with isolation of the regions of
interest via manual microdissection, allowed for enhancement of target
glycopeptides without any further enrichment. The resulting glycoprotein analysis

revealed 47 total peptides with the associated tag of HexNAc+Fuc, leading to
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confident identification of 28 glycoproteins associated with core fucosylation.
While this does not encompass the full spectrum of glycoproteins with core
fucosylation, this is a promising start for early work without further enrichment

methods.

7.4.2. Limitations and Future Research

The major limitation associated with this section of my research is the
overall sample size and population and the lack of enrichment within the sample.
While promising data was obtained without the need for further enrichment, this
would ultimately aid in the most accurate and comprehensive look at the core
fucosylated glycopeptides in HCC tumor tissue specifically.

For example, enrichment via lectin, such as Concanavalin A, would enrich
for all glycopeptides in solution, thus reducing the background noise of this
method and increase identification of less abundant glycopeptides that may have
too little intensity to be picked up. Additionally, with this method shown to have
promising results, adapting the specific parameters could yield better results.
With the Orbitrap Fusion Lumos having capabilities for higher-energy collision
dissociation product-dependent electron transfer dissociation, the resulting tag
could be utilized more specifically in a product-dependent fashion, thus
enhancing the sample for the glycopeptides containing this tag.

In future studies, a more in-depth look at various tissues from multiple
sources in one pool would be extremely beneficial in determining the glycoprotein

most related to HCC tissue specifically. A study that contained pooled HCC
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tissues, cirrhotic tissues, and normal tissues would greatly enhance the results of
this experiment in examining the trends of a wider sample population rather than
in one individual.

Additionally, it would also be relevant to examine associated serum along
with tissue via this method. While others have examined core fucosylated
glycoproteins in serum, if patient-matched serum and tissue were examined
concurrently, specific proteins in tissue could ultimately be targeted in serum and
validated as a potential biomarker candidate in the future. By combining these
two orthogonal methodologies, these findings could be applied more efficiently to
the field of biomarker discovery and enhancing possible therapeutic targets, as

well as elucidate previously unknown underlying mechanisms of HCC.

7.5. Conclusions and Final Thoughts

Overall, the work presented in this dissertation demonstrates a novel
examination of N-glycan changes associated within hepatocellular carcinoma
and presents novel methodologies for examining isomeric linkages of N-glycans
while still maintaining an imaging mass spectrometry analysis platform.
Additionally, initial enhancement of targeted glycoproteomics was also
presented, showing an improvement from previous literature examples through
the combination of both imaging studies and glycoproteomic analysis. Ultimately,
this work provides new imaging analyses and a sturdy foundation for
identification of glycoproteins associated directly with HCC tumors for increased

biomarker possibilities and therapeutic capabilities.
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