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Abstract 

An abstract of a dissertation on the subject of the discovery of novel biomarkers 

of acute kidney injury by Joseph L Alge:  

Background: Acute kidney injury is a cause of significant morbidity and mortality 

in hospitalized patients. Prognostic biomarkers that predict at the time of 

diagnosis which patients will develop severe AKI and its complications would 

facilitate timely intervention and could lead to improved outcomes. The urinary 

proteome is a logical source of candidate biomarkers of kidney injury. 

Methods: Urine was collected from rodents and human subjects with AKI 

secondary to diverse etiologies, including cardiac surgery, ischemic/hypoxic 

injury, and nephrotoxicity. Shotgun proteomics was used to identify candidate 

biomarkers in four separate discovery phase experiments. These candidates 

were then verified in a larger cohort and case-control studies, in which they were 

measured using ELISA and a multiplex, quantitative mass spectrometry assay.  

Results: A total of 22 candidate prognostic biomarkers of AKI were identified by 

shotgun proteomic analysis of urine from rodents and humans with AKI. Of these, 

urinary angiotensinogen was the most promising. The prognostic predictive 

power of urinary angiotensinogen was verified in a cohort of post-cardiac surgery 

human subjects with AKI (n = 204), which found that it was a strong predictor of 

progression from Acute Kidney Injury Network (AKIN) stage 1 AKI to the 

composite endpoint AKIN stage 3 or death, having an area under the ROC curve 

of 0.75, 95% CI [0.65, 0.85]. In the same cohort, urinary renin concentration had 
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an AUC of 0.7, 95% CI [0.57, 0.83] for the outcome. A classification tree model 

found that the combination of these biomarkers could predict the outcome with a 

positive predictive value of 80.4%. The quantitative mass spectrometry assay 

was able to successfully measure 11 of the 22 candidate biomarkers, and using 

this assay, the prognostic predictive power of urinary superoxide dismutase [Cu-

Zn], myoglobin was confirmed in a subset of the aforementioned cohort of post-

cardiac surgery AKI patients (n =156). SOD and myoglobin predicted progression 

from AKIN stage 1 to AKIN stage 3 or death with an AUC of 0.76 and 0.77, 

respectively. Urinary angiotensinogen was also included in the assay, and it had 

an AUC of 0.74 for the outcome. The performance characteristics of these novel 

biomarkers compared favorably with urinary liver-type fatty acid binding protein 

(AUC = 0.69), a more established AKI biomarker which was also included in the 

assay. 
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Chapter 1: Introduction to Acute Kidney Injury Biomarkers 
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Acute Kidney Injury: Definition and Classification 

Acute kidney injury (AKI) is a new term for an old problem.  It was recognized by 

ancient physicians as a decrease in urine output (oliguria) that was accompanied 

by the classic signs and symptoms of anorexia, nausea, and vomiting.1  Greek 

and Roman physicians recognized that it could arise in a variety of settings 

including crush injuries, serpent bites, and poisonings, and they understood that 

death was imminent if a patient’s condition progressed to prolonged anuria.1 

Therefore, the broadest definition of acute kidney injury, that is an abrupt 

reduction in renal function, has been recognized as a clinical syndrome since the 

time of the birth of medicine.  Of course, much has changed since then regarding 

how we define this disease, and we now use more objective measures of renal 

function such as serum creatinine (sCr) and blood urea nitrogen (BUN), which 

are filtered at the glomerulus and accumulate in the blood when glomerular 

filtration rate falls, although urine output is still a useful diagnostic and prognostic 

indicator.2-4   

Despite the availability of these conventional AKI biomarkers, for decades of 

modern medicine, there was not a consensus on the definition of AKI.  In fact, 

there was not even an accepted nomenclature and AKI has been known by other 

names including acute renal failure and acute renal dysfunction.  Lack of an 

accepted definition resulted in a broad array of diagnostic criteria being used in 

the literature, with the definition of AKI ranging from an increase in sCr  >25% 

from baseline, to an increase in sCr >2.0 mg/dL,, to the need for dialysis.5  This 

was recognized as a key barrier to progress in AKI research by the Acute 
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Dialysis Quality Initiative Group in 2004, an international consensus workgroup, 

which proposed the RIFLE classification system for acute renal failure.  The 

RIFLE acronym designates the different stages of acute renal failure according to 

this classification system.  They are: Risk of renal dysfunction, Injury to the 

kidney, Failure of kidney function, Loss of kidney function, and End-stage renal 

disease (ESRD). 2 Using RIFLE, patients are staged based upon changes in 

serum Creatinine (sCr) and urine output.  Furthermore, the staging system 

includes the use of the widely accepted MDRD equation to calculate estimated 

glomerular filtration rate (eGFR) and changes in eGFR, when a patient’s baseline 

sCr is unknown.  A summary of the RIFLE classification scheme is shown in 

Table 1-1.   

The RIFLE classification system was an important step toward improving the 

quality of AKI research and the care of patients with this disease.  Two salient 

features of this system include the use of baseline characteristics and the 

inclusion of outcomes in the classification scheme.  The former allows for 

accurate assessment of injury, including so-called “acute on chronic” kidney 

disease, when a patient has AKI superimposed on preexisting chronic kidney 

disease.  The latter is helpful with regard to defining clinical end-points that can 

be used in clinical trials.  An important limitation of this system is that it does not 

specify a time course for elevated sCr, although there is a recommendation for  
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Table 1-1. RIFLE Classification System of Acute Renal Failure
2
 

Stage sCr and GFR Criteria Urine Output Criteria 

Risk 
↑ sCr of 1.5 fold (150%) or  ↓eGFR 

>25% 
UO <0.5ml/kg/h for more than  6 hr 

Injury 
↑ sCr of 2 fold (200%) or  ↓eGFR 

>50% 
UO  <0.5ml/kg/h for more than 12 hr 

Failure* 
↑ sCr of >3 fold (300%) or  ↓eGFR 

>75% or sCr >4mg/dl 
UO <0.3ml/kg/h for 24 hr or anuria for 12 hr 

Loss Persistent ARF= complete loss of kidney function >4 weeks 

ESRD Loss of kidney function >3 months 

Patients are staged by both GFR and urine output criteria, and are designated as the most 
severe stage reached by either criteria. 
*Patients can be classified as Rifle-F if absolute sCr is >4.0 mg/dL with an acute increase of 
≥0.5 mg/dL. 
GFR, glomerular filtration rate; sCr. Serum creatinine; UO, urine output; ESRD, end stage 
renal disease 
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urine output.  Despite this limitation, RIFLE was widely accepted by the 

nephrology community and continues to be frequently used in the literature.  

In 2007, the Acute Kidney Injury Network, an international workgroup, published 

a new definition and classification system, which made several important 

changes to the RIFLE definitions (Table 1-2).   First, this group proposed 

changing the nomenclature of acute renal failure to acute kidney injury.3  The 

latter is a more inclusive term, representing the entire spectrum of acute renal 

failure.  The newly proposed definition of AKI was  

“An abrupt (within 48 hours) reduction in kidney function currently 
defined as an absolute increase in serum creatinine of more than or 
equal to 0.3mg/dl (>26.4 µmol/L), a percentage increase in serum 
creatinine of more than or equal to 50% (1.5-fold from baseline), or a 
reduction in urine output (documented oliguria of less than 0.5ml/kg 
per hour for more than six hours).”3 

 

The AKIN classification made several other modifications to the RIFLE definition 

and staging system.  The specification of a brief time window allows for the 

clinical distinction of acute injury.  Additionally, the lowering of the minimum 

required increase in sCr to 0.3mg/dl reflects research which had demonstrated 

that even small increases in sCr are associated with a higher risk of adverse 

outcomes.6,7  Thus, the AKIN definition of AKI is intentionally a more sensitive 

diagnostic tool than the RIFLE criteria, and its increased sensitivity compared to 

RIFLE has been documented.8    Using the AKIN criteria, patients are still staged 

according to the most severe changes in serum creatinine and urine output. 

However, the AKIN criteria largely omit the outcome measures included in the 

RIFLE classification system, although patients who receive renal replacement  
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Table 1-2 .  Acute Kidney Injury Network (AKIN) Classification System for AKI
3
 

Stage sCr Criteria Urine Output Criteria 

1 
↑ sCr of 0.3mg/dl or 1.5-2 fold (150-200%)  from 
baseline 

UO <0.5ml/kg/h for more 
than  6 hr 

2 ↑ sCr of 2-3 fold (200-300%) 
UO <0.5ml/kg/h for more 
than 12 hr 

3 
↑ sCr of >3 fold  (>300%) or sCr >4.0mg/dl with acute 
increase of >0.5mg/dl or RRT 

UO <0.3ml/kg/h for 24 hr 
or anuria for 12 hr 

sCr, serum creatinine; RRT, renal replacement therapy 
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therapy (RRT) are automatically considered AKIN Stage III.   In summary, the 

AKIN definition and classification system changed the terminology of acute renal 

failure to acute kidney injury, added the element of time to the diagnostic criteria, 

and lowered the diagnostic threshold of increased sCr in order to increase 

sensitivity.   

Finally, in 2012 the Kidney Disease Improving Global Outcomes (KDIGO) 

consortium issued a revised definition of AKI which unifies the RIFLE and AKIN 

classification systems.  One of the major criticisms of the AKIN criteria has been 

that the specified 48 hour time window is too short, and if applied it could result in 

a substantial number of false negatives from patients whose sCr increases at an 

atypically slow rate.  Therefore, KDIGO proposed the minimum threshold for AKI 

to be an increase in sCr ≥0.3 mg/dL over 48 hours or ≥50% from baseline over 1 

week.9  However, the KDIGO guideline was only released in 2012, and thus its 

proposed changes to the definition of AKI have not had time to be studied.   

The Etiology of Acute Kidney Injury 

AKI is one of the most common conditions seen in the hospital.  Its commonness 

is in part a reflection of its poly-etiological nature, with possible etiologies having 

classically been grouped into three categories, pre-renal, intra-renal and post-

renal.10  Pre-renal AKI refers to a loss of glomerular function that is the result of 

decreased renal perfusion, and by definition, it is reversible following correction 

of renal perfusion.10  Common causes of pre-renal AKI include hypovolemia, 

congestive heart failure, cardiogenic shock, and pharmacotherapy that adversely 

alters renal hemodynamics (such as cyclosporine or NSAIDs).10-12  Post-renal 
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AKI can be caused by anything that obstructs urine flow, at any level of the 

urinary tract between the renal pelvis and the urethra.10  This obstruction causes 

an increased pressure in Bowman’s space, which opposes glomerular filtration, 

thereby impairing renal function.  However, in a healthy person such an 

obstruction must be bilateral to cause AKI, since one kidney can compensate for 

the loss of the other.  Nevertheless, post-renal AKI can occur, for example in 

benign prostatic hypertrophy, retroperitoneal fibrosis, or neurogenic bladder 

following spinal cord injury.10 

In contrast to the relatively straightforward mechanisms underlying pre- and post-

renal AKI, intra-renal, or intrinsic, AKI is a complex, often multifactorial disease 

process.  Intrinsic AKI is the result of damage directly to the kidney parenchyma, 

and can be subclassified based upon the site of injury (i.e. glomerular, tubular, 

interstitial, or vascular), with the tubules being most commonly affected.10  The 

most common causes of intra-renal AKI are ischemia and nephrotoxicity.10   

Because they are highly metabolically active yet exist in a hypoxic environment, 

renal tubular epithelial cells are exquisitely sensitive to hypoxic injury.13  Thus, 

anything that impairs renal perfusion can cause tubular injury.  A logical 

consequence is that ischemic-hypoxic tubular injury commonly occurs secondary 

to pre-existing pre-renal AKI.  It must also be noted that AKI is a common 

complication of sepsis, and sepsis accounts for between 20 and 50% of AKI 

cases.14,15  Sepsis drastically alters renal hemodynamics resulting in ischemic 

injury, and the accompanying inflammatory response further exacerbates renal 

injury.16  Nephrotoxic injury to the tubules can occur as a consequence of 
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exposure to exogenous toxins, such as certain pharmacological agents, including 

the aminoglycosides and cisplatin.10  However, the most common cause of 

nephrotoxic AKI is radiocontrast exposure, which accounts for approximately 

10% of AKI cases in the intensive care unit.10,15  Nephrotoxicity can also be the 

result of endogenous toxins, most commonly heme from hemoglobin, and 

myoglobin, which are released following damage to erythrocytes and skeletal 

myocytes, respectively.  Therefore, intra-renal AKI is often seen in the settings of 

malarial infection and rhabdomyolysis.17,18     

Finally, no discussion of the etiology of AKI would be complete without 

mentioning it as a post-operative complication, as surgical causes account for 

approximately one-third of AKI cases.14  AKI is particularly common after cardiac 

surgery, affecting about 20% of patients who undergo cardiac procedures.8  Of 

note, the cardiac surgery population is an ideal population in which to study AKI, 

and especially AKI biomarkers given the predictable nature of the injury and the 

ease of determining its timing and severity.  Additionally, AKI after cardiac 

surgery has a complex and multifactorial pathogenesis involving ischemia-

reperfusion injury, inflammation, and nephrotoxicity from lysed erythrocytes, 

making it likely that studies performed in this population will be generalizable to 

other etiologies of AKI.19 

The Epidemiology of Acute Kidney Injury 

AKI is one of the most common diseases observed in hospitalized patients, and 

its epidemiology has been extensively investigated.20  Although no large, 
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prospective multicenter studies have been conducted to accurately assess the 

impact of community acquired acute kidney injury, retrospective observational 

studies estimate that 1.0- 9.6% of hospitalized patients are admitted with AKI, 

which accounts for approximately three-quarters of all AKI cases.21-23  

Community acquired AKI is usually pre-renal, secondary to volume depletion.21,23  

Consequently, it is associated with a lower mortality and a lesser risk of adverse 

outcomes than hospital acquired AKI.23  In contrast, the burden of hospital-

acquired AKI is well documented.  Estimates from single-center retrospective 

studies are that 4.9 – 7.2% of patients admitted without AKI will develop AKI 

during their hospital stay.24,25  Complementary of this data are the results of two 

large studies performed using administrative databases, which have reported 

that 2.1 – 3.6% of all hospital discharges are associated with ICD-9 codes related 

to AKI, although it should be noted that database studies are less accurate for 

the identification of patients with mild AKI, and likely under-report AKI 

diagnosis.26-28  Nevertheless, these studies have identified trends of increasing 

incidence and decreasing mortality over the past 25 years.26,27  Lastly, it should 

be noted that the incidence of AKI is disproportionately high in the critically ill 

population.  Large multicenter epidemiologic studies estimate that the incidence 

of severe AKI is 5.7-7.7%, with an associated mortality rate in excess of 

50%.14,29,30  However, it is important to note that studies which included patients 

with less severe AKI, for example RIFLE risk or AKIN stage 1 as inclusion 

criteria, have found a much higher incidence, ranging from 16.2%-35.8 and a 

lower mortality rate of 24.2% -36.4%.31-33 



 

11 
 

AKI is associated with a number of adverse outcomes.  As mentioned above, AKI 

increases the risk of death, both over the short and long-term, and dialysis-

dependent AKI is an independent risk factor for in-hospital mortality.6,7,22,34,35  

Importantly, even mild AKI confers an increased risk of death.6,7  In addition to 

mortality, AKI has been associated with an increased length of hospital stay and 

greater medical costs.6  Finally, it is important to note that the risk of adverse 

outcomes, particularly mortality, increases proportionally with AKI severity, and 

patients with severe AKI bear a disproportionate burden of these outcomes.6,32,33   

It has become increasingly apparent that AKI is causally linked with chronic 

kidney disease and end-stage renal disease, two conditions of tremendous 

importance to the health care economy in the United States.36-38  The risk of 

accelerated renal function decline is greatest in those patients who already have 

chronic kidney disease at the onset of AKI (so-called acute on chronic kidney 

disease), and in these patients AKI has been called “a springboard for CKD 

progression”.38,39  However, it is noteworthy that an episode of AKI appears to 

predispose patients to ESRD, even in the absence of pre-existing CKD.38     

Conceptual Framework of Acute Kidney Injury 

The complex multifactorial, and multiphasic elements of acute kidney injury pose 

particularly vexing problems to researchers hoping to uncover the molecular 

determinants of the course of this disease.  Recognizing these complexities, 

experts have proposed two conceptual models of AKI that serve as useful 

frameworks for approaching its study.  The first model describes the progression 

of cellular and molecular pathogenesis and pathobiology of AKI.  The second 
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model describes the interrelationships of risk factors for AKI, renal damage, and 

adverse outcomes.  Both of these models provide important background 

information pertinent to the study of AKI biomarkers and will be addressed 

separately. 

Cellular and Molecular Phases of Acute Kidney Injury 

Sutton et al. described the progression of ischemic AKI through four distinct 

phases, each one characterized by a different set of cellular and molecular 

events (Figure 1-1).40  The first phase is “initiation”, during which the proximal 

insult occurs when there is a decrease in renal blood flow leading to a decrease 

in the glomerular filtration rate (GFR).  This results in ATP depletion in the cells of 

renal tubular epithelium and consequent alterations in the actin cytoskeleton, loss 

of apical-basolateral polarity, and up-regulation of inflammatory mediators.13,40  

Cell death occurs by necrosis and apoptosis.  Persistent hypoxia leads to the 

“extension phase”, during which marked hemodynamic alterations occur due to 

damage to the microvascular endothelium and there is a severe reduction in 

perfusion to the corticomedullary junction and the outer medulla.13,40  This phase 

is also accompanied by a pronounced inflammatory response and continued 

apoptosis and necrosis of tubular epithelial cells.  During the extension phase the 

glomerular filtration rate continues to fall.  The next phase of AKI is 

“maintenance”, during which GFR stabilizes at its nadir, and serum creatinine 

plateaus.19,40  Important cellular processes occur during this phase as there is 

proliferation and migration of epithelial cells to repopulate the denuded tubular 

lumen.40  Strong evidence suggests a prominent role for surviving epithelial cells  
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Figure 1-1.  Clinical phases of acute kidney injury. This figure was taken from a 

review on the molecular mechanisms and phases of ishemic AKI.(1)  Four distinct 

phase are described: initiation, extension,  maintenance, and repair/recovery.  GFR, 

glomerular filtration rate; CMJ, cortico-medullary junction;  BBM, brush border 

membrane  
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in this process, although there is a small contribution from the hematopoietic 

stem cells, and a role for kidney specific stem cells cannot be ruled out. 13,41,42 

Finally, during the “recovery” phase tubular epithelial cell polarity is 

reestablished, is accompanied by the return of normal cellular and renal function, 

and the repair process is complete.13,40    

Conceptual Model of Acute Kidney Injury     

Murray et al. proposed a conceptual framework for understanding AKI which 

begins with its antecedents (Figure 1-2).43  Antecedents are conditions or events 

which put a patient at risk of developing AKI, such as existing chronic kidney 

disease, IV contrast exposure, or surgery.  Obviously there is a connection 

between these risk factors, particularly exposure to known precipitants of AKI, 

and renal damage itself.  This model points out the opportunity for scientists and 

physicians to intervene and mitigate the risk of AKI in these patients. If severe 

enough, renal damage leads to a detectable decrease in GFR, which can result 

in kidney failure and death.  Additionally, this model recognizes the abundance of 

complications of acute kidney injury that can arise, such as metabolic acidosis,  

hyperkalemia, volume overload, all of which can result in the need for acute 

dialysis, which as has already been mentioned, is an independent risk factor for 

mortality. 

These illustrative models neatly demonstrate the need for prognostic biomarkers 

that can quantify the severity of injury, predict the course of the disease, and 

assess a patient’s risk of adverse outcomes.  It is clear that surrogates of GFR 

such as serum creatinine and urine output are inadequate for these purposes  
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Figure 1-2. A conceptual framework of AKI. This model proposed by Murray 

et al. identifies the progression of AKI through successive risk phases during 

with the patient can develop adverse outcomes.43 
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because they change slowly with respect to the timing of the injury and they are 

mechanistically unrelated to the progression of the disease at a cellular and 

molecular level.  Novel biomarkers of renal injury, such as neutrophil gelatinase-

associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), interleukin-18 (IL-

18), and liver-type fatty acid binding protein (L-FABP) have been identified.  

These proteins have yielded valuable insight into the molecular underpinnings of 

AKI, and they have shown promise as early diagnostic indicators of AKI and 

predictors of prognosis.  It is to these novel AKI biomarkers that we turn our 

attention to next. 

Biomarkers of Acute Kidney Injury 

Neutrophil gelatinase-associated lipocalin 

Neutrophil gelatinase-associated lipocalin (NGAL) is a widely expressed 25 kDa 

protein of the lipocalin family.  Several excellent reviews have been published on 

its role in renal disease, and the reader is referred to these for more in-depth 

study.44-48  The known functions of NGAL primarily revolve around its ability to 

bind catechol siderophores. Toll-like receptor signaling results in significant up-

regulation of NGAL gene expression and translation, and NGAL plays an 

important role in the innate immune response where it acts as an iron-

sequestering bacteriostatic agent by binding bacterial iron-siderophore 

complexes, thereby preventing their uptake by the pathogen.49,50  NGAL is also 

implicated in iron trafficking in the kidney epithelium.  During nephrogenesis, it is 

secreted by the uteric bud and induces tubulogenesis in the metanephric mass, 

and a key component of its function is to shuttle iron into the developing kidney 
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epithelium.51  It appears that this function of NGAL depends upon it being loaded 

with an iron-siderophore complex.52   

Following ischemic or nephrotoxic injury, intrarenal NGAL is dramatically up-

regulated at the transcript and protein levels.53-55   Elevated NGAL protein is 

detectable in the urine as early as 3 hours after injury, and in vivo data have 

suggested the thick ascending limb and the collecting duct as the sites of 

intrarenal NGAL production, although proximal tubule cells secrete NGAL in vitro 

in response to ATP depletion.44,54,56  Importantly, however, plasma NGAL also 

increases after AKI, as a result of increased hepatic production, and NGAL is 

filtered by the glomerulus and taken up by the proximal tubule in a megalin-

dependent manner.44,56,57  The plasma pool of NGAL protein appears to play an 

important role in modulating the severity of AKI, as it has been demonstrated that 

NGAL administered either i.v. or i.p. is delivered to the proximal tubule where it 

exerts a renoprotective effect.56,58  The effect of NGAL in the injured kidney is 

dependent on its interaction with iron-loaded siderophore, and siderophore-free 

NGAL (apo-NGAL) has no effect.56   

Both urine and plasma NGAL peak early after renal injury, within the first 6 hours, 

and consequently NGAL has been extensively investigated as an early predictor 

of AKI diagnosis (find review citation for this).  The first study to evaluate the 

predictive accuracy of NGAL for early diagnosis of AKI was performed in a 

pediatric cardiac surgery cohort (n = 71) and found that urine NGAL measured at 

2 hours post-operatively was a nearly perfect predictor of AKI (area under the 

receiver operator characteristic curve of 0.998) and had an AUC of 1.0 at the 4 
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hour post-operative time point.59  Subsequent prospective studies in children that 

have evaluated the ability of urine and plasma NGAL to predict AKI after cardiac 

surgery from an early time point have confirmed these findings, and almost 

universally have reported high predictive power, with the calculated area under  

the receiver operator curve >0.90 (Table 1-3).60-62  However, the TRIBE-AKI 

Consortium reported a much lower predictive power in their multicenter 

prospective study (n = 311).63  In this study, urine NGAL and plasma NGAL 

predicted severe AKI with an area under the receiver operator characteristic 

curve of 0.71 and 0.56, respectively, with more disappointing results for 

prediction of mild AKI (defined as RIFLE-R).63  NGAL has also been 

demonstrated to predict AKI after cardiac surgery in adults, although results have 

been less impressive in this population, where reported AUCs range from 0.61 to 

0.80, and the most definitive study to date, reported disappointing results.  In a 

prospective study of 1291 cardiac surgery patients, urine and plasma NGAL 

measured at the time of ICU arrival only had areas under the receiver operator 

characteristic curve of 0.67 and 0.70, respectively.  Similar results have been 

reported in studies of NGAL as a predictor of contrast-induced nephropathy, and 

urine NGAL is currently being used to screen post-cardiac catheterization 

patients and identify those as high risk of contrast-induced nephropathy as a 

means of guiding enrollment in a clinical trial investigating early, intensive volume 

expansion as a prophylactic for contrast-induced nephropathy.64,65  In the 

intensive care setting, both urine and plasma NGAL predict the future 

development of AKI, and Cruz et al. reported that plasma NGAL predicts the 
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need for renal replacement therapy with high accuracy (AUC = 0.82).66,67 It 

should be noted that sepsis is a potential confounder in studies conducted on the 

critically ill, however, because septic AKI patients have higher urine and plasma 

NGAL than non-septic AKI patients, and animal models have demonstrated 

marked up-regulation of NGAL in response to septicemia.50,68   

As can be noted from Table 1-3, there is a large degree of variability in the 

results of the various studies that have been conducted to investigate the early 

predictive power of NGAL for AKI.  Much of this can be attributed to differences 

in study design such as cross-sectional versus prospective design, timing of 

NGAL measurement, correction for urine creatinine, and differences in the 

definition the primary outcome of the study.  We have tried to include as much 

information about these differences as is reasonably possible.  Nevertheless, 

such variability makes it difficult to interpret the sum of the results.  To address 

these difficulties, the NGAL Meta-Analysis Group performed a systematic review 

and meta-analysis which collated the data from 19 studies, many of which have 

been mentioned.69  They found that the predictive power of urine and plasma 

NGAL was similar, having areas under the summary ROC curve of 0.837 and 

0.775.  Importantly, it was noted that the predictive power of NGAL was highest 

for contrast-induced nephropathy, then for AKI after cardiac surgery, and then for 

AKI among the critically ill.  Additionally, NGAL had a higher predictive power in 

children (AUC = 0.93) than adults (AUC = 0.782).  These differences are thought 

to be attributed to the increased rates of comorbidities and heterogeneity in the 

adult and critically ill populations. 
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Few studies have been conducted to specifically evaluate the prognostic 

predictive power of NGAL in patients with established AKI.  Among patients with 

AKI after cardiac surgery, plasma NGAL, but not urine NGAL, appears to predict 

progression to a higher AKIN stage.80  In critically-ill patients, NGAL appears to 

be a slightly better predictor of prognosis.  Hall et al. reported that urine NGAL 

had an area under the ROC curve of 0.71 for the composite outcome progression 

to a higher AKIN stage or death, and it improved the predictive power of clinical 

model for this outcome.79  Others have found that both urine and plasma NGAL 

predict AKI progression and the need for renal replacement therapy, although the 

predictive power of plasma NGAL is better.68   

Kidney Injury Molecule-1 (KIM-1) 

Kidney injury molecule-1 (KIM-1) is a 38.7 kDa transmembrane that contains 

extracellular mucin and immunoglobulin domains.81 Basal expression of KIM-1 is 

low in the normal kidney.  However, it is upregulated following ischemia 

reperfusion injury, and KIM-1 protein can be localized to proliferating epithelial 

cells of the proximal tubule 48 hours after injury.81 Expression of KIM-1 has been 

demonstrated to confer a phagocytic phenotype on cultured primary kidney cells 

via its function as a phosphatidylserine receptor, which allows it to promote the 

phagocytosis of apoptotic bodies and necrotic debris.82  Therefore, it has been 

proposed that KIM-1 could play a role in renal recovery and tubular regeneration 

following acute kidney injury. Importantly, the extracellular component of KIM-1 is 

constitutively shed from the membrane in a matrix metalloproteinase dependent 
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manner.83  While the functional importance of KIM-1 shedding is unclear, it is 

ostensibly the mechanism underlying the increase in urinary KIM-1 observed 

following renal ischemic or toxic injury.84,85  The first observation that urinary KIM-

1 could be useful as an AKI biomarker was made by Han et al. who reported that 

urinary KIM-1 was significantly increased in patients with established ATN 

compared to patients with other types of renal failure, chronic kidney disease, 

and healthy controls.84 

KIM-1 has been extensively investigated as a diagnostic biomarker of AKI, and a 

lateral flow immunochromatographic assay has been developed for rapid, point 

of care detection of urinary KIM-1 (Table 1-4).86  Two early studies reported that 

KIM-1 identified established AKI in the hospitalized population with high accuracy 

(AUC = 0.93).78,87  However, these studies compared patients with severe AKI to 

control groups that included healthy subjects, which likely resulted inflated the 

predictive power of KIM-1.  Accordingly, a large study of ICU patients by Endre et 

al. found that KIM-1 measured at ICU admission had an AUC of 0.66 for 

diagnosis of AKI on entry to the ICU.88  Studies of its usefulness as an early AKI 

biomarker have produced mixed results with AUCs ranging from 0.64 to 

0.83.74,87,89,90  While most of these studies have been small, single center 

studies, the data from the TRIBE-AKI Consortium are more conclusive.  They 

recently reported that KIM-1 measured at the time of ICU arrival predicted severe 

AKI in both children and adults undergoing cardiac surgery with an AUC of 0.64 
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and 0.71, respectively.90  However, the investigators noted that these results 

were not significant after adjustment for NGAL and IL-18.   

Thus, urinary KIM-1 appears to have limited utility as an early diagnostic marker 

of AKI, which is plausibly explained by the temporal relationship between renal 

injury and KIM-1 elevation.  In the TRIBE-AKI study KIM-1 did not peak until 

post-operative day 3 after cardiac surgery in adults and day 2 in children, which 

is in agreement with data from other studies, including animal models.74,85,90  This 

would seem to implicate it during the later phases of AKI, and would suggest that 

it may be a better prognostic biomarker.  However, few properly controlled, 

prospective studies have studies have evaluated KIM-1 and those that have 

been conducted have reported modest prognostic predictive power.79,91  Finally, 

the ability of KIM-1 to discriminate between ATN and other renal diseases 

suggests that it could be used to differentiate patients with transient, pre-renal 

AKI from those with more severe, true AKI.  This hypothesis is corroborated by a 

recent study by Nejat et al., which found that urinary KIM-1 was elevated in 

patients with sustained AKI compared to pre-renal AKI.92      

Interleukin-18 

Interleukin-18 (IL-18) is a 22 kDa pro-inflammatory cytokine that has been 

implicated in many different disease processes.  It is translated as a procytokine 

and must be subsequently cleaved by caspase-1 in order to be activated.  More 

specifically, caspase-1 functions as part of a multiprotein complex called the 

“inflammasome”.93  A central component of the inflammasome is the pyrin 
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domain containing members of the NOD-like receptor (NLR) family of proteins, of 

which are there are 14 different types.93  The NLRs, as their name implies, 

recognize ligands which induce an inflammatory response.  Such ligands are 

numerous and quite diverse, but they can be broadly grouped into two classes: 

pathogen-associated molecular patterns (PAMPs) and damage-associated 

molecular patterns (DAMPs).  The binding of these molecules to a NLR results in 

the recruitment of scaffold proteins and proteolytic enzymes, and ultimately 

caspase-1 activation, allowing caspase-1 to proteolytically activate IL-1β and IL-

18 prior to their secretion.93 Mature IL-18 induces NF-κB signaling through the 

heterodimeric IL-18 receptor, and its proinflammatory effects are negatively 

regulated by an endogenous inhibitor, IL-18 binding protein.94-96  The 

preponderance of data suggests that IL-18 contributes to renal injury during AKI.  

The amount of mature IL-18 increases in the kidney following ischemia- 

reperfusion injury, glycerol injection, and cisplatin-induced renal injury in a 

caspase-1 dependent manner.97,98  Disruption of the IL-18 signaling axis by 1) 

knockout of NLRP3, a NOD-like receptor expressed in macrophages, 2) 

caspase-1 knockout 3) pharmacologic inhibition of caspase-1, and 4) 

pretreatment with an IL-18 neutralizing antibody have been demonstrated to 

attenuate the severity of AKI.97-100  Of note, a study by Edelstein et al. found that 

mouse proximal tubules express caspase-1 and secrete IL-18 in response to 

hypoxia, although an immune cell source of IL-18 production during AKI cannot 

be definitively ruled out.101  The precise signals that drive activation of the 

inflammasome and IL-18 production have not been fully characterized.  However, 
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possible stimulants include reactive oxygen species, ATP (released from necrotic 

cells), and uric acid crystals (released from necrotic cells).99,102,103    

Studies which have reported on the performance of IL-18 as an AKI biomarker 

are shown in Table 1-5.  A cross-sectional study by Parikh et al. was the first 

demonstrate the potential of IL-18 as an AKI biomarker.104  This study found that 

IL-18 was an excellent discriminator between patients with established acute 

tubular necrosis (n = 14) and a diverse control group  including healthy controls 

(n = 11), prerenal azotemia (n = 8), urinary tract infection (n = 5), chronic kidney 

disease (n =12), and post-renal transplant patients (n = 22), with an impressive 

area under the receiver operator characteristic curve of 0.95.104  A more recent, 

larger study confirmed the ability of IL-18 to accurately identify established AKI.78   

Urinary IL-18 has been investigated as an early predictor of AKI diagnosis in a 

variety of settings.  In children undergoing cardiac surgery, it appears to be a 

moderate predictor of AKI at an early time point, with stronger predictive power 

for more severe AKI.105,106  In comparison, two studies in adults undergoing 

cardiac surgery have reported that IL-18 is not predictive of post-operative 

AKI.89,107  However, a large prospective study by the TRIBE-AKI Consortium has 

reported that IL-18 concentration at the time of ICU arrival (0-6 hours after the 

initiation of bypass) is a modest predictor of mild AKI and has stronger predictive 

power for severe AKI.76  Important discrepancies between these studies exist, 

which could explain the contradictory results.  These include sample size (studies 

which have reported negative results were much smaller), the use of creatinine 

corrected values versus uncorrected IL-18 concentration, and the timing of  
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sample collection.  In the more heterogenous ICU population, IL-18 predicts the 

development of AKI within 24 hours after measurement.77,108-110  However, it 

must be noted that although Washburn et al. reported that higher peak urine IL-

18 concentration was associated with higher risk of developing AKI in the 

pediatric ICU, true prediction of future AKI was not demonstrated in this study.110    

In addition to early diagnosis of AKI, IL-18 has also been investigated as a 

prognostic biomarker of AKI.  Some studies have reported that IL-18 is 

associated with an increased risk of mortality among AKI patients.108,109  

However, few studies have robustly evaluated IL-18 as a predictor of adverse 

outcomes, and often prognosis is evaluated during secondary analysis of studies 

designed to test the ability of the biomarker to predict development of AKI at an 

early time point in the disease.  In such studies, the majority of patients do not 

develop AKI and are therefore not at risk of developing adverse outcomes 

associated with AKI.  If included in an analysis of prediction of adverse 

outcomes, these patients would skew the positive and negative predictive values 

(PPV and NPV) of any biomarker cut-off selected, since PPV and NPV depend 

upon prevalence.  Therefore, estimates of the ability of IL-18 to predict adverse 

outcomes are likely unreliable.  In order to properly estimate prediction of 

adverse outcomes, patients with IL-18 below a predetermined cut-off (signifying 

diagnosis of AKI) should be excluded from the analysis.  Another approach is to 

evaluate the prognostic predictive performance of IL-18 at the time that diagnosis 

of AKI is made based on serum creatinine or urine output criteria, although such 

a time point is after the peak of IL-18 has occurred.  Such a study conducted in 
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an ICU cohort found that IL-18 predicted worsening of AKI (defined as 

progression to a higher stage) or death with an AUC of 0.63, and a similar study 

in cardiac surgery patients by Koyner et al. reported that IL-18 had an AUC of 

0.63 for progression to a higher stage.79,80  

It is clear that IL-18 predicts severe AKI at an early time point after injury, it is a 

much less powerful predictor of mild AKI.  While it is noteworthy that even mild 

AKI is associated with adverse events, including an increased risk of mortality, it 

is well-documented that the risk of adverse outcomes associated with AKI 

increases with the severity of injury.6,7,22  While the prognostic value of IL-18 

appears to be diminished later in the course of the disease, IL-18 its ability to 

identify severe AKI at an early time point could be used to identify patients at 

high risk of adverse outcomes who could benefit from intervention. 

Liver- type Fatty Acid Binding Protein (L-FABP) 

Liver-type fatty acid binding protein (L-FABP) is expressed in the renal cortex, 

and the resultant 14 kDa protein can be localized predominantly in the proximal 

tubule.111,112 Importantly, while L-FABP can be found in the human kidney, it is 

not expressed in the murine kidney. Consequently, much of what is known about 

the factors governing the renal production of L-FABP and its effects during acute 

kidney injury has been discovered using a transgenic mouse model in which the 

genomic DNA of the human L-FABP gene, including its promoter region, was 

integrated into the mouse genome.113,114 Although studies using this transgenic 

mouse have demonstrated that urinary L-FABP concentration is predictive of the 

histologic severity of AKI induced by either renal ischemia reperfusion injury or 
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cisplatin,115 L-FABP has been shown to play a renoprotective role in these animal 

models of AKI.116-118 The canonical function of L-FABP is to bind long chain and 

very long chain fatty acids and promote their uptake and subsequent metabolism 

by β-oxidation.122-125  However, in the setting of renal ischemia reperfusion injury, 

Yamamoto et al. showed a significant reduction the amount of pimonidazole 

immunostaining, a marker of tissue hypoxia, in the outer medulla of the kidneys 

of mice expressing human L-FABP compared to wild type controls, suggesting 

an antioxidant role for L-FABP.  Additionally, L-FABP binds to a number of lipid 

species, and it has been postulated that it also binds to the lipid peroxidation 

products generated during ischemia reperfusion injury and promotes their 

redistributed from the cytosol to the tubular lumen when L-FABP is 

secreted.111,116  L-FABP gene expression is induced by hypoxia and urinary L-

FABP excretion is strongly correlated with ischemic time in transplanted 

kidneys.116   This relationship is presumably driven by an HIF-1α response 

element in the promoter region of L-FABP.126  PPAR-α is also a potent 

upregulator of L-FABP gene expression, and this has been used in animal 

models of AKI to attenuate renal injury.117,118 Therefore, PPAR-α agonists such 

as fibrates represent an attractive therapeutic target in the prevention and 

treatment of acute kidney injury, although two recent observational studies found 

an association between fibrate use and acute kidney injury.127-129  

Similar to KIM-1, L-FABP is a highly accurate classifier of established AKI, even 

in the heterogenouse ICU population, among whom it had an AUC of 0.80 (Table 

1-6).77,130  It has also shown promise as an early biomarker of AKI and has been 
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evaluated in numerous studies in the cardiac surgery population.  In the first such 

study, Portilla et al. found that urinary L-FABP concentration at the 4 hour post-

operative time point predicted AKI (area under the receiver operator 

characteristic curve of 0.81) in a cohort of 40 pediatric cardiac surgery patients.60  

Three other studies of adult cardiac surgery patients seemed to confirm the 

predictive power of L-FABP, with none reporting an AUC <0.76.131-133  The 

results of these and other studies were included in a meta-analysis by 

Susantitaphong et al., which found that L-FABP was a sensitive and specific 

predictor for the early diagnosis of AKI (sensitivity and specificity of 74.5% and 

77.6%, respectively).134 However, this study only included a total of 7 prospective 

cohort studies and noted that, while L-FABP is a promising AKI biomarker, there 

is a paucity of high quality literature regarding the predictive performance of 

urinary L-FABP.  In light of this, the recent publication by the TRIBE-AKI 

Consortium, which was not complete at the time of the aforementioned meta-

analysis, is disappointing.  This study, which is a much larger, multicenter trial 

than what had been previous published, found that L-FABP had an AUC of 0.71 

and 0.66 in children and adults, respectively.  In relation to NGAL, IL-18, and 

KIM-1, all of which have been evaluated in the same cohort, L-FABP did not 

appear to be useful in adult patients, although it was one of the better predictors 

in children.  In fact, the combination of IL-18 concentration at ICU arrival and L-

FABP concentration on day 2 had an AUC of 0.78 for predicting severe AKI in 

the pediatric cohort.135   

  



 

34 
 

  



 

35 
 

Few studies have been done investigating L-FABP in other settings.  Nakamura 

et al. reported that it was diagnostic of contrast-induced nephropathy at 1 day 

post-exposure.136  This same study also found that patients who developed CIN 

had elevated baseline urinary L-FABP levels, and pre-procedure L-FABP 

concentration was an independent predictor of CIN.  A prospective study in ICU 

patients found that urinary L-FABP concentration at ICU admission predicted the 

development of AKI within one week (AUC = 0.70).77  Finally, in a different study, 

the same investigators found that L-FABP concentration at ICU admission was a 

nearly perfect predictor of in-hospital mortality in patients with sepsis-associated 

AKI.137  While these results are promising, the prognostic significance of L-FABP 

in patients with established AKI has not been adequately addressed and should 

be the focus of future research. 

Perspectives on AKI Biomarker Research 

Clearly novel AKI biomarkers have provided mechanistic insights into the 

molecular processes underlying AKI.  However, early enthusiasm regarding the 

predictive power of these biomarkers has been dampened by the results of larger 

prospective studies, particularly by the results of the TRIBE-AKI Consortium 

study.  Consequently, none of these biomarkers has supplanted serum creatinine 

in clinical use, and it remains unclear if any will attain widespread clinical use in 

the near future.  Additionally, there is a significant gap in the amount and quality 

of research that has been conducted on early markers of AKI and prognostic 

prediction, yet the identification of high risk groups is clearly important, both 

before and after AKI diagnosis is made based on conventional serum creatinine 
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criteria.  The latter seems especially important given the increasing awareness of 

community-acquired AKI and the significant numbers of patients who present 

with AKI on hospital admission.  Therefore, novel renal injury biomarkers are 

needed, particularly biomarkers with a strong prognostic significance.  
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Chapter 2: Discovery Phase Proteomics Experiments 
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Introduction  
Acute kidney injury (AKI) is associated with a number of adverse outcomes.  

Epidemiologic studies have reported that the risk of adverse outcomes is 

proportional to the severity of AKI. 6, 138-140  Accurate identification of high risk 

patients with severe renal injury early in the disease could augment the efficacy 

of available interventions and improve patient outcomes. However, it is not 

possible to estimate the severity of AKI at an early time point, because AKI 

staging is based upon the magnitude of changes in serum creatinine and urine 

output, surrogates of glomerular filtration rate that do not change until after renal 

injury has occurred and only reach their peak or nadir late in the course of the 

disease.2,3,43  Therefore, the recent KDIGO clinical guideline for AKI highlighted 

the need for improved risk assessment for patients with established AKI.9      

Biomarkers of AKI could be used to evaluate the severity of AKI at an early time 

point in the disease as a guide for clinical decision-making.  They could also play 

a role in clinical trial design because biomarkers could be used to selectively 

enrich the study population with patients who have severe renal injury and are 

more likely to benefit from an experimental therapy, increasing the effect size of 

the intervention and the statistical power of the study.141,142  Many biomarkers 

have been proposed as early markers of AKI, to detect of AKI prior to increases 

in sCr.  These include NGAL, KIM-1, IL-18, Cystatin-C, L-FABP.54, 60, 84, 104, 143, 144   

However, few studies have been performed to evaluate the prognostic value of 

these biomarkers once AKI has been established by traditional criteria.  The 

results of two recent studies that evaluated NGAL, KIM-1 and IL-18 have
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demonstrated the suboptimal prognostic performance of these biomarkers.79-80  

The objective of the following work is to discover novel candidate prognostic 

biomarkers of AKI.   

Materials and Methods 

Human Studies 

Urine samples were obtained from a bank of samples collected by investigators 

in the Southern Acute Kidney Injury Network (SAKINet).  The SAKINet was 

formed in 2007 under the direction of the candidate’s mentor, John Arthur, MD, 

PhD.  It includes investigators at the Medical University of South Carolina, Duke 

University, George Washington University, University of Tennessee College of 

Medicine in Chattanooga, and Vanderbilt University.  Urine was collected post-

operatively from patients who had undergone cardiac surgery.  Samples were 

collected as early as possible after AKIN serum creatinine criteria were met, and 

all were collected within the first 72 hours after surgery.  Inclusion criteria were 

surgery of the heart or ascending aorta and development of AKI within 3 days of 

surgery. Subjects with baseline serum creatinine > 3.0 mg/dL were excluded.  

Prior to urine collection informed consent was obtained in accordance with the 

IRB-approved protocol at each institution. Samples were collected and stored 

using a rigorous standard operating procedure.  Most patients were catheterized 

and urine was collected preferentially from the Foley tube or the urometer and 

processed immediately.  Samples were centrifuged at 1,000 x g for 10 min and 

the supernatant was collected.  A reversible serine and cysteine protease 

inhibitor cocktail tablet (Roche, Complete-mini, EDTA-free) was added to the 
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samples at a concentration of 1 tablet for 50 mL of urine, and samples were 

stored at  -80°C  in polypropylene tubes that had been pre-washed with 100% 

acetonitrile to minimize contamination of the samples with plastic polymer.  For 

analysis urine samples were thawed in a 37°C water bath and kept on ice 

afterward. 

Animal Studies 

AKI was experimentally induced in rats (n = 6) and mice (n = 10), by glycerol 

injection and renal ischemia reperfusion injury, respectively.  7.5 ml/kg of 50% 

glycerol (in saline) was injected i.m. and rats were housed in metabolic cages for 

24 hour urine collection.  Renal ischemia reperfusion injury was performed in 

mice by bilateral renal pedicle clamping using a non-traumatic vascular clamp 

(85 g pressure; Roboz Surgical Instruments).  Briefly, mice were anesthetized 

with 3% isofluorane and given buprenorphine s.c. (0.05 – 0.1 mg/kg).  Kidneys 

were exposed using a ventral surgical approach and the clamps were applied.  

Mice were kept on a heating pad and under a heat lamp to maintain body 

temperature throughout the procedure.  Ischemic time was 16 minutes and the 

reperfusion of the kidney was visually documented.  Afterward, mice were 

housed in metabolic cages and urine was collected for 16 hours.    

Proteomic Analysis 

A 100 μL aliquot of urine obtained from each human and animal subject was 

used for proteomic analysis. 100 μL of 0.2% Rapigest SF surfactant (Waters) in 

100 mM ammonium bicarbonate was added to the samples to improve digestion 

efficiency.  Urine proteins were reduced by the addition of dithiothreitol (DDT; 
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final concentration ) and heated to 60°C for 30 min.  After cooling to room 

temperature, proteins in the samples were alkylated with iodoacetamide (final 

concentration of ) and incubated at room temperature in the dark for 30 min.  

Samples were digested with trypsin overnight (10 μg added to each sample) at 

37°C.  The digestion was stopped by sample acidification via the addition of 750 

μL of 0.1% formic acid to the samples (approximately 3 volumes).  Each digested 

sample was pre-fractionated by offline reversed phase solid phase extraction 

(SPE) using Strata-X (Phenomenex; 30 mg/mL) SPE cartridges.  The SPE 

cartridge was activated and equilibrated with 1 mL of methanol and 0.1% formic 

acid, respectively.  The sample was then loaded onto the SPE cartridge and 

serial elutions using increasing concentrations of acetonitrile in 0.1% formic acid 

were performed.  After elution, sample fractions were dried in a centrifugal 

vacuum concentrator.  For liquid chromatography tandem mass spectrometry, 

samples were reconstituted in mobile phase A (98% water, 2% acetonitrile, 0.1% 

formic acid), and each sample fraction was then individually analyzed using LC-

MS/MS using an Eksigent 2D+ nanoHPLC in-line with an AB SCIEX Triple ToF 

5600 mass spectrometer.  Samples were loaded onto a 1 or 2 cm Acclaim 

PepMap 100 nanotrap column (Thermo Scientific; 100 μm ID x 1 or 2 cm, C18, 5 

μm, 100 Å).  Sample fractions were then eluted from the nanotrap column using 

a gradient of increasing percentage of mobile phase B (95% acetonitrile, 5% 

water, 0.1% formic acid) and separated using an Acclaim PepMap 100 analytical 

column (75 μm  ID x 15 cm, C18, 3 μm, 100 Å).  Tandem mass spectrometry was 

performed in iInformation dependent acquisition using  the following parameters: 
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250 ms TOF MS accumulation time; 50 ms MS/MS accumulation time; 20 ions 

monitored per cycle; total cycle time 1.3 s; 4 s dynamic exclusion time after one 

occurrence; rolling collision energy.  The scanning windows for the TOF-MS and 

MS/MS were 300 – 1250 m/z and 55 – 2000 m/z, respectively.   

The above proteomic methods describe the general framework used in the four 

described experiments.  However, there were minor differences between 

experiments because the proteomic protocol was still in development at the time 

that these experiments were performed.  For example, the concentrations of 

acetonitrile used in the Stata-X SPE elution series differed from experiment to 

experiment.  A typical elution series included eluents of 10%, 15%, 20%, 25%, 

30%, 35%, 40%, 50%, and 60% acetonitrile in 0.1% formic acid.  Additionally, in 

some cases a 1 cm nanotrap was used for in-line sample separation, in other 

cases a 2 cm nanotrap was used.  Finally, the HPLC gradient used for in-lin 

sample separation differed between experiments, but generally was a two-step, 

continuous gradient increasing from 5% mobile phase B to 80% mobile phase B 

over a period of 40 to 60 minutes.  It is important to note that while these are 

differences between the four proteomics experiments, all samples within an 

experiment were treated in the same way.   

Protein Identification and Quantification.  

Acquired spectra (.wiff files) were converted to the MGF format using the AB 

SCIEX converter (version 1.1 beta). MGF files from all the fractions of each 

sample were merged and searched against the appropriate database using the 

Mascot search engine with trypsin as the specified enzyme.  For human studies 
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this was the 2011_6 release of the Human UniProtKB/Swiss-Prot database 

(20,127 entries) with addition of the common contaminants (112 entries). 

Carbamidomethyl (C) was selected as a fixed modification, and oxidation (M) and 

deamidation (NQ) were selected as variable modifications. Monoisotopic masses 

were used, and the error tolerances were 10 ppm and 0.5 Da for peptides and 

MS/MS fragments, respectively. Mascot search results were loaded into Scaffold 

(Proteome Software, Inc), which used the Peptide Prophet and Protein Prophet 

algorithms to validate peptide and protein identifications. The relative abundance 

of identified proteins was determined using Scaffold quantitative values (a type of 

normalized spectral count) of identified proteins. 

Statistical Analysis 

Within each experiment, differentially abundant proteins were identified using the 

Wilcoxon Rank-Sum test, since it has been reported as a robust statistical test for 

biomarker discovery studies with small sample sizes.145  Correction for multiple 

comparisons was not used.  Mean fold change between the two experimental 

groups was calculated, and the MFC was plotted against the -log10(p-value), in 

order to enhance selection of candidate biomarkers.        

Results 

Early AKI Study 

In order to describe changes in urine protein abundance that occur early in the 

course of AKI, the urinary proteome of patients who developed severe AKI 

(defined as AKIN stage 3) after cardiac surgery (n=4) was compared to that of 

patients who did not develop AKI of any grade (n=4).  The average time of urine 
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sample collection in was 9.6 hrs post-operatively, and at the time of sample 

collection, two of the AKI patients did not have elevated serum creatinine (sCr) 

meeting AKIN criteria for diagnosis of AKI.  There were no statistically significant 

differences between the two groups with respect to demographic variables, type 

of surgery, use of intraoperative cardiopulmonary bypass, bypass time, pre- 

operative/baseline sCr, sCr at the time of sample collection, and the time of 

sample collection.   A complete description of patient characteristics is shown in 

Table 2-1. A total of 230 proteins were identified with no false identification 

(calculated protein false discovery rate <1%).  Of these 109 proteins were unique 

to the AKI group (i.e. the protein was identified in ≥1 sample in this group, but not 

identified in any sample from the other group); 27 proteins were unique to the No 

AKI group (Figure 2.1a).  However, no proteins were consistently observed in 

one group but not detected in the other group (defined as identification of the 

protein in ≥3 samples of one group, but 0 samples in the other group).  Because 

of its significance to experiments that will be described later, it is noteworthy that 

angiotensinogen was detected in the urine of 2 of the 4 AKI patients, but none of 

the patients without AKI.  The two patients who did have detectable 

angiotensinogen had already met diagnostic criteria for AKI based on the 

magnitude of increased sCr that had already occurred at the time of sample 

collection.  Four proteins were identified which had P< 0.05: uromodulin, CD59 

glycoprotein, kinninogen-1, and vesicular integral-membrane protein VIP36.  The 

distribution of mean fold change and p-value for the identified proteins is 

presenting in Figure 2.1b.   Because candidate biomarkers were selected using  
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Table 2-1 Characteristics of patients used in the discovery phase proteomics 

studies comparing severe AKI to No AKI 

 No AKI AKI P 

n 4 4  

Demographic Variables 

Female
a
 25% (1) 0% (0) 1 

Caucasian
a
 100% (4) 75% (3) 1 

Age (yrs)
b
 63.8 ± 3.9 55.3 ± 12.2 0.34 

Weight (kg)
b
 100.4 ± 8.3 104.9 ± 8.3 0.67 

Sample Collection Time (hrs post-op)
b
 10.2 ± 5.3 9.0 ± 4.5 0.49 

Operative Variables 

CABG
a
 100% (4) 25% (1) 0.14 

Valve Replacement
a
 0% (0) 0% (0) 1 

CABG + Valve Replacement
a
 0% (0) 0% (0) 1 

Other Surgery
a
 0% (0) 75% (3) 0.14 

Bypass
a
 75% (3) 100% (4) 1 

Bypass Time (min)
b
 134.3 ± 32.1 147.3 ± 76.2 0.86 

Serum Creatinine (mg/dL) 

Pre-Op Value
b
 1.0 ± 0.3 1.5 ± 0.3 0.11 

At Sample Collection
b
 1.2 ± 0.3 1.9 ± 0.5 0.06 

Maximum Post-Op Value
b
 1.3 ± 0.3 4.8 ± 1.9 0.03 

Outcomes 

Days to Max sCr (from surgery)
b
 1.0 ± 0.8 3.0 ± 1.2 0.06 

RRT
a
 0% (0) 25% (1) <0.01 

Death
a
 0% (0) 25% (1) 0.06 

a
Percentage and n; 

b
Mean ± SD 

Groups were compared using Fisher’s Exact test for categorical variables and the 
Mann-Whitney U test for continuous variables. 
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Figure 2-1. Urinary proteomic analysis of patients who either developed 

severe AKI after cardiac surgery or did not.  Liquid chromatography 

tandem mass spectrometry was used to identify and quantify urinary 

proteomic changes during AKI.  (A) Venn diagram showing the number of 

identified proteins by group.  Red represents the group with AKI; blue 

represents the group without AKI.  (B) Volcano plot shows the mean fold 

change in protein abundance between the two groups versus the statistical 

significance.  Smaller p-values are larger due to the transformation.  Data 

points above the dotted line have P< 0.05. 
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the combined data of this and three other proteomics experiments, the complete 

dataset is presented in Appendix A.  

Renal Replacement Therapy 
In order to identify candidate biomarkers of severe AKI, urine samples from 12 

patients who had undergone cardiac surgery and developed post-operative AKI 

were analyzed by liquid chromatography tandem mass spectrometry.  Six of 

these patients developed severe AKI requiring renal replacement therapy (RRT); 

six patients developed mild AKIN stage 1 AKI.  There were no statistically 

significant differences between the two groups with respect to demographic 

variables, urine sample collection time, use of cardiopulmonary bypass, bypass 

time, type of surgery, preoperative/baseline serum creatinine (sCr), and sCr at 

the time of sample collection.  A complete description of patient characteristics is 

shown in Table 2-2. 

A total of 343 proteins were identified with a false discovery rate of 1.9%.  Of 

these, 59 proteins were unique to the RRT group (i.e. they were identified in ≥1 

patient in the RRT group but none of the patients in the No RRT group), and 5 

proteins were unique to the No RRT group (Figure 2.2a).  Twenty-six proteins 

were identified as being differentially abundant between the two groups (P 

<0.05). The distribution of mean fold change and P value for the identified 

proteins is shown in the volcano plot (Figure 2.2b).  Several candidate 

biomarkers can be selected using the criteria of large mean fold change and low 

P value.  However, our objective was not to select candidate biomarkers using 

data from a single proteomics, but to collate data from several such studies.  

Therefore, the complete proteomics data from this experiment are presented in 
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Table 2-2 Characteristics of patients used in the discovery phase proteomics studies 

comparing severe AKI requiring RRT to mild AKI 

 No RRT RRT P 

n 6 6  

Demographic Variables 

Female
a
 33% (2) 33% (2) 1 

Caucasian
a
 100% (6) 100% (6) 1 

Age (yrs) 63.8 ± 7.9 72.5 ± 17.1 0.29 

Weight (kg) 75.9 ± 40.2 85.3 ± 37.5 0.33 

Sample Collection Time (hrs post-op) 29.2 ± 14.4 38.0 ± 12.0 0.3 

Operative Variables 

CABG
a
 50% (3) 33% (2) 1 

Valve Replacement
a
 17% (1) 17% (1) 1 

CABG + Valve Replacement
a
 33% (2) 17% 1) 1 

Other Surgery
a
 0% (0) 33% (2) 0.46 

Bypass
a
 67% (4) 67% (4) 1 

Bypass Time (min) 160.8 ± 67.0 165.0 ± 88.2 1 

Serum Creatinine (mg/dL) 

Pre-Op Value 13. ± 0.4 1.4 ± 0.3 0.76 

At Sample Collection 1.9 ± 0.4 2.6 ± 0.6 0.37 

Maximum Post-Op Value 2.1 ± 0.5 4.2 ± 1.4 0.006 

Outcomes 

Days to Max sCr (from surgery) 1.7 ± 1.0 4.8 ± 2.4 0.02 

RRT
a
 0% (0) 100% (6) <0.01 

Death
a
 0% (0) 67% (4) 0.06 

a
Percentage and n; 

b
Mean ± SD 

Groups were compared using Fisher’s Exact test for categorical variables and the 

Mann-Whitney U test for continuous variables. 
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Figure 2-2.  Urinary proteomic analysis of cardiac surgery patients who 

either developed severe AKI requiring renal replacement therapy (RRT) 

or mild AKI.  Liquid chromatography tandem mass spectrometry was used to 

identify and quantify urinary proteomic changes during AKI.  (A) Venn diagram 

showing the number of identified proteins by group.  Red represents the group 

that required RRT; blue represents the group that only developed mild, AKIN 

stage 1 AKI.  (B) Volcano plot shows the mean fold change in protein 

abundance between the two groups versus the statistical significance.  

Smaller p-values are larger due to the transformation.  Data points above the 

dotted line have  P <0.05. 
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Appendix A.  The combined data from this and other proteomics experiments is 

presented below.  Nevertheless, it is worthwhile to mention the results of one 

candidate biomarker, urinary angiotensinogen, at this point.  Of all the identified 

proteins in this experiment, it was the best discriminator based upon its large 

mean fold change (9.67-fold elevated in the RRT group) and low p-value (p = 

0.002).  Urinary angiotensinogen was undetectable in the 4 of the 6 patients in 

the No RRT group, and it discriminated with 100% accuracy between the two 

groups.          

Rat Glycerol Induced AKI Study 

In order to identify candidate biomarkers of AKI secondary to nephrotoxic 

causes, urine from rats (n = 3) in which AKI had been experimentally induced by 

glycerol injection was compared to that of vehicle injected controls (n = 3).  A 

total of 259 proteins were identified with no false discoveries (calculated FDR 

<1%).  Of the identified proteins, 33 were unique to the No AKI group and 48 

were unique to the AKI group (Figure 2-3).  However, only 37 of these proteins 

were consistently identified in the urine of the animals in AKI group (i.e. identified 

in all three group members but none of the other group).  These proteins are 

shown in Table 2-3.  Of note, of the 178 proteins shared between the groups, 

100 had a P value = 0.1, the lowest possible p-value given the small sample size 

of this experiment.  Of note, angiotensinogen was 10-fold elevated in the rats 

with AKI (P = 0.1), and it discriminated with 100% accuracy between the two 

experimental groups.  The complete list of identified proteins and group 

comparisons is shown in Appendix A.  
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Figure 2-3. Urinary proteomic analysis of rats with glycerol injection 
induced AKI compared to controls.  Liquid chromatography tandem mass 
spectrometry was used to identify and quantify urinary proteomic changes 
during AKI.  (A) Venn diagram showing the number of identified proteins by 
group.  Red (B) Volcano plot shows the mean fold change in protein 
abundance between the two groups versus the statistical significance.  
Smaller p-values are larger due to the transformation.  The dashed line 
represents P= 0.1.    
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Table 2-3. Urinary proteins uniquely identified in rats  
with and without AKI 

Protein Name 
Uniprot             

Acc. Num. 

Proteins Uniquely Identified in the Urine of Rats with AKI 

Fibrinogen alpha chain  P06399 

Protein NOV homolog  Q9QZQ5 

Creatine kinase M-type  P00564 

L-lactate dehydrogenase B chain  P42123 

Complement factor I  Q9WUW3 

Uteroglobin  P17559 

Cystatin-B  P01041 

Gastrotropin  P80020 

Hydroxyacid oxidase 2  Q07523 

Myosin-4  Q29RW1 

Sodium/potassium-transporting ATPase subunit 
alpha-1  

P06685 

Keratin, type II cytoskeletal 2 epidermal  Q6IG02 

Calreticulin  P18418 

Cartilage oligomeric matrix protein  P35444 

Alanine--glyoxylate aminotransferase 2, mitochondrial  Q64565 

Proteins Uniquely Identified in the Urine of Rats without AKI 

Phosphotriesterase-related protein  Q63530 

Dipeptidyl peptidase 2  Q9EPB1 

Pancreatic alpha-amylase  P00689 

Neprilysin  P07861 

Na(+)/H(+) exchange regulatory cofactor NHE-RF1 Q9JJ19 

Meprin A subunit beta  P28826 

Endothelial cell-selective adhesion molecule  Q6AYD4 

Na(+)/H(+) exchange regulatory cofactor NHE-RF3  Q9JJ40 

Ezrin  P31977 

Retinoid-inducible serine carboxypeptidase  Q920A6 

Glutamyl aminopeptidase  P50123 

Calbindin  P07171 

CD48 antigen  P10252 

Aquaporin-1  P29975 

Lysosomal alpha-glucosidase Q6P7A9 

Aflatoxin B1 aldehyde reductase member 3  P38918 

Beta-microseminoprotein  P97580 

Neuroplastin P97546 

Glutathione S-transferase alpha-1  P00502 
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Table 2-3 continued 

Protein Name 

Uniprot     

Acc. Num. 

Proteins Uniquely Identified in the Urine of Rats without AKI 

Lysosomal acid phosphatase  P20611 

Protein FAM151A  Q642A7 

RT1 class I histocompatibility antigen, AA alpha chain  P16391 
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Mouse Renal Ischemia-Reperfusion Injury Induced AKI Study 

To identify candidate biomarkers of AKI due to ischemic injury, urine from mice 

that had been subjected to renal ischemia-reperfusion injury (n = 5) was 

compared to that of sham operated controls (n = 5). This study identified 163 

proteins (calculated FDR = 3.4%), of which 56 were differentially abundant 

between the two experimental groups (P < 0.05).  Of these, only nine proteins 

were detected in the urine of all five mice with AKI but none of the sham operated 

controls.  Notably, angiotensinogen was one of the proteins identified only in the 

urine of mice with AKI.  These are displayed in Table 2-4, and the complete list of 

protein identifications is shown in Appendix A.  

Selection of Candidate Biomarkers 

Candidate biomarkers were selected based upon the combined data from the 

four proteomics experiments (Table 2-5).  However, the experiments were not 

given equal weight.  Since our objective was to identify prognostic biomarkers, 

we preferentially selected candidates based on the results of the RRT 

experiment, which compared patients with severe AKI requiring RRT to those 

with mild AKI.  As mentioned above, angiotensinogen was the best discriminator 

in this experiment.  Additionally, although it did not reach statistical significance, it 

was only observed in the urine of patients with AKI in the early AKI study.  

Similarly, angiotensinogen was observed in all 5 mice with renal ischemia-

reperfusion injury, but it was not detected in any of the sham operated controls.  

Finally, it appeared to be a good discriminator of rats with glycerol- induced AKI,   



 

55 
 

 Table 2-4. Urinary proteins uniquely identified in mice 
with AKI 

Protein Name 
Uniprot             

Acc. Num. 

Proteins Uniquely Identified in the Urine of Mice with AKI 

Alpha-2-HS-glycoprotein P29699 

Angiotensinogen P11859 

Uteroglobin Q06318 

Vitamin D-binding protein P21614 

Plasminogen P20918 

Polyubiquitin B P0CG49 

Gelsolin P13020 

Transthyretin P07309 

Carboxylesterase 1C P23953 
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Figure 2-4.  Urinary proteomic analysis of mice with renal ischemia 
reperfusion injury induced AKI versus sham operated controls.  Liquid 
chromatography tandem mass spectrometry was used to identify and quantify 
urinary proteomic changes during AKI.  (A) Venn diagram shows the number of 
identified proteins by group.  Red represents the group with AKI; blue represents 
the group without AKI.  (B) Volcano plot shows the mean fold change in protein 
abundance between the two groups versus the statistical significance.  Smaller 
p-values are larger due to the transformation.  Data points above the dotted line 
have p<0.05.   
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 being markedly elevated in all three rats with AKI compare to controls (P = 0.1).  

Although the P value was >0.05, the lowest possible P-value for the Wilcoxon 

Rank-Sum test when n = 6 is 0.1, and so this difference was considered 

statistically significant.  Figure 2-5 summarizes the angiotensinogen 

measurements made in the four proteomics studies.   Qualitatively, 

angiotensinogen compared favorably with the well-established AKI biomarkers 

NGAL, KIM-1, and L-FABP (Table 2-5), suggesting that it could have similar or 

perhaps improved performance characteristics for the prediction of early AKI and 

AKI severity. 

Discussion 

A total of 22 novel candidate AKI biomarkers were identified using the combined 

results of four discovery phase proteomics experiments.  A relative strength of 

our study is the heterogeneity of the study groups.  The two human studies 

compared the urinary proteome of patients with early, severe AKI to that of 

patients without AKI (Early AKI Study) and the proteome of patients with early, 

severe AKI that eventually required renal replacement therapy (RRT) to that of 

patients with mild AKI (RRT study).  To complement these data, two studies of 

different animal models of AKI were conducted, renal ischemia reperfusion injury 

in mice and glycerol-induced AKI in rats.  The former has a similar mechanism to 

AKI after cardiac surgery, whereas the latter is a model of rhabdomyolysis-

induced AKI.  We hypothesized that we would have a greater probability of 

identifying translatable biomarkers by collating the data from these four 

experiments and by selecting proteins that discriminated between the groups of   
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Figure 2-5. Point plots of urinary angiotensinogen abundance.  The data 

from the four previously described proteomics studies are displayed, showing 

the relative abundance of angiotensinogen in each of the individual subjects of 

the two experimental groups of each study.  For graphical representation, 

subjects in which angiotensinogen was not detected are represented as an 

open circle on the x-axis.  Statistical significance was determined with the 

Wilcoxon Rank-Sum test. MFC, mean fold change; Div/0, angiotensinogen 

was not detectable in any of the subjects of the control group.   
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each experiment.  In fact, we identified NGAL using this approach, which we 

believe validates our data.  It is important to acknowledge the limitations of 

discovery phase proteomics experiments.  Due to the small number of samples 

and multiple statistical comparisons that are made, there is a high probability of 

type I error and false discovery of candidate biomarkers.  To mitigate this 

probability, we used the non-parametric Wilcoxon Rank-Sum test for statistical 

comparison because it has been demonstrated to have a lower type I error than 

other tests.19  However we did not use an adjustment for multiple comparisons 

such as the Bonferroni or Benjamini-Hochberg corrections, largely because the 

studies were underpowered for such adjustments.  Instead, we selected 

biomarkers based on trends observed in the combined data of the four 

experiments.  Nevertheless, it is important to recognize that discovery proteomics 

experiments are only the first phase of a multistep biomarker identification 

workflow which has been proposed by Rifai et al (Figure 2-6).146  Phases which 

will need to be completed include qualification and verification, in which the 

differential abundance of the candidates is confirmed using a more targeted 

analytical approach, and verification, during which the biomarker is measured in 

populations other than the one used in the discovery phase  in order to evaluate 

its specificity.  In the final phase, validation, a clinical assay is developed and 

rigorously characterized.  These later phases will be addressed in subsequent 

chapters, which describe the qualification and verification of angiotensinogen, the 

most promising candidate biomarker that we identified.
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Figure 2-6. Paradigm for understanding the biomarker discovery process.146  Four 

distinct phases are described: discovery, qualification, verification, and validation.  In 

each subsequent phase, the number of proteins being measured (analytes) decreases 

and the number of biological samples being evaluated increases.  There is also a shift 

from low throughput methodologies to more high throughput, targeted approaches.  Rifai 

et al. Protein biomarker discovery and validation: the long and uncertain path to clinical 

utility. Nature Biotechnol. 2006 Aug; 24(8):971-83.  
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Chapter 3: Qualification of Urinary Angiotensinogen as a Prognostic 

Biomarker of Acute Kidney Injury After Cardiac Surgery 
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Introduction 

Our previous study using urinary proteomic analysis identified a number of 

candidate prognostic biomarkers of acute kidney injury (AKI).  The most 

promising of these was urinary angiotensinogen.  Collated data from the four 

proteomic experiments showed that the relative abundance of urinary 

angiotensinogen was increased in every experimental state of each of the 

studies (see Table 2-4 and Figure 2-5) to a greater degree than other candidates, 

as determined by the mean fold change, and in 3 of the 4 experiments statistical 

significance was met.  Furthermore, the significance of elevated urinary 

angiotensinogen is intriguing from a mechanistic standpoint.  Angiotensinogen is 

the principal substrate of the renin-angiotensin system (RAS), a hormonal 

cascade that has pleiotropic effects in the kidney, including the regulation of 

hemodynamics, sodium reabsorption, aquaresis, cellular proliferation and 

apoptosis, fibrosis, and inflammation.147  Urinary angiotensinogen concentration 

is thought to reflect the level of activation of the intrarenal RAS.148  Thus, from a 

pathobiologic point of view, angiotensinogen is a logical prognostic biomarker. 

Materials and Methods 

Patients and Urine Samples 

Urine samples were selected from those banked by the Souther Acute Kidney 

Injury Network (SAKINet; see Chapter 2) in order to fit the criteria described 

below.  Patients had undergone cardiac surgery, and urine samples were 

collected at the time of AKI diagnosis according to AKIN serum creatinine (sCr) 
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criteria.3  Inclusion criteria were consent by the patient or appropriate surrogate, 

surgery of the heart or ascending aorta, and development of AKI (defined by the 

AKIN sCr criteria) within 2 days of surgery. Only subjects who had collection of 

urine within 48 hours after surgery were used in order to conform to the AKIN 

staging criteria and to attempt to eliminate confounding effects of events that 

were not directly related to the cardiac surgery.  The only exclusion criterion was 

a baseline sCr > 3 mg/dL. A total of 97 patients were included in this study.  

Urine samples from 10 of the patients used in this study were also used in the 

discovery phase proteomic analysis described in Chapter 2. Of the 97 patients 

enrolled, 79 were classified as AKIN stage 1 at the time of urine sample 

collection. 

Angiotensinogen ELISA 

The Human Total Angiotensinogen Assay Kit (Immuno-Biological Laboratories 

Co., Ltd.), a solid phase sandwich ELISA, was used according the 

manufacturer’s protocol to measure urinary angiotensinogen. Urine samples 

were diluted 1:8 in enzyme immunoassay (EIA) buffer provided by the 

manufacturer. One hundred μL of diluted sample was added to the appropriate 

well and incubated for 60 min at 37°C. The plate was then washed 7 times by 

pipetting 250 µL of the provided wash buffer into each well using a multichannel, 

repeating pipet. After drying the plate, 100 µL of 30x diluted HRP-conjugated 

anti-angiotensinogen antibody was added to each well and incubated for 30 

minutes at 37°C. The plate was washed 9 times as before and dried.  100 μL of 

chromogen (TMB) was added to each well, and the plate was incubated for 30 
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min in the dark at room temperature. One hundred μL of stop solution was added 

to each well, and the absorbance was measured at 450 nm using a SpectraMAX 

340PC 96-well plate reader. The linear range of the assay is 0.31 to 30 ng/mL. 

Intra- and inter-assay variability (coefficient of variation) were calculated by 

measuring the standards and three selected biological samples in quadruplicate 

once, and in duplicate on all remaining plates. Values for intra- and interassay 

variability were 2.4% and 9.9%, respectively. Data were analyzed using Softmax 

Pro3.1.2. Samples whose values were above the upper limit of quantification for 

the assay were diluted 1:10 in EIA buffer and re-run on a separate plate.  If the 

value remained above the limit of quantification, a concentration of 20 ng/mL  

assigned to that sample.   

Urine Creatinine Determination. 

Urine creatinine was used to normalize the urine angiotensinogen concentration 

to account for biological variability in the concentration of urine.  This is 

accordance with the findings of Ralib et al. who reported that creatinine 

correction was appropriate and increased the prognostic predictive value of urine 

biomarkers of AKI.149  Values were reported as the ratio of angiotensinogen in 

ng/ml to creatinine in mg/ml (uAnCR, ng/mg). Urine creatinine was measured 

using the Jaffe assay.  Three μL of sample was combined with 100 μL of 1% 

picric acid (Sigma-Aldrich), 100 μL of 0.75M NaOH (Genomic Solutions), and 300 

μL distilled deionized H2O. Samples were incubated at room temperature for 15 

min and absorbance at 490 nm was measured using a SpectraMAX 340PC 96-

well plate reader. Data were analyzed using Softmax Pro 3.1.2.  
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Outcomes  

The primary outcome was worsening of AKI, defined as progression to a higher 

AKIN stage after the time of sample collection. Secondary outcomes were 

progression to AKIN stage 3, the need for renal replacement therapy (RRT) 

within 10 days of sample collection, progression to AKIN stage 2 or 3, 

progression to AKIN stage 3 or death, RRT or death, and discharge >7 days from 

the time of sample collection or in-hospital mortality. Outcomes were tested using 

the entire cohort and in a subset of patients classified as AKIN stage 1 at the 

time of sample collection. 

Statistical Analysis  

Count data were analyzed using the χ2 or Fisher’s exact test as appropriate.  

Continuous variables were analyzed using the Student’s t test or Mann Whitney 

U test when comparing two groups.  ANOVA or Kruskal-Wallis ANOVA on Ranks 

test and the post- hoc Dunn’s test for pairwise comparison were used to evaluate 

continuous variables when more than two groups were compared. Odds ratios 

(OR) were used to test the association of uAnCR with selected outcomes. 

Patients were stratified by uAnCR into quartiles, the effect of uAnCR on the risk 

of developing an outcome was tested by calculating the OR of the upper and 

lower quartiles and estimating the 95% confidence interval of the OR. Receiver 

operator characteristic curves were constructed to determine the predictive 

power of uAnCR. The area under the ROC curve (AUC) was used as an estimate 

of an overall accuracy of the biomarker. An AUC of 1.0 represents 100% 

accuracy, whereas an AUC of 0.5 indicates 50% accuracy, which is no better 
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than random chance. Univariate ROC curves were considered statistically 

significant if the AUC differed from 0.5, as determined by the z-test. Optimal cut-

offs were determined by selecting the data point that minimized the geometric 

distance from 100% sensitivity and 100% specificity on the ROC curve.150 

Additionally, cut-offs that maximized the positive likelihood ratio and minimized 

the negative likelihood ratio were reported since they could be useful in assigning 

high or low risk of adverse outcomes to a patient. Likelihood ratios of positive and 

negative predictive value were used since they are insensitive to changes in 

prevalence (unlike PPV and NPV) and can be used to infer post-test probability. 

Kaplan-Meier curves were used to visualize the relationship between uAnCR and 

length of stay. Patients who died were censored. The log-rank test was used to 

compare the curves, and the Holm-Sidak test was used for post-hoc pairwise 

comparison.  Category free net reclassification improvement was used to 

determine if addition of uAnCR to a multivariate logistic regression model for 

prediction of risk increased the ability of the model to predict worsening of AKI. 

First, a multiple logistic regression model (reference model) was created using 

the variables percent change in serum creatinine from baseline and Cleveland 

Score, a perioperative risk score that has been demonstrated to predict AKI 

outcomes after cardiac surgery.151, 152 Then, a new model was created which 

included uAnCR, in addition to these two variables.  Each patient’s probability 

(risk) of experiencing worsening of AKI after sample collection was calculated 

with both models.  The category free net reclassification index was calculated as 

previously described, and was used to quantify the improved prognostic 
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predictive power gained by including uAnCR in the model.153, 154  Statistical tests 

were performed in either Matlab or SigmaPlot. 

Results 

We measured urinary angiotensinogen by ELISA and verified its ability to predict 

outcomes in patients who had developed AKI after cardiac surgery (n= 97). 

These patients were divided into three groups by maximum AKIN stage: stage 1 

(n= 59), stage 2 (n= 19), and stage 3 (n= 19). Of these, 79 patients (stage 1 n= 

59, stage 2 n = 10, and stage 3 n = 10) were classified as AKIN stage 1 (i.e. had 

less than a doubling of serum creatinine) at the time of urine sample collection.  

There were no statistically significant differences among the groups with respect 

to the following potential confounders: gender, race, age, use of intraoperative 

bypass, bypass time, pre-operative sCr, and type of surgery (Table 3-1). Since 

our primary objective was to identify a prognostic biomarker among patients with 

mild AKI, we performed a two analyses, one using the entire cohort and a second 

subset analysis using only patients who had not progressed beyond AKIN stage 

1 at the time of sample collection (n= 79). 

Urinary Angiotensinogen Concentration and AKI Severity 

Among all patients who had developed AKI of any stage at the time of urine 

sample collection, urinary angiotensinogen corrected for creatinine (uAnCR; ng 

angiotensinogen / mg creatinine) was correlated with both maximum sCr (r=0.49; 

p< 0.001) and maximum percent change in sCr (r= 0.29; p= 0.01), and uAnCR 

increased with AKI severity (as determined by maximum AKIN stage) in both the 
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whole cohort and the subset of patients classified as AKIN stage 1 at collection 

(Table 3-1; Figure 3-1).  Post-hoc pair-wise comparison revealed a significant 

difference between the patients who developed AKIN stage 3 and those who 

reached a maximum of stage 1.  

Urinary Angiotensinogen and Adverse Outcomes 

We evaluated the ability of angiotensinogen to predict the primary outcome of 

worsening of AKI (defined as progression to a higher AKIN stage).  Comparing 

patients in the top quartile of uAnCR to those in the bottom quartile, the odds 

ratio for worsening of AKI was 5.0 (95% CI 1.16-21.46) in the whole cohort and 

4.64 (95% CI 1.02-21.0) in the subset of patients who were classified as AKIN 

stage 1 at collection.  Several secondary outcomes were also evaluated, 

including AKIN stage 3, the need for renal replacement therapy (RRT) within 10 

days, and the composite outcomes of development of AKIN stage 2 or 3, AKIN 

stage 3 or death, and RRT or death.  Ingeneral, patients with higher uAnCR were 

at increased risk of these outcomes (Table 3-2).  Receiver operator characteristic 

(ROC) curve analysis found that uAnCR was predictive of worsening AKI in both 

the whole cohort (AUC= 0.70) and in the subset classified as AKIN stage 1 at 

collection (AUC= 0.71).  It also predicted the other tested outcomes, with the 

exception of RRT in the subset of patients classified as AKIN stage 1 at 

collection (Figures 3-2, 3-3, and 3-4).  While the ROC curve for RRT prediction in 

these patients was not statistically significant (p= 0.1), it is likely that it was  
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A 

 

Figure 3-1.  uAnCR increases with AKI severity.  Box and whisker plots showing the 

distribution of uAnCR by group in patients who developed AKI after cardiac surgery.  (A) 

Among patients who had AKI of any AKIN stage at the time of sample collection (n = 97), and 

(B) among the subset of patients who were classified as AKIN stage 1 at the time of sample 

collection (n = 79), uAnCr increased in a graded manner with AKI severity.  Box plots show 

the median (solid line), 25
th
 and 75

th
 percentiles.  Error bars represent the 5

th
 and 95

th
 

percentiles.  AKIN stage groups were compared using the Kruskal-Wallis test (p-value shown 

in bottom right) and post-hoc Dunn’s test for pairwise comparison.  *, p< 0.05 when compared 

to AKIN stage 1 group     
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Figure 3-2.  uAnCR Predicts Worsening of AKI.  Receiver operator characteristic (ROC) 

curves demonstrate the ability of uAnCR to predict worsening of AKI after sample collection 

among (A) patients who were any stage AKI at the time of collection and (B) the subset of 

patients who were classified as AKIN stage 1 at collection.  Worsening of AKI was defined as 

progression to a higher AKIN stage.  A perfect biomarker would have an area under the ROC 

curve (AUC) of 1, whereas random chance has an AUC of 0.5.  The ROC curve was 

considered statistically significant if the AUC differed from 0.5.  
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Figure 3-3.  Receiver operator characteristic (ROC) curves showing the 

predictive power of uAnCR for multiple adverse outcomes in patients 

who developed AKI after cardiac surgery.  The entire cohort (n = 97) was 

used in these analyses. 
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Figure 3-4. Receiver operator characteristic (ROC) curves showing the predictive 

power of uAnCR for multiple adverse outcomes in patients who developed AKI after 

cardiac surgery.  Only the subset of patients who were classified as AKIN stage 1 at the 

time of sample collection were included in these analyses (n = 79).  The outcome AKIN 

stage 2 or 3 is not reported here because it was previously reported as worsening of AKI in 

Figure 3-2.   
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under powered since only eight patients required RRT in this group Notably, the 

predictive power for most outcomes among those patients classified as AKIN 

stage 1 at collection  appeared to be slightly augmented in comparison to the 

analysis including the entire cohort. In addition to the prediction of the renal and 

mortality outcomes, we noted a relationship between uAnCR and length of 

hospital stay. This relationship is visualized in survival curves plotting the time 

todischarge (defined as days after sample collection) of patients in the upper, 

middle or lower tertiles of uAnCR. Among all AKI patients and in the subset of 

patients classified as AKIN stage 1 at the time of collection, those patients with 

higher uAnCR concentrations had longer hospital stays (Figures 3-5a and 3-5b). 

ROC curve analysis indicated that uAnCR was predictive of longer length of stay 

defined as discharge >7 days from the time of sample collection or death ≤7 days 

from collection in both the whole cohort (Figures 3-3) and in the subset of 

patients who were classified as AKIN stage 1 at collection (Figure 3-4). Tables 3-

3 and 3-4 summarize the performance characteristics of uAnCR as a predictor of 

the tested outcomes in patients who had AKIof any stage at the time of sample 

collection and those who had not progressed beyond AKIN stage 1 at the time of 

sample collection, respectively. 

Net Reclassification Improvement 

We determined the ability of uAnCR to improve the prediction of worsening AKI 

of a clinical risk model. The clinical model was a multivariate logistic regression 

model consisting of the percent change in sCr from baseline that had already   
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Figure 3-5. Survival curves showing the association of increased uAnCR and 

increased length of stay in cardiac surgery patients with post-operative AKI.  

Patients were stratified into tertiles by uAnCR.  Kaplan-Meier survival curves show 

that (A) in patients with any stage AKI at the time of sample collection ( n = 97), and 

(B) in the subset of patients classified as AKIN stage 1 at collection, patients with 

higher uAnCR had increased length of stay (defined as days to discharge from the 

time of sample collection.  The log-rank test was used to determine if the survival 

curves differed statistically (p-value shown), and the Holm-Sidak test was used for 

post-hoc pairwise comparison. *, p< 0.05 compared to Low uAnCR group  
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occurred at the time of sample collection and the patient’s Cleveland Clinic score, a 

perioperative risk score that predicts AKI severity after cardiac surgery.8,9  The ability of 

uANCR to improve the prediction by the clinical model was determined in both the entire 

cohort and in the subset of patients classified as AKIN stage 1 at the time of urine 

collection. When uAnCR was added to the clinical model, we found that it predicted 

worsening of AKI independently of the percent change in sCr and the Cleveland Clinic 

score (p= 0.02). Category free net reclassification improvement (cfNRI) was used to 

capture the added benefit of including uAnCR in the model. cfNRI compares each 

patient’s calculated risk for an outcome using a reference model to a new model 

(reference model plus uAnCR). Addition of uAnCR to the clinical model improved 

the ability to predict a patient’s risk of experiencing worsening of AKI in both the 

entire cohort and the subset of patients who were classified as AKIN stage 1 

(cfNRI= 0.457 and  0.428, respectively). To visualize the improvement in 

prediction, we constructed a risk assessment plot, as proposed by Pickering and 

Endre.7 This plot compares the sensitivity and 1-specificity of the reference and 

new models across the spectrum of calculated risk for each model.  Figure 3-6a 

and 3-6b  show that, in both the entire cohort and in the subset, the addition of 

uAnCR into the model resulted in patients who met the outcome (events) having 

a greater calculated risk, and patients who did not meet the outcome (nonevents) 

had a lower calculated risk. Therefore, both sensitivity and specificity were 

improved by including uAnCR in the prediction model.  
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Figure 3-6. Risk assessment plots showing the improved prediction of worsening 

AKI when uAnCR is included in the model. Results from both (A) the entire cohort and 

(B) the subset of patients who were classified as AKIN stage 1 at the time of sample 

collection are shown. Of 97 patients in the whole cohort (A), 39 patients met the outcome 

worsening of AKI after sample collection, whereas in the subset analysis, 20 patients met 

the outcome. Two multivariate logistic regression models were created to predict risk of 

worsening of AKI after sample collection. The first model (reference) used percent change 

in sCr from baseline and Cleveland Clinic score created by Thakar et al. The second 

model included these variables plus uAnCR. Each patient’s probability (i.e., risk) of 

meeting the outcome worsening of AKI was calculated with both models. The sensitivity 

(proportion of events with a calculated risk equal to or above the defined threshold) and 1-

specificity (proportion of nonevents with a calculated risk below the defined threshold) was 

calculated across all possible unique thresholds using both models. uAnCr, urine 

angiotensinogen/creatinine ratio 
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Discussion 

The urinary angiotensinogen/creatinine ratio (uAnCR) was elevated in patients 

who developed more severe AKI. Elevated uAnCR was associated with 

worsening of AKI, independent of changes in sCr and Cleveland Clinic score, 

and it was also associated with several secondary outcomes. The prognostic 

predictive power of uAnCR was improved when only patients who were classified 

as AKIN stage 1 at the time of sample collection were used in the analysis, 

indicating that angiotensinogen could be used to predict adverse outcomes 

among patients who have not yet developed severe AKI as measured by serum 

creatinine. Our data suggest that angiotensinogen could be used at the time of 

AKI diagnosis to assess the risk of adverse outcomes. This risk assessment 

could lead to improved outcomes by identifying high risk patients in need of 

therapeutic intervention, as was highlighted in the KDIGO Clinical Practice 

Guideline for Acute Kidney Injury.9 The guidelines suggest several interventions 

in patients with stage 2 and 3 AKI that are not recommended for patients with 

stage 1 AKI, including checking for drug dosing, considering renal replacement 

therapy, and considering ICU admission. Elevation in uAnCR could suggest a 

population of patients with stage 1 AKI who are likely to continue to worsen and 

could benefit from more intensive intervention.  While we did not directly compare 

the prognostic predictive power of angiotensinogen to that of other biomarkers, 

our results compare favorably with what has been reported in the literature for 

previously described AKI biomarkers. In a cohort of critically ill patients with AKI, 

Hall et al. reported unadjusted AUCs of 0.71, 0.64, and 0.63 for the prediction of 
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the composite outcome of worsening of AKI or death for urine NGAL, KIM-1 and 

IL-18, respectively.79  In patients who developed AKI after cardiac surgery, 

Koyner et al. recently reported unadjusted AUCs of 0.58, 0.63 and 0.74 for urine 

NGAL, urine IL-18, and plasma NGAL, respectively, for the outcome of 

worsening of AKI.80  We found that uAnCR predicted this outcome with an AUC 

of 0.7 in a similar cohort of patients, and we confirmed that it predicted worsening 

of AKI in a subset of patients who were classified as AKIN stage 1 at collection 

(AUC = 0.71).  Thus, uAnCR, alone or in combination with other biomarkers 

could improve risk classification models in these patients.  

The results of the current study are limited by the heterogeneous etiologic nature 

of AKI (see the discussion on AKI etiology in Chapter 1), which was not taken 

into account in our study design.  This study was performed in post-operative 

cardiac surgery patients because both the timing and the severity of renal injury 

are readily determined in these patients, making them an ideal population for AKI 

biomarker research.  Additionally, the objective of this study was to confirm our 

findings from proteomic analysis (i.e. qualification of angiotensinogen).  However, 

it is plausible that the prognostic significance of urinary angiotensinogen 

concentration as an AKI biomarker could vary with the underlying etiology.  

Therefore, an important next step is verification of angiotensinogen as an AKI 

biomarker, during which we will attempt to confirm its association with adverse 

outcomes in AKI secondary to causes other than cardiac surgery.  This is 

addressed in Chapter 4, where a case-control study is described in which the 
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prognostic predictive power of urinary angiotensinogen was tested in a critically 

ill, non-surgical population.   
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Chapter 4: Qualification of Urinary Angiotensinogen as a Prognostic 

Biomarker of AKI Secondary to Non-Surgical Causes 
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Introduction 

Discovery phase proteomic analysis identified urinary angiotensinogen as a 

promising AKI biomarker, and it was subsequently qualified in a retrospective 

cohort study designed to test its ability to predict adverse outcomes among post 

cardiac surgery patients with established AKI.  This study confirmed that elevated 

urinary angiotensinogen is associated with more severe AKI and increased risk 

of adverse outcomes such as worsening of AKI, the need for renal replacement 

therapy, and increased length of hospital stay.  However, as has been discussed 

in Chapter 1, AKI can be the result of a number of different precipitating factors, 

and it is likely that the performance characteristics of AKI biomarkers vary with 

the underlying etiology.  For this reason, an important step in evaluating novel 

AKI biomarkers is verification of their predictive power in patients with AKI 

secondary to diverse etiologies.   

The critically ill are the ideal population in which to test the effect of AKI etiology 

on biomarker performance, because of the heterogeneity of the causes of AKI 

and its associated comorbidities in these patients.  Common causes of AKI in the 

ICU population include sepsis, cardiac disease, liver disease, prolonged and 

unresolved pre-renal factors such as hypovolemia and hemorrhage, cardiogenic 

shock, radiocontrast, and rhabdomyolysis.14,15  The diversity of the underlying 

molecular mechanisms of these etiologies present a unique challenge to 

biomarker studies, and the heterogeneity of the ICU population tends to 

decrease the performance of AKI biomarkers compared to studies performed in 

cardiac surgery patients.  However this population also offers unique insight 
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because biomarkers which are correlated with AKI severity in this population are 

more likely to be mechanistically involved in AKI pathobiology on a fundamental 

level.  

Experimental Design 

In order to verify angiotensinogen as an AKI biomarker, a retrospective case-

control study was designed to evaluate the prognostic predictive power of urinary 

angiotensinogen in a population of critically ill, non-surgical patients with AKI.  

The composite outcome of the need for renal replacement therapy (RRT) or 

death was selected as the primary outcome since these are the most clinically 

relevant endpoints.  Secondary outcomes that were also evaluated included: 1) 

worsening of AKI, which was defined as an additional increase in serum 

creatinine (sCr) >0.3 mg/dL from the sCr at the time of the urine sample 

collection 2) worsening of AKI or the initiation of RRT; and 3) increased length of 

hospital stay (LOS), which was defined as hospital discharge >7 days from the 

day of sample collection or death ≤7 days from sample collection.  In comparison 

to the previous study on cardiac surgery patients, worsening of AKI was defined 

as an absolute increase in sCr after sample collection.  This approach was 

chosen because it is notoriously difficult to determine the baseline sCr value in 

critically ill patients, which impedes accurate staging using the AKIN or RIFLE 

classification systems.   
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Materials and Methods 

Patients and Urine Samples 

All patients (n = 45) had been admitted to the intensive care unit at the Medical 

University of South Carolina Hospital.  Patients either had AKI at ICU admission 

or developed AKI during their stay in the ICU.  AKI was defined according to the 

AKIN criteria.3  When possible, baseline sCr was defined as the most recent 

(within 1 month) value prior to the AKI episode.  When antecedent sCr values 

were not available, the lowest sCr observed during the patient’s hospital stay was 

used as the baseline.  Informed consent was obtained from the patients or their 

next of kin prior to urine sample collection, in accordance with our Institutional 

Review Board approved protocol.  The only exclusion criteria were initiation of 

renal replacement therapy prior to sample collection and non-consent.   

Urine samples were collected in collaboration with the MUSC Biomedical 

Research Bank. Patients for this study were selected retrospectively in order to 

perform a case-control study of ICU patients diagnosed with AKI at to the time of 

urine sample collection.  The primary outcome was the need for renal 

replacement therapy or death, and patients who had AKI at the time of sample 

collection but did not meet the primary outcome were selected as controls.  

Samples were collected at the time that the diagnosis of AKI was made.  If 

patients had AKI on admission, samples were collected immediately after 

admission.  Urine samples were processed according to a standard operating 

procedure.  Tthey were treated with a protease inhibitor cocktail (Roche, 



 

90 
 

cOmplete, Mini, EDTA-free), centrifuged for 10 min at 1,000 x g and the 

supernatant was aspirated and stored at -80°C until the time of use.  Clinical data 

was obtained by retrospective chart review.   

AKI Etiology 

Etiology of AKI was determined by retrospective chart review and patients were 

assigned to one of four categories: pre-renal, ischemic ATN, sepsis-associated 

AKI, and other.  Pre-renal AKI was defined as an episode of AKI in the setting of 

hypotension or hypovolemia in which the patient’s sCr decreased to <150% of 

baseline within 48 hours after diagnosis.  Ischemic ATN was defined as severe, 

prolonged AKI following any event that compromises renal blood flow or oxygen 

delivery.  The specific events observed in our cohort included ruptured abdominal 

aortic aneurysm, cardiogenic shock, and congestive heart failure exacerbation.  

Patients for whom the etiology could not be determined or was multifactorial were 

included in the “other” category. 

Determination of Urinary Angiotensinogen-to-Creatinine Ratio   

Urinary angiotensinogen was measured using the Human Total Angiotensinogen 

Assay Kit (Immuno-Biological Laboratories Co., Ltd., IBL-America, Minneapolis, 

MN), a solid phase sandwich ELISA, according to the manufacturer’s protocol. 

Urine creatinine was measured using the Jaffe assay and used to correct the 

urine angiotensinogen concentration. Values were reported as the ratio of 

angiotensinogen in ng/ml to creatinine in mg/ml (uAnCR, ng/mg).   

Statistical Analysis 

The Kruskal-Wallis test and post-hoc Dunn’s test were used to compare the 
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uAnCR values of patients grouped by AKI etiology.  The Mann-Whitney U test 

was used when only two groups were compared.  Other continuous variables 

were compared using the Student’s t-test or Mann-Whitney U test.  Categorical 

variables were compared using the χ2 or Fisher’s Exact tests.  Logistic regression 

was used to determine the multiplicative odds ratio for a one standard deviation 

increase in uAnCR.  However, because uAnCR was not normally distributed, it 

was first log10 transformed for this analysis.  Receiver operator characteristic 

(ROC) curves were used to test the ability of uAnCR to predict outcomes.  The 

area under the ROC curve (AUC) was used as an estimate of overall accuracy of 

the biomarker.  ROC curves were considered statistically significant if the AUC 

differed from 0.5, as determined by the z-test. Optimal cut-offs were determined 

by selecting the data point that minimized the geometric distance from 100% 

sensitivity and 100% specificity on the ROC curve.24  Additional cut-offs were 

determined by selecting the points on the ROC at which the positive and 

negative likelihood ratios were maximized and minimized, respectively.  The 

Spearman’s correlation coefficient was used to determine the correlation 

between uAnCR and length of hospital stay.  Kaplan-Meier curves were used to 

visualize the relationship between uAnCR and length of hospital stay.  Patients 

who died were censored.  The log rank test was used to compare the curves.  

Cox regression was used to calculate the proportional hazard ratio for time to 

discharge comparing patients with high and low uAnCR (defined as > the median 

or ≤ the median of the cohort).  The Cox proportional hazard model included both 

the patients’ uAnCR and AKIN stage at collection.  
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Results 

Patient Characteristics 

Urine samples were obtained from patients with AKI in the intensive care unit  

(n=45).  At the time of sample collection, five patients were classified as AKIN 

stage 3, 12 patients as AKIN stage 2, and 28 patients as AKIN stage 1.  Baseline 

patient characteristics are described in detail in Table 4-1. In approximately one-

third of patients, the etiology of AKI could not be determined or was multifactorial 

(n= 16).  Sepsis-associated AKI was the most common established etiology 

(n=15), followed by pre-renal AKI (n= 8), and ischemic acute tubular necrosis 

(n=5).  Twenty-three patients met the primary outcome, the need for renal 

replacement therapy (RRT) or death.  Pre-renal AKI was significantly more 

common among the patients who did not meet this outcome (p = 0.01).  There 

were no significant differences between the group of patients who required RRT 

or died compared to those who did not with respect to age, race, gender, the day 

of sample collection (defined as days after the date that AKI criteria were met), 

baseline serum creatinine (sCr), sCr at the time of sample collection, or the 

percent change in sCr from baseline at the time of sample collection.  However, 

patients who met the primary outcome had lower rates of hypertension, diabetes 

mellitus, and the use of angiotensin converting enzyme inhibitors or angiotensin 

receptor blockers. 

Angiotensinogen Predicts RRT or Death  

Urinary angiotensinogen was elevated in the group of patients who met the 

primary outcome RRT or death (median uAnCR = 89.4 ng/mg, IQR 35.9 – 335.6  
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Table 4-1. Characteristics of ICU patients used to verify the 
prognostic predictive power of urinary angiotensinogen as an 
AKI biomarker 

  
No RRT and   

Survival RRT or Death P 

n 22 23   

Age (yrs)
a
 62.9 ± 16.1 54.4 ± 17.6 0.1 

Caucasian 64% (14) 65% (15) 0.84 

Male 55% (12) 65% (15) 0.67 

AKI Etiology       

Sepsis 23% (5) 43% (10) 0.25 

Pre-renal 32% (7) 4% (1) 0.01 

Ischemic ATN 9% (2) 13% (3) 1 

Other 36% (8) 39% (9) 0.91 

Serum Creatinine (mg/dL)       

Baseline sCr
b
 

1.15                                
(0.8-1.6) 

1.1                                    
(1.0-1.5) 

0.98 

sCr at Collection
a
 2.1 ± 0.8 2.5 ± 0.8 0.06 

% Change in sCr
b
  

150%                         
(130-189%) 

200%                             
(150-257%) 

0.07 

Other Variables    

MAP on day of 
collection

b
 

74.9                              
(70.4-86.8) 

68.6                                   
(64.5-84.1) 

0.08 

History of HTN 91% (20) 48% (11) 0.005 

History of Diabetes 
Mellitus 55% (12) 22% (5) 0.05 

History of ACE Inhibitor 
or ARB Use 48% (12) 17% (4) 0.03 

a
Mean and SD; 

b
Median and IQR; Categorical data are shown as 

percentage and n 
P-values are shown for the χ

2
 or Fisher Exact test, as appropriate. 

  



 

94 
 

ng/mg) compared to the group who did not (median uAnCR = 25.4 ng/mg IQR 

5.8 – 120.4 ng/mg; Figure 4-1A).  Elevated uAnCR was associated with an 

increased risk of meeting this outcome.  The multiplicative odds ratio for a one 

standard deviation increase in a patient’s uAnCR was 2.61 (95% CI 1.23 - 5.53).  

The receiver operator characteristic (ROC) curve for this outcome had an area 

under the curve (AUC) of 0.73 (Figure 4-1B; p = 0.01).  The optimal cut-off was 

34.76 ng/mg, at which the test had a sensitivity and specificity of 78.3% and 

54.6%, respectively.  The cut-off at which the test had the highest positive 

likelihood ratio (LR+ = 9.6) was 230.0 ng/mg.  Eleven of the 45 AKI patients had 

uAnCR values greater than 230.0 ng/mg, of which 10 met the outcome.  At this 

cut-off, the sensitivity and specificity of the prediction of RRT or death were 

43.5% and 95.5%, respectively. The positive predictive value of a value this high 

was 90.9%. Similarly, the lowest negative likelihood ratio of the test was 

achieved at a cut-off of 7.58 ng/mg (LR- = 0.14).  Eight patients had uAnCR 

values ≤7.58 ng/mg, of which 7 did not meet the outcome.  The test had a 

sensitivity and specificity of 95.7% and 31.8%, respectively at this cut-off. 

Worsening of AKI 

Elevated uAnCR was associated with an increased risk of worsening AKI after 

sample collection (Figure 4-2).  The ROC curve for this outcome had an AUC of 

0.77.  At the optimal cut-off, 34.76 ng/mg, the sensitivity and specificity were 

87.0% and 63.6%, respectively.  At the cut-off with the maximum LR+, 230.0 

ng/mg (LR+ = 4.31), the sensitivity and specificity were 39.1% and 90.9%, 

respectively; at the cut-off with the lowest LR-, 21.24 ng/mg (LR- = 0.07), the   
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Figure 4-1. The urinary angiotensinogen-to-creatinine ratio in patients 

who met the outcome renal replacement therapy or death compared to 

patients who did not.  (A) Box and whisker plots show the median and 

interquartile range.  Error bars represent the 5th and 95th percentiles.  Groups 

were compared with the Mann-Whitney U test.  (B) Receiver operator 

characteristic curve was performed to evaluate the ability of uAnCR to predict 

the outcome renal replacement therapy (RRT) or death. A perfect biomarker 

would have an area under the ROC curver (AUC) of 1, whereas random 

chance has an AUC = 0.5  
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sensitivity and specificity were 95.7% and 59.1%.  Eleven patients had uAnCR 

values above the cut-off of maximal LR+, 10 of whom met the outcome worsening 

of AKI.  Fourteen patients had uAnCR values below the threshold of minimal LR-

,of whom only one met the outcome. 

Length of Hospital Stay  

Among patients who survived to discharge (n = 26), uAnCR was correlated with 

days to hospital discharge (r = 0.57, p = 0.002).  Patients who had high uAnCR 

values (defined as >55.21 ng/mg, the median value) had an increased length of 

stay compared to patients who had low uAnCR (≤55.21 ng/mg).  The median 

LOS (defined as days after the time of sample collection) for these groups were 

22 and 7 days, respectively (Figure 4-3A; p = 0.01), and the AKIN stage adjusted 

hazard ratio for discharge was 0.367 (95% CI 0.17 – 0.91) for patients with high 

uAnCR compared to those with low uAnCR, indicating that uAnCR affects LOS 

independently of changes in sCr.  Elevated uAnCR was strongly associated with 

an increased risk of the composite outcome discharge >7 days from the time of 

sample collection or death ≤7 days from collection. The multiplicative OR for one 

SD increase in uAnCR was 3.31 (95% CI 1.36 - 8.04).  ROC curve analysis 

demonstrated that uAnCR was a strong predictor of this outcome (Figure 4-3B; 

AUC= 0.77).  At the optimal cut-off, 59.61 ng/mg, the sensitivity and specificity of 

the prediction of prolonged hospital stay were 60.6% and 83.3%, respectively.  

The cut-off at which the test had the highest positive likelihood ratio (LR+ = 5.5) 

was 123.5 ng/mg.  Sixteen patients were above this cut-off, of which 15 met the 

outcome.  At this cut-off, the sensitivity and specificity of the test were 43.5% and  
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Figure 4-2. The urinary angiotensinogen-to-creatinine 

ratio as a predictor of the outcome worsening of AKI.  

ROC curve for the composite outcome worsening of AKI 

(defined as an increase in serum creatinine >0.3 mg/dL 

after the time of sample collection or RRT).   
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Figure 4-3. Urinary angiotensinogen-to-creatinine ratio and length of stay. (A) Patients 

were stratified into groups by urinary angiotensinogen-to-creatinine ratio (uAnCR).  Patients 

with uAnCR > the median for the cohort were classified as high (red line), whereas patients 

with uAnCR ≤ the median were classified as low (black line).  Patients who died were 

censored.  The median times to discharge (defined as days after sample collection) were 22 

and 7 days for the high and low uAnCR groups, respectively.  (B) ROC curve analysis was 

performed to evaluate the ability of uAnCR to predict the composite outcome discharge >7 

days after sample collection or death ≤7 days from sample collection.     
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 96.5%, respectively. Similarly, the lowest negative likelihood ratio of the test was 

achieved at a cut-off of 3.31 ng/mg (LR- = 0.12).  Four patients had uAnCR 

values ≤ 3.31 ng/mg, of which three did not meet the outcome.  The test had a 

sensitivity and specificity of 97.1% and 25.0%, respectively at this cut-off. 

Urinary Angiotensinogen by AKI Etiology  

The urinary angiotensinogen/creatinine ratio (uAnCR) differed statistically by the 

underlying etiology of AKI (Figure 4-4).  Patients with AKI secondary to ischemic 

ATN had the highest median uAnCR (260.2 ng/mg, IQR 69.6 - 1213.2), followed 

by patients with AKI due to other or unknown causes, including multifactorial 

etiology (90.6 ng/mg, IQR 12.1 - 251.5), patients with sepsis-associated AKI 

(48.1 ng/mg, IQR 23.5 - 222.4), and patients with pre-renal AKI (11.3, IQR 5.2 - 

61.5).  Post-hoc pairwise comparison found a statistically significant difference 

between patients with ischemic ATN and patients with pre-renal AKI.  Patients 

were categorized into the dichotomous groups of pre-renal AKI and AKI of other 

etiologies (Figure 4-5). The median uAnCR for patients with pre-renal AKI (n=8) 

was 11.3 ng/mg (IQR 5.2 - 61.5) while the median for patients with AKI not 

classified as pre-renal etiology (n=37) was 80.2 ng/mg (IQR 22.7 – 259.2).  There 

was a statistically significant difference between the uAnCR values of this group 

compared to the group of patients with pre-renal AKI (p= 0.03).  

Discussion  

The prognostic predictive power of urinary angiotensinogen in the setting AKI 

after cardiac surgery was described in Chapter 3.  However, it was unclear if its 

prognostic significance was generalizable to AKI secondary to causes other than   
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Figure 4-4. Urinary angiotensinogen/creatinine ratio (uAnCR) by AKI etiology.  Patients 

who developed AKI in the ICU were grouped by the etiology underlying the AKI.  The median 

(black dot) and interquartile range (error bars) are shown.  *, p< 0.05 compared to ischemic 

ATN group  

* 
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Figure 4-5. Urinary angiotensinogen-to-

creatinine ratio (uAnCR) in pre-renal AKI 

compared to AKI of other etiologies.  The box 

and whiskers plots show the median and 

interquartile range.  Error bars represent the 5
th
 

and 95
th
 percentiles.  Groups were compared 

with the Mann-Whitney U test. 
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cardiac surgery.  In the study described in this chapter, urinary angiotensinogen 

was measured in ICU patients who developed AKI secondary to diverse 

etiologies.  We found that elevated urinary angiotensinogen was associated with 

an increased risk of RRT or death, longer time to hospital discharge, and 

worsening of AKI after the time of sample collection, and that angiotensinogen 

was a strong predictor of these outcomes using ROC curve analysis. A potential 

confounding factor of our results is that urinary angiotensinogen was statistically 

decreased in patients with pre-renal AKI compared to those with AKI of other 

etiologies, and the former was more common in the group of patients who did not 

die or require RRT. Therefore, it is not clear if the relationship between elevated 

urinary angiotensinogen and this outcome is in fact driven by its association with 

etiologies that tend to produce more severe AKI.  Nevertheless, this would not 

negate the findings of this study because it is clinically important to distinguish 

between pre-renal AKI and AKI of other causes Pre-renal AKI typically is 

transient and resolves with fluid resuscitation, whereas other more severe forms 

of AKI do not. Pre-renal AKI is classically differentiated from AKI of other 

etiologies by FeNa <1% or FeUrea <35.155-157  However, FeNa can be 

confounded by diuretic use and is altered in the setting of sepsis, whereas 

FeUrea decreases with age and a multicenter trial reported that it was not 

diagnostic of transient AKI.158-160 Better biomarkers of pre-renal AKI are clearly 

needed.  In a recent study, Cystatin C, NGAL, IL-18 and KIM-1 were found to be 

elevated in ICU patients with pre-renal AKI compared to those without AKI, but 

were lower than values for patients whose AKI did not resolve within 48 hrs.92 
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Finally, an important limitation of this verification study is that it was a relatively 

small retrospective biomarker qualification study, and our findings will need to be 

confirmed in a larger prospective study.  Nevertheless, these data are 

encouraging and indicate that urinary angiotensinogen could have potential utility 

as an AKI biomarker in a variety of clinical settings. 
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Chapter 5: Concomitant Elevation of Urinary Angiotensinogen and 

Renin Predicts Severe AKI 
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Introduction 

Epidemiologic studies have reported that the risk of adverse outcomes is 

proportional to the severity of acute kidney injury (AKI). 6, 138-140  Accurate 

identification of high risk patients with severe renal injury early in the disease 

could augment the efficacy of available interventions and improve patient 

outcomes. However, it is difficult to estimate the severity of AKI at an early time 

point, because AKI staging is based upon the magnitude of changes in serum 

creatinine and urine output, surrogates of glomerular filtration rate that do not 

change until after renal injury has occurred and reach their peak or lowest point 

later in the course of the disease.2,3,43  The recent KDIGO clinical guideline for 

AKI highlighted the need for improved risk assessment for patients with 

established AKI.9 Biomarkers of AKI could be used to evaluate the severity of 

AKI at an early time point in the disease as a guide for clinical decision-making. 

They could also play a role in clinical trial design because they could be used to 

selectively enrich the study population with patients who have severe renal injury 

and are more likely to benefit from an experimental therapy, increasing the 

statistical power of the study.141,142  Many biomarkers have been proposed as 

early markers of AKI which may be useful for the detection of AKI prior to 

increases in serum creatinine. These include NGAL, KIM-1, IL-18, Cystatin-C, 

and L-FABP.54, 60, 84, 104, 143, 144  While many studies have included an analysis of 

the the ability of these biomarkers to predict adverse outcomes, most have done 

so as a secondary analysis in cohorts designed to test early diagnostic capability.  

Due to the inclusion of large numbers of patients without AKI, results derived 
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from such analyses may not be generalizable to patients with established AKI.  In 

support of this, the results of two recent studies that excluded patients without 

AKI have reported that NGAL, KIM-1 and IL-18 are substantially less accurate 

predictors of AKI progression and mortality than would be inferred from studies 

including patients without AKI, highlighting the need for other prognostic 

biomarkers.79,80 

We recently identified urinary angiotensinogen as a novel prognostic biomarker 

of AKI.161, 162 In the current retrospective cohort study we further evaluated the 

prognostic predictive power of angiotensinogen and its combination with renin 

and uromodulin.  Renin was evaluated because we hypothesized that it would 

predict AKI severity because it cleaves angiotensinogen in the rate-limiting step 

of the renin-angiotensin-system (RAS). Since renin and angiotensinogen 

concentrations reflect different components within the renal RAS, combinations 

of the two candidate markers may improve prediction. Uromodulin was chosen 

on the basis of discovery-phase proteomic analysis, which showed that it 

decreased during AKI.  This result was in agreement with recently published 

results of a pediatric AKI biomarker study which reported lower urinary 

concentration of uromodulin during AKI.163  Uromodulin potentially plays a 

renoprotective, anti-inflammatory role during AKI, and we hypothesized that 

patients with more severe AKI would have lower concentrations of uromodulin, 

and that the combination of elevated urinary angiotensinogen and decreased 

uromodulin would be an accurate predictor of AKI severity.164,164 Our findings 

show that the combination of angiotensinogen and renin is able to identify a 
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subset of patients with stage 1 AKI with a very high risk (80%) of progression to 

stage 3 AKI or death. 

Materials and Methods 

Patients and Urine Samples 

Urine samples were obtained from 204 consecutively enrolled patients who had 

cardiac surgery at one of the SAKInet institutions between the dates of August 1, 

2008 and June 1, 2012.  This cohort included 74 samples included in our 

previously described study.161  Informed consent was obtained in accordance 

with the IRB-approved protocol at each institution. Samples were collected and 

stored using a standard operating procedure which included centrifugation, 

addition of protease inhibitors and storage at   -80°C. Urine samples were 

collected as early as possible after AKIN serum creatinine criteria were met, and 

all were collected within the first 72 hours after surgery. Inclusion criteria were 

surgery of the heart or ascending aorta and development of AKIN stage 1 AKI by 

creatinine criteria within 3 days of surgery. Subjects with ESRD, baseline serum 

creatinine > 3.0 mg/dL or AKI greater than AKIN stage 1 at the time of collection 

were excluded. Patients were followed until either time of death or hospital 

discharge, and were staged according to the maximum increase in serum 

creatinine using the AKIN classification system.3  Urine output criteria were not 

used in diagnosis or staging because urine output data was not available.   

Measurement of Biomarkers 

Urine samples were thawed at 37°C and urinary angiotensinogen was measured 

using a sandwich ELISA (Immunobiologic Laboratories) according to the 
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manufacturer’s protocol. Urinary renin was measured using a sandwich ELISA (R 

and D Systems) according to the manufacturer’s protocol. Urine was diluted 

1:2000 and uromoduin was measured by ELISA (BioVendor).  All biomarker 

concentrations were corrected for urine creatinine (biomarker/creatinine ratio). 

Urine creatinine was measured using the Jaffe assay. 

Statistical Analysis 

Patients were grouped according to maximum AKIN stage and biomarker 

concentrations were compared using the Kruskal-Wallis test with post-hoc 

pairwise comparison. Univariate receiver operator characteristic (ROC) curve 

analysis was performed to determine if Cleveland Clinic score, percent increase 

in serum creatinine from baseline, the urinary angiotensinogen/creatinine ratio 

(uAnCR), and the urinary renin/creatinine ratio (uRenCR) predicted the 

composite outcome development of AKIN stage 3 or 30 day mortality (AKIN 

stage 3 or death). Variables were considered predictive if the area under the 

ROC curve differed statistically from 0.5. Cleveland Clinic score and percent 

increase in serum creatinine were combined in a multivariate logistic regression 

model (clinical model) to predict the outcome. Biomarker concentrations were 

log10 transformed and added individually to the clinical model and category free 

net reclassification improvement and integrated discrimination improvement were 

used to determine if the addition of biomarkers improved prognostic predictive 

performance.153, 154  A classification tree was created using the four inputs 

(uAnCR, uRenCR, Cleveland Clinic score and percent change serum creatinine 

at collection) to determine optimal cut-offs to be used together in a clinical test to 
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identify patients at high risk of meeting the outcome AKIN stage 3 or death. The 

tree was grown using Chi-squared Automatic Interaction Detection (CHAID), 

specifying at least 10 cases per parent node and 5 cases per daughter node. 

Nodes were split using the Pearson’s Chi-squared test if P <0.05. Bonferroni 

correction was applied to the P-values to adjust for multiple comparisons. 25-fold 

cross-validation was performed. Statistical tests were performed in SPSS and 

SigmaPlot.   

Results 

Patients Characteristics 

Urine samples were retrospectively analyzed from 204 cardiac surgery patients.  

Samples were obtained post-operatively at the time of diagnosis with AKI. All 

patients were classified as AKIN stage 1 AKI at the time of urine sample 

collection. Twenty-six patients progressed to AKIN stage 2, and 22 progressed to 

AKIN stage 3. Twenty-six patients met the primary outcome AKIN stage 3 or 

death. When patients were grouped by the primary outcome, there were no 

statistically significant differences in demographic variables, time of sample 

collection, or operative variables. However, compared to those who did not meet 

the outcome, patients who met the outcome had elevated pre-operative serum 

creatinine (median 1.1 versus 1.3 mg/dL; P = 0.02), serum creatinine (sCr) at 

collection (median 1.6 vs 1.9 mg/dL; P <0.001), and percent increase in sCr from 

baseline that had occurred at the time of collection (median 41% versus 64%; P 

= 0.003). A description of the study population is found in Table 5-1. 
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Table 5-1. Characteristics of cohort of post-cardiac surgery patients 

enrolled in study 

 AKIN Stage 1 or 2 
and Survived 

AKIN Stage 3 or 
Death 

P 

n 178 26  

Age
b
 68 (59.0 – 76.0) 65.5 (58.0 – 79.0) 0.97 

Gender (female)
a
 32.6% (58) 38.5% (10) 0.71 

Race (Caucasian)
a
 70.2% (125) 69.2% (18) 0.9 

Operative Variables
b
 

CABG
a.c

 46.6% (83) 34.6% (9) 0.35 

Valve 
Replacement

a
 

28.7% (51) 26.9% (7) 0.96 

CABG + Valve
a
 16.9% (30) 23.1% (6) 0.62 

Other
a
 7.9% (14) 15.4% (4) 0.37 

Bypass
a
 86.0% (153) 88.5% (23) 0.97 

Bypass Time
d
 141.0 (83.0 – 192.0) 159.5 (62.0 – 203.0) 0.66 

Collection Time (hr 
post-op) 

21.8 (19.2 – 43.0) 21.6 (19.2 – 33.6) 0.69 

Serum Creatinine (sCr mg/dL) 

Pre-Op sCr
d
 1.1 (0.9 – 1.3) 1.3 (1.0 – 1.8) 0.02 

sCr at Collection
d
 1.6 (1.3 – 1.9) 1.9 (1.6 – 3.1) <0.001 

Percent Increase in 
sCr at Collection

d
 

41% (30% – 56%) 64% (35% – 80%) 0.003 

Outcomes 

Days to Max sCr
d,e

 2.0 (1.0 – 3.0) 5.0 (3.75 – 8.0) <0.001 

Days to Discharge 
or Death

d,e
 

7.0 (6.0 -10.0) 14.0 (9.75 – 24.75) <0.001 

AKIN Stage 3
a
 0% (0) 84.6% (22) <0.001 

AKIN Stage 3 or 
Death

 a
 

0% (0) 100% (26) <0.001 

Death
a
 0% (0) 34.6% (9) <0.001 

RRT
a
 0% (0) 50.0% (13) <0.001 

Statistical significance was determined by the χ2 test for categorical variables and 

the Mann-Whitney U test for continuous variables. 
aCategorical variables are reported as percentage (n). 
bType of surgery is reported as CABG only, Valve replacement only, CABG + 

Valve replacement, and other procedures. 
cCABG, coronary artery bypass graft 
dContinuous variables are reported as median (interquartile range). 
eDays are reported as the number of days after surgery. 
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Biomarker Concentrations by AKIN Stage and According to Primary Outcome 

The urinary angiotensinogen/creatinine ratio (uAnCR) was correlated with both 

maximum serum creatinine (sCr) and the maximum percent increase in sCr (rho 

= 0.383 and 0.256, respectively; P < 0.001). Similarly, the urinary renin/creatinine 

ratio (uRenCR) was correlated with maximum sCr (rho = 0.392; P < 0.001) and 

the maximum percent increase in sCr (rho = 0.308; P <0.001). However, urinary 

uromodulin/creatinine ratio was not correlated with either maximum sCr or the 

maximum percent increase in sCr.  There was also a statistically significant 

correlation between uAnCR and uRenCR (rho = 0.341; P <0.001). Accordingly, 

there was a trend for both urinary angiotensinogen and urinary renin to increase 

with the maximum AKIN stage that a patient achieved (Table 5-2), and there was 

a statistically significant difference in uAnCR and uRenCR between patients who 

developed AKIN stage 3 AKI compared to those who only developed AKIN stage 

1 AKI. Uromodulin concentrations did not change with maximum AKIN stage, and 

so uromodulin was not investigated further.  When patients were grouped 

according to the primary outcome, development of AKIN stage 3 or death, those 

who met the outcome had higher uAnCR compared to those who did not (median 

and IQR of 30.84 and 10.75 to 89.95 compared to 96.7 and 38.23 to 457.34 

ng/mg; P < 0.001). Patients who met the primary outcome also had higher 

uRenCR than those who did not (median and IQR of 280.72 and 118.98 to 

638.96 compared to 894.71 and 335.43 to 2894.06 pg/mg; P < 0.001). 
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Table 5-2. Distribution of urinary biomarker concentrations by maximum 

AKIN stage 

 AKIN Stage 1 AKIN Stage 2 AKIN Stage 3/death P
a
 

n 156 26 22  

uAnCR 
(ng/mg) 

29.22  
(10.72 – 82.42) 

36.39  
(14.56 – 163.54) 

96.7
#
 

(38.23 – 457.34) 
0.002 

uUroCR 
(mg/mg) 

4.23 
(2.5 – 6.14) 

4.01 
(2.61 – 7.83) 

5.09 
(3.21 – 9.52) 

0.33 

uRenCR 
(pg/mg) 

257.28 
(113.88 – 564.34) 

406.79 
(144.06 – 922.47) 

894.71
#
 

(335.43 – 2894.06) 
0.001 

Biomarker concentrations are reported as median (interquartile range) 

ap-value according to Kruskal-Wallis test 
#, p< 0.05 in post-hoc pairwise comparison      

 

  



 

113 
 

Univariate Prediction of AKIN Stage 3 or Death 

Selected clinical variables and putative prognostic biomarkers were tested for the 

ability to predict the outcome AKIN stage 3 or death. Cleveland Clinic score 

(Figure 5-1a) and the percent change in sCr at the time of sample collection 

(Figure 5-1b) both predicted the outcome, having an area under the receiver 

operator characteristic curve (AUC) of 0.72 (95% CI [0.62, 0.83]) and 0.68 (95% 

CI [0.55, 0.82]), respectively. In comparison, angiotensinogen and renin were 

also moderately strong predictors (Figures 5-1c and 5-1d). The AUC of the 

urinary angiotensinogen/creatinine ratio (uAnCR) was 0.75 (95% CI [0.65, 0.85]). 

The AUC of the urinary renin/creatinine ratio (uRenCR) was 0.70 (95% CI [0.57, 

0.83]).  Additionally, the prognostic predictive power of these variables was 

evaluated in the subset of the cohort (n = 81; data not shown) that were classified 

as RIFLE-R at the time of collection, since it has been reported that this criterion 

has a lower false positive rate than AKIN stage 1 for diagnosis of AKI.  

Compared to the entire cohort this analysis found little difference in the ability of 

uAnCR, uRenCR, and Cleveland Clinic score to predict AKIN stage 3 or death, 

whereas the predictive power of the percent increase in serum creatinine was 

substantially improved.     

Multivariate Prediction of AKIN Stage 3 or Death 

A model including relevant clinical variables and biomarkers was created to 

predict the outcome AKIN stage 3 AKI or death. First, Cleveland Clinic score and 

percent change in serum creatinine were combined into a multivariable logistic  
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 regression model. This clinical model had an AUC = 0.79 (95% CI [0.69, 0.88]) 

for the outcome (Figure 5-2). Then uAnCR and uRenCR were added stepwise to 

the clinical model to determine the incremental increase in the accuracy model 

gained by the addition of each biomarker (Table 5-3).  When uAnCR was added 

to the clinical model, the AUC improved to 0.85 (95% CI [0.78, 0.92]; P = 0.01 

compared to clinical model; Figure 5-2). This was the result of augmented 

sensitivity and specificity (Figure 5-3a and 5-3b).  The category free net 

reclassification improvement (cfNRI) for addition of uAnCR was 0.67 (95% CI 

[0.26, 1.09]; P = 0.001; Figure 5-4a and 5-4b), and the integrated discrimination 

improvement (IDI) was 0.06 (P = 0.09).  Although the IDI did not reach statistical 

significance, the median calculated risk of the event group increased significantly 

following addition ofuAnCR to the model  from 0.22 to 0.26 (P = 0.04).  In 

contrast to uAnCR, the addition of uRenCR to the clinical model did not improve 

the area under the ROC curve (AUC = 0.79 95% CI [0.69, 0.89]; Table 5-3).  

Although the IDI (0.02; P = 0.26) was not statistically significant, there was an 

improvement in risk reclassification (cfNRI 0.52 95% CI [0.10, 0.93]; P = 0.01; 

Table 5-3; Figure 5-4c and 5-4d).  Addition of uRenCR to a three variable model 

that included Cleveland Clinic Score, percent increase in sCr, and uAnCR did 

improve the accuracy of the model (cfNRI = 0.55 95% CI [0.14, 0.96], P < 0.01), 

although the IDI was 0.01 (P = 0.38) and there was no improvement in the AUC 

of the ROC curve (AUC = 0.85 95% CI [0.77, 0.92]; Table 5-3; Figure 5-4e and 5-

4f).  This marginal increase in the in the discriminative slope resulted in more 

events having a calculated risk between 0.2 and 0.55, as can be observed in the  
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 Figure 5-2. Multivariable Prediction Models for AKIN Stage 3 or Death.  Receiver 

operator characteristic (ROC) curves are shown for the Clinical Model (CM; includes 

Cleveland Clinic Score and percent increase in serum creatinine from baseline), the 

clinical model plus creatinine-corrected urine angiotensinogen (CM + uAnCR), and 

the clinical model plus creatinine-corrected urinary angiotensinogen and renin (CM 

+uAnCR +uRenCR).   
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Figure 5-3. Risk assessment plots showing the incremental changes in sensitivity and 

specificity resulting from stepwise addition of angiotensinogen and renin to the clinical 

model.  Addition of angiotensinogen to the clinical model improved sensitivity and 

specificity.  Subsequent addition of renin to the model resulted in a gain in sensitivity with 

no effect on specificity.   

A 

B 
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increased sensitivity of the model in this range (Figure 5-3a). However, there was 

no improvement in specificity (Figure 5-3b).  Finally, the best cut-off for the ROC 

curve of the final model had a calculated sensitivity of 76.9% and a specificity of 

79.1% (PPV and NPV of 35.0% and 76.5%, respectively). 

Classification Tree 

Multivariate logistic regression is a powerful technique for evaluating the 

predictive power of biomarkers, but due to its complexity it is unlikely to be 

clinically useful in the setting of acute illness where the decision to intervene is 

especially time sensitive.  Additional limitations include the inability to identify 

subsets of patients in whom biomarkers under or over perform and insensitivity to 

potentially important nonlinear interactions between covariates in the model, both 

of which could be informative from a mechanistic perspective.   Therefore, we 

sought to create a simple algorithm that identifies patients at high risk of meeting 

the outcome AKIN stage 3 or death, which could be used to guide decision 

making. To accomplish this we chose to use Chi-squared Automatic Interaction 

Detection (CHAID) to grow a classification tree that assigned patients to risk 

groups by identifying interactions among the same variables that were previously 

used in multivariate logistic regression. In this analysis uAnCR, uRenCR, 

Cleveland Clinic score and percent change in serum creatinine were all 

statistically significant classifiers for the outcome (Figure 5-5). However, the 

model selected only urinary angiotensinogen and renin for use in prediction of 

the outcome. Using a cut-off of > 337.89 ng/mg for uAnCR, the model divided 

patients into low (n = 184) and intermediate (n = 20) risk groups, in which 9.8  
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Figure 5-4.  Scatterplots showing the calculated risk of meeting the 

outcome AKIN Stage 3 or death.  The incremental changes in predictive 

accuracy gained by addition of angiotensinogen (A and B) and renin (C-F) was 

evaluated using category free net reclassification improvement (cfNRI) and 

integrated discrimination improvement (IDI).  These scatterplots are a visual 

representation of cfNRI and IDI.  Each data point represents the calculated 

risks of a single patient using a reference model (x-axis) and a model with an 

added biomarker (y-axis).  The gray diagonal line is the line of  
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Figure 5-4. continued identity,indicating calculated risk that does not change 

with addition of a biomarker to the reference model.  The proportion of nonevents 

(patients who did not meet the outcome) below the line and the proportion of 

events (patients who met the outcome) is used to calculate the category free net 

reclassification improvement (cfNRI).  The magnitude of the changes in 

calculated risk, which is the vertical distance of a point from the line of identity, is 

included by the integrated discrimination improvement (IDI). 
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Figure 5-5.  CHAID classification tree for the outcome AKIN stage 3 

AKI or death.  Chi-squared automatic interaction detection (CHAID) 

was used to grow the classification tree using the following variables: 

Cleveland Clinic score, percent increase in serum creatinine from 

baseline at the time of sample collection, urinary angiotensinogen 

(ng/mg creatinine; uAnCR), and urinary renin (pg/mg creatinine; 

uRenCR).  Pie charts represent the proportion of patients who met the 

outcome (events) or not (nonevents) at each node of the tree.  The 

model only used angiotensinogen and renin to predict the outcome.   
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% and 40.0% of the patients met the outcome, respectively. The intermediate risk 

group was then further subdivided into a low and high risk group using the cut-off 

of uRenCR >893.41 pg/mg. Applying the combination of these two cut-offs for 

uAnCR and uRenCR resulted in a group of 10 patients, 8 of whom met the 

outcome, yielding a sensitivity of 30.8% and specificity of 98.9%. The PPV and 

NPV of this model were 80.4% and 90.7%, respectively. Overall, the model 

correctly classified 90.2% of patients correctly, and the 25-fold cross-validation 

estimate of the risk of misclassification of events was 0.132 (SE = 0.024). ROC 

curve analysis found that CHAID model had an AUC of 0.91, and compared 

favorably with the multivariate logistic regression model (Table 5-4; Figure 5-5).  

Discussion 

In this retrospective cohort study, we measured the candidate AKI biomarkers 

angiotensinogen, uromodulin, and renin in spot urine samples that had been 

obtained from post cardiac surgery patients early after AKI diagnosis had been 

made on the basis of AKIN serum creatinine criteria. Of these patients, only 81 

had an increase in sCr >50% and none had an increase ≥100% at the time of 

collection. Both urinary angiotensinogen and renin predicted the composite 

outcome AKIN stage 3 or death, whereas uromodulin did not.  While our study is 

limited by the use of a composite outcome that relatively few (26 of 204) patients 

met, it was chosen because our objective was to identify patients at high risk of 

severe adverse outcomes. Selection bias cannot be entirely ruled out because of 

the retrospective design of our study.  However, we used multivariate analysis to   
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Table 5-4. Comparison of Multivariate Logistic Regression Model and 
CHAID Classification Tree 

Model AUCa Sensitivity Specificity PPV NPV 

Multivariate 
Logistic 

Regressionb 

0.85                        
[0.77, 0.92] 

76.9% 79.1% 35.0% 76.5% 

CHAIDc 
0.91                       

[0.87, 0.96]* 
30.8% 98.9% 80.4% 90.7% 

a
AUC, area under the receiver operator characteristic curve; 95% CI estimates are 

shown in brackets
 

b
Cut-off specific performance characteristics shown are from the point on the ROC curve 

closest to the point of 100% sensitivity and specificity.  
c
CHAID, Chi-squared automatic interaction detection; cut-off specific performance 

characteristics shown are for the node representing uAnCR >337.89 ng/mg and uRenCR 
>893.41 pg/mg.   
*P = 0.02 compared to multivariate logistic regression model. 

Multivariate logistic regression and CHAID models were generated using the following 

variables: Cleveland Clinic score, percent increase in serum creatinine at the time of 

sample collection, urinary angiotensinogen/creatinine ratio (uAnCR), and urinary 

renin/creatinine ratio (uRenCR). 
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Figure 5-5. Multivariate receiver operator characteristic (ROC) 

curves for prediction of AKIN stage 3 AKI or death.  The ROC 

curves of two multivariate models, a CHAID classification tree (CHAID) 

and a multivariable logistic regression model (MLR) are shown.  Both 

models included four variables: Cleveland Clinic score, percent 

increase in serum creatinine from baseline at that time of sample 

collection, urinary angiotensinogen (ng/mg creatinine; uAnCR), and 

urinary renin (pg/mg creatinine; uRenCR).  Additionally, the ROC 

curves for angiotensinogen (uAnCR) and renin (uRenCR) are shown for 

comparison, although they were previously reported in Figures 1c and 

1d).  The CHAID classification tree model was the most accurate 

predictor (P =0.02 compared to the multivariable logistic regression 

model). 
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adjust for known confounders (Cleveland Clinic score and percent increase in 

serum creatinine at collection). We demonstrated that urinary angiotensinogen 

improved the predictive power of a clinical model that included these variables by 

using the net reclassification improvement and integrated discrimination 

improvement. These data confirm our previous findings regarding the prognostic 

predictive power of urinary angiotensinogen, although it is not a true validation 

study because approximately one-third of the patients used in this cohort (74 

patients, 10 of whom met the outcome) were included in our previous study 

(Chapter 3).161  We also found that elevated urinary renin is associated with 

severe AKI, and further addition of renin to the multivariate model appeared to 

improve sensitivity, indicating that the interaction between urinary 

angiotensinogen and renin concentrations is an important prognostic indicator.  

We believe that these findings are strongly suggestive of a role for the renin-

angiotensin system (RAS) in the pathobiology of AKI.  This notion is in 

agreement with data from animal models, and will be addressed in Chapter 7.     

Chi-squared automatic interaction detection was used to grow a classification 

tree to identify risk subgroups. Others have reported CHAID to be less accurate 

than multivariate logistic regression in ROC curve analysis.166  Nevertheless, we 

chose to use CHAID because of its relative simplicity and the ease of graphic 

representation of the results.  Additionally, CHAID offers some analytical 

advantages compared to logistic regression. Whereas logistic regression 

identifies independent predictors, CHAID is adept at identifying interactions 

among the variables, including non-linear relationships, and it can be used to 
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identify subgroups in which covariates exert the greatest influence in a predictive 

model.166-168  Thus, CHAID can be used to generate or test hypotheses regarding 

the potential role of the relationship between variables and the outcome of 

interest, which is a particularly intriguing feature for testing combinations of 

biomarkers.167  The CHAID classification tree identified patients with concomitant 

elevation of both angiotensinogen and renin as the group with the highest risk for 

the outcome AKIN stage 3 or death, and found that clinical variables drove the 

predictive model when biomarker concentrations were low. We interpret these 

results as an indication that activation of the renin-angiotensin system could 

modulate AKI severity.  Importantly, this analysis found that angiotensinogen was 

a stronger predictor than renin, and renin was not a useful predictor when 

angiotensinogen was below 337.89 ng/mg. This is congruent with our hypothesis 

that renin improves the predictive accuracy of angiotensinogen based on the 

biological relationship between the two proteins, as angiotensinogen is the only 

known natural substrate for renin.169 Therefore, the CHAID model is also an 

informative guide for the potential use of the combination of these biomarkers in 

the event of discordance between the two.   

Urinary angiotensinogen and renin could be a useful AKI biomarker combination 

and could be used to guide clinical trial enrollment.  The PPV of the combination 

of uAnCR > 337.89 ng/mg and uRenCR >893.41 pg/mg was 80.4%, a 6.3-fold 

enrichment for the endpoint of stage 3 AKI or death (compared to 12.8% 

incidence).  This would increase the effect size of an intervention and result in an 

improved statistical power and a reduction in the number needed to enroll. 
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However, the trade-off is that a large number of patients would need to be 

screened. Using our cohort as an example, the ratio of enrolled to screened 

patients would be approximately 1:19 if the results from the CHAID model were 

used as inclusion criteria enrollment, since only 4.9% of patients had uAnCR and 

uRenCR values above these cut-offs.  Therefore, the cost of screening would 

need to be weighed against the potential benefits of enrichment (increased 

power and reduced enrollment), taking into account the assumed effect size of 

the intervention.  A more complete description of how biomarkers can be used to 

improve clinical trial design is presented in Chapter 7. 
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Chapter 6: Verification of Candidate Biomarkers by Targeted Mass 
Spectrometry 
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Introduction 

Acute kidney injury (AKI) is a common and serious disease that is associated 

with a number of adverse outcomes.  Conventional biomarkers (i.e. creatinine, 

blood urea nitrogen, and urine output) do not reliably predict the course of the 

disease from an early time point after renal injury, and are of limited prognostic 

utility.  AKI biomarkers that predict adverse outcomes are needed to guide 

clinical decision making.19, 47  Novel biomarkers of AKI such as neutrophil 

gelatinase-associated lipocalin (NGAL), interleukin-18 (IL-18), kidney injury 

molecule-1 (KIM-1), and liver-type fatty acid binding protein (L-FABP) have been 

proposed.54, 60, 84, 104, 143, 144  The TRIBE-AKI Consortium recently conducted a 

large, multicenter prospective trial, which reported disappointing results regarding 

the early predictive power of these biomarkers, highlighting the need for new 

discoveries in this important area of AKI research.63, 76, 90  

As described in the previous chapters, we have identified urinary 

angiotensinogen as a novel prognostic biomarker of AKI.  We have verified its 

prognostic predictive power in cardiac surgery patients and in the nonsurgical 

critically ill population.  However, in these studies, angiotensinogen was 

quantified using a sandwich ELISA, which can be negatively affected by the urine 

matrix, impeding accurate quantification.  Additionally, these studies did not 

evaluate other novel AKI biomarkers such as the ones mentioned above, and we 

do not know how angiotensinogen compares to these.  Finally, the discovery 

phase proteomics studies described in Chapter 2 identified other candidate AKI 

biomarkers which we have not yet evaluated.  This chapter describes the 
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development of two parallel reaction monitoring mass spectrometry (PRM-MS) 

assays designed to quantify urinary angiotensinogen, the other candidate 

biomarkers, as well as the more established AKI biomarkers NGAL, KIM-1, and 

L-FABP.   

Tandem Mass Spectrometry and Protein Quantification 

Targeted tandem mass spectrometry techniques allow for highly accurate 

quantification of selected peptides and proteins.  First described over thirty years 

ago, selected reaction monitoring (SRM-MS) is the most simple of this family of 

techniques and is performed using a triple quadrupole mass spectrometer.13  

SRM-MS makes use of this instrument’s ability to select specific precursor and 

fragment ions for detection (Figure 6-1).170  Quantification is performed using the 

extracted ion chromatogram (XIC) of the precursor-fragment ion pair (called a 

reaction or transition).  The accuracy of quantification is improved through the 

use of stable isotope-labeled peptides, which have the same amino acid 

sequence as the target peptide, but are labeled on the C-terminus with C-13 and 

N-15 lysine or arginine.  Peak area ratio of the native-to-SIS XIC for the 

quantitypic transition is used for quantification, and can be compared to an 

external calibration curve for absolute quantification.  Additionally, as can be 

seen in Figure 6-1b, the SIS peptide has the same chromatographic retention 

time as the native peptide, which increases the specificity of the SRM-MS 

quantification.  A major advantage of the triple quadrupole platform is its speed, 

requiring approximately10 ms per transition.171  Thus this technique is highly 

amenable to multiplexing.  Additionally, as technology has improved, it has 
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allowed for the monitoring of several fragment ions per precursor ion, a technique 

called multiple reaction monitoring (MRM-MS).  MRM-MS provides improved 

specificity for the target peptide compared to SRM-MS, and it has become a 

popular method of protein biomarker quantification.172  This technique has been 

used to measure up to 67 proteins in a single 30 minute analytical run.173-175  

Newer generation hybrid mass spectrometers such as quadrupole ion trap and 

quadrupole time of flight instruments offer further advantages for peptide 

quantification due to their superior resolution and mass accuracy and are 

capable of running in a data dependent acquisition mode similar to MRM.  

However, an important distinguishing characteristic is that the mass analyzer of 

these instruments allows for detection of the all the fragment ions generated from 

a given precursor ion in parallel.  Peptide quantification based on all of the 

transitions generated during fragmentation has been termed parallel reaction 

monintoring (PRM-MS), and this method of quantification has been demonstrated 

to have improved linear range, reduced technical variability, and greater 

specificity for the target peptide compared to MRM-MS.176  Therefore, this 

relatively new technique is likely to become the new gold standard for protein 

quantification and an indispensable tool in the proteomics biomarker toolbox. 

Methods 

Patients and Urine Samples 

Urine samples were obtained from 204 consecutively enrolled patients who had 

undergone cardiac surgery at one of the SAKInet institutions between the dates 
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Figure 6-1. Schematic of selected reaction monitoring mass 
spectrometry.  (A) In SRM-MS mode peptides derived from a biological 
sample are chromatographically separated, are ionized by electrospray 
ionization, and enter the first quadrupole (Q1).  Only preselected precursor 
ions are allowed by the first quadrupole to enter the collision cell (Q2; second 
quadrupole).   After fragmentation a single fragment ion is allowed to pass 
into the third quadrupole (Q3) and to the detector for quantification using the 
peak area from the corresponding extracted ion chromatogram (XIC).  (B). 
Quantification with SRM-MS is accomplished using a stable isotopically –
labeled peptide that is identical in sequence to native peptide, but can be 
differentiated by its increased mass.  The ratio of the peak areas of the XICs 
of the two peptides is used for quantification and can be compared  to an 
external calibration curve for absolute quantification.   

Ionized  
peptides 
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of August 1, 2008 and June 1, 2012.  All samples used were included in our 

previously described study (Chapter 3).177  Informed consent was obtained in 

accordance with the IRB-approved protocol at each institution. Samples were 

collected and stored as previously described using a standard operating 

procedure which included centrifugation, addition of protease inhibitors and 

storage at   -80°C. Urine samples were collected as early as possible after AKIN 

serum creatinine criteria were met, and all were collected within the first 72 hours 

after surgery. Inclusion criteria were surgery of the heart or ascending aorta and 

development of AKIN stage 1 AKI by creatinine criteria within 3 days of surgery. 

Subjects with ESRD, baseline serum creatinine > 3.0 mg/dL or AKI greater than 

AKIN stage 1 at the time of collection were excluded.  Patients were followed 

until either time of death or hospital discharge, and were staged according to the 

maximum increase in serum creatinine using the AKIN classification system.3  

Urine output criteria were not used in diagnosis or staging because urine output 

data was not available.  For PRM-MS analysis, patient samples were grouped by 

the maximum AKIN stage attained by the patient, and a block randomization was 

used to divide the cohort into four batches of 40 samples consisting of 30 

patients who did not progress beyond AKIN stage 1, six patients who progressed 

to AKIN stage 2, four who progressed to AKIN stage 3. 

Selection of Peptides for Parallel Reaction Monitoring Assay 

With the exception of angiotensinogen, one tryptic peptide from each of the 

candidate biomarkers was selected for inclusion in the assay.  Peptides identified 

during discovery phase proteomic analysis were preferentially selected for use in 
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the assay.  When no suitable peptide could be identified from previous data, 

theoretical peptides were generated by in silico protein digestion (Peptide Mass) 

and an appropriate peptide was selected.178  Only peptides which were identified 

by BLAST alignment as unique to the protein of interest were used for PRM-MS.  

Stable isotope-labeled versions of these peptides (SIS peptides) were 

synthesized (New England Peptide), and were used during assay development 

and as internal standards for quantification of urine biomarkers.  These SIS 

peptides are C13- and N15-labeled on the C-terminus, and are only 

distinguishable from the endogenous (light) peptides by a shift in the mass of the 

precursor and fragment ions (y-ion series).   

Peptide Characterization 

To determine the predominant charge state of target peptides, an SIS peptide 

mixture was analyzed in information dependent acquisition mode using a 

Eksigent 2D+ HPLC in-line with an AB SCIEX Triple ToF 5600 mass 

spectrometer.  Theoretical collision energy values were calculated using the 

formula published by Kuzyk et al. and the formula suggested by the 

manufacturer.174  These values were used as a guide for empirical determination 

of optimal collision energy.  The elution profile of each peptide from the Strata-X 

solid phase extraction (SPE) cartridge used in our workflow was determined 

empirically.  The SIS peptide mix was spiked into a urine matrix and the SPE 

cartridge was washed with 5% acetonitrile 0.1% formic acid.  Serial elutions were 

performed using eluents of 10%, 15%, 20%, 25%, and 30% acetonitrile 0.1% 

formic acid solutions.  The peak area of the extracted ion chromatogram of the 
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most abundant fragment ion of each peptide precursor ion was calculated in 

each eluate to generate the elution profile.      

External Calibration Curve  

SIS peptides were brought to a concentration of 1 nmol/μL in 10% acetonitrile 

0.1% formic acid.  The peptide mix was then serially diluted and analyzed by 

liquid chromatography PRM-MS using an Eksigent 2D nano-HPLC and AB 

SCIEX Triple ToF 5600 mass spectrometer.  PRM-MS data were analyzed in 

Multiquant and the sum of three most abundant fragment ions of each peptide 

(except for the peptides for complement C4b and LFABP, for which only 2 ions 

were used) was used to generate an external calibration curve (standard curve) 

with 1/x weighting using OLS regression.     

Protein Quantification 

Batches of 40 samples were analyzed by the PRM-MS method outlined below.  

Within each batch three analytical blanks and a standard reference material 

(SRM) were also analyzed.  The SRM consisted of a pooled urine sample 

obtained from 5 patients with acute kidney injury after cardiac surgery.   

Trypsin Digestion 

Frozen samples were thawed in a 37°C water bath. A  50 μL aliquot of each 

sample was diluted 1:4 in 100 mM ammonium bicarbonate.  To estimate 

digestion efficiency, 40 ng of stable isotope-labeled angiotensinogen protein 

(C13- N15-labeled lysine and arginine residues; Origene) was spiked into each 

sample.  Proteins were denatured by the addition of 100 mM DTT and heating to 

60°C for 30 min.  Cysteine alkylation was performed by the addition of 0.5 M 

iodoacetamide followed by 30 min incubation in the dark.  Trypsin (Promega) 
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was added at a ratio of 1:20 with total protein and samples were digested for 12 

hr at 37°C.   

Solid Phase Extraction 

Following trypsin digestion samples were acidified by the addition of 3 volumes of 

0.1% formic acid.  At this time, a known concentration of SIS peptides was 

spiked into the samples to account for technical variability and to be used in 

downstream quantification.  Solid phase extraction (SPE) was used for sample 

clean up and preparation for liquid chromatography tandem mass spectrometry.  

Strata-X (Phenomenex) SPE cartridges were conditioned with 1 mL acetonitrile 

(Honeywell) and equilibrated with 1 mL 0.1% formic acid (Sigma).  Acidified 

sample digests were loaded on the SPE cartridge.  After waiting for 5 min, 

samples bound to the SPE cartridges were washed with 1 mL of 5% acetonitrile 

0.1% formic acid solution.  Sample elution was performed using 30% acetonitrile 

0.1% formic acid eluent.  Sample eluate was collected in Protein LoBind 

polypropylene tubes (Eppendorf), frozen at -80°C and dried in a centrifugal 

vacuum concentrator.   

Liquid Chromatography Parallel Reaction Monitoring Mass Spectrometry 

Dried samples were reconstituted by the addition of 50 μL of 10% acetonitrile 

0.1% formic acid followed by mild vortexing at room temperature for 20 min.  

Reconstituted samples were centrifuged at 15,000 x g 4°C for 15 min.  A 5 μL 

aliquot of supernatant was diluted 1:15 in 10% acetonitrile 0.1% formic acid in 

order ensure that peptides of higher abundance proteins (uromodulin, 

nonsecretory ribonuclease, myoglobin, superoxide dismutase, and liver fatty acid 

binding protein) were below the upper limit of quantification.  The remainder of 
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the supernatant was transferred directly into autosampler vials (Wheaton) and 

used to quantify lower abundance proteins.  Each sample was analyzed using 

two separate analytical runs, one optimized for low abundance proteins and one 

for high abundance proteins.  A 10 μL injection of undiluted sample was used for 

measurement of low abundance proteins, and a 5 μL injection of diluted sample 

was used for measurement of high abundance proteins.  Liquid chromatography 

was performed on a 2D Eksigent HPLC.  Briefly, samples were loaded onto a 2 

cm Acclaim PepMap 100 C18 nanotrap column (Thermo Scientific) and washed 

extensively with mobile phase A (98% water, 2% acetonitrile, 0.1% formic acid).  

Chromatographic separation was then performed using a continuous gradient on 

increasing percentage of mobile phase B (95% acetonitrile, 5% water, 0.1% 

formic acid) on a 15 cm Acclaim PepMap 100 C18 analytical column (Thermo 

Scientific).  Peptides were ionized using a nanospray ion source, and analyzed 

using an AB SCIEX Triple ToF 5600 mass spectrometer.  Parallel reaction 

monitoring data acquisition parameters include MS accumulation time of 150 ms, 

fragmentation only of masses corresponding the empirically derived m/z of each 

peptide/SIS peptide pair selected during assay design using empirically derived 

collision energy, and 100 ms of MS/MS accumulation time was specified.  The 

total cycle time for the data acquisition method was 2.15 s for low abundance 

proteins and 1.8 s for high abundance proteins.  The extracted ion 

chromatrogram (XIC) of the sum of no fewer than 2 precursor ion-fragment ion 

transitions was used for quantification of each target protein by comparison to the 
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corresponding SIS peptide and external calibration curve  All PRM-MS data were 

analyzed in Multiquant (AB SCIEX).  

Assay Characterization 

A standard reference material (SRM), which was a pooled urine sample obtained 

from 5 patients who had developed AKIN stage 1 AKI after cardiac surgery was 

used as a standard reference material (SRM).  A 50 μL aliquot of the SRM was 

processed and analyzed with each batch of 40 patient samples.  The coefficient 

of variation of the calculated protein concentrations was used to assess 

interassay variability.  Analytical blanks were used to calculate the limit of 

detection (LOD) and lower limit of quantification (LLOQ) of the assay, as 

described by Mani et al. The distribution of the peak areas of the twelve blanks 

was determined, and outliers were identified using the upper and lower fences of 

a box plot (defined as 75th percentile + 1.5*IQR and 25th percentile – 1.5*IQR, 

respectively).  Blanks which fell outside of this range were deemed unreliable 

estimates of assay performance.  LOD and LLOQ were then calculated 

according the method described by Mani et al.172    

Statistical Analysis 
The primary outcome was the development of AKIN stage 3 AKI or death.  

Creatinine corrected molar concentration of target proteins was not normally 

distributed, and so comparison of biomarker concentrations between the group of 

patients who met the outcome and those who did not was performed using the 

Mann-Whitney U test.  Receiver operator characteristic (ROC) curve analysis 

was used to evaluate the ability of each biomarker to predict the primary 

outcome.  Logistic regression was used to test the association between 
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biomarker concentration and risk of meeting the primary outcome.  Because a 

significant number of patients had calculated biomarker, biomarker 

concentrations were transformed into an ordinal scale (<LOD = 0, <LLOQ =1, 1st 

quartile = 2, 2nd quartile = 3, 3rd quartile = 4, 4th quartile = 5).  Ordinalized 

biomarkers were also combined in a backwards stepwise multivariate logistic 

regression model to identify independent predictors of the primary outcome.   

Goodness of fit was assessed with the Hosmer-Lemeshow, Pearson Chi-square, 

and Likelihood ratio tests.  Statistical Analysis was performed in SPSS (version 

21 and Sigma Plot (version 11).   

Results 

Patient Characteristics 

Urine samples collected from 157 patients who had developed AKI after 

undergoing cardiac surgery were analyzed using the PRM-MS assay that we 

developed.  All patients had developed AKI within 72 hours after surgery and 

were classified as AKIN stage 1 by serum creatinine (sCr) criteria at the time of 

sample collection.  Twenty-one patients met the primary outcome of development 

of AKIN stage 3 or death.  Patients who met the outcome were well-matched to 

those who did not with respect to demographic and intraoperative variables.  

However, sCr at the time of collection and the change in sCr from baseline were 

higher in the group of patients who met the outcome, and there was a trend 

toward higher pre-operative sCr  in this group.  A comparison of patients who met 

the outcome and those who did not is shown in Table 6-1.   
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Assay Development 

A total of 22 candidate biomarker were identified by discovery phase proteomic 

analysis (see Chapter 2, Table 2-4).  We attempted to design a PRM-MS assay 

using a single tryptic peptide to quantify each of the proteins, with the exception 

of angiotensinogen for which we selected three peptides (Table 6-2).  Peptides 

which had been identified during discovery proteomic analyses of human urine 

were screened to determine their suitability for inclusion in the assay.  In order to 

be included peptides had to have been unmodified, not contain any cysteine or 

methionine residues, not contain any missed cleavages, and be unique to the 

target protein.  Unfortunately, we could not identify suitable peptides for Secreted 

Ly-6/uPAR-related protein, Complement C3 and Hepcidin, so these candidate 

biomarkers were not be included in the assay.  The SIS peptides were analyzed 

in information dependent acquisition mode to ascertain their predominant charge 

state.  The peptides that were selected to quantify Thymosin Beta-4 and Insulin-

like growth factor binding protein 1 were not detectable during this analysis, 

indicating that they were either insoluble or failed to ionize well.  After the optimal 

collision energy was empirically determined for the remaining peptides, an 

external calibration curve was generated.  The sum of the intensities of the three 

most dominant fragment (y) ions was used for quantification, with the exceptions 

of the peptides for Complement C4-B and L-FABP, which only had two 

detectable y-ions.  The peptides for Profilin-1, Glutathione peroxidase-3, 

Lysozyme C, and Polymeric immunoglobulin receptor did not have linear 

standard curves, and so these were also excluded from the assay. In contrast, 12 

of the 16 peptides had excellent linearity (r ≥ 0.98) with the  
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linear range of the standard curve of 11 of these at attomolar concentrations. 

Therefore, the final assay contained 16 native/SIS peptide pairs representing 14 

proteins, including 3 established AKI biomarkers: neutrophil gelatinase-

associated lipocalin, kidney injury molecule-1, and liver-type fatty acid binding 

protein.    

We attempted to estimate the average abundance of each of the proteins in the 

assay because others have reported that the accuracy of quantification 

decreases when the SIS peptide spike differs from the endogenous peptide by 

greater than a factor of 10.174  A literature search returned estimates for CD59, 

myoglobin, KIM-1, L-FABP, and NGAL.  The concentrations of urinary 

angiotensinogen and uromodulin were estimated using the mode of the values 

obtained by ELISA in the experiment described in Chapter 5.  The molar 

abundance of the remaining proteins was estimated using exponentially modified 

protein abundance index (emPAI) values obtained from discovery phase 

proteomic analysis in Chapter 2, indexing them to ELISA measurements that we 

had previously made on angiotensinogen and uromodulin.  These estimates 

indicated that the target proteins spanned several orders of magnitude, which 

complicated our analysis because it was obvious that all of the proteins would not 

be in the linear range of the standard curve if a single sample injection were used 

(Table 6-3).  Therefore, we decided to adapt the analytical approach such that 

each sample was analyzed twice, once in undiluted form (that is reconstituted 

with the amount of volume equal to the starting sample volume) and once as a 

1:15 dilution.   
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 Assay Performance: LOD, LLOQ and CV 

Assay performance characteristics for each target peptide are reported in Table 

6-4.  Unfortunately, many of the samples had values that were undetectable 

(below the limit of detection; LOD).  More samples had calculated values below 

the lower limit of quantification (LLOQ).  In some cases the target proteins were 

only observed in a very small percentage of patients (CD59), and KIM-1 and 

apolipoprotein A-IV was not detected in any samples.  Therefore, these proteins 

could not be evaluated.  The external calibration curves for CD59, and KIM-1 

were among the lowest quality included in the assay, which could explain the 

poor measurements made on these proteins.  In contrast, the large number of 

patients with apolipoprotein A-IV and values below the LOD was surprising given 

excellent calibration curve for this peptide, suggesting that either the endogenous 

protein is outside of the range of the assay or that this peptide is not observed 

due to ion.   

The coefficient of variation (CV) of the measurements made on the standard 

reference material (SRM) that was analyzed with each batch was used to 

estimate interassay variability.  Unfortunately, the CV could not be calculated for 

many of the proteins because the native peptide was undetectable in the SRM.  

This likely reflects a low concentration of the target proteins in the urine samples 

that were pooled to make the SRM.  Therefore, the technical variability of the 

assay could not be evaluated for several of the proteins.  To overcome this 

limitation in future studies, the SRM should include a spike of unlabeled peptide 

or protein to ensure that assay variability can be assessed.  Additionally, the CVs  
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Table 6-3. Estimated molar concentration of target proteins included in 
PRM-MS assay. 

Protein 
Estimated 

Concentration 

Angiotensinogen 0.188 fmol/μL 

Pigment epithelium derived protein 0.188 fmol/μL 

Antithrombin III 0.188 fmol/μL 

Complement C4-B 0.188 fmol/μL 

Apolipoprotein A-IV 0.188 fmol/μL 

Myoglobin 5.82 fmol/μL 

Proepidermal growth factor 0.188 fmol/μL 

NGAL 1.33 fmol/μL 

KIM-1 0.052 fmol/μL 

Uromodulin 71.7 fmol/μL 

CD59 282.0 fmol/μL 

L-FABP 63.3 fmol/μL 

Superoxide dismutase 71.7 fmol/μL 

Nonsecretory ribonuclease 71.7 fmol/μL 
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that could be calculated were higher others have reported.174,175  This is likely 

due to a difference in study design.  We chose to digest and process the SRM 

concurrently with each batch, whereas others make an SRM batch which is 

digested and processed separately from the samples of each batch and is only 

analyzed concurrently with the samples.  Thus the CV that is reported here 

incorporates variability in each step of the workflow from digestion to instrumental 

analysis, whereas the use of an SRM batch only accounts for instrumental 

variability. 

 

Qualification of Candidate Biomarkers by Targeted Mass Spectrometry    

Because many patients had biomarker concentrations that were below the limit of 

detection for the assay, we compared the proportion of patients with biomarker 

concentrations above the LOD who met or did not meet the AKIN stage 3 or 

death (Table 6-5).  Patients who met the outcome were more likely to have 

urinary concentrations of L-FABP, superoxide dismutase [Cu-Zn], and myoglobin 

above the LOD of the assay, compared to patients who did not meet the 

outcome.  Next, the association of elevated biomarker concentration (not 

creatinine-corrected) and risk of development of AKIN stage 3 or death was 

determined using an ordinalized protein concentration scale that included the 

following cut-offs:  <LOD, >LOD but <lower limit of quantification (LLOQ), 1st, 2nd, 

3rd, and 4th quartiles above the LLOQ (Table 6-5).  Complement C4B, and CD59 

were excluded from this analysis because only a small number of patients who 

had concentrations of these proteins above the LOD of the assay.  Higher  
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concentrations of angiotensinogen (OR = 1.56 95% CI [1.19, 2.05]), superoxide 

dismutase [Cu-Zn] (OR =1.89 95% CI [1.31, 2.73]), L-FABP (OR = 1.46 95% CI 

[1.01, 2.11]), and myoglobin (OR = 1.69 95% CI [1.16, 2.48]) were associated 

with an increased risk of meeting the outcome.  Finally, we evaluated the ability 

of creatinine-corrected biomarker concentrations to discriminate between 

patients who would meet the outcome and those who did not.  In order to 

complete this part of the analysis, the LOD of each biomarker was applied as a 

threshold such that patients who had biomarker concentrations below the LOD 

were made equal to the LOD.  The median concentrations of angiotensinogen, L-

FABP, and superoxide dismutase were higher in patients who developed AKIN 

stage 3 or died Table 6-6).  Receiver operator characteristic curve analysis found 

that all of these proteins were predictive of the primary outcome (Figure 2). 

Discussion 

A multiplex tandem mass spectrometric assay was developed to quantify 10 

candidate prognostic biomarkers of AKI, as well as angiotensinogen, NGAL, L-

FABP, and KIM-1.  Peptides for an additional 6 peptides from 6 other candidate 

biomarkers were evaluated for inclusion in the assay but did not perform well 

during the development phase and were excluded.  Future studies should 

attempt to quantify these proteins using different proteotypic peptides.  This 

assay was similar in design to PRM-MS assays that have been described, in that 

it utilized an analytical platform with a high resolution and mass accuracy, and so 

our data benefitted from enhanced precision compared to a conventional MRM-

MS approach.176  However, our assay was not a true PRM-MS assay because 

only the most abundant fragment ions of the y-series were used for quantitation 
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(although the entire fragmentation spectrum was collected).  This approach was 

chosen because it has been our experience with our instrument that lower 

abundance transitions introduce chemical noise and reduce the sensitivity of the 

measurement.   

Urine samples from a total of 157 cardiac surgery patients were analyzed and the 

concentrations of the 14 proteins were evaluated for prediction of the outcome 

AKIN stage 3 or death.  Disappointingly, many of the measurements that we 

made were below the lower limit of quantification (LLOQ) or the protein was 

undetectable.  There are several possible explanations for this including: 1) 

matrix effects that suppress the ionization of the target peptide, 2) poor digestion 

efficiency resulting in lower abundance of the target peptide, 3) protein 

modification that either reduces digestion efficiency or shifts the mass of the 

target peptide, and 4) low protein abundance that is below the range of the 

assay.  In the unique case of NGAL, the incorrect precursor ion was selected for 

fragmentation, and so no data could be acquired to quantify it.  This is a limitation 

of the study, because NGAL is a well-validated AKI biomarker and novel 

candidate biomarkers should be compared to it.  Despite these significant 

limitations, we attempted to draw a valid conclusion from the data by assuming 

that data points below the LOD were due to low levels of the endogenous 

protein, and so the LOD  was applied as a threshold to the data and all values 

<LOD were made equal to the LOD.   

Using this approach, we found that the candidate biomarkers angiotensinogen, 

superoxide dismutase [Cu-Zn], and myoglobin predicted AKIN stage 3 or death.  
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Although we admit that the accuracy of our measurements must be viewed with 

caution because the assay was not thoroughly validated, we believe that the 

precision is sufficient for relative quantification and that our inferences are valid.  

This is evidenced by three confirmatory findings present in our data.  First, we 

found a good correlation between angiotensinogen values obtained by PRM-MS 

and those previously measured by ELISA, and the data obtained by PRM-MS 

showed that angiotensinogen predicted AKIN stage 3 or death with an AUC 

nearly equal to that obtained using ELISA measurements.  Similarly, we 

confirmed that uromodulin did not predict the outcome, which we had also 

previously found using an ELISA for quantitation.  Finally, we found that liver-type 

fatty acid binding protein (L-FABP), a well-established AKI biomarker, predicted 

this outcome that has been reported to be an excellent predictor of mortality in 

patients with sepsis-associated AKI.137   

These results are the first to report superoxide dismutase [Cu-Zn] and myoglobin 

as AKI biomarkers.  While these finding will need to be confirmed with a more 

well-validated assay, the prognostic significance of these proteins is congruous 

with our understanding of the role of oxidative stress in AKI.  Specifically, 

myoglobin, a heme-containing protein, can generate free radicals and is a known 

nephrotoxin.  It is plausible that higher concentrations of myoglobin in the urine 

would be associated with more severe renal injury.179  Conversely, SOD [Cu-Zn] 

is a free radical scavenger which converts superoxide to hydrogen peroxide and 

has been shown to be renoprotective.169, 180  Elevated concentrations of SOD 

[Cu-Zn] could represent a response to severe oxidative stress.    Additionally, we 
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have previously found that angiotensin predicts adverse outcomes in patients 

with established AKI, but had not directly compared it to more well-characterized 

AKI biomarkers.  In this analysis, we found that angiotensinogen compared 

favorably with L-FABP.  These data solidify our previous findings and emonstrate 

that urinary angiotensinogen could have clinical utility as an AKI biomarker.   
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Chapter 7: Insights, Unanswered Questions, and Future Directions 
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Mechanistic Insights and Unanswered Questions: The Renin-Angiotensin 

System and AKI  

Not only do biomarkers provide information useful for guiding clinical care, but 

they can also yield mechanistic insights into the molecular underpinnings of the 

associated disease.  The studies that have been presented have convincingly 

shown that elevated concentrations of urinary angiotensinogen and renin are 

associated with more severe AKI and adverse outcomes.  These two proteins are 

the substrate and enzyme, respectively, of the rate limiting step of the renin 

angiotensin system (RAS).169  It has long been recognized that the RAS plays a 

central role in chronic kidney disease (CKD), and RAS inhibitors are the standard 

of care for patients afflicted with CKD.181, 182  An increase in angiotensinogen is 

prerequisite for activation of the RAS and generation of downstream effector 

angiotensin peptides, and it is believed that urinary angiotensinogen is a 

surrogate for intrarenal activation of the renin-angiotensin system (RAS) during 

chronic kidney disease.148, 183-185  Importantly, Kim et al. have shown that urinary 

angiotensinogen concentration correlates with urinary TGF-β, a profibrotic 

cytokine, and with the degree of the severity of the renal histopathology of 

patients with CKD.186  Given its biological relationship with angiotensinogen, it is 

logical that urinary renin excretion could also be an important index of intrarenal 

RAS activation in chronic kidney disease. 

In fact, it has been demonstrated that intrarenal angiotensin II increases renin 

expression 
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in the collecting duct via AT1R signaling, which results in tubular secretion of 

prorenin and renin.187  In light of what is known about RAS and the importance of 

urinary angiotensinogen and renin in CKD, our findings require us to consider the 

possibility that the RAS could modulate the severity of renal injury during an 

episode of AKI.  Certainly this would be congruent with the data from animal 

models of AKI (see below).  Furthermore, as mentioned in the introduction in 

Chapter 1, AKI can precipitate CKD and accelerate its progression.  Could the 

RAS be the mechanism which underlies this epidemiologic association?  It is 

certainly plausible.  If indeed this is the case, then it is likely that monitoring 

urinary angiotensinogen and renin levels during the course of AKI could predict 

which patients will develop CKD or progress from CKD to end stage renal 

disease (ESRD).   

Animal models of AKI have repeatedly demonstrated that RAS activation occurs 

during AKI, and that it exerts a negative effect on the severity of the injury.  Allred 

et al. showed that angiotensin II increases in kidney tissue following ischemia 

reperfusion injury in rats, whereas angiotensin I and angiotensin 1-7 increase in 

the urine.188 These findings are supported by a study by da Silveira et al., which 

showed that not only does angiotensin II increase, but angiotensin 1-7, a 

potential counterbalance of angiotensin II effects, decreases in renal tissue 

following ischemia reperfusion injury in a rat model of AKI.189 Greater amounts of 

renal angiotensin II that are observed during AKI could result in increased 

intrarenal inflammation, since models of chronic renal injury have shown that 

angiotensin II contributes to renal injury through pro-inflammatory effects 
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mediated by the NF-κB pathway.190-194  Indeed, inhibition of angiotensin 

converting enzyme and the angiotensin II type 1 receptor with captopril and 

losartan, respectively, reduce renal inflammation in rats subjected to renal 

ischemia-reperfusion injury and mitigate the severity of AKI in this model.195, 196  

It is commonly believed that RAS inhibitors can precipitate and exacerbate AKI.  

Some observational studies have noted an increased risk of AKI associated with 

RAS blockade, which is presumably due to the inhibition of angiotensin II 

mediated vasoconstriction of the efferent arteriole.197-199  This results in lower 

hydrostatic pressure in the glomerulus, resulting in a decreased glomerular 

filtration rate (GFR) and an increase in serum creatinine.  Therefore, the effect of 

RAS inhibitors on AKI incidence could be artificial and unrelated to the effect of 

RAS inhibitors on renal injury, and it could be possible that RAS inhibitors 

attenuate renal injury while simultaneously decreasing renal function.  

Unfortunately, the effect of RAS inhibitors of the incidence of severe AKI and its 

complications has not been thoroughly investigated.  Our work would seem to 

suggest that the incidence might be decreased, and therefore an observational 

study on the effect of RAS inhibitor use and AKI severity would be a logical 

extension of the biomarker data that has been presented.  We would hypothesize 

that the effect of RAS inhibitors on GFR could result in an increased rate of 

complications from AKI such as uremic encephalopathy, hyperkalemia, metabolic 

acidosis, and volume overload, but that if these complications are appropriately 

managed, RAS inhibitors could mitigate the mortality rate associated with severe 

AKI and potentially reduce the rate of long term complications of AKI.  While we 
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recognize that this is in stark contrast to conventional wisdom, it is noteworthy 

that a recent review proposed the continuation of RAS inhibitors during AKI.200                     

Intrarenal or Systemic: The Question of Location 

Classically, the RAS has been understood as a systemic hormonal cascade in 

which angiotensinogen is produced by the liver and renin is released into 

circulation by the juxtaglomerular apparatus in the afferent arterioles of kidney.  

However, the existence of a local RAS in the kidney is widely recognized, and an 

important question that remains unanswered by our work is whether this or the 

systemic RAS is the source of increased angiotensinogen and renin that we have 

observed in the urine of patients with more severe AKI.147,201  We believe that the 

tubular compartment is the likely source of these urine proteins during AKI.  Early 

work by Ingelfinger et al. demonstrated localization of angiotensinogen 

messenger RNA in rat proximal tubules, a finding that was subsequently verified 

in human tissue.202, 203 This indicates that the proximal tubule itself is capable of 

angiotensinogen biosynthesis.  In support of this idea, a recent multiphoton 

imaging study reported negligible glomerular filtration of plasma angiotensinogen 

and concluded that urinary angiotensinogen concentration reflects intrarenal 

production.204  On the contrary, elegant studies using tissue specific and 

conditional knockout mice have demonstrated that under normal conditions 

tubular angiotensinogen protein is primarily derived from the liver and depends 

on megalin for its uptake.205, 206  Thus, it is possible that the urinary 

angiotensinogen detected in our assays was synthesized in the liver and 

sequestered in the proximal tubule, but was released by the proximal tubule upon 
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injury.  However, a limitation of the knockout animal studies is that they have 

investigated intrarenal angiotensinogen in the uninjured state, and so their 

findings may not reflect what occurs during AKI.  Therefore, AKI induced 

angiotensinogen biosynthesis by the proximal tubule cannot be ruled out, since 

this is a well-established phenomenon.202, 207  Similarly, renin is classically 

understood as secreted by the juxtaglomerular apparatus into circulation.  Renin 

protein can be localized in the proximal tubule, and like angiotensinogen, 

appears to be dependent on megalin uptake.206  However, renin is expressed 

along renal tubular epithelium, and in vivo microscopy has shown that renin 

production increases in the collecting duct during diabetic nephropathy.208  A 

similar mechanism could underlie the increased concentration of urinary renin 

that we observed in patients with more severe AKI.   

Despite the evidence for intrarenal production of angiotensinogen and renin 

during chronic renal injury, which could be paralleled during acute injury, we must 

acknowledge that such deductive reasoning is inconclusive.  A potential future 

direction of this project is to determine the site of angiotensinogen and renin 

production during AKI using animal models of AKI (such as renal 

ischemia/reperfusion injury).  Increased intrarenal expression of these genes and 

protein abundance after renal injury suggest the kidney as the source of these 

urine proteins.  However, kidney-specific knockouts of angiotensinogen and renin 

would be needed to definitively prove intrarenal production.         

Implications for Clinical Trials of AKI 

Despite strong evidence from animal models and numerous randomized clinical 
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trials, there are no effective interventions for AKI, and treatment is supportive in 

nature.  There are at least three reasons for this translational bottleneck: 1) late 

initiation of therapy during the trial 2) the complex and multifactorial nature of AKI 

pathobiology and 3) underpowered study design.  Novel biomarkers of AKI can 

address each of these issues.  Serum creatinine, the conventional AKI 

biomarker, is a surrogate of the glomerular filtration rate, and as described in 

chapter 1, it increases as GFR declines during the early phases of AKI.  

However, it increases slowly and elevated sCr is often not detected until 1-3 days 

after the renal injury has occurred.  Therefore, clinical trials which rely upon 

increased serum creatinine for AKI diagnosis and enrollment are unlikely to find a 

positive effect on acute outcomes.  Recognition of this limitation of creatinine has 

been the primary driving force behind AKI biomarker research, leading to the 

discovery of several “early” AKI biomarkers.  Secondly, biomarkers can function 

as molecular phenotyping tools that distinguish between different subtypes of 

disease, perhaps identifying a subpopulation in which intervention is effective.  

While no AKI biomarkers have been proposed for this purpose, examples of 

biomarker driven clinical care abound in the oncology literature, and our findings 

regarding angiotensinogen and renin are particularly attractive for this purpose.  

Given the discussion above, it seems likely that the RAS is involved 

mechanistically in AKI, and it could be that RAS blockade could have a benefit in 

patients with elevated urine concentrations of these proteins.  Finally, the 

inclusion of patients with mild AKI in clinical trials, while commensurate with the 

evolving definition of this disease, results in a lower baseline prevalence of 



 

164 
 

severe adverse outcomes and diminishing the effect size of an intervention.  

Thus very large sample sizes are needed to demonstrate efficacy.  Prognostic 

biomarkers such as angiotensinogen and renin, which predict progression to 

more severe AKI and a higher risk of adverse outcomes, could therefore be used 

to screen for inclusion in a trial.      

Despite the strong rationale for incorporating biomarkers in AKI trial design, only 

one trial, the EARLYARF Trial, has used biomarker screening as a guide to 

enrollment.142  In this trial, urinary alkaline phosphatase (AP) and gamma-

glutamyl transferase (GGT) values were monitored in ICU and post cardiac 

surgery patients and were used to screen patients for enrollment in a 

randomized, prospective, placebo-controlled clinical trial investigating the effect 

of erythropoietin on AKI incidence.  Unfortunately, this trial failed to demonstrate 

an effect.  However, it serves as an illustrative example.  The underlying reason 

for the failure of erythropoietin is not likely to be late initiation of therapy, since 

increased urine concentrations of these brush border enzymes is thought to be 

an early marker of renal injury.  Rather, there are two more plausible 

explanations.  First, the putative renoprotective mechanism of erythropoietin is 

attenuation of ischemia-reperfusion injury.209, 210  While GGT and AP do increase 

following ischemic tubular injury, they are not specific for ischemic injury.  The 

heterogeneity of the study cohort itself is evidence of this, as there were a 

significant number of the patients who had septic AKI and AKI after cardiac 

surgery, both of which have complex, multifactorial pathogenesis.211, 212  This 

heterogeneity could have attenuated any therapeutic benefit gained by 
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erythropoietin administration.  Secondly, the investigators ran an observational 

study in parallel with the trial to determine the effectiveness of biomarker 

screening at enriching the study population.  It seems that GGT and AP guided 

enrollment only marginally enriched the study population, resulting in only a small 

increase in statistical power of the study.  For example, biomarker guided 

enrollment increased the incidence of AKI from 15.1% to 23.0% and 7 day 

mortality from 8.1% to 14.2% (P = 0.034).  While the .investigators explicitly 

stated in the manuscript that AP and GGT were the only confirmed AKI 

biomarkers available for rapid detection at the time the study was conducted, it 

begs the question of how the trial would have concluded if a more accurate 

biomarker had been used.   

The design of the EARLY ARF trial raises an important question for AKI 

biomarker research.  Namely, how good does a biomarker need to be in order to 

be useful in clinical trial design?  A recent NIDDK workshop on AKI clinical trial 

design stated,  

“Although numerous novel biomarkers have been proposed for 

early identification of intrinsic AKI, to date no biomarker has been 

shown to possess sufficient predictive ability to be used as a 

primary enrollment criterion and should not supplant SCr [serum 

creatinine] for enrollment into trials exploring the effects of agents 

on established AKI.”213   

However, the participants noted that potential use of biomarkers in risk 
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stratification in AKI trials should continue to be investigated.  Specific 

recommendations for assessing this potential were not prescribed, and it remains 

largely unclear how to define the advantages gained by using a biomarker as a 

guide for enrollment.  It is obvious, however, that the advantages and 

disadvantages of biomarker guided clinical trial enrollment are best understood in 

terms of the benefit of enrichment and the cost of screening.  It is our objective to 

provide a logical framework for performing a cost-benefit analysis to determine if 

biomarker guided enrollment might be beneficial for future AKI clinical trials.     

Enrichment: The Benefit of Biomarker Guided Enrollment 

Enrichment strategies are commonplace in clinical trial design.141  Their purpose 

is to increase the proportion of patients in the study population who might benefit 

from an experimental intervention, with the results being increased effect size 

(i.e. absolute risk reduction), increased statistical power, and a decrease in the 

sample size needed to achieve a given power.  To describe the advantages of 

enrichment, let us consider the fenoldopam trial conducted by Tumlin et al.214  

This prospective, randomized, double-blind, placebo controlled clinical trial (n = 

155) found that fenoldopam, a dopamine receptor alpha-1 specific agonist, failed 

to reduce the rate of renal replacement therapy or death within 21 days (p = 

0.163).  The incidence of this outcome in the placebo group (n = 75) was 38.7%, 

whereas in the treatment arm (n = 80) 27.5% of the patients met the outcome 

(relative risk reduction of 28.9%).  The power to detect an effect size of 11.2% 

with this sample size is 0.331.  In order to achieve a power of 0.8, the 

investigators would have needed to enroll 553 subjects.  In order to understand 
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how biomarker guided enrollment might have altered the outcome of this trial, 

consider the combination of urinary angiotensinogen and renin that was 

described in Chapter 5.  This biomarker test identified patients at high risk of 

progressing from AKIN stage 1 to the composite endpoint AKIN stage 3 or death 

(sensitivity = 30.4%; specificity = 98.9%).  This outcome is quite comparable to 

the composite outcome renal replacement therapy or death chosen by Tumlin et 

al.  Assuming the same sensitivity and specificity, this test would have a PPV of 

94.6% in the population used in the fenoldopam trial.  If the 

angiotensinogen/renin combination had been used to enrich the study population 

of the fenoldopam trial, the power would have been 0.996, assuming no change 

in sample size or the relative risk reduction conferred by fenoldopam treatment.  

The increase in power is due to an increase in the absolute difference in the 

proportions of subjects meeting the endpoint between the experimental groups 

from 11.2% (38.7% -27.5%) to 27.4% (94.6% - 67.2%). Importantly, however, 

because of the increased power, one of the most significant benefits of 

enrichment is that, compared to the unenriched population, fewer patients will 

need to be enrolled in the trial to detect a difference between the treatment 

group, and we calculate that the number needed to enroll trial to attain a power of 

0.8 (NNEPower 0.8) in an angiotensinogen/renin enriched fenoldopam AKI clinical is 

only 62 patients.      

Mathematically, enrichment is simply defined as the ratio of PPV to prevalence.  

The benefit of enrichment can be appreciated by examining the changes in the 

number needed to enroll (NNE) and number needed to treat (NNT), which are 
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illustrated in Table 7.1.  The number needed to enroll (NNE) is the number of 

patients that need to be enrolled in order to enroll one patient who will meet the 

outcome (one event).  In an unenriched trial, NNE is simply the reciprocal of the 

prevalence of the outcome (Equation 7.1a); in a biomarker enriched trial, NNE is 

the reciprocal of the PPV of the biomarker test (Equation 7.1b).  If the desired 

number of events is known, then the total enrollment that will be necessary is 

given by the product of NNE and the target number of events.  Equivalently, 

because enrichment increases the absolute risk reduction (ARR) of an 

intervention, it results in a decrease in the number needed to treat (NNT), which 

is the reciprocal of the ARR.  Importantly, the PPV/prevalence ratio is equal to 

the unenriched-to-enriched NNE and NNT ratios.  Therefore we propose that 

when evaluating the potential use of a biomarker in clinical trial design that this 

“enrichment index” be calculated (Equation 7.2), because of the ease of 

interpreting this number as a measure of the degree of enrichment and its effect 

on the observed treatment response rate.  Furthermore, the statistical 

significance of the enrichment index can be readily determined using the χ2 test.  

However, since this test relies both on proportions and frequencies, we propose 

that by convention, the proportion of 100 patients who meet the outcome be 

calculated using the prevalence and compared to the number (out of 100) 

calculated using the PPV (Figure 7.1).  While this is a somewhat crude approach, 

it immediately reveals if there is a statistically significant enrichment that could be     
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Equation 7.1a   NNEu = 1/Prevalence 

Equation 7.1b NNEE = 1/PPV 

Equation 7.2  EI = PPV/Prevalence = NNEu/NNEE = NNTU/NNTE 

The subscripts U and E indicate unenriched and enriched populations, 

respectively.  EI, enrichment index; PPV, positive predictive value of the 

biomarker test; NNE, number needed to enroll; NNT, number needed to treat 
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worth the cost of screening.  Using this approach, it appears that the enrichment 

index of angiotensinogen/renin is statistically significant (P< 0.001). 

Screening: The Cost of Biomarker Guided Enrollment 

The second aspect that must be considered when evaluating the potential of a 

biomarker for guided enrollment is the cost of screening.  This can be estimated 

by calculating the number of patients who will need to be screened in order to 

enroll one patient (number needed to screen; NNS).  Because only patients with 

a positive test result will be enrolled, the NNS is mathematically determined by 

the proportion of patients who test positive (i.e. the sum of the true positive and 

false positive rates).  The NNS is equal to the reciprocal of the positive rate of the 

test (Equation 7.3a).  Assuming prevalence = 38.7%; sensitivity = 30.4%; and 

specificity = 98.9%, the NNS of the angiotensinogen/renin CHAID model would 

be 8.  Therefore, in order to match the enrollment of the fenoldopam trial, 1240 

patients need to be screened. From this analysis, the NNS seems to 

unreasonably large, and we might erroneously reject the use of the 

angiotensinogen/renin combination to guide enrollment.  However, the NNS does 

not tell us how many patients will need to be screened to conduct the trial; it is 

merely an estimate of the rate of screening to enrollment.  Furthermore, we have 

already demonstrated that due to benefits of enrichment, a biomarker guided trial 

will need to enroll fewer patients than an unenriched trial to reach a given 

statistical power.  In order to calculate how many patients will be needed conduct 

the trial if a biomarker were used to enrich the study population, power and 

sample size calculations must first be performed.  Once the sample size has 
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Equation 7.3a NNS = 1/[(P*Sensitivity) +[(1-P)(1-Specificity)]] 

Equation 7.3b    NNSPower 0.8 = NNS * SSPower 0.8 

Where P = prevalence; NNS = number of patients that need to be screened to enroll 

one patient; SSPower 0.8 = the number of patients that would need to be enrolled to 

attain Power of 0.8; NNSPower 0.8 = number patients that will need to be screened to 

enroll SSPower 0.8 patients in the trial. 
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been determined, then the NNS can be used to calculate the number of patients 

that will need to be screened to meet that target enrollment (NNSPower 0.8; 

Formula 7.3b).  Therefore, if we use the sample size calculation performed above 

for a power of 0.8, then we estimate that 491 patients would need to be screened 

to meet the target enrollment of 62.  Thus the number screened is actually less 

than the number of patients who would need to be enrolled to achieve a power of 

0.8 if all comers were enrolled (n = 553), indicating that the cost of screening is 

less than the benefit of enrichment.  A schematic for evaluating the costs and 

benefits of biomarker guided enrollment is shown in Figure 7.2.   

Discussion of Cost-Benefit Analysis 

It must be noted that the framework which we have provided has some obvious 

limitations.  The suggested calculations are performed a priori and consequently 

are heavily dependent upon assumptions of prevalence, biomarker test 

performance characteristics, and the relative risk reduction of the intervention.  

Accordingly, prevalence of the primary outcome of a clinical trial should be 

estimated from historical data in the study population to maximize the accuracy 

of the estimate.  Similarly, biomarker test performance should be well 

characterized in a prospective observational study in the same population that 

will be used in the clinical trial.  This was the major pitfall of the EARLYARF trial, 

because the investigators used a cut-off that had been determined from an 

extremely small (n = 26) prospective study in which only 4 subjects developed 

AKI.142, 215  This is also limitation of the data that we have presented since 
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Figure 7-2. Schematic for evaluating the benefit and cost of incorporating biomarker 

guided enrollment into clinical trial design. The first step is to estimate the prevalence of 

the primary outcome (P) and the relative risk reduction (RRR) conferred by the intervention.  

Prevalence should then be used to calculate the positive predictive value (PPV) of the 

biomarker test.  The enrichment index (EI) should be calculated and statistical significance 

determined using the χ2 test as described in the text.  Power and sample size analysis should 

be performed for the unenriched (white box) and enriched trials (light gray boxes) using the P 

and PPV, respectively, for the event rates in the placebo arm, keeping RRR constant.  The 

sample size (SS) calculated for a give power (Power X) should be determined for both studies, 

and the NNS should be used to calculate the total number of patients that would need to be 

screened to enroll that number of patients in the biomarker enriched trial (NNSPower X).  This 

should then be compared to the SS calculated for the unenriched trial at that power          

(SSPower X).  
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angiotensinogen and renin were evaluated in a retrospective cohort study in a 

population that differed from that of the fenoldopam trial.  Finally, the relative risk 

reduction conferred by an intervention in a biomarker enriched trial has been 

assumed to be identical to that of an unenriched trial.  Unfortunately, this may not 

be true.  Because biomarkers subclassify a disease according to molecular 

phenotype, the study populations of a biomarker enriched and unenriched trials 

are not identical, and thus the effect size of an intervention is unlikely to be the 

same.  Unfortunately it is not possible to determine what the difference in the 

performance of an intervention might be in the enriched population.  There is 

even the possibility that biomarker guided enrichment could abrogate the 

therapeutic effect of an otherwise efficacious intervention, which would lead us to 

falsely conclude that it is not effective.  For this reason, it would be advisable to 

adopt the 2 stage clinical trial strategy proposed by Jones and Holmgren.216-218  

In the first stage, 2 pilot trials are conducted in which the intervention is tested in 

biomarker enriched population and an unenriched population.  The second stage 

is a larger, phase II trial conducted using the population in which the intervention 

demonstrated efficacy in stage 1.  If there is no difference in the efficacy between 

the enriched and unenriched groups, then the biomarker enriched population 

could be used to reduce the enrollment in the second stage, potentially 

accelerating the conclusion of the trial and decreasing the time needed to bring 

an intervention to the general population.  An additional advantage of the 2 stage 

approach is that it allows us to determine if the intervention is only efficacious in 

the biomarker enriched population.  Such a result would be expected if the 
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biomarker were an index of the mechanism which is targeted by an intervention, 

and in fact, the oncology literature is replete with examples of biomarker driven 

therapy.  In addition to benefitting biomarker positive patients, correlating efficacy 

with biomarker status is an important finding from an ethical perspective because 

it would prevent the treatment of biomarker negative patients with an intervention 

from which they will not benefit.  Therefore, we hypothesize that patients with 

elevated urinary angiotensinogen and renin could represent a subpopulation in 

which inhibitors of the renin-angiotensin system could attenuate the severity of 

AKI, whereas other patients without elevated urinary angiotensinogen and renin 

would not benefit from RAS blockade. 
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