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Abstract

An abstract of a dissertation on the subject of the discovery of novel biomarkers

of acute kidney injury by Joseph L Alge:

Background: Acute kidney injury is a cause of significant morbidity and mortality
in hospitalized patients. Prognostic biomarkers that predict at the time of
diagnosis which patients will develop severe AKI and its complications would
facilitate timely intervention and could lead to improved outcomes. The urinary

proteome is a logical source of candidate biomarkers of kidney injury.

Methods: Urine was collected from rodents and human subjects with AKI
secondary to diverse etiologies, including cardiac surgery, ischemic/hypoxic
injury, and nephrotoxicity. Shotgun proteomics was used to identify candidate
biomarkers in four separate discovery phase experiments. These candidates
were then verified in a larger cohort and case-control studies, in which they were

measured using ELISA and a multiplex, quantitative mass spectrometry assay.

Results: A total of 22 candidate prognostic biomarkers of AKI were identified by
shotgun proteomic analysis of urine from rodents and humans with AKI. Of these,
urinary angiotensinogen was the most promising. The prognostic predictive
power of urinary angiotensinogen was verified in a cohort of post-cardiac surgery
human subjects with AKI (n = 204), which found that it was a strong predictor of
progression from Acute Kidney Injury Network (AKIN) stage 1 AKI to the
composite endpoint AKIN stage 3 or death, having an area under the ROC curve

of 0.75, 95% CI [0.65, 0.85]. In the same cohort, urinary renin concentration had



an AUC of 0.7, 95% CI [0.57, 0.83] for the outcome. A classification tree model
found that the combination of these biomarkers could predict the outcome with a
positive predictive value of 80.4%. The quantitative mass spectrometry assay
was able to successfully measure 11 of the 22 candidate biomarkers, and using
this assay, the prognostic predictive power of urinary superoxide dismutase [Cu-
Zn], myoglobin was confirmed in a subset of the aforementioned cohort of post-
cardiac surgery AKI patients (n =156). SOD and myoglobin predicted progression
from AKIN stage 1 to AKIN stage 3 or death with an AUC of 0.76 and 0.77,
respectively. Urinary angiotensinogen was also included in the assay, and it had
an AUC of 0.74 for the outcome. The performance characteristics of these novel
biomarkers compared favorably with urinary liver-type fatty acid binding protein
(AUC = 0.69), a more established AKI biomarker which was also included in the

assay.
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Chapter 1: Introduction to Acute Kidney Injury Biomarkers



Acute Kidney Injury: Definition and Classification

Acute kidney injury (AKI) is a new term for an old problem. It was recognized by
ancient physicians as a decrease in urine output (oliguria) that was accompanied
by the classic signs and symptoms of anorexia, nausea, and vomiting.* Greek
and Roman physicians recognized that it could arise in a variety of settings
including crush injuries, serpent bites, and poisonings, and they understood that
death was imminent if a patient’s condition progressed to prolonged anuria.
Therefore, the broadest definition of acute kidney injury, that is an abrupt
reduction in renal function, has been recognized as a clinical syndrome since the
time of the birth of medicine. Of course, much has changed since then regarding
how we define this disease, and we now use more objective measures of renal
function such as serum creatinine (sCr) and blood urea nitrogen (BUN), which
are filtered at the glomerulus and accumulate in the blood when glomerular
filtration rate falls, although urine output is still a useful diagnostic and prognostic

indicator.?*

Despite the availability of these conventional AKI biomarkers, for decades of
modern medicine, there was not a consensus on the definition of AKI. In fact,
there was not even an accepted nomenclature and AKI has been known by other
names including acute renal failure and acute renal dysfunction. Lack of an
accepted definition resulted in a broad array of diagnostic criteria being used in
the literature, with the definition of AKI ranging from an increase in sCr >25%
from baseline, to an increase in sCr >2.0 mg/dL,, to the need for dialysis.® This
was recognized as a key barrier to progress in AKI research by the Acute
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Dialysis Quality Initiative Group in 2004, an international consensus workgroup,
which proposed the RIFLE classification system for acute renal failure. The
RIFLE acronym designates the different stages of acute renal failure according to
this classification system. They are: Risk of renal dysfunction, Injury to the
kidney, Failure of kidney function, Loss of kidney function, and End-stage renal
disease (ESRD).? Using RIFLE, patients are staged based upon changes in
serum Creatinine (sCr) and urine output. Furthermore, the staging system
includes the use of the widely accepted MDRD equation to calculate estimated
glomerular filtration rate (eGFR) and changes in eGFR, when a patient’s baseline
sCr is unknown. A summary of the RIFLE classification scheme is shown in

Table 1-1.

The RIFLE classification system was an important step toward improving the
quality of AKI research and the care of patients with this disease. Two salient
features of this system include the use of baseline characteristics and the
inclusion of outcomes in the classification scheme. The former allows for
accurate assessment of injury, including so-called “acute on chronic” kidney
disease, when a patient has AKI superimposed on preexisting chronic kidney
disease. The latter is helpful with regard to defining clinical end-points that can
be used in clinical trials. An important limitation of this system is that it does not

specify a time course for elevated sCr, although there is a recommendation for



Table 1-1. RIFLE Classification System of Acute Renal Failure®

Stage sCr and GFR Criteria Urine Output Criteria
0,
Risk 1 sCrof 1.5 fold (150%) or |eGFR UO <0.5ml/kg/h for more than 6 hr
>25%
o]
Injury 1 sCr of 2 fold (200%) or |eGFR UO <0.5mllkg/h for more than 12 hr
>50%
- 1 sCr of >3 fold (300%) or |eGFR .
Failure >75% or sCr >amg/di UO <0.3ml/kg/h for 24 hr or anuria for 12 hr
Loss Persistent ARF= complete loss of kidney function >4 weeks
ESRD Loss of kidney function >3 months

Patients are staged by both GFR and urine output criteria, and are designated as the most
severe stage reached by either criteria.

*Patients can be classified as Rifle-F if absolute sCr is >4.0 mg/dL with an acute increase of
20.5 mg/dL.

GFR, glomerular filtration rate; sCr. Serum creatinine; UO, urine output; ESRD, end stage
renal disease




urine output. Despite this limitation, RIFLE was widely accepted by the

nephrology community and continues to be frequently used in the literature.

In 2007, the Acute Kidney Injury Network, an international workgroup, published
a new definition and classification system, which made several important
changes to the RIFLE definitions (Table 1-2). First, this group proposed
changing the nomenclature of acute renal failure to acute kidney injury.® The
latter is a more inclusive term, representing the entire spectrum of acute renal

failure. The newly proposed definition of AKI was

“An abrupt (within 48 hours) reduction in kidney function currently
defined as an absolute increase in serum creatinine of more than or
equal to 0.3mg/dl (>26.4 umol/L), a percentage increase in serum
creatinine of more than or equal to 50% (1.5-fold from baseline), or a
reduction in urine output (documented oliguria of less than 0.5ml/kg
per hour for more than six hours).”®

The AKIN classification made several other modifications to the RIFLE definition
and staging system. The specification of a brief time window allows for the
clinical distinction of acute injury. Additionally, the lowering of the minimum
required increase in sCr to 0.3mg/dI reflects research which had demonstrated
that even small increases in sCr are associated with a higher risk of adverse
outcomes.®” Thus, the AKIN definition of AKI is intentionally a more sensitive
diagnostic tool than the RIFLE criteria, and its increased sensitivity compared to
RIFLE has been documented.?  Using the AKIN criteria, patients are still staged
according to the most severe changes in serum creatinine and urine output.
However, the AKIN criteria largely omit the outcome measures included in the

RIFLE classification system, although patients who receive renal replacement
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Table 1-2 . Acute Kidney Injury Network (AKIN) Classification System for AKI?

Stage | sCr Criteria Urine Output Criteria
1 1 sCr of 0.3mg/dl or 1.5-2 fold (150-200%) from UO <0.5ml/kg/h for more
baseline than 6 hr
UO <0.5ml/kg/h for more
- - 0,
2 1 sCr of 2-3 fold (200-300%) than 12 hr
3 1 sCr of >3 fold (>300%) or sCr >4.0mg/dl with acute UO <0.3ml/kg/h for 24 hr

increase of >0.5mg/dl or RRT

or anuria for 12 hr

sCr, serum creatinine; RRT, renal replacement therapy




therapy (RRT) are automatically considered AKIN Stage Ill. In summary, the
AKIN definition and classification system changed the terminology of acute renal
failure to acute kidney injury, added the element of time to the diagnostic criteria,
and lowered the diagnostic threshold of increased sCr in order to increase

sensitivity.

Finally, in 2012 the Kidney Disease Improving Global Outcomes (KDIGO)
consortium issued a revised definition of AKI which unifies the RIFLE and AKIN
classification systems. One of the major criticisms of the AKIN criteria has been
that the specified 48 hour time window is too short, and if applied it could result in
a substantial number of false negatives from patients whose sCr increases at an
atypically slow rate. Therefore, KDIGO proposed the minimum threshold for AKI
to be an increase in sCr 20.3 mg/dL over 48 hours or 250% from baseline over 1
week.® However, the KDIGO guideline was only released in 2012, and thus its

proposed changes to the definition of AKI have not had time to be studied.

The Etiology of Acute Kidney Injury

AKIl is one of the most common conditions seen in the hospital. Its commonness
is in part a reflection of its poly-etiological nature, with possible etiologies having
classically been grouped into three categories, pre-renal, intra-renal and post-
renal.’® Pre-renal AKI refers to a loss of glomerular function that is the result of
decreased renal perfusion, and by definition, it is reversible following correction
of renal perfusion.’® Common causes of pre-renal AKI include hypovolemia,
congestive heart failure, cardiogenic shock, and pharmacotherapy that adversely

alters renal hemodynamics (such as cyclosporine or NSAIDs).'®*? Post-renal
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AKI can be caused by anything that obstructs urine flow, at any level of the
urinary tract between the renal pelvis and the urethra.’® This obstruction causes
an increased pressure in Bowman’s space, which opposes glomerular filtration,
thereby impairing renal function. However, in a healthy person such an
obstruction must be bilateral to cause AKI, since one kidney can compensate for
the loss of the other. Nevertheless, post-renal AKI can occur, for example in
benign prostatic hypertrophy, retroperitoneal fibrosis, or neurogenic bladder

following spinal cord injury.*

In contrast to the relatively straightforward mechanisms underlying pre- and post-
renal AKI, intra-renal, or intrinsic, AKI is a complex, often multifactorial disease
process. Intrinsic AKI is the result of damage directly to the kidney parenchyma,
and can be subclassified based upon the site of injury (i.e. glomerular, tubular,
interstitial, or vascular), with the tubules being most commonly affected.'® The
most common causes of intra-renal AKI are ischemia and nephrotoxicity.*°
Because they are highly metabolically active yet exist in a hypoxic environment,
renal tubular epithelial cells are exquisitely sensitive to hypoxic injury.*® Thus,
anything that impairs renal perfusion can cause tubular injury. A logical
consequence is that ischemic-hypoxic tubular injury commonly occurs secondary
to pre-existing pre-renal AKI. It must also be noted that AKI is a common
complication of sepsis, and sepsis accounts for between 20 and 50% of AKI
cases.’*!® Sepsis drastically alters renal hemodynamics resulting in ischemic
injury, and the accompanying inflammatory response further exacerbates renal

injury.*® Nephrotoxic injury to the tubules can occur as a consequence of



exposure to exogenous toxins, such as certain pharmacological agents, including
the aminoglycosides and cisplatin.’® However, the most common cause of
nephrotoxic AKI is radiocontrast exposure, which accounts for approximately
10% of AKI cases in the intensive care unit.*®**> Nephrotoxicity can also be the
result of endogenous toxins, most commonly heme from hemoglobin, and
myoglobin, which are released following damage to erythrocytes and skeletal
myocytes, respectively. Therefore, intra-renal AKI is often seen in the settings of

malarial infection and rhabdomyolysis.*"*®

Finally, no discussion of the etiology of AKI would be complete without
mentioning it as a post-operative complication, as surgical causes account for
approximately one-third of AKI cases.** AKl is particularly common after cardiac
surgery, affecting about 20% of patients who undergo cardiac procedures.® Of
note, the cardiac surgery population is an ideal population in which to study AKI,
and especially AKI biomarkers given the predictable nature of the injury and the
ease of determining its timing and severity. Additionally, AKI after cardiac
surgery has a complex and multifactorial pathogenesis involving ischemia-
reperfusion injury, inflammation, and nephrotoxicity from lysed erythrocytes,
making it likely that studies performed in this population will be generalizable to

other etiologies of AKI.*
The Epidemiology of Acute Kidney Injury

AKIl is one of the most common diseases observed in hospitalized patients, and

its epidemiology has been extensively investigated.?® Although no large,



prospective multicenter studies have been conducted to accurately assess the
impact of community acquired acute kidney injury, retrospective observational
studies estimate that 1.0- 9.6% of hospitalized patients are admitted with AKI,

which accounts for approximately three-quarters of all AK| cases.”®

Community acquired AKI is usually pre-renal, secondary to volume depletion.?*#*
Consequently, it is associated with a lower mortality and a lesser risk of adverse
outcomes than hospital acquired AKI.>® In contrast, the burden of hospital-
acquired AKI is well documented. Estimates from single-center retrospective
studies are that 4.9 — 7.2% of patients admitted without AKI will develop AKI
during their hospital stay.>**> Complementary of this data are the results of two
large studies performed using administrative databases, which have reported
that 2.1 — 3.6% of all hospital discharges are associated with ICD-9 codes related
to AKI, although it should be noted that database studies are less accurate for
the identification of patients with mild AKI, and likely under-report AKI
diagnosis.?®?® Nevertheless, these studies have identified trends of increasing
incidence and decreasing mortality over the past 25 years.?®?’ Lastly, it should
be noted that the incidence of AKI is disproportionately high in the critically ill
population. Large multicenter epidemiologic studies estimate that the incidence
of severe AKI is 5.7-7.7%, with an associated mortality rate in excess of
50%.*?%3% However, it is important to note that studies which included patients
with less severe AKI, for example RIFLE risk or AKIN stage 1 as inclusion
criteria, have found a much higher incidence, ranging from 16.2%-35.8 and a

lower mortality rate of 24.2% -36.4%.%1%3
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AKI is associated with a number of adverse outcomes. As mentioned above, AKI
increases the risk of death, both over the short and long-term, and dialysis-
dependent AKI is an independent risk factor for in-hospital mortality.®’#2343°
Importantly, even mild AKI confers an increased risk of death.®” In addition to
mortality, AKI has been associated with an increased length of hospital stay and
greater medical costs.® Finally, it is important to note that the risk of adverse
outcomes, particularly mortality, increases proportionally with AKI severity, and

patients with severe AKI bear a disproportionate burden of these outcomes.®3%33

It has become increasingly apparent that AKI is causally linked with chronic
kidney disease and end-stage renal disease, two conditions of tremendous
importance to the health care economy in the United States.***® The risk of
accelerated renal function decline is greatest in those patients who already have
chronic kidney disease at the onset of AKI (so-called acute on chronic kidney
disease), and in these patients AKI has been called “a springboard for CKD
progression”.*®3° However, it is noteworthy that an episode of AKI appears to

predispose patients to ESRD, even in the absence of pre-existing CKD.*

Conceptual Framework of Acute Kidney Injury

The complex multifactorial, and multiphasic elements of acute kidney injury pose
particularly vexing problems to researchers hoping to uncover the molecular
determinants of the course of this disease. Recognizing these complexities,
experts have proposed two conceptual models of AKI that serve as useful
frameworks for approaching its study. The first model describes the progression

of cellular and molecular pathogenesis and pathobiology of AKI. The second

11



model describes the interrelationships of risk factors for AKI, renal damage, and
adverse outcomes. Both of these models provide important background
information pertinent to the study of AKI biomarkers and will be addressed

separately.

Cellular and Molecular Phases of Acute Kidney Injury

Sutton et al. described the progression of ischemic AKI through four distinct
phases, each one characterized by a different set of cellular and molecular
events (Figure 1-1).“° The first phase is “initiation”, during which the proximal
insult occurs when there is a decrease in renal blood flow leading to a decrease
in the glomerular filtration rate (GFR). This results in ATP depletion in the cells of
renal tubular epithelium and consequent alterations in the actin cytoskeleton, loss
of apical-basolateral polarity, and up-regulation of inflammatory mediators.****°
Cell death occurs by necrosis and apoptosis. Persistent hypoxia leads to the
“‘extension phase”, during which marked hemodynamic alterations occur due to
damage to the microvascular endothelium and there is a severe reduction in
perfusion to the corticomedullary junction and the outer medulla.®**° This phase
is also accompanied by a pronounced inflammatory response and continued
apoptosis and necrosis of tubular epithelial cells. During the extension phase the
glomerular filtration rate continues to fall. The next phase of AKl is
“‘maintenance”, during which GFR stabilizes at its nadir, and serum creatinine
plateaus.*®*° Important cellular processes occur during this phase as there is

proliferation and migration of epithelial cells to repopulate the denuded tubular

lumen.*® Strong evidence suggests a prominent role for surviving epithelial cells
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Figure 1-1. Clinical phases of acute kidney injury. This figure was taken from a
review on the molecular mechanisms and phases of ishemic AKI.(1) Four distinct
phase are described: initiation, extension, maintenance, and repair/recovery. GFR

glomerular filtration rate; CMJ, cortico-medullary junction; BBM, brush border
membrane
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in this process, although there is a small contribution from the hematopoietic
stem cells, and a role for kidney specific stem cells cannot be ruled out. 34142
Finally, during the “recovery” phase tubular epithelial cell polarity is
reestablished, is accompanied by the return of normal cellular and renal function,

and the repair process is complete.'3%°

Conceptual Model of Acute Kidney Injury

Murray et al. proposed a conceptual framework for understanding AKI which
begins with its antecedents (Figure 1-2).** Antecedents are conditions or events
which put a patient at risk of developing AKI, such as existing chronic kidney
disease, IV contrast exposure, or surgery. Obviously there is a connection
between these risk factors, particularly exposure to known precipitants of AKI,
and renal damage itself. This model points out the opportunity for scientists and
physicians to intervene and mitigate the risk of AKI in these patients. If severe
enough, renal damage leads to a detectable decrease in GFR, which can result
in kidney failure and death. Additionally, this model recognizes the abundance of
complications of acute kidney injury that can arise, such as metabolic acidosis,
hyperkalemia, volume overload, all of which can result in the need for acute
dialysis, which as has already been mentioned, is an independent risk factor for

mortality.

These illustrative models neatly demonstrate the need for prognostic biomarkers
that can quantify the severity of injury, predict the course of the disease, and
assess a patient’s risk of adverse outcomes. It is clear that surrogates of GFR

such as serum creatinine and urine output are inadequate for these purposes
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Figure 1-2. A conceptual framework of AKI. This model proposed by Murray
et al. identifies the progression of AKI through successive risk phases during
with the patient can develop adverse outcomes.*®
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because they change slowly with respect to the timing of the injury and they are
mechanistically unrelated to the progression of the disease at a cellular and
molecular level. Novel biomarkers of renal injury, such as neutrophil gelatinase-
associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), interleukin-18 (IL-
18), and liver-type fatty acid binding protein (L-FABP) have been identified.
These proteins have yielded valuable insight into the molecular underpinnings of
AKIl, and they have shown promise as early diagnostic indicators of AKI and
predictors of prognosis. It is to these novel AKI biomarkers that we turn our
attention to next.

Biomarkers of Acute Kidney Injury

Neutrophil gelatinase-associated lipocalin

Neutrophil gelatinase-associated lipocalin (NGAL) is a widely expressed 25 kDa
protein of the lipocalin family. Several excellent reviews have been published on
its role in renal disease, and the reader is referred to these for more in-depth
study.***® The known functions of NGAL primarily revolve around its ability to
bind catechol siderophores. Toll-like receptor signaling results in significant up-
regulation of NGAL gene expression and translation, and NGAL plays an
important role in the innate immune response where it acts as an iron-
sequestering bacteriostatic agent by binding bacterial iron-siderophore
complexes, thereby preventing their uptake by the pathogen.***® NGAL is also
implicated in iron trafficking in the kidney epithelium. During nephrogenesis, it is
secreted by the uteric bud and induces tubulogenesis in the metanephric mass,

and a key component of its function is to shuttle iron into the developing kidney
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epithelium.>® It appears that this function of NGAL depends upon it being loaded

with an iron-siderophore complex.>?

Following ischemic or nephrotoxic injury, intrarenal NGAL is dramatically up-
regulated at the transcript and protein levels.>*>* Elevated NGAL protein is
detectable in the urine as early as 3 hours after injury, and in vivo data have
suggested the thick ascending limb and the collecting duct as the sites of
intrarenal NGAL production, although proximal tubule cells secrete NGAL in vitro
in response to ATP depletion.**>**® Importantly, however, plasma NGAL also
increases after AKI, as a result of increased hepatic production, and NGAL is
filtered by the glomerulus and taken up by the proximal tubule in a megalin-
dependent manner.***®*" The plasma pool of NGAL protein appears to play an
important role in modulating the severity of AKI, as it has been demonstrated that
NGAL administered either i.v. or i.p. is delivered to the proximal tubule where it
exerts a renoprotective effect.®*® The effect of NGAL in the injured kidney is
dependent on its interaction with iron-loaded siderophore, and siderophore-free

NGAL (apo-NGAL) has no effect.*®

Both urine and plasma NGAL peak early after renal injury, within the first 6 hours,
and consequently NGAL has been extensively investigated as an early predictor
of AKI diagnosis (find review citation for this). The first study to evaluate the
predictive accuracy of NGAL for early diagnosis of AKI was performed in a
pediatric cardiac surgery cohort (n = 71) and found that urine NGAL measured at
2 hours post-operatively was a nearly perfect predictor of AKI (area under the

receiver operator characteristic curve of 0.998) and had an AUC of 1.0 at the 4
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hour post-operative time point.>® Subsequent prospective studies in children that
have evaluated the ability of urine and plasma NGAL to predict AKI after cardiac
surgery from an early time point have confirmed these findings, and almost
universally have reported high predictive power, with the calculated area under
the receiver operator curve >0.90 (Table 1-3).°°°? However, the TRIBE-AKI
Consortium reported a much lower predictive power in their multicenter
prospective study (n = 311).%® In this study, urine NGAL and plasma NGAL
predicted severe AKI with an area under the receiver operator characteristic
curve of 0.71 and 0.56, respectively, with more disappointing results for
prediction of mild AKI (defined as RIFLE-R).?*®* NGAL has also been
demonstrated to predict AKI after cardiac surgery in adults, although results have
been less impressive in this population, where reported AUCs range from 0.61 to
0.80, and the most definitive study to date, reported disappointing results. In a
prospective study of 1291 cardiac surgery patients, urine and plasma NGAL
measured at the time of ICU arrival only had areas under the receiver operator
characteristic curve of 0.67 and 0.70, respectively. Similar results have been
reported in studies of NGAL as a predictor of contrast-induced nephropathy, and
urine NGAL is currently being used to screen post-cardiac catheterization
patients and identify those as high risk of contrast-induced nephropathy as a
means of guiding enrollment in a clinical trial investigating early, intensive volume
expansion as a prophylactic for contrast-induced nephropathy.®*® In the
intensive care setting, both urine and plasma NGAL predict the future

development of AKI, and Cruz et al. reported that plasma NGAL predicts the
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need for renal replacement therapy with high accuracy (AUC = 0.82).°%% |t

should be noted that sepsis is a potential confounder in studies conducted on the
critically ill, however, because septic AKI patients have higher urine and plasma
NGAL than non-septic AKI patients, and animal models have demonstrated

marked up-regulation of NGAL in response to septicemia.’®°®

As can be noted from Table 1-3, there is a large degree of variability in the
results of the various studies that have been conducted to investigate the early
predictive power of NGAL for AKI. Much of this can be attributed to differences
in study design such as cross-sectional versus prospective design, timing of
NGAL measurement, correction for urine creatinine, and differences in the
definition the primary outcome of the study. We have tried to include as much
information about these differences as is reasonably possible. Nevertheless,
such variability makes it difficult to interpret the sum of the results. To address
these difficulties, the NGAL Meta-Analysis Group performed a systematic review
and meta-analysis which collated the data from 19 studies, many of which have
been mentioned.®® They found that the predictive power of urine and plasma
NGAL was similar, having areas under the summary ROC curve of 0.837 and
0.775. Importantly, it was noted that the predictive power of NGAL was highest
for contrast-induced nephropathy, then for AKI after cardiac surgery, and then for
AKI among the critically ill. Additionally, NGAL had a higher predictive power in
children (AUC = 0.93) than adults (AUC = 0.782). These differences are thought
to be attributed to the increased rates of comorbidities and heterogeneity in the

adult and critically ill populations.
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Few studies have been conducted to specifically evaluate the prognostic
predictive power of NGAL in patients with established AKI. Among patients with
AKI after cardiac surgery, plasma NGAL, but not urine NGAL, appears to predict
progression to a higher AKIN stage.®® In critically-ill patients, NGAL appears to
be a slightly better predictor of prognosis. Hall et al. reported that urine NGAL
had an area under the ROC curve of 0.71 for the composite outcome progression
to a higher AKIN stage or death, and it improved the predictive power of clinical
model for this outcome.” Others have found that both urine and plasma NGAL
predict AKI progression and the need for renal replacement therapy, although the

predictive power of plasma NGAL is better.®®

Kidney Injury Molecule-1 (KIM-1)

Kidney injury molecule-1 (KIM-1) is a 38.7 kDa transmembrane that contains
extracellular mucin and immunoglobulin domains.?! Basal expression of KIM-1 is
low in the normal kidney. However, it is upregulated following ischemia
reperfusion injury, and KIM-1 protein can be localized to proliferating epithelial
cells of the proximal tubule 48 hours after injury.®* Expression of KIM-1 has been
demonstrated to confer a phagocytic phenotype on cultured primary kidney cells
via its function as a phosphatidylserine receptor, which allows it to promote the
phagocytosis of apoptotic bodies and necrotic debris.®? Therefore, it has been
proposed that KIM-1 could play a role in renal recovery and tubular regeneration
following acute kidney injury. Importantly, the extracellular component of KIM-1 is

constitutively shed from the membrane in a matrix metalloproteinase dependent
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manner.®® While the functional importance of KIM-1 shedding is unclear, it is
ostensibly the mechanism underlying the increase in urinary KIM-1 observed
following renal ischemic or toxic injury.?*® The first observation that urinary KIM-
1 could be useful as an AKI biomarker was made by Han et al. who reported that
urinary KIM-1 was significantly increased in patients with established ATN
compared to patients with other types of renal failure, chronic kidney disease,

and healthy controls.?

KIM-1 has been extensively investigated as a diagnostic biomarker of AKI, and a
lateral flow immunochromatographic assay has been developed for rapid, point
of care detection of urinary KIM-1 (Table 1-4).2° Two early studies reported that
KIM-1 identified established AKI in the hospitalized population with high accuracy
(AUC = 0.93).”%%” However, these studies compared patients with severe AKI to
control groups that included healthy subjects, which likely resulted inflated the
predictive power of KIM-1. Accordingly, a large study of ICU patients by Endre et
al. found that KIM-1 measured at ICU admission had an AUC of 0.66 for
diagnosis of AKI on entry to the ICU.%® Studies of its usefulness as an early AKI
biomarker have produced mixed results with AUCs ranging from 0.64 to
0.83.748789.90 \while most of these studies have been small, single center
studies, the data from the TRIBE-AKI Consortium are more conclusive. They
recently reported that KIM-1 measured at the time of ICU arrival predicted severe

AKI in both children and adults undergoing cardiac surgery with an AUC of 0.64
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and 0.71, respectively.”® However, the investigators noted that these results

were not significant after adjustment for NGAL and IL-18.

Thus, urinary KIM-1 appears to have limited utility as an early diagnostic marker
of AKI, which is plausibly explained by the temporal relationship between renal
injury and KIM-1 elevation. In the TRIBE-AKI study KIM-1 did not peak until
post-operative day 3 after cardiac surgery in adults and day 2 in children, which
is in agreement with data from other studies, including animal models.”##>% This
would seem to implicate it during the later phases of AKI, and would suggest that
it may be a better prognostic biomarker. However, few properly controlled,
prospective studies have studies have evaluated KIM-1 and those that have
been conducted have reported modest prognostic predictive power.”*** Finally,
the ability of KIM-1 to discriminate between ATN and other renal diseases
suggests that it could be used to differentiate patients with transient, pre-renal
AKI from those with more severe, true AKI. This hypothesis is corroborated by a
recent study by Nejat et al., which found that urinary KIM-1 was elevated in

patients with sustained AKI compared to pre-renal AKI.%

Interleukin-18

Interleukin-18 (IL-18) is a 22 kDa pro-inflammatory cytokine that has been
implicated in many different disease processes. It is translated as a procytokine
and must be subsequently cleaved by caspase-1 in order to be activated. More
specifically, caspase-1 functions as part of a multiprotein complex called the

“inflammasome”.*® A central component of the inflammasome is the pyrin
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domain containing members of the NOD-like receptor (NLR) family of proteins, of
which are there are 14 different types.”® The NLRs, as their name implies,
recognize ligands which induce an inflammatory response. Such ligands are
numerous and quite diverse, but they can be broadly grouped into two classes:
pathogen-associated molecular patterns (PAMPs) and damage-associated
molecular patterns (DAMPs). The binding of these molecules to a NLR results in
the recruitment of scaffold proteins and proteolytic enzymes, and ultimately
caspase-1 activation, allowing caspase-1 to proteolytically activate IL-18 and IL-
18 prior to their secretion.®® Mature IL-18 induces NF-kB signaling through the
heterodimeric IL-18 receptor, and its proinflammatory effects are negatively
regulated by an endogenous inhibitor, IL-18 binding protein.?*® The
preponderance of data suggests that IL-18 contributes to renal injury during AKI.
The amount of mature IL-18 increases in the kidney following ischemia-
reperfusion injury, glycerol injection, and cisplatin-induced renal injury in a
caspase-1 dependent manner.””*® Disruption of the IL-18 signaling axis by 1)
knockout of NLRP3, a NOD-like receptor expressed in macrophages, 2)
caspase-1 knockout 3) pharmacologic inhibition of caspase-1, and 4)
pretreatment with an IL-18 neutralizing antibody have been demonstrated to
attenuate the severity of AKI.°"1% Of note, a study by Edelstein et al. found that
mouse proximal tubules express caspase-1 and secrete IL-18 in response to
hypoxia, although an immune cell source of IL-18 production during AKI cannot
be definitively ruled out.!®* The precise signals that drive activation of the

inflammasome and IL-18 production have not been fully characterized. However,
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possible stimulants include reactive oxygen species, ATP (released from necrotic

cells), and uric acid crystals (released from necrotic cells).?®:102103

Studies which have reported on the performance of IL-18 as an AKI biomarker
are shown in Table 1-5. A cross-sectional study by Parikh et al. was the first
demonstrate the potential of IL-18 as an AKI biomarker.’** This study found that
IL-18 was an excellent discriminator between patients with established acute
tubular necrosis (n = 14) and a diverse control group including healthy controls
(n = 11), prerenal azotemia (n = 8), urinary tract infection (n = 5), chronic kidney
disease (n =12), and post-renal transplant patients (n = 22), with an impressive
area under the receiver operator characteristic curve of 0.95.2°* A more recent,
larger study confirmed the ability of IL-18 to accurately identify established AKI."®
Urinary IL-18 has been investigated as an early predictor of AKI diagnosis in a
variety of settings. In children undergoing cardiac surgery, it appears to be a
moderate predictor of AKI at an early time point, with stronger predictive power
for more severe AKI.2%% |n comparison, two studies in adults undergoing
cardiac surgery have reported that IL-18 is not predictive of post-operative
AKLE1%7 However, a large prospective study by the TRIBE-AKI Consortium has
reported that IL-18 concentration at the time of ICU arrival (0-6 hours after the
initiation of bypass) is a modest predictor of mild AKI and has stronger predictive
power for severe AKI.”® Important discrepancies between these studies exist,
which could explain the contradictory results. These include sample size (studies

which have reported negative results were much smaller), the use of creatinine

corrected values versus uncorrected IL-18 concentration, and the timing of

27



(peyoauooun) yieap Jo abejs NIMY (NIMY)
) sisoube B e
€90 gL-n ] PPV J1ayBiy oy ucissaiboig (eL)eve MY pausigelsa N INpY sulleH
: (¥-3731)

(pajoeuoa) gL-In  YNSUO3 [eusl je ( Jusned-uj yn efple
€80 p JgL-n _ ol zoL voz d-U| InpY a2fpen
#9970 . AYZL ulgum

(pejosmoz)gL-qin dogseduyz SUI8SEq WO %,05< IS cLleoL fusBing seipied Inpy 5, S0Buen

: 8]28.4100Un
w0 p - " ivesoieq 1z I41ud (g01) LEL nol suepad s INGYSEN
650 (pa1osLi0oUN) (Y-37218) 1MW meN
8L0 gL-In uaissiwpe N3l (d-3741d) (Ler)Bee [pielRlli= ;1ed
IXY paysiqes3
§9°0 T (W-37414) DIV
vL'0 P [eALE MO 18 Ly Jo sujjeseq (09)BLZL KisbBing veipied ynpy o 4uRd
g woly s jo Bulignog
_vm”c (pe1osLi0ouN) (H-3741d) 1Y
zLo —n [erwe N 18 LYy Jo suleseq (es)iie  Mebing deipied duelped sp Yived
st woly 1ns jo Bulignog
080 MY ®ioiaq Y gf
8jo8u02) gL-1In abeys n Mal
€90 (p 181l IS 21048 14 b7 (1 15 NIMY) DAY (g9) LSt el soL IS
£55°0 do-ysod 4y pZ 1y g uium
aj2auo) gL-n fiaBing aeipsen yn asee|
550 (pei )8L-1l eALE NSl euleseq o ops<ins 02 00k S eIpJeD INPY 1219588
5.0 (pey2auooun) dogsod yz|  eu@seq WOy o,05< J0S 0z) L2 fusBing 2eIpieD JUEIPEY sz HuRd
gL-n
€40 (psyosuoaun) MY 2iojaq Iy 7 auleseq woy 905< 108 (zs)sel N2 NPy gpLWURd
gL-n
S6'0 (peyoauo3) gL-In  Ynsuo? |euss je NLY Paysiqes3 FL)zs suaneg-U| ynpy ariued
amng sisfleuy JusWRINSea awoong Aewld azis uopejndod Apmg Joyinyisid
204 2U) uonaipald Jo Bunwnp a|dwes
Japunealy  ujpasn afjeuy

1ayaewolg MY annsouboid pue snsoubeiq e se gL-] BunenjeAl saipnis 10 M3IA3Y "6-| a|qel

28



'5°p sdepano |0 9,56 9snedaq Juedyiubis £|jeonsnels jou aand ay) Japun Baly,

‘sisfjeue Ul sjonuo fyyesy papnjaul jeyiubisep Apnis [eucijoes-ssois,

£9'0 (peyosuosun)gL-qin  sisoubeip My 18 19y m_.w_ﬂmﬁu_m.m_whm ol (5¥) 0gE ﬁﬁ_wm,ﬂww_ H%M..MM_“__”W“ petdukon
anng sishjeuy JuaWwaInNseap awono fewid azlg uonejndod Apmg loyiny 1sii4
204 2y} uopa|pald Jo BujwyL adwes
Japun ealy ul pasn alAjeuy

panuipuod g-| 3|qeL

29



sample collection. In the more heterogenous ICU population, IL-18 predicts the
development of AKI within 24 hours after measurement.””'% However, it
must be noted that although Washburn et al. reported that higher peak urine IL-
18 concentration was associated with higher risk of developing AKI in the

pediatric ICU, true prediction of future AKI was not demonstrated in this study.*°

In addition to early diagnosis of AKI, IL-18 has also been investigated as a
prognostic biomarker of AKI. Some studies have reported that IL-18 is
associated with an increased risk of mortality among AKI patients. %81
However, few studies have robustly evaluated IL-18 as a predictor of adverse
outcomes, and often prognosis is evaluated during secondary analysis of studies
designed to test the ability of the biomarker to predict development of AKI at an
early time point in the disease. In such studies, the majority of patients do not
develop AKI and are therefore not at risk of developing adverse outcomes
associated with AKI. If included in an analysis of prediction of adverse
outcomes, these patients would skew the positive and negative predictive values
(PPV and NPV) of any biomarker cut-off selected, since PPV and NPV depend
upon prevalence. Therefore, estimates of the ability of IL-18 to predict adverse
outcomes are likely unreliable. In order to properly estimate prediction of
adverse outcomes, patients with IL-18 below a predetermined cut-off (signifying
diagnosis of AKI) should be excluded from the analysis. Another approach is to
evaluate the prognostic predictive performance of IL-18 at the time that diagnosis

of AKI is made based on serum creatinine or urine output criteria, although such

a time point is after the peak of IL-18 has occurred. Such a study conducted in
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an ICU cohort found that IL-18 predicted worsening of AKI (defined as
progression to a higher stage) or death with an AUC of 0.63, and a similar study
in cardiac surgery patients by Koyner et al. reported that IL-18 had an AUC of

0.63 for progression to a higher stage.”°

It is clear that IL-18 predicts severe AKI at an early time point after injury, it is a
much less powerful predictor of mild AKI. While it is noteworthy that even mild
AKI is associated with adverse events, including an increased risk of mortality, it
is well-documented that the risk of adverse outcomes associated with AKI
increases with the severity of injury.®"?? While the prognostic value of IL-18
appears to be diminished later in the course of the disease, IL-18 its ability to
identify severe AKI at an early time point could be used to identify patients at

high risk of adverse outcomes who could benefit from intervention.

Liver- type Fatty Acid Binding Protein (L-FABP)

Liver-type fatty acid binding protein (L-FABP) is expressed in the renal cortex,
and the resultant 14 kDa protein can be localized predominantly in the proximal
tubule.***? Importantly, while L-FABP can be found in the human kidney;, it is
not expressed in the murine kidney. Consequently, much of what is known about
the factors governing the renal production of L-FABP and its effects during acute
kidney injury has been discovered using a transgenic mouse model in which the
genomic DNA of the human L-FABP gene, including its promoter region, was
integrated into the mouse genome.***** Although studies using this transgenic
mouse have demonstrated that urinary L-FABP concentration is predictive of the

histologic severity of AKI induced by either renal ischemia reperfusion injury or
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cisplatin,*> L-FABP has been shown to play a renoprotective role in these animal
models of AKI.***!® The canonical function of L-FABP is to bind long chain and
very long chain fatty acids and promote their uptake and subsequent metabolism
by B-oxidation.'?**2> However, in the setting of renal ischemia reperfusion injury,
Yamamoto et al. showed a significant reduction the amount of pimonidazole
immunostaining, a marker of tissue hypoxia, in the outer medulla of the kidneys
of mice expressing human L-FABP compared to wild type controls, suggesting
an antioxidant role for L-FABP. Additionally, L-FABP binds to a number of lipid
species, and it has been postulated that it also binds to the lipid peroxidation
products generated during ischemia reperfusion injury and promotes their
redistributed from the cytosol to the tubular lumen when L-FABP is
secreted."® L-FABP gene expression is induced by hypoxia and urinary L-
FABP excretion is strongly correlated with ischemic time in transplanted
kidneys.'® This relationship is presumably driven by an HIF-1a response
element in the promoter region of L-FABP.**® PPAR-a is also a potent
upregulator of L-FABP gene expression, and this has been used in animal
models of AKI to attenuate renal injury.**"**® Therefore, PPAR-a agonists such
as fibrates represent an attractive therapeutic target in the prevention and
treatment of acute kidney injury, although two recent observational studies found

an association between fibrate use and acute kidney injury.**"

Similar to KIM-1, L-FABP is a highly accurate classifier of established AKI, even
in the heterogenouse ICU population, among whom it had an AUC of 0.80 (Table

1-6).”"1%% It has also shown promise as an early biomarker of AKI and has been
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evaluated in numerous studies in the cardiac surgery population. In the first such
study, Portilla et al. found that urinary L-FABP concentration at the 4 hour post-
operative time point predicted AKI (area under the receiver operator
characteristic curve of 0.81) in a cohort of 40 pediatric cardiac surgery patients.®
Three other studies of adult cardiac surgery patients seemed to confirm the
predictive power of L-FABP, with none reporting an AUC <0.76.**% The
results of these and other studies were included in a meta-analysis by
Susantitaphong et al., which found that L-FABP was a sensitive and specific
predictor for the early diagnosis of AKI (sensitivity and specificity of 74.5% and
77.6%, respectively).** However, this study only included a total of 7 prospective
cohort studies and noted that, while L-FABP is a promising AKI biomarker, there
is a paucity of high quality literature regarding the predictive performance of
urinary L-FABP. In light of this, the recent publication by the TRIBE-AKI
Consortium, which was not complete at the time of the aforementioned meta-
analysis, is disappointing. This study, which is a much larger, multicenter trial
than what had been previous published, found that L-FABP had an AUC of 0.71
and 0.66 in children and adults, respectively. In relation to NGAL, IL-18, and
KIM-1, all of which have been evaluated in the same cohort, L-FABP did not
appear to be useful in adult patients, although it was one of the better predictors
in children. In fact, the combination of IL-18 concentration at ICU arrival and L-
FABP concentration on day 2 had an AUC of 0.78 for predicting severe AKI in

the pediatric cohort.**®
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Few studies have been done investigating L-FABP in other settings. Nakamura
et al. reported that it was diagnostic of contrast-induced nephropathy at 1 day
post-exposure.’*® This same study also found that patients who developed CIN
had elevated baseline urinary L-FABP levels, and pre-procedure L-FABP
concentration was an independent predictor of CIN. A prospective study in ICU
patients found that urinary L-FABP concentration at ICU admission predicted the
development of AKI within one week (AUC = 0.70).” Finally, in a different study,
the same investigators found that L-FABP concentration at ICU admission was a
nearly perfect predictor of in-hospital mortality in patients with sepsis-associated
AKI.*¥" While these results are promising, the prognostic significance of L-FABP
in patients with established AKI has not been adequately addressed and should

be the focus of future research.
Perspectives on AKI Biomarker Research

Clearly novel AKI biomarkers have provided mechanistic insights into the
molecular processes underlying AKI. However, early enthusiasm regarding the
predictive power of these biomarkers has been dampened by the results of larger
prospective studies, particularly by the results of the TRIBE-AKI Consortium
study. Consequently, none of these biomarkers has supplanted serum creatinine
in clinical use, and it remains unclear if any will attain widespread clinical use in
the near future. Additionally, there is a significant gap in the amount and quality
of research that has been conducted on early markers of AKI and prognostic
prediction, yet the identification of high risk groups is clearly important, both

before and after AKI diagnosis is made based on conventional serum creatinine
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criteria. The latter seems especially important given the increasing awareness of
community-acquired AKI and the significant numbers of patients who present
with AKI on hospital admission. Therefore, novel renal injury biomarkers are

needed, particularly biomarkers with a strong prognostic significance.
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Chapter 2: Discovery Phase Proteomics Experiments
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Introduction
Acute kidney injury (AKI) is associated with a number of adverse outcomes.

Epidemiologic studies have reported that the risk of adverse outcomes is
proportional to the severity of AKI. ®3#4° Accurate identification of high risk
patients with severe renal injury early in the disease could augment the efficacy
of available interventions and improve patient outcomes. However, it is not
possible to estimate the severity of AKI at an early time point, because AKI
staging is based upon the magnitude of changes in serum creatinine and urine
output, surrogates of glomerular filtration rate that do not change until after renal
injury has occurred and only reach their peak or nadir late in the course of the
disease.?>*® Therefore, the recent KDIGO clinical guideline for AKI highlighted

the need for improved risk assessment for patients with established AKI.®

Biomarkers of AKI could be used to evaluate the severity of AKI at an early time
point in the disease as a guide for clinical decision-making. They could also play
a role in clinical trial design because biomarkers could be used to selectively
enrich the study population with patients who have severe renal injury and are
more likely to benefit from an experimental therapy, increasing the effect size of
the intervention and the statistical power of the study.****?* Many biomarkers
have been proposed as early markers of AKI, to detect of AKI prior to increases
in sCr. These include NGAL, KIM-1, IL-18, Cystatin-C, L-FABP.>* ©0. 84104, 143, 144
However, few studies have been performed to evaluate the prognostic value of
these biomarkers once AKI has been established by traditional criteria. The

results of two recent studies that evaluated NGAL, KIM-1 and IL-18 have
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demonstrated the suboptimal prognostic performance of these biomarkers.”®%°

The objective of the following work is to discover novel candidate prognostic

biomarkers of AKI.

Materials and Methods

Human Studies

Urine samples were obtained from a bank of samples collected by investigators
in the Southern Acute Kidney Injury Network (SAKINet). The SAKINet was
formed in 2007 under the direction of the candidate’s mentor, John Arthur, MD,
PhD. It includes investigators at the Medical University of South Carolina, Duke
University, George Washington University, University of Tennessee College of
Medicine in Chattanooga, and Vanderbilt University. Urine was collected post-
operatively from patients who had undergone cardiac surgery. Samples were
collected as early as possible after AKIN serum creatinine criteria were met, and
all were collected within the first 72 hours after surgery. Inclusion criteria were
surgery of the heart or ascending aorta and development of AKI within 3 days of
surgery. Subjects with baseline serum creatinine > 3.0 mg/dL were excluded.
Prior to urine collection informed consent was obtained in accordance with the
IRB-approved protocol at each institution. Samples were collected and stored
using a rigorous standard operating procedure. Most patients were catheterized
and urine was collected preferentially from the Foley tube or the urometer and
processed immediately. Samples were centrifuged at 1,000 x g for 10 min and
the supernatant was collected. A reversible serine and cysteine protease

inhibitor cocktail tablet (Roche, Complete-mini, EDTA-free) was added to the
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samples at a concentration of 1 tablet for 50 mL of urine, and samples were
stored at -80°C in polypropylene tubes that had been pre-washed with 100%
acetonitrile to minimize contamination of the samples with plastic polymer. For
analysis urine samples were thawed in a 37°C water bath and kept on ice

afterward.

Animal Studies

AKI was experimentally induced in rats (n = 6) and mice (n = 10), by glycerol
injection and renal ischemia reperfusion injury, respectively. 7.5 ml/kg of 50%
glycerol (in saline) was injected i.m. and rats were housed in metabolic cages for
24 hour urine collection. Renal ischemia reperfusion injury was performed in
mice by bilateral renal pedicle clamping using a non-traumatic vascular clamp
(85 g pressure; Roboz Surgical Instruments). Briefly, mice were anesthetized
with 3% isofluorane and given buprenorphine s.c. (0.05 — 0.1 mg/kg). Kidneys
were exposed using a ventral surgical approach and the clamps were applied.
Mice were kept on a heating pad and under a heat lamp to maintain body
temperature throughout the procedure. Ischemic time was 16 minutes and the
reperfusion of the kidney was visually documented. Afterward, mice were

housed in metabolic cages and urine was collected for 16 hours.

Proteomic Analysis

A 100 uL aliquot of urine obtained from each human and animal subject was
used for proteomic analysis. 100 pL of 0.2% Rapigest SF surfactant (Waters) in
100 mM ammonium bicarbonate was added to the samples to improve digestion

efficiency. Urine proteins were reduced by the addition of dithiothreitol (DDT;
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final concentration ) and heated to 60°C for 30 min. After cooling to room
temperature, proteins in the samples were alkylated with iodoacetamide (final
concentration of ) and incubated at room temperature in the dark for 30 min.
Samples were digested with trypsin overnight (10 pg added to each sample) at
37°C. The digestion was stopped by sample acidification via the addition of 750
ML of 0.1% formic acid to the samples (approximately 3 volumes). Each digested
sample was pre-fractionated by offline reversed phase solid phase extraction
(SPE) using Strata-X (Phenomenex; 30 mg/mL) SPE cartridges. The SPE
cartridge was activated and equilibrated with 1 mL of methanol and 0.1% formic
acid, respectively. The sample was then loaded onto the SPE cartridge and
serial elutions using increasing concentrations of acetonitrile in 0.1% formic acid
were performed. After elution, sample fractions were dried in a centrifugal
vacuum concentrator. For liquid chromatography tandem mass spectrometry,
samples were reconstituted in mobile phase A (98% water, 2% acetonitrile, 0.1%
formic acid), and each sample fraction was then individually analyzed using LC-
MS/MS using an Eksigent 2D+ nanoHPLC in-line with an AB SCIEX Triple ToF
5600 mass spectrometer. Samples were loaded onto a 1 or 2 cm Acclaim
PepMap 100 nanotrap column (Thermo Scientific; 100 um ID x 1 or 2 cm, C18, 5
um, 100 A). Sample fractions were then eluted from the nanotrap column using
a gradient of increasing percentage of mobile phase B (95% acetonitrile, 5%
water, 0.1% formic acid) and separated using an Acclaim PepMap 100 analytical
column (75 ym ID x 15 cm, C18, 3 ym, 100 A). Tandem mass spectrometry was

performed in ilnformation dependent acquisition using the following parameters:
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250 ms TOF MS accumulation time; 50 ms MS/MS accumulation time; 20 ions
monitored per cycle; total cycle time 1.3 s; 4 s dynamic exclusion time after one
occurrence; rolling collision energy. The scanning windows for the TOF-MS and

MS/MS were 300 — 1250 m/z and 55 — 2000 m/z, respectively.

The above proteomic methods describe the general framework used in the four
described experiments. However, there were minor differences between
experiments because the proteomic protocol was still in development at the time
that these experiments were performed. For example, the concentrations of
acetonitrile used in the Stata-X SPE elution series differed from experiment to
experiment. A typical elution series included eluents of 10%, 15%, 20%, 25%,
30%, 35%, 40%, 50%, and 60% acetonitrile in 0.1% formic acid. Additionally, in
some cases a 1 cm nanotrap was used for in-line sample separation, in other
cases a 2 cm nanotrap was used. Finally, the HPLC gradient used for in-lin
sample separation differed between experiments, but generally was a two-step,
continuous gradient increasing from 5% mobile phase B to 80% mobile phase B
over a period of 40 to 60 minutes. It is important to note that while these are
differences between the four proteomics experiments, all samples within an

experiment were treated in the same way.

Protein Identification and Quantification.

Acquired spectra (.wiff files) were converted to the MGF format using the AB
SCIEX converter (version 1.1 beta). MGF files from all the fractions of each
sample were merged and searched against the appropriate database using the

Mascot search engine with trypsin as the specified enzyme. For human studies
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this was the 2011_6 release of the Human UniProtKB/Swiss-Prot database
(20,127 entries) with addition of the common contaminants (112 entries).
Carbamidomethyl (C) was selected as a fixed modification, and oxidation (M) and
deamidation (NQ) were selected as variable modifications. Monoisotopic masses
were used, and the error tolerances were 10 ppm and 0.5 Da for peptides and
MS/MS fragments, respectively. Mascot search results were loaded into Scaffold
(Proteome Software, Inc), which used the Peptide Prophet and Protein Prophet
algorithms to validate peptide and protein identifications. The relative abundance
of identified proteins was determined using Scaffold quantitative values (a type of

normalized spectral count) of identified proteins.

Statistical Analysis

Within each experiment, differentially abundant proteins were identified using the
Wilcoxon Rank-Sum test, since it has been reported as a robust statistical test for
biomarker discovery studies with small sample sizes.*** Correction for multiple
comparisons was not used. Mean fold change between the two experimental
groups was calculated, and the MFC was plotted against the -logio(p-value), in

order to enhance selection of candidate biomarkers.

Results
Early AKI Study

In order to describe changes in urine protein abundance that occur early in the
course of AKI, the urinary proteome of patients who developed severe AKI
(defined as AKIN stage 3) after cardiac surgery (n=4) was compared to that of

patients who did not develop AKI of any grade (n=4). The average time of urine
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sample collection in was 9.6 hrs post-operatively, and at the time of sample
collection, two of the AKI patients did not have elevated serum creatinine (sCr)
meeting AKIN criteria for diagnosis of AKI. There were no statistically significant
differences between the two groups with respect to demographic variables, type
of surgery, use of intraoperative cardiopulmonary bypass, bypass time, pre-
operative/baseline sCr, sCr at the time of sample collection, and the time of
sample collection. A complete description of patient characteristics is shown in
Table 2-1. A total of 230 proteins were identified with no false identification
(calculated protein false discovery rate <1%). Of these 109 proteins were unique
to the AKI group (i.e. the protein was identified in 21 sample in this group, but not
identified in any sample from the other group); 27 proteins were unique to the No
AKI group (Figure 2.1a). However, no proteins were consistently observed in
one group but not detected in the other group (defined as identification of the
protein in =23 samples of one group, but 0 samples in the other group). Because
of its significance to experiments that will be described later, it is noteworthy that
angiotensinogen was detected in the urine of 2 of the 4 AKI patients, but none of
the patients without AKI. The two patients who did have detectable
angiotensinogen had already met diagnostic criteria for AKI based on the
magnitude of increased sCr that had already occurred at the time of sample
collection. Four proteins were identified which had P< 0.05: uromodulin, CD59
glycoprotein, kinninogen-1, and vesicular integral-membrane protein VIP36. The
distribution of mean fold change and p-value for the identified proteins is

presenting in Figure 2.1b. Because candidate biomarkers were selected using

44



Table 2-1 Characteristics of patients used in the discovery phase proteomics

studies comparing severe AKI to No AKI

n

Demographic Variables

Female®
Caucasian®
Age (yrs)°
Weight (kg)®

Sample Collection Time (hrs post-op)b
Operative Variables

CABG?

Valve Replacement®
CABG + Valve Replacement®
Other Surgery?®

Bypass®

Bypass Time (min)®
Serum Creatinine (mg/dL)

Pre-Op Value®

At Sample Collection”

Maximum Post-Op Value®

Outcomes

Days to Max sCr (from surgery)b

RRT?
Death?

No AKI
4

25% (1)
100% (4)
63.8+3.9

100.4 + 8.3
10.2+5.3

100% (4)
0% (0)
0% (0)
0% (0)
75% (3)

134.3+32.1

1.0+0.3
12+0.3
1.3+0.3

1.0+ 0.8
0% (0)
0% (0)

AKI
4

0% (0)
75% (3)
55.3 + 12.2
104.9 + 8.3
9.0+45

25% (1)
0% (0)
0% (0)
75% (3)
100% (4)
147.3+£76.2

15+0.3
19+0.5
48+1.9

3.0+£1.2
25% (1)
25% (1)

P

0.34
0.67
0.49

0.14
1
1
0.14
1
0.86

0.11
0.06
0.03

0.06
<0.01
0.06

®Percentage and n; "Mean + SD

Groups were compared using Fisher’'s Exact test for categorical variables and the
Mann-Whitney U test for continuous variables.
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Figure 2-1. Urinary proteomic analysis of patients who either developed
severe AKI after cardiac surgery or did not. Liquid chromatography
tandem mass spectrometry was used to identify and quantify urinary
proteomic changes during AKI. (A) Venn diagram showing the number of
identified proteins by group. Red represents the group with AKI; blue
represents the group without AKI. (B) Volcano plot shows the mean fold
change in protein abundance between the two groups versus the statistical
significance. Smaller p-values are larger due to the transformation. Data
points above the dotted line have P< 0.05.
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the combined data of this and three other proteomics experiments, the complete
dataset is presented in Appendix A.

Renal Replacement Therapy
In order to identify candidate biomarkers of severe AKI, urine samples from 12

patients who had undergone cardiac surgery and developed post-operative AKI
were analyzed by liquid chromatography tandem mass spectrometry. Six of
these patients developed severe AKI requiring renal replacement therapy (RRT);
six patients developed mild AKIN stage 1 AKI. There were no statistically
significant differences between the two groups with respect to demographic
variables, urine sample collection time, use of cardiopulmonary bypass, bypass
time, type of surgery, preoperative/baseline serum creatinine (sCr), and sCr at
the time of sample collection. A complete description of patient characteristics is

shown in Table 2-2.

A total of 343 proteins were identified with a false discovery rate of 1.9%. Of
these, 59 proteins were unique to the RRT group (i.e. they were identified in 21
patient in the RRT group but none of the patients in the No RRT group), and 5
proteins were unique to the No RRT group (Figure 2.2a). Twenty-six proteins
were identified as being differentially abundant between the two groups (P
<0.05). The distribution of mean fold change and P value for the identified
proteins is shown in the volcano plot (Figure 2.2b). Several candidate
biomarkers can be selected using the criteria of large mean fold change and low
P value. However, our objective was not to select candidate biomarkers using
data from a single proteomics, but to collate data from several such studies.

Therefore, the complete proteomics data from this experiment are presented in
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Table 2-2 Characteristics of patients used in the discovery phase proteomics studies
comparing severe AKI requiring RRT to mild AKI

No RRT RRT P
n 6 6
Demographic Variables
Female® 33% (2) 33% (2) 1
Caucasian® 100% (6) 100% (6) 1
Age (yrs) 63.8+7.9 725+17.1 0.29
Weight (kg) 75.9+40.2 85.3+37.5 0.33
Sample Collection Time (hrs post-op) 20.2+144 38.0+12.0 0.3
Operative Variables
CABG*® 50% (3) 33% (2) 1
Valve Replacement® 17% (1) 17% (1) 1
CABG + Valve Replacement® 33% (2) 17% 1) 1
Other Surgery?® 0% (0) 33% (2) 0.46
Bypass® 67% (4) 67% (4) 1
Bypass Time (min) 160.8 +67.0 165.0+88.2 1
Serum Creatinine (mg/dL)
Pre-Op Value 13.£04 14+0.3 0.76
At Sample Collection 19+04 26x0.6 0.37
Maximum Post-Op Value 21+05 42+14 0.006
Outcomes
Days to Max sCr (from surgery) 1.7+1.0 4824 0.02
RRT? 0% (0) 100% (6) <0.01
Death® 0% (0) 67% (4) 0.06

?Percentage and n; "Mean + SD

Groups were compared using Fisher's Exact test for categorical variables and the
Mann-Whitney U test for continuous variables.
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Figure 2-2. Urinary proteomic analysis of cardiac surgery patients who
either developed severe AKI requiring renal replacement therapy (RRT)
or mild AKI. Liquid chromatography tandem mass spectrometry was used to
identify and quantify urinary proteomic changes during AKI. (A) Venn diagram
showing the number of identified proteins by group. Red represents the group
that required RRT; blue represents the group that only developed mild, AKIN
stage 1 AKI. (B) Volcano plot shows the mean fold change in protein
abundance between the two groups versus the statistical significance.
Smaller p-values are larger due to the transformation. Data points above the
dotted line have P <0.05.
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Appendix A. The combined data from this and other proteomics experiments is
presented below. Nevertheless, it is worthwhile to mention the results of one
candidate biomarker, urinary angiotensinogen, at this point. Of all the identified
proteins in this experiment, it was the best discriminator based upon its large
mean fold change (9.67-fold elevated in the RRT group) and low p-value (p =
0.002). Urinary angiotensinogen was undetectable in the 4 of the 6 patients in
the No RRT group, and it discriminated with 100% accuracy between the two

groups.

Rat Glycerol Induced AKI Study

In order to identify candidate biomarkers of AKI secondary to nephrotoxic
causes, urine from rats (n = 3) in which AKI had been experimentally induced by
glycerol injection was compared to that of vehicle injected controls (n = 3). A
total of 259 proteins were identified with no false discoveries (calculated FDR
<1%). Of the identified proteins, 33 were unique to the No AKI group and 48
were unique to the AKI group (Figure 2-3). However, only 37 of these proteins
were consistently identified in the urine of the animals in AKI group (i.e. identified
in all three group members but none of the other group). These proteins are
shown in Table 2-3. Of note, of the 178 proteins shared between the groups,
100 had a P value = 0.1, the lowest possible p-value given the small sample size
of this experiment. Of note, angiotensinogen was 10-fold elevated in the rats
with AKI (P = 0.1), and it discriminated with 100% accuracy between the two
experimental groups. The complete list of identified proteins and group

comparisons is shown in Appendix A.
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Figure 2-3. Urinary proteomic analysis of rats with glycerol injection
induced AKI compared to controls. Liquid chromatography tandem mass
spectrometry was used to identify and quantify urinary proteomic changes
during AKI. (A) Venn diagram showing the number of identified proteins by
group. Red (B) Volcano plot shows the mean fold change in protein
abundance between the two groups versus the statistical significance.
Smaller p-values are larger due to the transformation. The dashed line
represents P=0.1.
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Table 2-3. Urinary proteins uniquely identified in rats

with and without AKI

Uniprot
Protein Name Acc. Num.
Proteins Uniquely Identified in the Urine of Rats with AKI
Fibrinogen alpha chain P06399
Protein NOV homolog Q90QZ0Q5
Creatine kinase M-type P00564
L-lactate dehydrogenase B chain P42123
Complement factor | Q9WUW3
Uteroglobin P17559
Cystatin-B P01041
Gastrotropin P80020
Hydroxyacid oxidase 2 Q07523
Myosin-4 Q29RW1
z(;(rj]l;?/potas&um—transportlng ATPase subunit P06685
Keratin, type Il cytoskeletal 2 epidermal Q61G02
Calreticulin P18418
Cartilage oligomeric matrix protein P35444
Alanine--glyoxylate aminotransferase 2, mitochondrial Q64565
Proteins Uniquely Identified in the Urine of Rats without AKI
Phosphotriesterase-related protein Q63530
Dipeptidyl peptidase 2 Q9EPB1
Pancreatic alpha-amylase P00689
Neprilysin P07861
Na(+)/H(+) exchange regulatory cofactor NHE-RF1 Q9JJ19
Meprin A subunit beta P28826
Endothelial cell-selective adhesion molecule Q6AYD4
Na(+)/H(+) exchange regulatory cofactor NHE-RF3 Q9JJ40
Ezrin P31977
Retinoid-inducible serine carboxypeptidase Q920A6
Glutamyl aminopeptidase P50123
Calbindin P0O7171
CD48 antigen P10252
Aquaporin-1 P29975
Lysosomal alpha-glucosidase Q6P7A9
Aflatoxin B1 aldehyde reductase member 3 P38918
Beta-microseminoprotein P97580
Neuroplastin P97546
Glutathione S-transferase alpha-1 P00502
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Table 2-3 continued

Uniprot
Protein Name Acc. Num.
Proteins Uniquely Identified in the Urine of Rats without AKI
Lysosomal acid phosphatase P20611
Protein FAM151A Q642A7
RT1 class | histocompatibility antigen, AA alpha chain P16391
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Mouse Renal Ischemia-Reperfusion Injury Induced AKI Study

To identify candidate biomarkers of AKI due to ischemic injury, urine from mice
that had been subjected to renal ischemia-reperfusion injury (n = 5) was
compared to that of sham operated controls (n = 5). This study identified 163
proteins (calculated FDR = 3.4%), of which 56 were differentially abundant
between the two experimental groups (P < 0.05). Of these, only nine proteins
were detected in the urine of all five mice with AKI but none of the sham operated
controls. Notably, angiotensinogen was one of the proteins identified only in the
urine of mice with AKI. These are displayed in Table 2-4, and the complete list of

protein identifications is shown in Appendix A.

Selection of Candidate Biomarkers

Candidate biomarkers were selected based upon the combined data from the
four proteomics experiments (Table 2-5). However, the experiments were not
given equal weight. Since our objective was to identify prognostic biomarkers,
we preferentially selected candidates based on the results of the RRT
experiment, which compared patients with severe AKI requiring RRT to those
with mild AKI. As mentioned above, angiotensinogen was the best discriminator
in this experiment. Additionally, although it did not reach statistical significance, it
was only observed in the urine of patients with AKI in the early AKI study.
Similarly, angiotensinogen was observed in all 5 mice with renal ischemia-
reperfusion injury, but it was not detected in any of the sham operated controls.

Finally, it appeared to be a good discriminator of rats with glycerol- induced AKI,
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Table 2-4. Urinary proteins uniquely identified in mice
with AKI

Uniprot
Protein Name Acc. Num.
Proteins Uniquely Identified in the Urine of Mice with AKI
Alpha-2-HS-glycoprotein P29699
Angiotensinogen P11859
Uteroglobin Q06318
Vitamin D-binding protein P21614
Plasminogen P20918
Polyubiquitin B POCG49
Gelsolin P13020
Transthyretin P0O7309
Carboxylesterase 1C P23953
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Figure 2-4. Urinary proteomic analysis of mice with renal ischemia
reperfusion injury induced AKI versus sham operated controls. Liquid
chromatography tandem mass spectrometry was used to identify and quantify
urinary proteomic changes during AKI. (A) Venn diagram shows the number of
identified proteins by group. Red represents the group with AKI; blue represents
the group without AKI. (B) Volcano plot shows the mean fold change in protein
abundance between the two groups versus the statistical significance. Smaller
p-values are larger due to the transformation. Data points above the dotted line
have p<0.05.
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being markedly elevated in all three rats with AKI compare to controls (P = 0.1).
Although the P value was >0.05, the lowest possible P-value for the Wilcoxon
Rank-Sum test when n = 6 is 0.1, and so this difference was considered
statistically significant. Figure 2-5 summarizes the angiotensinogen
measurements made in the four proteomics studies. Qualitatively,
angiotensinogen compared favorably with the well-established AKI biomarkers
NGAL, KIM-1, and L-FABP (Table 2-5), suggesting that it could have similar or
perhaps improved performance characteristics for the prediction of early AKI and

AKI severity.

Discussion
A total of 22 novel candidate AKI biomarkers were identified using the combined

results of four discovery phase proteomics experiments. A relative strength of
our study is the heterogeneity of the study groups. The two human studies
compared the urinary proteome of patients with early, severe AKI to that of
patients without AKI (Early AKI Study) and the proteome of patients with early,
severe AKI that eventually required renal replacement therapy (RRT) to that of
patients with mild AKI (RRT study). To complement these data, two studies of
different animal models of AKI were conducted, renal ischemia reperfusion injury
in mice and glycerol-induced AKIl in rats. The former has a similar mechanism to
AKI after cardiac surgery, whereas the latter is a model of rhabdomyolysis-
induced AKI. We hypothesized that we would have a greater probability of
identifying translatable biomarkers by collating the data from these four

experiments and by selecting proteins that discriminated between the groups of
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Figure 2-5. Point plots of urinary angiotensinogen abundance. The data
from the four previously described proteomics studies are displayed, showing
the relative abundance of angiotensinogen in each of the individual subjects of
the two experimental groups of each study. For graphical representation,
subjects in which angiotensinogen was not detected are represented as an
open circle on the x-axis. Statistical significance was determined with the
Wilcoxon Rank-Sum test. MFC, mean fold change; Div/0, angiotensinogen
was not detectable in any of the subjects of the control group.
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each experiment. In fact, we identified NGAL using this approach, which we
believe validates our data. It is important to acknowledge the limitations of
discovery phase proteomics experiments. Due to the small number of samples
and multiple statistical comparisons that are made, there is a high probability of
type | error and false discovery of candidate biomarkers. To mitigate this
probability, we used the non-parametric Wilcoxon Rank-Sum test for statistical
comparison because it has been demonstrated to have a lower type | error than
other tests.’® However we did not use an adjustment for multiple comparisons
such as the Bonferroni or Benjamini-Hochberg corrections, largely because the
studies were underpowered for such adjustments. Instead, we selected
biomarkers based on trends observed in the combined data of the four
experiments. Nevertheless, it is important to recognize that discovery proteomics
experiments are only the first phase of a multistep biomarker identification
workflow which has been proposed by Rifai et al (Figure 2-6).1*® Phases which
will need to be completed include qualification and verification, in which the
differential abundance of the candidates is confirmed using a more targeted
analytical approach, and verification, during which the biomarker is measured in
populations other than the one used in the discovery phase in order to evaluate
its specificity. In the final phase, validation, a clinical assay is developed and
rigorously characterized. These later phases will be addressed in subsequent
chapters, which describe the qualification and verification of angiotensinogen, the

most promising candidate biomarker that we identified.

61



Numbers Numbers
of analytes  of samples

2
g3
.g g 1,0008 108
5 g
[ 30-100 108
2
£ i
§. 108 1008
§ {
K]
4-10 Many 1,000s

Kate Ris

Figure 2-6. Paradigm for understanding the biomarker discovery process.**® Four
distinct phases are described: discovery, qualification, verification, and validation. In
each subsequent phase, the number of proteins being measured (analytes) decreases
and the number of biological samples being evaluated increases. There is also a shift
from low throughput methodologies to more high throughput, targeted approaches. Rifai
et al. Protein biomarker discovery and validation: the long and uncertain path to clinical
utility. Nature Biotechnol. 2006 Aug; 24(8):971-83.
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Chapter 3: Qualification of Urinary Angiotensinogen as a Prognostic
Biomarker of Acute Kidney Injury After Cardiac Surgery
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Introduction

Our previous study using urinary proteomic analysis identified a number of
candidate prognostic biomarkers of acute kidney injury (AKI). The most
promising of these was urinary angiotensinogen. Collated data from the four
proteomic experiments showed that the relative abundance of urinary
angiotensinogen was increased in every experimental state of each of the
studies (see Table 2-4 and Figure 2-5) to a greater degree than other candidates,
as determined by the mean fold change, and in 3 of the 4 experiments statistical
significance was met. Furthermore, the significance of elevated urinary
angiotensinogen is intriguing from a mechanistic standpoint. Angiotensinogen is
the principal substrate of the renin-angiotensin system (RAS), a hormonal
cascade that has pleiotropic effects in the kidney, including the regulation of
hemodynamics, sodium reabsorption, aquaresis, cellular proliferation and
apoptosis, fibrosis, and inflammation.**” Urinary angiotensinogen concentration
is thought to reflect the level of activation of the intrarenal RAS.**® Thus, from a

pathobiologic point of view, angiotensinogen is a logical prognostic biomarker.

Materials and Methods

Patients and Urine Samples

Urine samples were selected from those banked by the Souther Acute Kidney
Injury Network (SAKINet; see Chapter 2) in order to fit the criteria described
below. Patients had undergone cardiac surgery, and urine samples were

collected at the time of AKI diagnosis according to AKIN serum creatinine (sCr)
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criteria.®> Inclusion criteria were consent by the patient or appropriate surrogate,
surgery of the heart or ascending aorta, and development of AKI (defined by the
AKIN sCr criteria) within 2 days of surgery. Only subjects who had collection of
urine within 48 hours after surgery were used in order to conform to the AKIN
staging criteria and to attempt to eliminate confounding effects of events that
were not directly related to the cardiac surgery. The only exclusion criterion was
a baseline sCr > 3 mg/dL. A total of 97 patients were included in this study.
Urine samples from 10 of the patients used in this study were also used in the
discovery phase proteomic analysis described in Chapter 2. Of the 97 patients
enrolled, 79 were classified as AKIN stage 1 at the time of urine sample

collection.

Angiotensinogen ELISA

The Human Total Angiotensinogen Assay Kit (Immuno-Biological Laboratories
Co., Ltd.), a solid phase sandwich ELISA, was used according the
manufacturer’s protocol to measure urinary angiotensinogen. Urine samples
were diluted 1:8 in enzyme immunoassay (EIA) buffer provided by the
manufacturer. One hundred pL of diluted sample was added to the appropriate
well and incubated for 60 min at 37°C. The plate was then washed 7 times by
pipetting 250 uL of the provided wash buffer into each well using a multichannel,
repeating pipet. After drying the plate, 100 pL of 30x diluted HRP-conjugated
anti-angiotensinogen antibody was added to each well and incubated for 30
minutes at 37°C. The plate was washed 9 times as before and dried. 100 uL of

chromogen (TMB) was added to each well, and the plate was incubated for 30
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min in the dark at room temperature. One hundred pL of stop solution was added
to each well, and the absorbance was measured at 450 nm using a SpectraMAX
340PC 96-well plate reader. The linear range of the assay is 0.31 to 30 ng/mL.
Intra- and inter-assay variability (coefficient of variation) were calculated by
measuring the standards and three selected biological samples in quadruplicate
once, and in duplicate on all remaining plates. Values for intra- and interassay
variability were 2.4% and 9.9%, respectively. Data were analyzed using Softmax
Pro3.1.2. Samples whose values were above the upper limit of quantification for
the assay were diluted 1:10 in EIA buffer and re-run on a separate plate. If the
value remained above the limit of quantification, a concentration of 20 ng/mL

assigned to that sample.

Urine Creatinine Determination.

Urine creatinine was used to normalize the urine angiotensinogen concentration
to account for biological variability in the concentration of urine. This is
accordance with the findings of Ralib et al. who reported that creatinine
correction was appropriate and increased the prognostic predictive value of urine
biomarkers of AKI.**® Values were reported as the ratio of angiotensinogen in
ng/ml to creatinine in mg/ml (UANCR, ng/mg). Urine creatinine was measured
using the Jaffe assay. Three puL of sample was combined with 100 yL of 1%
picric acid (Sigma-Aldrich), 100 yL of 0.75M NaOH (Genomic Solutions), and 300
uL distilled deionized H,O. Samples were incubated at room temperature for 15
min and absorbance at 490 nm was measured using a SpectraMAX 340PC 96-

well plate reader. Data were analyzed using Softmax Pro 3.1.2.
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Outcomes

The primary outcome was worsening of AKI, defined as progression to a higher
AKIN stage after the time of sample collection. Secondary outcomes were
progression to AKIN stage 3, the need for renal replacement therapy (RRT)
within 10 days of sample collection, progression to AKIN stage 2 or 3,
progression to AKIN stage 3 or death, RRT or death, and discharge >7 days from
the time of sample collection or in-hospital mortality. Outcomes were tested using
the entire cohort and in a subset of patients classified as AKIN stage 1 at the

time of sample collection.

Statistical Analysis

Count data were analyzed using the x*or Fisher’s exact test as appropriate.
Continuous variables were analyzed using the Student’s t test or Mann Whitney
U test when comparing two groups. ANOVA or Kruskal-Wallis ANOVA on Ranks
test and the post- hoc Dunn’s test for pairwise comparison were used to evaluate
continuous variables when more than two groups were compared. Odds ratios
(OR) were used to test the association of uUANCR with selected outcomes.
Patients were stratified by uAnCR into quartiles, the effect of UANCR on the risk
of developing an outcome was tested by calculating the OR of the upper and
lower quartiles and estimating the 95% confidence interval of the OR. Receiver
operator characteristic curves were constructed to determine the predictive
power of UANCR. The area under the ROC curve (AUC) was used as an estimate
of an overall accuracy of the biomarker. An AUC of 1.0 represents 100%

accuracy, whereas an AUC of 0.5 indicates 50% accuracy, which is no better
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than random chance. Univariate ROC curves were considered statistically
significant if the AUC differed from 0.5, as determined by the z-test. Optimal cut-
offs were determined by selecting the data point that minimized the geometric
distance from 100% sensitivity and 100% specificity on the ROC curve.**
Additionally, cut-offs that maximized the positive likelihood ratio and minimized
the negative likelihood ratio were reported since they could be useful in assigning
high or low risk of adverse outcomes to a patient. Likelihood ratios of positive and
negative predictive value were used since they are insensitive to changes in
prevalence (unlike PPV and NPV) and can be used to infer post-test probability.
Kaplan-Meier curves were used to visualize the relationship between uAnCR and
length of stay. Patients who died were censored. The log-rank test was used to
compare the curves, and the Holm-Sidak test was used for post-hoc pairwise
comparison. Category free net reclassification improvement was used to
determine if addition of uUANCR to a multivariate logistic regression model for
prediction of risk increased the ability of the model to predict worsening of AKI.
First, a multiple logistic regression model (reference model) was created using
the variables percent change in serum creatinine from baseline and Cleveland
Score, a perioperative risk score that has been demonstrated to predict AKI
outcomes after cardiac surgery.®" **? Then, a new model was created which
included uAnCR, in addition to these two variables. Each patient’s probability
(risk) of experiencing worsening of AKI after sample collection was calculated
with both models. The category free net reclassification index was calculated as

previously described, and was used to quantify the improved prognostic
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predictive power gained by including uAnCR in the model.*** *** Statistical tests

were performed in either Matlab or SigmaPlot.

Results

We measured urinary angiotensinogen by ELISA and verified its ability to predict
outcomes in patients who had developed AKI after cardiac surgery (n= 97).
These patients were divided into three groups by maximum AKIN stage: stage 1
(n=159), stage 2 (n= 19), and stage 3 (n= 19). Of these, 79 patients (stage 1 n=
59, stage 2 n = 10, and stage 3 n = 10) were classified as AKIN stage 1 (i.e. had
less than a doubling of serum creatinine) at the time of urine sample collection.
There were no statistically significant differences among the groups with respect
to the following potential confounders: gender, race, age, use of intraoperative
bypass, bypass time, pre-operative sCr, and type of surgery (Table 3-1). Since
our primary objective was to identify a prognostic biomarker among patients with
mild AKI, we performed a two analyses, one using the entire cohort and a second
subset analysis using only patients who had not progressed beyond AKIN stage

1 at the time of sample collection (n= 79).

Urinary Angiotensinogen Concentration and AKI Severity

Among all patients who had developed AKI of any stage at the time of urine
sample collection, urinary angiotensinogen corrected for creatinine (UANCR; ng
angiotensinogen / mg creatinine) was correlated with both maximum sCr (r=0.49;
p< 0.001) and maximum percent change in sCr (r= 0.29; p= 0.01), and uUANCR

increased with AKI severity (as determined by maximum AKIN stage) in both the
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whole cohort and the subset of patients classified as AKIN stage 1 at collection
(Table 3-1; Figure 3-1). Post-hoc pair-wise comparison revealed a significant
difference between the patients who developed AKIN stage 3 and those who

reached a maximum of stage 1.

Urinary Angiotensinogen and Adverse Outcomes

We evaluated the ability of angiotensinogen to predict the primary outcome of
worsening of AKI (defined as progression to a higher AKIN stage). Comparing
patients in the top quartile of UANCR to those in the bottom quatrtile, the odds
ratio for worsening of AKI was 5.0 (95% CI 1.16-21.46) in the whole cohort and
4.64 (95% CI1 1.02-21.0) in the subset of patients who were classified as AKIN
stage 1 at collection. Several secondary outcomes were also evaluated,
including AKIN stage 3, the need for renal replacement therapy (RRT) within 10
days, and the composite outcomes of development of AKIN stage 2 or 3, AKIN
stage 3 or death, and RRT or death. Ingeneral, patients with higher uUAnCR were
at increased risk of these outcomes (Table 3-2). Receiver operator characteristic
(ROC) curve analysis found that uUANCR was predictive of worsening AKI in both
the whole cohort (AUC= 0.70) and in the subset classified as AKIN stage 1 at
collection (AUC=0.71). It also predicted the other tested outcomes, with the
exception of RRT in the subset of patients classified as AKIN stage 1 at
collection (Figures 3-2, 3-3, and 3-4). While the ROC curve for RRT prediction in

these patients was not statistically significant (p= 0.1), it is likely that it was
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Figure 3-1. uAnCR increases with AKI severity. Box and whisker plots showing the
distribution of UANCR by group in patients who developed AKI after cardiac surgery. (A)
Among patients who had AKI of any AKIN stage at the time of sample collection (n = 97), and
(B) among the subset of patients who were classified as AKIN stage 1 at the time of sample
collection (n = 79), uAnCr increased in a graded manner with AKI severity. Box plots show
the median (solid line), 25" and 75" percentiles. Error bars represent the 5" and 95"
percentiles. AKIN stage groups were compared using the Kruskal-Wallis test (p-value shown
in bottom right) and post-hoc Dunn'’s test for pairwise comparison. *, p< 0.05 when compared
to AKIN stage 1 group
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Figure 3-2. uANnCR Predicts Worsening of AKI. Receiver operator characteristic (ROC)
curves demonstrate the ability of uANCR to predict worsening of AKI after sample collection
among (A) patients who were any stage AKI at the time of collection and (B) the subset of
patients who were classified as AKIN stage 1 at collection. Worsening of AKI was defined as
progression to a higher AKIN stage. A perfect biomarker would have an area under the ROC
curve (AUC) of 1, whereas random chance has an AUC of 0.5. The ROC curve was
considered statistically significant if the AUC differed from 0.5.
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Figure 3-3. Receiver operator characteristic (ROC) curves showing the
predictive power of uAnCR for multiple adverse outcomes in patients
who developed AKI after cardiac surgery. The entire cohort (n = 97) was
used in these analyses.
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Figure 3-4. Receiver operator characteristic (ROC) curves showing the predictive
power of uANCR for multiple adverse outcomes in patients who developed AKI after
cardiac surgery. Only the subset of patients who were classified as AKIN stage 1 at the
time of sample collection were included in these analyses (n = 79). The outcome AKIN
stage 2 or 3 is not reported here because it was previously reported as worsening of AKI in
Figure 3-2.
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under powered since only eight patients required RRT in this group Notably, the
predictive power for most outcomes among those patients classified as AKIN
stage 1 at collection appeared to be slightly augmented in comparison to the
analysis including the entire cohort. In addition to the prediction of the renal and
mortality outcomes, we noted a relationship between uAnCR and length of
hospital stay. This relationship is visualized in survival curves plotting the time
todischarge (defined as days after sample collection) of patients in the upper,
middle or lower tertiles of UANCR. Among all AKI patients and in the subset of
patients classified as AKIN stage 1 at the time of collection, those patients with
higher uUANCR concentrations had longer hospital stays (Figures 3-5a and 3-5b).
ROC curve analysis indicated that UANCR was predictive of longer length of stay
defined as discharge >7 days from the time of sample collection or death <7 days
from collection in both the whole cohort (Figures 3-3) and in the subset of
patients who were classified as AKIN stage 1 at collection (Figure 3-4). Tables 3-
3 and 3-4 summarize the performance characteristics of UANCR as a predictor of
the tested outcomes in patients who had AKlof any stage at the time of sample
collection and those who had not progressed beyond AKIN stage 1 at the time of

sample collection, respectively.

Net Reclassification Improvement

We determined the ability of uUANCR to improve the prediction of worsening AKI
of a clinical risk model. The clinical model was a multivariate logistic regression

model consisting of the percent change in sCr from baseline that had already
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Figure 3-5. Survival curves showing the association of increased uAnCR and
increased length of stay in cardiac surgery patients with post-operative AKI.
Patients were stratified into tertiles by uANCR. Kaplan-Meier survival curves show
that (A) in patients with any stage AKI at the time of sample collection ( n = 97), and
(B) in the subset of patients classified as AKIN stage 1 at collection, patients with
higher uANCR had increased length of stay (defined as days to discharge from the
time of sample collection. The log-rank test was used to determine if the survival
curves differed statistically (p-value shown), and the Holm-Sidak test was used for
post-hoc pairwise comparison. *, p< 0.05 compared to Low UANCR group
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occurred at the time of sample collection and the patient’s Cleveland Clinic score, a
perioperative risk score that predicts AKI severity after cardiac surgery.®® The ability of
UANCR to improve the prediction by the clinical model was determined in both the entire
cohort and in the subset of patients classified as AKIN stage 1 at the time of urine
collection. When uAnCR was added to the clinical model, we found that it predicted
worsening of AKI independently of the percent change in sCr and the Cleveland Clinic
score (p= 0.02). Category free net reclassification improvement (cfNRI) was used to
capture the added benefit of including uUANCR in the model. cfNRI compares each
patient’s calculated risk for an outcome using a reference model to a new model

(reference model plus UANCR). Addition of uAnCR to the clinical model improved
the ability to predict a patient’s risk of experiencing worsening of AKI in both the
entire cohort and the subset of patients who were classified as AKIN stage 1
(cfNRI= 0.457 and 0.428, respectively). To visualize the improvement in
prediction, we constructed a risk assessment plot, as proposed by Pickering and
Endre.” This plot compares the sensitivity and 1-specificity of the reference and
new models across the spectrum of calculated risk for each model. Figure 3-6a
and 3-6b show that, in both the entire cohort and in the subset, the addition of
UANCR into the model resulted in patients who met the outcome (events) having
a greater calculated risk, and patients who did not meet the outcome (nonevents)
had a lower calculated risk. Therefore, both sensitivity and specificity were

improved by including uAnCR in the prediction model.

81



aa
e

at Y.
e || S e
EM HorevesisRutmonce LA \I:;.‘ | Honrearia Ralermss
Faa ROFEE RIS .EC-I o 1 hrw

L) a2 \h ‘1. ‘

0 n 0a nE [T 1
Camudated Mok

Figure 3-6. Risk assessment plots showing the improved prediction of worsening
AKIl when uANnCR is included in the model. Results from both (A) the entire cohort and
(B) the subset of patients who were classified as AKIN stage 1 at the time of sample
collection are shown. Of 97 patients in the whole cohort (A), 39 patients met the outcome
worsening of AKI after sample collection, whereas in the subset analysis, 20 patients met
the outcome. Two multivariate logistic regression models were created to predict risk of
worsening of AKI after sample collection. The first model (reference) used percent change
in sCr from baseline and Cleveland Clinic score created by Thakar et al. The second
model included these variables plus uAnCR. Each patient’s probability (i.e., risk) of
meeting the outcome worsening of AKI was calculated with both models. The sensitivity
(proportion of events with a calculated risk equal to or above the defined threshold) and 1-
specificity (proportion of nonevents with a calculated risk below the defined threshold) was
calculated across all possible unique thresholds using both models. uAnCr, urine
angiotensinogen/creatinine ratio
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Discussion

The urinary angiotensinogen/creatinine ratio (UANCR) was elevated in patients
who developed more severe AKI. Elevated uANCR was associated with
worsening of AKI, independent of changes in sCr and Cleveland Clinic score,
and it was also associated with several secondary outcomes. The prognostic
predictive power of uUANCR was improved when only patients who were classified
as AKIN stage 1 at the time of sample collection were used in the analysis,
indicating that angiotensinogen could be used to predict adverse outcomes
among patients who have not yet developed severe AKI as measured by serum
creatinine. Our data suggest that angiotensinogen could be used at the time of
AKI diagnosis to assess the risk of adverse outcomes. This risk assessment
could lead to improved outcomes by identifying high risk patients in need of
therapeutic intervention, as was highlighted in the KDIGO Clinical Practice
Guideline for Acute Kidney Injury.® The guidelines suggest several interventions
in patients with stage 2 and 3 AKI that are not recommended for patients with
stage 1 AKI, including checking for drug dosing, considering renal replacement
therapy, and considering ICU admission. Elevation in uUAnCR could suggest a
population of patients with stage 1 AKI who are likely to continue to worsen and
could benefit from more intensive intervention. While we did not directly compare
the prognostic predictive power of angiotensinogen to that of other biomarkers,
our results compare favorably with what has been reported in the literature for
previously described AKI biomarkers. In a cohort of critically ill patients with AKI,

Hall et al. reported unadjusted AUCs of 0.71, 0.64, and 0.63 for the prediction of
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the composite outcome of worsening of AKI or death for urine NGAL, KIM-1 and
IL-18, respectively.”® In patients who developed AKI after cardiac surgery,
Koyner et al. recently reported unadjusted AUCs of 0.58, 0.63 and 0.74 for urine
NGAL, urine IL-18, and plasma NGAL, respectively, for the outcome of
worsening of AKI.%2® We found that uAnCR predicted this outcome with an AUC
of 0.7 in a similar cohort of patients, and we confirmed that it predicted worsening
of AKI in a subset of patients who were classified as AKIN stage 1 at collection
(AUC = 0.71). Thus, uUANnCR, alone or in combination with other biomarkers

could improve risk classification models in these patients.

The results of the current study are limited by the heterogeneous etiologic nature
of AKI (see the discussion on AKI etiology in Chapter 1), which was not taken
into account in our study design. This study was performed in post-operative
cardiac surgery patients because both the timing and the severity of renal injury
are readily determined in these patients, making them an ideal population for AKI
biomarker research. Additionally, the objective of this study was to confirm our
findings from proteomic analysis (i.e. qualification of angiotensinogen). However,
it is plausible that the prognostic significance of urinary angiotensinogen
concentration as an AKI biomarker could vary with the underlying etiology.
Therefore, an important next step is verification of angiotensinogen as an AKI
biomarker, during which we will attempt to confirm its association with adverse
outcomes in AKI secondary to causes other than cardiac surgery. This is

addressed in Chapter 4, where a case-control study is described in which the
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prognostic predictive power of urinary angiotensinogen was tested in a critically

ill, non-surgical population.
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Chapter 4: Qualification of Urinary Angiotensinogen as a Prognostic
Biomarker of AKI Secondary to Non-Surgical Causes
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Introduction

Discovery phase proteomic analysis identified urinary angiotensinogen as a
promising AKI biomarker, and it was subsequently qualified in a retrospective
cohort study designed to test its ability to predict adverse outcomes among post
cardiac surgery patients with established AKI. This study confirmed that elevated
urinary angiotensinogen is associated with more severe AKI and increased risk
of adverse outcomes such as worsening of AKI, the need for renal replacement
therapy, and increased length of hospital stay. However, as has been discussed
in Chapter 1, AKI can be the result of a number of different precipitating factors,
and it is likely that the performance characteristics of AKI biomarkers vary with
the underlying etiology. For this reason, an important step in evaluating novel
AKI biomarkers is verification of their predictive power in patients with AKI

secondary to diverse etiologies.

The critically ill are the ideal population in which to test the effect of AKI etiology
on biomarker performance, because of the heterogeneity of the causes of AKI
and its associated comorbidities in these patients. Common causes of AKl in the
ICU population include sepsis, cardiac disease, liver disease, prolonged and
unresolved pre-renal factors such as hypovolemia and hemorrhage, cardiogenic
shock, radiocontrast, and rhabdomyolysis.****> The diversity of the underlying
molecular mechanisms of these etiologies present a unique challenge to
biomarker studies, and the heterogeneity of the ICU population tends to
decrease the performance of AKI biomarkers compared to studies performed in

cardiac surgery patients. However this population also offers unique insight
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because biomarkers which are correlated with AKI severity in this population are
more likely to be mechanistically involved in AKI pathobiology on a fundamental

level.

Experimental Design

In order to verify angiotensinogen as an AKI biomarker, a retrospective case-
control study was designed to evaluate the prognostic predictive power of urinary
angiotensinogen in a population of critically ill, non-surgical patients with AKI.
The composite outcome of the need for renal replacement therapy (RRT) or
death was selected as the primary outcome since these are the most clinically
relevant endpoints. Secondary outcomes that were also evaluated included: 1)
worsening of AKI, which was defined as an additional increase in serum
creatinine (sCr) >0.3 mg/dL from the sCr at the time of the urine sample
collection 2) worsening of AKI or the initiation of RRT; and 3) increased length of
hospital stay (LOS), which was defined as hospital discharge >7 days from the
day of sample collection or death <7 days from sample collection. In comparison
to the previous study on cardiac surgery patients, worsening of AKI was defined
as an absolute increase in sCr after sample collection. This approach was
chosen because it is notoriously difficult to determine the baseline sCr value in
critically ill patients, which impedes accurate staging using the AKIN or RIFLE

classification systems.
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Materials and Methods

Patients and Urine Samples

All patients (n = 45) had been admitted to the intensive care unit at the Medical

University of South Carolina Hospital. Patients either had AKI at ICU admission
or developed AKI during their stay in the ICU. AKI was defined according to the
AKIN criteria.®* When possible, baseline sCr was defined as the most recent
(within 1 month) value prior to the AKI episode. When antecedent sCr values
were not available, the lowest sCr observed during the patient’s hospital stay was
used as the baseline. Informed consent was obtained from the patients or their
next of kin prior to urine sample collection, in accordance with our Institutional
Review Board approved protocol. The only exclusion criteria were initiation of

renal replacement therapy prior to sample collection and non-consent.

Urine samples were collected in collaboration with the MUSC Biomedical
Research Bank. Patients for this study were selected retrospectively in order to
perform a case-control study of ICU patients diagnosed with AKI at to the time of
urine sample collection. The primary outcome was the need for renal
replacement therapy or death, and patients who had AKI at the time of sample
collection but did not meet the primary outcome were selected as controls.
Samples were collected at the time that the diagnosis of AKI was made. If
patients had AKI on admission, samples were collected immediately after
admission. Urine samples were processed according to a standard operating

procedure. Tthey were treated with a protease inhibitor cocktail (Roche,
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cOmplete, Mini, EDTA-free), centrifuged for 10 min at 1,000 x g and the
supernatant was aspirated and stored at -80°C until the time of use. Clinical data

was obtained by retrospective chart review.

AKI Etiology

Etiology of AKI was determined by retrospective chart review and patients were
assigned to one of four categories: pre-renal, ischemic ATN, sepsis-associated
AKI, and other. Pre-renal AKI was defined as an episode of AKI in the setting of
hypotension or hypovolemia in which the patient’s sCr decreased to <150% of
baseline within 48 hours after diagnosis. Ischemic ATN was defined as severe,
prolonged AKI following any event that compromises renal blood flow or oxygen
delivery. The specific events observed in our cohort included ruptured abdominal
aortic aneurysm, cardiogenic shock, and congestive heart failure exacerbation.
Patients for whom the etiology could not be determined or was multifactorial were

included in the “other” category.

Determination of Urinary Angiotensinogen-to-Creatinine Ratio

Urinary angiotensinogen was measured using the Human Total Angiotensinogen
Assay Kit (Immuno-Biological Laboratories Co., Ltd., IBL-America, Minneapolis,
MN), a solid phase sandwich ELISA, according to the manufacturer’s protocol.
Urine creatinine was measured using the Jaffe assay and used to correct the
urine angiotensinogen concentration. Values were reported as the ratio of

angiotensinogen in ng/ml to creatinine in mg/ml (UANCR, ng/mg).

Statistical Analysis

The Kruskal-Wallis test and post-hoc Dunn’s test were used to compare the
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UANCR values of patients grouped by AKI etiology. The Mann-Whitney U test
was used when only two groups were compared. Other continuous variables
were compared using the Student’s t-test or Mann-Whitney U test. Categorical
variables were compared using the x° or Fisher's Exact tests. Logistic regression
was used to determine the multiplicative odds ratio for a one standard deviation
increase in UANCR. However, because uUANCR was not normally distributed, it
was first log;o transformed for this analysis. Receiver operator characteristic
(ROC) curves were used to test the ability of UANCR to predict outcomes. The
area under the ROC curve (AUC) was used as an estimate of overall accuracy of
the biomarker. ROC curves were considered statistically significant if the AUC
differed from 0.5, as determined by the z-test. Optimal cut-offs were determined
by selecting the data point that minimized the geometric distance from 100%
sensitivity and 100% specificity on the ROC curve.?* Additional cut-offs were
determined by selecting the points on the ROC at which the positive and
negative likelihood ratios were maximized and minimized, respectively. The
Spearman’s correlation coefficient was used to determine the correlation
between UANCR and length of hospital stay. Kaplan-Meier curves were used to
visualize the relationship between uANCR and length of hospital stay. Patients
who died were censored. The log rank test was used to compare the curves.
Cox regression was used to calculate the proportional hazard ratio for time to
discharge comparing patients with high and low uANCR (defined as > the median
or < the median of the cohort). The Cox proportional hazard model included both

the patients’ UANCR and AKIN stage at collection.
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Results

Patient Characteristics

Urine samples were obtained from patients with AKI in the intensive care unit
(n=45). At the time of sample collection, five patients were classified as AKIN
stage 3, 12 patients as AKIN stage 2, and 28 patients as AKIN stage 1. Baseline
patient characteristics are described in detail in Table 4-1. In approximately one-
third of patients, the etiology of AKI could not be determined or was multifactorial
(n=16). Sepsis-associated AKI was the most common established etiology
(n=15), followed by pre-renal AKI (n= 8), and ischemic acute tubular necrosis
(n=5). Twenty-three patients met the primary outcome, the need for renal
replacement therapy (RRT) or death. Pre-renal AKI was significantly more
common among the patients who did not meet this outcome (p = 0.01). There
were no significant differences between the group of patients who required RRT
or died compared to those who did not with respect to age, race, gender, the day
of sample collection (defined as days after the date that AKI criteria were met),
baseline serum creatinine (sCr), sCr at the time of sample collection, or the
percent change in sCr from baseline at the time of sample collection. However,
patients who met the primary outcome had lower rates of hypertension, diabetes
mellitus, and the use of angiotensin converting enzyme inhibitors or angiotensin
receptor blockers.

Angiotensinogen Predicts RRT or Death

Urinary angiotensinogen was elevated in the group of patients who met the

primary outcome RRT or death (median uANCR = 89.4 ng/mg, IQR 35.9 — 335.6
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Table 4-1. Characteristics of ICU patients used to verify the
prognostic predictive power of urinary angiotensinogen as an

AKI| biomarker

No RRT and
Survival RRT or Death P

n 22 23
Age (yrs)® 629+ 16.1 54.4 +17.6 0.1
Caucasian 64% (14) 65% (15) 0.84
Male 55% (12) 65% (15) 0.67
AKI Etiology

Sepsis 23% (5) 43% (10) 0.25

Pre-renal 32% (7) 4% (1) 0.01

Ischemic ATN 9% (2) 13% (3) 1

Other 36% (8) 39% (9) 0.91
Serum Creatinine (mg/dL)

Baseline sCr” (0.18.-115.6) (1.(%;1.5) 0.98

sCr at Collection® 21+0.8 25+0.8 0.06

0, 0,

% Change in sCr” (13%)?58/;%) (15%(_)35/;%) 0.07
Other Variables

MAP on day of 74.9 68.6 0.08

collection (70.4-86.8) (64.5-84.1)

History of HTN 91% (20) 48% (11) 0.005

History of Diabetes

Mellitus 55% (12) 22% (5) 0.05

History of ACE Inhibitor

or ARB Use 48% (12) 17% (4) 0.03

®Mean and SD; "Median and IQR; Categorical data are shown as

percentage and n

P-values are shown for the )(2 or Fisher Exact test, as appropriate.
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ng/mg) compared to the group who did not (median uANCR = 25.4 ng/mg IQR
5.8 — 120.4 ng/mg; Figure 4-1A). Elevated uANCR was associated with an
increased risk of meeting this outcome. The multiplicative odds ratio for a one
standard deviation increase in a patient’'s UANCR was 2.61 (95% CI 1.23 - 5.53).
The receiver operator characteristic (ROC) curve for this outcome had an area
under the curve (AUC) of 0.73 (Figure 4-1B; p = 0.01). The optimal cut-off was
34.76 ng/mg, at which the test had a sensitivity and specificity of 78.3% and
54.6%, respectively. The cut-off at which the test had the highest positive
likelihood ratio (LR* = 9.6) was 230.0 ng/mg. Eleven of the 45 AKI patients had
UANCR values greater than 230.0 ng/mg, of which 10 met the outcome. At this
cut-off, the sensitivity and specificity of the prediction of RRT or death were
43.5% and 95.5%, respectively. The positive predictive value of a value this high
was 90.9%. Similarly, the lowest negative likelihood ratio of the test was
achieved at a cut-off of 7.58 ng/mg (LR™ = 0.14). Eight patients had uAnCR
values <7.58 ng/mg, of which 7 did not meet the outcome. The test had a
sensitivity and specificity of 95.7% and 31.8%, respectively at this cut-off.

Worsening of AKI

Elevated uUANCR was associated with an increased risk of worsening AKI after
sample collection (Figure 4-2). The ROC curve for this outcome had an AUC of
0.77. At the optimal cut-off, 34.76 ng/mg, the sensitivity and specificity were
87.0% and 63.6%, respectively. At the cut-off with the maximum LR", 230.0
ng/mg (LR" = 4.31), the sensitivity and specificity were 39.1% and 90.9%,

respectively; at the cut-off with the lowest LR, 21.24 ng/mg (LR" = 0.07), the
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Figure 4-1. The urinary angiotensinogen-to-creatinine ratio in patients
who met the outcome renal replacement therapy or death compared to
patients who did not. (A) Box and whisker plots show the median and
interquartile range. Error bars represent the 5™ and 95™ percentiles. Groups
were compared with the Mann-Whithey U test. (B) Receiver operator
characteristic curve was performed to evaluate the ability of UANCR to predict
the outcome renal replacement therapy (RRT) or death. A perfect biomarker
would have an area under the ROC curver (AUC) of 1, whereas random
chance has an AUC = 0.5
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sensitivity and specificity were 95.7% and 59.1%. Eleven patients had uAnCR
values above the cut-off of maximal LR", 10 of whom met the outcome worsening
of AKI. Fourteen patients had uAnCR values below the threshold of minimal LR

,of whom only one met the outcome.

Length of Hospital Stay

Among patients who survived to discharge (n = 26), UANCR was correlated with
days to hospital discharge (r = 0.57, p = 0.002). Patients who had high uUAnCR
values (defined as >55.21 ng/mg, the median value) had an increased length of
stay compared to patients who had low uUAnCR (£55.21 ng/mg). The median
LOS (defined as days after the time of sample collection) for these groups were
22 and 7 days, respectively (Figure 4-3A; p = 0.01), and the AKIN stage adjusted
hazard ratio for discharge was 0.367 (95% CI 0.17 — 0.91) for patients with high
UANCR compared to those with low UANCR, indicating that uUANCR affects LOS
independently of changes in sCr. Elevated uUANCR was strongly associated with
an increased risk of the composite outcome discharge >7 days from the time of
sample collection or death <7 days from collection. The multiplicative OR for one
SD increase in UANCR was 3.31 (95% CI 1.36 - 8.04). ROC curve analysis
demonstrated that uUANCR was a strong predictor of this outcome (Figure 4-3B;
AUC= 0.77). At the optimal cut-off, 59.61 ng/mg, the sensitivity and specificity of
the prediction of prolonged hospital stay were 60.6% and 83.3%, respectively.
The cut-off at which the test had the highest positive likelihood ratio (LR = 5.5)
was 123.5 ng/mg. Sixteen patients were above this cut-off, of which 15 met the

outcome. At this cut-off, the sensitivity and specificity of the test were 43.5% and
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Figure 4-2. The urinary angiotensinogen-to-creatinine
ratio as a predictor of the outcome worsening of AKI.
ROC curve for the composite outcome worsening of AKI
(defined as an increase in serum creatinine >0.3 mg/dL
after the time of sample collection or RRT).
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Figure 4-3. Urinary angiotensinogen-to-creatinine ratio and length of stay. (A) Patients
were stratified into groups by urinary angiotensinogen-to-creatinine ratio (UANCR). Patients
with UANCR > the median for the cohort were classified as high (red line), whereas patients
with UAnCR < the median were classified as low (black line). Patients who died were
censored. The median times to discharge (defined as days after sample collection) were 22
and 7 days for the high and low uANCR groups, respectively. (B) ROC curve analysis was
performed to evaluate the ability of UANCR to predict the composite outcome discharge >7
days after sample collection or death <7 days from sample collection.

98



96.5%, respectively. Similarly, the lowest negative likelihood ratio of the test was
achieved at a cut-off of 3.31 ng/mg (LR = 0.12). Four patients had uAnCR
values < 3.31 ng/mg, of which three did not meet the outcome. The test had a
sensitivity and specificity of 97.1% and 25.0%, respectively at this cut-off.

Urinary Angiotensinogen by AKI Etiology

The urinary angiotensinogen/creatinine ratio (UANCR) differed statistically by the
underlying etiology of AKI (Figure 4-4). Patients with AKI secondary to ischemic
ATN had the highest median uANCR (260.2 ng/mg, IQR 69.6 - 1213.2), followed
by patients with AKI due to other or unknown causes, including multifactorial
etiology (90.6 ng/mg, IQR 12.1 - 251.5), patients with sepsis-associated AKI
(48.1 ng/mg, IQR 23.5 - 222.4), and patients with pre-renal AKI (11.3, IQR 5.2 -
61.5). Post-hoc pairwise comparison found a statistically significant difference
between patients with ischemic ATN and patients with pre-renal AKI. Patients
were categorized into the dichotomous groups of pre-renal AKI and AKI of other
etiologies (Figure 4-5). The median uAnCR for patients with pre-renal AKI (n=8)
was 11.3 ng/mg (IQR 5.2 - 61.5) while the median for patients with AKI not
classified as pre-renal etiology (n=37) was 80.2 ng/mg (IQR 22.7 — 259.2). There
was a statistically significant difference between the uAnCR values of this group

compared to the group of patients with pre-renal AKI (p= 0.03).

Discussion

The prognostic predictive power of urinary angiotensinogen in the setting AKI
after cardiac surgery was described in Chapter 3. However, it was unclear if its

prognostic significance was generalizable to AKI secondary to causes other than
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Figure 4-4. Urinary angiotensinogen/creatinine ratio (WUANCR) by AKI etiology. Patients
who developed AKI in the ICU were grouped by the etiology underlying the AKI. The median
(black dot) and interquartile range (error bars) are shown. *, p< 0.05 compared to ischemic
ATN group
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creatinine ratio (UANCR) in pre-renal AKI
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and whiskers plots show the median and
interquartile range. Error bars represent the 5"
and 95" percentiles. Groups were compared
with the Mann-Whitney U test.
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cardiac surgery. In the study described in this chapter, urinary angiotensinogen
was measured in ICU patients who developed AKI secondary to diverse
etiologies. We found that elevated urinary angiotensinogen was associated with
an increased risk of RRT or death, longer time to hospital discharge, and
worsening of AKI after the time of sample collection, and that angiotensinogen
was a strong predictor of these outcomes using ROC curve analysis. A potential
confounding factor of our results is that urinary angiotensinogen was statistically
decreased in patients with pre-renal AKI compared to those with AKI of other
etiologies, and the former was more common in the group of patients who did not
die or require RRT. Therefore, it is not clear if the relationship between elevated
urinary angiotensinogen and this outcome is in fact driven by its association with
etiologies that tend to produce more severe AKI. Nevertheless, this would not
negate the findings of this study because it is clinically important to distinguish
between pre-renal AKI and AKI of other causes Pre-renal AKI typically is
transient and resolves with fluid resuscitation, whereas other more severe forms
of AKI do not. Pre-renal AKI is classically differentiated from AKI of other
etiologies by FeNa <1% or FeUrea <35.*>**" However, FeNa can be
confounded by diuretic use and is altered in the setting of sepsis, whereas
FeUrea decreases with age and a multicenter trial reported that it was not
diagnostic of transient AKI.*#1%° Better biomarkers of pre-renal AKI are clearly
needed. In a recent study, Cystatin C, NGAL, IL-18 and KIM-1 were found to be
elevated in ICU patients with pre-renal AKI compared to those without AKI, but

were lower than values for patients whose AKI did not resolve within 48 hrs.%
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Finally, an important limitation of this verification study is that it was a relatively
small retrospective biomarker qualification study, and our findings will need to be
confirmed in a larger prospective study. Nevertheless, these data are
encouraging and indicate that urinary angiotensinogen could have potential utility

as an AKI biomarker in a variety of clinical settings.
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Chapter 5: Concomitant Elevation of Urinary Angiotensinogen and
Renin Predicts Severe AKI
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Introduction

Epidemiologic studies have reported that the risk of adverse outcomes is
proportional to the severity of acute kidney injury (AKI). & *¥14° Accurate
identification of high risk patients with severe renal injury early in the disease
could augment the efficacy of available interventions and improve patient
outcomes. However, it is difficult to estimate the severity of AKI at an early time
point, because AKI staging is based upon the magnitude of changes in serum
creatinine and urine output, surrogates of glomerular filtration rate that do not
change until after renal injury has occurred and reach their peak or lowest point
later in the course of the disease.>*** The recent KDIGO clinical guideline for
AKI highlighted the need for improved risk assessment for patients with
established AKI.° Biomarkers of AKI could be used to evaluate the severity of
AKI at an early time point in the disease as a guide for clinical decision-making.
They could also play a role in clinical trial design because they could be used to
selectively enrich the study population with patients who have severe renal injury
and are more likely to benefit from an experimental therapy, increasing the
statistical power of the study.**'*? Many biomarkers have been proposed as
early markers of AKI which may be useful for the detection of AKI prior to
increases in serum creatinine. These include NGAL, KIM-1, IL-18, Cystatin-C,
and L-FABP >* 6084104, 143,144 \n/hjle many studies have included an analysis of
the the ability of these biomarkers to predict adverse outcomes, most have done
S0 as a secondary analysis in cohorts designed to test early diagnostic capability.

Due to the inclusion of large numbers of patients without AKI, results derived
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from such analyses may not be generalizable to patients with established AKI. In
support of this, the results of two recent studies that excluded patients without
AKI have reported that NGAL, KIM-1 and IL-18 are substantially less accurate
predictors of AKI progression and mortality than would be inferred from studies
including patients without AKI, highlighting the need for other prognostic

biomarkers. 80

We recently identified urinary angiotensinogen as a novel prognostic biomarker
of AKI.1*%1%2 |n the current retrospective cohort study we further evaluated the
prognostic predictive power of angiotensinogen and its combination with renin
and uromodulin. Renin was evaluated because we hypothesized that it would
predict AKI severity because it cleaves angiotensinogen in the rate-limiting step
of the renin-angiotensin-system (RAS). Since renin and angiotensinogen
concentrations reflect different components within the renal RAS, combinations
of the two candidate markers may improve prediction. Uromodulin was chosen
on the basis of discovery-phase proteomic analysis, which showed that it
decreased during AKI. This result was in agreement with recently published
results of a pediatric AKI biomarker study which reported lower urinary
concentration of uromodulin during AKI.**® Uromodulin potentially plays a
renoprotective, anti-inflammatory role during AKI, and we hypothesized that
patients with more severe AKI would have lower concentrations of uromodulin,
and that the combination of elevated urinary angiotensinogen and decreased
uromodulin would be an accurate predictor of AKI severity.***'%* Our findings

show that the combination of angiotensinogen and renin is able to identify a
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subset of patients with stage 1 AKI with a very high risk (80%) of progression to

stage 3 AKI or death.

Materials and Methods

Patients and Urine Samples

Urine samples were obtained from 204 consecutively enrolled patients who had
cardiac surgery at one of the SAKInet institutions between the dates of August 1,
2008 and June 1, 2012. This cohort included 74 samples included in our
previously described study.*®* Informed consent was obtained in accordance
with the IRB-approved protocol at each institution. Samples were collected and
stored using a standard operating procedure which included centrifugation,
addition of protease inhibitors and storage at -80°C. Urine samples were
collected as early as possible after AKIN serum creatinine criteria were met, and
all were collected within the first 72 hours after surgery. Inclusion criteria were
surgery of the heart or ascending aorta and development of AKIN stage 1 AKI by
creatinine criteria within 3 days of surgery. Subjects with ESRD, baseline serum
creatinine > 3.0 mg/dL or AKI greater than AKIN stage 1 at the time of collection
were excluded. Patients were followed until either time of death or hospital
discharge, and were staged according to the maximum increase in serum
creatinine using the AKIN classification system.® Urine output criteria were not

used in diagnosis or staging because urine output data was not available.

Measurement of Biomarkers

Urine samples were thawed at 37°C and urinary angiotensinogen was measured

using a sandwich ELISA (Immunobiologic Laboratories) according to the
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manufacturer’s protocol. Urinary renin was measured using a sandwich ELISA (R
and D Systems) according to the manufacturer’s protocol. Urine was diluted
1:2000 and uromoduin was measured by ELISA (BioVendor). All biomarker
concentrations were corrected for urine creatinine (biomarker/creatinine ratio).

Urine creatinine was measured using the Jaffe assay.

Statistical Analysis

Patients were grouped according to maximum AKIN stage and biomarker
concentrations were compared using the Kruskal-Wallis test with post-hoc
pairwise comparison. Univariate receiver operator characteristic (ROC) curve
analysis was performed to determine if Cleveland Clinic score, percent increase
in serum creatinine from baseline, the urinary angiotensinogen/creatinine ratio
(UANCR), and the urinary renin/creatinine ratio (URenCR) predicted the
composite outcome development of AKIN stage 3 or 30 day mortality (AKIN
stage 3 or death). Variables were considered predictive if the area under the
ROC curve differed statistically from 0.5. Cleveland Clinic score and percent
increase in serum creatinine were combined in a multivariate logistic regression
model (clinical model) to predict the outcome. Biomarker concentrations were
log,o transformed and added individually to the clinical model and category free
net reclassification improvement and integrated discrimination improvement were
used to determine if the addition of biomarkers improved prognostic predictive
performance.’®® % A classification tree was created using the four inputs
(UANCR, uRenCR, Cleveland Clinic score and percent change serum creatinine

at collection) to determine optimal cut-offs to be used together in a clinical test to
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identify patients at high risk of meeting the outcome AKIN stage 3 or death. The
tree was grown using Chi-squared Automatic Interaction Detection (CHAID),
specifying at least 10 cases per parent node and 5 cases per daughter node.
Nodes were split using the Pearson’s Chi-squared test if P <0.05. Bonferroni
correction was applied to the P-values to adjust for multiple comparisons. 25-fold
cross-validation was performed. Statistical tests were performed in SPSS and
SigmaPlot.

Results
Patients Characteristics

Urine samples were retrospectively analyzed from 204 cardiac surgery patients.
Samples were obtained post-operatively at the time of diagnosis with AKI. All
patients were classified as AKIN stage 1 AKI at the time of urine sample
collection. Twenty-six patients progressed to AKIN stage 2, and 22 progressed to
AKIN stage 3. Twenty-six patients met the primary outcome AKIN stage 3 or
death. When patients were grouped by the primary outcome, there were no
statistically significant differences in demographic variables, time of sample
collection, or operative variables. However, compared to those who did not meet
the outcome, patients who met the outcome had elevated pre-operative serum
creatinine (median 1.1 versus 1.3 mg/dL; P = 0.02), serum creatinine (sCr) at
collection (median 1.6 vs 1.9 mg/dL; P <0.001), and percent increase in sCr from
baseline that had occurred at the time of collection (median 41% versus 64%; P

=0.003). A description of the study population is found in Table 5-1.
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Table 5-1. Characteristics of cohort of post-cardiac surgery patients

enrolled in study

AKIN Stage 1 or 2 AKIN Stage 3 or P
and Survived Death
n 178 26
Age® 68 (59.0 — 76.0) 65.5 (58.0 — 79.0) 0.97
Gender (female)® 32.6% (58) 38.5% (10) 0.71
Race (Caucasian)® 70.2% (125) 69.2% (18) 0.9
Operative Variables”
CABG** 46.6% (83) 34.6% (9) 0.35
Valve 28.7% (51) 26.9% (7) 0.96
Replacement®
CABG + Valve® 16.9% (30) 23.1% (6) 0.62
Other® 7.9% (14) 15.4% (4) 0.37
Bypass® 86.0% (153) 88.5% (23) 0.97
Bypass Time® 141.0 (83.0 — 192.0) 159.5 (62.0 — 203.0) 0.66
Collection Time (hr 21.8 (19.2 - 43.0) 21.6 (19.2 - 33.6) 0.69
post-op)
Serum Creatinine (sCr mg/dL)
Pre-Op sCr° 1.1(0.9-1.3) 1.3(1.0-1.8) 0.02
sCr at Collection® 16(1.3-1.9) 19(1.6-3.1) <0.001
Percent Increase in 41% (30% — 56%) 64% (35% — 80%) 0.003
sCr at Collection®
Outcomes
Days to Max sCr® 2.0 (1.0 - 3.0) 5.0 (3.75 — 8.0) <0.001
Days to Discharge 7.0 (6.0-10.0) 14.0 (9.75 - 24.75) <0.001
or Death®®
AKIN Stage 3% 0% (0) 84.6% (22) <0.001
g';;’:‘hsatage sor 0% (0) 100% (26) <0.001
Death® 0% (0) 34.6% (9) <0.001
RRT? 0% (0) 50.0% (13) <0.001

Statistical significance was determined by the x? test for categorical variables and

the Mann-Whitney U test for continuous variables.

4Categorical variables are reported as percentage (n).
Type of surgery is reported as CABG only, Valve replacement only, CABG +
Valve replacement, and other procedures.
‘CABG, coronary artery bypass graft

Continuous variables are reported as median (interquartile range).

°Days are reported as the number of days after surgery.
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Biomarker Concentrations by AKIN Stage and According to Primary Qutcome

The urinary angiotensinogen/creatinine ratio (UANCR) was correlated with both
maximum serum creatinine (sCr) and the maximum percent increase in sCr (rho
= 0.383 and 0.256, respectively; P < 0.001). Similarly, the urinary renin/creatinine
ratio (URenCR) was correlated with maximum sCr (rho = 0.392; P < 0.001) and
the maximum percent increase in sCr (rho = 0.308; P <0.001). However, urinary
uromodulin/creatinine ratio was not correlated with either maximum sCr or the
maximum percent increase in sCr. There was also a statistically significant
correlation between UANCR and uRenCR (rho = 0.341; P <0.001). Accordingly,
there was a trend for both urinary angiotensinogen and urinary renin to increase
with the maximum AKIN stage that a patient achieved (Table 5-2), and there was
a statistically significant difference in UANCR and uRenCR between patients who
developed AKIN stage 3 AKI compared to those who only developed AKIN stage
1 AKI. Uromodulin concentrations did not change with maximum AKIN stage, and
so uromodulin was not investigated further. When patients were grouped
according to the primary outcome, development of AKIN stage 3 or death, those
who met the outcome had higher uUANCR compared to those who did not (median
and IQR of 30.84 and 10.75 to 89.95 compared to 96.7 and 38.23 to 457.34
ng/mg; P < 0.001). Patients who met the primary outcome also had higher
uRenCR than those who did not (median and IQR of 280.72 and 118.98 to

638.96 compared to 894.71 and 335.43 to 2894.06 pg/mg; P < 0.001).
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Table 5-2. Distribution of urinary biomarker concentrations by maximum

AKIN stage

AKIN Stage 1 AKIN Stage 2 AKIN Stage 3/death p®
n 156 26 22
UANCR 29.22 36.39 96.7" 0.002
(ng/mg) (10.72 — 82.42) (14.56 — 163.54) (38.23 — 457.34)
uUroCR 4.23 4.01 5.09 033
(mg/mg) (2.5-6.14) (2.61 —7.83) (3.21-9.52) '
uRenCR 257.28 406.79 894.717 0.001
(pg/mg) (113.88 — 564.34) (144.06 — 922.47) | (335.43 — 2894.06)

Biomarker concentrations are reported as median (interquartile range)
®p-value according to Kruskal-Wallis test
# p< 0.05 in post-hoc pairwise comparison
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Univariate Prediction of AKIN Stage 3 or Death

Selected clinical variables and putative prognostic biomarkers were tested for the
ability to predict the outcome AKIN stage 3 or death. Cleveland Clinic score
(Figure 5-1a) and the percent change in sCr at the time of sample collection
(Figure 5-1b) both predicted the outcome, having an area under the receiver
operator characteristic curve (AUC) of 0.72 (95% CI [0.62, 0.83]) and 0.68 (95%
Cl [0.55, 0.82]), respectively. In comparison, angiotensinogen and renin were
also moderately strong predictors (Figures 5-1c and 5-1d). The AUC of the
urinary angiotensinogen/creatinine ratio (UANCR) was 0.75 (95% CI [0.65, 0.85]).
The AUC of the urinary renin/creatinine ratio (uRenCR) was 0.70 (95% CI [0.57,
0.83]). Additionally, the prognostic predictive power of these variables was
evaluated in the subset of the cohort (n = 81; data not shown) that were classified
as RIFLE-R at the time of collection, since it has been reported that this criterion
has a lower false positive rate than AKIN stage 1 for diagnosis of AKI.

Compared to the entire cohort this analysis found little difference in the ability of
UANCR, uRenCR, and Cleveland Clinic score to predict AKIN stage 3 or death,
whereas the predictive power of the percent increase in serum creatinine was

substantially improved.

Multivariate Prediction of AKIN Stage 3 or Death
A model including relevant clinical variables and biomarkers was created to

predict the outcome AKIN stage 3 AKI or death. First, Cleveland Clinic score and

percent change in serum creatinine were combined into a multivariable logistic
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Figure 5-1. Univariate receiver operator characteristic (ROC) curves for the outcome AKIN
stage 3 or death. Clinical variables Cleveland Clinic score (A) and percent increase in serum
creatining (sCr) (B) at the time of sample collection, as well as the biomarkers urinary angiotensinogen
to ereatinine ratio (C) and urinary renin to creatinine ratio (D) were tested for the ability to predict the
outcome. The diagonal gray line shows the line of identity for between the true positive (sensitivity)
and false positive (1-specificity) rates of the test, and has an area under the ROC curve (AUC) of 0.5,
Variables were considered predictive if the AUC was >0.5 and the 95% confidence interval (Cl) did not
overlap 0.5,
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regression model. This clinical model had an AUC = 0.79 (95% CI [0.69, 0.88])
for the outcome (Figure 5-2). Then uANCR and uRenCR were added stepwise to
the clinical model to determine the incremental increase in the accuracy model
gained by the addition of each biomarker (Table 5-3). When uAnCR was added
to the clinical model, the AUC improved to 0.85 (95% CI [0.78, 0.92]; P = 0.01
compared to clinical model; Figure 5-2). This was the result of augmented
sensitivity and specificity (Figure 5-3a and 5-3b). The category free net
reclassification improvement (cfNRI) for addition of uUANCR was 0.67 (95% ClI
[0.26, 1.09]; P = 0.001; Figure 5-4a and 5-4b), and the integrated discrimination
improvement (IDI) was 0.06 (P = 0.09). Although the IDI did not reach statistical
significance, the median calculated risk of the event group increased significantly
following addition ofuAnCR to the model from 0.22 to 0.26 (P = 0.04). In
contrast to UANCR, the addition of uRenCR to the clinical model did not improve
the area under the ROC curve (AUC = 0.79 95% CI [0.69, 0.89]; Table 5-3).
Although the IDI (0.02; P = 0.26) was not statistically significant, there was an
improvement in risk reclassification (cfNRI 0.52 95% CI [0.10, 0.93]; P = 0.01,
Table 5-3; Figure 5-4c and 5-4d). Addition of uRenCR to a three variable model
that included Cleveland Clinic Score, percent increase in sCr, and uAnCR did
improve the accuracy of the model (cfNRI = 0.55 95% CI [0.14, 0.96], P < 0.01),
although the IDI was 0.01 (P = 0.38) and there was no improvement in the AUC
of the ROC curve (AUC = 0.85 95% CI [0.77, 0.92]; Table 5-3; Figure 5-4e and 5-
4f). This marginal increase in the in the discriminative slope resulted in more

events having a calculated risk between 0.2 and 0.55, as can be observed in the
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Table 5-3. Incremental Improvement in Prognostic Predictive Power by Addition of
Angiotensinogen and Renin to a Clinical Model

Reference
Model New Model CfNRIeyents” | NRInonevents’ cfNRI” P IDIcE | P
.. .. a+
E,I""O'f?a' C""'Ci'\’g’se' 0.28 0.39 0.67 0.001 | 0.06 | 0.09
ode uAn [0.26, 1.09]
- - a+
E,I""O'f?a' C""'Cg' Mg;e' 0.31 0.21 0.52 0.01 |0.02|0.26
oce uRen [0.10, 0.92)]
Clinical Clinical Model®
Model? +UANCR 0.44 0.11 0.55 <0.01 | 0.01 | 0.38
+UAnCR +uRenCR [0.14, 0.96]

*Clinical model is a multivariate logistic regression model including the Cleveland Clinic score and the
percent increase in serum creatinine from baseline at the time of sample collection.

°cfNRI is a means of calculating the effect of adding a new variable to a predictive model on the overall
accuracy of the model. cfNRI is the sum of cfNRI.eris @and ¢fNRIpgneventss CINRIgyerts @nd efNR I gneyens @re
the proportion of patients who met the outcome (events) or those who did not, respectively, which are
correctly reclassified by the new model minus the proportion of patients who are incorrectly reclassified.
Correct reclassification is defined as a calculated risk of meeting the outcome that is higher for events and
lower for nonevents when compared to the reference model. If all events and nonevents were correctly
reclassified, the cfNRgyens @and cfNRI grevents Would be +1, and the ¢fNRI would be 2.

“IDI is a means of quantifying the effect of addition of a new variable to a predictive model on the
maghnitude of the change in the difference between the average calculated risk of patients who met the
outcome compared to those who did not. The mean risk of the two groups is calculated using the
reference model and the new model, and IDI is simply the difference between the discrimination slopes of
the two models.

UANCR, urinary angiotensinogen/creatinine ratio; uRenCR, urinary renin/creatinine ratio; cfNRI, category
free net reclassification improvement; IDI, integrated discrimination improvement
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Figure 5-2. Multivariable Prediction Models for AKIN Stage 3 or Death. Receiver
operator characteristic (ROC) curves are shown for the Clinical Model (CM; includes
Cleveland Clinic Score and percent increase in serum creatinine from baseline), the
clinical model plus creatinine-corrected urine angiotensinogen (CM + uAnCR), and
the clinical model plus creatinine-corrected urinary angiotensinogen and renin (CM
+UANCR +uRenCR).
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model. Addition of angiotensinogen to the clinical model improved sensitivity and
specificity. Subsequent addition of renin to the model resulted in a gain in sensitivity with
no effect on specificity.
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increased sensitivity of the model in this range (Figure 5-3a). However, there was
no improvement in specificity (Figure 5-3b). Finally, the best cut-off for the ROC
curve of the final model had a calculated sensitivity of 76.9% and a specificity of

79.1% (PPV and NPV of 35.0% and 76.5%, respectively).

Classification Tree

Multivariate logistic regression is a powerful technique for evaluating the
predictive power of biomarkers, but due to its complexity it is unlikely to be
clinically useful in the setting of acute iliness where the decision to intervene is
especially time sensitive. Additional limitations include the inability to identify
subsets of patients in whom biomarkers under or over perform and insensitivity to
potentially important nonlinear interactions between covariates in the model, both
of which could be informative from a mechanistic perspective. Therefore, we
sought to create a simple algorithm that identifies patients at high risk of meeting
the outcome AKIN stage 3 or death, which could be used to guide decision
making. To accomplish this we chose to use Chi-squared Automatic Interaction
Detection (CHAID) to grow a classification tree that assigned patients to risk
groups by identifying interactions among the same variables that were previously
used in multivariate logistic regression. In this analysis UANCR, uRenCR,
Cleveland Clinic score and percent change in serum creatinine were all
statistically significant classifiers for the outcome (Figure 5-5). However, the
model selected only urinary angiotensinogen and renin for use in prediction of
the outcome. Using a cut-off of > 337.89 ng/mg for uANCR, the model divided

patients into low (n = 184) and intermediate (n = 20) risk groups, in which 9.8
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Figure 5-4. Scatterplots showing the calculated risk of meeting the
outcome AKIN Stage 3 or death. The incremental changes in predictive
accuracy gained by addition of angiotensinogen (A and B) and renin (C-F) was
evaluated using category free net reclassification improvement (cfNRI) and
integrated discrimination improvement (IDI). These scatterplots are a visual
representation of cfNRI and IDI. Each data point represents the calculated
risks of a single patient using a reference model (x-axis) and a model with an
added biomarker (y-axis). The gray diagonal line is the line of
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Figure 5-4. continued identity,indicating calculated risk that does not change
with addition of a biomarker to the reference model. The proportion of honevents
(patients who did not meet the outcome) below the line and the proportion of
events (patients who met the outcome) is used to calculate the category free net
reclassification improvement (cfNRI). The magnitude of the changes in
calculated risk, which is the vertical distance of a point from the line of identity, is
included by the integrated discrimination improvement (IDI).
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Figure 5-5. CHAID classification tree for the outcome AKIN stage 3
AKI or death. Chi-squared automatic interaction detection (CHAID)
was used to grow the classification tree using the following variables:
Cleveland Clinic score, percent increase in serum creatinine from
baseline at the time of sample collection, urinary angiotensinogen
(ng/mg creatinine; uAnCR), and urinary renin (pg/mg creatinine;
uRenCR). Pie charts represent the proportion of patients who met the
outcome (events) or not (nonevents) at each node of the tree. The
model only used angiotensinogen and renin to predict the outcome.
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% and 40.0% of the patients met the outcome, respectively. The intermediate risk
group was then further subdivided into a low and high risk group using the cut-off
of uRenCR >893.41 pg/mg. Applying the combination of these two cut-offs for
UANCR and uRenCR resulted in a group of 10 patients, 8 of whom met the
outcome, yielding a sensitivity of 30.8% and specificity of 98.9%. The PPV and
NPV of this model were 80.4% and 90.7%, respectively. Overall, the model
correctly classified 90.2% of patients correctly, and the 25-fold cross-validation
estimate of the risk of misclassification of events was 0.132 (SE = 0.024). ROC
curve analysis found that CHAID model had an AUC of 0.91, and compared
favorably with the multivariate logistic regression model (Table 5-4; Figure 5-5).
Discussion

In this retrospective cohort study, we measured the candidate AKI biomarkers
angiotensinogen, uromodulin, and renin in spot urine samples that had been
obtained from post cardiac surgery patients early after AKI diagnosis had been
made on the basis of AKIN serum creatinine criteria. Of these patients, only 81
had an increase in sCr >50% and none had an increase 2100% at the time of
collection. Both urinary angiotensinogen and renin predicted the composite
outcome AKIN stage 3 or death, whereas uromodulin did not. While our study is
limited by the use of a composite outcome that relatively few (26 of 204) patients
met, it was chosen because our objective was to identify patients at high risk of
severe adverse outcomes. Selection bias cannot be entirely ruled out because of

the retrospective design of our study. However, we used multivariate analysis to
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Table 5-4. Comparison of Multivariate Logistic Regression Model and

CHAID Classification Tree

Model AUC? Sensitivity | Specificity | PPV NPV
Multivariate 0.85

Logistic ) 76.9% 79.1% 35.0% | 76.5%
Regression® [0.77,0.92]

CHAID® [0 8390196]* 30.8% 98.9% 80.4% | 90.7%

®AUC, area under the receiver operator characteristic curve; 95% Cl estimates are

shown in brackets

PCut-off specific performance characteristics shown are from the point on the ROC curve
closest to the point of 100% sensitivity and specificity.
‘CHAID, Chi-squared automatic interaction detection; cut-off specific performance
characteristics shown are for the node representing uANCR >337.89 ng/mg and uRenCR

>893.41 pg/mg.

*P = 0.02 compared to multivariate logistic regression model.
Multivariate logistic regression and CHAID models were generated using the following
variables: Cleveland Clinic score, percent increase in serum creatinine at the time of

sample collection, urinary angiotensinogen/creatinine ratio (UAnCR), and urinary

renin/creatinine ratio (URenCR).

124




i
I [
prrimeem:]
-E-u--n-i ‘rr-q_ -
!
!_.
ron
=2
@
®
)]
CHAID, AUC =091
MLR, AUC = 0.85
uAnCR, AUC =0.75
uRenCR, AUC =0.70
T T T T T I
0.0 0.2 0.4 0.6 0.8 1.0

1 - Specificity

Figure 5-5. Multivariate receiver operator characteristic (ROC)
curves for prediction of AKIN stage 3 AKI or death. The ROC
curves of two multivariate models, a CHAID classification tree (CHAID)
and a multivariable logistic regression model (MLR) are shown. Both
models included four variables: Cleveland Clinic score, percent
increase in serum creatinine from baseline at that time of sample
collection, urinary angiotensinogen (ng/mg creatinine; uAnCR), and
urinary renin (pg/mg creatinine; uRenCR). Additionally, the ROC
curves for angiotensinogen (UANCR) and renin (uRenCR) are shown for
comparison, although they were previously reported in Figures 1c and
1d). The CHAID classification tree model was the most accurate
predictor (P =0.02 compared to the multivariable logistic regression
model).
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adjust for known confounders (Cleveland Clinic score and percent increase in
serum creatinine at collection). We demonstrated that urinary angiotensinogen
improved the predictive power of a clinical model that included these variables by
using the net reclassification improvement and integrated discrimination
improvement. These data confirm our previous findings regarding the prognostic
predictive power of urinary angiotensinogen, although it is not a true validation
study because approximately one-third of the patients used in this cohort (74
patients, 10 of whom met the outcome) were included in our previous study
(Chapter 3).2* We also found that elevated urinary renin is associated with
severe AKI, and further addition of renin to the multivariate model appeared to
improve sensitivity, indicating that the interaction between urinary
angiotensinogen and renin concentrations is an important prognostic indicator.
We believe that these findings are strongly suggestive of a role for the renin-
angiotensin system (RAS) in the pathobiology of AKI. This notion is in

agreement with data from animal models, and will be addressed in Chapter 7.

Chi-squared automatic interaction detection was used to grow a classification
tree to identify risk subgroups. Others have reported CHAID to be less accurate
than multivariate logistic regression in ROC curve analysis.'®® Nevertheless, we
chose to use CHAID because of its relative simplicity and the ease of graphic
representation of the results. Additionally, CHAID offers some analytical
advantages compared to logistic regression. Whereas logistic regression
identifies independent predictors, CHAID is adept at identifying interactions

among the variables, including non-linear relationships, and it can be used to
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identify subgroups in which covariates exert the greatest influence in a predictive
model.*®**%® Thus, CHAID can be used to generate or test hypotheses regarding
the potential role of the relationship between variables and the outcome of
interest, which is a particularly intriguing feature for testing combinations of
biomarkers.’®” The CHAID classification tree identified patients with concomitant
elevation of both angiotensinogen and renin as the group with the highest risk for
the outcome AKIN stage 3 or death, and found that clinical variables drove the
predictive model when biomarker concentrations were low. We interpret these
results as an indication that activation of the renin-angiotensin system could
modulate AKI severity. Importantly, this analysis found that angiotensinogen was
a stronger predictor than renin, and renin was not a useful predictor when
angiotensinogen was below 337.89 ng/mg. This is congruent with our hypothesis
that renin improves the predictive accuracy of angiotensinogen based on the
biological relationship between the two proteins, as angiotensinogen is the only
known natural substrate for renin.'®® Therefore, the CHAID model is also an
informative guide for the potential use of the combination of these biomarkers in

the event of discordance between the two.

Urinary angiotensinogen and renin could be a useful AKI biomarker combination
and could be used to guide clinical trial enrollment. The PPV of the combination
of UANCR > 337.89 ng/mg and uRenCR >893.41 pg/mg was 80.4%, a 6.3-fold
enrichment for the endpoint of stage 3 AKI or death (compared to 12.8%
incidence). This would increase the effect size of an intervention and result in an

improved statistical power and a reduction in the number needed to enroll.
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However, the trade-off is that a large number of patients would need to be
screened. Using our cohort as an example, the ratio of enrolled to screened
patients would be approximately 1:19 if the results from the CHAID model were
used as inclusion criteria enroliment, since only 4.9% of patients had uAnCR and
uRenCR values above these cut-offs. Therefore, the cost of screening would
need to be weighed against the potential benefits of enrichment (increased
power and reduced enrollment), taking into account the assumed effect size of
the intervention. A more complete description of how biomarkers can be used to

improve clinical trial design is presented in Chapter 7.
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Chapter 6: Verification of Candidate Biomarkers by Targeted Mass
Spectrometry
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Introduction

Acute kidney injury (AKI) is a common and serious disease that is associated
with a number of adverse outcomes. Conventional biomarkers (i.e. creatinine,
blood urea nitrogen, and urine output) do not reliably predict the course of the
disease from an early time point after renal injury, and are of limited prognostic
utility. AKI biomarkers that predict adverse outcomes are needed to guide
clinical decision making.*® *” Novel biomarkers of AKI such as neutrophil
gelatinase-associated lipocalin (NGAL), interleukin-18 (IL-18), kidney injury
molecule-1 (KIM-1), and liver-type fatty acid binding protein (L-FABP) have been
proposed.>* 6084104, 143, 144 Tha TRIBE-AKI Consortium recently conducted a
large, multicenter prospective trial, which reported disappointing results regarding
the early predictive power of these biomarkers, highlighting the need for new

discoveries in this important area of AKI research.®® %%

As described in the previous chapters, we have identified urinary
angiotensinogen as a novel prognostic biomarker of AKI. We have verified its
prognostic predictive power in cardiac surgery patients and in the nonsurgical
critically ill population. However, in these studies, angiotensinogen was
guantified using a sandwich ELISA, which can be negatively affected by the urine
matrix, impeding accurate quantification. Additionally, these studies did not
evaluate other novel AKI biomarkers such as the ones mentioned above, and we
do not know how angiotensinogen compares to these. Finally, the discovery
phase proteomics studies described in Chapter 2 identified other candidate AKI

biomarkers which we have not yet evaluated. This chapter describes the
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development of two parallel reaction monitoring mass spectrometry (PRM-MS)
assays designed to quantify urinary angiotensinogen, the other candidate
biomarkers, as well as the more established AKI biomarkers NGAL, KIM-1, and

L-FABP.

Tandem Mass Spectrometry and Protein Quantification

Targeted tandem mass spectrometry techniques allow for highly accurate
guantification of selected peptides and proteins. First described over thirty years
ago, selected reaction monitoring (SRM-MS) is the most simple of this family of
techniques and is performed using a triple quadrupole mass spectrometer.?
SRM-MS makes use of this instrument’s ability to select specific precursor and

fragment ions for detection (Figure 6-1).1°

Quantification is performed using the
extracted ion chromatogram (XIC) of the precursor-fragment ion pair (called a
reaction or transition). The accuracy of quantification is improved through the
use of stable isotope-labeled peptides, which have the same amino acid
sequence as the target peptide, but are labeled on the C-terminus with C-13 and
N-15 lysine or arginine. Peak area ratio of the native-to-SIS XIC for the
guantitypic transition is used for quantification, and can be compared to an
external calibration curve for absolute quantification. Additionally, as can be
seen in Figure 6-1b, the SIS peptide has the same chromatographic retention
time as the native peptide, which increases the specificity of the SRM-MS
guantification. A major advantage of the triple quadrupole platform is its speed,

requiring approximately10 ms per transition.*”* Thus this technique is highly

amenable to multiplexing. Additionally, as technology has improved, it has
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allowed for the monitoring of several fragment ions per precursor ion, a technique
called multiple reaction monitoring (MRM-MS). MRM-MS provides improved
specificity for the target peptide compared to SRM-MS, and it has become a
popular method of protein biomarker quantification.*”* This technique has been
used to measure up to 67 proteins in a single 30 minute analytical run.'"**"
Newer generation hybrid mass spectrometers such as quadrupole ion trap and
guadrupole time of flight instruments offer further advantages for peptide
guantification due to their superior resolution and mass accuracy and are
capable of running in a data dependent acquisition mode similar to MRM.
However, an important distinguishing characteristic is that the mass analyzer of
these instruments allows for detection of the all the fragment ions generated from
a given precursor ion in parallel. Peptide quantification based on all of the
transitions generated during fragmentation has been termed parallel reaction
monintoring (PRM-MS), and this method of quantification has been demonstrated
to have improved linear range, reduced technical variability, and greater
specificity for the target peptide compared to MRM-MS.*"® Therefore, this
relatively new technique is likely to become the new gold standard for protein
guantification and an indispensable tool in the proteomics biomarker toolbox.

Methods

Patients and Urine Samples

Urine samples were obtained from 204 consecutively enrolled patients who had

undergone cardiac surgery at one of the SAKInet institutions between the dates
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Figure 6-1. Schematic of selected reaction monitoring mass
spectrometry. (A) In SRM-MS mode peptides derived from a biological
sample are chromatographically separated, are ionized by electrospray
ionization, and enter the first quadrupole (Q1). Only preselected precursor
ions are allowed by the first quadrupole to enter the collision cell (Q2; second
quadrupole). After fragmentation a single fragment ion is allowed to pass
into the third quadrupole (Q3) and to the detector for quantification using the
peak area from the corresponding extracted ion chromatogram (XIC). (B).
Quantification with SRM-MS is accomplished using a stable isotopically —
labeled peptide that is identical in sequence to native peptide, but can be
differentiated by its increased mass. The ratio of the peak areas of the XICs
of the two peptides is used for quantification and can be compared to an
external calibration curve for absolute quantification.
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of August 1, 2008 and June 1, 2012. All samples used were included in our
previously described study (Chapter 3).*”” Informed consent was obtained in
accordance with the IRB-approved protocol at each institution. Samples were
collected and stored as previously described using a standard operating
procedure which included centrifugation, addition of protease inhibitors and
storage at -80°C. Urine samples were collected as early as possible after AKIN
serum creatinine criteria were met, and all were collected within the first 72 hours
after surgery. Inclusion criteria were surgery of the heart or ascending aorta and
development of AKIN stage 1 AKI by creatinine criteria within 3 days of surgery.
Subjects with ESRD, baseline serum creatinine > 3.0 mg/dL or AKI greater than
AKIN stage 1 at the time of collection were excluded. Patients were followed
until either time of death or hospital discharge, and were staged according to the
maximum increase in serum creatinine using the AKIN classification system.?
Urine output criteria were not used in diagnosis or staging because urine output
data was not available. For PRM-MS analysis, patient samples were grouped by
the maximum AKIN stage attained by the patient, and a block randomization was
used to divide the cohort into four batches of 40 samples consisting of 30
patients who did not progress beyond AKIN stage 1, six patients who progressed

to AKIN stage 2, four who progressed to AKIN stage 3.

Selection of Peptides for Parallel Reaction Monitoring Assay

With the exception of angiotensinogen, one tryptic peptide from each of the
candidate biomarkers was selected for inclusion in the assay. Peptides identified

during discovery phase proteomic analysis were preferentially selected for use in
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the assay. When no suitable peptide could be identified from previous data,
theoretical peptides were generated by in silico protein digestion (Peptide Mass)
and an appropriate peptide was selected.'”® Only peptides which were identified
by BLAST alignment as unique to the protein of interest were used for PRM-MS.
Stable isotope-labeled versions of these peptides (SIS peptides) were
synthesized (New England Peptide), and were used during assay development
and as internal standards for quantification of urine biomarkers. These SIS
peptides are C13- and N15-labeled on the C-terminus, and are only
distinguishable from the endogenous (light) peptides by a shift in the mass of the

precursor and fragment ions (y-ion series).

Peptide Characterization

To determine the predominant charge state of target peptides, an SIS peptide
mixture was analyzed in information dependent acquisition mode using a
Eksigent 2D+ HPLC in-line with an AB SCIEX Triple ToF 5600 mass
spectrometer. Theoretical collision energy values were calculated using the
formula published by Kuzyk et al. and the formula suggested by the
manufacturer.!’® These values were used as a guide for empirical determination
of optimal collision energy. The elution profile of each peptide from the Strata-X
solid phase extraction (SPE) cartridge used in our workflow was determined
empirically. The SIS peptide mix was spiked into a urine matrix and the SPE
cartridge was washed with 5% acetonitrile 0.1% formic acid. Serial elutions were
performed using eluents of 10%, 15%, 20%, 25%, and 30% acetonitrile 0.1%

formic acid solutions. The peak area of the extracted ion chromatogram of the
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most abundant fragment ion of each peptide precursor ion was calculated in

each eluate to generate the elution profile.

External Calibration Curve

SIS peptides were brought to a concentration of 1 nmol/uL in 10% acetonitrile
0.1% formic acid. The peptide mix was then serially diluted and analyzed by
liquid chromatography PRM-MS using an Eksigent 2D nano-HPLC and AB
SCIEX Triple ToF 5600 mass spectrometer. PRM-MS data were analyzed in
Multiquant and the sum of three most abundant fragment ions of each peptide
(except for the peptides for complement C4b and LFABP, for which only 2 ions
were used) was used to generate an external calibration curve (standard curve)
with 1/x weighting using OLS regression.

Protein Quantification

Batches of 40 samples were analyzed by the PRM-MS method outlined below.
Within each batch three analytical blanks and a standard reference material
(SRM) were also analyzed. The SRM consisted of a pooled urine sample
obtained from 5 patients with acute kidney injury after cardiac surgery.

Trypsin Digestion

Frozen samples were thawed in a 37°C water bath. A 50 pL aliquot of each
sample was diluted 1:4 in 100 mM ammonium bicarbonate. To estimate
digestion efficiency, 40 ng of stable isotope-labeled angiotensinogen protein
(C13- N15-labeled lysine and arginine residues; Origene) was spiked into each
sample. Proteins were denatured by the addition of 100 mM DTT and heating to
60°C for 30 min. Cysteine alkylation was performed by the addition of 0.5 M

iodoacetamide followed by 30 min incubation in the dark. Trypsin (Promega)
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was added at a ratio of 1:20 with total protein and samples were digested for 12
hr at 37°C.

Solid Phase Extraction

Following trypsin digestion samples were acidified by the addition of 3 volumes of
0.1% formic acid. At this time, a known concentration of SIS peptides was
spiked into the samples to account for technical variability and to be used in
downstream quantification. Solid phase extraction (SPE) was used for sample
clean up and preparation for liquid chromatography tandem mass spectrometry.
Strata-X (Phenomenex) SPE cartridges were conditioned with 1 mL acetonitrile
(Honeywell) and equilibrated with 1 mL 0.1% formic acid (Sigma). Acidified
sample digests were loaded on the SPE cartridge. After waiting for 5 min,
samples bound to the SPE cartridges were washed with 1 mL of 5% acetonitrile
0.1% formic acid solution. Sample elution was performed using 30% acetonitrile
0.1% formic acid eluent. Sample eluate was collected in Protein LoBind
polypropylene tubes (Eppendorf), frozen at -80°C and dried in a centrifugal
vacuum concentrator.

Liquid Chromatography Parallel Reaction Monitoring Mass Spectrometry

Dried samples were reconstituted by the addition of 50 pyL of 10% acetonitrile
0.1% formic acid followed by mild vortexing at room temperature for 20 min.
Reconstituted samples were centrifuged at 15,000 x g 4°C for 15 min. A5 uL
aliquot of supernatant was diluted 1:15 in 10% acetonitrile 0.1% formic acid in
order ensure that peptides of higher abundance proteins (uromodulin,
nonsecretory ribonuclease, myoglobin, superoxide dismutase, and liver fatty acid

binding protein) were below the upper limit of quantification. The remainder of
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the supernatant was transferred directly into autosampler vials (Wheaton) and
used to quantify lower abundance proteins. Each sample was analyzed using
two separate analytical runs, one optimized for low abundance proteins and one
for high abundance proteins. A 10 uL injection of undiluted sample was used for
measurement of low abundance proteins, and a 5 pL injection of diluted sample
was used for measurement of high abundance proteins. Liquid chromatography
was performed on a 2D Eksigent HPLC. Briefly, samples were loaded onto a 2
cm Acclaim PepMap 100 C18 nanotrap column (Thermo Scientific) and washed
extensively with mobile phase A (98% water, 2% acetonitrile, 0.1% formic acid).
Chromatographic separation was then performed using a continuous gradient on
increasing percentage of mobile phase B (95% acetonitrile, 5% water, 0.1%
formic acid) on a 15 cm Acclaim PepMap 100 C18 analytical column (Thermo
Scientific). Peptides were ionized using a nanospray ion source, and analyzed
using an AB SCIEX Triple ToF 5600 mass spectrometer. Parallel reaction
monitoring data acquisition parameters include MS accumulation time of 150 ms,
fragmentation only of masses corresponding the empirically derived m/z of each
peptide/SIS peptide pair selected during assay design using empirically derived
collision energy, and 100 ms of MS/MS accumulation time was specified. The
total cycle time for the data acquisition method was 2.15 s for low abundance
proteins and 1.8 s for high abundance proteins. The extracted ion
chromatrogram (XIC) of the sum of no fewer than 2 precursor ion-fragment ion

transitions was used for quantification of each target protein by comparison to the
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corresponding SIS peptide and external calibration curve All PRM-MS data were
analyzed in Multiquant (AB SCIEX).

Assay Characterization

A standard reference material (SRM), which was a pooled urine sample obtained
from 5 patients who had developed AKIN stage 1 AKI after cardiac surgery was
used as a standard reference material (SRM). A 50 pL aliquot of the SRM was
processed and analyzed with each batch of 40 patient samples. The coefficient
of variation of the calculated protein concentrations was used to assess
interassay variability. Analytical blanks were used to calculate the limit of
detection (LOD) and lower limit of quantification (LLOQ) of the assay, as
described by Mani et al. The distribution of the peak areas of the twelve blanks
was determined, and outliers were identified using the upper and lower fences of
a box plot (defined as 75" percentile + 1.5*IQR and 25" percentile — 1.5*IQR,
respectively). Blanks which fell outside of this range were deemed unreliable
estimates of assay performance. LOD and LLOQ were then calculated
according the method described by Mani et al.*"

Statistical Analysis
The primary outcome was the development of AKIN stage 3 AKI or death.

Creatinine corrected molar concentration of target proteins was not normally
distributed, and so comparison of biomarker concentrations between the group of
patients who met the outcome and those who did not was performed using the
Mann-Whitney U test. Receiver operator characteristic (ROC) curve analysis
was used to evaluate the ability of each biomarker to predict the primary

outcome. Logistic regression was used to test the association between
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biomarker concentration and risk of meeting the primary outcome. Because a
significant number of patients had calculated biomarker, biomarker
concentrations were transformed into an ordinal scale (<LOD = 0, <LLOQ =1, 1*
quartile = 2, 2" quartile = 3, 3" quartile = 4, 4™ quartile = 5). Ordinalized
biomarkers were also combined in a backwards stepwise multivariate logistic
regression model to identify independent predictors of the primary outcome.
Goodness of fit was assessed with the Hosmer-Lemeshow, Pearson Chi-square,
and Likelihood ratio tests. Statistical Analysis was performed in SPSS (version
21 and Sigma Plot (version 11).

Results

Patient Characteristics

Urine samples collected from 157 patients who had developed AKI after
undergoing cardiac surgery were analyzed using the PRM-MS assay that we
developed. All patients had developed AKI within 72 hours after surgery and
were classified as AKIN stage 1 by serum creatinine (sCr) criteria at the time of
sample collection. Twenty-one patients met the primary outcome of development
of AKIN stage 3 or death. Patients who met the outcome were well-matched to
those who did not with respect to demographic and intraoperative variables.
However, sCr at the time of collection and the change in sCr from baseline were
higher in the group of patients who met the outcome, and there was a trend
toward higher pre-operative sCr in this group. A comparison of patients who met

the outcome and those who did not is shown in Table 6-1.
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Assay Development

A total of 22 candidate biomarker were identified by discovery phase proteomic
analysis (see Chapter 2, Table 2-4). We attempted to design a PRM-MS assay
using a single tryptic peptide to quantify each of the proteins, with the exception
of angiotensinogen for which we selected three peptides (Table 6-2). Peptides
which had been identified during discovery proteomic analyses of human urine
were screened to determine their suitability for inclusion in the assay. In order to
be included peptides had to have been unmodified, not contain any cysteine or
methionine residues, not contain any missed cleavages, and be unigue to the
target protein. Unfortunately, we could not identify suitable peptides for Secreted
Ly-6/uPAR-related protein, Complement C3 and Hepcidin, so these candidate
biomarkers were not be included in the assay. The SIS peptides were analyzed
in information dependent acquisition mode to ascertain their predominant charge
state. The peptides that were selected to quantify Thymosin Beta-4 and Insulin-
like growth factor binding protein 1 were not detectable during this analysis,
indicating that they were either insoluble or failed to ionize well. After the optimal
collision energy was empirically determined for the remaining peptides, an
external calibration curve was generated. The sum of the intensities of the three
most dominant fragment (y) ions was used for quantification, with the exceptions
of the peptides for Complement C4-B and L-FABP, which only had two
detectable y-ions. The peptides for Profilin-1, Glutathione peroxidase-3,
Lysozyme C, and Polymeric immunoglobulin receptor did not have linear
standard curves, and so these were also excluded from the assay. In contrast, 12

of the 16 peptides had excellent linearity (r = 0.98) with the
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linear range of the standard curve of 11 of these at attomolar concentrations.
Therefore, the final assay contained 16 native/SIS peptide pairs representing 14
proteins, including 3 established AKI biomarkers: neutrophil gelatinase-
associated lipocalin, kidney injury molecule-1, and liver-type fatty acid binding
protein.

We attempted to estimate the average abundance of each of the proteins in the
assay because others have reported that the accuracy of quantification
decreases when the SIS peptide spike differs from the endogenous peptide by
greater than a factor of 10.*"* A literature search returned estimates for CD59,
myoglobin, KIM-1, L-FABP, and NGAL. The concentrations of urinary
angiotensinogen and uromodulin were estimated using the mode of the values
obtained by ELISA in the experiment described in Chapter 5. The molar
abundance of the remaining proteins was estimated using exponentially modified
protein abundance index (emPAl) values obtained from discovery phase
proteomic analysis in Chapter 2, indexing them to ELISA measurements that we
had previously made on angiotensinogen and uromodulin. These estimates
indicated that the target proteins spanned several orders of magnitude, which
complicated our analysis because it was obvious that all of the proteins would not
be in the linear range of the standard curve if a single sample injection were used
(Table 6-3). Therefore, we decided to adapt the analytical approach such that
each sample was analyzed twice, once in undiluted form (that is reconstituted
with the amount of volume equal to the starting sample volume) and once as a

1:15 dilution.
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Assay Performance: LOD, LLOQ and CV

Assay performance characteristics for each target peptide are reported in Table
6-4. Unfortunately, many of the samples had values that were undetectable
(below the limit of detection; LOD). More samples had calculated values below
the lower limit of quantification (LLOQ). In some cases the target proteins were
only observed in a very small percentage of patients (CD59), and KIM-1 and
apolipoprotein A-IV was not detected in any samples. Therefore, these proteins
could not be evaluated. The external calibration curves for CD59, and KIM-1
were among the lowest quality included in the assay, which could explain the
poor measurements made on these proteins. In contrast, the large number of
patients with apolipoprotein A-1V and values below the LOD was surprising given
excellent calibration curve for this peptide, suggesting that either the endogenous
protein is outside of the range of the assay or that this peptide is not observed
due to ion.

The coefficient of variation (CV) of the measurements made on the standard
reference material (SRM) that was analyzed with each batch was used to
estimate interassay variability. Unfortunately, the CV could not be calculated for
many of the proteins because the native peptide was undetectable in the SRM.
This likely reflects a low concentration of the target proteins in the urine samples
that were pooled to make the SRM. Therefore, the technical variability of the
assay could not be evaluated for several of the proteins. To overcome this
limitation in future studies, the SRM should include a spike of unlabeled peptide

or protein to ensure that assay variability can be assessed. Additionally, the CVs
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Table 6-3. Estimated molar concentration of target proteins included in

PRM-MS assay.

Protein

Estimated
Concentration

Angiotensinogen

0.188 fmol/uL

Pigment epithelium derived protein

0.188 fmol/uL

Antithrombin 11l

0.188 fmol/uL

Complement C4-B

0.188 fmol/uL

Apolipoprotein A-IV

0.188 fmol/uL

Myoglobin 5.82 fmol/pL
Proepidermal growth factor 0.188 fmol/pL
NGAL 1.33 fmol/uL
KIM-1 0.052 fmol/pL
Uromodulin 71.7 fmol/pL
CD59 282.0 fmol/pL
L-FABP 63.3 fmol/uL
Superoxide dismutase 71.7 fmol/uL
Nonsecretory ribonuclease 71.7 fmol/uL
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that could be calculated were higher others have reported.*”**"® This is likely
due to a difference in study design. We chose to digest and process the SRM
concurrently with each batch, whereas others make an SRM batch which is
digested and processed separately from the samples of each batch and is only
analyzed concurrently with the samples. Thus the CV that is reported here
incorporates variability in each step of the workflow from digestion to instrumental
analysis, whereas the use of an SRM batch only accounts for instrumental

variability.

Qualification of Candidate Biomarkers by Targeted Mass Spectrometry

Because many patients had biomarker concentrations that were below the limit of
detection for the assay, we compared the proportion of patients with biomarker
concentrations above the LOD who met or did not meet the AKIN stage 3 or
death (Table 6-5). Patients who met the outcome were more likely to have
urinary concentrations of L-FABP, superoxide dismutase [Cu-Zn], and myoglobin
above the LOD of the assay, compared to patients who did not meet the
outcome. Next, the association of elevated biomarker concentration (not
creatinine-corrected) and risk of development of AKIN stage 3 or death was
determined using an ordinalized protein concentration scale that included the
following cut-offs: <LOD, >LOD but <lower limit of quantification (LLOQ), 1%, 2",
3" and 4™ quartiles above the LLOQ (Table 6-5). Complement C4B, and CD59
were excluded from this analysis because only a small number of patients who

had concentrations of these proteins above the LOD of the assay. Higher
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concentrations of angiotensinogen (OR = 1.56 95% CI [1.19, 2.05]), superoxide
dismutase [Cu-Zn] (OR =1.89 95% CI [1.31, 2.73]), L-FABP (OR = 1.46 95% ClI
[1.01, 2.11]), and myoglobin (OR = 1.69 95% CI [1.16, 2.48]) were associated
with an increased risk of meeting the outcome. Finally, we evaluated the ability
of creatinine-corrected biomarker concentrations to discriminate between
patients who would meet the outcome and those who did not. In order to
complete this part of the analysis, the LOD of each biomarker was applied as a
threshold such that patients who had biomarker concentrations below the LOD
were made equal to the LOD. The median concentrations of angiotensinogen, L-
FABP, and superoxide dismutase were higher in patients who developed AKIN
stage 3 or died Table 6-6). Receiver operator characteristic curve analysis found
that all of these proteins were predictive of the primary outcome (Figure 2).

Discussion

A multiplex tandem mass spectrometric assay was developed to quantify 10
candidate prognostic biomarkers of AKI, as well as angiotensinogen, NGAL, L-
FABP, and KIM-1. Peptides for an additional 6 peptides from 6 other candidate
biomarkers were evaluated for inclusion in the assay but did not perform well
during the development phase and were excluded. Future studies should
attempt to quantify these proteins using different proteotypic peptides. This
assay was similar in design to PRM-MS assays that have been described, in that
it utilized an analytical platform with a high resolution and mass accuracy, and so
our data benefitted from enhanced precision compared to a conventional MRM-
MS approach.’’® However, our assay was not a true PRM-MS assay because

only the most abundant fragment ions of the y-series were used for quantitation
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(although the entire fragmentation spectrum was collected). This approach was
chosen because it has been our experience with our instrument that lower
abundance transitions introduce chemical noise and reduce the sensitivity of the

measurement.

Urine samples from a total of 157 cardiac surgery patients were analyzed and the
concentrations of the 14 proteins were evaluated for prediction of the outcome
AKIN stage 3 or death. Disappointingly, many of the measurements that we
made were below the lower limit of quantification (LLOQ) or the protein was
undetectable. There are several possible explanations for this including: 1)
matrix effects that suppress the ionization of the target peptide, 2) poor digestion
efficiency resulting in lower abundance of the target peptide, 3) protein
modification that either reduces digestion efficiency or shifts the mass of the
target peptide, and 4) low protein abundance that is below the range of the
assay. Inthe unique case of NGAL, the incorrect precursor ion was selected for
fragmentation, and so no data could be acquired to quantify it. This is a limitation
of the study, because NGAL is a well-validated AKI biomarker and novel
candidate biomarkers should be compared to it. Despite these significant
limitations, we attempted to draw a valid conclusion from the data by assuming
that data points below the LOD were due to low levels of the endogenous
protein, and so the LOD was applied as a threshold to the data and all values

<LOD were made equal to the LOD.

Using this approach, we found that the candidate biomarkers angiotensinogen,

superoxide dismutase [Cu-Zn], and myoglobin predicted AKIN stage 3 or death.
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Although we admit that the accuracy of our measurements must be viewed with
caution because the assay was not thoroughly validated, we believe that the
precision is sufficient for relative quantification and that our inferences are valid.
This is evidenced by three confirmatory findings present in our data. First, we
found a good correlation between angiotensinogen values obtained by PRM-MS
and those previously measured by ELISA, and the data obtained by PRM-MS
showed that angiotensinogen predicted AKIN stage 3 or death with an AUC
nearly equal to that obtained using ELISA measurements. Similarly, we
confirmed that uromodulin did not predict the outcome, which we had also
previously found using an ELISA for quantitation. Finally, we found that liver-type
fatty acid binding protein (L-FABP), a well-established AKI biomarker, predicted
this outcome that has been reported to be an excellent predictor of mortality in

patients with sepsis-associated AKI.*’

These results are the first to report superoxide dismutase [Cu-Zn] and myoglobin
as AKI biomarkers. While these finding will need to be confirmed with a more
well-validated assay, the prognostic significance of these proteins is congruous
with our understanding of the role of oxidative stress in AKI. Specifically,
myoglobin, a heme-containing protein, can generate free radicals and is a known
nephrotoxin. Itis plausible that higher concentrations of myoglobin in the urine
would be associated with more severe renal injury.!”® Conversely, SOD [Cu-Zn]
is a free radical scavenger which converts superoxide to hydrogen peroxide and
has been shown to be renoprotective.'®® *¥° Elevated concentrations of SOD

[Cu-Zn] could represent a response to severe oxidative stress.  Additionally, we

155



have previously found that angiotensin predicts adverse outcomes in patients
with established AKI, but had not directly compared it to more well-characterized
AKI biomarkers. In this analysis, we found that angiotensinogen compared
favorably with L-FABP. These data solidify our previous findings and emonstrate

that urinary angiotensinogen could have clinical utility as an AKI biomarker.
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Chapter 7: Insights, Unanswered Questions, and Future Directions

157



Mechanistic Insights and Unanswered Questions: The Renin-Angiotensin

System and AKI

Not only do biomarkers provide information useful for guiding clinical care, but
they can also yield mechanistic insights into the molecular underpinnings of the
associated disease. The studies that have been presented have convincingly
shown that elevated concentrations of urinary angiotensinogen and renin are
associated with more severe AKI and adverse outcomes. These two proteins are
the substrate and enzyme, respectively, of the rate limiting step of the renin
angiotensin system (RAS).*®° It has long been recognized that the RAS plays a
central role in chronic kidney disease (CKD), and RAS inhibitors are the standard
of care for patients afflicted with CKD.'®" ' An increase in angiotensinogen is
prerequisite for activation of the RAS and generation of downstream effector
angiotensin peptides, and it is believed that urinary angiotensinogen is a
surrogate for intrarenal activation of the renin-angiotensin system (RAS) during
chronic kidney disease.*® 1818 |mportantly, Kim et al. have shown that urinary
angiotensinogen concentration correlates with urinary TGF-3, a profibrotic
cytokine, and with the degree of the severity of the renal histopathology of
patients with CKD.*® Given its biological relationship with angiotensinogen, it is
logical that urinary renin excretion could also be an important index of intrarenal

RAS activation in chronic kidney disease.

In fact, it has been demonstrated that intrarenal angiotensin Il increases renin

expression
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in the collecting duct via AT1R signaling, which results in tubular secretion of
prorenin and renin.’®” In light of what is known about RAS and the importance of
urinary angiotensinogen and renin in CKD, our findings require us to consider the
possibility that the RAS could modulate the severity of renal injury during an
episode of AKI. Certainly this would be congruent with the data from animal
models of AKI (see below). Furthermore, as mentioned in the introduction in
Chapter 1, AKI can precipitate CKD and accelerate its progression. Could the
RAS be the mechanism which underlies this epidemiologic association? It is
certainly plausible. If indeed this is the case, then it is likely that monitoring
urinary angiotensinogen and renin levels during the course of AKI could predict
which patients will develop CKD or progress from CKD to end stage renal

disease (ESRD).

Animal models of AKI have repeatedly demonstrated that RAS activation occurs
during AKI, and that it exerts a negative effect on the severity of the injury. Allred
et al. showed that angiotensin Il increases in kidney tissue following ischemia
reperfusion injury in rats, whereas angiotensin | and angiotensin 1-7 increase in
the urine.'® These findings are supported by a study by da Silveira et al., which
showed that not only does angiotensin Il increase, but angiotensin 1-7, a
potential counterbalance of angiotensin Il effects, decreases in renal tissue
following ischemia reperfusion injury in a rat model of AKI.*®® Greater amounts of
renal angiotensin Il that are observed during AKI could result in increased
intrarenal inflammation, since models of chronic renal injury have shown that

angiotensin Il contributes to renal injury through pro-inflammatory effects
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mediated by the NF-kB pathway.'***** Indeed, inhibition of angiotensin
converting enzyme and the angiotensin Il type 1 receptor with captopril and
losartan, respectively, reduce renal inflammation in rats subjected to renal

ischemia-reperfusion injury and mitigate the severity of AKI in this model.**> 1%

It is commonly believed that RAS inhibitors can precipitate and exacerbate AKI.
Some observational studies have noted an increased risk of AKI associated with
RAS blockade, which is presumably due to the inhibition of angiotensin Il
mediated vasoconstriction of the efferent arteriole.*" % This results in lower
hydrostatic pressure in the glomerulus, resulting in a decreased glomerular
filtration rate (GFR) and an increase in serum creatinine. Therefore, the effect of
RAS inhibitors on AKI incidence could be artificial and unrelated to the effect of
RAS inhibitors on renal injury, and it could be possible that RAS inhibitors
attenuate renal injury while simultaneously decreasing renal function.
Unfortunately, the effect of RAS inhibitors of the incidence of severe AKI and its
complications has not been thoroughly investigated. Our work would seem to
suggest that the incidence might be decreased, and therefore an observational
study on the effect of RAS inhibitor use and AKI severity would be a logical
extension of the biomarker data that has been presented. We would hypothesize
that the effect of RAS inhibitors on GFR could result in an increased rate of
complications from AKI such as uremic encephalopathy, hyperkalemia, metabolic
acidosis, and volume overload, but that if these complications are appropriately
managed, RAS inhibitors could mitigate the mortality rate associated with severe

AKI and potentially reduce the rate of long term complications of AKI. While we
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recognize that this is in stark contrast to conventional wisdom, it is noteworthy

that a recent review proposed the continuation of RAS inhibitors during AKI.2%°

Intrarenal or Systemic: The Question of Location

Classically, the RAS has been understood as a systemic hormonal cascade in
which angiotensinogen is produced by the liver and renin is released into
circulation by the juxtaglomerular apparatus in the afferent arterioles of kidney.
However, the existence of a local RAS in the kidney is widely recognized, and an
important question that remains unanswered by our work is whether this or the
systemic RAS is the source of increased angiotensinogen and renin that we have
observed in the urine of patients with more severe AKI.**"?*> We believe that the
tubular compartment is the likely source of these urine proteins during AKI. Early
work by Ingelfinger et al. demonstrated localization of angiotensinogen
messenger RNA in rat proximal tubules, a finding that was subsequently verified
in human tissue.?*® 2% This indicates that the proximal tubule itself is capable of
angiotensinogen biosynthesis. In support of this idea, a recent multiphoton
imaging study reported negligible glomerular filtration of plasma angiotensinogen
and concluded that urinary angiotensinogen concentration reflects intrarenal
production.?®* On the contrary, elegant studies using tissue specific and
conditional knockout mice have demonstrated that under normal conditions
tubular angiotensinogen protein is primarily derived from the liver and depends
on megalin for its uptake.?*®> 2% Thus, it is possible that the urinary
angiotensinogen detected in our assays was synthesized in the liver and

sequestered in the proximal tubule, but was released by the proximal tubule upon
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injury. However, a limitation of the knockout animal studies is that they have
investigated intrarenal angiotensinogen in the uninjured state, and so their
findings may not reflect what occurs during AKI. Therefore, AKI induced
angiotensinogen biosynthesis by the proximal tubule cannot be ruled out, since
this is a well-established phenomenon.?°? %" Similarly, renin is classically
understood as secreted by the juxtaglomerular apparatus into circulation. Renin
protein can be localized in the proximal tubule, and like angiotensinogen,
appears to be dependent on megalin uptake.?®® However, renin is expressed
along renal tubular epithelium, and in vivo microscopy has shown that renin
production increases in the collecting duct during diabetic nephropathy.’® A
similar mechanism could underlie the increased concentration of urinary renin

that we observed in patients with more severe AKI.

Despite the evidence for intrarenal production of angiotensinogen and renin
during chronic renal injury, which could be paralleled during acute injury, we must
acknowledge that such deductive reasoning is inconclusive. A potential future
direction of this project is to determine the site of angiotensinogen and renin
production during AKI using animal models of AKI (such as renal
ischemia/reperfusion injury). Increased intrarenal expression of these genes and
protein abundance after renal injury suggest the kidney as the source of these
urine proteins. However, kidney-specific knockouts of angiotensinogen and renin

would be needed to definitively prove intrarenal production.

Implications for Clinical Trials of AKI

Despite strong evidence from animal models and numerous randomized clinical
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trials, there are no effective interventions for AKI, and treatment is supportive in
nature. There are at least three reasons for this translational bottleneck: 1) late
initiation of therapy during the trial 2) the complex and multifactorial nature of AKI
pathobiology and 3) underpowered study design. Novel biomarkers of AKI can
address each of these issues. Serum creatinine, the conventional AKI
biomarker, is a surrogate of the glomerular filtration rate, and as described in
chapter 1, it increases as GFR declines during the early phases of AKI.
However, it increases slowly and elevated sCr is often not detected until 1-3 days
after the renal injury has occurred. Therefore, clinical trials which rely upon
increased serum creatinine for AKI diagnosis and enroliment are unlikely to find a
positive effect on acute outcomes. Recognition of this limitation of creatinine has
been the primary driving force behind AKI biomarker research, leading to the
discovery of several “early” AKI biomarkers. Secondly, biomarkers can function
as molecular phenotyping tools that distinguish between different subtypes of
disease, perhaps identifying a subpopulation in which intervention is effective.
While no AKI biomarkers have been proposed for this purpose, examples of
biomarker driven clinical care abound in the oncology literature, and our findings
regarding angiotensinogen and renin are particularly attractive for this purpose.
Given the discussion above, it seems likely that the RAS is involved
mechanistically in AKI, and it could be that RAS blockade could have a benefit in
patients with elevated urine concentrations of these proteins. Finally, the
inclusion of patients with mild AKI in clinical trials, while commensurate with the

evolving definition of this disease, results in a lower baseline prevalence of
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severe adverse outcomes and diminishing the effect size of an intervention.
Thus very large sample sizes are needed to demonstrate efficacy. Prognostic
biomarkers such as angiotensinogen and renin, which predict progression to
more severe AKI and a higher risk of adverse outcomes, could therefore be used

to screen for inclusion in a trial.

Despite the strong rationale for incorporating biomarkers in AKI trial design, only
one trial, the EARLYARF Trial, has used biomarker screening as a guide to
enrollment.**? In this trial, urinary alkaline phosphatase (AP) and gamma-
glutamyl transferase (GGT) values were monitored in ICU and post cardiac
surgery patients and were used to screen patients for enroliment in a
randomized, prospective, placebo-controlled clinical trial investigating the effect
of erythropoietin on AKI incidence. Unfortunately, this trial failed to demonstrate
an effect. However, it serves as an illustrative example. The underlying reason
for the failure of erythropoietin is not likely to be late initiation of therapy, since
increased urine concentrations of these brush border enzymes is thought to be
an early marker of renal injury. Rather, there are two more plausible
explanations. First, the putative renoprotective mechanism of erythropoietin is
attenuation of ischemia-reperfusion injury.?’>#° While GGT and AP do increase
following ischemic tubular injury, they are not specific for ischemic injury. The
heterogeneity of the study cohort itself is evidence of this, as there were a
significant number of the patients who had septic AKI and AKI after cardiac
surgery, both of which have complex, multifactorial pathogenesis.?** 22 This

heterogeneity could have attenuated any therapeutic benefit gained by
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erythropoietin administration. Secondly, the investigators ran an observational
study in parallel with the trial to determine the effectiveness of biomarker
screening at enriching the study population. It seems that GGT and AP guided
enrollment only marginally enriched the study population, resulting in only a small
increase in statistical power of the study. For example, biomarker guided
enrollment increased the incidence of AKI from 15.1% to 23.0% and 7 day
mortality from 8.1% to 14.2% (P = 0.034). While the .investigators explicitly
stated in the manuscript that AP and GGT were the only confirmed AKI
biomarkers available for rapid detection at the time the study was conducted, it
begs the question of how the trial would have concluded if a more accurate

biomarker had been used.

The design of the EARLY ARF trial raises an important question for AKI
biomarker research. Namely, how good does a biomarker need to be in order to
be useful in clinical trial design? A recent NIDDK workshop on AKI clinical trial

design stated,

“Although numerous novel biomarkers have been proposed for
early identification of intrinsic AKI, to date no biomarker has been
shown to possess sufficient predictive ability to be used as a
primary enrollment criterion and should not supplant SCr [serum
creatinine] for enrollment into trials exploring the effects of agents

on established AKI.”2%3

However, the participants noted that potential use of biomarkers in risk
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stratification in AKI trials should continue to be investigated. Specific
recommendations for assessing this potential were not prescribed, and it remains
largely unclear how to define the advantages gained by using a biomarker as a
guide for enrollment. It is obvious, however, that the advantages and
disadvantages of biomarker guided clinical trial enrollment are best understood in
terms of the benefit of enrichment and the cost of screening. It is our objective to
provide a logical framework for performing a cost-benefit analysis to determine if

biomarker guided enrollment might be beneficial for future AKI clinical trials.

Enrichment: The Benefit of Biomarker Guided Enrollment

Enrichment strategies are commonplace in clinical trial design.**' Their purpose
is to increase the proportion of patients in the study population who might benefit
from an experimental intervention, with the results being increased effect size
(i.e. absolute risk reduction), increased statistical power, and a decrease in the
sample size needed to achieve a given power. To describe the advantages of
enrichment, let us consider the fenoldopam trial conducted by Tumlin et al.?**
This prospective, randomized, double-blind, placebo controlled clinical trial (n =
155) found that fenoldopam, a dopamine receptor alpha-1 specific agonist, failed
to reduce the rate of renal replacement therapy or death within 21 days (p =
0.163). The incidence of this outcome in the placebo group (n = 75) was 38.7%,
whereas in the treatment arm (n = 80) 27.5% of the patients met the outcome
(relative risk reduction of 28.9%). The power to detect an effect size of 11.2%
with this sample size is 0.331. In order to achieve a power of 0.8, the

investigators would have needed to enroll 553 subjects. In order to understand
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how biomarker guided enrollment might have altered the outcome of this trial,
consider the combination of urinary angiotensinogen and renin that was
described in Chapter 5. This biomarker test identified patients at high risk of
progressing from AKIN stage 1 to the composite endpoint AKIN stage 3 or death
(sensitivity = 30.4%; specificity = 98.9%). This outcome is quite comparable to
the composite outcome renal replacement therapy or death chosen by Tumlin et
al. Assuming the same sensitivity and specificity, this test would have a PPV of
94.6% in the population used in the fenoldopam trial. If the
angiotensinogen/renin combination had been used to enrich the study population
of the fenoldopam trial, the power would have been 0.996, assuming no change
in sample size or the relative risk reduction conferred by fenoldopam treatment.
The increase in power is due to an increase in the absolute difference in the
proportions of subjects meeting the endpoint between the experimental groups
from 11.2% (38.7% -27.5%) to 27.4% (94.6% - 67.2%). Importantly, however,
because of the increased power, one of the most significant benefits of
enrichment is that, compared to the unenriched population, fewer patients will
need to be enrolled in the trial to detect a difference between the treatment
group, and we calculate that the number needed to enroll trial to attain a power of
0.8 (NNEpower 0.8) in an angiotensinogen/renin enriched fenoldopam AKI clinical is

only 62 patients.

Mathematically, enrichment is simply defined as the ratio of PPV to prevalence.
The benefit of enrichment can be appreciated by examining the changes in the

number needed to enroll (NNE) and number needed to treat (NNT), which are
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illustrated in Table 7.1. The number needed to enroll (NNE) is the number of
patients that need to be enrolled in order to enroll one patient who will meet the
outcome (one event). In an unenriched trial, NNE is simply the reciprocal of the
prevalence of the outcome (Equation 7.1a); in a biomarker enriched trial, NNE is
the reciprocal of the PPV of the biomarker test (Equation 7.1b). If the desired
number of events is known, then the total enrollment that will be necessary is
given by the product of NNE and the target number of events. Equivalently,
because enrichment increases the absolute risk reduction (ARR) of an
intervention, it results in a decrease in the number needed to treat (NNT), which
is the reciprocal of the ARR. Importantly, the PPV/prevalence ratio is equal to
the unenriched-to-enriched NNE and NNT ratios. Therefore we propose that
when evaluating the potential use of a biomarker in clinical trial design that this
‘enrichment index” be calculated (Equation 7.2), because of the ease of
interpreting this number as a measure of the degree of enrichment and its effect
on the observed treatment response rate. Furthermore, the statistical
significance of the enrichment index can be readily determined using the x? test.
However, since this test relies both on proportions and frequencies, we propose
that by convention, the proportion of 100 patients who meet the outcome be
calculated using the prevalence and compared to the number (out of 100)
calculated using the PPV (Figure 7.1). While this is a somewhat crude approach,

it immediately reveals if there is a statistically significant enrichment that could be
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Equation 7.1a NNE, = 1/Prevalence
Equation 7.1b NNEg = 1/PPV
Equation 7.2 El = PPV/Prevalence = NNE/NNEg = NNTy/NNTg

The subscripts U and E indicate unenriched and enriched populations,
respectively. El, enrichment index; PPV, positive predictive value of the
biomarker test; NNE, number needed to enroll; NNT, number needed to treat
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worth the cost of screening. Using this approach, it appears that the enrichment

index of angiotensinogen/renin is statistically significant (P< 0.001).

Screening: The Cost of Biomarker Guided Enrollment

The second aspect that must be considered when evaluating the potential of a
biomarker for guided enrollment is the cost of screening. This can be estimated
by calculating the number of patients who will need to be screened in order to
enroll one patient (number needed to screen; NNS). Because only patients with
a positive test result will be enrolled, the NNS is mathematically determined by
the proportion of patients who test positive (i.e. the sum of the true positive and
false positive rates). The NNS is equal to the reciprocal of the positive rate of the
test (Equation 7.3a). Assuming prevalence = 38.7%; sensitivity = 30.4%; and
specificity = 98.9%, the NNS of the angiotensinogen/renin CHAID model would
be 8. Therefore, in order to match the enrollment of the fenoldopam trial, 1240
patients need to be screened. From this analysis, the NNS seems to
unreasonably large, and we might erroneously reject the use of the
angiotensinogen/renin combination to guide enrollment. However, the NNS does
not tell us how many patients will need to be screened to conduct the trial; it is
merely an estimate of the rate of screening to enrollment. Furthermore, we have
already demonstrated that due to benefits of enrichment, a biomarker guided trial
will need to enroll fewer patients than an unenriched trial to reach a given
statistical power. In order to calculate how many patients will be needed conduct
the trial if a biomarker were used to enrich the study population, power and

sample size calculations must first be performed. Once the sample size has
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Unenriched Enriched

Outcome P*100 PPV*100
No Outcome| (1-P)*100 |(1-PPV)*100

n =200

Figure 7.1. 2 x 2 Contingency table evaluating the statistical significance of
enrichment. By convention, 100 subjects are considered for both the unenriched and
hiomarker enriched populations. Prevalence (P) and positive predictive value (PPV)
are used to calculate the estimated frequencies of patients meeting the outcome or
not. Statistical significance is determined with the x2 test.
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Equation 7.3a NNS = 1/[(P*Sensitivity) +[(1-P)(1-Specificity)]]

Equation 7.3b NNSpower 0.8 = NNS * SSpoweros

Where P = prevalence; NNS = number of patients that need to be screened to enroll
one patient; SSpower 0.8 = the number of patients that would need to be enrolled to
attain Power of 0.8; NNSp.wer 0.8 = NUMber patients that will need to be screened to
enroll SSpower 0.8 patients in the trial.
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been determined, then the NNS can be used to calculate the number of patients
that will need to be screened to meet that target enrollment (NNSpower 0.8;
Formula 7.3b). Therefore, if we use the sample size calculation performed above
for a power of 0.8, then we estimate that 491 patients would need to be screened
to meet the target enroliment of 62. Thus the number screened is actually less
than the number of patients who would need to be enrolled to achieve a power of
0.8 if all comers were enrolled (n = 553), indicating that the cost of screening is
less than the benefit of enrichment. A schematic for evaluating the costs and

benefits of biomarker guided enrollment is shown in Figure 7.2.

Discussion of Cost-Benefit Analysis

It must be noted that the framework which we have provided has some obvious
limitations. The suggested calculations are performed a priori and consequently
are heavily dependent upon assumptions of prevalence, biomarker test
performance characteristics, and the relative risk reduction of the intervention.
Accordingly, prevalence of the primary outcome of a clinical trial should be
estimated from historical data in the study population to maximize the accuracy
of the estimate. Similarly, biomarker test performance should be well
characterized in a prospective observational study in the same population that
will be used in the clinical trial. This was the major pitfall of the EARLYARF trial,
because the investigators used a cut-off that had been determined from an
extremely small (n = 26) prospective study in which only 4 subjects developed

AKI.1% 215 Thjs is also limitation of the data that we have presented since
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Estimate P and RRR

/ \

Power and Estimate PPV, TP, —| Calculate EI
Sample Size || and FP rates of .
Analysis Biomarker Test Calculate NNS

\ |

Sample Size NNSpower x
Analysis

Figure 7-2. Schematic for evaluating the benefit and cost of incorporating biomarker
guided enrollment into clinical trial design. The first step is to estimate the prevalence of
the primary outcome (P) and the relative risk reduction (RRR) conferred by the intervention.
Prevalence should then be used to calculate the positive predictive value (PPV) of the
biomarker test. The enrichment index (EIl) should be calculated and statistical significance
determined using the x2 test as described in the text. Power and sample size analysis should
be performed for the unenriched (white box) and enriched trials (light gray boxes) using the P
and PPV, respectively, for the event rates in the placebo arm, keeping RRR constant. The
sample size (SS) calculated for a give power (Power X) should be determined for both studies,
and the NNS should be used to calculate the total number of patients that would need to be
screened to enroll that number of patients in the biomarker enriched trial (NNSpowerx). This
should then be compared to the SS calculated for the unenriched trial at that power

(SSPower X)-
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angiotensinogen and renin were evaluated in a retrospective cohort study in a
population that differed from that of the fenoldopam trial. Finally, the relative risk
reduction conferred by an intervention in a biomarker enriched trial has been
assumed to be identical to that of an unenriched trial. Unfortunately, this may not
be true. Because biomarkers subclassify a disease according to molecular
phenotype, the study populations of a biomarker enriched and unenriched trials
are not identical, and thus the effect size of an intervention is unlikely to be the
same. Unfortunately it is not possible to determine what the difference in the
performance of an intervention might be in the enriched population. There is
even the possibility that biomarker guided enrichment could abrogate the
therapeutic effect of an otherwise efficacious intervention, which would lead us to
falsely conclude that it is not effective. For this reason, it would be advisable to
adopt the 2 stage clinical trial strategy proposed by Jones and Holmgren.?¢218
In the first stage, 2 pilot trials are conducted in which the intervention is tested in
biomarker enriched population and an unenriched population. The second stage
is a larger, phase Il trial conducted using the population in which the intervention
demonstrated efficacy in stage 1. If there is no difference in the efficacy between
the enriched and unenriched groups, then the biomarker enriched population
could be used to reduce the enroliment in the second stage, potentially
accelerating the conclusion of the trial and decreasing the time needed to bring
an intervention to the general population. An additional advantage of the 2 stage
approach is that it allows us to determine if the intervention is only efficacious in

the biomarker enriched population. Such a result would be expected if the
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biomarker were an index of the mechanism which is targeted by an intervention,
and in fact, the oncology literature is replete with examples of biomarker driven
therapy. In addition to benefitting biomarker positive patients, correlating efficacy
with biomarker status is an important finding from an ethical perspective because
it would prevent the treatment of biomarker negative patients with an intervention
from which they will not benefit. Therefore, we hypothesize that patients with
elevated urinary angiotensinogen and renin could represent a subpopulation in
which inhibitors of the renin-angiotensin system could attenuate the severity of
AKIl, whereas other patients without elevated urinary angiotensinogen and renin

would not benefit from RAS blockade.
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