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Abstract 

Photodynamic therapy (PDT) is an FDA-approved, minimally invasive treatment 

modality that utilizes light in the presence of oxygen to activate photosensitizing agents 

to produce cell death. Phthalocyanine 4 (Pc 4), a second generation photosensitizer has 

shown efficacy in vitro, in vivo and in a phase I clinical trial. Pc 4 localizes primarily to 

mitochondria and endoplasmic reticulum, where it causes apoptotic cell death during 

PDT. Previously, our laboratory showed that photo sensitizers that localize to lysosomes 

are more effective in killing cancer cells than ones directed to mitochondria after PDT. 

Here, we investigated the interactions between lysosomes and mitochondria in promoting 

the efficiency of PDT cell killing efficiency_ Three head and neck cancer cell lines 

(UMSCCl, UMSCC14A and UMSCC22A) were exposed to Pc 4-PDT. The 3 cell lines 

responded differently: UMSCG.l and UMSCC14A cells were more resistant, whereas 

UMSCC22A cells were more sensitive to Pc 4-PDT. In non-erythroid cells, the 

mitochondrial iron transporter mitoferrin2 (Mfrn2) localizes on the mitochondrial inner 

membrane and transports iron' from the cytosol into the mitochondria. PDT-sensitive cells 

expressed higher Mfrn2 mRNA and protein levels compared to PDT-resistant cells. High 

Mfrn2 expressing cells showed higher rates of mitochondrial Fe2
+ uptake compared to 

low Mfrn2 expressing cells. Bafilomycin, an inhibitor of the vacuolar proton pump of 

lysosomes and endosomes that releases lysosomal iron to the cytosol, enhanced PDT

induced cell killing of both resistant and sensitive cells. Inhibition of the divalent metal 

transporter 1 (DMTl) on lysosomal membranes by ferristatin markedly protected high 

Mfrn2 expressing cells against bafilomycin-enhanced PDT toxicity, suggesting that iron 
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release after bafilomycin occurs via DMTI. Iron chelators and the inhibitor of the 

mitochondrial Ca2+ (and Fe2+) uniporter, Ru360, protected against PDT plus bafilomycin 

toxicity. Knockdown of Mfrn2 in UMSCC22A cells decreased the rate of mitochondrial 

Fe2
+ uptake and delayed PDT plus bafilomycin-induced mitochondrial depolarization and 

cell killing. Conversely, increased expression of Mfrn2 in low Mfrn2 expressing 

UMSCCI cells increased PDT plus bafilomycin-induced killing. Chloroquine, which 

also releases iron from lysosomes, significantly delayed tumor regrowth ·in high Mfm2 

expressing tumors after PDT. Taken together, the data suggest that lysosomal iron 

release and mitochondrial iron uptake through Mfrn2 act synergistically to induce PDT

mediated and iron-dependent mitochondrial dysfunction and subsequent cell killing. 

Furthermore, Mfm2 expression levels in tumors might be utilized as a biomarker 

predicting response to PDT in head and nec~ cancers. 
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Chapter 1 

Review of Head and Neck Cancer, 

Photodynamic Therapy, and 

Iron Physiology and Pathophysiology 
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1.1. Head and Neck Cancer 

1.1.1. Epidemiology and Etiology 

Head and Neck Cancer (RNC) covers a broad spectrum of soft tissue malig

nant neoplasms of the tongue, lips, nasal and oropharyngeal cavities, paranasal si

nuses, major and minor salivary glands, larynx, and the lymphatic tissues of the neck 

(Fig. 1 ). It is the 6th most common cancer worldwide and accounts for approximately 

6% of all cases of cancers [1-3]. Each year, over 650,000 new cases are diagnosed 

worldwide, and 350,000 patients die from this disease [3]. More than 90% of the 

cancers are squamous cell origin from the epithelium of the mucous-lining mem

brane of the upper aerodigestive tract (UADT) [4], and therefore squamous cell car

cinoma (SCC) represents the majority of head and neck cancers. Head and neck 

cancers with adenocarcinoma origins from associated secretory glands are rare. Ear

ly stages (stage 1/11) of head and neck cancer have good prognosis after surgery or 

radiotherapy, with 75% overall 5-year survival rate [5]. However, approximately 66% 

of patients diagnosed with head and neck cancer are already in stages III and IV, for 

which the prognosis is poor, and the overall 5-year survival rate is 35% [6, 7]. 
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Figure 1. Anatomic sites and subsites of the head and neck cancer. Approx
imate distribution of head and neck is 44% oral cavity, 31 % larynx and 25% of 
pharynx. Adopted/rom CANCER MANAGEMENT: 13TH EDITION, March 25, 
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Risk Factors 

Head and neck cancer is strongly associated with environmental and lifestyle 

risk factors. Tobacco (including smokeless), alcohol, poor diet, UV radiation, and 

virus infection are the most important risk factors for head and neck cancers. Nearly 

80% of head and neck cancers are tobacco and alcohol related [8]. More than 60 car-

cinogenic combustion products have been found in tobacco smoke, and therefore to-

bacco is a major risk factor for the susceptible epithelial mucous-lining membrane in 

which head and neck squamous cell carcinoma arises. Oral and pharyngeal sites, as 

well as the upper aerodigestive tract, are especially vulnerable to smoke insult. 

Smoke contains carcinogenic materials like 4-(methylnitrosamino )-1-(3-pyridyl )-1-

butanone (NNK), N-nitrosonomicotine (NNN), and polycyclic aromatic hydrocar-

bons (PARs), which have been linked to UADT cancer through their activity produc-

ing DNA adducts [9]. In addition to this~mutagenic effect, tobacco also causes oxida-

tive stress to the exposed tissues through reactive oxygen species (ROS). ROS can 

damage proteins, lipids, carbohydrates and DNA, which also results in mutation and 

increases malignant transformation. 

Alcohol promotes oncogenesis through increased permeability of cell mem-

branes by damaging their phospholipid components to enhance the penetration of 

tobacco-containing carcinogens across oral mucosa. Impaired DNA repair mecha-

nisms activate carcinogens and decrease activity of the detoxification enzymes (glu-

tathione-S-transferases and cytochrome P 450) in the liver [10, 11]. Some alcoholic 

beverages contain 
. . 

carCInogenIc impurities or contaminants, such as N-
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nitrosodimethylamine [12], which is present in some beers and whisky and has been 

linked to the increased risk of oral cancer. Thus, smoke and alcohol are the major 

risk factors for head and neck cancer. 

In Western Countries, dietary factors are estimated to account for 30% of all 

cancers [13]. Poor diet has been reported as a significant risk factor for head and 

neck cancer and is second to tobacco and alcohol as a cause of oral cancer worldwide 

[14]. According to the World Health Organization (WHO), dietary deficiencies or 

imbalances contribute to approximately 15% oropharyngeal cancers [15]. Since oxi

dative stress is one of the major factors to induce transformation of normal cells into 

malignant cells, vitamins with antioxidant activity, such as vitamins A, C, and E, and 

selenium have been reported to provide protection against most epithelial cancers by 

reducing the generation of free radicals that can cause DNA mutations and cellular 

membrane peroxidation [16-18]. Additionally, micronutrient diets also protect 

against cell malignancy by modulating cellular carcinogen metabolism, maintaining 

proper cell differentiation and immune function, and inhibiting cell proliferation and 

oncogene expression [19]. Therefore, a diet with excess preserved food (e.g., nitrates 

and nitrites) that increases cellular oxidative stress or a diet lacking in fresh fruits 

and vegetables elevates the risk for head and neck cancer [20-22]. 

Prolonged exposure to sunlight (e.g., UV light) increases the risk to develop lip 

cancer [23]. People with outdoor occupations are particularly more susceptible to lip 
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cancer. Radiation exposure has also been reported to increase the risk of thyroid can

cer and has been associated with cancer of the salivary glands [24, 25]. 

The growing incidence of oropharyngeal cancer among younger head and neck 

cancer patients is related to human papillomaviruses (HPVs) infection [26-30]. To 

date, more than 200 different types of HPV s have been isolated and categorized into 

different groups according to their infection sites (cutaneous or mucosal) or risk for 

malignancy (high, intennediate, or low) [31, 32]. HPV s with low risk induce benign 

hyperplasias, like papillomas or warts, whereas HPV s with high risk are strongly as

sociated with malignancy and carcinogenesis [33]. People with HPV infection in oral 

mucosa and showing HPV in the serum are at high risk for developing an oral squa

mous cell carcinoma (OSCC) [34-36]. 

For head and neck cancer, the HPV types of most concern are those capable of 

infecting the epithelial mucosal lining of the aerodigestive tract. HPV 16 and HPV 

18 are strongly associated with head and neck carcinogenesis, particularly of the oral 

cavity and oropharynx (tonsil and tongue base) [37-39]. HPV-positive head and 

neck cancers are different from HPV-negative tumors, both clinically and biological

ly [40, 41]. Interestingly, HPV -infected osce patients tend to have better outcomes, 

greater treatment responses, and less chance of relapse compared to those with HPV

negative head and neck cancers [42-44]. The response to treatment is linked to func

tional p53. Indeed, a decreased number of p5 3 mutations have been reported in HPV-
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positive cancers [45-48]. In addition to HPV, Epstein-Barr virus (EBV) has been 

strongly linked to nasopharyngeal carcinomas (NPC) [49, 50]. 

1.1.2. Pathogenesis 

Head and neck squamous cell carcinoma results from successive accumulation 

of somatic gene alterations in the squamous epithelial lining of the upper aerodiges

tive tract [51, 52]. The progression of head and neck cancer from nonnal histologic 

features to hyperplasia, mild, moderate, and severe dysplasia, carcinoma in situ, in

vasive carcinoma, and metastasis is accompanied by multiple gene mutations and 

gains and losses of chromosome functions [53]. Down-regulation of tumor suppres

sor proteins (p53., Rb., Notchl), up-regulation of oncogenic proteins (Epidennal 

growth factor receptor [EGFR]), Phosphoinositide-3 kinase catalytic subunit 

(PI3CA), c-Met ligands, or hepatocyte growth factors (HGF)) and chromosomal gain 

and loss function on 3p14, 9p2l, 17p13, 8p, llq, l3q., l4q, 6p, 4q27, and 10q23 have 

been observed in head and neck squamous pathogenesis (Fig. 2) [53-57]. 

In head and neck cancer, a loss of tumor suppressor gene activity has been fre

quently observed rather than a gain or activation of oncogene function. The somatic 

TP 53 mutation represents 60-80% of head and neck cases [58-60]. Among head and 

neck cancers, approximately 800/0 were HPV -negative, with a large proportion of 

cases harboring the TP53 mutation, while 20% of HPV -positive cases had decreased 

p53 levels but intact p53 function [57, 61]. This finding points to the important role 
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of p53 in head and neck cancer therapy. At the same time, it makes a pharmacologi

cal treatment difficult, since regaining tumor suppressor gene function is more chal

lenging than inhibiting oncogene activity. 
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1.1.3. Treatment Modalities for Head and Neck Cancer 

For head and neck cancer, traditional treatment options are surgery, radiother-

apy, chemotherapy, and any combination of these therapies. Surgery is carried out 

when the tumor is resectable, without organ function compromise, and the patient is 

able to tolerate the surgical procedure. Surgery is generally recommended for pa-

tients with early stages (1/11) of head and neck cancer [62]. However, when the tumor 

is not resectable or organ function loss is a concern, single modality radiation thera-

py may become an alternative treatment for early stage patients [62]. For patients 

with advanced stages status (above III), surgery alone is considered only appropriate 

in the absence of nodal spread. When patients present with nodal disease (N1-2), 

multiple modalities are applied, with resection of the primary tumor by surgery fol-

lowed by radiation therapy or chemoradiotherapy [62]. The goal of radiotherapy is to 

intensify and focus the treatment dose in the cancerous area while saving the normal 

tissue from radiation damage. 

Single drugs cannot cure most c~cers. Therefore, chemotherapy is executed as 

a combination with multiple drugs or combined with surgery and radiotherapy. His-

torically, first-line chemotherapy for recurrent and metastatic head and neck cancer 

has been cisplatin [63]. Currently, however, the most frequently used chemothera-

peutic drugs for head and neck cancer patients are platinum compounds (5-

fluorouracil, methotrexate, and cetuximab). Chemotherapy is often combined with 

radiotherapy. Radiotherapy with platinum-based chemotherapy is a common cancer 
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treatment regimen and has become an alternative treatment modality for surgery in 

the treatment of loco regional advanced head and neck cancer [64-66]. 

Molecular Targeted Therapies 

Molecular targeted therapies have been developed to maXImIze delivery of 

therapeutic doses to the cancer cells while minimizing side effects and toxicity in the 

normal cells. Epidermal growth factor receptor (EGFR) is frequently up-regulated in 

head and neck cancers. Thus, cetuximab, which is an anti-EGFR monoclonal anti

body (mAb) and targets EGFR, has been effective against unresectable laryngeal, 

oropharyngeal, or hypopharyngeal carcinomas when combined with platinum-based 

chemotherapy or radiotherapy [64-67]. 

Genetic events frequently observed in head and neck cancer are tumor suppres

sor gene (e.g., p53, p16, p21) loss of function and chromosome (e.g., 3p, 9p and 17p) 

loss of heterozygosity [68]. Mutations of p53 have been found ranging from 40 to 

70% in head and neck cancer, and 20% in the premalignant lesion areas [69, 70]. 

Mutation of p53 is associated with more aggressive cancer status, poor prognosis, 

poor survival rate, and higher local recurrence in head and neck cancer patients [71-

73]. P53 regulates genes involved in cell cycle control and apoptosis. Head and 

neck cancer patients with a long history of tobacco and alcohol use are more fre

quently found with a p53 mutation in their tumor samples. Most p53 mutations are 

11 



guanidine transversions thymidine mutations, with less extent of missense mutations 

on exon 5 and 9. 

Currently, there are three ways to restore wild type p53 function in cancer pa

tients. The first is application of antagonists ofp53-negative regulators (e.g., murine 

double minute 2) in patients with wild type p53 whose p53 function is limited by 

these negative regulators [74]. The second is reactivation of mutated p53 by either 

applying small molecules, an antibody (e.g., antibody 421), a heat shock protein (e.g., 

chaperone protein dnaK), or artificial high-affinity DNA-binding sequences ofp53 to 

assist p53 refolding and rescue p53 's biological function. The third is exogenous 

expression of wild type p53 in tumors by adenovirus-mediated gene therapy [75]. 

Data from clinical trials of Ad-p53 delivery to 445 patients with advanced squamous 

cell carcinoma, lung cancer, colon cancer, and prostate cancer showed that Ad-p53 

gene therapy was a safe and well-tolerated therapy [75]. Many clinical trials with 

Ad-p53 are origoing on head and neck cancer patients [75]. 
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PhotodynamicTherapy (PDT) 

PaTienT is diagnosed wiTh cancer 

PhoToToxic drug is adminisTered. 
AccumulaTes in Tumour Tissue 

Drug is aCT ivaTed by ~ 
illuminaTion wiTh laser 

Highly Toxic radicals 
generaTed kill 
Tumour cells 

Figure 3. Photodynamic therapy simplified schematic which shows the three 
major components of the PDT therapy: light, photosensitizer, and oxygen. 
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1.2. Photodynamic Therapy 

PDT is a US Food and Drug Administration (FOA)-approved, minimally inva

sive treatment modality that utilizes light in the presence of oxygen to activate pho

tosensitizing agents to produce cell death (Fig. 3) [76]. Absorption of a photon acti

vates the photosensitizer to an excited singlet state that can then undergo intersystem 

crossing to the triplet state. The triplet transfers energy to molecular oxygen to gen

erate singlet oxygen (102). This is referred to as a Type II photochemistry [77]. Oxi

dation-reduction reactions also occur to generate other reactive oxygen species (ROS) 

[77]. PDT has various clinical applications; among these, PDT as a treatment of can

cer is especially promising and attractive. 

PDT has many advantages. The photosensitizers do not accumulate in the nu

clei and therefore do not induce DNA damage or mutagenesis or generate resistance 

to the therapy, which commonly occurs after chemotherapy or radiotherapy. PDT 

can be applied as a combination therapy either prior to or after other treatments (e.g., 

chemotherapy, radiation, surgery) without compromising the therapeutic effects of 

those modalities. PDT is a non-invasive treatment modality, and treatment can be 

repeated on patients. Currently, PDT is under intensive investigation for treatment of 

various forms of cancers [77-87]. 
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1.2.1. Photosensitizers 

Photo sensitizers are the key components in PDT. The ideal photosensitizer 

would have the following characteristics. It would be present as a pure single com

pound of known composition and stable at the room temperature. It would not in

duce dark toxicity and would have more rapid clearance from normal cells and tis

sues than tumor cells. It would not yield any toxic metabolites. Its absorption wave

length would span from red to deep red (600-800 nm). The longer the absorption 

wavelength, the deeper the photosensitizer can penetrate into tissues. Therefore, pho

to sensitizers with absorption peaks at longer wavelengths are more favorable for 

clinical applications. However, above 800 nm, the energy is insufficient to excite ox

ygen to generate 102 and yield PDT's intended effect. Thus, the ideal absorption 

wavelength for the photo sensitizers is 600-800 nm. 

Photo sensitizers can be administered through numerous routes (e.g., oral, in

travenous, topical, intratumoral, inhalational). The ideal photosensitizer would have 

a good pharmacokinetic profile, high quantum yield to produce 102, inexpensive, and 

would not target the nucleus as a possible mutagenic agent [77, 88, 89]. Photosensi

tizers are generally categorized into porphyrin or non-porphyrin groups, as show in 

(Fig. 4 A-B) [88]. Porphyrin-derived photo sensitizers are further classified into first, 

second, and third generation based on their improved characteristics and modifica

tions. Most photo sensitizers used in cancer therapy are porphyrin-related, meaning 

they have a hetero-cyclic ring and tetrapyrrole structure that resembles that of the 

15 



protoporphyrin present in chlorophyll, hemoglobin, or hematoporphyrin (Fig. 5) [77]. 

Structures of porphyrin molecules have a 22n electron system which confers a long 

wavelength absorption [88]. 

Porphyrin Derived Photosensitizers 

First Generation Photosensitizers 

The first clinically applied photosensitizer for cancer treatment was a water 

soluble, porphyrin-derived molecule named hematoporphyrin derivative (HPD), 

which was later called Photofrin™ (porfimer sodium) [90]. Although Photofrin is 

one of the most widely used photo sensitizers, it has some unfavorable characteristics, 

such as low cellular uptake, low molar.: extinction coefficient (1170 M-1 em-I) that 

results in a poor therapeutic effect, arid long-lasting photosensitivity caused by a long 

half-life of 452 h [88,91]. Because of these limitations, second generation porphy

rin-derived photo sensitizes have been developed. 
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Second Generation Photo sensitizers 

The second generation photo sensitizers attempted to improve PDT efficacy 

and reduce unfavorable characteristics of the first generation photo sensitizers. Se

cond generation photo sensitizers have several advantages: 1) reduced skin photosen

sitization after treatment; 2) absorption at longer wavelength to facilitate deeper tis

sue penetration; and 3) increased cellular uptake. Phthalocyanine (Pc), chlorin, pro

toporphyrin IX, and foscan are currently under intensive investigation for cancer 

treatment (Fig. 4 and 5) [81, 92-95]. 

The Phthalocyanine (Fig. 5i) family, derived from porphyrin as a second gen

eration photosensitizer, has high quantum yield to generate 102 and has a strong ab

sorption peak at 670-770 nm. This long wavelength allows penetration into deep tis

sue. Pc has a central metal atom (M), either zinc, aluminum, or silicon, which stabi

lizes the Pc structure and also yields long-lived triplet state 102, enhancing PDT's 

effect (Fig. 5i) [96]. 

Phthalocyanine 4 (Pc 4), one of the most studied phthalocyanines, localizes to 

the membranes of the mitochondria, endoplasmic reticulum and Golgi and has 

shown promising in vitro and in vivo results [92, 97, 98]. Pc 4 has a dimethyla

minopropyl siloxy ligand on its central silicon. It is a hydrophobic molecule and 

binds to lipoproteins and serum albumin, which delivers it into cells [99]. Pc 4 caus

es mitochondria-mediated apoptotic cell death [92, 97]. A Phase I clinical trial of Pc 
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4-PDT has been completed for cutaneous neoplasms [98], and it is currently in a 

Phase I trial for psoriasis. In addition, over 250 analogs of Pc 4 have been synthe

sized, some of which have been further investigated for their potential in PDT [100-

102]. Results showed that Pc 4 analogs with two axial ligands increased Pc mon

omerization, which improved Pc cellular uptake. Pc 4 analogs such as Pc 181, with 

hydroxylated ligands, preferentially localize to lysosomes. Pc 181 was found to be 

more effective in killing cancer cells than Pc 4 from in vitro study [97]. 

Foscan (Fig. 5c) is a single pure chlorine derivative that absorbs light at 652 

nm. It has a long plasma half-life (45-65 h) and is a very potent photosensitizer [88]. 

Due to its superior photophysical properties and high 102 yield, a small drug dose 

(0.1 mg/kg) and light intensity (10 J/cm2
) are needed to obtain a robust PDT effect 

[91]. Currently, foscan has been approv£d in Europe to treat head and neck cancer. 

Foscan accumulates preferentially in brain tumors, with the ratio of tumor to normal 

cells as 100:1; which makes foscan a superior cancer targeting photosensitizer [103-

105]. A nonrandomized phase II study'offoscan-PDT on lip cancer showed complete 

response, which is just as good as patients treated with surgery or radiotherapy [106]. 

Presently, foscan is one of the photo sensitizers that have been intensively applied to 

head and neck cancer because of its high efficacy. However, a long plasma half-life 

offoscan causes prolonged photosensitivity. 

20 



Protoporphyrin IX (Fig. 5g) is a second generation porphyrin derived photo

sensitizer that is activated by light to initiate the PDT reaction. Protoporphyrin IX is 

converted from its hydrophobic precursor 5 aminolevulinic acid (5-ALA), which is 

involved in heme biosynthesis (Fig. 6). After conversion of 5-ALA into protoporphy

rin IX by mitochondrial enzymes, it can be activated by light at 630 nm to cause a 

PDT effect [107]. Since protoporphyrin IX is localized to mitochondria, the main 

PDT effect occurs on mitochondria. Tumor cells tend to accumulate 2 fold more on 

protoporphyrin IX-treated as compared to normal cells. [88]. Thus, increased accu

mulation of protoporphyrin IX can be an advantage for cancer therapy. Protoporphy

rin IX has been applied with PDT to treat superficial basal and in situ squamous cell 

carcinoma and actinic keratosis [108, 109]. 

Researchers are trying to improve 1Jrotoporphyrin IX PDT efficacy by increas

ing ALA metabolism into protoporphyrin IX or decreasing protoporphyrin IX con

version into heme. One way to enhance protoporphyrin IX-PDT is to apply iron che

lators, which block incorporation of iron into protoporphyrin IX and heme biosyn

thesis, resulting in protoporphyrin IX accumulation [110]. 

Third Generation Photosensitizers 

Third generation porphyrin-derived photo sensitizers have been improved by 

increased tumor targeting specificity, photosensitizer stability, cellular uptake, and 

efficacy by formulating photo sensitizers with liposomes, nanoparticles, and poly-
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mers [88]. Tumor oncogenes such as EGFR have been utilized for micelle

formulated nanoparticles Pc 4 with GEll peptide ligands to enhance photosensitizer 

delivery to EGFR-overexpressed cancer cells [111]. In addition, poly (ethylene gly

col)-poly (e-caprolactone}-poly (ethylene glycol) (PEG-PCL) micelle nanoparticles 

have been applied to improve the delivery of the highly hydrophobic photosensitizer 

Pc 4 into cells and increase its bio-distribution. Pc 4 PEG-PCL shows intracellular 

uptake and improved cytotoxicity [112]. 

Non-Porphyrin Photosensitizers 

Non-porphyrin photo sensitizers have been considerably less studied due to a 

lack of encouraging clinical results [88]. Most of the non-porphyrin photo sensitizers 

are cationic dyes that selectively accumulate into mitochondria with negative mem

brane potential [88]. Hypericin, which has shown good tumor selectivity and in vitro 

efficacy, is considered as a potential candidate for the clinical application, but it has 

not been successful in clinical trials thus far [88]. 

Results from several institutions have shown that PDT can successfully treat 

early carcinomas in the head and neck regions, including the oral cavity, pharynx, 

and larynx, and at the same time preserve the organs and their vital functions of 

speech and swallowing [113, 114]. In one small randomized clinical trial which 

compared patients treated with porfimer sodium-PDT (foscan-PDT) to patients treat-
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ed with chemotherapy (5-FU and cisplatin) In nasopharyngeal carCInoma, PDT 

demonstrated better clinical outcomes. 

In a 15 year accumulating clinical research with more than 300 patients who 

were treated with the porfimer sodium-PDT with a single PDT procedure, showed 

that in the laryngeal carcinoma group (133 patients) after average 8 year follow up, 

the 5 year cure rate was 90%, and in the oral cavity group (138 patients), after up to 

211 months follow up, the 5 year cure rate was 100% with a totally complete patho

logical and clinical response in patients [115]. The protocol used in this study was 

following of 2.0 mg/kg of porfimer sodium IV administration for 48 h, then irradiat

ed with 630 nm of light from a neodymium yttrium aluminum garnet (Nd:YAG) 

pumped dye laser with 50-75 J/cm2 fluences for oral cavity, nasopharyngeal, and 80 

J/cm2 fluences for laryngeal tumors. 

Currently, over 500 head and neck cancer patients with early stage oral cavity, 

larynx, pharynx, and nasopharynx lesions were treated with porfimer sodium-PDT 

worldwide and showed similar success [116-118]. From these studies, only a small 

number of patients experienced recurrence and were treated either with surgery or 

repeated PDT. The only complaints from these patients were photosensitivity of skin 

and local pain, which can be controlled with oral analgesics. 
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In addition to the porfimer sodium-based PDT, 5-ALA and foscan have also 

been applied to treat head and neck cancers. Currently, foscan is the most wildly ap-

plied second generation photosensitizer used in head and neck cancer treatment and 

has shown impressive results. In a study of foscan-treated head and neck cancer pa-

tients (n=27), results showed the cure rates for stage I were 85%, with a 38% rate for 

stages II and III [119]. In another foscan based PDT treatment with patients who had 

been treated unsuccessfully with traditional cancer therapies or were unable to go 

through the traditional therapies, results from 96 h post-foscan PDT found that 430/0 

of the lesions showed 100% tumor mass reduction, and 57% of lesions showed at 

least a 50% tumor mass reduction [120]. However, researchers pointed out that, 

when the total surface area of the tumor could be illuminated or the tumor depth was 

less than 1 em to allow light penetration into the whole tumor, treatment success sig-

nificantly increased. , 
.-

For 5-ALA-based PDT treatment In head and neck cancers, fewer reports 

showed less successful rates in terms of clinical outcome compared to either the 

porfimer sodium or the foscan [121, 122]. In conclusion, results from current phases 

1/11 head and neck cancer trials strongly demonstrated that PDT is an effective cancer 

treatment modality either as primary or alternative therapy. In addition, patients who 

received PDT treatment also benefitted from organ preservation, a lack of systemic 

toxicity, and better quality of life. 
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Subcellular Localization 

Subcellular localization of the photosensitizer is a main factor to determine site 

of 102 generation and initial photodamage [123]. Many organelles (e.g., mitochon

dria, lysosomes, endoplasmic reticulum, Golgi apparatus, and plasma membrane) 

have been studied as cellular targets for photosensitizers [124]. The important fac

tors determining cellular localization of the photosensitizer are 1) net ionic charge of 

the photosensitizer that can range from (-4) anionic to (+4) cationic; 2) hydrophobi

city of the photosensitizer; and 3) degree of asymmetry of the photosensitizer. Hy

drophobic photo sensitizers with net charge less than two negative charges « -2) 

freely diffuse across the plasma membrane and then redistribute to intracellular 

membranes of other organelles, resulting in high cellular uptake. Less hydrophobic 

photosensitizers with less than two negative charges are too polar to diffuse across 

the plasma membrane, and therefore they are taken up by cells through endocyto

sis/pinocytosis [89]. 

1.2.2. Photochemistry of PDT 

Light absorption and energy transfer are the two maIn photochemi

cal/photophysical events during PDT (Fig. 7). In the ground state, the photosensitizer 

has two electrons with opposite spin in an energy most favorable low molecular or

bital as the singlet state. When the photosensitizer is activated by light, one electron 

is boosted into a higher energy orbit but maintains its original spin direction. This 

state is unstable and emits extra energy as either fluorescence or heat. Alternatively, 
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the excited photosensitizer may undergo intersystem crossing to form a more stable 

high energy state that has one electron inverted to form a parallel spin of electron 

conformation [125]. 

The triplet state of a photosensitizer can transfer its energy to other molecules 

through either type I or type II reactions (Fig. 7). Most PSs are believed to undergo 

type II reactions during PDT [77]. In a type II reaction, the triplet state of the activat-

ed PS transfers its high energy to the adjacent molecular oxygen (02) to form highly 

reactive 102. Alternatively, in a type I reaction, the triplet state of the activated pho-

to sensitizer transfers its high energy to the substrates and organic molecules other 

than 02 through proton or electron transfer and forms a radical anion or cation, re-

spectively. These radicals can further interact with O2 to generate ROS, such as su-

peroxide anion radical (02--), hydrogen peroxide (H202), and a hydroxyl radical 

(OH·). The type of photosensitizer, biological substrates, and the level of O2 all de-

tennine what 'type of reaction occurs during PDT [126]. Since 102 and ROS (except 
, 

H202) are highly reactive and short lived, they interact with biomolecules on the sites 

where ROS are formed. Thus, PDT's effects occur in close proximity to the photo-

sensitizer. 
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1.2.3. Light Sources and Light Delivery 

In PDT, light is also a crucial factor to detennine outcomes since precise light 

delivery can activate the PS in tumor areas and selectively destroy the cancer. Inside 

the tissue, light can be either absorbed or scattered. Therefore, one way to improve 

PDT efficacy is to focus the light on targeted areas. Red and infrared light has the 

deepest penetration (up to 1 cm into tissue) whereas blue light penetrates least effi

ciently into tissue (Fig. 8) [127]. The light region between 600 and 1200 run is often 

called the optical window of the tissue [77]. Above 800 run, however, the energy of 

the light is insufficient to activate PS and cause a PDT response. 

No single light source is ideal for all PDT applications. Depending on the pho

tosensitizer used, a light source with specific wavelength needs to be applied to ob

tain maximal photosensitizer activation: The efficacy of the PDT is dependent on 

complex dosimetry, which is determined by total light dose, total light exposure time, 

and the mode in which light is delivered (e.g., single or fractionated mode). Both la

sers and incandescent light sources are applied for PDT and show equivalent effica

cies [128, 129]. The diode laser is the most commonly used PDT light source, but 

some researchers have used LED as an alternative source. Since laser light is coher

ent, the laser is coupled with a fiber to transfer consistent and stable light deep into 

tissue maximally [130]. 
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1.2.4. Role of Oxygen in Photodynamic Therapy 

Besides the photosensitizer and light, oxygen is an important factor in deter

mining PDT outcomes. Using PDT in solid tumors is challenging. Decreased oxy

gen tension deep in poorly vascularized tumors can result in decreased formation of 

102 and other ROS, thereby diminishing the therapeutic effect. 102 generation during 

PDT treatment can induce local hypoxia in tissue [131]. In order to overcome these 

challenges and improve PDT efficacy in hypoxic solid tumors, several strategies 

have been developed, such as using fractionating light for irradiation and allowing 

tissue reoxygenation during intervals between PDT treatments [132]. PDT has also 

been administered to patients in hyperbaric oxygen (HBO) environments to provide a 

continuous oxygen supply. Hyperoxygenation of tissue has successfully extended the 

survival period in patients with esophageal carcinomas [133, 134] although this ap

plication requires a pressurized chamben, which is not widely available. Strategies to 

overcome these oxygen-related PDT limitations are still under investigation. 

1.2.5. Mechanisms of PDT-Mediated Cytotoxicity 

PDT is a cancer therapy modality that causes cytotoxicity by direct cell killing 

through apoptosis, necrosis, and autophagy pathways. PDT can also target tumor 

vasculature to block nutrient supply in tumors and thus inhibit tumor survival. PDT 

can also boost host immunity, which helps to combat cancer [77]. Mechanisms of 

PDT induced cancer cell death are addressed below. 

1.2.5.1. Direct Cytotoxicity 
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Due to the very short half-life of the 102 (approximately 1 0-320 nanosec), it can 

only interact with biomolecules within 10 nm to 55 nm after its generation [135]. 

Therefore, cellular sub-organelle localization of photo sensitizers plays an important 

role in determining mechanisms involved in photodamage-caused cell death. PDT 

can cause direct cytotoxicity through three main cell death pathways: apoptosis, ne-

crasis, and autophagy, among which apoptosis is generally the major cell death 

pathway involved after photosenistizer-induced photodamage [136]. In general, it is 

commonly agreed that lower doses of PDT lead to more apoptotic cell death while 

higher doses of PDT tend to cause more necrotic cell death proportionately [137]. 

However, cell death pathways that occur are determined by cell type, cellular locali-

zation of photosensitizer, PDT dose (photosensitizer concentration, light dosimety), 

and protocols applied. 

Photo sensitizers mainly localized to the mitochondria, such as Pc 4 [92], cause 

cell death though the mitochondria-mediated apoptotic cell death pathway. After Pc 

4 is irradiated by light at the red wavelengths, it initiates mitochondrial depolariza-

tion, followed by cytochrome c release, and caspase 3/7 activation to cause apoptotic 

cell death [160]. Researchers have reported that, for mitochondria localized photo-

sensitizers, Bcl-2 dissipation is the initiation step to trigger mitochondrial outer 

membrane permeabilization and mitochondrial membrane potential loss, which in 

tum leads to downstream caspase 3/7 activation and eventually apoptotic cell death 

[138-140]. 
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In addition to apoptosis, phototoxicity can lead to cell death through nonapop

totic pathways, which include autophagic and necrotic pathways [141]. Generally, in 

the event of caspase-deficient conditions such as caspase genetic knockout or caspa

se inhibitor administration, cells delay their response to phototoxicity and shift to 

necrosis [142]. Although the molecular mechanisms of necrosis are still not well un

derstood, researchers have reported some events that lead to necrosis, including re

ceptor interacting protein 1 (RIPl) activation, lysosomal damage, block of ATP syn

thesis, intracellular Ca2
+ overload, and an excess of mitochondrial ROS generation 

[143, 144]. 

Autophagy occurs through a lysosome mediated cellular pathway to recycle 

cellular components. Various stress siggals can induce autophagy, including oxida

tive stress [145]. Researchers have reported that some photosensitizers induce au

tophagy during the PDT process, although the role of the autophagy process could be 

either cytoprotective or pro-death [145]. Currently, a general conclusion from all the 

present findings is that autophagy induces cell death and plays a pro-death role under 

situations when the apoptosis pathway is defective or when the autophagy recycle 

mechanism is impaired due to overwhelming stress conditions [146, 147]. Alterna

tively, autophagy plays a pro survival role and rescues the cells when the cells are 

under low stress conditions (low-dose PDT) where autophagy can repair cell damage 

[148]. Similar to necrosis, when cells are under stress but the apoptosis pathway is 
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inhibited due to caspase deficiency, autophagy can also serve as an alternative cell 

death pathway. 

Studies from Bax-deficient DU145 human prostate cancer cells and Bax 

knock-out HCTl16 human colon cancer cells showed that, although these cells have 

deficient apoptosis pathways, cells still retain a similar degree of cell killing under 

Pc 4-PDT treatment [203, 204]. These findings suggest the possibility of another 

bax-independent cell death pathway. In addition, researchers found vacuole for-

mation in these cells under electron microscopy and the conversion ofLC3-I to LC3-

II after Pc 4-PDT treatment [149]. After applying the autophagy blockers 3-

methyladenine and wortmannin, which inhibit Pc 4-PDT-induced cell death in these 

bax deficient cells, researchers concluded that cells deficient of bax underwent au-

tophagy-mediated cell death [150]. 

Additio'nally, it has also been reported that PDT induces both autophagy and 

apoptosis concurrently using the CPO photosensitizer in murine leukemia L1210 

cells. These photodmaged cells showed both apoptotic and autophagic characteristics, 

including chromatin condensation, mitochondrial depolarization, phagolysosome 

formation, and conversion ofLC3-1 to LC3-II [149]. 
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1.2.5.2. Vascular Effects 

Since blood supply supports tumor growth, one strategy for cancer therapy is 

to target tumor vasculature with anti-angiogenic agents that inhibit neovasculariza-

tion in solid tumors. Besides causing cytotoxic effects, PDT concurrently may cause 

vascular damage that leads to ischemic cell death in tumors [151, 152]. These find-

ings suggest that targeting tumor vasculature provides another mechanism to treat 

solid tumors. Since photo sensitizers are bound to cellular lipoproteins (high-density 

lipoprotein [HDL] and low-density lipoprotein [LDL]) and serum proteins (e.g., al-

burnins) to be carried into cells, endothelial cells that express receptors for serum 

proteins and lipoproteins are primary targets for vascular approaches to PDT [153]. 

Typically, PDT procedures with shorter photosensitizer-light intervals restrict 

photo sensitizers in the blood circulatioll and accumulate in endothelial cells or are 

bound to vessel walls to cause vascular targeting effects whereas longer photosensi-

tizer -light waiting periods following PS administration lead to cellular organelle dis-

. 
tribution of the photo sensitizers and induce more tumor cell damage. PDT with short 

photosensitizer-light intervals result in damage to the endothelial cells through loss 

of tight junctions between cells and leads to blood cell adherence to vessel walls. 

This damage induces the formation of thrombogenic sites with physiological cascade 

of reactions including platelet aggregation, vasoactive molecules release, leukocyte 

adhesion, increased vascular permeability and vessel constriction. Vasculature-

targeting PDT causes microvascular collapse, blood flow stasis, and tissue hemor-
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rhage that eventually leads to persistent post-PDT tumor hypoxia and nutrient defi

ciency, resulting in long-tenn tumor control [154, 155]. 

1.2.5.3. Immune Responses 

PDT frequently triggers a strong acute inflammatory reaction as localized 

edema, which is recognized by the host as an acute trauma. This recognition launch

es an acute inflammatory response as a protective action to remove damaged cells in 

affected sites and promote local healing to restore tissue function, integrity, and cel

lular homeostasis [156]. PDT-provoked inflammation increases the penneability of 

the tumor vasculature, which induces inflammatory cells (e.g., neutrophils, mono

cytes and macrophages) to invade the affected areas rapidly [156,157]. Subsequently, 

dead and injured cells and PDT -damaged vasculature that forms occlusions are elim

inated by inflammatory cells. Inhibition or depletion of the activity of these inflam

matory cells as well as their regulatory cytokines interleukin (IL )-1 J3 and IL-6 reduce 

PDT efficacy' [158-161]. In contrast, diminishing the anti-inflammatory cytokines 

such as IL-IO and transforming growth factor-J3 (TGF-J3) significantly improves PDT 

effects [156]. Increased CD8+ levels, T cell activation, and tumor infiltration have 

also been linked to PDT efficacy [162, 163]. Therefore, effort has been focused on 

mechanistic studies to potentiate CD8+ and T cell activation. 
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1.2.6. Combination of PDT with Other Therapies 

Most cancers are not curable through treatment with single drugs. This limita

tion applies to PDT as well. Thus, combining PDT with other modalities to improve 

the therapeutic index has received much interest. In general, therapies with different 

mechanisms or targets can be combined together to achieve either additive or syner

gistic effects. PDT can be safely combined with other cancer therapy modalities 

without compromising therapeutic outcomes or inducing cross-resistance between 

the therapies [164]. PDT has been successfully combined with surgery, radiotherapy, 

and chemotherapy [165-167]. The purpose of PDT in combination therapy is either 

to further sensitize tumor cells and enhance overall tumor killing effects or to main

tain therapeutic effects but significantly reduce systematic toxicity or adverse side 

effects by reducing the treatment dose of other therapy. PDT can be combined with 

other mechanism-driven drugs or modalities with further enhancement of therapeutic 

outcomes. PDT has been combined with radiotherapy [167], chemotherapeutic 

drugs such as platinum compounds and proteasome inhibitors [168], and overex

pressed EGFR and folic acid receptor '[169]. 

PDT has also been combined with erythropoietin (EPO) and hyperbaric oxy

gen to increase oxygen in the tumor cells [170]. In addition, two different mecha

nism-driven photo sensitizers can be combined in PDT treatment to obtain better out

comes [171]. Combination PDT with other therapy enhances treatment efficacy 

without affecting normal cells and tissues, and in some cases can also reduce system-
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ic toxicity. Therefore, PDT combination therapy is of great interest and is a major 

focus in clinical research. 

, 
~ 
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1.3. Iron Physiology and Pathophysiology 

Iron is essential for the biological system. In eukaryotic cells, iron participates 

in several cellular processes, including oxygen transport, oxidative phosphorylation, 

DNA biosynthesis, and xenobiotic metabolism [172]. In addition, iron is a constitu

tive part of physiologically important proteins, such as hemoglobin, cytochromes, 

oxygenases, flavoproteins, and redoxins [173]. 

Iron exists either in reduced ferrous (Fe2+) or oxidized ferric (Fe3+) form and 

recycles between these two forms based on environmental conditions [174]. Depend

ing on its oxidative status, iron is utilized by biological systems and integrated into 

vital biologic processes that require transfers of electrons (e.g., respiration and oxida

tive phosphorylation processes) [175, 176]. Inside the cytoplasm, iron mainly exists 

in Fe2
+, which is very active and rapidly reacts with 02 to form ROS. Especially 

when Fe2
+ interacts with H20 2, it ,generates highly reactive and toxic OH- through the 

Fenton reaction to damage macromolecules, including DNA, lipid membranes, and 

proteins [1 77]. Therefore, in the biological system, free iron levels are regulated in a 

tightly controlled manner. Iron is always carried with proteins or iron transporters to 

reduce the level of free redox-active iron and prevent cell damage and toxicity. 

Considering the important biological role of iron, either iron overload or iron 

deficiency causes dysregulation of biological systems and damages the organism. 

Iron deficiency decreases heme synthesis and disturbs iron-regulated biological reac-
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tions, thus leading to decreased cell growth and proliferation, hypoxia, and even cell 

death [178]. To maintain erythropoiesis and other iron-mediated vital cellular func

tions, 25 mg of iron is needed for daily use. However, dietary uptake of iron from 

intestinal sources only provides 1 to 2 mg of iron supply [179]. Therefore, other cel

lular mechanisms of iron regulation, such as iron release from the cellular iron stor

age protein, ferritin or recycling of iron from iron-containing biomolecules through 

the lysosome-mediated autophagy process, are extremely important and tightly regu

lated to provide iron needed for the biological systems [180]. 

Conversely, an excess of iron in biological systems leads to oxidative stress 

and damages biomolecules that harm the organism. Prolonged oxidative stress to 

biological systems causes inflammation, dysregulated cellular signaling pathways, 

and various pathogeneses, including neurodegenerative diseases (e.g., Alzheimer's, 

Parkinson's and Huntington's diseases and Friedreich's ataxia) and cancer [181-185]. 

Increased physiological iron levels have also been reported to be associated with in

fection [186, 187]. 

The amount of total body iron in a healthy human being is about 50 mg/kg. 

This iron is derived from hemoglobin in erythrocytes and myoglobin in muscle cells 

[179, 188]. Humans lack mechanisms to eliminate iron, except through loss of he

moglobin during bleeding or defecation of apoptotic enterocytes and macrophages. 
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Since iron is important but dangerous at high or low levels, iron uptake and regula-

tion is strictly controlled. 

1.3.1. Cellular Iron Regulation 

Following the release of iron from enterocytes and macrophages into the 

bloodstream, iron binds to transferrin (Tf), which is a plasma glycoprotein with two 

high affinity iron binding sites [189]. The fact that free iron binds to transferrin im-

mediately after its release into the bloodstream prevents potential iron-induced tox-

icity in circulation. Fe3
+ forms a complex with transferrin, which binds to transferrin 

receptor 1 (TfR1) for receptor-mediated endocytosis, resulting in iron delivery to en-

dosomes/lysosomes [190]. In acidic late endosomes, Fe3+ is released from the trans-

ferrin and transferrin receptor complex; it is converted to Fe2+ by the enzyme ferrire-

ductase, localized on the endosomal membrane. Fe2
+ is then transported out of lyso-

somes through the divalent metal,transporter 1 (DMT1) to form the labile or chelata-

ble iron pool in the cytosol [191]. This iron is highly redox active and is distributed 

. 
to several cellular destinations for storage or usage (Fig. 9). Cytosolic iron can be 

transported to ferritin, a cellular protein that sequesters and stores excess cytosolic 

free iron within cells to avoid iron-mediated ROS generation and cellular damage. 

Ferritin consists of heavy chain and light chain subunits, among which heavy chain 

has the ferroxidase activity to convert Fe2+ into Fe3+ and stores the whole complex as 

a ferric oxohydroxide mineral [192]. In addition to its location in the cytosol, ferritin 

is also found in the nucleus and mitochondria [193]. In addition, iron in the labile 
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iron pool can also be distributed for cellular usage (ex: nucleus for DNA synthesis) 

or be further transported to mitochondria through mitochondrial iron transporters (ex: 

mitoferrins) to support iron-sulfur, heme, and iron-containing enzyme synthesis in 

the mitochondria [194]. 
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Figure 9. Cellular iron regulation and the interplay between cellular organelles. 
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For cellular iron export, the iron exporter ferroportin mediates Fe2
+ efflux from 

enterocytes and macrophages into the plasma to maintain systemic iron homoeostasis. 

This process is negatively regulated by a liver-derived peptide hormone hepcidin, 

which is excreted from the liver into circulation and interacts with the ferroportin in 

response to high intracellular iron level by promoting ferroportin phosphorylation, 

internalization, and endocytosis degradation [195]. 

In addition to iron uptake and export, intracellular iron levels are also regulated 

by the iron regulatory proteins 1 and 2 (IRP1 and IRP2) to maintain the balance of 

cellular iron homeostasis [194]. IRPs act as cellular iron sensors to detect the chang-

es in cellular iron level and interact with iron-responsive elements (IREs) to regulate 

iron-related protein synthesis, including TfR1, DMT1, ferritin, mitochondrial aco-

nitase, and 5-aminolevulinate synthase at the translational level [196, 197]. Cellular 

iron-regulated proteins that are involved in iron uptake, storage, transport and me-

tabolism are all under control of the IRPs and IREs in response to the cellular iron 
, 

condition. When cellular labile iron levels are decreased, the IRPs bind to iron-

response elements (IREs) within the 5'-untranslated region (5'-UTR) of ferritin 

mRNA to inhibit the initiation of ferritin protein translation and down-regulates its 

expression. Simultaneously, IRPs bind to IREs within the 3'-UTR of the TfR1 to 

stabilize and protect its mRNA from being cleaved and degraded by the endonucleo-

lytic enzymes and thus increase the expression of the TfR1 to restore cytosolic iron 

levels. Conversely, cytosolic labile iron levels are increased, IRPs bind to IREs with-

44 



in the 5' -UTR of TtR 1 and 3' -UTR of ferritin to reduce the free iron uptake and fa-

cilitate the iron being stored into ferritin to decrease the cellular iron levels and re-

store iron homeostasis. 

Mitochondrial Iron Regulation 

Cellular iron homeostasis is maintained through the interplay among cytosolic, 

mitochondrial, and lysosomal environments [180]. After Fe2
+ is released from endo-

somes into the cytosol through the DMTI to form the labile iron pool, Fe2
+ can be 

transported into mitochondria through the mitochondrial iron transporters to supply 

the iron needed for mitochondrial heme and iron-sulfur cluster synthesis or iron stor-

age in mitochondrial ferritin. 

Although the mechanism of mitodhondrial iron regulation is not yet well char-

acterized, two proteins on the mitochondrial inner membrane have been identified 

that participate in mitochondrial iron uptake: mitoferrin 1 (Mfml) and mitoferrin 2 
. 

(Mfrn2). Mfml expresses in erythroid cells whereas Mfrn2 expresses in non-

erythroid cells [198, 199]. Mfml has been reported to increase its half-life during 

erythropoiesis but the half-life of Mfrn2 remains the same in developing erythroid 

cells [199]. Mfrn2 has three isoforms, which include a full length and two truncated 

forms (Fig. 10). Although all three isoforms of the Mfrn2 [200] are able to localize to 

mitochondria, so far all the functional studies of Mfm2 are based on the full length 

isoform, considered the canonical isoform. 
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1.4 Aim and Outline of the Project 

The aim of this project is to study a mechanism based strategy to enhance the 

efficacy of photodynamic therapy. In this project, we used the photosensitizer Pc 4. 

Pc 4 has recently completed a Phase I clinical trial for cutaneous neoplasms and is 

currently in a Phase I trial for psoriasis. Head and neck cancer is a disease model 

which has been effectively treated with PDT using other photo sensitizers such as 

foscan and porfimer sodium. Our aim was to determine how lysosomes contribute to 

PDT induced by the mitochondria-targeted photosensitizer Pc 4. Specifically, we fo

cused on the role of lysosomal iron in PDT's mechanism. 
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Chapter 2 

Role of Iron in Pc 4-PDT-Treated Head and Neck Cancer Cell Lines 
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Hypothesis 

Iron released from lysosomes enhances mitochondria-mediated cell killing during Pc 

4-PDT. 

Introduction 

Head and neck squamous cell carcinomas (HNSCC) rank as the 6th most com

mon cancers worldwide and lead to 350,000 deaths each year [3]. Despite advances 

in treatment, 5-year survival of patients with HNSCC has not significantly iIp.proved 

over the past several decades. First-line treatments are surgery, radiation, chemother

apy, and a combination of these modalities. However, many patients develop chemo

and radioresistance, and only 50-60% of the patients treated with radiation and 

chemotherapy are cured of their disease. Surgery is not an attractive mode of treat

ment since disfigurement dramatically affects quality of life. Therefore, better treat

ment modalities are needed to combat this devastating disease. 

PDT is an FDA-approved, minimally invasive treatment modality that utilizes 

light in the presence of oxygen to activate photosensitizing agents and produce cell 

death. Currently, PDT has been shown to successfully treat early stages of HNSCC 

in the oral cavity, pharynx, and larynx [115-120]. Because the photo sensitizers used 

in PDT do not target the nucleus but other cellular organelles (e.g., mitochondria, 

lysosomes, ER, plasma membrane), PDT does not cause mutagenic or carcinogenic 

effects [77]. Together with its tumor selectivity and lack of systemic toxicity, PDT 
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can be repeatedly used to treat patients to achieve maximal therapeutic effects. In 

addition, PDT is a non-invasive therapy and can be combined with other traditional 

therapies to maximize treatment outcomes, making it a very promising cancer treat

ment modality [77, 114,201-203] 

Phthalocyanine 4 (Pc 4) is a second generation phorphyrin-based photosensi

tizer used in PDT. Pc 4 has a strong absorption peak at 670 run wavelength, allow

ing for penetration deep into tissue and a high quantum yield which efficiently gen

erates 102. Our laboratory has previously shown that Pc 4 localizes to cellular mem

branes of the mitochondria, ER, and golgi and causes mitochondria-mediated apop

totic cell death [204]. Pc 4 is a potent photosensitizer and has been applied with 

promising results for malignant and non-malignant treatments in vitro, in vivo, and 

clinically. Including 43 cancer patients :.who had actinic keratoses, Bowen's disease, 

squamous cell carcinoma, basal cell carcinoma, or mycosis fungoides, a recent phase 

I clinical trial showed promising effects to induce apoptotic cell death without caus

ing any safety or toxicity issues [98]. 

Studies from other groups have shown that bafilomycin, a proton pump 

ATPase inhibitor, collapses the pH gradient of lysosomes and releases iron from ly

sosomes into the cytosol, causing iron accumulation in mitochondria [205]. In line 

with this, our group showed that bafilomycin enhanced Pc 4-PDT killing in A431 

epidermal carcinoma cells through lysosomal iron release to cause mitochondrial de-
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polarization and onset of apoptotic cell death [92]. These findings suggested the role 

of lysosomal iron in mitochondria-mediated PDT cytotoxicity. 

In this study, our aim was to determine how lysosomes contribute to PDT in

duced by mitochondria-targeted photo sensitizers such as Pc 4. Specifically, we fo

cused on the role of lysosomal iron in PDT killing. In cells and tissues, two pools of 

iron exist. The first pool is "non-chelatable" iron, which is sequestered in ferritin 

and in structural components of proteins (e.g., heme, iron-sulfur complexes) and 

cannot be removed by iron chelators like desferrioxamine (DFO). The second pool 

is "chelatable" iron, which represents free iron and iron bound loosely to a wide va

riety of anionic intracellular molecules [205]. Chelatable iron is accessible to DFO 

and other iron chelators. Chelatable iron and other transition metals, such as copper, 

catalyze formation of highly reactive hy~roxyl radical (OH) from H20 2 and O2-- and 

damage DNA, proteins, and membranes [206]. 

Lysosomes are a source of rapidly mobilized chelatable iron that, when re

leased into the cytosol, is rapidly taken up by mitochondria through the calcium uni

porter [205]. Inside mitochondria, this iron is available to catalyze toxic ROS cas

cades. Therefore, we hypothesized that iron translocation from lysosomes to mito

chondria would enhance PDT-induced cell killing with mitochondria-targeted photo

sensitizers. 

51 



Materials and Methods 

Cell Culture. Human head and neck squamous carcinoma cell lines (UMSCC 1, 

UMSCC14 and UMSCC22A) were a gift from Or. Besim Ogretmen (Medical Uni-

versity of South Carolina). Human A431 epidermoid carcinoma cells were obtained 

from the American Type Culture Collection. Cells were cultured in Oulbecco's 

Modified Eagle's Medium (OMEM) (Gibco) supplemented with 10% fetal bovine 

serum (FBS) and penicillin/streptomycin (complete culture medium) in a humidified 

37°C incubator at 5% C02/95% air. 

Cellular Pc 4 Uptake. The phthalocyanine photosensitizer Pc 4 was obtained from 

Dr. Malcolm Kenney (Case Western Reserve University) [97]. A stock solution of 

0.5 mM was made in dimethyl formamide and diluted into complete culture medium. 

Cells (360,000/dish) were cultured on 60-mm Petri dishes in complete culture medi-

urn for 24 h. ~ubsequently, cells were incubated with Pc 4 concentrations, as indicat-

ed, for 18 h and then washed twice w~.th PBS and lysed in 0.5% sodium dodecyl sul-

fate (SOS). Cell lysates were collected and fluorescence was measured with a fluo-

rometer (Photon Technology International, Birmingham, NJ) using 610 nm excita-

tion and 630-720 nm emission. A calibration curve was constructed by adding 

known concentrations of Pc 4 to the lysates. 

Subcellular Localization of Pc 4. Cells were cultured onto 35-mm glass-bottomed 

Petri dishes (MatTek Corporation, Ashland, MA) at 150,000 cells/dish and incubated 
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for 24 h. Subsequently, UMSCCl, UMSCC14A and UMACC22A cells were loaded 

with Pc 4, as indicated, for 18 h. Medium was aspirated and changed to fresh medi-

urn supplemented with Insulin-Transferrin-Selenium-X (ITX) reagent [insulin (10 

f.lg/ml) , transferrin (S.S Jlg/ml), selenium (6.7 ng/ml), ethanolamine (0.2 mg/ml)] 

(Gibco), and omitting FBS To assess co-localization of Pc 4 with mitochondria, 

cells were loaded with SOO nM rhodamine 123 (RhI23) for 20 min. Medium was 

changed with fresh medium containing 50 nM Rh123. Dishes were placed in an en-

vironmental chamber at 37°C on the stage of Zeiss LSM 510 laser scanning confocal 

microscope (Zeiss, Germany). A 63 X N.A. 1.4 oil immersion planapochromat ob-

jective was used for all experiments. Rh123 and Pc 4 fluorescence was imaged using 

488 nm excitationiSOO-S30 nm emission and 543 nm excitationlS60 nm long pass 

emission, respectively. 

Photodynamic Therapy. Cell cultures were incubated with the desired concentra-

tion of Pc 4 for 18 h before exposure to 390 mJ/cm2 red light (A. = 670 nm) at 37°C 

from an Intense-HPD 7404 diode laser (North Brunswick, NJ). Subsequently after 

exposure to red light, cells were incubated for various periods of time prior to analy-

SIS. 

Assessment of Cell Death. Cell death was assessed by propidium iodide (PI) using 

a multi-well fluorescence plate reader, as previously described [207]. Briefly, cells 

were cultured on 96-well plates (6,000 cells/well) for 24 h in complete culture medi-
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urn. Pc 4 in the presence or absence ofDFO (1 mM), sDFO (1 mM) and Ru360 (10 

f.lM) were present during the last 18 h of the incubation, where indicated. Subse

quently, medium was replaced with fresh medium supplemented with ITX reagent 

and PI (30 f.lM) but without FBS. Bafilomycin (50 nM) was added as indicated. 

One h after drug addition but before irradiation, PI fluorescence was measured using 

530 nm excitation (25 run band pass) and 620 run emission (40 run band pass) filters. 

PI fluorescence was then measured at frequent intervals for 8 h. Between measure

ments, microtiter plates were placed in a 37°C incubator. At the end of the experi

ment, digitonin (200 J.lM) was added to each well to permeabilize all cells and label 

all nuclei with PI. Percentage viability (V) was calculated as V = lOO(B-X)/(B-A), 

where A is initial fluorescence, B is fluorescence after addition of digitonin, and X is 

fluorescence after any given time. Cell viability determined by PI fluorometry is es

sentially the same as cell viability determined by trypan blue exclusion [207]. 

Apoptosis was determined from nuclear morphology after PI staining in the 

presence of digitonin. At indicated time points, floating and adherent cells were col

lected, centrifuged and resuspended in PBS containing 100 f.lM digitonin and 30 f.lM 

PI. Digitonin permeabilizes the plasma membrane and allows PI to enter cells and 

stain all nuclei. Thus, PI staining in the presence of digitonin is equivalent to stain

ing with Hoechst and DAPI, the two fluorescent dyes most commonly used to assess 

apoptosis by nuclear morphology. Apoptotic nuclei were scored as apoptotic based 

on nuclear condensation and fragmentation and counted with a 40X microscope ob-
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jective using a rhodamine filter set and expressed as a percentage of total cells. At 

least 200 cells were counted from three different microscopic fields for each sample. 

Caspase 3/7 Activity. Caspase-3/7 activity was measured using a Caspase-GloTM 

3/7 kit (Promega, Madison, WI) according to the manufacturer's instructions. At 

indicated time points, cultured cells were scraped into a test tube followed by cen-

trifugation. The pellet was resuspended and lysed with RIPA (150 mM NaCI, 1 mM 

EGTA, 1 % sodium deoxycholate, 1 % Triton X-100, 50 mM Tris-CI, pH 7.4) buffer. 

Caspase-Glo ™ 3/7 reagent and the lysate were mixed in 1: 1 ratio, and luminescence 

was measured with a luminometer. The resulting luminescence was proportional to 

caspase activity. 

Clonogenic Assay. Cells (330,OOO/dish) were cultured on 60-mm Petri dishes for 24 

h. Subsequently, cells were loaded with 25 nM Pc 4 for 16-18 h. One hour prior to 

irradiation, 50 nM bafilomycin was added, as indicated. Immediately after irradia-

tion, cells were harvested by trypsinization. Aliquots of cell suspensions were plated 

onto 60-mm Petri dishes in amounts sufficient to yield 50-100 colonies per dish. Af-

ter 14 days in complete culture medium, colonies were stained with 0.1 % crystal vio-

let in 20% ethanol and counted by eye. 

Lysosomal Integrity. To assess the lysosomal integrity, cells were incubated with 

0.2 mg/ml of Alexa-488 dextran (10 kDa) for 18 h. Alexa-488 dextran is taken up 
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by cells via endocytosis. Alexa-488 fluorescence was imaged by confocal microsco

py (488 nm excitationl500-530 run emission). Bright green dots co-localized with 

lysosome-specific fluorophores (data not shown), such as LysoTracker Red, indicat

ing that Alexa-488 dextran can be used as an endosomai/lysosomal marker. To as

sess LysoTracker Red release from lysosomes, cells were incubated with LysoTrack

er Red (500 nM) for 20 min at 37°C in complete culture medium. Medium was re

placed with fresh medium supplemented with 200 nM LysoTracker. LysoTracker 

Red fluorescence was imaged by confocal microscopy (543 run excitationl560 nm 

long pass emission). 

Statistical Analysis. Data are calculated as means ± SEM from at least three inde

pendent experiments performed in triplicate. Pairwise comparison was performed by 

two-tailed I-test using Instat2 software (GraphP AD, San Diego, CA). A p value < 

0.05 was considered to be statistically significant. 
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Results 

Cellular Uptake and Subcellular Localization of Pc 4 in Head and Neck Cancer 
Cells 

Pc 4 is a hydrophobic photosensitizer that diffuses freely across the plasma 

membrane and binds to membranes of intracellular organelles [204]. Three different 

head and neck cancer cell lines were incubated with different concentrations of Pc 4, 

as indicated in Fig. 2-1 A. Cellular Pc 4 uptake was determined by cell lysates. The 

3 cell lines took up Pc 4 differently in the order ofUMSCC22A, UMSCC14A, UM-

SCC1 (Fig.2-1A). To achieve an equal cellular Pc 4 uptake among cell lines, UM-

SCC14A and UMSCC1 cells required higher loading concentrations of Pc 4 to yield 

the same Pc 4 uptake as UMSCC22A cells (Fig. 2-1A). Subcellular localization of Pc 

4 was determined at equal cellular Pc 4 content (1.5 pmol/mg) using confocal mi-

~ 

croscopy. To determine co-localization of pc 4 with mitochondria, cells were loaded 

with rhodamine 123, a mitochondria-specific probe. In all three cell lines, overall Pc 

4 pattern and co-localization of Pc 4 with rhodamine 123 was similar (Fig. 2-1B). 

Head and Neck Cancer Cells Respond Differently to PDT 

After determination of the Pc 4 loading concentrations that resulted in equal 

cellular Pc 4 uptake between 3 different head and neck cancer cells, we determined 

their individual sensitivity to Pc 4-PDT. Sensitivity to Pc 4-PDT was determined at 

3 different levels of cellular Pc 4 content. All 3 cell lines were resistant to PDT at 

the Pc 4 uptake of 0.8 pmol Pc 4/mg protein (Fig. 2-2A). At the Pc 4 uptake of 1.5 
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pmol Pc 4/mg protein, Pc 4-PDT had minimal toxicity in UMSCC1 and UMSCC14A 

cells (Fig. 2-2A). In contrast, UMSCC22A cells were more sensitive, and cell viabil-

ity was decreased to 15% after 8 h (Fig. 2-2B). At even higher Pc 4-PDT dosages 

(2.8 pmol Pc 4/mg protein), differences in sensitivity between cell lines were dimin-

ished (Fig. 2-2C). Thus, we identified the Pc 4-PDT resistant and responsive head 

and neck cancer cells at 1.5 pmol Pc 4/mg protein. Since UMSCCI and UMSCC14A 

cells behaved similarly regarding sensitivity to PDT, we decided to concentrate on 

UMSCC 1 and UMSCC22A in further experiments. Results shown in (Fig 2-1 and 

Fig 2-2) demonstrated that head and neck cancer cells responded differently to the Pc 

4-PDT while the difference in sensitivity cannot be explained by equivalent cellular 

uptake and similar patterns of Pc 4 subcellular localization. 

Bafilomycin Enhances PDT Killing in Both Resistant and Responsive Cell Lines 

It has been known that lysosomes can be an alternative target in cases of failed 

mitochondrial targeting therapy. Therefore, our lab took the pharmacology approach 

by combining the bafilomycin, an inhibitor of the vacuolar proton-pumping ATPase 

(H+ -ATPase), which collapses lysosome pH and releases lysosomal iron to the mito-

chondria [205], with the mitochondria localized Pc 4-PDT. Results showed that 

bafilomycin enhances mitochondria-mediated Pc 4-PDT killing in A431 cells as 

shown in (Fig 2-3A) as well as results obtained from another lysosomal alkaliniza-

tion agent, chloroquine which is a weak base and accumulates into lysosomal acidic 
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vesicles to raise their pH. Chloroquine has the same biological effect as bafilomycin. 

Neither chloroquine nor bafilomycin alone with PDT induced cell killing but, when 

combined with Pc 4-PDT, both enhanced Pc 4-PDTcytotoxicity (Fig. 2-3A). In addi-

tion, the effects of bafilomycin on Pc 4-PDT treated A431 cancer cells were further 

confirmed by clonogenic assay, which measures the effect of a reagent on cancer cell 

survival and proliferation (Fig. 2-3B). Bafilomycin plus Pc 4-PDT treated A431 cells 

showed decreased proliferation and survival compared to the Pc 4-PDT. 

Cell death type by bafilomycin enhanced Pc 4-PDT killing was further deter-

mined by PI nuclear morphology staining and caspase activity assay. The PI fluo-

rometry assay monitors failure of the plasma membrane permeability barrier, an 

event that occurs during necrosis and lat1e stage apoptosis, the latter often named sec-
~ 

ondary necrosis. To determine further the mode of cell death, apoptosis and caspase 

3/7 activity were monitored. Both caspase-3/7 activity and apoptotic death were en-

hanced by bafilomycin after Pc 4-PDT treatment. Moreover, the pan caspase inhibi-

tor z-V AD completely blocked Pc 4 plus bafilomycin-induced caspase activation and 

apoptosis (Fig. 2-4). Overall, the results indicate that bafilomycin enhances mito-

chondria targeted Pc 4-PDT cytotoxicity but alone is nontoxic. 

We assessed the effect ofbafilomycin on PDT-induced cell killing in the UM-

SCCl and UMSCC22 head and neck cancer cell lines. At 0.8 pmol Pc 4/mg protein, 

Pc 4-PDT alone or in combination with bafilomycin induced minimal toxicity in 
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UMSCCI cells (Fig. 2-5A). Bafilomycin alone or light alone caused no toxicity (da-

ta not shown). At higher Pc 4 loading (1.5 pmol Pc 4/mg protein), its combination 

with bafilomycin caused 100% cell death after 5 h exposure to Pc 4-PDT (Fig. 2-5A) 

in UMSCC1 cells. 

In UMSCC22A cells, 0.8 pmol Pc 4/mg protein caused no toxicity during PDT, 

but its combination with bafilomycin greatly enhanced cell killing and decreased vi-

ability from 93% (Pc 4-PDT alone) to 17% (Pc 4-PDT plus bafilomycin) (Fig. 2-5B). 

At even higher Pc 4 loading (1.5 pmol Pc 4/mg protein), Pc 4-PDT greatly induced 

cell killing, and bafilomycin did not further enhance it since the UMSCC22 cells are 

already very sensitive to the higher Pc 4 dose (1.5 pmol Pc 4/mg protein) alone. 

When another lysosomal alkalinization ,reagent, chloroquine, was applied to further 
I"' 

observe the dysregulated pH effect of lysosome on Pc 4-PDT, we obtained similar 

PDT-enhanced cytotoxicity results (data not shown). 

These results suggest that, for those in whom mitochondrial targeted PDT ther-

apy has shown failure or resistance, lysosomal alkalinization agents represent a fea-

sible combination adjuvant to increase PDT treatment efficacy. 
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Iron Chelators and Ru360 Protect Against Bafilomycin-Enhanced PDT Killing 

Studies from hepatocytes demonstrate that bafilomycin releases iron from ly-

sosomes to the cytosol [205]. Therefore, we characterized whether chelation of iron 

would protect against bafilomycin-enhanced cell killing during PDT. Cells were 

pretreated with DFO (lmM) for 18 h before bafilomycin and subsequent irradiation. 

In UMSCC 1 cells at 1.5 pmol Pc 4/mg protein, DFO increased cell viability from 0 

to 37% after 5 h (Fig. 4A). starch-DFO (sDFO) (lmM), which is taken up by endo-

cytosis and specifically chelates endosomai/lysosomal iron, protected against cell 

killing after Pc 4-PDT to an even greater extent than DFO, increasing viability from 

o to 52% after 5 h (Fig. 2-6A). Ru360 is a highly specific inhibitor of the mitochon-

drial electrogenic calcium uniporter [205]. When cytosolic Fe2
+ increases, the calci-

urn uniporter transports iron into mitochondria [92]. Ru360 (10 J-lM) blocked 
, 
~ 

bafilomycin-enhanced PDT killing increasing viability from 0 to 79% after 5 h in 

UMSCC 1 cells (Fig. 2-6A). 

Similarly, in MUSCC22A cells, DFO and sDFO greatly protected against 

bafilomycin-enhanced PDT (0.8 pmol Pc 4/mg protein) toxicity, increasing viability 

from 17% to 690/0 and 60% in the presence ofDFO and sDFO, respectively, after 8 h 

(Fig. 2-6B). Again, Ru360 provided even greater protection, with viability increas-

ing from 17 to 87%. Cytoprotection by iron chelators indicates that bafilomycin-

induced toxicity during PDT is mediated by the release of lysosomal iron to the cyto-
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sol. Toxicity was likely related to increased mitochondrial iron uptake, since Ru360 

greatly blocked toxicity. 

Lysosomal Iron Augments Bafilomycin plus Pc 4-PDT-Mediated Cell Killing 

Results from another group [205] and the iron chelators and calcium uniporter 

inhibitor tested in these experiments both suggested that bafilomycin enhanced Pc 4-

PDT killing through lysosomal iron release and mitochondrial iron uptake, as shown 

in Fig. 2-6 .To further assess whether iron participates in cell killing after Pc 4-PDT, 

we pre-incubated A431 cells with 30 JlM ammonium iron (III) citrate (Fe3+) for 24 h 

before Pc 4 loading. Fe3
+ binds to transferrin, which is taken up by cells through re

ceptor-mediated endocytosis, resulting in increased lysosomal iron. After Fe3
+ load

ing, cells were loaded with Pc 4 followoo by bafilomycin or vehicle and light irradia

tion. At the low concentration of Pc 4 used, PDT in the absence and presence ofFe3
+ 

caused virtuaily no toxicity (Fig. 2-7). However, in the presence ofbafilomycin, Fe3
+ 

nearly doubled the rate of bafilomycin Pc 4-PDT -induced killing, decreasing viabil

ity to 25% from 47% at 12 h after PDT. This result indicated that iron taken up into 

the lysosome and released into the cytosol by bafilomycin contributes to the in

creased PDT killing effect. 
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Bafilomycin Enhanced Pc4-PDT Killing through Lysosomal Iron Release without 
Causing Lysosomal Membrane Permeability 

To detennine whether bafilomycin-enhanced mitochondrial dysfunction after 

POT was dependent on lysosomal membrane breakdown, cells were preloaded with 

Fe3
+, Alexa-488 dextran (10 kDa), and Pc 4 (25 nM). Alexa-488 dextran is taken up 

by endocytosis to label endosomes/lysosomes as bright fluorescent dots (Fig. 2-8A, 

Pc 4+Fe). Subsequent 1 h exposure of bafilomycin did not change endosomal 

Ilysosomal integrity (Fig. 2-8A, +Baf). After 2 h of irradiation (Fig. 2-8A, +light), 

when mitochondrial depolarization was maximal, there was no change in Alexa-488 

dextran fluorescence (Fig. 2-8A, +Baf+Light), mitochondria depolarization image is 

not shown). This result indicated that bafilomycin released lysosomal iron to cause 

mitochondrial depolarization without breaking the lysosomal membrane; otherwise, 
, ,. 

the small 10 kOa Alexa-488 dye would have leaked out and decreased the lysosomal 

labeling intensity. On the other hand, to further confirm that bafilomycin collapsed 

lysosomal pH gradient, cells were loaded with LysoTracker Red (500 nM) and sub-

sequently exposed to bafilomycin. LysoTracker Red is a weak base and accumulates 

into acidic organelles such as lysosomes [208]. Inhibition of the vacuolar proton-

pumping ATPase with bafilomycin is well established to collapse lysosomal pH gra-

dients and induce lysosomal alkalinization where the LysoTracker Red can no longer 

be retained in increased pH environment. Result from (Fig. 2-8B) showed that re-

lease of LysoTracker Red after bafilomycin in our experiments confinned that 

bafilomycin does collapse the lysosomal pH in the treated cells as expected (Fig. 2-
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8B). At the same time, we also loaded lysosomes with Alexa-488 dextran (10 kDa) 

in other dishes. After 1 h exposure to bafilomycin, lysosomes retained Alexa-488 

dextran but released LysoTracker Red (compare Fig. 2-8 A with B). 

Bright LysoTracker Red-labeled spots disappeared after bafilomycin admin-

istration, indicating lysosomal alkalinization (Fig. 2-8B). These results indicate that 

bafilomycin-enhanced mitochondrial dysfunction was not due to endoso-

mal/lysosomal membrane breakdown but rather was caused by collapse of the pH 

gradient in these organelles, which promotes release of lysosomal chelatable iron 

into the cytosol. Taken together, these findings suggest that lysosomal alkalinization 

by bafilomycin released iron without causing the generalized lysosomal membrane 

permeabilization. Additionally, imaging10f Alexa-488 dextran did not show evidence 
~ 

of lysosomal swelling after bafilomycin, which would be expected as a colloid os-

motic effect if the membrane became nonspecifically permeable to smaller molecular 

weight solutes. Indeed, nonspecific permeabilization to small or large molecular 

weight solutes has never been described for bafilomycin. Rather bafilomycin is a 

very specific and high affinity inhibitor of the lysosomal proton pump [209]. 
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Ferristatin Protects Cells against Bafilomycin-Mediated PDT Toxicity 

Although the mechanism by which bafilomycin releases iron from lysosomes 

was unclear until these results, findings from our lab and others have clearly showed 

that bafilomycin releases lysosomal iron without physically damaging the lysosomal 

membrane [92, 205]. In normal physiology, cells store ferrous iron in endo-

somes/lysosomes and move iron out of lysosomes through the DMT1 [210]. This 

phenomenon suggests a possible lysosomal iron releasing mechanism by bafilomycin 

through the DMT1. 

With the attempt to study the putative role of bafilomycin in releasing lysosomal 

iron into the cytosol by DMT1, a pharmacologic approach was taken by applying 

ferristatin, an inhibitor ofDMT1 [211] t9 bafilomycin-treated Pc 4-PDT. PDT results 

from UMSCC22A cells showed that ferristatin markedly protected cells against 

bafilomycin-etmanced PDT toxicity (Fig. 2-9) if pre-incubated more than 4 h prior to 
,-

bafilomycin addition. Moreover, ferristatin failed to protect if it was added after 

bafilomycin (not shown), which had therefore already released lysosomal iron. These 

findings strongly support and suggest the possible mechanism of lysosomal iron re-

lease by bafilomycin via DMT1 (Fig. 2-9). 
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Chloroquine Retards Regrowth of Tumors after PDT 

Our in vitro data show that bafilomycin greatly enhances Pc 4-PDT efficacy in 

Mfrn2-expressing cells. Thus, we hypothesized that adjuvant bafilomycin or chloro

quine would enhance tumor response to Pc 4-PDT, especially in high Mfm2-

expressing tumors. Instead ofbafilomycin, we used chloroquine in this study. Chlo

roquine showed the same enhanced PDT killing effects as bafilomycin in cancer cell 

lines (Fig. 2-3A). Chloroquine acts similarly to bafilomycin in collapsing the lyso

somal pH gradient and releasing iron from the lysosomes [92]. Moreover, the ad

vantage of chloroquine over bafilomycin for in vivo experiments is that chloroquine 

is already approved for human use by the FDA and has a long safe use record in hu

mans. Xenografts were created with UMSCC22A cells in nude mice and subjected 

to Pc 4-PDT. Tumor size continued to increase progressively after exposure to light 

without the photosensitizer (light only) or light plus chloroquine (CHQ) without the 

photosensitizer. By contrast, with the photosensitizer, tumors disappeared within the 

first 4 days post-PDT. Subsequently, tumors in the Pc 4 group started to regrow 

(Pc4). Chloroquine, however, significantly (p=0.011) delayed tumor regrowth 

(Pc4+CHQ) as plotted in Kaplan-Meier form (Fig. 2-10). These pilot data provide 

proof of principle that chloroquine can enhance the efficacy of PDT in vivo. 
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Discussion 

Mitochondrial apoptotic cell death is considered an efficient approach for can-

cer therapy. However, cancer cells constantly develop mutations within molecules 

that participate in the apoptotic cell death pathway, resulting in ineffective cancer 

treatment [212]. Accumulating literature reports that lysosomes can be alternative 

cellular targeting organelles to enhance therapy [213, 214]. Using a pharmacologic 

approach, we determined how lysosomes contribute to PDT -induced by mitochon-

dria-targeted photo sensitizers , such as Pc 4. Our results show that bafilomycin great-

ly accelerates mitochondria-specific Pc 4-PDT -mediated cell killing. Although 

bafilomycin acts on lysosomes, its toxic effects were manifested in mitochondria by 

accelerated depolarization after PDT, resulting in caspase 3/7 activation and apoptot-

ic death. The findings indicate cross talk between lysosomes and mitochondria dur-

ing PDT. 

The endosomai/lysosomal compartment continuously receives iron by transfer-

rin receptor-mediated endocytosis and by autophagic digestion of iron-containing 

proteins [180, 194]. Thus, lysosomes are a reservoir of chelatable, redox-active Fe2
+. 

Fe2
+ reacts with H20 2 to generate highly reactive and toxic OH

e

• During Pc 4-PDT, a 

large proportion of ROS formation occurs inside mitochondria and leads to the onset 

of a mitochondrial permeability transition, as documented by increased mitochondri-

al dichlorofluorescein fluorescence and the movement of calcein across the mito-

chondrial inner membrane [204]. 
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The alkalinization of lysosomes/endosomes with bafilomycin enhanced Pc 4-

PDT-mediated cell killing (Fig. 2-3 and Fig. 2-5). However, bafilomycin did not in-

duce lysosomal membrane breakdown after Pc 4-PDT, as assessed by retention of 10 

kDa Alexa-488 dextran with lysosomes (Fig. 2-8A). Alexa-488 dextran fluorescence 

is pH-independent, and, therefore, the loss of Alexa-488 dextran fluorescence signi-

fies lysosomal disintegration specifically rather than indicating a change in lysoso-

mal pH. These results indicate that lysosomal membranes remained intact during 

bafilomycin plus PDT treatment (Fig. 2-8A). Since lysosomal membrane permeabili-

zation did not occur, the possibility of cathepsins and other proteases to be released 

from lysosomes and contribute to PDT cytotoxicity was ruled out. 

Fe3
+ forms a complex with transferrin, which binds to transferrin receptors for 

receptor-mediated endocytosis, resulting in iron delivery to endosomes/lysosomes. 
, ,. 

The observation that pre-incubation of cells with ammonium iron (III) citrate en-
., 

hanced killing after bafilomycin plus Pc 4-PDT treatment and that sDFO prevented 

this cell killing is consistent with the conclusion that bafilomycin mobilizes iron 

from lysosomes into the cytosol. Similar results were obtained in a recent study with 

He La cells, where FeCl3 enhanced ionizing radiation-induced killing that was pre-

vented by iron chelation [215]. 

Our results established that lysosomal iron release mediates bafilomycin-

mediated enhanced killing during PDT. However, the mechanism by which bafilo-

mycin releases iron from lysosomes remains unclear. The release of iron occurred 
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without physical damage to lysosomal membranes (Fig. 2-8A). In normal cell phys-

iology, Fe2
+ stored in endosomes/lysosomes moves out of lysosomes through the 

DMTI [211]. Therefore, we assessed the possibility of lysosomal iron to be released 

by bafilomycin through DMTI. Ferristatin, an inhibitor ofDMTl [216,217] mark-

edly protected against bafilomycin-enhanced toxicity (Fig. 2-9). Ferristatin failed to 

protect if it was added after bafilomycin (not shown) and thus after lysosomal iron 

release. These results support the conclusion that iron release after bafilomycin oc-

curs via DMTI. Evidently these results need to be confirmed using a knock-

downlknockout approach. 

Fe2
+ reacts with R 20 2 to fonn ORe, a highly reactive fonn of ROS [194]. 

Bafilomycin by itself was not sufficient, to induce cell killing (data not shown). Ra-
10 

ther, mild oxidative stress induced by low dose Pc 4-PDT combined with bafilomy-
., 

cin was needed to induce cell killing (Fig. 2-3). The iron chelators DFO and sDFO 

protected against PDT plus bafilomycin-induced mitochondrial depolarization and 

killing (Fig. 2-6, and Fig. 3-4A) [92]. DFO is highly polar and poorly permeates 

through membranes, and therefore millimolar concentrations were required to have 

the protection effect. DFO may also be taken up by endocytosis resulting in its ac-

cumulation in endosomes/lysosomes [180]. Consequently, cytoprotection with DFO 

may be explained by chelation of redox-active iron in lysosomes. sDFO also pre-

vented PDT plus bafilomycin-induced cell killing (Fig. 2-6), indicating that lyso-
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somes/endosomes release redox-active iron after bafilomycin and that DFO and 

sDFO prevent this release by chelating the intraluminal iron store of these organelles. 

Protection by lysosomal iron chelation against mitochondrial depolarization 

[92] after PDT suggests that mitochondrial iron uptake may be responsible for 

bafilomycin-enhanced killing. Mitochondria accumulate Fe2
+, but not Fe3

+, electro-

genically via the MCV [218,219]. The highly specific inhibitor of MCU, Ru360, 

also protected against bafilomycin-enhanced PDT toxicity (Fig. 2-6). Although 

Ru360 and iron chelators blocked cell killing, Ru360 was somewhat more effective 

in protecting against cell killing (Fig. 2-6). Thus, mitochondrial iron uptake seems to 

be a key event in bafilomycin-enhanced PDT toxicity. 

Besides chelating iron, DFO also stabilizes HIF-la in normoxic cells [220]. 

HIF-la activates several protective signaling pathways that potentially could explain 
, ,. 

cytoprotection by iron chelation. Although DFO and sDFO did stabilize HIF-1a pro-

tein levels, R1l360 did not (Fig. 2-11) [92]. Since Ru360 protected against cell kill-

ing even better than DFO/sDFO (Fig.~ 2-6) [92], HIF-la is not likely responsible for 

cytoprotection. 

Bafilomycin is frequently used to inhibit autophagy by collapsing lysosomal 

pH gradients and thereby blocking fusion of autophagosomes with lysosomes [221]. 

Consistently with an effect on autophagy, bafilomycin alone and Pc 4-PDT plus 

bafilomycin increased cellular LC-3 II protein levels as assessed by Western blotting, 

presumably by inhibiting fusion of autophagosomes with lysosomes (Fig. 2-12). 
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Thus, bafilomycin inhibited autophagic flux, which may explain the increased PDT 

killing with bafilomycin. However, iron chelators and Ru360 protected cells against 

Pc 4-PDT plus bafilomycin toxicity, but neither iron chelators nor Ru360 altered LC-

3 II protein levels (Fig. 2-12). Thus, it seems unlikely that enhanced survival by iron 

chelators and Ru360 acts through enhancing autophagy. Rather, iron chelators and 

Ru360 prevented cell killing induced by bafilomycin during PDT (Fig. 2-6). 

In conclusion, we established a link between lysosomal alkalinization and mi-

tochondrial depolarization during PDT (Fig. 2-13) [92]. Strategies to engage lyso-

somes in cell death pathways have potential to enhance tumor cell killing. Our re-

sults here demonstrate that strategies to collapse the lysosomal pH gradient without 

lysosomal membrane breakdown are sufficient to induce iron-dependent cell killing. 

Lysosomal perturbation by bafilomycin effectively enhances cell killing during PDT. 
, .. 

Pc 4-PDT has completed a Phase I clinical trial for cutaneous neoplasms [98] and is 

currently in a Phase I trial for psoriasis. The results of this study suggest that agents 

that disturb lysosomal function could potentially be used clinically as an adjuvant 

treatment with mitochondria-targeted photosensitizers. 
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Figure 2-1. Cellular uptake and sub-cellular localization of Pc 4 in head 
and neck cancer cells. UMSCC1, UMSCC14 and UMSCC22A cells have (A) 
equivalent cellular Pc 4 uptake under the loading of Pc 4 at concentration of 75-

300, 100-375, and 125-451 nM, respectively. Values were normalized to protein 

content and results represent three independent experiments (mean ± SEM). (B) 

Similar Pc 4 cellular localization patterns. Images are representative of three 

independent experiments. 
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Figure 2-2. Head and neck cancer cells respond differently to PDT. UM

SCC1 and UMSCC 22A cells respond to PDT dose at (A) 0.8 (B) 1.5 and (C) 
2.8 pmol Pc 4/mg protein, as described in Fig. 2-1A. After 18 h, medium was 

changed to fresh medium supplemented with ITX reagent and PI (30 JlM) but 
omitting FBS. Cells were exposed to light as described in Materials and 

Methods. Viability was assessed by PI exclusion using fluorometry. Results 

are expressed as percent viability at 0 h. Data represent three independent 
experiments (mean ± SEM) performed in quadruplicate. *, p < 0.0001 com

pared to UMSCC 1 and UMSCC 22A. 
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Figure 2-3. Chloroquine enhances Pc 4-PDT-induced A431 cell killing. (A) 
Both bafilomycin and chloroquine enhance Pc 4-PDT cytotoxicity. 50 nM bafilo
mycin or 50 flM chloroquine was added 1 h before irradiation, and cell viability 
was monitored with PI fluorometry. Results are expressed as percent viability of 0 
h. Data represent three independent experiments performed in quadruplicate. (B) 
Cells (330,000 cells/6-cm Petri dish) were treated and irradiated as in A. Subse
quently, cells were trypsinized and plated on 6-cm Petri dishes. After 14 days, 

colonies were stained with crystal violet and counted. Results are expressed as 
percent colonies of light-treated cultures. Data represent three or more independ
ent experiments performed in triplicate. *, p < 0.05 compared to Pc 4 (one-tailed 
t-test). 
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Figure 2-4. Bafilomycin enhances Pc 4-PDT killing in A431 cancer cells 
through apoptotic death. (A) cells , were plated on 96-well plates (6,000 ,. 
cells/well) and treated as described in exp€rimental procedures. z-V AD (10 J..lM) 
was added, as indicated, 1 h prior to irradiation. Four h after irradiation, apoptotic 
nuclei were scored with a fluorescence microscope as described in materials and 
methods. At least 200 cells were counted from three different microscopic fields 
for each treatment group. Results are expressed as percent apoptotic nuclei. Data 
represent three independent experiments (mean ± SEM) performed in triplicate. 
***, p < 0.005 compared to Pc 4. (B) cells were plated on 6-well plates (120,000 
cells/well) and treated as described in A. Four h after irradiation, celllysates were 
prepared as described in Materials and Methods. Caspase 3/7 activity was normal
ized for protein content, and results are expressed as fold increase from light
treated cells. Data represent three independent experiments (mean ± SEM) per
formed in triplicate. *, p < 0.05 compared to Pc 4 (one-tailed t-test). 
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Figure 2-5. Bafilomycin enhances PDT killing in both resistant and responsive 
cell lines. UMSCC1 (A) and UMSCC22A (B) cells (6,000 cells) were cultured on 

96-well plates for 24 h. Cells were incubated with Pc 4 to yield to 0.8 and 1.5 

pmol/Pc 4/mg protein, as described in Fig. 2-1 A. After 18 h, medium was changed 

to fresh medium supplemented with ITX reagent and PI (30 JlM) but omitting 

FBS, followed by incubation with bafilomycin (50 nM) (Bat) for 1 h, where indi

cated. Subsequently, cells were exposed to light, as described in Materials and 

Methods. Viability was assessed by PI exclusion. Data represent three independ

ent experiments (mean ± SEM) performed in quadruplicate. *, p < 0.0001 com

pared to Pc 4-PDT treatment alone. 

76 



A UMSCC1 (1.5 pmol Pc 4/mg) 

100 

....-. 
~ 0 ........... 
~ ......, 

50 .c • Pc 4+8a co 
:> T +DFO 

• +sDFO 
• +Ru360 

0 
0 2 4 6 8 

Time (h) 

B 

UMSCC22 A (0.8 pmol Pc 4/mg) 

100 
....-. 
-:!2. 0 
"-" 

~ 
:t= 

.c 50 • Pc 4+8af co 
T +DFO 4 :> 
• +sDFO 
• +Ru360 

0 
0 2 4 6 8 

Time (h) 

Figure 2-6. Iron chelators and Ru360 protect against bafilomycin-enhanced 
PDT killing. UMSCCI (A) and UMSCC22A (B) cells were loaded with Pc 4 in 

the presence and absence of iron chelators DFO (1 mM) and sDFO (1 mM), and 

the inhibitor of the calcium uniporter Ru360 (10 J.!M) for 18 h. Cells were irradi

ated and cell killing was assessed with PI exclusion, as described in materials and 

methods. Values are mean ± SEM from 3 independent experiments. *, p < 0.05 

compared to Pc 4+Baf. 
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Figure 2-7. Iron enhances Pc 4-PDT-induced A431 cell killing. Cells were 

cultured in medium containing 30 f.lM ammonium iron (III) citrate (Fe) for 24 h, 

as indicated. Subsequently, Fe3
+ was washed out and cells were incubated with 

25 nM Pc 4 for 18 h. Medium was replaced with medium supplemented with 

Insulin-Transferrin-Selenium-X Reagent and omitting FBS. Bafilomycin (50 

nM) was added, as indicated. Cell viability was monitored with PI fluorometry. 

Data represent three independent experiments (mean ± SEM) performed in quad

ruplicate. *, p < 0.05; **, p < 0.01 compared to Pc 4 + Baf. 
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Figure 2-8. Lysosomal membrane permeability after bafilomycin and Pc 4-
PDT in A431 cells. (A) cells were plated on glass-bottomed Petri dishes (150,000 
cells/dish) in the presence of Fe. After 24 h, medium was replaced with fresh medi
um containing 25 nM Pc 4 and Alexa-488 dextran (10 kDa, 0.2 mg/ml). After 18 h, 
medium was replaced with fresh medium supplemented with ITX reagent and omit
ting FBS. Dishes were placed on a confocal microscope stage at 37°C. Images were 
obtained after Pc 4 and Fe (Pc 4+Fe), after 1 h exposure to bafilomycin (+Baf) and 
after 2 h exposure to light (+Baf+Light). (B) cells were loaded with LysoTracker 
Red (500 nM) for 20 min. Medium was replaced with fresh medium supplemented 
with 200 nM LysoTracker Red. After collecting a baseline image, bafilomycin (50 
nM) was added and the images were taken after 60 min (upper panel). Lower panel 
shows untreated cells imaged before and after 60 min. Images in A and B are repre
sentative of three independent experiments. 
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Figure 2-9. Ferristatin protects UMSCC22A cells against bafilomycin 
enhanced Pc 4-PDT cytotoxicity. UMSCC22A cells were plated on 96 well 
(15,0001 well) plate for 24 h. Subsequently, cells were loaded with 0.8 pmole 
Pc 4/mg for 18h in complete DMEM medium with the ferristatin 4 h or 18 h. 
Medium were then replaced with ITX medium with bafilomycin (50 nM) for 
1 h prior to light exposure. Viability was assessed by PI exclusion. 
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Figure 2-10. Effect of CHQ on tumor regrowth after Pc 4-PDT. UMSCC22A 
cell xenografts were created in flanks of nude mice (3 xl 06 cells in right flank). 
Once tumors reached 60-100 mm3

, Pc 4 (0.5 mg/kg) was administered via tail vein. 
After 48 h, CHQ (30 mg/kg, i.p.) was administered, as indicated. Four h later, tu
mors were irradiated (50 J/cm2

). Post-PDT, tumor volume was measured with a dig
ital caliper. The estimated difference and 95% confidence interval for Pc 4+CHQ 
vs. Pc 4 was statistically significant (p = 0.011). 
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Figure 2-11. Effect of iron chelators and Ru360 on HIF-la protein levels. 
A431 cells were incubated with Pc 4 (25 nM) in the presence and absence of 
DFO (1 mM), sDFO (ImM) and Ru360 (10 JlM) for 18 h, and celllysates 
were subjected to Western blotting. Cells were also exposed to hypoxia 
(0.5% O2) for 6 h as a positive control. Actin was used as a loading control. 
Blots are representative of three independent lysates. 
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Figure 2-12. Effect of DFO and Ru360 on autophagy during bafilomycin 
plus Pc 4-PDT. UMSCC22A cell~ were plated on 6-well (300,000/well) 

plates for 24 h. Subsequently, cells were loaded with 0.8 pmole Pc 4/mg in 
the presence ofDFO (1 mM) and Ru360 (10 f.lM) for 18 h in complete medi
um. Medium was then replaced with ITX medium supplemented with 
bafilomycin (50 nM) in the presence and absence of DFO or Ru360 for 1 h 
prior to light exposure. Cell lysafes were prepared after 45 min post-PDT 
treatment and probed with LC3 antibody. 
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Figure 2-13. Proposed model for interplay between Iysosomes and mitochon
dria during PDT. 
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Chapter 3 

Role of Mitochondrial Iron Transporter Mitoferrin2 in 

Pc 4-PDT Treatment 
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Hypothesis 

HNSCC cells expressing higher levels of Mfm2 are more sensitive to PDT and par-

ticularly to bafilomycin-enhanced killing during PDT. 

Introduction 

In physiological conditions, cytosolic free iron concentration is low. However, 

in pathological conditions chelatable iron released from lysosomes can dramatically 

increase cytosolic iron concentration [194, 205]. Free iron is rapidly taken up by mi-

tochondria through the MCV [205,218,219,222]. MCV was recently characterized 

as a 40 kDa mitochondrial membrane protein with channel activity [218, 219]. Be-

sides Ca2
+, MCV can also transport Fe2

+ into mitochondria in a situation where cyto-

solie Fe2
+ is elevated [222]. I ,. 

In addition, another mitochondrial protein, Mfrn has been recently described as 

an iron transporter across the inner mitochondrial membrane [223-225]. Mfrn2 pro-

tein has two functional analogues: Mfm 1 (Mfml) and Mfm 2 (Mfm2). Mfml 

(SLC25A37) is a 38 kDa protein that is highly expressed in erythroid cells and in 

low levels in other tissues, whereas Mfm2 (SLC25A28), a 39 kDa protein, is ex-

pressed in non-erythroid tissue [199, 226-228]. Mfm transports iron into mitochon-

dria to supply iron required for biosynthesis of heme and iron-sulfur clusters [229]. 

During erythropoiesis, half-life of Mfrn 1 increases in developing erythroid cells 

whereas half-life of Mfrn2 remains the same [227]. Mfml deficiency in developing 
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zebrafish erythroid cells results in deficient iron delivery and defective heme synthe-

sis that cannot be rescued by ectopic expression of Mfm2 owing to different cellular 

regulation of these two Mfm proteins [223]. Mfrn1 is also stabilized by Abcb10, a 

mitochondrial inner membrane ATP-binding cassette transporter. Abcb 10 and 

Mfm1 form a complex, which further interacts with ferrochelatase to form an oligo-

meric complex that enhances mitochondrial iron importation during erythropoiesis 

[230]. To date, no molecules have been identified to form a complex or interact with 

Mfrn2. 

Mfm2 belongs to family of the mitochondrial carrier family (MCF) and trans-

ports iron from cytosol into mitochondria. Mfm2 locates on the chromosome 10q 24 

and contains four exons which encode a full length 364-aa protein with six trans-

membrane domains. Splice variant isoform2 and its four amino substituent isoform3 
, ,. 

(NPAE ~ MALL) encode a 177-aa and. 176-aa proteins, respectively, with three 

transmembrane domains [200]. Mfm2 full length isoform and the truncated isoform 

2 are able to transport to mitochondria [199]. However, all the functional studies 

with respect to iron transport into mitochondria are performed with full length Mfm2 

and therefore the full length Mfrn2 is the canonical isoform. Mfm2 is expressed in 

placenta, lung, kidney, pancreas, liver, brain, skeletal muscle and heart tissues [200]. 

In chapter 2, we demonstrated that bafilomycin releases iron from lysosomes 

to cytosol and enhances Pc 4-PDT -mediated cytotoxicity in both the head and neck 

responsive and resistant cell lines. In this study, we explored the potential contribu-
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tion of Mfm2 to PDT -mediated mitochondrial dysfunction and cytotoxicity after re-

leasing lysosomal iron by bafilomycin. The findings implicate that lysosomal iron 

release and mitochondrial iron uptake through Mfrn2 act synergistically to induce 

PDT-mediated and iron-dependent mitochondrial dysfunction and subsequent cell 

killing. To our knowledge, this is the first study to show a causal link between Mfm2 

and mitochondrial dysfunction in a pathological condition. 

, ,. 
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Materials and Methods 

Cell Culture. The human head and neck squamous carcinoma cell lines (UMSCC 1, 

UMSCC14A and UMSCC22A) were a gift from Dr. Besim Ogretmen (Medical Uni

versity of South Carolina). Cells were cultured in Dulbecco's Modified Eagle's Me

dium (DMEM) (Gibco) supplemented with 10% fetal bovine serum (FBS) and peni

cillin/streptomycin (complete culture medium) in a humidified 37°C incubator at 5% 

C02/95% air. 

Photodynamic Therapy. Cell cultures were incubated with the desired concentra

tion of Pc 4 for 18 h before exposure to 390 mJ/cm2 red light (A = 670 nm) at 37°C 

from an Intense-HPD 7404 diode laser (North Brunswick, NJ). Subsequently after 

exposure to red light, cells were incubated for various periods of time prior to analy-

SIS 

Assessment of Cell Death. Cell death was assessed by propidium iodide (PI) using 

a multi-well fluorescence plate reader, as previously described [207]. Briefly, cells 

were cultured on 96-well plates (6,000 cells/well) for 24 h in complete culture medi

um. Pc 4 in the presence or absence ofDFO (1 mM), sDFO (1 mM) and Ru360 (10 

J.!M) were present during the last 18 h of the incubation, where indicated. Subse

quently, medium was replaced with fresh medium supplemented with ITX reagent 

and PI (30 J.lM) but without FBS. Bafilomycin (50 nM) was added as indicated. 
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One h after drug addition but before irradiation, PI fluorescence was measured using 

530 nm excitation (25 nm band pass) and 620 nm emission (40 nm band pass) filters. 

PI fluorescence was then measured at frequent intervals for 8 h. Between measure

ments, microtiter plates were placed in a 37°C incubator. At the end of the experi

ment, digitonin (200 J.lM) was added to each well to permeabilize all cells and label 

all nuclei with PI. Cell viability determined by PI fluorometry is essentially the same 

as cell viability determined by trypan blue exclusion [207]. 

RNAi Knockdown. UMSCC22A cells (3 x 106
) were transfected with human Mfm2 

and non-target siRNA (25 nM, Ambion) using Lipofectamine RNAiMAX transfec

tion reagent (Invitrogen) with a reversed transfection method on 10-cm Petri dishes. 

After 3 days, cells were trypsinized and plated on 24-well plates (50,000 cells) for 

the second reversed siRNA transfection:. After 3 days, cells were loaded with Pc 4 in 

complete culture medium for 18 h for the experiments. 

Quantitative Real Time peR. Total mRNA was extracted from celllysates using a 

RNeasy Mini Kit (Qiagen) following the manufacturer's instructions. Quantitative 

real time PCR (RT PCR) was performed by a two-step procedure. cDNA was syn

thesized by a iScript cDNA Synthesis kit (Bio-Rad) and PCR was carried out using 

iQSYBR Green Supermix (Bio-Rad). Each PCR reaction contained 1 J.lI of the total 

100 J.lI cDNA product from IJ.lg of total mRNA through RT process with 250 nM of 

both forward and reverse primer. The PCR reaction was performed using the follow-
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ing protocol: 1 cycle of 3 min at 95°C for initial activation of the enzyme followed 

by 40 cycles of lOs at 95°C for denaturation, and 45 s at 55°C for annealing and ex-

tension. After completion of the reaction, the PCR products were subjected to a melt-

ing curve analysis with 1 cycle of 1 min at 95°C to help denature and 1 min of 55°C 

followed by 80 cycles of 55°C. Relative Mfm gene expression was quantified by 

rI8S as a reference gene expression control. Primers for Mfm1 and Mfm2 were 

adopted from Harvard Gene Bank as follows: Mfm1 (ID: 7706I50a1)-fw, 5'-

TAGCCAACGGGATAGCTGG-3' ; Mfm1-rv, 

5'GTGGTGTAGCTCCGGTAGAAG-3' (178 base pairs). Mfm2 (ID: 28703800aI)-

fW,5'CTGCGTGATGT ACCCCATCG3', Mfm2-rv, 

5'CCTGTTGCTGTGACGTTCAG-3 ' (1 59base pairs). 18S-fw, 5' -

GAGGGAGCCTGAGAAACGG-3'; I8S-rv, 5'-GTCGGGAGTGGGTAATTTGC-

3' (68 base pairs). 

Western Blot Analysis. Total cell extracts were prepared in ice-cold RIPA lysis 

buffer [150 mM NaCI, 1 mM EGTA'~ 1% sodium deoxycholate, 1% Triton X-100, 

0.1 % SDS, 1 % NP40, 50 mM Tris-CI, pH 7.4] supplemented with a cocktail of pro-

tease inhibitors (Roche Diagnostics). Lysates were centrifuged, and resulting super-

nat ants were quantified for the total protein content by Bradford (Bio-Rad). Equiva-

lent amounts of protein were diluted in sample buffer (Invitrogen) supplemented 

with 10% SDS and 10% J3-mercaptoethanol, and resolved on NuP AGE® Tris-bis 

polyacrylamide gel (4%-12% SDS-PAGE) (Invitrogen). Proteins were transferred 
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and immobilized on PVDF membranes (Millipore) and probed with anti-Mfm2 

(1 :500) (Abeam), anti-TOM20 (1: 1 000) (Santa Cruz), and anti-~-tubulin (1: 1 000) 

(Sigma). Membranes were developed by the enhanced chemiluminescence detection 

system (Pierce). Band intensities of the membranes were quantified using a 

Caresteam 4000 PRO image station (Woodbridge, CT). 

Mitochondrial Iron Uptake. Cells plated in 24-well plates were washed 3 times 

with intracellular buffer (ICB) containing (in mM): 120 KCI, 10 NaCI, 2 MgCI2, 2.5 

KH2P04, 20 HEPES buffer, pH 7.4,0.02 EGTA, 5 Na2 succinate, 2 ATP, 3 glutathi

one, 1 flM rotenone, 2 flM thapsigargin , 5 J.lM oligomycin, and 1 flg/ml protease in

hibitors pepstatin, anti pain, and leupeptin leaving last wash. Ten J.lM digitonin was 

added to last wash. After 10 min, buffer was substitute with ICB containing 5 J.lM 

calcein, but no EGTA or digitonin and;'incubated for 5 min. Calcein fluorescence 

(excitation 495 run emission 515'nm) was assayed every 0.5 sec for 120 sec using a 

BMG Novostar fluorescence plate reader. After 1 sec,S J.lM FeS04 was added. 

Statistical Analysis. Data are calculated as means ± SEM from at least three inde

pendent experiments performed in triplicate. Pairwise comparison was performed by 

two-tailed (-test using Instat2 software (GraphP AD, San Diego, CA). A p value < 

0.05 was considered to be statistically significant. 
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Results 

Differential Endogenous Mfrn-2 Gene and Protein Expression in Head and Neck 
Cancer Cells 

In non-erythroid cells, Mfm2 is an iron transporter localized on inner mito-

chondrial membrane that transports iron from cytosol into mitochondria [229]. Since 

bafilomycin-induced toxicity during PDT is likely related to mitochondrial iron up-

take, we assessed Mfrn2 expression in head and neck cancer cells. PDT-sensitive 

cells (UMSCC22A) expressed 2 fold higher Mfrn2 mRNA measured by quantitative 

peR compared to PDT-resistant (UMSCCI and UMSCC14A) cells. As expected, 

all head and neck cancer cells expressed very little Mfml (Fig. 3-IA). Conversely, 

human K562 erythromyeloblastoid leukemia cells expressed high levels of Mfml 

and less Mfm2 (Fig. 3-IA). UMSCC22A expressed 2 fold higher Mfm2 protein lev-
, ,. 

els compared to UMSCCI and UMSCCI4A, and K562 cells expressed low Mfm2 

(Fig.3-IB-C). Samples from all cell lines contained equal amounts of the mitochon-

dria-specific protein TOM20 (Fig. 3-IC). Thus, the difference in Mfrn2 protein ex-

pression between the cell lines cannot be explained by differences in mitochondrial 

proteins in lysates. 

Next we determined whether cells expressing more Mfm2 were capable of 

transporting iron faster from the cytosol to mitochondria compared to cells with less 

Mfrn2. Mitochondrial iron uptake was measured in digitonin-permeabilized cells 

using calcein fluorescence. Indeed, UMSCC22A cells showed higher rates of mito-
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chondrial Fe2
+ uptake compared to UMSCC1 cells (0.27 versus 0.08 J.1mol 

Fe2+/minlmg protein) (Fig. 3-2). 

Downregulation of Mfrn2 Results in Decreased Mitochondrial Fe2
+ Uptake 

The results in Fig. 3-2 demonstrate the causal correlation of Mfm2 expres

sion and mitochondrial Fe2
+ uptake in head and neck cancer cells. Therefore, we 

reasoned that downregulation of Mfm2 in UMSCC22A cells should result in de

creased mitochondrial Fe2
+ uptake. Knockdown of Mfrn2 in UMSCC22A cells us

ing siRNA resulted in 88% decrease in Mfrn2 mRNA expression (Fig. 3-3 A) and 

56% decrease in protein expression (Fig. 3-3B). As expected, knockdown of Mfrn2 

also decreased rates of mitochondrial Fe2
+ uptake by 790/0 compared to cells trans

fected with non-target siRNA (0.31 J.1mol/minlmg versus 0.07 flmol/minlmg protein) 

(Fig. 3-3C). Taken together, the data are consistent with the conclusion that in

creased mitochondrial iron transport through Mfrn2 at least partly explains the dif

ferential sensitivity of head and neck 'cancer cell lines to bafilomycin-enhanced tox

icity to PDT. Furthermore, Mfm2 is likely a protein responsible for mitochondrial 

iron transport in cells. 
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Downregulation of Mfrn2 Delays Mitochondrial Depolarization and Cell Death 
after PDT plus Bafilomycin 

Iron by participating in Fenton chemistry and increasing ROS production can 

induce mitochondrial dysfunction. Therefore, we assessed the effects of Mfm2 

knockdown on mitochondrial membrane potential and cell viability in high Mfm2 

expressing UMSCC22A cells. At 0 min, bright pseudocolored red and yellow sphe-

roids represented high TMRM fluorescence intensities in polarized mitochondria 

(Fig. 3-4 A). After exposure to PDT (0.8 pmol Pc 4/mg protein) plus bafilomycin, 

bright spheroids rapidly disappeared in cells transfected with non-target siRNA 

(siControl) so that after 15 min, most ofTMRM had leaked out from mitochondria, 

indicating mitochondrial depolarization. After 30 min, virtually all polarized mito-

chondria disappeared (Fig. 3-4 A top panel). Conversely, in Mfrn2 knockdown cells, 

some of the bright fluorescent spheroids remained even after 30 min (Fig. 3-4 A bot-

tom panel). The average TMRM fluorescence after background subtraction under 

conditions described in panel A was ~etermined every 5 min for 30 min. Results are 

expressed as percent TMRM fluorescence of 0 min (Fig. 3-4 B). Data are means 

calculated from analyses of 74-80 cells per treatment group obtained from three in-

dependent experiments (mean ± SEM). *, P < 0.05 compared to control siRNA. 

Moreover, Mfrn2 knockdown increased cell viability from 0 to 56% after 8 h (Fig. 3-

4 C). The results implicate Mfrn2-mediated mitochondrial iron uptake as a key step 

in bafilomycin-enhanced mitochondrial depolarization and subsequent cell death af-

ter PDT. 
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Increased Expression of Mfrn2 Enhances Cell Death in Resistant Head and Neck 
Cancer Cells after PDT Plus Bafilomycin 

To further confirm the role of Mfrn2 in PDT response, we overexpressed the 

Mfrn2 in low Mfrn2 expressing UMSCC 1 cells. First Mfrn2-GFP-overexpressed 

UMSCCI cells were loaded with MitoTracker Red to observe the cellular localiza-

tion of the ectopic expressed protein. Confocal images revealed co-localization of 

GFP and MitoTracker Red, indicating that GFP-Mfrn2 localizes to mitochondria (Fig. 

3-5A). Next GFP-Mfrn2 protein levels were observed with both GFP and Mfm2 an-

tibodies by Western blotting. We detected GFP-Mfm2 protein with both antibodies 

(Fig. 3-5B). Next we assessed the effect of GFP-Mfrn2 on cell killing during PDT. 

In GFP and GFP-Mfrn2 expressing UMSCCI cells, Pc 4-PDT alone decreased via-

bility to 75% 8 h post-PDT (Fig. 3-6). In GFP expressing cells, bafilomycin en-

hanced Pc 4-PDT -induced cell killing decreasing viability from 75% to 45% at 6 h 

post-PDT. In GFP-Mfrn2 expressing cells, however, viability decreased from 75% 

to 0%. These results further confinn our results with knockdown cells and implicate 

Mfrn2-mediated mitochondrial iron uptake as a key step in bafilomycin-enhanced 

cell death after PDT. 
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Discussion 

Main findings of this study provide mechanistic information regarding the con-

tribution of lysosomal chelatable iron to mitochondrial dysfunction and cell death in 

HNSCC cells during PDT. Our results indicate that lysosomal iron release and mito-

chondrial iron uptake through Mfrn2 act synergistically to induce PDT -mediated and 

iron-dependent mitochondrial dysfunction and subsequent cell killing in head and 

neck cancer cells. To our knowledge, this is the first study to show a causal link be-

tween Mfm2 and mitochondrial dysfunction in a pathological condition. 

Our results demonstrate that Ru360, a potent inhibitor of the MCU, markedly 

protected against bafilomycin-mediated PDT toxicity (Fig. 2-6). For years, Ca2
+ up-

take across the inner mitochondrial membrane has been known to be mediated by the 

Meu. However, it was until recently wren MeU was identified as a 40 kDa protein 
~ 

that is localized to inner mitochondrial membrane. The protein contains two trans-

membrane domains and shows channel activity [218, 219]. However, transport of 

Fe2
+ into mitochondria through MeU occurs in pathological situation when cytosolic 

free Fe2
+, but not Fe3

+, is increased [222]. Therefore, Ru360 protection against 

bafilomycin toxicity during PDT may be explained by prevention of Fe2
+ uptake into 

mitochondria through Meu. 

Although MeU may serve as an iron transporter across mitochondrial mem-

branes during pathological conditions, other iron transporters have been identified as 

well. Mfm 1 is highly expressed in erythroid cells but in low levels in other tissues 
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[223]. In non-erythroid cells, Mfrn2 is expressed as three isoforms, a canonical full-

length 39 kDa isoform and 2 alternative splicing isoforms [200]. So far only a full-

length Mfrn2 has been shown to transport iron from the cytosol to mitochondria 

[199]. Thus, contributions of the other isoforms to the mitochondrial iron import re-

main to be determined. There is no sequence homology between MCU and Mfrn2 

[218,219]. All three head and neck cancer cell lines expressed very little Mfrn1 (Fig. 

3-1A). Interestingly, the cell lines that were more resistant (UMSCC1 and UM-

SCC14A) to PDT and bafilomycin toxicity also expressed less Mfrn2 mRNA and 

protein than UMSCC22A, a sensitive cell line (Fig. 3-1A-B). Furthermore, mito-

chondria in permeabilized UMSCC22A cells took up Fe2+ at a 3.0 fold faster rate 

compared to UMSCC1 cells (Fig. 3-2). These findings suggest a causal link between 

mitochondrial Fe2
+ uptake through Mfm2 and cytotoxicity. 

, 

Downregulation of Mfrn2 decrea;ed. rate of mitochondrial Fe2
+ uptake and de-

layed mitochondrial depolarization and subsequent cell death after PDT plus bafilo-

mycin (Fig. 3-4A). Our results provide the first evidence how Mfm2 by regulating 

mitochondrial Fe2
+ uptake may contribute to cytotoxicity during PDT. The finding 

that Ru360 provided protection against bafilomycin-enhanced PDT toxicity also 

suggests that MCU may be responsible for mitochondrial Fe2
+ uptake. Alternatively, 

interaction of MCU and Mfrn2 may be required for mitochondrial Fe2+ transport. 

This would explain why Ru360 provided such a great protection against bafilomy-

cin-enhanced PDT toxicity (Fig. 2-6). Baughman and co-workers were not able to 

show interaction between MCU and Mfrn2 in physiological conditions from their co-
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immunoprecipitation [218,219]. It may be possible that interaction of these proteins 

is favored by high Fe2
+. Further studies are needed to answer these questions. Our in 

vitro data show that bafilomycin greatly enhances Pc 4-PDT efficacy in Mfrn2-

expressing cells. The question remains whether this phenomenon also occurs in vivo. 

To address this question we performed a pilot study in nude mice. Xenografts were 

created with high Mfm2-expressing UMSCC22A cells and subjected to PDT (Fig. 2-

10). Instead using bafilomycin, we employed FDA-approved chloroquine in our an

imal experiment. After one single PDT dose, tumors disappeared within the first 4 

days post-PDT Chloroquine addition, however, significantly delayed tumor regrowth. 

It would be interesting to find out the outcome if we give a second PDT dose after 

tumors have begun to grow. A second treatment of chloroquine and Pc 4-PDT may 

result in greater tumor regression in mice bearing high Mfm2 expressing tumors, or 

may result in a higher level of tumor free mice. 

In summary, the data support the conclusion that lysosomal iron release and 

mitochondrial iron uptake act synergistically to induce PDT -mediated and iron

dependent mitochondrial dysfunction and subsequent cell killing (Fig. 3-7). Iron re

leased from lysosomes is taken up by mitochondria through Mfm2. Downregulation 

of Mfm2 prevents mitochondrial iron uptake, and delays mitochondrial depolariza

tion and cell death. Furthermore, Mfm2 represents a possible predictive biomarker, 

since HNSCC expressing more Mfm2 may benefit more from PDT. 
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Figure 3-1. Differential endogenous Mfrn2 gene and protein expression in 
head and neck cancer cells. Cells were cultured on 6-well plates for 24 h. (A) 
total RNA was isolated, as described in Materials and Methods. Mfrn1 and Mfrn2 
mRNA were quantified by real time PCR. Values are expressed as arbitrary units 
(a.u.) normalized to the housekeeping rRNA 18S. Data represent the mean ± SEM 
from three independent lysates. *, p < 0.01 and **, p < 0.001 compared to UM
SCC22A. (B) celllysates were analyzed by Western blotting for Mfrn2, TOM20 
and ~-tubulin. Blots shown are representative of 3 independent experiments. (C) 
Band intensities were quantified and normalized to ~-tubulin. Values are ex
pressed as arbitrary units (a.u.). Data represent the mean ± SEM from three inde
pendent lysates. ***,p < 0.001 compared to UMSCC1 and UMSCC22A. 
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Figure 3-2. Differential mitochondria iron uptake in head and neck cancer 
cells. UMSCC1 (100,000) and UMSCC22A (200,000) cells were cultured on 24-
well plates for 24 h. Subsequently, culture medium was changed to the lBC and 
rates of the mitochondrial Fe2

+ uptake were measured in digitonin-permeabilized 
cells, as described in materials and methods. Values are expressed as Fe2

+ up
take/min/mg protein. Data represent the mean ± SEM from three independent ex
periments performed in triplicate. *,p < 0.01 compared to UMSCC1. 
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Figure 3-3. Mfrn2 knockdown decreases mitochondrial iron uptake. UM

SCC22A cells were transfected with Mfrn2 and non-target (siControl) siRNA for 
6 days, as described in Materials and Methods. (A) total mRNA was isolated and 
analyzed for Mfrn2 expression by real time PCR. Mfrn2 mRNA was normalized 
to internal control rRNA I8S. Values are expressed as percent of siControl val
ues. Data represent the mean ± SEM from three independent experiments. (B) 
celllysates were analyzed by Western blotting for Mfrn2 and ~-tubulin. Repre
sentative Western blot is shown. Band intensities were quantified and normal
ized to B-tubulin. Results are expressed as percent of siControl. (C) mitochon
drial Fe2

+ uptake was measured in digitonin-permeabilized cells, as described in 
Materials and Methods. Values are expressed as Fe2

+ uptake/min/mg protein. 
Data represent the mean ± SEM from three independent experiments performed 
in triplicate. *, p < 0.01 compared to siControl. 
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Figure 3-4. Mfrn2 knockdown confers sensitive cells resistant to PDT. (A) UM

SCC22A cells were transfected with Mfrn2 and non-target siRNA for 6 days, as described in 

Materials and Methods. Subsequently, cells were trypsinized and cultured (150,000/dish) on 

glass-bottomed Petri dishes for 24 h. Cells were incubated with Pc 4 (0.8 pmol Pc 4/mg pro

tein) for 18 h in complete culture medium. Cells were loaded with 250 nM TMRM and subse

quently incubated with TMRM (50 nM) and bafilomycin (50 nM) for 1 h before irradiation. 

Red fluorescence of TMRM was imaged with laser scanning confocal microscopy before (0 

min) and every 5 min after irradiation for 30 min. Representative images from three independ

ent experiments. Images were pseudocolored using a lookup table from 0 to 255 pixel intensi

ties (B) average TMRM fluorescence after background subtraction under conditions described 

in panel A was determined every 5 min for 30 min. Results are expressed as percent TMRM 

fluorescence of 0 min. Data are means calculated from analyses of 74-80 cells per treatment 

group obtained from three independent experiments (mean ± SEM). *, P < 0.05 compared to 

control siRNA. (C) cells were plated on 96-well plates and treated under same conditions as in 

panel A. Viability was monitored by PI fluorometry. Results are expressed as percent viability 

of 0 min. Data represent three independent experiments (mean ± SEM) performed in quadru

plicate. *, p < 0.05 and **, p < 0.01 compared to control siRNA. 
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Figure 3-5. Localization and protein expression of the overexpressed Mfrn2-GFP 
in the resistant UMSCCI cells. (A) UMSCCI cells were transiently transfected with 
Mfrn2-GFP plasmid. Sub-cellular localization of the overexpressed Mfm2 protein was 
observed with confocal microscopy. Red: MitoTracker Red, Yellow: co-localization 
of MitoTracker Red and GFP. Mfrn2-GFP protein is imported to mitochondria. (B) 
Mfrn2-GFP plasmid was transfected into the resistant UMSCCI cells. After transfec
tion (72 h), celllysates were probed for GFP, Mfrn2 and ~-tubulin, respectively as in
dicated. 
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Figure 3-6. Increased Mfrn2 protein expression sensitizes resistant UMSCCI 
cells to bafilomycin Pc 4-PDT. UMSCC1 cells were transiently transfected with 
Mfrn2-GFP and GFP plasmid respectively when cells reach 90% cell confluency at 

60 mm dish for 24 h. Then cells were split on 96 well plate with 6000 cells/well for 
24 h. Cells were loaded with 1.5 pmole Pc 4/mg for 18h in the complete DMEM 

medium. Subsequently, cells were changed into ITX with 50 nM bafilomycin for 1h 
prior to light exposure. Viability was monitored by PI fluorometry. Results are ex

pressed as percent viability of 0 min. Data represent three independent experiments 
(mean ± SEM) performed in quadruplicate. *, p < 0.05 compared to control GFP 

plasmid transfected UMSCC1 under baf+Pc 4-PDT treatment. 
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Figure 3-7. P~oposed mechanism of interplay between lysosome and mitochon
dria and role of iron and Mfrn2 contribute to PDT -induced cell death. Pc 4-
PDT induces mitochondrial ROS production resulting in apoptotic cell death. 
Bafilomycin (Bat) enhances Pc 4-PDT-mediated cell killing by releasing iron from 
lysosomes. Cytotoxicity is decreased by iron chelators DFO and sDFO, and Ru360 
that prevent mitochondrial iron accumulation. Knock-down of Mfrn2 delays mito
chondrial depolarization and cell death induced by bafilomycin during PDT. 
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Role of DMTI in lysosomal iron release after bafilomycin 

Although bafilomycin and chloroquine have been shown to release iron from 

lysosomes into cytosol, the detailed mechanism by which bafilomycin releases iron 

from lysosomes remains unclear. The fact that ferristatin, an inhibitor of the DMT1, 

completely reversed bafilomycin-enhanced Pc 4-PDT cytotoxicity suggests DMTI 

as a likely mechanism of lysosomal iron release with bafilomycin. Since ferristatin 

may have off-target effects, knockdown DMTI using siRNA method could be fur-

ther used to confirm results with ferristatin. DMTI knockdown should protect 

against PDT toxicities (ROS formation, mitochondrial depolarization, cell death, 

etc.). Similar results are expected with knockdown of Mfm2. However, since Mfm2 

knockdown did not produce 100% inhibition of Mfrn2 expression (Fig. 3-3B), some 

iron is still being taken up by mitochondria. Therefore, ferristatinJDMTl knockdown 
, ,. 

in combination with Mfrn2 knockdown may be even more efficient in decreasing 

PDT toxicities than either treatment alone. 

Mitochondrial iron regulation 

Mechanisms underlying mitochondrial iron uptake are not completely known. 

Our results show that Mfm2 regulates mitochondrial iron uptake in pathological situ-

ations such as PDT. MeU also transports iron into mitochondria when cytosolic iron 

concentration is increased [205, 222]. Ru360 is a highly specific inhibitor of the 

Mev. Ru360 and knockdown of Mfm2 both prevented mitochondrial iron uptake 
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and protected cells from bafilomycin-enhanced PDT. It remains unclear whether 

Ru360 also blocks mitochondrial iron uptake through Mfrn2. Also, the question re-

mains whether interaction of Mfm2 and MCV is required for mitochondrial uptake. 

A recent study showed that Mfm2 and MCV are two distinct proteins and do not in-

teract with each other [218, 219]. However, this experiment was performed in physi-

ological conditions. It remains unclear whether increased cytosolic iron during 

pathological conditions induces interaction of these proteins. 

Mfm2 has six transmembrane helices and MCV has two transmembrane do-

mains with a short amino acid link termed DIME motif between these two trans-

membrane helices [200, 218, 219] . Recent reports from two different groups concur-

rently demonstrated that MCV and Mfm2 are two distinct proteins and do not inter-

act between with each other, as assessed by immunoprecipitation [218, 219]. Ru360 
, .. 

is a specific inhibitor of MCV [205], and. our results showed that Ru360 markedly 

protect against bafilomycin-enhanced mitochondrial depolarization and Pc 4-PDT 

killing (Fig. 3-6) [92]. This implies some interaction between Ru360 and 

MCVIMfrn2. Overexpression of MCV confers cells slightly resistant to Ru360 

whereas mutation on the DIME linker motif confers cells remarkably resistant to 

Ru360 [219]. These findings suggest that the linker region between the two trans-

membrane helices of MCV is important for Ru360 sensitivity. Mfm2 may share 

Ru360 sensitivity with MCV though the DIME motif. Further studies are needed to 

address this issue. 
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Signaling pathways induced by bafilomycin-enhanced Pc 4-PDT 

MAPK kinase pathways are frequently induced during mitochondrial stress 

[231, 232]. Iron released from lysosomes with bafilomycin and taken up by mito-

chondri a via Mfrn2 depolarizes mitochondria and causes onset of apoptotic cell 

death during PDT. We have performed preliminary experiments to determine 

whether JNK pathway is involved in PDT. Our preliminary results from Western 

blotting showed PDT plus bafilomycin-induced increase of phospho-JNKl/2 protein 

expression (data not shown). These findings suggest JNK to be a possible killing 

pathway induced during bafilomycin-enhanced Pc 4-PDT killing. Future experiments 

should be performed to confirm the role of JNK pathway in bafilomycin-enhanced 

Pc 4-PDT killing. The interesting question would be inside the cells whether JNK is 

activated in cytosol or mitochondria. 

In vivo studies 

, .. 

Pc 4 is a potent photosensitizer and has shown promising efficacy without any 

safety issues in phase I clinical trial [98]. However, single drugs are unable to cure 

most cancers. The same limitation applies to PDT as a sole modality. Thus, combin-

ing PDT with other modalities to improve the therapeutic index has received much 

interest [201, 233, 234]. Furthermore, using PDT in solid tumors is challenging. 

Higher photosensitizer dosages may be required to achieve sufficient concentration 

deep in tumors. However, high dose photosensitizer may increase accumulation in 

normal tissues that might also be exposed to light ( skin, eyes). Insufficient light pen-
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etration, whether from surface-illumination or from implanted fibers, and decreased 

oxygen tension deep in poorly vascularized tumors can result in decreased formation 

of 102 and other ROS, thereby diminishing the therapeutic effect of PDT. A primary 

determinant of PDT efficacy is the extent of ROS (including 102) production. Thus, 

manipulations that increase intracellular ROS production within tumors during PDT 

should increase treatment efficacy. 

Our pilot experiments show that adjuvant treatment with chloroquine enhanced 

tumor response to Pc 4-PDT especially in high Mfm2 expressing tumors. These re-

sults suggest that Mfm2 expression levels in tumors could be utilized as a biomarker 

predicting response to PDT. It would be interesting to measure Mfrn2 

mRNAIprotein levels in tumor samples from head and neck cancer patients and see 

how much variation is in Mfrn2 expression levels among patients. If there is a varia-
, 

tion between samples, then patients with high Mfrn2 expressing tumors would bene-

fit from adjuvant treatment of chloroquine during PDT. 

Nanoparticies 

Although PDT is an effective treatment it may have some off target effects, 

since systemic delivery of the photo sensitizers distribute them throughout the body. 

An ideal situation would be to deliver the photosensitizer exclusively into tumors. 

Recent studies have focused on applying nanoparticles conjugated to Pc 4 to increase 

its cellular overall uptake and delivery [112]. Nanoparticles have also been decorated 
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with a small peptide of epidermal growth factor (EGF) that directs them to cancer 

cells overexpressing receptors for EGF [235, 236]. Since many tumors overexpress 

EGF receptors, this is an efficient way to deliver Pc 4 specifically into tumors. 

Therefore, future studies can be focused on Pc 4-conjugated nanoparticles that can be 

decorated with various cancer-specific molecules to enhance specificity of PDT in 

vivo studies. 

, ... 
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Significance and Conclusion 

To our knowledge, we are the first group to demonstrate that iron released 

from the lysosome and taken up into the mitochondria enhances mitochondrial Pc 4-

PDT cytotoxicity [92]. In addition, our study here demonstrates that Mfm2 plays the 

essential role for PDT response in cancer cells. In conclusion, our results demon-

strate that both the lysosomal event of iron release by bafilomycin and the mitochon-

drial event of iron uptake by Mfm2 are required as two hits to enhance Pc 4-PDT 

efficacy in vitro. Furthermore, our preliminary in vivo results also extend and con-

firm our in vitro finding of lysosomal alkalinization reagents enhancing the PDT kill-

ing and impeding tumor regrowth. Taken together, we demonstrated that iron is an 

essential factor for mitochondrial PDT efficacy, and Mfm2 represents a possible bi-

omarker for cancer response to Pc 4-PDT as well as a means to guide therapy choice 

during PDT treatment. 
. ,.. 
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