
Medical University of South Carolina Medical University of South Carolina 

MEDICA MEDICA 

MUSC Theses and Dissertations 

2012 

The Analysis of Acute Stroke Clinical Trials with Responder The Analysis of Acute Stroke Clinical Trials with Responder 

Analysis Outcomes Analysis Outcomes 

Kyra Michelle Garofolo 
Medical University of South Carolina 

Follow this and additional works at: https://medica-musc.researchcommons.org/theses 

Recommended Citation Recommended Citation 
Garofolo, Kyra Michelle, "The Analysis of Acute Stroke Clinical Trials with Responder Analysis Outcomes" 
(2012). MUSC Theses and Dissertations. 619. 
https://medica-musc.researchcommons.org/theses/619 

This Thesis is brought to you for free and open access by MEDICA. It has been accepted for inclusion in MUSC 
Theses and Dissertations by an authorized administrator of MEDICA. For more information, please contact 
medica@musc.edu. 

https://medica-musc.researchcommons.org/
https://medica-musc.researchcommons.org/theses
https://medica-musc.researchcommons.org/theses?utm_source=medica-musc.researchcommons.org%2Ftheses%2F619&utm_medium=PDF&utm_campaign=PDFCoverPages
https://medica-musc.researchcommons.org/theses/619?utm_source=medica-musc.researchcommons.org%2Ftheses%2F619&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:medica@musc.edu


The Analysis of Acute Stroke Clinical Trials with 

Responder Analysis Outcomes 

By 

Kyra Michelle Garofolo 

A thesis submitted to the faculty of the Medical University of South Carolina in 
partial fulfillment of the requirement for the degree of Masters of Science in the College 

of Graduate Studies. 

Division of Biostatistics and Epidemiology 

2012 

Approved By: 

p 

Valerie L Durkalski, PhD, MPH 
Chairman, Advisory Committee 

Sharon D eatts, PhD 

Viswanathan Ramakrishnan, PhD 

~war~ C Jauch, MD, MS 



TABLE OF CONTENTS 

ABSTRACT ....................................................................................................................... iv 

CHAPTER 1: INTRODUCTION AND BACKGROUND ............................................... 1 

1.1. New Endpoints and Analysis Methods .................................................................... 2 

1.1.1. The global statistic ........................................................................................ 2 

1.1.2. Shift analysis and the proportional odds model. ........................................... 3 

1.1.3. Permutation testing ....................................................................................... 5 
1.1.4. Responder analysis ........................................................................................ 6 

1.2. Covariate Adjustment ............................................................................................... 8 

1.3. Our Motivation ......................................................................................................... 9 
1.3.1. The SHINE Trial ........................................................................................... 9 

1.4. Specific Aims ......................................................................................................... 10 

1.5. Significance ............................................................................................................ 11 

\ CHAPTER 2: THE SIMULATION STUDY .................................................................. 12 

2 .1. Simulation Methods............................................................................................... 12 

2.2. Results .................................................................................................................... 17 

2.2.1. Type I error rates and power ....................................................................... 17 

2.2.2. Treatment effect estimates and their standard errors .................................. 23 

CHAPTER 3: DISCUSSION ........................................................................................... 25 

3.1. Future Work ........................................................................................................... 27 

3.2. Conclusion .............................................................................................................. 28 

APPENDIX: SIMULATION SAS CODE ....................................................................... 29 

REFERENCES ................................................................................................................. 34 

11 



ACKNOWLEDGMENTS 

I would like to acknowledge my research advisory committee for their continued 

support throughout the development of this thesis. Their advice and critiques have been 

invaluable during the research process. Dr. Valerie Durkalski has been an excellent 

committee chairperson, helping me through roadblocks and keeping me on track. Along 

with Dr. Durkalski, Dr. Sharon Yeatts and Dr. Viswanathan Ramakrishnan have offered 

unending insight into the statistical and programming aspects of this study. The 

statistical aspects of this study have been complemented by the clinical insights offered 

by Dr. Edward Jauch and Dr. Karen Johnston, both of whom have helped make this 

research relevant in the medical community. 

I would also like to thank the members of the Division of Biostatistics and 

Epidemiology facuity, who have shown me support both inside and outside of the 

classroom. In addition, I thank my husband Michael for his unending patience and 

support throughout the research process. 

This work was supported in part by the National Institute of Neurological 

Diseases and Stroke through grants VOl NS069498 and VOl NS05904l. 

111 



ABSTRACT 

KYRA GAROFOLO. The Analysis of Acute Stroke Clinical Trials with Responder 

Analysis Outcomes. (Under the direction of VALERIE DURKALSKI). 

Traditionally in acute stroke clinical trials, the primary outcome has been a 

dichotomized modified Rankin Scale (mRS). The mRS is a 7-point ordinal scale 

indicating a patient's level of disability following a stroke. Traditional analyses have 

used a fixed dichotomization scheme, which dichotomizes' success' as an mRS of 0-1 or 

0-2. This method fails to address the concern that stroke severity may impact the 

likelihood of a successful outcome; subjects with mild strokes may achieve the defined 

\ threshold for success more easily than subjects with severe strokes. Consequently, 

subjects are unable to contribute equally to the estimation of treatment effect. Stroke 

studies are increasingly turning to new statistical methods that make more efficient use of 

available data, including responder analysis. 

Responder analysis, also known as the sliding dichotomy, allows the definition of 

success to vary according to baseline severity. This method puts patients on a more level 

playing field, producing a more clinically relevant insight into the actual effect of 

investigational stroke treatments. It is unclear whether or not statistical analyses should 

adjust for baseline severity when responder analysis is used, as the outcome already takes 

into account baseline severity. Through the use of simulations, this research compares 

the operating characteristics of unadjusted and adjusted analyses in the responder analysis 

scheme. We also compare the treatment effect estimates and their standard errors 

between methods. 
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Under various treatment effect settings, the operating characteristics of the 

unadjusted and adjusted analyses do not appear to differ substantially. Power and type I 

error were preserved for both the unadjusted and adjusted analyses. Our results suggest 

that, under the given treatment effect scenarios, the decision whether or not to adjust for 

baseline severity should he guided by the needs of the study rather than a strict guideline, 

as type I error rates and power do not appear to vary largely between the methods. 
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

Stroke is a potentially debilitating medical event that affects approximately 

800,000 people in the United States each year, leaving as many as 30% of its victims 

permanently disabled 1• Given this level of impact, there is great demand for treatments 

which significantly improve functional outcome following a stroke. To date, there have 

been few successful trials for clinical treatment of acute stroke. In fact, only 3 treatments 

in over 125 stroke trials have demonstrated positive results. These treatments include 

intravenous tissue-type plasminogen activator (tPA) within 3 to 4.5 hours from stroke 

onset, hemicraniectomy for malignant infarction, and coiling for aneurysmal 

subarachnoid hemorrhage2
,3. 

One of the possible reasons for the excessive number of neutral or unsuccessful 

stroke trials is the definition of successful outcome 4. In clinical trials, stroke outcome is 

most commonly measured by the modified Rankin Scale (mRS) of global disability, 

usually measured at 90 days following stroke occurrence. The mRS is a 7-point ordinal 

scale that ranges from 0 (no disability) to 6 (death), and has been shown to be a valid and 

reliable measure of functional outcome following a strokes. Past trials have 

dichotomized mRS scores into "success" and "failure", where mRS scores of 0-1 (or 0-2) 

were considered to be "successes" while scores greater than 1 (or 2) were considered to 

be "failures," regardless of baseline stroke severity 6,7,8,9. This method fails to take into 



account the understanding that baseline severity is highly correlated with outcome; a 

subject with a mild baseline severity may make only a slight improvement but be 

considered a success, while a subject who suffered a very severe stroke may make vast 

improvement but still be considered a failure due to scoring above a 1 (or 2) on the mRS 

at the study's end. In addition, traditional dichotomization does not capture small shifts 

along the outcome scale, which may be the goal of some treatment trials, such as 

neuroprotective agents and hemostatic agents in intracerebral hemorrhage 1o
• Due to its 

drawbacks, strict dichotomization does not make efficient use of the data collected. New 

methods are evolving to make better use of the outcome data in stroke trials with the 

I hopes of providing higher sensitivity to detect true treatment effects. These new methods 

include the global statistic, shift analysis, permutation testing, and responder analysis. 

1.1. New Endpoints and Analysis Methods 

1.1.1. The global statistic. 

In addition to the mRS, there are many other ordinal scales that assess stroke 

outcome. These other scales include the National Institutes of Health Stroke Scale 

(NIHSS), the Barthel Index (BI), the Glasgow Outcome Scale (GOS), and the Stroke 

Outcome Scale (SOS); each of these is related to the others, but may capture a different 

aspect of stroke functional outcome or disability. The global statistic consolidates several 

of these measures into one outcome for analyses6
,1l. Though the tPA trials have been 

reanalyzed and efficacy confirmed using additional statistical techniques, the original 

outcome was defined by a global measure based on the dichotomization of the NIH 

Stroke Scale, the Barthel Index, and the Glasgow Outcome Scale12
,13. Each of these 

component scales was dichotomized regardless of baseline severity. 
2 



Analysis with a global statistic is particularly useful when no single outcome 

sufficiently captures the desired endpoint14
• One of the advantages of the global statistic 

approach is that it allows for the simultaneous analysis of several outcome characteristics. 

At the end of the analysis, rejection of the null hypothesis provides evidence for overall 

treatment efficacy rather than efficacy in just one aspect of stroke outcome 11. ill addition, 

there is often a power advantage when using the global statistic. By combining several 

correlated measures of stroke outcome on the same subject, some of the noise observed in 

the single scales alone is eliminated, thus increasing the ability to detect the true 

treatment effect6
. 

While the global statistic undoubtedly has its advantages, it has several 

disadvantages as well. One major drawback of global statistic analysis is that its results 

are difficult to translate into meaningful interpretations for physicians and patients 11 • 

This aspect of the global statistic makes it less appealing, as any clinical study aims to 

have clinically pertinent results at the study's end. In addition to questionable 

interpretation, appropriate statistical methods for the analysis of the global statistic are 

still evolving and often rely on dichotomization 6,11. Related methods such as principal 

components analysis and multiple correspondences analysis have also been proposed 1 5 
, 

but are highly statistically intensive and share the same interpretability disadvantages. 

1.1.2. Shift analysis and the proportional odds model. 

While the global statistic aims to combine several outcome measures into one 

comprehensive measure, other methods aim to improve the analysis on a single ordinal 

scale, such as the mRS. Where the traditional dichotomization method focuses only on 

the distribution of scores on either side of one predetermined cutpoint, shift analysis 
3 



focuses on the distribution of study subjects across the entire ordinal scale. Rather than 

asking whether the treatment makes more patients achieve a good outcome, defined as 

better than threshold X, as in traditional dichotomized analyses, shift analysis asks the 

question, "does the treatment make the patient better to some degree?,,6 

Shift analyses are advantageous when prior knowledge of an appropriate cutpoint 

is not available, as the entire scale is examined. In trials where the treatment effect tends 

to be basically uniform across a large portion of the ordinal outcome scale or where the 

treatment effect is clustered at an unexpected cutpoint, shift analysis has been shown to 

be more powerful and more efficient than traditional dichotomization methods6
,I

O ,4,9. 

\ Another advantage of shift analysis is that it does not let baseline stroke severity limit the 

ability of subj ects to contribute to the estimation of treatment effect6. 

Disadvantages of shift analysis include the assumptions of its statistical methods, 

which may not be met in real studies2
,4. These assumptions include the "proportional 

odds assumption" when proportional odds modeling is used, which assumes that the odds 

ratio for a better outcome is the same at every cutpoint on the scale, and the assumption 

that the treatment effect occurs only in one direction along the outcome scale4,16. 

Interpretations from shift analyses can also be difficult and are usually stated in terms of 

number needed to treat (NNT) or combined odds ratios2,6,4. The NNT in a shift analysis 

setting is not as straightforward as in the dichotomized endpoint setting, as derivation of a 

NNT across an entire ordinal scale must take into account within -patient correlation and 

the fact that some transitions (such as transitioning from death to a vegetative state) are 

considered unfavorable by patients6. Joint outcome tables can be used to derive a 

composite measure of the number of patients needed to treat for a single additional 
4 



patient to benefit, which can be used as a measure of treatment efficacy in shift analysis 

studies. 

1.1.3. Permutation testing. 

One of the more recently proposed approaches to handle ordinal data in stroke 

trials is that of permutation testing17
. This method, proposed in 2012 by Howard et ai, is 

similar to the Mann-Whitney Utest in that both methods nonparametrically investigate 

the idea of whether a randomly chosen individual from one treatment group has a better 

outcome than another randomly chosen person from another treatment group. However, 

unlike the Mann-Whitney U test, the permutation method considers only untied pairs of 

I study subjects, primarily for the sake of interpretation. The permutation method, like 

most statistical tests, bases its results on a test statistic calculated from the observed data. 

This test statistic is compared to the estimated distribution of test statistics under the null, 

which is derived under an iterative process which randomly assigns treatments to 

individuals assuming no association between the test statistic and treatment. 

The primary advantage of this approach is its ease of interpretability. When using 

the permutation testing approach, the efficacy results can be explained simply in terms of 

the proportion of people who will do better on the experimental treatment, compared to 

the proportion who will do better on placebo and the proportion who will do the same on 

either treatment 17. Another primary advantage is that this method is nonparametric, and 

makes no distributional assumptions that must be met for validity. The permutation 

testing method takes into account changes across the entire spectrum of an ordinal scale 

such as the mRS, addressing the issues of traditional dichotomization of such scales. In 

addition, the permutation method easily allows the incorporation of stratification of 
5 



important covariates. One potential disadvantage of this method is its relatively more 

complex computing requirements when compared to similar methods such as the Mann

Whitney U test, which produce similar results. 

1.1.4. Responder analysis. 

As previously mentioned, a major problem with the traditional dichotomization 

technique is that it fails to account for baseline severity. Responder analysis, also known 

as the sliding dichotomy, still dichotomizes the outcomes into "success" and "failure," 

but addresses this issue by allowing cutpoints to vary. The definition of successful 

outcome differs by prognosis group; those study subjects in a less severe prognosis group 

I at baseline must achieve a better outcome to be considered a trial "success," whereas 

study subjects in a more severe baseline prognosis category must achieve a less stringent 

criterion for success. 

Within the responder analysis framework, there are different ways to determine 

prognosis groups and success cutpoints. Prognosis groups may be determined by as few 

as one baseline measure, such as the baseline NIHSS score, or the combination of many 

baseline measures into one prognosis score by means of an algorithm 16,13 ,18,19,20. Often 

times, cutpoints for success will be predetermined as in the AbESTT -II trial and 

reanalysis of the NINDS-tP A trials2o
, 13. Each of these trials classified subjects into mild, 

moderate, and severe baseline prognosis groups based on NIHSS scores, and defined 

success as having a 3-month mRS=O for subjects in the mild, mRS<l for subjects in the 

moderate, and mRS<2 for subjects in the severe prognosis groups. Alternatively, some 

studies determine these thresholds based on the empirical distribution of the data and the 
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probabilities for success within each of the prognosis groups, as in the simulation study 

based on the IMP ACT Proj ect results 16. 

One advantage of responder analysis when compared to the traditional 

dichotomization method is that it allows each subject to have an achievable goal based on 

their baseline severity. By allowing the definition of success to vary with severity, the 

ability to detect a true treatment effect is increased without increasing external noise and 

variability6. Responder analysis is a relatively computationally easy method to employ 

and has been argued to be more powerful than traditional dichotomization methods8
,I6,18. 

However, a direct comparison of the traditional dichotomization method with responder 

I analysis in the same data must be interpreted with caution, as the control rates in the two 

cases are not the same by definition, and thus the power comparison may not be 

appropriate. 

While responder analysis has its advantages, there are potential disadvantages to 

consider as well. Like traditional dichotomization, the ordinal outcome is still collapsed 

into a dichotomous outcome, thus discarding information about specific mRS categories. 

In addition, for responder analysis to be most effective, investigators must carefully 

define appropriate prognosis groups and their respective cutpoints for success6. 

The global statistic, shift analysis, the permutation method, and responder 

analysis are several of the new methods being employed in stroke clinical trials to 

overcome the drawbacks of traditional dichotomization. Each of these methods has its 

own advantages and disadvantages as discussed above. The most appropriate method 

will depend on the aims of the clinical trial; investigators should consider the unique 

aspects of their clinical trial when determining the primary analysis technique. 
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1.2. Covariate Adjustment 

Statistical analyses often adjust for prognostic factors, or covariates that may be 

predictive of the primary outcome. One philosophy that motivates covariate adjustment 

is that it can confirm that the observed treatment effect is "independent" of these 

prognostic factors, rather than artificially created by confounding prognostic factors21 . 

Another motivation for covariate adjustment is possible covariate imbalance. While 

covariate adjustment can help temper the effects of a covariate imbalance, it should not 

be used as a means to address imbalance in baseline characteristics between treatment 

groups22. Instead, the study design should strive to prevent covariate imbalance 

whenever possible. Adjustment for important covariates also accounts for additional 

variation in the data. Accounting for this additional variation can lead to increased 

statistical efficiency, which is a primary reason for covariate adjustment during analysis. 

In the case of a continuous outcome and classical linear regression, covariate adjustment 

may increase the precision of a treatment effect estimate, as it may decrease the standard 

error of the estimate due to a reduction in residual variance23 . 

An interesting phenomenon occurs when logistic regression is used in the case of 

a binary outcome, as in the traditional or sliding dichotomy settings. Covariate 

adjustment in the case of logistic regression results in a loss of precision of the treatment 

effect estimate, as the standard error on the treatment effect estimate is increased. 

However, this increase in standard error is balanced by a movement of the treatment 

effect estimate away from the null hypothesis. This phenomenon was described by 

Robinson and Jewell, who concluded that "it is always as or more efficient to adjust for 

the covariate when logistic regression is used,,23. 
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1.3. Our Motivation 

We wanted to investigate the effect of covariate adjustment in the responder 

analysis framework, particularly when the covariate is involved in the definition of 

successful outcome. This problem was first posed by the data and safety monitoring 

board for the SHINE Trial (discussed below), which questioned whether adjusting for the 

prognostic variable twice-in the definition of success and in the analysis-would impact 

the test of treatment effect. Since the literature does not directly address this issue, we 

used the SHINE Trial as a basis for a simulation study to explore the consequences of 

covariate adjustment under the responder analysis framework. 

1.3.1. The SHINE Trial 

The Stroke Hyperglycemia Insulin Network Effort (SHINE) Trial is a large, 

multicenter, randomized clinical trial to determine the efficacy and safety of targeted 

glucose control in hyperglycemic acute ischemic stroke patients. Approximately 1400 

subjects will be enrolled and randomized to receive either standard of care or targeted 

glucose control. To be eligible for the study~ subjects must be enrolled within 12 hours of 

symptom onset and within 3 hours of Emergency Department arrival, as well as have a 

blood glucose concentration greater than 110 mg/dL on initial evaluation. Baseline 

stroke severity must fall between 3 and 22 (inclusive) on the NIHSS. Subjects in the 

standard of care treatment arm receive subcutaneous and basal insulin injections 

according to a sliding scale with a target blood glucose of < 180 mgldL; subjects in the 

intervention arm receive up to 72 hours of intravenous insulin infusion with a target 

blood glucose between 80 and 130 mgldL. 
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The primary outcome for efficacy in the SHINE trial is the 90-day mRS score. 

Outcome is dichotomized as "success" or "failure" according to a sliding dichotomy. 

Those with a "mild" prognosis, defined by a baseline NIHSS score of 3-7, must achieve a 

90-day mRS of 0 to be classified as a "success." Those with a "moderate" prognosis, 

defined by a baseline NIHSS score of 8-14, must achieve a 90-day mRS of 0-1 to be 

classified as a "success." Finally, those subjects with a "severe" prognosis, defined by a 

baseline NIHSS score of 15-22, must achieve a 90-day mRS of 0-2 to be classified as a 

"success." By using responder analysis, the milder strokes must meet a more stringent 

threshold to achieve success, while the more severe strokes have more leeway to achieve 

an attainable definition of success. Two pilot studies, THIS and GRASP, were used to 

establish the initial safety and efficacy estimates of intensive glucose control in 

h I . k . 2425 yperg ycemlc stro e patIents ' . 

1.4. Specific Aims 

The focus of this research is covariate adjustment within the responder analysis 

framework, as the SHINE trial employs responder analysis in its primary statistical 

analyses. While the literature provides many resources on the design and implementation 

of responder analysis as well as examples of trials which used responder analysis, there 

are no clear resources supporting whether or not statistical analyses should be adjusted 

for the prognostic variables used to define successful outcome. The cutpoints for the 

SHINE trial are clinically, rather than statistically defined, and so it is conceivable that 

adjustment for baseline severity in the statistical analysis may account for additional 

variation. Through simulations, we aimed to explore the results of covariate adjustment 

10 



in the responder analysis setting. Our simulation parameters are based on those specified 

in the SHINE trial. The goals of this study were: 

• To compare the operating characteristics of unadjusted and adjusted analyses 

under several different treatment effect scenarios in the responder analysis setting 

when treating baseline severity as a categorical variable with three levels. 

• To compare the treatment effect estimates and their standard errors in unadjusted 

and adjusted analyses under several different treatment effect scenarios. 

Since the primary outcome for the SHINE trial is binary, we expected to see an increase 

of standard error on the treatment effect estimates, consistent with the findings of 

Robinson and JeweU23
. 

1.5. Significance 

It is unclear whether or not statistical analyses should further adjust for those 

covariates involved in the definition of favorable outcome in trials that use responder 

analysis, such as the SHINE trial discussed above. The results of this study will help 

demarcate the best way to handle such analyses. These results will not only be applicable 

in the SHINE and other stroke trials which use the mRS for the primary outcome, but 

also in other trials which use any ordinal scale as a primary outcome measure and have a 

baseline prognostic factor. 

11 



CHAPTER 2: THE SIMULATION STUDY 

We performed several simulation analyses where we examined the performance 

of logistic regression models that were unadjusted and adjusted by baseline severity 

category. Baseline severity category was defined as in the SHINE Trial described above: 

an mRS score of 3-7 was defined as "mild," 8-14 was defined as "moderate," and 15-22 

was defined as "severe." As in the SHINE study plan, subjects in the mild group must 

achieve a 90-day mRS of 0, moderate must achieve a 90-day mRS of ° or 1, and severe 

must achieve a 90-day mRS of 0, 1, or 2 to be considered a success. The type I error rate 

and power were calculated and compared for each method, as were the treatment effect 

estimates and their standard errors. 

2.1. Simulation Methods 

The simulation parameters were guided by the SHINE trial design. We simulated 

1000 clinical trials at sample sizes 498 to 1958. This sample size range allows us to 

cover the planned sample size of 1400 while also examining model behavior at smaller 

and larger sample sizes. Though the SHINE study may begin response-adaptive 

randomization at some point during enrollment, we have assumed a 1: 1 randomization 

scheme for the purposes of our investigation. All analyses were performed using SAS 

version 9.2 (SAS Institute, Cary, North Carolina). 



The prevalence of each baseline severity category was guided by the THIS and 

GRASP pilot trial data24
,25. The pilot trials had similar distributions of baseline severity 

categories, and thus it is reasonable to assume that the SHINE study population will have 

a similar distribution. In our simulations, we have assumed that 42% of subjects will be 

classified as "mild" at baseline, 32% will be classified as "moderate" at baseline, and the 

remaining 26% will be classified as "severe" at baseline. These classifications were 

randomly assigned using a uniform [0,1] random variable. 

The simulation of study outcome (90-day mRS) differed by treatment group. In 

order to simulate 90-day mRS scores for the control group, we examined the distribution 

of90-day mRS scores for the control groups in the THIS and GRASP pilot trials. Since 

these trials were both very small, we could not derive a good approximation of the 

distribution of mRS scores in each of the baseline severity strata. We used the control 

group from the NINDS tPA trial data to help in the approximation of mRS distributions 12
• 

The control group distribution of 90-day mRS scores used in this simulation study is 

shown in Table 1. 

Table 1: Distribution oi90-Day mRS Scores for Control Group 
Baseline 90-Day mRS 
Severity 0 1 2 3 4 5 6 

Mild 0.25 0.30 0.20 0.10 0.08 0.02 0.05 

lVIoderate 0.15 0.20 0.23 0.12 0.16 0.04 0.10 

Severe 0.03 0.05 0.07 0.19 0.20 0.21 0.25 

Type I error rates for each method were obtained by using the distribution of 90-

day mRS scores found in Table 1 for both the control and intervention groups, simulating 

the null hypothesis of no treatment effect. In order to assess the power of each method, a 

13 



treatment effect was simulated in the data by altering the distribution of 90-day mRS 

scores in Table 1 for the intervention group only. We added a 7% treatment effect, as 

this was the minimum clinically significant difference defined in the SHINE study plan. 

For these analyses, we only examined power under several different treatment effect 

scenarios: (1) a "flat" treatment effect scenario, in which a 7% treatment effect was 

applied in each baseline severity stratum; (2) a "varying" treatment effect scenario, in 

which there is still an overall 7% treatment effect, but the magnitude within strata varies 

and the mild and moderate groups see the most benefit; (3) a "varying" treatment effect 

scenario, in which there is still an overall 7% treatment effect, but the severe group sees 

the most benefit; (4) a "mild harm" treatment effect scenario, in which there is still an 

overall 7% treatment effect, but the mild group sees a harmful treatment effect; and (5) a 

"severe harm" treatment effect scenario, in which there is still an overall 7% treatment 

effect, but the severe group sees a harmful treatment effect. 

The flat treatment effect was achieved by allowing 70/0 more prevalence in the 

defined "success" mRS categories for each stratum. In the first varying treatment effect 

scenario, we applied an 8.6% treatment effect in the mild category, a 90/0 treatment effect 

in the moderate category, and a 2% treatment effect in the severe category; that is, there 

was an 8.6% increase in prevalence of the 0 mRS for the mild stratum, a 9% increase in 

the prevalence of the 0-1 range of mRS scores for the moderate stratum, and a 2% 

increase in the prevalence of the 0-2 range of mRS scores for the severe stratum. This 

scenario is relevant for the SHINE trial; it is similar to what we may observe if the 

intensive glucose control intervention is largely beneficial to mild and moderate stroke 

victims, but only marginally beneficial to victims of severe stroke. Similarly, in the 
14 



second varying treatment effect scenario, we applied a 2% treatment effect in the mild 

category, a 9% treatment effect in the moderate category, and a 12.6% treatment effect in 

the severe category. This scenario could also be observed in the SHINE results if the 

intensive glucose control intervention is largely beneficial to more severe strokes, but 

only slightly beneficial to those subjects having mild strokes. Tables 2, 3, and 4 show the 

distribution of 90-day mRS scores for the treatment groups under these flat and varying 

treatment effects, respectively. 

Table 2: Distribution o/90-Day mRS Scores/or Treatment Group: 
HFlat" Treatment Effect 

Baseline 90-Day mRS 
Severity 0 1 2 3 4 5 6 

Mild 0.32 0.27 0.19 0.08 0.07 0.02 0.05 

Moderate 0.17 0.25 0.21 0.10 0.15 0.03 0.09 

Severe 0.04 0.06 0.12 0.18 0.18 0.19 0.23 

Table 3: Distribution o/90-Day mRS Scores/or Treatment Group: 
First "Varying" Treatment Effect 

Baseline 90-Day mRS 
Severity 0 1 2 3 4 5 6 

Mild 0.336 0.31 0.19 0.06 0.04 0.02 0.044 

Moderate 0.19 0.25 0.25 0.10 0.10 0.02 0.09 

Severe 0.03 0.055 0.085 0.20 0.19 0.20 0.24 

Table 4: Distribution o/90-Day mRS Scores/or Treatment Group: 
Second HVarying" Treatment Effect 

Baseline 90-Day mRS 
Severity 0 1 2 3 4 5 6 

Mild 0.27 0.31 0.20 0.09 0.06 0.02 0.05 

Moderate 0.19 0.25 0.25 0.10 0.10 0.02 0.09 

Severe 0.04 0.09 0.146 0.18 0.12 0.194 0.23 
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To achieve the scenarios in which one of the strata experienced harm, we applied 

similar effects as above, only allowing one of the strata to see a decrease in the 

prevalence within its defined success categories. In the "mild harm" scenario, we applied 

a -2% treatment effect in the mild category, with a 15% treatment effect in the moderate 

category and an 11.7% treatment effect in the severe category. Similarly, in the "severe 

harm" scenario, we applied an 8% treatment effect in the mild category, a 130/0 treatment 

effect in the moderate category, and a -2% treatment effect in the severe category. Either 

of these scenarios could possibly be observed in SHINE if the intervention if the 

intensive glucose control interferes with the body's natural recovery processes following 

a milder or more severe stroke, respectively. Tables 5 and 6 show the distribution of 90-

day mRS scores for the mild and severe harm scenarios. 

Table 5: Distribution o/90-Day mRS Scores/or Treatment Group: 
"Mild Harm" Treatment Effect 

Baseline 90-Day mRS 
Severity 0 1 2 3 4 5 6 

Mild 0.23 0.29 0.21 0.12 0.08 0.02 0.05 

Moderate 0.20 0.30 0.20 0.08 0.10 0.03 0.09 

Severe 0.05 0.09 0.127 0.13 0.16 0.20 0.243 

Table 6: Distribution o/90-Day mRS Scores/or Treatment Group: 
"Severe Harm " Treatment Effect 

Baseline 90-Day mRS 
Severity 0 1 2 3 4 5 6 

Mild 0.33 0.29 0.15 0.09 0.07 0.03 0.04 

Moderate 0.20 0.28 0.18 0.11 0.12 0.03 0.08 

Severe 0.02 0.04 0.07 0.20 0.21 0.21 0.25 
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The distributions in Tables 1 through 6 were used to randomly assign 90-day 

mRS scores to each simulated subject in each simulated trial. The distribution in Table 1 

was used for the control group, regardless of the treatment effect scenario being 

examined. When no treatment effect was applied in order to investigate type I error rates, 

Table 1 was used for the intervention group as well. The distributions in Tables 2 

through 6 were used to assign mRS scores to subj ects in the intervention group in order to 

investigate power under fixed and varying treatment effects, respectively. Given a 

subject's simulated baseline severity stratum (mild, moderate, or severe), an assignment 

of "success" or "failure" was made according to the sliding dichotomy definitions. 

Logistic regression was used to investigate each of these scenarios. We examined 

unadjusted and categorically-adjusted analyses for each scenario. The unadjusted case 

models "success" as a function of only treatment group, while the categorically-adjusted 

case models "success" as a function of treatment group and severity category. For the 

power and type I error rate estimation, we created an indicator variable to denote the 

rejection of the null hypothesis for each of the 1000 simulated trials at a given sample 

size. The proportion of simulated trials at a given sample size which were rejected is our 

power/type I error rate estimation at that sample size. We also extracted the treatment 

effect estimate and its standard error for each trial. 

2.2. Results 

2.2.1. Type I error rates and power. 

The type I error rate (significance level) at each sample size for each method is 

plotted below in Figure 1. The nominal 50/0 reference line is shown, as well as upper and 

lower 95% confidence limits on this nominal level. The confidence limits were 
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calculated using the fonnula for binomial proportion 950/0 confidence intervals, yielding 

the following equation: 

+ Jp(l-P) 0 05 + 1 96 0.05(1-0.05) = (0.0365 0.0635) 
P - ZO.975 n ==. -' 1000 ' 

These confidence limits were then multiplied by 100 to be expressed in terms of 

percentages. The sample size is 1000, since we have simulated 1000 trials at each sample 

size in order to get our significance level estimates. 

Figure J: Significance Levels of Unadjusted and Categorically-Adjusted Methods 
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We can observe that both the unadjusted and categorically-adjusted methods have 

type I error rates within the 950/0 confidence bounds at each sample size. This is a 

welcomed result, as an inflated type I error rate results in a test that is too liberal, while a 

deflated type-I error rate results in a decrease in power and thus a test that is too 

conservative. The oscillation around the nominal 5% level of significance is due to 

chance, and is to be expected in experimental or simulated data. Since neither method 
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shows consistently larger type I error rates, we can conclude that there is no meaningful 

difference between the two methods with respect to significance level under the chosen 

treatment effect setting. 

Our first investigation of power was under a "flat" treatment effect, in which each 

of the three prognosis groups experienced a simulated 7% treatment effect. The success 

rates in the control group were 25%, 35%, and 150/0 in the mild, moderate, and severe 

prognosis groups, respectively. These control rates are based on the pilot trials for 

SHINE, and their distributions are further detailed in Table 1. The power estimates for 

this "flat" treatment effect scenario are plotted in Figure 2 below. Under a true treatment 

effect of 7%, the SHINE study is designed to have at least 800/0 power, which is 

referenced along the plot in Figure 2. 

Figure 2: Power of Unadjusted and Categorically-Adjusted Methods Under a Flat 7% 
Treatment effect 
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The unadjusted and categorically-adjusted methods do not appear to differ 

significantly in the plot in Figure 2. The two methods are nearly stacked in most places, 

with the categorically-adjusted method having very slightly greater power along much of 

the plot. As planned by the SHINE study investigators, the 80% power threshold is 

crossed between 650 and 700 subjects per arm (1300-1400 subjects total). The slight 

appearance of powering beyond the 80% level at the planned 1400 total subjects is 

expected, as the sample size estimation was slightly inflated for potential non-adherence. 

Though our results from the simple flat treatment effect scenario were a good 

starting point, it is unlikely that we will see a uniform treatment effect across all strata in 

practice. To continue our investigation under an alternative scenario, we next considered 

the possibility of a treatment effect that varies across prognosis strata, but maintains the 

overall 7% treatment effect. We first allowed the mild, moderate, and severe baseline 

categories to have treatment effects of 8.6%, 9%, and 2%, respectively. Then, we 

allowed the mild, moderate, and severe baseline categories to have treatment effects of 

2%, 9%, and 12.6%, respectively. The power results for these two scenarios are plotted 

in Figures 3 and 4. 
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Figure 3: Power of Unadjusted and Categorically-Adjusted Methods Under the First 
Varying 7% Treatment effect 
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Figure 4: Power of Unadjusted and Categorically-Adjusted Methods Under the Second 
Varying 7% Treatment effect 
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As in the flat treatment effect scenario, we do not see a drastic difference in the 

unadjusted and categorically-adjusted methods with respect to power in these varying 
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treatment effect scenarios. There is a slightly larger gap between the categorically-

adjusted and unadjusted methods' power curves at points in Figures 3 and 4 when 

compared to Figure 2, but the difference is not remarkable. It is reassuring, however, that 

we do not observe a noticeable decrease in power under the varying treatment effects for 

either method; this will be especially important if the study data reveals that the treatment 

effect truly does vary by prognosis stratum in either of these manners. 

As previously mentioned, it is conceivable that one of the prognosis groups may 

experience a slightly harmful treatment effect. To investigate the consequences of 

adjusting for baseline severity in this situation, we examined scenarios in which the mild 

and severe groups experienced a -2% treatment effect. The results of these simulations 

are in Figures 5 and 6. 

Figure 5: Power of Unadjusted and Categorically-Adjusted Methods Under a Mild 
Harm Effect 
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Figure 6: Power of Unadjusted and Categorically-Adjusted Methods Under a Severe 
Harm Effect 
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When 2% harm is experienced in either the mild or the severe baseline prognosis 

category, the unadjusted and adjusted analyses still appear to perform very similarly. In 

the mild harm scenario, the unadjusted and adjusted power curves are still nearly stacked 

upon one another, with the power curve for the adjusted analysis pulling slightly above 

that of the unadjusted analysis at a few points. A more noticeable difference can be seen 

in the severe harm scenario, where the adjusted analysis consistently has a slightly higher 

power than that of the unadjusted analysis. Though the power appears to be slightly 

higher for the adjusted analysis, this difference is still not very remarkable, and offers 

little evidence to suggest that adjusting is significantly more powerful under this scenario. 

2.2.2. Treatment effect estimates and their standard errors. 

In addition to the plots in Figures 2 through 6, we also observed the treatment 

coefficient estimates and their standard errors for the adjusted and unadjusted models in 
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the various treatment effect scenarios. The coefficient and standard error estimates are 

averaged over all simulations and all sample sizes, and are displayed in Table 7. 

Table 7: Treatment Coefficient Estimates and Their Standard Errors for Unadjusted 
and Adjusted Methods Under Different Treatment Effect Scenarios 

Scenario 
Unad·usted Adjusted 

Ptrt Estimate SE (Ptrt) fltrt Estimate SE (fltrt) 
"Flat" 0.3430275 0.1378434 0.3535594 0.1401410 

1st Varying 0.3427666 0.1379159 0.3577844 0.1410730 
2nd Varying 0.3404175 0.1377643 0.3504053 0.1400125 
Mild Harm 0.3409949 0.1377578 0.3568029 0.1411719 

Severe Hann 0.3408927 0.1377668 0.3610773 0.1419651 

As expected, we observed a slight inflation of the standard errors when adjusting. 

This phenomenon, first described by Robinson and J ewelf3
, is balanced by a slight 

increase in magnitude of the treatment coefficient estimate away from the null. It is this 

reciprocating increase that preserves (and may slightly increase) our power in the case of 

adjustment for categorical baseline severity. 
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CHAPTER 3: DISCUSSION 

Successful stroke treatments are in high demand given stroke's large and 

detrimental effect on the worldwide population. Consequently, statistical methods that 

offer higher power to detect a true treatment effect are also in high demand, especially 

given the large number of unsuccessful stroke trials to date, and the consideration that 

many of these unsuccessful stroke trials may have failed due to study design. With this 

simulation study, we sought to determine whether adjustment for baseline severity within 

the responder analysis setting would be beneficial or harmful in terms of power and type 

I error rates when compared to an unadjusted analysis. 

The results in Chapter 2 show little evidence for or against adjusting for baseline 

severity in the responder analysis setting. The type I error rates between the two methods 

did not seem to differ substantially, and the power curves for most treatment effect 

scenarios examined were practically identical for the adjusted and unadjusted methods. 

In the case where the interventional treatment caused slight harm to the severe baseline 

group, the power for the adjusted analysis consistently appeared to be slightly greater 

than that for the unadjusted analysis; however, this difference was small and not 

noteworthy. These results suggest that in most treatment effect scenarios, adjustment for 

baseline severity in the primary analyses may best be guided by individual study needs 

rather than a blanket guideline for all studies, as neither the adjusted nor unadjusted 



method showed notable statistical advantage in our examples. As in any clinical trial 

setting, sensitivity analyses can be conducted with the alternative approach to provide 

confirmation of the results found in the primary analyses. 

Though we have not shown the results here, we did examine other treatment 

effect scenarios which also yielded similar results. These scenarios included a flat and 

varying 15% treatment effect (instead of the 7% specified in the SHINE study plan), as 

well as a scenario in which the mild group experienced 5% harm. In the 15% treatment 

effect scenarios, the two methods were practically non-differentiable, as even at the 

smallest sample sizes examined the study was overpowered for such a large effect and the 

graphs plotted on top of one another. The 5% mild harm scenario yielded very similar 

results to those seen in Chapter 2 with the 2% mild harm. Given that none of these 

results uniquely contributed to our conclusion, we have omitted their results here in 

interest of space. 

It is important to note that these analyses adjust for baseline severity 

categorically. These categories-mild, moderate, and severe-are defined by the NIHSS 

score, which is a larger ordinal scale ranging from 0 to 42 (limited to 3 through 22 in 

SHINE's inclusion criteria). It is possible that adjusting by the actual NIHSS score will 

provide additional information to the model and increase or maintain power in some 

treatment effect scenario(s). Though the NIHSS is technically an ordinal scale, it is 

sometimes used as a continuous measure in the literature26
,27. However, interpreting the 

NIHSS as a continuous measure is not necessarily straightforward and should be done 

with caution; a one-unit increase on the NIHSS at one location on the scale may not have 

the same implications as a one-unit increase in another location. Development of a 
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simulation study to investigate adjustment for baseline severity continuously by NIHSS 

compared with categorically-adjusted and unadjusted analyses has been proposed as 

future work. 

3.1. Future Work 

As discussed above, future work will include the investigation into adjustment by 

NIHSS as a continuous covariate. Though SHINE uses only baseline severity category to 

define success, some studies-including the GRASP pilot trial for SHINE- use multiple 

baseline characteristics in a prognostic model to define success thresholds, as discussed 

in Section 1.1.425. Future work could potentially involve the exploration of adjusting for 

these baseline characteristics when they are used in such a prognostic model. This study 

was performed under a perfect one-to-one treatment allocation rate, but we may also use 

our simulations to investigate how an imbalance in treatment allocation impacts the 

analyses. Allowing the prevalence within each of the baseline severity categories to vary 

from what was observed in the pilot trials may also provide interesting results, since 

baseline severity dictates the definition of successful outcome in responder analysis. 

When the SHINE Trial concludes, a repeat of these analyses using the actual data may be 

used to confirm our findings. In addition, future work may include the establishment of 

the theoretical basis for our findings. 

Our immediate next step is to explore the various analysis techniques on a 

publicly-available clinical trial dataset. We aim to compare not only the unadjusted and 

categorically-adjusted analysis methods in the responder analysis settings, but then also 

compare these methods with other analysis techniques available for ordinal data. This 

comparison will help us verify (or dispute) our findings with respect to adjusting in the 
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responder analysis setting as well as look at the difference in statistical power between 

responder analysis and other statistical analysis techniques. 

3.2. Conclusion 

There does not appear to be an impact in terms of statistical operating 

characteristics whether the analyses are unadjusted or adjusted by baseline severity 

category in the treatment effect scenarios examined in this simulation study. While we 

had hoped to find that one of the two methods had significantly greater power, it should 

be noted that these results are not negative. Instead, they suggest that adjustment by 

baseline severity category is a matter of individual study needs and has little effect on the 

statistical operating characteristics of the analysis. These results are not restricted to use 

in stroke studies; they are generalizable to any type of study which uses responder 

analysis to define its primary outcome of interest. 
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APPENDIX: SIMULATION SAS CODE 

Included below is the SAS code for the macro that is used to create each dataset 

under the various scenarios. In addition, I have included how it would be used in the case 

of no treatment effect in order to examine type I error rates. Other treatment effect 

scenarios can be attained similarly by changing the prevalence cutoffs for the mRS 

distribution, as described in Tables 1 through 6. 

%macro 
simulatetrial(sarnpsize=,Cmildl=,Crnild2=,Crnild3=,Crnild4=,Cmild5=,Cmild6= 
,Cmodl=,Cmod2=,Cmod3=,Crnod4=,Cmod5=,Cmod6=,Csevl=,Csev2=,Csev3=,Csev4=, 
Csev5=,Csev6=,Trnildl=,Tmild2=,Tmild3=,Tmild4=,Tmild5=,Tmild6=, Tmodl=, Tm 
od2=, Tmod3=, Tmod4=, Tmod5=, Tmod6=,Tsevl=,Tsev2=,Tsev3=, Tsev4=,Tsev5=,Tse 
v6=) ; 

data simulatedtrial; 
do i=l to &sampsize; 
half=&sampsize/2; 

if i Ie half then trt='A'; 
else trt='B'; 

rand_prog=ranuni (80272+&nsim); k ~::;tp p~<)qC:)SL':3 \_~. p; 

if rand_prog Ie 0.42 then prognosis=l; 
else if rand_prog gt 0.42 and rand_prog Ie 0.74 then prognosis=2; 
else if rand_prog gt 0.74 and rand_prog Ie 1.0 then prognosis=3; 
else prognosis=999; * ~;a.fr.:::Tla r,~j ~'J:<:K; 

output; 
end; 
run; 

data simulatedtrial; 
set simulatedtrial; 
uniform=ranuni(20453+&nsim); 
if trt='A' then do; 

if prognosis=l then do; 
if uniform Ie &Cmildl then simrankin=O; 
else if uniform> &Cmildl and uniform Ie &Crnild2 then simrankin=l; 



else if uniform> &Cmild2 and uniform Ie &Cmild3 then simrankin=2; 
else if uniform > &Cmild3 and uniform Ie &Cmild4 then simrankin=3; 
else if uniform> &Cmild4 and uniform Ie &CmildS then simrankin=4; 
else if uniform > &Cmild5 and uniform Ie &CmiId6 then simrankin=5; 
else if uniform > &Cmild6 then simrankin=6; 

if simrankin=O then stratout=l * ~~ if' 
else stratout=O; 

end; 

if prognosis=2 then do; 
if uniform Ie &Cmodl then simrankin=O; 
else if uniform > &Cmodl and uniform Ie &Cmod2 then simrankin=l; 
else if uniform > &Cmod2 and uniform Ie &Cmod3 then simrankin=2; 
else if uniform > &Cmod3 and uniform Ie &Cmod4 then simrankin=3; 
else if uniform > &Cmod4 and uniform Ie &CmodS then simrankin=4; 
else if uniform > &Cmod5 and uniform Ie &Cmod6 then simrankin=5; 
else if uniform > &Cmod6 then simrankin=6; 

if simrankin Ie 1 then stratout=l; 
else stratout=O; 

end; 

if prognosis=3 then do; 
if uniform Ie &Csevl then 
else if uniform > &Cievl 
else if 
else if 

uniform 
uniform 

> &Csev2 
> &Csev3 

simrankin=O; 
and uniform Ie 
and uniform Ie 
and uniform Ie 

&Csev2 
&Csev3 
&Csev4 

k T'"~: >~ ~~. L ~.~ -_. .... 1-:: :; :: ; 

then simrankin=l; 
then simrankin=2; 
then simrankin=3; 

else if uniform 
else if uniform 
else if uniform 

> &Csev4 then simrankin=4; 
> &Csev5 and uniform Ie &Csev6 then simrankin=5; 
> &Csev6 then simrankin=6; 

and uniform Ie &CsevS 

if simrankin Ie 2 then stratout=l; *Detl!:~E';':·. __ ,,_>~P~3S; 

end; 
end; 

else stratout=O; 

else if trt='B' then do; 

if prognosis=l then do; 
if uniform Ie &Tmildl then simrankin=O; 
else if uniform > &Tmildl and uniform Ie &Tmild2 then simrankin=l; 
else if uniform > &Tmild2 and uniform Ie &Tmild3 then simrankin=2; 
else if uniform > &Tmild3 and uniform Ie &Tmild4 then simrankin=3; 
else if uniform > &Tmild4 and uniform Ie &TmildS then simrankin=4; 
else if uniform > &Tmild5 and uniform Ie &Tmild6 then simrankin=5; 
else if uniform > &Tmild6 then simrankin=6; 

if simrankin=O then stratout=l; !-:~;E:;lne s 1...'< p' -" 
else stratout=O; 

end; 

if prognosis=2 then do; 
if uniform Ie &Tmodl then 
else if uniform > &Tmodl 
else if uniform > &Tmod2 
else if uniform > &Tmod3 
else if uniform > &Tmod4 

simrankin=O; 
and uniform Ie &Tmod2 then simrankin=l; 
and uniform Ie &Tmod3 then simrankin=2; 
and uniform Ie &Tmod4 then simrankin=3; 
and uniform Ie &Tmod5 then simrankin=4; 
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else if uniform> &Tmod5 and uniform Ie &Tmod6 then simrankin=5; 
else if uniform > &Tmod6 then simrankin=6; 

if simrankin Ie 1 then stra tout=l; "'-'0'':: 1 

else stratout=O; 
end; 

if prognosis=3 then do; 
if uniform Ie &Tsevl then 
else if uniform > 
else if uniform > 
else if uniform > 
else if uniform > 
else if uniform > 
else if uniform > 

if simrankin Ie 
else 

end; 
end; 
run; 

stratout=O; 

&Tsevl 
&Tsev2 
&Tsev3 
&Tsev4 
&Tsev5 
&Tsev6 
2 then 

simrankin=O; 
and uniform le &Tsev2 
and uniform Ie &Tsev3 
and uniform Ie &Tsev4 
and uniform le &Tsev5 
and uniform Ie &Tsev6 
then sirnrankin=6; 
stratout=l; .'c =. (-? ::.. 1 :'-~ 

~ gis:i2 Fe ~ 3Sl (Adiuste) 
proc logistic data=simulatedtrial descending 
outest=logisticresults_strat_adj covout noprint 

.:; ; 

then simrankin=l; 
then simrankin=2; 
then simrankin=3; 
then simrankin=4; 
then simrankin=5; 

:~) :< ,'~.~ (::; ·:3 .3 ; 

class trt prognosis (ref=last)/ desc param=reference; 
model stratout=trt prognosis; 

run; 

data estimate_strat_adj; 

run; 

set logisticresults strat adj; 
where type_="PARMS"; 
or_strat_adj=exp(trtB); 
keep trtB or_strat_adj; 
rename trtB=trtbeta strat ad]; 

data variance strat_adj; 

run; 

set logisticresults strat ad]; 
where type ="COV" and name ="trtB"; 
keep trtB; 
rename trtB=var trtbeta strat ad]; 

. -:) (~.i +- 'I ;-' C ~:J :~ s v; {- ,3.J -; , } ; 

proc logistic data=simulatedtrial descending 
outest=logisticresults_strat_un covout noprint 

run; 

class trt prognosis (ref=last)/ desc param=reference; 
model stratout=trt; 

data estimate strat un; 
- -

set logisticresults strat un; 
where type_="PARMS"; 
or strat_un=exp(trtB); 
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keep trtB or_strat_un; 
rename trtB=trtbeta strat un; 

run; 

data variance strat un; 
set logisticresults strat un; 
where type ="COV" and name ="trtB"; 
keep trtB; 
rename trtB=var trtbeta strat un; 

run; 

proc iml; 
nsim=&nsim; 

use estimate strat_adj; 

:: r a +- --....:.- .;: 
c .... _ ~_ 

read all var {trtbeta strat adj} into beta_strat_adj; 
read all var {or_strat_adj} into or strat adj; 
use variance_strat_adj; 
read all var {var_trtbeta_strat_adj} into var_beta strat_adj; 
logistic_strat_adj_ts=(beta_strat_adj/sqrt(var_beta_strat adj))##2; 
logistic strat adj reject=logistic strat adj ts>3.84; 

use estimate strat un; 
read all var {trtbeta strat un} into beta strat un; 
read all var {or strat un} into or strat un; 
use variance strat un; 

- -
read all var {var_trtbeta_strat un} into var beta_strat_un; 
logistic_strat_un_ts=(beta_strat_un/sqrt(var_beta_strat un))##2; 
logistic strat un reject=logistic_strat un ts>3.84; 

use simulatedtrial; 

read all var {prognosis} into prognosis; 
read all var {nihss} into nihss; 
read all var {trt} into trt; 
read all var {stratout} into stratout; 
ntrt= (trt=' A' ) [+ J; nplacebo= (trt=' B' ) [+]; *' t:. ::i= d ::t 1"7(:; t: ~.::. 

L=p ::1 

npergroup=ntrt; 

edit trtresults var {nsim npergroup or_strat adj 

S:' 1" r'; 

logistic_strat_adj_ts logistic_strat_adj_reject 
or_strat_un logistic_strat_un_ts logistic_strat_un_reject 
beta strat adj var_beta_strat adj beta strat un var_beta strat un}; 

append var {nsim npergroup or_strat adj 
logistic_strat adj_ts logistic_strat_adj_reject 
or_strat_un logistic_strat_un_ts logistic_strat_un_reject 
beta strat adj var_beta strat adj beta strat un var beta strat un}; 
run;quit; 
%mend simulatetrial; 
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data trtresultsi 
j.nput nsim npergroup or strat adj logistic strat adj ts 

logistic_strat_adj_reject or_strat_un logistic_strat_un_ts 
logistic_strat_un_reject beta_strat adj var_beta strat adj 
beta strat un var beta strat un; 
datalineSi 

; 
runi 

%macro completesimulation; 
%do samplesize=498%to 1958 %by 112; "Ie Y·=::1.'?·::::'~: .~~':t~rT·l'~ 3~.,7~?; 

%do nsim=l %to 1000; OM 'CLEAR LOG'; 
%simulatetrial(sampsize=&samplesize,Cmildl=0.25,Cmild2= .55,Cmild3 
=.75,Cmild4=.85,Cmild5=.93,Cmild6=.95,Cmodl=0.15,Crnod2=.35,Crnod3= 
.58,Cmod4=.7,Cmod5=.86,Cmod6=.9,Csevl=0.03,Csev2=.08,Csev3=.15,Cs 
ev4=.34,Csev5=.54,Csev6=.75,Tmildl=0.25,Tmild2=.55,TmiId3=.75,Tmi 
Id4=.85,Tmild5=.93,Trnild6=.95,Trnodl=0.15,Tmod2=.35,Tmod3=.58,Trnod 
4=.7,Tmod5=.86,Tmod6=.9,Tsevl=0.03,Tsev2=.08,Tsev3=.15,Tsev4=.34, 
Tsev5=.54,Tsev6=.75)i 

96 endi 

%end; 
%mend completesimulationi 

%completes±mulation; 

data sliding.notrt; 
set trtresultsi 
run; 

proc means data=sliding.notrt meani 
var beta strat un beta strat adj var beta strat un var_beta_strat adj 
run; 

proc sort data=sliding.notrt; 
by npergroupi 
run; 

proc freq data=sliding.notrt; 

run; 

tables logistic strat un reject / out=logistic strat un_per; 
by npergroup; 

proc freq data=sliding.notrti 

run; 

tables logistic strat adj reject / out=logistic_strat adj_per 
by npergroup; 
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