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Abstract 

Acute kidney injury (AKI) is the transient loss of renal function following an insult. Despite high 

incidence and mortality, therapy for AKI is limited to supportive care and renal replacement 

therapy. The induction of mitochondrial biogenesis (MB) accelerates recovery of renal function 

in animal models of AKI. We have identified that the beta-2 adrenergic receptor (β2AR) agonist 

formoterol induces MB in renal proximal tubule cells (RPTC); however, not all β2AR agonists 

induce MB. We hypothesized that formoterol activates a distinct signaling pathway in RPTC to 

induce MB and accelerate recovery of renal function. In cultured RPTC, we found that formoterol 

activates a Gβγ-Akt-eNOS-cGMP pathway. Clenbuterol, a β2AR agonist that does not induce 

MB, did not activate this pathway. Formoterol, but not clenbuterol, increased mRNA expression 

of PGC-1a and NDUFS1; mtDNA copy number; and FCCP-uncoupled respiration at 24 h in 

RPTC. Inhibition of Gβγ, Akt, NOS, and guanylate cyclase prevented formoterol-induced 

increases in these markers of MB. To assess the role of proximal tubule β2AR in formoterol-

induced recovery of renal function, a mouse with proximal tubule-specific deletion of the β2AR 

(γGT-Cre:ADRB2Flox/Flox) was generated. Following bilateral renal ischemia reperfusion, γGT-

Cre:ADRB2Flox/Flox and wild-type controls (ADRB2Flox/Flox) were treated once-daily with 0.3 

mg/kg formoterol beginning at 24 h. At 144 h post-injury, ADRB2Flox/Flox mice treated with 

formoterol had improved renal function and increased markers of MB relative to vehicle controls, 

while γGT-Cre:ADRB2Flox/Flox mice treated with formoterol did not. Furthermore, transmission 

electron microscopy demonstrated that in ADRB2Flox/Flox mice, but not in γGT-Cre:ADRB2Flox/Flox 

mice, formoterol increased mitochondrial number and density relative to vehicle controls. 

Together, these data demonstrate that formoterol activates a Gβγ-Akt-eNOS-cGMP to induce MB 

in RPTC and that following AKI, formoterol acts on RPTC β2AR to induce MB and accelerate 

recovery of renal function.
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INTRODUCTION 
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Acute Kidney Injury 

Acute kidney injury (AKI) is the rapid and usually reversible loss of renal function. The decline 

in renal function leads to the dysregulation of electrolytes and other metabolites, and it increases 

the likelihood of future bouts of AKI and the development of chronic kidney disease (CKD) and 

end-stage renal disease (ESRD). Current clinical standards as established by the 2012 Kidney 

Disease: Improving Global Outcomes (KDIGO) guidelines define AKI as: an increase in serum 

creatinine of >0.3 mg/dL within 48 h, an increase in serum creatinine to >1.5 times the baseline 

within the last seven days, or a urine output of <0.5 mL/kg/h for 6 hours. Under these standards, 

patients with AKI are classified into the following stages: 

Stage 1: increase in serum creatinine to 1.5-1.9 times the baseline, OR increase in serum 

creatinine by >0.3 mg/dL, OR reduction in urine output to <0.5 mL/kg for 6-12 h. 

Stage 2: increase in serum creatinine to 2.0-2.9 times the baseline, OR reduction in urine 

output to <0.5 mL/kg/h for >12 h. 

Stage 3: increase in serum creatinine to 3.0 times baseline, OR increase in serum 

creatinine to >4.0 mg/DL, OR reduction in urine output to <0.3 mL/kg/h for >24 h, OR 

anuria for >12 h, OR the initiation of renal replacement therapy, OR a decrease in 

estimated glomerular filtration rate (eGFR) to <35 mL/min/1.73 m2 in pediatric patients.1 

AKI affects over 20% of hospitalized patients and over 50% of patients in intensive care 

settings and carries a mortality rate of greater than 20%.2,3 The causes of AKI are classified as 

prerenal, intrinsic, or postrenal.4-6 Prerenal AKI is caused by drastic decreases in renal perfusion 

such as in diarrhea, acute hemorrhage, or hypovolemic states (e.g., heart failure, liver disease). 

Prerenal disease may also be caused by pharmacologic agents that interfere with renal vascular 

tone, such as nonsteroidal anti-inflammatory drugs (NSAIDS), ACE inhibitors, or radiopaque 

contrast. Intrinsic AKI is caused by direct damage to the renal vasculature, glomeruli, tubules, or 

interstitium. The most common cause of intrinsic AKI, and of AKI in general is acute tubular 
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necrosis (ATN) following ischemia, sepsis, or nephrotoxicant exposure.6 Finally, postrenal AKI 

is caused by obstruction along the urinary tract. In healthy patients, the obstruction usually 

impacts all functioning kidneys, such as in prostatic hyperplasia or cancer, metastatic cancer, or 

retroperitoneal fibrosis involving the ureters. As both prerenal and postrenal causes of AKI can 

lead to ATN if untreated, many patients have multiple causes for developing AKI, thereby 

complicating treatment. Additionally, the current biomarkers of serum creatinine and urine output 

do not change until significant losses in renal function have already occurred,7 thereby 

complicating the identification of relevant renal insults. 

Most patients with AKI exhibit a full recovery of renal function within 21 days as measured 

by serum creatinine and urine output. A recent study also identified three subtypes of recovery 

from AKI:  

1. An early (within seven days of diagnosis) and sustained recovery; 

2. An early recovery followed by relapse and subsequent recovery; and  

3. A late (greater than seven days after diagnosis) recovery.8  

Sustained recovery was the most common and had the best prognosis, while a late recovery was 

the least common but still had improved survival at 12 months compared with patients who did 

not recover from AKI or underwent a relapse from which they did not recover. Furthermore, 

patients with prior incidents of AKI had a greater likelihood of developing CKD or ESRD,9-13 

indicating that there was some persistent renal dysfunction following AKI. Interestingly, the 

major causes of in-hospital mortality are often infection or the underlying condition that causes 

AKI.14 

Due to their renal dysfunction, patients with AKI may exhibit fluid retention and ion 

imbalances, particularly hyperkalemia or hyponatremia; however, many patients develop no 

symptoms and their diagnosis is only identified by routine laboratory tests for serum creatinine.15 

Despite the initially silent presentation, AKI leads to dysfunction in multiple other organ systems. 
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The most commonly described distant manifestation of AKI is cardiorenal syndrome, with the 

term “cardiac failure” being used to describe cause of death in AKI patients.16 There is an 

established relationship between AKI and the development of heart failure and arrhythmias as 

well as other forms of cardiovascular disease such as hypertension.17,18 These outcomes may be 

due to fluid overload, endothelial cell activation, and inflammatory cytokines leading to cardiac 

cell death.19 Animal models of AKI have shown cardiac dysfunction characterized by left 

ventricular dilation, increased relaxation time, and decreased fractional shortening.20 

In addition to the cardiac effects of AKI, dysfunction of several other organ systems has 

been correlated with AKI. Patients with pulmonary dysfunction such as acute respiratory distress 

syndrome (ARDS) had a greater incidence of AKI and greater mortality following AKI.21-23 Many 

patients who develop AKI also developed respiratory failure and associated increases in the 

inflammatory cytokines IL-6 and IL-8.23-27 Animal models of AKI have demonstrated increased 

pulmonary vascular permeability and fluid accumulation following AKI due to decreased 

expression of epithelial sodium channels (eNACs) and aquaporins.28-30 Different causes of AKI 

(e.g., sepsis, ischemia reperfusion, nephrectomy) in animal models also had distinct profiles of 

inflammatory cytokines in the lungs.29,31 In the central nervous system, uremic encephalopathy 

and other forms of altered mental status have been associated with AKI,32,33 but the pathogenesis 

is not well understood in humans. In the brains of animals subjected to AKI, there were 

alterations in calcium and water handling and dopamine turnover along with disruption of the 

blood brain barrier and increases in inflammation.34-37 As a result, these animals exhibited 

diminished locomotor function. Despite these changes, there were no observed increases in 

apoptosis in the brain. 

Because AKI has such profound effects on patient health, the underlying processes that 

lead to injury must be understood to improve the prevention, detection, and therapy of AKI. As 

acute tubular necrosis is associated with such a large proportion of AKI cases, much of the work 
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understanding the pathophysiology of AKI has focused on the proximal tubule. Proximal tubule 

injury has been shown to be sufficient for the development of AKI and, perhaps more 

importantly, the transition to CKD. 

Since AKI leads to severe and systemic complications, the early identification of AKI is 

important.38 Clinically, the standard biomarkers are serum creatinine (SCr) as a measure of eGFR 

and urine output. However, as creatinine is affected by muscle mass,39 an increase in SCr may be 

masked by muscle wasting; this may be found in elderly patients or patients undergoing cancer 

chemotherapy. SCr is also relatively insensitive to decreases in GFR.40 While serial 

measurements of creatinine can help improve diagnosis of AKI, serial measurements are not 

always available. Both SC and urine output are also measures of renal function rather than of 

renal injury and are therefore unable to distinguish among different etiologies of AKI.41 As a 

result, neither of these metrics alone is necessarily able to predict mortality or disease 

severity.42,43 To facilitate the early diagnosis of AKI and better guide treatment decisions, more 

sensitive and more specific biomarkers are needed (Figure 1-1). 

Neutrophil gelatinase-associated lipocalin (NGAL) is expressed by neutrophils and binds 

to iron-siderophore complexes to prevent bacterial growth.44,45 Following ischemia- or 

nephrotoxicant-induced AKI, NGAL expression is rapidly upregulated,46,47 with elevated levels 

appearing at 3 h and persisting for up to 5 days in cases of severe injury. Within the kidney, 

NGAL is mainly produced by the thick ascending loop of Henle and the intercalated cells of the 

collecting duct.48,49 NGAL is freely filtered by the glomerulus and is reabsorbed in the proximal 

tubules.50 Once reabsorbed, NGAL upregulates the renoprotective enzyme heme-oxygenase 1.51 

Clinically, NGAL elevations preceded SCr increases, and NGAL is only elevated in the setting of 

damage to the kidney itself (i.e., intrinsic AKI, particularly that involving proximal tubule injury) 

rather than more rapidly reversible prerenal AKI.52-54 The elevation of NGAL matched the 
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Figure 1-1. Sites of synthesis of novel biomarkers for the diagnosis of AKI. The many cell types 
of the nephron increase the expression of different markers following AKI. These biomarkers can 
be used to diagnose AKI, determine the causal insult, and monitor responses to therapy in human 
patients and animal models. Adapted from Schrezenmeier E.V., et. al. Biomarkers in Acute 
Kidney Injury. Acta Physiol 2016. 
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duration of AKI and predicts disease severity in terms of death or need for renal replacement 

therapy.  However, because NGAL is expressed by neutrophils, it is also associated with sepsis,55 

chronic kidney disease,56 and urinary tract infections,40,49 so other biomarkers are required to 

confirm the presence of AKI. 

Liver-type fatty acid binding protein (L-FABP) binds to fatty acids and transports them to 

mitochondria and peroxisomes for metabolism.57 It also plays a role in antioxidant defense 

against hydrogen peroxide. In the kidney, L-FABP is primarily expressed in proximal tubules, 

where it is excreted bound to toxic peroxisomal byproducts.58,59 Expressing L-FABP in mice 

reduced injury and preserved renal function following renal ischemia;59,60 however, since mice do 

not normally express L-FABP, human-L-FABP transgenic mice are required to study the effects 

of L-FABP preclinically.60,61 Clinically, L-FABP predicted the development of AKI in an 

intensive care unit (ICU) setting following surgery,62 sepsis,63 or nephrotoxicant exposure.64 

However, there are limited data regarding the predictive value of L-FABP for mortality or end-

stage renal disease.38 

Inteleukin-18 (IL-18) is a cytokine secreted by monocytes/macrophages during 

inflammation to induce the production of IFN-γ.65 Following toll-like receptor (TLR) activation, 

other inflammatory signals, or injury, tubular cells produce IL-18.66 Deficient IL-18 production or 

inhibition of its signaling was protective against AKI in rodent models.67-71 As a biomarker, IL-18 

had predictive value for AKI following kidney transplant and in pediatric patients but not in the 

ICU or ER settings.53,72-75 More importantly, IL-18 may have value for guiding anti-IL-18 

treatment decisions for patients with AKI.38 

Cell cycle arrest in the G1 phase has been demonstrated following ischemic or septic AKI 

and is protective in animal models of nephrotoxic AKI.76-79 IGF-binding protein 7 (IGFBP7) and 

tissue inhibitor of metalloproteinase-2 (TIMP-2) induce cell cycle arrest in multiple cell types, 

including breast and colon cancer and microvascular cells.80-82 Additionally, urinary 
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concentrations of both TIMP-2 and IGFBP7 were elevated following AKI in rodents and 

humans.83,84 However, there are no experimental data for their involvement in the renal cell cycle 

arrest, and the source of these proteins following AKI is unclear.38 Clinically, the product of the 

concentrations of IGFBP7 and TIMP-2 was a good predictor of severe (stage 2 or 3) AKI,85,86 

mortality,87 and the need for renal-replacement therapy in ICU settings.87 

Calprotectin is an intracellular heterodimeric protein that, when secreted, acts as a 

damage-associated molecular pattern (DAMP) that can activate TLR4.88 Its monomers are 

produced by collecting duct epithelial cells following postrenal AKI and by neutrophils following 

renal ischemia.89,90 Neutrophil-secreted calprotectin promotes the recruitment of inflammatory 

monocytes and their differentiation into M1 macrophages.90 However, following the initial injury, 

calprotectin plays a role in the prevention of renal fibrosis and promoting proper repair of the 

kidney. In patients undergoing renal surgery, calprotectin was increased at 2 h following injury 

and remained elevated for 5 days.91 Calprotectin also accurately distinguished prerenal AKI from 

intrinsic AKI.92 The clinical utility of calprotectin is limited by its upregulation by neutrophils in 

inflammatory states, such as urinary tract infections,38 and by the kidney in urothelial 

carcinoma.93 

 Kidney injury marker-1 (KIM-1) is a transmembrane protein with an immunoglobulin-

like domain that is expressed in a variety of cell types.94 Following ischemia-reperfusion injury, 

KIM-1 is rapidly upregulated by proximal tubule cells and is shed into the urine in a matrix 

metalloproteinase-dependent manner.94-99 The increased expression and shedding of KIM-1 

makes it a sensitive and specific urinary biomarker for proximal tubule cell injury. KIM-1 binds 

to phosphatidylserine on apoptotic bodies and other cellular debris to mediate their 

phagocytosis.100 In so doing, KIM-1 preserves renal function and attenuates the inflammatory 

response as demonstrated by mice expressing mutant KIM-1.101 However, the severity of kidney 

injury impacts the efficiency of KIM-1 phagocytosis, as excessive shed KIM-1 can inhibit its own 
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debris clearance.102 KIM-1 also binds to and antagonizes Gα12 as a guanine dissociation 

inhibitor.103 In AKI, Gα12 disrupts tight junctions in a Src-dependent manner;104 thus, KIM-1-

mediated inhibition of Gα12 preserved tubular structure in AKI.103,105 However, in chronic kidney 

disease, KIM-1 expression correlated with a greater degree of inflammation and fibrosis.106-108 

Clinically, KIM-1, particularly in conjunction with IL-18, was an excellent biomarker of AKI 

following cardiac surgery and had predictive value for both intrinsic AKI and in-hospital 

mortality.109 Because it is upregulated in a variety of proteinuric and inflammatory diseases,107 its 

specificity for AKI can be limited in the clinic, but its sensitivity and specificity for tubular cell 

injury is ideal for experimental models testing interventions that modulate injury in various forms 

of AKI.110,111 
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Cell Types Involved in AKI 

Most forms of intrinsic AKI are characterized by injury of the proximal tubule cell. The 

proximal tubule performs over 70% of solute reabsorption and secretion in the glomerular 

filtrate,112 so the loss of its integrity has a highly detrimental effect on ion homeostasis and proper 

excretion of metabolic byproducts. Additionally, several key functional features of proximal 

tubule cells,113 such as a brush border, drug metabolizing enzymes, and high mitochondrial 

content to accommodate their high energy demands, increase their susceptibility to nephrotoxic 

agents and other sources of injury. 

Beyond the nephron, the kidney contains numerous other cell types, including 

endothelial, interstitial, and inflammatory cells (Figure 1-2). While the proximal tubule cell plays 

an important and often causative role in the initial injury in AKI, these other cell types play an 

important role in the propagation of injury and its resolution. 

ENDOTHEIAL AND VASCULAR RESPONSES: Ischemic AKI causes increased 

production of endothelin-1, angiotensin II, thromboxane A2, prostaglandin A2, leukotrienes C4 

and D4, and adenosine, as well as an increase in sympathetic nerve activation.114-117 These 

responses lead to substantial vasoconstriction. There is also a decrease in production of 

vasodilatory molecules like acetylcholine, bradykinin, and nitric oxide.118,119 Endothelial 

activation produces chemokines and adhesion molecules that recruit inflammatory cells such as 

neutrophils and monocytes.120-122 These inflammatory cells release vasoactive cytokines and 

cause occlusion of small vessels by leukocyte-endothelial interactions and activation of the 

coagulation cascade.120 Additionally, tubulo-glomerular feedback due to diminished sodium 

reabsorption in injured nephrons leads to further arteriolar vasoconstriction, further reducing 

glomerular filtration.123 As the endothelium becomes damaged, its barrier function declines,124 

leading to interstitial edema. Following injury, an imbalance in angiogenic factors decreases the 

number of capillaries,125,126 particularly on the inner stripe of the outer medulla. As a result, the   
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Figure 1-2. Involvement of numerous cell types in the pathogenesis of AKI. Following injury, 
endothelial and immune cells are activated and modulate injury progression and recovery from 
AKI. Different cell types are recruited depending on injury severity, and these cell types can 
negatively (neutrophils, M1 macrophages, fibroblasts) or positively (M2 macrophages, TH2 cells, 
TReg cells) regulate recovery from AKI. Adapted from Kumar S. Cellular and Molecular Pathways 
of Renal Repair After Acute Kidney Injury. Kidney Int. 2017.  



12 

outer medulla is subjected to further hypoxia ,which sensitizes it to further injury and promotes 

maladaptive repair processes like fibrosis.127 

INFLAMMATION: As renal cells are damaged in AKI, they release DAMPs that are 

recognized by the innate immune system to mount a systemic inflammatory response.128 

Following AKI, receptors for DAMPs, such as TLR2 and TLR4, were upregulated in renal 

cells.129,130 Upon TLR activation, NFκB was activated to induce the expression of pro-

inflammatory cytokines, such as TNF-α, IL-6, MCP-1, and IL-8.131,132 These cytokines recruited 

other inflammatory cells, such as macrophages, neutrophils, and lymphocytes. HIF-1α activation 

within the kidney also enhanced macrophage infiltration following injury.133 Additionally, 

activation of the endothelium (as described above) led to increased expression of adhesion 

molecules that recruit and activate immune cells. Once activated, immune cells secreted TNF-α 

and IFN-γ, which themselves can induce cell-death,134 thereby leading to a necroinflammatory 

cascade. 

Neutrophils, macrophages, dendritic cells, and lymphocytes are recruited to the kidney 

during the injury phase of AKI. Increased IL-8 secretion following injury increased neutrophil 

infiltration into the injured kidney.135-137 Neutrophils also secrete IL-17, which promotes further 

neutrophil recruitment.138 Once activated, neutrophils play a variety of roles,139 including 

phagocytosis, ROS generation, cytotoxic peptide release, and NETosis, a process by which 

neutrophils release histones, DNA, and cytotoxic granules to trap and kill pathogens.137 Although 

neutrophils have been observed in animal models of AKI and patient biopsy samples, targeting 

neutrophils to treat AKI has yielded mixed results.140-142 

Macrophages, particularly of the M1 phenotype, contribute to early injury by recruiting 

neutrophils, secreting cytokines, and inducing apoptosis.139 Systemic depletion of macrophages in 

mice attenuated renal ischemia reperfusion injury.143,144 At later time points, M1 macrophages 

played a pro-fibrotic role, potentiating the AKI-CKD transition.145,146 A switch to the anti-
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inflammatory M2 phenotype protected against renal injury and promotes recovery following an 

insult.147,148 This switch can be mediated by the increased proliferation of resident renal 

macrophages via CSF-1 or IRAK stimulation.149-151  

While traditionally associated with delayed immune responses, various classes of 

lymphocytes play important roles in the development of AKI. Natural killer (NK) cells were 

activated by tubular osteopontin, leading to apoptosis of tubular epithelial cells.152 NK T cells, 

which display both NK and T-cell markers,153 can play a pathologic or a therapeutic role in AKI. 

NK T cells secrete pro-inflammatory cytokines such as IL-4, IL-10, and IFN-γ to recruit IFN-γ 

producing neutrophils.154,155 General inhibition of NK T cells reduced the infiltration of IFN-γ 

producing neutrophils and attenuated renal injury.156 However, specific inhibition or depletion of 

type II NK T cells increased injury, while activation of type II NK T cells by sulphatide 

attenuated injury.157 

Regulatory T (TREG) cells have been reported to have anti-inflammatory properties in 

numerous disease models. In the early phase of injury, TREG cells secreted IL-10 to suppress the 

innate immune system and thereby attenuated renal injury.158 TREG cells trafficked to the kidney in 

the late injury phase,159 whereupon they reduced inflammation and promoted tubular repair and 

regeneration.158 Experimentally, inhibition or depletion of TREG cells was detrimental to renal 

function,158 while their expansion or activation promoted recovery.160-162 However, the small 

number of TREG cells in the kidney raises questions regarding the mechanism by which TREG cells 

so potently modulate inflammatory responses despite their small population.139 

CD4+ and CD8+ T cells are well-studied in multiple organ systems, and several therapies 

exist to selectively suppress these populations of inflammatory cells. T cell depletion by 

tacrolimus or inhibition of T cells with anti-CTLA-4 immunoglobulin reduced early injury in 

models of transplant-induced AKI.163-165 Other work has shown that depletion of CD4+ and CD8+
 

cells protected against injury following ischemia reperfusion-induced AKI,166,167 while adoptive 
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transfer of T cells restored injury. More specifically, CD4-knockout mice exhibited less injury 

following ischemia reperfusion,167 and this protection was abrogated by adoptive transfer of CD4+ 

T cells. Blockade of IL-16, a cytokine that recruits CD4+ T cell recruitment, reduced not only T-

cell infiltration but also renal injury.168 Much like macrophages, CD4+ T cells can exhibit multiple 

phenotypes. The inflammatory TH1 phenotype is produced by STAT-4 activation and produces 

IFN-γ, while the anti-inflammatory TH2 phenotype is produced by STAT6 activation to produce 

IL-4. STAT4-deficient mice (i.e., mice unable to generate the TH1 phenotype) exhibited partial 

protection against AKI, but injury in STAT6-deficient mice (i.e., mice unable to generate the TH2 

phenotype) was potentiated.169 While the role of CD8+ cells in the pathogenesis of AKI has not 

been fully determined, evidence from germ-free mice showed that naïve CD8+ T cells infiltrate 

the kidney following injury and produce IFN-γ to increase injury.170 Even after the initial phase of 

injury, activated and memory T cells remained in the kidney,171 suggesting that these cells may 

play a role in the pathogenic remodeling that leads to chronic kidney disease. 

B lymphocytes (B cells) are recruited to the kidney following injury,172 and mice 

deficient in B cells were protected from renal injury and exhibited more tubular repair during the 

recovery phase.173 Adoptive transfer of B cells blocked the effects on recovery,172 indicating that 

B cells may be a viable therapeutic target for AKI, particularly since most AKI patients are 

identified after the initial insult has occurred.  

RENAL PROXIMAL TUBULE CELLS: Perhaps the central cell types in the 

pathogenesis of AKI is the renal proximal tubule cell (RPTC).174 These cells are part of the renal 

epithelium and are responsible for the bulk of solute secretion and reabsorption into the urinary 

filtrate.112 As a result, RPTC require a great deal of ATP and are therefore highly oxidative, 

containing numerous mitochondria.175,176 However, this oxidative phenotype and high transport 

burden makes RPTC susceptible to injury following oxidative stress (such as by renal ischemia) 

or nephrotoxicant exposure. RPTC play important injury-sensing roles in the kidney and signal to 
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immune cells, endothelial cells, and fibroblasts during AKI to mediate injury and repair 

processes.113 Importantly, transgenic mouse models that selectively injure or deplete RPTC have 

demonstrated that AKI severity correlates with the degree of RPTC loss.177-179 Furthermore, 

RPTC injury and loss was sufficient to promote injury pathways in distal tubules and fibroblasts, 

underscoring the central importance of RPTC even in a multicellular pathology like AKI. These 

data were further corroborated by studies blocking p53-mediated apoptosis in RPTC,180,181 

wherein prevention of RPTC apoptosis protected against ischemic AKI. 

Following AKI, RPTC underwent a loss of polarity with redistribution of transporters 

(e.g., Na+/K+ ATPase) and disruption of the actin cytoskeleton.182 This was accompanied by a 

downregulation of mitochondrial metabolism and cell-cycle arrest to maintain cell membrane 

potential and energy balance. Additionally, integrins translocated from the basolateral to the 

apical surface (i.e., from basement membrane to tubular lumen).183 As injury progressed, dead 

and intact RPTC sloughed into the tubular lumen and bound to these integrins, causing tubular 

obstruction and further injury. Damage- and pathogen-associated molecular patents (DAMPs and 

PAMPs, respectively) within the tubular debris were recognized by toll-like receptors, 

particularly TLR 2, TLR 4, and TLR 9.184,185 These receptors were responsible for upregulation of 

inflammatory cytokines that enhance injury by reducing blood flow (leading to local hypoxia) 

and activating the innate immune system.127 Additionally, RPTC lost expression of Crry,186 a 

complement inhibitor, which led to increased inflammation and cell death. RPTC also regulated 

later immune responses by T-cells via MHC II expression.187 

Following injury, RPTC upregulate the expression of injury markers, such as NGAL and 

KIM-1, described above. NGAL, along with other siderophores, scavenges iron to mitigate the 

propagation of oxidative stress.188 KIM-1 acts a receptor for phosphatidylserine-mediated 

phagocytosis,100 blocking pro-inflammatory signals and promoting clearance of luminal debris. 

However, chronic KIM-1 upregulation led to fibrosis by inducing MCP-1 and TGF-β expression 
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to recruit macrophages and fibroblasts.106 This fibrotic signaling was exacerbated by Wnt,189 

Notch,190,191 and TGF-β signaling pathways in the proximal tubules.192,193 

Although proximal tubule cells are susceptible to injury, they also display substantial 

regenerative capacity. In the setting of mild ischemia, epithelial cells repolarized and returned to 

their healthy oxidative state.194 Following more severe injury, loss of RPTC into the lumen 

necessitated regeneration.195 RPTC dedifferentiate following injury,196 while regenerated tubules 

have differentiated and functional RPTC. This finding raised questions of whether a stem or 

progenitor cell population might be responsible for tubular recovery. Examinations of lineage and 

clonal behavior have shown that terminally differentiated RPTC (rather than stem or extrarenal 

progenitor cells) were able to migrate, proliferate, and redifferentiate to generate functional 

tubules.197,198 However, this repair was incomplete, as injured kidneys had shortened proximal 

tubule cells.199 This finding may explain the increased susceptibility of patients with AKI to 

future bouts of AKI or development of CKD and ESRD. 

Mitochondria and AKI: 

The proximal tubules have an extensive role in the reabsorption and secretion of solutes 

from and into the glomerular filtrate. As a consequence, they consume a great deal of ATP and 

have a dense mitochondrial network. Disruption of or damage to this mitochondrial network led 

to morphological and functional deficits of the proximal tubules.200 In addition to their role in 

generating ATP, mitochondria also play key roles in the regulation of ROS, steroid and heme 

biosynthesis, calcium and iron handling, and apoptosis.176 The mitochondrial network is highly 

dynamic with mitochondria undergoing fission, fusion, and turnover (mitophagy) in response to 

cellular conditions. Therefore, mitochondrial dysfunction can lead to severe cellular 

consequences beyond the disruption of ATP-dependent processes.  

Patients with mitochondrial diseases (that is, diseases due to mutations in the mtDNA or 

nuclear-encoded mitochondrial genes) often present with renal manifestations such as proteinuria, 
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metabolic acidosis, or progressive renal failure.201,202 Histologically, their kidneys demonstrated 

tubular atrophy, interstitial nephritis, or glomerular involvement (such as focal segmental 

glomerular sclerosis). 

Many causes of AKI, particularly intrinsic AKI, have associated mitochondrial 

dysfunction. Cisplatin inhibited the electron transport chain, diminished respiratory capacity and 

mitochondrial membrane potential, and activated mitochondrial cell death pathways.203 Ischemia 

reperfusion injury led to an increase in ROS production,204 which disrupted respiration and 

damaged the mitochondria, leading to subsequent cell death. Numerous models of AKI, such as 

sepsis,205,206 glycerol-induced rhabdomyolysis,207 folic acid,208 and ischemia-reperfusion injury,207 

exhibited a persistent suppression of mitochondrial proteins, particularly subunits of the electron 

transport chain. Importantly, mitochondrial dysfunction preceded clinical manifestations of 

AKI,209 suggesting that mitochondria play a causative role in the development of AKI. Samples 

from patients with various renal insults including trauma,210 sepsis,211 and ischemia have 

demonstrated swollen mitochondria and mitochondrial vacuolization, even with normal renal 

histology and function.209 

 Following AKI, proximal tubules exhibited increased mitophagy, or the selective 

degradation of mitochondria. Mitophagy occurs through two main pathways.212,213 In one, the 

PINK1/Parkin pathway, PINK1 accumulates on the outer membrane of damaged mitochondria, 

where it binds the E3 ubiquitin ligase Parkin. Parkin then ubiquitinates mitochondrial proteins, 

which in turn bind to p62 and optineurin on the autophagosome. In the other pathway, the 

BNIP3/NIX/FUNDC1 pathway, BNIP3, NIX, and FUNDC1 on the outer mitochondrial 

membrane act as mitophagy receptors that bind LC3 on the autophagosome. By increasing 

mitophagic flux, cells can clear damaged and dysfunctional mitochondria to prevent excessive 

oxidative stress while maintaining ATP production. Both BNIP3 and PINK1 were increased 

following AKI,214,215 and the induction of mitophagy was protective against AKI.216,217 Mice fed 
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low-calorie diets had increased renal mitophagy with less oxidative stress,218 leading to protection 

against AKI. Furthermore, activation of AMPK increased autophagy to protect against AKI by 

inhibiting mTOR, an inhibitor of autophagy.219,220 However, direct inhibition of mTOR by 

rapamycin failed to prevent loss of renal function and inhibits tubular proliferation,221-223 despite 

inducing autophagy. These effects were likely due to the role of mTOR in numerous cellular 

processes, including survival and proliferation.  

Under normal conditions, mitochondria are dynamic organelles that undergo frequent 

fission and fusion events. Mitochondrial fission is mediated by dynamin-related protein 1 (Drp1) 

and its receptor, Fis1, while mitochondrial fusion is regulated by mitofusins 1 and 2 (Mfn1 and 

Mfn2, respectively) on the outer mitochondrial membrane and Opa1 on the inner mitochondrial 

membrane.224 Following various organ injuries, including AKI, mitochondria became fragmented 

and swollen.203 This was associated with an increase in Drp1 translocation to the 

mitochondria,203,207 suggesting that modulating mitochondrial dynamics might be a therapeutic 

target for AKI. Indeed, inhibition of Drp1 by mDivi-1 prevented mitochondrial fission and 

apoptosis while also rescuing renal function following AKI.203,225 Interestingly, mDivi-1 also had 

beneficial effects in mouse models of cardiorenal syndrome,226 the major cardiovascular sequela 

following AKI. Based on the beneficial effects of inhibiting fission, the effects of increasing 

mitofusin expression on AKI have been studied. In vitro, deletion of Mfn2 enhanced RPTC 

susceptibility to apoptosis.227 However, in vivo, proximal tubular deletion of Mfn2 increased 

proliferation through an ERK-dependent pathway and accelerates recovery of renal function.228 In 

animal models of CKD, renal dysfunction and increased mitochondrial fusion were reversed by 

the antioxidant curcumin.229 Together, these data indicate that while inhibition of mitochondrial 

fission is a promising therapeutic target, further study of mitochondrial fission and fusion is 

necessary to better implement therapies for AKI. 
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While mitophagy and mitochondrial fission decrease the mitochondrial pool, suppression 

of mitochondrial biogenesis (MB) also occurs after AKI. MB is the process by which new 

mitochondria are made and requires tight coordination between the nuclear and mitochondrial 

genomes. Following AKI, the expression of electron transport chain proteins was 

suppressed,207,230,231 and ATP and mitochondrial function were decreased. One of the main 

regulators of MB is the transcriptional co-activator peroxisome proliferator-activated receptor 

gamma coactivator 1α (PGC-1α).232 Following AKI, PGC-1α expression was decreased during 

the injury phase,205,206 followed by an increase during the recovery phase. However, even in the 

recovery phase, the inactive acetylated form of PGC-1α was elevated.233 Specific deletion of 

PGC-1α in RPTC worsened injury from AKI.205 Overexpression of PGC-1α prevented TNFα-

induced decreases in oxygen consumption and mRNA expression of mitochondrial genes.205 

However, in the setting of oxidant injury, overexpression of PGC-1α worsened injury but 

accelerated recovery of RPTC.234 The latter data are of particular importance, as diagnosis of AKI 

often occurs after initial injury has occurred. Therefore, MB represents an attractive therapeutic 

target for AKI. Below, signaling pathways leading to MB and drugs that are known to induce MB 

will be discussed. 
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Inducing Mitochondrial Biogenesis to Treat Degenerative Diseases 

Mitochondria, the metabolic powerhouses of the cell, have diverse functions including 

ATP production, biomolecule synthesis, ionic homeostasis and antioxidant defense. As cells age 

and accumulate damage, mitochondria less readily meet ATP demands, thereby diminishing the 

cells’ functions and regenerative capacity. After toxicant exposure or cell stress, mitochondria can 

be damaged, and increased free radical production may be followed by persistent mitochondrial 

dysfunction. Diminished ATP and increased free radicals propagate injury and subsequent tissue 

and organ dysfunction (Figure 1-3). Indeed, many acute and chronic degenerative diseases across 

multiple organ systems are associated with a degree of mitochondrial dysfunction, often with 

suppression of electron transport chain proteins and activities.235-238 

Because many diseases are associated with mitochondrial dysfunction, research is 

underway to develop therapeutics that target mitochondria to prevent disease progression. For 

example, numerous compounds have been studied that prevent cell death by interfering with the 

formation of the mitochondrial permeability transition pore (MPTP), reducing oxidative stress 

using mitochondrial-targeted antioxidants, or modulating mitochondrial dynamics by inhibiting 

mitochondrial fission or promoting mitochondrial networking.239 However, whereas many of 

these strategies are effective for preventing injury in animal models, they target events that occur 

early in cellular dysfunction and therefore may be less efficacious for facilitating recovery after 

an insult. To address this problem, some groups have investigated compounds that induce MB, or 

the generation of new, functional mitochondria within cells to promote repair and regeneration.235 

This section will describe the role of the peroxisomal proliferation activated receptor 

coactivator-1α (PGC-1α) in MB and the role of mitochondrial dysfunction in acute and chronic 

degenerative diseases. It will also describe existing compounds that induce MB, signaling 

pathways responsible for their effects, and finally, potential utility of these compounds for   
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Figure 1-3. Multiple insults converge upon the mitochondria, leading to mitochondrial 
dysfunction and subsequent organ injury and disease. Following an insult, increased ROS 
generation leads to mitochondrial damage. Subsequent energy deficits and disrupted signaling 
lead to tissue and organ dysfunction. 
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treating human acute and chronic degenerative diseases for which there are presently limited 

therapeutic options. 

Regulation of MB  

MB requires the activation of a complex transcriptional and translational program 

integrating both nuclear and mitochondrial genomes.240,241 Nuclear encoded mitochondrial genes, 

such as the mitochondrial transcription factors and the mitochondrial DNA (mtDNA) replication 

complex, facilitate transcription, replication, and proofreading of the mitochondrial genome.240 

Integrity of mtDNA replication is particularly important in aging and chronic degenerative 

diseases, where deleterious mtDNA mutations and deletions can lead to dysfunctional 

mitochondria.242,243 For example, the nuclear transcription factors  estrogen receptor (ER) and 

estrogen related receptor-α (ERRα), nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2), 

peroxisome proliferator-activated receptor (PPAR) family of transcription factors, thyroid 

hormone receptor (TR), cAMP-responsive element binding protein (CREB), and yin yang-1 (YY-

1)244 increase expression of genes of the electron transport chain, mitochondrial transporters, 

antioxidant proteins, and other mitochondrial transcription factors. However, these transcription 

factors are pleotropic with effects on genes unrelated to MB. Selective induction of MB is 

typically regulated through transcriptional co-activation proteins such as the PGC-1 family 

(Figure 1-4). PGC-1 proteins activate transcription and translation of mitochondrial genes and 

increase energy production in healthy cells, whereas in injured cells PGC-1 activation often 

normalizes overall mitochondrial function as measured by ATP production, mitochondrial 

membrane potential, and reactive oxygen species (ROS) generation.245-247 

The PGC-1 family, composed of PGC-1α, PGC-1β, and PGC-1 related coactivator 

(PRC), facilitate the formation of complexes capable of activating the transcription of nuclear 

genes related to MB.248 PRC is thought to play a role in redox-sensitive inflammatory responses 

and MB during cellular proliferation, whereas PGC-1β appears to contribute more to maintenance   



23 

 

Figure 1-4. PGC-1α integrates extracellular and cytosolic signaling inputs to selectively 
upregulate mitochondrial biogenesis. Extracellular signals from GPCRs such as beta adrenergic 
receptors (βAR), serotonin receptors (e.g., 5HT1R), and cannabinoid receptors (e.g. CB1R) 
modulate second messengers and kinase activity. These signals converge on transcription factors 
and PGC-1α to induce MB, with increased expression of tricarboxylic acid (TCA) and oxidative 
phosphorylation (OXPHOS) proteins. Various pharmacologic agents modulate these inputs and 
can therefore induce MB. Adapted from Cameron R.B. et. al. Development of Therapeutics That 
Induce Mitochondrial Biogenesis for the Treatment of Acute and Chronic Degenerative Diseases. 
J. Med. Chem. 2016.  
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of mitochondrial mass. In contrast, PGC-1α has been shown to drive MB in response to various 

environmental cues. Because PGC-1α tends to be the most inducible and responsive member of 

the PGC-1 family, its activation has emerged as a key therapeutic strategy for MB induction. 

However, it is important to note that PGC-1α-independent mechanisms of MB have been 

reported.249-252 Such mechanisms include compensatory activation of PGC-1β or PRC and direct 

activation of transcription factors that induce mitochondrial genes.  

Through activation of PGC-1α and its associated transcription factors, multiple signaling 

pathways have been shown to regulate MB. PGC-1α can be directly activated by silent mating 

type information regulation 2 homolog 1 (SIRT1)-mediated deacetylation,253 methylation by 

protein arginine methyltransferase 1 (PRMT1),254 or phosphorylation by kinases such as p38,255 

protein kinase A (PKA),256 and AMP-dependent kinase (AMPK).257 Additionally, PGC-1α and 

other transcription factors associated with MB can be activated by NO/cGMP and calcium-

dependent signaling.258 In summary, these diverse signaling inputs allow exquisite control of 

mitochondrial homeostasis to meet cellular energy demands and to maintain proper cellular 

function.  

The Importance of MB in Disease 

Because mitochondria regulate many processes within cells, mitochondrial dysfunction or 

disruptions in mitochondrial homeostasis lead to severe deficits in cellular functions.235,236 Injury 

to mitochondria following ischemia reperfusion injury, toxicant exposure, or severe inflammatory 

response leads to deficient ATP and disruption of ion homeostasis. Additionally, mitochondrial 

stress increases superoxide anion production and which causes damage to proteins and lipid 

membranes. These mitochondrial derangements disrupt cellular repair, proliferation, and 

differentiation status and increase cell death. 

Mitochondrial dysfunction has been implicated in numerous acute and degenerative 

disease processes, such as myocardial infarction,259 stroke,260 and AKI.207 These disease states 
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may be attributed in part to the role of mitochondria and oxidative metabolism in cellular 

differentiation as observed in neurons,261 myocytes,262 and immune cells.263 Chronic conditions 

causally linked to such acute insults (such as chronic kidney disease and heart failure) are also 

characterized by persistent mitochondrial dysfunction,264,265 suggesting that the lack of 

mitochondrial recovery after an acute injury can also lead to chronic degenerative disease. For 

example, deficits in PGC-1 family proteins have been associated with the development heart 

failure in both animal models and human patients.266,267 Interestingly, mice that overexpress PGC-

1 proteins also exhibit abnormal cardiac function,268 indicating that a tight control over 

mitochondrial content is necessary for normal organ function. Similarly, animal models of 

chronic kidney disease demonstrate diminished renal mitochondrial function,269 and animal 

models of mitochondrial dysfunction demonstrate chronic kidney disease.270 Finally, human 

patients with chronic kidney disease have decreased mtDNA in skeletal muscle and peripheral 

mononuclear blood cells,269 suggesting that mitochondrial defects in a single organ can lead to 

global mitochondrial dysfunction. 

Other chronic diseases also have been associated with disruption of mitochondrial 

homeostasis. Type II diabetes mellitus and metabolic syndrome are characterized by 

mitochondrial dysfunction associated with insulin resistance.271 In metabolic syndrome, 

pancreatic beta cells exhibit increases in UCP2, decreased ATP synthesis, and increased levels of 

ROS.272,273 Additionally, reductions in complex IV of the electron transport chain have been 

associated with the development of diabetes in obese mice and patients.274 Furthermore, 

epigenetic silencing of electron transport chain genes and mtDNA,275-277 along with genes 

associated with MB such as PGC-1α and TFAM,278,279 lead to decreased mitochondrial content 

and a greater proportion of dysfunctional mitochondria, thereby causing sustained deficiencies in 

cellular respiration. 
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Multiple neurodegenerative diseases also have been associated with decreased 

mitochondrial mass, altered mitochondrial dynamics, and dysregulation of MB. Parkinson disease 

has been linked to a panoply of mutations that lead to mitochondrial dysfunction. Defects in 

PINK1 and Parkin disrupt clearance of damaged mitochondria, permitting accumulation of 

oxidative damage in dopaminergic neurons and suppression of PGC-1α and decreased cellular 

respiration.280-283 Mutations in DJ-1 increase ROS while decreasing anti-oxidant defenses,284 

leading to decreases in mitochondrial membrane potential, poor mitochondrial quality control, 

and altered mitochondrial morphology. Similarly, mutations in mTDNA,285-288 TFAM,289 

mortalin,290 and α-synuclein291 lead to increased susceptibility to ROS and subsequent 

mitochondrial dysfunction. Additionally, huntingtin mutants associated with Huntington’s disease 

bind to the PGC-1α promoter and prevent its transcription and the transcription of other nuclear 

transcription factors associated with MB, including CREB.292,293 Huntingtin mutations also cause 

impaired mitochondrial calcium handling,294 reduced respiration,295,296 and disrupted 

mitochondrial dynamics.297,298 Finally, genetic and toxicant-induced models of Alzheimer disease 

and samples from human patients confirm the suppression of mitochondrial proteins and the MB 

transcriptome in Alzheimer disease,299,300 along with mtDNA damage and disruptions in 

mitophagy and mitochondrial morphology.301-303 Thus, compounds that induce MB may alleviate 

cellular dysfunction associated with acute and chronic degenerative diseases and promote organ 

repair and recovery that leads to improvements in patient health.230 

Natural Products 

Because mitochondria and oxidative stress are associated with aging, populations with 

longer lifespans have been studied to identify a potential means for preventing deleterious effects 

of aging. These studies have identified multiple chemicals capable of inducing MB (Figure 1-5), 

and these compounds have shown efficacy in multiple disease models by modulation of multiple  
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Figure 1-5. Naturally occurring polyphenols capable of inducing MB. Adapted from Cameron 
R.B. et. al. Development of Therapeutics That Induce Mitochondrial Biogenesis for the 
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signaling axes. Nonetheless, their therapeutic applicability in many cases is limited by poor 

absorption and low oral bioavailability. 

Resveratrol  

A widely studied nutritional activator of MB is the polyphenol resveratrol (1).304 

Compound 1 has been shown to induce MB by activating SIRT1 directly or indirectly through 

AMPK.305 SIRT1 in turn deacetylates PGC-1α and allows it to exert its transcriptional effects. In 

particular, 1 activates AMPK by inhibiting components of the electron transport chain such as 

complex I and F1/F0 ATPase.306,307 Docking studies with complex I suggest that resveratrol binds 

to the NAD+ binding site of complex I through pi stacking interactions with its aromatic 

components and by hydrogen bond interactions through its hydroxyl group.307 When binding 

F1/F0 ATPase, 1 prevents rotation of the ATP synthase complex through a network of 

hydrophilic and hydrophobic interactions.306 Compound 1 can also directly activate PPARα via 

interactions with the 4’-hydroxyl group.308 It also activates PPARγ by interactions between R280 

and its 4’-hydroxyl group near the opening of the ligand binding pocket as well as Van der Waals 

interactions with F264, H266, and R288.309 Together, protein-ligand interactions trigger signals 

that induce MB. In models of diabetic cardiovascular disease, 1 induces MB and restores vascular 

reactivity in vitro and in vivo.310 In cellular and animal models of neuronal radiation damage,311 

Alzheimer disease,312 Parkinson disease,313 and Huntington’s disease,314 1  normalizes 

mitochondrial function and rescue cellular viability and function. Compound 1 also attenuates 

oxidative stress in fibroblasts from patients with Complex I deficiency by increasing SOD2 in a 

SIRT3-dependent manner.315 Human clinical trials using 1 demonstrated improved lipid profiles, 

antioxidant defenses, and vascular reactivity in diabetic and obese subjects;316-321 however, there 

are conflicting data regarding the effect of 1 on insulin sensitivity,316,320,322 and 1 had no effect in 

non-obese subjects.323  
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Epicatechins 

(-)-Epicatechin (2),324 primarily found in cocoa, has been shown to induce MB through 

multiple signaling pathways, including Akt-dependent nitric oxide (NO) generation,325,326 CREB 

phosphorylation, and δ-opioid receptor activation.327 The epicatechin epigallocatechin-3-gallate 

(3),328 promotes cAMP-dependent signaling to increase SIRT1 and PGC-1α.329 Although there 

are limited data regarding the structural basis for 2 activation of cAMP-dependent signaling, Akt-

dependent signaling is mediated by the 3”-, 3’-, and 4’-hydroxyl groups.330 Following oxygen-

glucose deprivation, neuronal viability is rescued by 2 via the Akt-eNOS pathway and CREB 

activation.326 In a mouse model of diabetes, 2 reduces oxidative stress in cardiac tissue by 

inducing MB.331 Similarly, in mouse models of cardiovascular disease, 2 acts through the δ-

opioid receptor to prevent mitochondrial swelling and to increase respiration;327,332 it can also 

decrease cardiac ischemia-reperfusion injury through NO and cGMP generation. Even in aged 

mice, epicatechin increases expression of mitochondrial and antioxidant proteins.333 Through its 

cAMP-dependent activation of SIRT1 and PGC-1α, 3 enhances MB in Down’s syndrome patient 

fibroblasts and enhances mitochondrial calcium handling by modulating mitochondrial tethering 

to the rough endoplasmic reticulum.329 Compound 2 also induces MB in human diabetic patients 

to improve skeletal muscle metabolism.334 

Curcumin 

Curcumin (4),335 a diarylheptanoid found in turmeric, has shown promise for promoting 

MB and improved function in several disease models. By activating multiple signaling molecules, 

including p38, PKA, AMPK, SIRT1, and NRF2, 4 can induce MB and protect cells against 

injury.336-338 The o-methoxy group in compound 4 is important for increasing p38-mediated HO-1 

expression, which confers cytoprotection in endothelial cells.336 The unsubstituted 5’- and 5’’-

positions and its olefinic system allow 4 to inhibit NF-κB and activate the NRF2 pathway.339 In 

cellular models of metabolic syndrome, 4 rescues hepatic mtDNA, NRF1, and TFAM and 
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reduces inflammation and NFκB activity.340 In white adipose tissue, 4 increases browning and 

markers of MB via increases in norepinephrine and β3 adrenergic receptor expression.341 

Pretreatment with 4 improves mitochondrial membrane potential, oxygen consumption rates, and 

survival in cellular models of Parkinson disease.342 Compound 4 attenuates neuronal death and 

reduces infarct size following cerebral ischemia-reperfusion injury with concomitant increases in 

mitochondria and improvements in neurological function.343 In animal models of metabolic 

syndrome, 4 restores hepatocyte mitochondrial function to reduce hepatosteatosis.344 Following 

gentamicin-induced nephrotoxicity, 4 can increase PGC-1α and NRF2, thereby elevating 

mitochondrial protein expression and improving mitochondrial structure.337 In rat skeletal muscle, 

4 increases mtDNA content and mitochondrial protein expression following endurance training 

via PKA-dependent activation of AMPK, SIRT1, and PGC-1α.338  

Phytoestrogens 

Phytoestrogens, such as genistein (5),345 daidzein (6),346 pyrroloquinoline quinone (7),347 

coumestrol (8),348 and equol (9),349 are natural products often found in legumes such as soybeans. 

They have been shown to exert their effects in part by modulation of estrogen receptors and partly 

via activation of SIRT1.350-352 5-hydroxyl groups prevent SIRT1 activation, whereas 7-hydroxyl 

groups are necessary for SIRT1 activation. Similarly, a 3-phenyl group appears to drive increased 

SIRT1 expression.352 Compounds 5-8 have been shown to induce MB in vitro.352-354 Additionally, 

through their biogenic effects, 5 and 6 rescued cultured RPTC  from oxidant injury.352 In vivo, 5 

and 9 induce MB to improve bioenergetics in ovariectomized mice.355,356 Both 5 and 6 increase 

mitochondrial markers with associated improvements in insulin sensitivity and glucose 

metabolism in diabetic mice.357,358 Compound 5 also reduces the size of a myocardial infarct in 

mice by rescuing mitochondrial function.350 Finally, 7 stimulates MB in both wild type mice and 

transgenic models of Alzheimer disease;359,360 in the latter model, improvements in synaptosomal 

bioenergetics are correlated with cognitive improvement. 
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Transcription Factor Modulators 

Although natural products have been useful in identifying biological targets for MB, their 

poor pharmacokinetic parameters limit their therapeutic potential. Modulators of the 

transcriptional machinery responsible for MB can potently and efficaciously induce MB; 

however, because they activate transcriptional programs other than MB, these compounds can 

have severe side effects that limit their clinical utility.  

Thiazolidinediones 

The thiazolidinediones (TZDs) are a class of hypoglycemic drugs used to treat diabetes 

mellitus that includes rosiglitazone (10),361 pioglitazone (11),362 troglitazone (12),363 and 

ciglitazone (13) (Figure 1-6).364 Classically, they act as agonists of the transcription factor 

peroxisome PPARγ, leading to increased insulin sensitivity. These effects are primarily mediated 

by the acidic head group, which engages in necessary hydrogen bonding interactions with PPARγ 

to stabilize its active conformation.365,366 More recently, acute PPARγ-independent effects of 

TZDs have been discovered, including inhibition of the electron transport chain, which reduces 

the ATP/AMP ratio, leading to AMPK activation and subsequent MB.367-369 TZDs have also been 

shown to exert anti-inflammatory effects and to upregulate the mitochondrial stress-response, 

leading to increased anti-oxidant defenses.367 Although they upregulate multiple signaling 

pathways, the capacity of TZDs to sensitize tissues to the effects of insulin has been shown to 

correlate with increased expression of mitochondrial proteins, suggesting that induction of MB 

may be central to the clinical efficacy of these drugs.370 In vitro, 10-13 increase cell viability and 

improve neuronal function in models of ischemic injury,371 Alzheimer disease,372 Huntington’s 

disease,373,374 and multiple sclerosis.375 Similarly, in animal models of neurodegenerative diseases, 

10 and 11 improve both cellular and behavioral markers of neurological function.376,377 In animal 

models of cardiac disease, 10 can rescue cardiac increases cardiac ROS and can be 

arrhythmogenic.378,379 In models of metabolic syndrome, 10-13 induce MB in adipose tissue,249,380  
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pancreatic beta cells,381 and skeletal muscle369,382 to enhance insulin sensitivity. In humans, 11 

induces MB in subcutaneous adipose tissue,383 and 10 can do so in skeletal muscle.384 

Estrogens 

To understand the underlying processes responsible for sex-dependent differences in lifespan and 

oxidative stress, multiple groups reported that estrogens can be protective in various tissues. 

Furthermore, reduced levels of estrogens, such as in ovariectomized mice, lead to increased ROS 

production.385 Estrogens (Figure 1-7) can bind to the transcription factors estrogen receptor α 

(ERα) and estrogen receptor β (ERβ) to directly influence gene expression. 17β-Estradiol (14)386 

and progesterone (15)387 are the principle biologically active estrogens. 14 and 15 interact with 

nuclear estrogen receptors by hydrogen bonding interactions between the ligands’ hydroxyl 

groups and the receptors’ polar residues and by hydrophobic interactions with the receptors’ 

binding pockets.388 ERα-selectivity, such as by the selective ligand 4,4',4''-(4-propyl-[1H]-

pyrazole-1,3,5-triyl)trisphenol (16),389 is mediated by steric bulk to interact with a residue found 

in ERα but not ERβ.389 Selectivity for ERβ by diarylpropionitrile (17)390 is mediated by phenolic 

groups, while its efficacy is improved by its nitrile group.390 Recently, it has also been shown that 

estrogens activate plasma membrane-bound estrogen receptors such as the G protein-coupled 

estrogen receptor (GPER). The GPER-selective ligand G-1(18)391 is structurally similar to 14 but 

is unable to form hydrogen bonds in the nuclear estrogen receptors;391 however, 18’s acetyl group 

and pseudosymmetry allows engagement of specific residues of the GPER to stabilize the active 

conformation.392,393 Compound 14 has been shown to induce MB in immortalized cell lines and in 

a cellular model of Leber hereditary optic neuropathy, a mitochondrial disease. 394,395 In animal 

models, 14 normalizes ROS production, increases antioxidant defenses, and enhances respiratory 

capacity in the heart and brain.385,396 Furthermore, 15 and synthetic estrogen receptor agonists 

such as 16 and 17 have been shown to enhance respiratory capacity in the brain and promote 

clearance of lipid ERα and ERβ differentially regulate the expression of electron transport chain   
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proteins. Additionally, at least a portion of the cardioprotective effects of estrogen are mediated 

through the GPER, as shown by stimulation with the GPER-selective agonist 18.385 Despite the 

clear protective potential of estrogens, their proliferative and endocrine effects limit their use as a 

long-term therapy for chronic degenerative diseases. However, the development of selective ER 

and GPER ligands that drive specific signaling and transcriptional programs may improve the 

utility of such therapeutics. 

SIRT1 activators 

The identification of SIRT1 as a common target of natural product-induced increases in 

PGC-1α led to the development of multiple SIRT1 activators, such as SRT1720 (19),397 SRT1460 

(20),397 SRT2183 (21),397 and SRT2104 (22) (Figure 1-8).398 In the initial synthesis of SIRT1 

activators,399 the basic methylamino ring at C-3 of the imidazothiazole ring of 19 and 20 

enhanced water solubility, while derivatization of the amide group (such as with the 2-

quinoxaline group of 19) improved potency and efficacy. Interestingly, both 19 and 20 share a 

methylamino ring and have greater efficacy, whereas 19 and 21 have a 2-quinoxaline group and 

more potency,397 suggesting that the two groups may play distinct roles in the pharmacodynamic 

qualities of these compounds. The direct mechanisms of action for the sirtuin class have been 

controversial. Assays with isolated fluorescent peptides were used for optimization, but direct 

proteomic assays indicate that 19-21 do not directly activate SIRT1 and, rather, act 

promiscuously to activate or inhibit numerous targets;400 however, other work has shown that 

these compounds directly activate SIRT1 by binding to amino acid E230.401  

Due to numerous SIRT1 targets, these activators can affect various cellular processes, 

including inflammation, lysosomal trafficking, and metabolism. Among its targets, SIRT1 

deacetylates PGC-1α, facilitating nuclear import of and transcriptional regulation by PGC-1α, 

leading to MB. In models of type II diabetes mellitus, SIRT1 activators have been shown to 

improve lifespan, normalize pancreatic morphology, improve insulin, glucose, and fatty acid 
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metabolism and increase mitochondrial markers;397,402-404 however, other studies have shown a 

lack of efficacy in diabetic mice, calling into question the beneficial effects of these 

compounds.400 With respect to neurodegenerative diseases, SIRT1 activators prevent 

neurodegeneration and restore MB in animal models of Huntington’s disease and multiple 

sclerosis.405,406 SIRT1 activation has shown promise in renal disease, restoring renal function after 

AKI and preventing renal medullary damage in obstructive nephropathy.233,407,408 In models of 

cardiovascular disease, 19 reduces the size of myocardial infarction and preserves contractility,409 

as well as reducing ROS and improving contractility in mice with enhanced ALDH2 activity.410 

Compound 19 also preserves endothelial function in aged mice.411 Even in healthy animals, 19 

and other SIRT1 activators have been shown to extend lifespan and “healthspan” by preventing 

the development of age-associated diseases in multiple organ systems.412 In human trials, 22 

improved lipid profiles in diabetic patients but did not affect plasma glucose or insulin, likely due 

to large pharmacokinetic variability.413 Additionally, 22 reduces cholesterol, LDL, and 

triglycerides in otherwise healthy smokers,414 suggesting that SIRT1 activation is important to the 

human healthspan. 

Kinase Modulators 

Kinases either phosphorylate target proteins or function as scaffolds to co-localize other 

kinases and targets to regulate cellular signaling. Phosphorylation of specific targets can either 

activate or inhibit cellular signaling pathways in response to environmental cues. Because they 

are central signaling molecules, kinases are attractive therapeutic targets. In particular, activators 

of kinases that induce MB, such as AMPK, can be useful in multiple diseases. Unfortunately, 

inhibitors are easier to develop, and most kinase modulators are inhibitors. However, inhibitors of 

kinases that negatively regulate MB, such as extracellular signal-regulated kinases 1/2 (ERK1/2), 

also provide promise as therapeutics. 
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AMPK 

AMPK is an energy sensing kinase involved in the modulation of metabolism through the 

cellular AMP/ATP ratio. AMPK activation is increased during exercise and induces MB, and it is 

decreased with aging and during multiple chronic degenerative diseases.415 AMPK activation has 

been shown to be an upstream regulator of sirtuins and therefore PGC-1α.416 Furthermore, 

pharmacologic activation of AMPK has been observed with multiple natural products that induce 

MB. Activators of AMPK (Figure 1-9), including the indirect activators AICAR (23),417 

metformin (24),418 phenformin (25),419 R419 (26),420 and C24 (27),421 and the direct activator 

A769662 (28),422 have been developed and induce MB in multiple cell lines. Additionally, 23 has 

been shown to enhance proliferation and increase ATP in models of complex I deficiency and 

MELAS.423,424 Compound 23 is biotransformed via phosphorylation within the cell and acts as an 

AMP mimetic to activate AMPK and other AMP-dependent processes.417 The biguanides 24 and 

25 activate AMPK in a LKB1-dependent manner and through inhibition of complex I;420,425 by 

inhibiting the electron transport chain, the AMP/ATP ratio is increased, leading to AMPK 

activation. Compound 26 also indirectly activates AMPK via complex I inhibition,420 and 28 

activates AMPK by binding to an allosteric site between the alpha and beta subunits of AMPK. 

28 both allosterically activates and prevents Thr172 dephosphorylation.426  

In models of diabetes and metabolic syndrome, 23 mimics high intensity exercise in 

skeletal muscle with accompanying increases in SIRT1 activation and PGC-1α activity. These 

improvements in MB decrease oxidative stress in both renal and endothelial cells,427-429 

preventing common comorbidities such as diabetic nephropathy and poor wound healing. 

Compound 23 can also improve pancreatic morphology via AMPK activation to enhance insulin 

sensitivity and GLUT4 expression,430 thereby decreasing plasma glucose. In hepatic cells, 27 

reduces lipid biosynthesis to prevent lipid accumulation and preserve hepatic  
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function.421 In humans with gestational or type II diabetes, 23 and 25 prevents insulin resistance 

in multiple tissues.431-433 In the heart, 23 reduces oxidative stress and improves contractility,434 

and it is associated with improvements in insulin sensitivity in diabetic mice as well as reductions 

in cold ischemic injury in mouse models of heart transplant.435 

AMPK activators have also shown promise for treating neurodegenerative diseases. 

Neuronal activity has been shown to drive PGC-1α and NRF-1 expression in an AMPK-

dependent manner,436 leading to MB, and pharmacologic activation of AMPK has been shown to 

mimic these effects. Compound 23 has also been shown to impact neuronal development by 

promoting mitochondrial accumulation at axonal branch points, thereby facilitating branch 

formation and retention.437 In models of Alzheimer disease, 23 ameliorated mitochondrial 

dysfunction and prevented neurotoxicity and tau hyperphosphorylation.438,439 Compound 23 

decreased amyloid beta, a protein implicated in Alzheimer disease, in a PPARγ dependent 

manner.440 Compound 23 has also been shown to decrease inflammation in models of multiple 

sclerosis, attenuating pathological and behavioral changes. Furthermore, in models of ischemic 

brain injury, 23 diminishes ischemic neuronal damage.441 

ERK1/2 

Another means of inducing MB is the inhibition of negative regulators of MB, such as 

ERK1/2. Following its activation by MEK1/2, ERK1/2 regulates a variety of cellular processes, 

including differentiation, apoptosis, survival, proliferation, and motility.442 Inhibition of MEK by 

U0126 (29)443 or trametinib (30)444 leads to a rapid suppression of ERK1/2 phosphorylation 

(Figure 1-9). Compound 29 can exist in the (Z,Z) or (Z,E) isomer; however, the (Z,Z) isomer 

provides better MEK inhibition, as does the presence of electron donating amino groups at o-

positions of its phenyl groups.443 The iodo- and cyclopropyl groups of Compound 30 improve 

potency for cancer cell growth inhibitory activity over its lead compound JTP-70902 (31)444, 

while its methyl groups improve stability and its acetamide group improves solubility.444 ERK1/2 
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has been shown to suppress PGC-1α in melanoma cells.445 Additionally, in models of Parkinson 

disease ERK1/2 activation leads to phosphorylation of TFAM, impairing its ability to bind to 

mitochondrial DNA.446 MEK1/2 inhibitors, such as 29 and 30, have been developed for cancer 

chemotherapy. In vitro models of renal oxidative stress indicate that ERK1/2 is a mediator of 

oxidative damage in proximal tubule cells, and that its inhibition by 29 prevents oxidative 

damage.447 Our laboratory has shown that ERK1/2 activation increases after AKI and that pre-

treatment with the MEK1/2 inhibitor 30 rescues mitochondrial function and restores renal 

function in a mouse model of AKI.206 These data indicate that inhibition of suppressors of MB 

can induce MB and restore organ function following injury.  

Cyclic Nucleotide Modulators 

The cyclic nucleotides cGMP and cAMP are cellular second messengers that are 

generated in response to extracellular signals. They activate downstream kinases or are 

hydrolyzed by phosphodiesterases (PDE). NO increases cGMP synthesis by binding to a heme 

group on soluble guanylate cyclase (sGC), while cAMP is increased through activation of 

adenylate cyclase by the stimulatory G-protein Gαs. Because cyclic nucleotide generation is 

disrupted in multiple pathological states, cyclic nucleotide modulators are attractive targeted 

therapies for the induction of MB in various diseases. 

NO-cGMP-PKG Axis 

The NO-cGMP-PKG pathway can be modulated by: 1) nitric oxide (NO) donors, such as 

sodium nitroprusside (32), (+)S-nitroso-N-acetylpenicillamine (SNAP, 33),448 diethylamine 

NONOate (DEA-NONOate, 34),449 and diethylenetriamine-NONOate (DETA-NONOate, 35)449 

which increase cellular NO (Figure 8); 2)  sGC stimulators and activators, such as cinaciguat 

(36),450 riociguat (37),451 and BAY 41-2272 (38)452 which directly increase cGMP production 

(Figure 1-10); and 3) phosphodiesterase (PDE) inhibitors, such as zaprinast (39),453 sildenafil 

(40),454 udenafil (41),455 tadalafil (42),456 and vardenafil (43)457 which increase cGMP by 
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preventing its hydrolysis (Figure 1-10). Clinically, these compounds are used to induce 

vasodilation to treat hypertension or erectile dysfunction. Activation of this pathway has been 

shown to increase PGC-1α and stimulate MB both through the activation of PKG and 

nitrosylation of transcription factors to increase their binding to the PGC-1α promoter.458,459  

As their name implies, all NO donors have a group, usually a nitrate or a furoxan group, 

that can be liberated to form NO. Because the NO donating group is small, NO donors can be 

“fine-tuned” for multiple clinical uses and to slow the rate of NO release.460,461 However, because 

NO generation causes such a dramatic drop in blood pressure, NO donors are of limited clinical 

use. However, these compounds readily confirm the importance of NO for preventing metabolic 

derangements and cell death, particularly in skeletal muscle. In hypoxia, dietary nitrate (a natural 

NO donor) prevents PGC-1α suppression, leading to increases in fatty acid oxidation and 

respiration. Even under normoxic conditions, nitrate stimulates MB in a cGMP/PKG-dependent 

manner.462 Compound 33 has also been shown to induce MB in myoblasts and reduce the effects 

of caspase-dependent and –independent apoptotic molecules,463 and 34 also improves synaptic 

conduction in models of Alzheimer disease in a cGMP-dependent manner.464 sGC activators and 

stimulators increase the activity of sGC in the absence of NO. Stimulators such as 37 and 38 

increase sGC activity with a non-oxidized heme group, whereas activators increase sGC activity 

even if the heme prosthetic group is oxidized. Both classes of compounds have been approved for 

clinical use to treat pulmonary hypertension. Compound 38 was optimized for vasorelaxation 

through the addition of a 2-fluoro-phenyl group, a pyrazolo[3,4-b]pyridine ring, and a 

cyclopropyl group.452 Compound 37 was optimized to increase oral bioavailability and half-life, 

and to reduce clearance via amino and N-methylcarbamate substitutions on the pyrimidine 

group.451 On the other hand, sGC activators have shown greater utility beyond blood pressure 

control, likely due to their capacity to activate sGC even under high oxidative stress. Compound 

36 was identified using a high-throughput screen and was confirmed to displace the heme of sGC   
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by interacting with its YXSXR motif through carboxylic acid moieties.465 In pre-clinical studies, 

compounds 36-38 improve cardiac, renal, and neurological function across multiple disease 

models including ischemia reperfusion injury, sepsis, diabetes, and Alzheimer disease.466-470 

However, despite the efficacy of cGMP in promoting MB, few studies have examined the role of 

MB in these functional improvements. Compound 36 protects against myocardial infarction by 

increasing H2S, a known inducer of MB,471 suggesting that further investigation is warranted into 

the role of MB in these compounds’ protective effects.  

Inhibition of cGMP-selective PDEs prevents cGMP hydrolysis, promoting its 

accumulation in the cell and facilitating stimulation of MB. Compound 40 was designed from 39 

by mimicking the guanosine dipole moment, adding an ethoxy group to improve potency, and 

adding a piperazine sulfonamide to improve solubility, selectivity, and potency.472 However, both 

40 and 41 discriminate poorly between PDE5 and PDE6, leading to visual side effects.455 

Compound 42 has better selectivity for PDE5 over PDE6 with the addition of more electron 

donating groups; however, relative to 40 and 43, 42 is less selective for PDE11.456,473,474 Although 

these compounds have been extensively developed for treating pulmonary hypertension and 

erectile dysfunction, they also have been tested for treating other diseases as described below.  

Because cGMP-selective PDE inhibitors were designed to reduce blood pressure via 

increased vasodilation, it is reasonable that they have been tested for conditions characterized by 

endothelial dysfunction, such as diabetes. As expected, in models of diabetes, 40 improves 

endothelial function as measured by flow-mediated dilation.475,476 In addition to their effects on 

vascular reactivity, 40, 42, and 43 reduce plasma markers of diabetes, such as lipids, serum 

glucose, and HbA1c, and are associated with improvements in mitochondrial content.477-480 In 

adipocytes and hepatocytes, 40 enhances lipid oxidation and increases insulin tolerance and 

cellular morphology.477 cGMP-selective PDE inhibitors also reduce diabetic complications in 

other organs, such as the kidney and heart. In models of diabetic nephropathy, 40 reduces 
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microalbuminuria, a predictor of renal and cardiac dysfunction.478 Additionally, in diabetic mice, 

42 rescues the expression of cardiac cytoskeletal and redox proteins to improve cardiac 

morphology and function.480,481 

In addition to beneficial reductions in the development of diabetic cardiomyopathy, 

cGMP-selective PDE inhibitors also ameliorate non-diabetic cardiac dysfunction. In ischemic 

cardiomyopathy and myocardial infarction, 40, 42, and 43 increase survival and decrease infarct 

size by reducing cell death and preserving mitochondrial function.482-484 Compound 42 also 

prevents cardiac remodeling and hypertrophy, stabilizing contractility rather than allowing 

progression to heart failure and pulmonary edema.485 Similarly, in models of mitral regurgitation 

and doxorubicin toxicity, 40 inhibits cell death and preserves mitochondrial function by 

upregulating anti-apoptotic proteins and maintaining the mitochondrial membrane potential.486,487 

cAMP-PKA-CREB axis 

CREB regulates PGC-1α activity and expression to promote MB and is down-regulated 

in multiple disease states characterized by mitochondrial dysfunction. In Alzheimer disease, 

CREB phosphorylation is diminished due to impaired activation by PKA. This loss of activity 

leads to a downregulation of PGC-1α and an imbalance in tau protein, a driver of Alzheimer 

disease.488 A similar decrease in CREB activity has been observed in Huntington’s disease.489 

Additionally, ethanol decreases cellular cAMP, thereby reducing CREB activity to suppress 

PGC-1α and thereby exert its toxic effects.490 Taken together, these data indicate that activation 

of the cAMP-PKA-CREB signaling pathway can promote MB and protect against 

neurodegenerative diseases. 

The primary therapeutic approach for activating this signaling axis is with 

phosphodiesterase (PDE) inhibitors such as rolipram (44)491 and cilostazol (45)492 (Figure 1-11). 

Compound 44 inhibits PDE4, a cAMP-selective PDE, whereas 45 inhibits PDE3, a PDE capable 

of hydrolyzing both cAMP and cGMP; however, PDE3’s Vmax for cAMP is substantially higher   
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than that of cGMP. Compound 44’s selectivity arises in part from its optimized potency for PDE4 

and the unfavorable orientation of a conserved glutamate residue in other PDEs.493 In contrast, the 

lactam group of 45 engages in hydrogen bonding interactions with multiple receptor residues to 

promote PDE3 selectivity.494 Both 44 and 45 can increase PGC-1α in vitro, indicating that they 

induce MB,495 and both have shown potential for therapeutic use in pre-clinical disease models.  

However, in humans, 44’s narrow therapeutic window limits its application, whereas 45 is 

approved for clinical use in the treatment of diabetic vascular complications. 

Restoration of the cAMP-PKA-CREB pathway substantially reduces the effects of 

neurodegenerative diseases. In animal models of Huntington’s disease, 44 improves neuronal 

function, morphology, and survival and decreases neurological impairment.489,496 Compound 44 

also reduces synaptic conduction abnormalities associated with Alzheimer disease, improving 

cognition.497,498 These effects and increased CREB phosphorylation lasted beyond the cessation of 

treatment. In ischemic brain injury, 45 reduces neuroinflammation, reducing infarction size and 

decreasing apoptosis and free radical production.499,500 In models of Alzheimer disease, 45 

increases SIRT1 expression, reducing symptoms and improving cognitition.501 Furthermore, in a 

retrospective study, 45 improved cognition in human patients,502 suggesting that PDE3 inhibition 

holds promise for treating Alzheimer disease. Used clinically to treat claudication, the beneficial 

effects of 45 in models of diabetic cardiovascular disease are well studied. In models of limb 

ischemia, 45 increases angiogenesis by rescuing PPARγ, increasing angiogenic factors vascular 

endothelial growth factor (VEGF) and hepatocyte growth factor (HGF);503,504 this normalization 

of PPARγ also occurs in other tissues, such as the retina and the kidney.505 Compound 45 also 

prevents endothelial cell senescence by increasing cAMP, leading to SIRT1 activation. In the 

heart, 45 reduces oxidant-induced mitochondrial dysfunction and significantly reduces 

myocardial infarction size.506-508 Furthermore, 45 improves insulin sensitivity and reduces blood  
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glucose and HbA1c in diabetic mice and human subjects,509-511 as well as reducing the urinary 

excretion of albumin and renal inflammation, indicating that 45 improves diabetic nephropathy. 

Despite these promising data, controversy exists regarding use of cAMP-selective PDEs in 

chronic degenerative diseases of the liver and kidney. On the one hand, 45 improves hepatic 

function after ischemic insult by inducing MB;512 however, in models of lipotoxicity, increased 

cAMP acts synergistically to induce cell death despite concurrent stimulation of MB.513 

Additionally, despite the promising work in diabetic nephropathy described previously, we found 

that cAMP-selective PDE inhibitors do not induce MB in proximal tubule cells,514 suggesting 

they are poor therapeutic options for treating AKI. 

GPCR Ligands 

G protein-coupled receptors (GPCRs) are well characterized plasma membrane receptors 

that are the target of a substantial portion of currently available drugs. By coupling to G proteins, 

GPCRs can modulate cAMP, calcium, and NO and activate various kinases and signaling 

pathways. Additionally, different ligands of the same receptor can cause activation of distinct 

signaling programs, a phenomenon known as “functional selectivity” or “biased agonism.”515 By 

stabilizing different receptor conformations, different ligands can alter receptor interactions with 

G proteins, G protein-coupled receptor kinases (GRKs), and scaffolding proteins such as 

arrestins. One such scaffolding protein, GRK interacting protein 1 (GIT1), regulates MB in the 

heart, likely in an eNOS-dependent manner.516,517 Biased agonism allows for the development of 

ligands that selectively stimulate signaling pathways that lead to MB while inhibiting negative 

regulators of MB. Many GPCRs are modulated by endogenous molecules, a fact which has 

facilitated the development of potent and selective agonists and antagonists for various receptors. 

Despite the potential of GPCRs to activate pathways known to induce MB and the availability of 

clinically approved GPCR ligands, little investigation has occurred to explore the potential of 

such compounds to induce MB. 
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Cannabinoid-1 receptor 

Cannabinoid-1 receptor (CB1R) antagonists such as taranabant (46)518 and rimonobant 

(47)519 were studied for anorectic effects (Figure 1-12). Despite the lack of a cyclic linker, 46 

binds in a similar mode to 47; however, the amide group on 46 is able to engage in an extra 

hydrogen bonding interaction, leading to its enhanced affinity for the CB1R.518,520 By inhibiting 

CB1R activity in the brain, these compounds can suppress appetite and cause weight loss with 

concomitant improvements in plasma lipid profiles.  Both 46 and 47 were efficacious for 

inducing weight loss in wild type mice, mice fed a high fat diet, and ob/ob mice.521,522 Inhibition 

of CB1R by 47 or by genetic ablation induces MB in adipose tissue and MB in a cAMP- and 

eNOS-dependent manner, leading to decreases in body weight and fat content.521 Interestingly, 47 

increased mitochondrial energy production was not correlated with increased  mitochondrial mass 

in rat livers, indicating improved mitochondrial efficiency.523 Although both 46 and 47 were 

efficacious in animal models, investigation of 46 was halted in Phase III trials, and 46 was 

withdrawn from the market in the U.S. after initial approval as an anti-obesity drug. In humans, 

47 reduced food intake and increased energy consumption to promote weight loss but caused 

serious side effects such as suicidal ideation and severe depression.524 525 
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Figure 1-12. Cannabinoid-1 Receptor antagonists. Adapted from Cameron R.B. et. al. 
Development of Therapeutics That Induce Mitochondrial Biogenesis for the Treatment of Acute 
and Chronic Degenerative Diseases. J. Med. Chem. 2016. 
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5-Hydroxytryptamine receptors 

Endogenous serotonin binds to the 5-hydroxytryptamine (5-HT) class of receptors (48, 

Figure 1-13)526. 5-HT receptors are primarily GPCRs that have been identified as therapeutic 

targets for neuropsychiatric, neurologic, and cardiac diseases. The synthetic ligand alpha-methyl-

5-hydroxytryptamine (49)527 possesses an extra methyl group that prevents its metabolism by 

monoamine oxidase.528 The 5-HT2 receptor agonist DOI (50)529 has enhanced selectivity due to its 

primary amine, with the iodo-group  adding to its potency.530 Much work has been done to 

identify and characterize the pharmacophore of 5-HT2C receptor agonists (e.g., CP809101, 51)531 

and antagonists (e.g. SB242084, 52)532 and optimize their selectivity.530-532 5-HT2C receptor 

agonists stabilize the TM6 domain of the receptor through its aromatic group, whereas 

antagonists interact with Asn331, Val354, and Ser334 through a positively ionizable group.533  

In addition to direct 5-HT receptor antagonists, serotonin reuptake inhibitors such as fluoxetine 

(53)534 prevent the uptake and degradation of 48 and prolong its actions at its receptors. The p-

trifluoromethyl group of 53 confers selectivity for the serotonin reuptake transporter by binding 

to I172 in its transmembrane domain.535,536 Treating rat pups with 53 improves mitochondrial 

membrane potential, respiratory capacity, and antioxidant defense in the heart, implicating 48 in 

mitochondrial health during development.537 

Our laboratory identified multiple ligands that induce MB through various 5-HT 

receptors. In RPTC, we have shown that the non-selective 5-HT receptor agonist 49 induces 

MB.538 The 5-HT2 receptor agonist 50 increased cellular respiration in vitro and improved 

recovery from oxidant injury by tert-butyl hydrogen peroxide (TBHP); interestingly, induction of 

MB did not reduce initial injury by TBHP.539 The 5-HT2C selective ligands 51 and 52 induce MB 

in vitro and in naïve mice; interestingly, siRNA studies and work in knockout mice indicate that 

the ligands exert these effects through the 5-HT2A receptor.540  
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In contrast to 5-HT2 receptors, the 5-HT1F receptor has few selective ligands-namely, 

LY334370 (54) and LY344864 (55) and limited data regarding its pharmacophore. Nevertheless, 

the selective 5-HT1F agonists 54 and 55 induced MB in vitro, and 55 also improved recovery from 

ischemia-reperfusion-induced AKI in vivo.538 Additionally, preliminary data suggest that 55 

stimulates MB through the Gβγ-dependent activation of Akt and eNOS.541 These data indicate 

that the induction of MB by 5-HT agonists could be clinically useful for treating AKI and other 

acute organ injuries as they effectively promote recovery and regeneration even after initial 

injury. 

Beta adrenergic receptors 

The beta adrenergic receptor family is activated by endogenous stress hormones 

epinephrine (56)542 and norepinephrine (57, Figure 1-14)542 and the family comprises three 

receptors. First, the beta-1 adrenergic receptor, primarily expressed in the heart, is targeted by 

drugs that affect cardiac contractility and heart rate. The beta-2 adrenergic receptor (β2AR), 

which is ubiquitously expressed, is a target of bronchodilators to treat asthma and COPD. The 

beta-3 adrenergic receptor, which is primarily expressed in adipose tissue and the urinary bladder 

and is targeted to treat overactive bladder.543  

Beta-adrenergic agonists contain distinct structural features, specifically a catechol or 

phenethanolamine core, whereas antagonists have a 3-aminophenoxypropan-2-ol core. However, 

while beta-adrenergic agonists have been extensively studied to optimize pharmacodynamics and 

pharmacokinetic parameters, there are few studies relating structural features to the induction of 

MB. Compounds 56, 57, and the non-selective beta adrenergic receptor agonist isoproterenol 

(58)544 increase PGC-1α in brown adipose of  naïve mice and in models of obesity in a cAMP- 

and p62-dependent manner.545 Interestingly, in models of cardiac dysfunction, beta-1 adrenergic 

receptor stimulation by dobutamine (59)546 increases cell death and inflammation,547 but its  
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Figure 1-14. Beta adrenergic receptor modulators tested for the induction of MB. Adapted from 
Cameron R.B. et. al. Development of Therapeutics That Induce Mitochondrial Biogenesis for the 
Treatment of Acute and Chronic Degenerative Diseases. J. Med. Chem. 2016. 
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blockade by the beta-1 selective antagonist metoprolol (60)548 enhances PGC-1α activation and 

improves cardiac metabolism and function.549,550  
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Beta-2 Adrenergic Receptors and Mitochondrial Biogenesis 

Our laboratory has studied β2AR selective agonists in renal MB, and the following 

section will discuss the signaling of the β2AR and its known role in the induction of MB. 

The β2AR is a well-studied and well-drugged GPCR. The β2AR is ubiquitously expressed 

and is activated by its endogenous ligand, epinephrine, to induce smooth muscle relaxation in the 

vasculature and airways,551,552 increased glycogenolysis in the liver,553 inhibition of histamine-

release by mast cells,554 and increased insulin secretion from the pancreas.555 More relevant to the 

kidney, the β2AR regulates systemic blood pressure and solute reabsorption by increasing renin 

secretion,556 thereby activating the renin-angiotensin-aldosterone system.  

The β2AR canonically couples to Gαs, leading to an increased accumulation of cAMP 

and subsequent activation of PKA, Epac, and CREB.557 However, the β2AR has also been shown 

to couple to Gαi, which inhibits adenylate cyclase and releases the Gβγ heterodimer, and 

arrestins, which act as scaffolding for other effector molecules. Phosphorylation of the C-terminal 

tail of the receptor by G protein-coupled receptor kinases (GRKs) and other kinases such as PKA 

altered coupling of these effectors. The phosphorylation of the receptor by these kinases can lead 

to a switch from Gαs to Gαi,558 thereby limiting the duration and magnitude of cAMP-dependent 

signaling, or it can lead to the recruitment of β-arrestin,559 which modulates desensitization, 

receptor internalization, or its own signaling program. 

The coupling of these effectors depends on the conformation of the receptor, which, in 

turn, is dependent on the structure of the bound ligand. Thus, different ligands binding to the 

same receptor, either at allosteric or orthosteric sites, can cause differences in downstream 

signaling.560 This phenomenon is known as “functional selectivity” or “biased agonism.” β2AR 

agonists have been shown to be G protein biased (that is, selectively activating G protein-

depending signaling cascades) and arrestin biased (that is, selectively activating an arrestin 
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signaling program).557 In addition to effects on effector coupling to the receptor, biased ligands 

can also impact the signaling properties of the effector molecules. For example, different ligands 

of the calcitonin receptor altered the conformation of the receptor-G protein complex,561 leading 

to differences in cAMP accumulation. A similar phenomenon has been observed for arrestins,562 

with different ligands leading to distinct conformational signatures that inform function.  

A phenotypic screening for compounds that induce MB identified formoterol as a potent 

and efficacious inducer of MB in RPTC. Because the β2AR is so widely drugged, other β2AR 

agonists were screened for their ability to induce MB in RPTC. In particular, formoterol (61),563 

fenoterol (62),564 and procaterol (63)565  induced MB in vitro at pharmacologically relevant 

doses.566,567. However, other β2AR agonists such as clenbuterol (64)568 and isoetharine (65)569did 

not induce MB in vitro,566 suggesting that ligand-directed signaling can be exploited to develop 

more effective mitochondrial biogenic β2AR agonists.  

Beta adrenergic signaling activates PGC-1α and induces MB in multiple tissues. In 

Leydig cells, stress increased steroid hormone production,570 a process involving mitochondrial 

enzymes. This was associated with increased mitochondrial content and the expression of PGC-1 

proteins through cAMP/PKA/CREB, NO/cGMP, and beta adrenergic receptor signaling. In 

mouse skeletal muscle and in human subjects, exercise induced MB in a beta adrenergic receptor-

dependent manner.571,572 While isoproterenol did not affect MB in human skeletal muscle,573 in 

mice the effects on PGC-1α and MB were mimicked by treatment with clenbuterol.571 Both 

exercise and clenbuterol specifically increased the b and c isoforms of PGC-1α in skeletal 

muscle,571 while other environmental inducers (fasting and cold) caused increases in tissue-

specific expression patterns of PGC-1α isoforms.574 The tissue-specific changes in PGC-1α 

isoforms suggest differences in signaling for MB across cell types that would explain differences 

in β2AR agonist efficacy for MB. Consistent with this hypothesis, in rats clenbuterol activated 
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p38 MAP kinase to induce MB in fat but not skeletal muscle, despite activation of CREB in both 

tissues.575 

 Formoterol (61) has been confirmed to induce MB in vivo in naïve mice as well as in 

mice subjected to AKI,231 and this was associated with improvements in renal function, indicating 

that formoterol has therapeutic promise for treating AKI. Because both MB-inducing and non-

MB-inducing β2AR agonists increased cAMP, we suggest that the classical Gαs-signaling 

pathway is not responsible for β2AR-induced MB in the kidney. In addition to its renal effects, 

formoterol inducds MB in multiple other tissues, including the heart and skeletal muscle.567,576 

Together, these data indicate that certain β2AR agonists such as formoterol can be used to treat 

multiple diseases and improve mitochondrial function and ameliorate symptoms. 

Previous studies have explored β2AR activation as a therapeutic target for AKI. In RPTC 

cell lines primarily expressing the β2AR, isoproterenol stimulated proliferation in a cAMP-

dependent manner,577 which would be beneficial following RPTC loss in AKI. Following injury 

by shigatoxin, the β2AR  agonist terbutaline inhibited caspases to prevent apoptosis.578 

Furthermore, overexpression of the β2AR reduced injury and promotes recovery from septic 

AKI,579-581 while blockade of the β2AR worsened septic AKI.582,583 Despite these findings, 

excessive β2AR activation reduced creatinine clearance in rats.584 Together, these studies indicate 

that selective and limited activation of the β2AR is a viable therapeutic strategy for AKI. 

However, the aforementioned studies focused on regulation of proliferation, inflammation and 

apoptosis, particularly in settings of β2AR overexpression. 

Our laboratory sought to determine the role of β2AR activation in a more physiologically 

relevant model of AKI. Mice subjected to bilateral renal ischemia/reperfusion injury developed 

AKI with peak injury at 24 h and a persistent loss of renal function at 144 h.207,231 These mice also 

exhibited persistent suppression of MB and oxidative phosphorylation. Administration of 
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formoterol after development of AKI improved renal function and rescued mitochondrial protein 

expression at 144 h.231 However, because the β2AR is ubiquitously expressed, and because 

various cell types mediate the pathogenesis of AKI,194 it was unclear through which cell type(s) 

formoterol exerts its effects. Furthermore, as the β2AR activates numerous signaling pathways, 

and as not all β2AR agonists induced MB, the mechanism by which formoterol induced MB 

remained unclear. 

Our previous studies showed that formoterol induced MB in primary cultures of RPTC,567 

while the selective β2AR agonist clenbuterol did not.566 Therefore, we chose clenbuterol as a 

pharmacologic probe for β2AR signaling that does not induce MB in RPTC. Furthermore, in vivo, 

RPTC injury was sufficient for the development of AKI.178 Therefore, we sought to study the 

effects of formoterol on RPTC and how these effects impact formoterol-induced recovery from 

AKI. We hypothesized that formoterol accelerates recovery of renal function by the induction of 

MB in RPTC and that formoterol does so by activating a signaling pathway distinct from β2AR 

agonists that do not induce MB. We proposed to test this hypothesis through three specific aims: 

1. Identify differences in signaling between formoterol and clenbuterol 

2. Identify the signaling pathway by which formoterol induces MB in RPTC 

3. Determine the role of RPTC in the induction of MB and recovery of renal function by 

formoterol following AKI 
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CHAPTER 2  

STRUCTURAL AND PHARMACOLOGICAL BASIS FOR THE INDUCTION OF 

MITOCHONDRIAL BIOGENESIS BY FORMOTEROL BUT NOT CLENBUTEROL  
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Introduction 

Mitochondria play numerous roles in cellular homeostasis, including energy metabolism, 

synthesis of key biomolecules, regulation of reactive oxygen species, and apoptosis.236 However, 

in disease states, dysfunctional mitochondria lead to metabolic defects and subsequent 

derangements in survival,585 proliferation,586 and differentiation. 261-263,587 One therapeutic strategy 

to treat mitochondrial dysfunction is the induction of MB.235,588 By generating new mitochondria, 

MB increases cellular respiration and ATP, reduces pathologic oxidative stress, and promotes cell 

repair and regeneration.247,589 

A number of signaling molecules have been shown to induce MB, including transcription 

factors, kinases, cyclic nucleotides, and G protein-coupled receptors (GPCRs).588 In particular, 

GPCRs are attractive targets for the identification of therapeutics that induce MB because GPCRs 

represent numerous clinically approved receptor agonists.590  

Previous work in our laboratory identified formoterol, a β2AR agonist, as a potent and 

efficacious inducer of MB in vitro and in vivo.567 Furthermore, in a mouse model of bilateral 

ischemic reperfusion-induced AKI formoterol stimulated MB with increased mitochondrial 

proteins and accelerated recovery of renal function.231 Based on the success of formoterol, other 

β2AR agonists were screened for induction of MB. Although several agonists were able to induce 

MB similar to formoterol, several other agonists, including clenbuterol, were unable to induce 

MB at any concentration.566 These data suggest that a subset of biogenic β2AR agonists 

modulates distinct signaling pathways from non-biogenic β2AR agonists to induce MB. 

Because both formoterol and clenbuterol, a non MB inducer, are selective β2AR 

agonists,591 we sought to identify the differences in signaling between the two agonists in primary 

cultures of RPTC and the signaling pathway responsible for formoterol-induced MB. 

Furthermore, we explored their chemical differences to identify key functional groups and 

structural differences that result in their differing abilities to induce MB. We found that 
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formoterol, but not clenbuterol, activates the Gβγ-Akt-eNOS-sGC signaling pathway and that this 

pathway is necessary for the transcriptional and functional changes associated with formoterol-

induced MB.  Molecular modeling showed that formoterol stretches further across the binding 

pocket than clenbuterol, allowing for simultaneous interactions with TM3, TM5, and ECL2. 

Additionally, the methoxyphenyl and formamide groups displayed distinct interaction fingerprints 

with the β2AR that may lead to the activation of Gβγ-dependent signaling.  

Results 

Both formoterol and clenbuterol increase cAMP accumulation. The β2AR couples to the 

stimulatory G protein Gαs and the inhibitory G-protein Gαi, both of which affect the activity of 

adenylate cyclase and therefore the accumulation of cAMP. To assess the effects of formoterol 

and clenbuterol on cAMP accumulation, RPTC were co-treated for 1 h with  30 nM formoterol or 

30 nM clenbuterol in the presence of 100 μM IBMX, a phosphodiesterase inhibitor to prevent 

cyclic nucleotide degradation. These concentrations ensure selective activation of the β2AR while 

also exerting the previously observed effects on MB. Maximal cAMP accumulation occurs at 1 h 

(data not shown).566 Both formoterol and clenbuterol increased cAMP relative to vehicle controls 

(Figure 2-1A). Because there was no difference in cAMP accumulation between the two 

compounds, and previous work showed that cAMP does not produce MB in RPTC, we concluded 

that β2AR is functioning normally in RPTC with respect to cAMP production but that cAMP is 

not necessary for β2AR-mediated MB in RPTC. 

  



64 

0 .5
%

 D
M

S O

3 0  n
M

 F
o rm

o te
ro

l

3 0  n
M

 C
le

n b u te
ro

l
0

1

2

3

R
e

la
ti

v
e

 c
A

M
P

 N
o

rm
a

li
ze

d
 t

o
D

M
S

O
 C

o
n

tr
o

l

*

*

A

0 .5
%

 D
M

S O

3 0  n
M

 F
o rm

o te
ro

l

3 0  n
M

 C
le

n b u te
ro

l
0 .0

0 .5

1 .0

1 .5

2 .0

2 .5

R
e

la
ti

v
e

 c
G

M
P

 N
o

rm
a

li
ze

d
 t

o
D

M
S

O
 C

o
n

tr
o

l *

B

 
Figure 2-1. Formoterol and clenbuterol increase cAMP (A, N=3) but only formoterol increases 
cGMP (B, N=6) in RPTC. Levels of cAMP/cGMP were measured 1 h following treatment with 
formoterol or clenbuterol. Mean + SEM. *p<0.05, Wilcoxon signed rank test. 
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Formoterol, but not clenbuterol, increases Akt phosphorylation in a Gβγ-PI3K-dependent 

manner. In addition to their roles in the modulation of cAMP, both Gαs and Gαi release the Gβγ 

heterodimer. To assess the role of Gβγ, we measured Akt phosphorylation 30 min following 

treatment with formoterol or clenbuterol. This time point represents the earliest time point at 

which elevated Akt phosphorylation could be detected (data not shown). Formoterol increased 

Akt phosphorylation while clenbuterol did not (Figure 2-2). Pretreatment with the Gβγ inhibitor 

gallein592 attenuated formoterol-induced Akt phosphorylation (Figure 2-2A), as did pretreatment 

with the phosphatidylinositol-4,5-biphosphate 3-kinase (PI3K) inhibitor LY294002 (Figure 

2-2B).593 These data indicate that formoterol, but not clenbuterol, increases Akt phosphorylation 

in a Gβγ-PI3K-dependent manner. 
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Figure 2-2. Formoterol, but not clenbuterol, activates Akt in a Gβγ-PI3K-dependent manner in 
RPTC. pAkt was measured following 30 min of formoterol (Form) or clenbuterol (Clen) in the 
presence and absence of the Gβγ inhibitor gallein (Gal)(A, N=4) or the PI3K inhibitor LY294002 
(LY)(B, N=4-5). Mean + SEM. *p<0.05 vs. DMSO, #p<0.05 vs. formoterol, one-way ANOVA 
with Sidak’s multiple comparison test. 
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Formoterol, but not clenbuterol, increases eNOS phosphorylation in a Gβγ-Akt-dependent 

manner. Among the downstream targets of Akt is endothelial nitric oxide synthase (eNOS).594 

Upon phosphorylation at S1177, eNOS is activated and increases NO generation. Because NO 

and NO-dependent signaling have been implicated in MB, we treated RPTC with formoterol and 

clenbuterol for 1 h to determine differences in eNOS phosphorylation. Formoterol increased 

eNOS phosphorylation relative to vehicle control, while clenbuterol did not affect eNOS 

phosphorylation (Figure 2-3A). 

To determine the role of the Gβγ-Akt pathway in formoterol-induced eNOS 

phosphorylation, RPTC were pretreated with the Gβγ inhibitor gallein or the Akt inhibitor 

MK2206 followed by treatment with formoterol for 1 h. The allosteric Akt inhibitor MK2206 was 

used because it decreases Akt phosphorylation, thereby confirming that sufficient Akt inhibition 

had occurred.595 Both gallein and MK2206 attenuated formoterol-induced eNOS phosphorylation 

(Figure 2-3B), indicating that formoterol, but not clenbuterol, activates the Gβγ-Akt-eNOS 

signaling pathway. 
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Figure 2-3. Formoterol (Form), but not clenbuterol (Clen), activates eNOS in a Gβγ- and Akt-
dependent manner in RPTC. (A) p-eNOS was measured following 1 h of formoterol or 
clenbuterol. N=5-6. (B) Phosphorylation of eNOS was measured following 30 min of treatment 
with formoterol in the presence or absence of the Gβγ inhibitor gallein (Gal) or the Akt inhibitor 
MK2206 (MK). N=7-10. Mean + SEM. *p<0.05 vs. DMSO, #p<0.05 vs formoterol, one-way 
ANOVA with Sidak’s multiple comparison test. 
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Formoterol, but not clenbuterol, increases cGMP accumulation. One of the major targets of NO is 

soluble guanylate cyclase (sGC). To examine any differences in cGMP accumulation, RPTC were 

treated with formoterol or clenbuterol in the presence of 100 μM IBMX for 1 h, and cGMP was 

determined by ELISA. Formoterol, but not clenbuterol, increased levels of cGMP relative to 

vehicle control (Figure 2-3B).  

Formoterol increases maximal respiration in a Gβγ-Akt-NOS-sGC-dependent manner. Having 

shown that formoterol but not clenbuterol activates the Gβγ-Akt-eNOS-sGC pathway, we 

assessed the role of this pathway in formoterol-induced increases in FCCP-OCR, a measure of 

MB. RPTC were pretreated with the Gβγ-inhibitor gallein, the Akt inhibitor GDC0068, the NOS 

inhibitor L-NAME, and the sGC inhibitor ODQ. The orthosteric Akt inhibitor GDC0068 was 

used due to its greater potency and lack of isoform selectivity.596 RPTC were then treated with 

formoterol or clenbuterol for 24 h, and FCCP-OCR consumption was measured. This time point 

was chosen based on previous studies identifying that formoterol induces MB at 24 h.566,567 

Formoterol alone increased FCCP-OCR, in agreement with previous studies (Figure 2-4A).566,567 

Pretreatment with gallein, GDC0068, L-NAME, and ODQ attenuated formoterol-induced 

increases in FCCP-OCR, indicating that formoterol-induced MB occurs in a Gβγ-Akt-NOS-sGC-

dependent manner.  Clenbuterol had no effect on FCCP-OCR. 

Formoterol, but not clenbuterol, increases mRNA expression of PGC-1α and NDUFS1 in a Gβγ-

Akt-NOS-sGC-dependent manner. MB requires the integrated transcription of multiple genes. To 

assess the effects of the Gβγ-Akt-eNOS-sGC pathway on the expression of genes associated with 

MB, RPTC were pretreated with gallein, GDC0068, L-NAME, and ODQ, followed by treatment 

with formoterol or clenbuterol for 24 h. RNA expression of PGC-1α and NADH-ubiquinone 

oxidoreductase core subunit S1 (NDUFS1) was assessed using RT-qPCR. Formoterol alone 

caused a small but significant increase in PGC-1α and NDUFS1 (Figure 2-4B, C), which was 
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attenuated by pretreatment with gallein, GDC0068, L-NAME, and ODQ. These data indicate that 

formoterol also increases transcriptional markers of MB in a Gβγ-Akt-NOS-sGC-dependent 

manner. Importantly, clenbuterol did not increase the mRNA expression of PGC-1α or NDUFS1. 

These data were further confirmed by measuring mtDNA copy number, where formoterol, but not 

clenbuterol, increased mtDNA copy number at 24 h (Figure 2-5). 
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Figure 2-4. Formoterol, but not clenbuterol, induces MB in a Gβγ-Akt-NOS-sGC-dependent 
manner. (A) FCCP-OCR (N=3-9), (B) PGC1α mRNA (N=3-10), and (C) NDUFS1 mRNA (N=4-
10) expression was measured 24 h following treatment with formoterol in the presence or absence 
of the Gβγ inhibitor gallein, the Akt inhibitor GDC0068, the NOS inhibitor L-NAME, and the 
sGC inhibitor ODQ. Mean + SEM. *p<0.05 vs DMSO, #p<0.05 vs. Formoterol, one-way 
ANOVA with Sidak’s multiple comparison test. 
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Figure 2-5. Formoterol, but not clenbuterol, increases mtDNA copy number. RPTC were treated 
with 30 nM formoterol or 30 nM clenbuterol for 24 h. DNA was isolated, and copy number of 
ND6 was measured by qPCR. N=4, *-p<0.05, Mann-Whitney test. 
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Formoterol and clenbuterol have distinct interaction fingerprints with the β2AR. Due to the 

differences in signaling described above, we investigated differences in interactions of β2AR 

agonists with the receptor. In addition to formoterol and clenbuterol, other ligands with known 

efficacy for MB were considered, including fenoterol, ritodrine, and terbutaline.566 Ligands were 

docked to three inactive structures of the β2AR (3NYA, 3NY8, 5D5B) and three active structures 

of the β2AR (4LDE, 4LDL, 4LDO).  Due to its longer methoxyphenyl group, formoterol was able 

to extend across the binding pocket to be in proximity to TM2, TM3, ECL2, and TM5 compared 

to clenbuterol (Figure 2-6A). 

  To investigate the interactions of formoterol and clenbuterol with the β2AR with respect 

to distinct structural features, functional groups of the ligands were combined to form 11 

structural features F1-F11 (Figure 2-7), with the catecholamine pharmacophore represented by 

F1-F7 and the tail group represented by F8-F11. For each conformation generated by the docking 

simulations, all interactions between the receptor and the ligand were tabulated. Interactions 

between the ligand and each receptor amino acid were separated by residue, ligand feature, and 

type [i.e., contact (C), arene (R), hydrogen bond donor (D), hydrogen bond acceptor (A), and 

ionic (I)]. Interactions at each of the 11 structural features were added for all generated 

conformations. To identify interactions specific to biogenic β2AR agonists, the interactions of the 

compound with less efficacy for MB were subtracted from those of the compound with greater 

efficacy for MB (e.g., ΣInteractionsFormoterol-ΣInteractionsClenbuterol). The resulting values were used 

to generate a heatmap for the interactions between the receptor and specific structural features of 

the ligand. Interaction pairs with more positive values (blue) indicated a greater importance for 

β2AR-mediated MB (Figure 2-6B).  Interaction pairs with more negative values (orange) indicate 

importance for stabilizing non-mitochondrially biogenic conformations of the β2AR. This  
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Figure 2-6. Formoterol and clenbuterol have distinct interaction fingerprints with the β2AR. A. 
Representative poses of formoterol and clenbuterol in the 4LDO crystal structure. Formoterol’s 
methoxyphenyl group (top) allows it to extend further across the binding pocket than clenbuterol 
(bottom), allowing formoterol to simultaneously interact with TM3, TM5, and ECL2. B. 
Formoterol and clenbuterol were docked to inactive structures (3NYA, 3NY8, 5D5B) and active 
structures (4LDE, 4LDL, 4LDO) of the β2AR. From the top 30 poses, ligand interactions were 
matched with structural features F1-F11 and added for each crystal structure. More negative 
(orange) values correspond to a greater number of interactions with clenbuterol, while more 
positive (blue) values correspond to a greater number of interactions with formoterol. Interactions 
are displayed as Residue-interaction type (D- hydrogen bond donor, DD- strong hydrogen bond 
donor, I- ionic, II- strong ionic, A- hydrogen bond acceptor, AA- strong hydrogen bond acceptor, 
C- contact, R- arene, RR- strong arene). Residues followed by a b (e.g., G90b) indicate an 
interaction with the peptide backbone of the corresponding residue. 
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Figure 2-7. Dividing β2AR agonists into chemical groups reveals distinct structural features. 
Formoterol, clenbuterol, (R,R’)-fenoterol, (S,R’)-fenoterol, ritodrine, and terbutaline were divided 
into 11 chemical features (F1-F11). Ph-phenyl group. 
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analysis enables the identification of features of both the ligand and the receptor that distinguish 

biogenic and non-biogenic β2AR agonists. 

As expected for two β2AR agonists with a shared pharmacophore, most of the 

interactions showed only minor preference for formoterol or clenbuterol, with several interactions 

occurring with the same frequency (Figure 2-6B). Interactions between the backbone of C191 and 

F1 were more common for formoterol than clenbuterol, while the reverse was true for F2. 

Interestingly, interactions with both V114 and F193 were more common for clenbuterol over 

features F3-F10; however, at F11, interactions with V114 and F193 more commonly occurred 

with formoterol than clenbuterol. These data reveal a common pharmacophore and marked 

differences in the binding of formoterol and clenbuterol to the β2AR crystal structure and suggest 

that interactions between distinct β2AR residues and distinct ligand structural features must occur 

to activate the Gβγ-Akt-eNOS-sGC pathway and induce MB. 

To confirm the importance of the interactions identified above, we repeated the ligand 

interaction analysis for other ligands previously tested for MB. Fenoterol is a β2AR agonist that 

induces MB in a manner similar to formoterol.566 The (R,R’) enantiomer of fenoterol is a Gαs-

biased ligand; however, the (S,R’) enantiomer activates both Gαs and Gαi, potentially enabling it 

to activate Gβγ-dependent signaling pathways like formoterol.597 Comparing (S,R’)-fenoterol to 

(R,R’)-fenoterol showed that the former was more likely to interact with V114 and F193 at F11 

and engage in hydrogen bonding interactions with S203, S207, and the backbone of C191 (Figure 

2-8A). Because these differences are similar to those between formoterol and clenbuterol, these 

data suggest that the (S,R’) enantiomer of fenoterol with a greater capacity to activate Gβγ-

dependent signaling is more capable of inducing MB than the Gαs-biased (R,R’) enantiomer. 

Comparing (S,R’)-fenoterol to clenbuterol showed a similar interaction profile to formoterol vs. 

clenbuterol (Figure 2-8B). Interactions with F193 and V114 at F11 were again more common  
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Figure 2-8. Biogenic and non-biogenic ligands have distinct interaction fingerprints with the 
β2AR. (S,R’)-Fenoterol, (R,R’)-fenoterol, ritodrine, terbutaline, and clenbuterol were docked to 
inactive structures (3NYA, 3NY8, 5D5B) and active structures (4LDE, 4LDL, 4LDO) of the 
β2AR. From the top 30 poses, ligand interactions were matched with structural features F1-F11 
and added for each crystal structure. A. The non-G protein-biased (S,R’)-fenoterol was compared 
to the Gαs-biased (R,R’)-fenoterol. B. The biogenic (S,R’)-fenoterol was compared to the non-
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biogenic clenbuterol. C. The biogenic (S,R’)-fenoterol was compared to the partially biogenic 
ritodrine. D. The partially biogenic terbutaline was compared to the non-biogenic clenbuterol. 
Interactions are displayed as Residue-interaction type (D- hydrogen bond donor, DD- strong 
hydrogen bond donor, I- ionic, II- strong ionic, A- hydrogen bond acceptor, AA- strong hydrogen 
bond acceptor, C- contact, R- arene, RR- strong arene). Residues followed by a b (e.g., G90b) 
indicate an interaction with the peptide backbone of the corresponding residue. 
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with (S,R’)-fenoterol, although interactions with V114 had a greater tendency to be aromatic than 

seen with formoterol. (S,R’)-fenoterol also had more hydrogen bonding interactions at F1, 

particularly with S207, S203, and the backbone of C191. 

To confirm the importance of interactions at F11, we compared (S,R’)-fenoterol to 

ritodrine (Figure 2-8C). Ritodrine can induce MB at low but not high concentrations and is 

structurally similar to fenoterol with identical features F3, F4, F5, F7, F8, F10, and F11 (that is, 

differing only at F1, F2, F6, and F9).566 At F11, (S,R’)-fenoterol interacted more frequently with 

F193 than ritodrine. Because these ligands share a common feature F11 but differ in biogenic 

status, the interaction of F193 with F11 is important for β2AR-mediated MB. 

To confirm the importance of interactions at F1, we compared terbutaline to clenbuterol 

(Figure 2-8D). Like ritodrine, terbutaline induces MB at low but not high concentrations.566 

Terbutaline is also structurally similar to clenbuterol, sharing identical features F3-F11 (that is, 

differing only at F1 and F2). At feature F1, terbutaline interacted more frequently with S203, 

S207, and N293. When considered with the interaction profiles of formoterol and (S,R’)-

fenoterol, these data suggest that interactions with S203 and S207 at feature F1 are important for 

β2AR-mediated MB. Interestingly, terbutaline also interacted more frequently with F193 at F8, 

F19, F10, and F11 than clenbuterol, suggesting that the 2,5-hydroxyl substituted ring of 

terbutaline and fenoterol facilitates interactions with F193 at features F8-F11. 

Discussion 

MB plays a vital role in regulating cellular metabolism, differentiation, and repair, and its 

pharmacologic induction has great therapeutic potential in a variety of disease states.235,588 Here, 

we show that in RPTC, formoterol, but not clenbuterol, activates the Gβγ-Akt-eNOS-sGC 

signaling pathway and that this pathway is necessary for formoterol-induced MB (Figure 2-9). 

Importantly, these experiments were performed in metabolically competent primary cells that can 

better mirror  
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Figure 2-9. Formoterol, but not clenbuterol, induces MB in a Gβγ-Akt-NOS-sGC-dependent 
manner despite increased cAMP accumulation. Both formoterol and clenbuterol activate Gαs-
dependent signaling to activate adenylate cyclase (AC) and promote cAMP accumulation. 
However, only formoterol activates the Gβγ-PI3K-Akt-eNOS-sGC pathway, and it is this 
pathway that is necessary for β2AR-induced MB in RPTC. 
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in vivo signaling and metabolism compared to immortalized cell lines. Therefore, these data 

suggest a novel role of Gβγ-dependent signaling for GPCR-mediated MB in other non-renal 

tissues. 

The Gβγ heterodimer is released from heterotrimeric G proteins following GPCR 

activation. Gβγ is primarily activated by the Gi/o family of G proteins; however, other G protein 

families, including Gs, release Gβγ.598 Gβγ heterodimers have varied effects on signal 

transduction, including PI3K activation, adenylate cyclase stimulation, adenylate cyclase 

inhibition, MAPK activation, and GRK activation, depending on their constituent Gβ and Gγ 

subunits.599 GPR43 was shown to signal through Gβγ and its activation by acetate induced MB,600 

but the lack of inhibitor studies meant that a causal link between Gβγ and MB was not 

established. By pretreating cells with the Gβγ inhibitor gallein, we identified that Gβγ-dependent 

signaling is a key pathway for GPCR-mediated MB. 

It is important to note that the present study does not determine whether or not Gβγ 

directly activates the PI3K-Akt pathway. In addition to the activation of the Ras-PI3K-Akt 

pathway, Gβγ can also facilitate GRK2 recruitment to the receptor and lead to arrestin-dependent 

signaling. Arrestins are also capable of activating Akt in a PI3K-Src-dependent mechanism.601 

However, given that the arrestin-biased agonist isoetharine is unable to induce MB,566 this 

mechanism is unlikely. 

Prolonged activation of Akt enhances cellular survival but can lead to a decrease in 

mitochondrial function.602-604 In contrast, acute activation of Akt is responsible for the effects of 

multiple inducers of MB, including (-)-epicatechin and erythropoietin.326,605 For such compounds, 

the role of Akt seems to be limited to the phosphorylation of eNOS, leading to NO generation. 

Nitric oxide is a potent inducer of MB in vitro and in vivo through the activation of sGC and 

subsequent cGMP accumulation.606 However, because NO is a free radical, sustained NOS 
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activation can increase oxidative and proteotoxic stress and can inhibit complex I of the electron 

transport chain.607,608 Thus, both the signaling cascade activated by a compound and the duration 

of that signaling contribute to the therapeutic potential of inducers of MB. 

Interestingly, there are conflicting data regarding the role of Gβγ in acute organ injury, 

which is frequently characterized by mitochondrial dysfunction. Inhibition of Gβγ by gallein 

inhibits RPTC proliferation and thereby exacerbates ischemic AKI.609 In contrast, gallein also 

prevents inflammatory cell infiltration,592 leading to enhanced recovery following ischemic 

AKI.610 Although neither study assessed mitochondrial activity, both regeneration following 

injury and inflammatory cell chemotaxis are enhanced by increases in mitochondrial 

activity.230,611 

The β2AR is a prototypical class A GPCR and has been extensively studied for its role in 

cellular signaling and the structural features that enable such signaling. This study is the first to 

examine the receptor-ligand interactions that distinguish mitochondrial biogenic β2AR agonists 

from non-biogenic β2AR agonists. As expected for two agonists of the β2AR, formoterol and 

clenbuterol have a common pharmacophore, and many of the interactions showed little 

preference for formoterol or clenbuterol. Nonetheless, the structural dissimilarities of the two 

compounds led to several distinct receptor-ligand interactions. In particular, interactions with 

V114 and F193 tended to occur more frequently at the methoxyphenyl group on formoterol, 

while C191 and its peptide backbone interacted more frequently with the formamide group of 

formoterol. To enable these interactions to occur, formoterol binds to the β2AR in a conformation 

that places it near the deeper pocket residues of TM3 and TM5 as well as near the shallower 

residues of TM2, ECL2, and ECL4. Our observation of the proximity to ECL2 and ECL4 with 

formoterol is in agreement with NMR studies showing that formoterol weakens the ionic 

interaction between D192 and K305.612 Furthermore, ECL2 flexibility is important to ligand 

activity at the β2AR and for other GPCRs, such as the D2 dopamine receptor.613 
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Modeling interactions of other β2AR agonists with the receptor further supported the role 

of a subset of receptor ligand interactions in stabilizing conformations of the β2AR that lead to 

MB. When compared to the non-biogenic agonist clenbuterol or the partial agonist of MB 

ritodrine, the hydroxyphenyl group (F11) of (S,R’)-fenoterol was more likely to engage in contact 

interactions with F193 and hydrogen bond donor interactions with C191 and its backbone. 

Additionally, its 3,5-hydroxyl groups (F1) were more likely to act as hydrogen bond donors for 

S203 and S207. These results are in agreement with previous docking studies of fenoterol with 

the β2AR.614 Similarly, when compared to clenbuterol, the partial agonist of MB terbutaline had 

more contact interactions between its tert-butyl group (F8-F11) and F193 and hydrogen bond 

donor interactions between its 3,5-hydroxyl groups (F1) and S203, S207, and N293. Previous 

docking studies with terbutaline identified interactions between terbutaline and F193 but not 

between S203, S207, or N293.615 However, those studies generated homology models of the rat 

β2AR from 2rh1, which represents an inactive conformation of the receptor,616 while our study 

employed both active and inactive structures of the β2AR.  

Previous NMR studies have shown that formoterol and clenbuterol engage different 

conformations of the β2AR,617 particularly regarding the conformational shift of TM6. Indeed, 

numerous studies using NMR and mass spectrometry have shown that functionally similar 

agonists can effect distinct active conformations of the receptor.618-620 Additionally, the 

conformational flexibility of the β2AR allows for multiple “active” conformations that may lead 

to differences in effector coupling.  Among its active conformations, formoterol may stabilize a 

set of biogenic β2AR conformations that are thermodynamically unfavorable for clenbuterol. 

In conclusion, this study identified a distinct signaling pathway activated by the 

mitochondrial biogenic β2AR agonist formoterol but not by the non-biogenic β2AR agonist 

clenbuterol in metabolically competent primary cells. This Gβγ-Akt-eNOS-sGC pathway is 
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necessary for the transcriptional and functional changes associated with MB. We also identified 

distinct structural features and ligand interactions that may allow formoterol to activate this 

pathway. Together, these data can facilitate the development of novel β2AR agonists that 

selectively stimulate the Gβγ-Akt-eNOS-sGC pathway to induce MB and recovery from acute 

and chronic degenerative diseases. 

Methods 

Reagents. Anti-GAPDH antibody was purchased from Fitzgerald Antibodies (Acton, MA) and 

was used at a dilution of 1:1,000. Anti-phospho-Akt (Ser473), anti-Akt, and anti-phospho-eNOS 

(Ser1177) antibodies were purchased from Cell Signaling (Danvers, MA) and were all used at a 

dilution of 1:1,000. Anti-eNOS antibody (1:500 dilution), anti-mouse IgG (1:10,000 dilution), 

and anti-rabbit IgG (1:2,000 dilution) antibodies were purchased from Abcam (Cambridge, MA). 

MK2206 and GDC0068 were purchased from SelleckChem (Houston, TX). Gallein, LY294002, 

L-NAME, and ODQ were purchased from Tocris (Ellisville, MO). All other chemicals were 

purchased from Sigma (St. Louis, MO). 

Isolation and culture of proximal tubule cells. Female New Zealand white rabbits (1.5-2.0 kg) 

were purchased from Charles River Laboratories (Wilmington, MA). RPTCs were isolated via the 

iron oxide perfusion method, and RPTCs were cultured under improved conditions as described 

previously621,622. Three days after initial playing, dedifferentiated RPTCs were trypsinized and 

replated on XF-96 polystyrene culture microplates (Seahorse Bioscience, North Billerica, MA) at 

a density of 18,000 cells/well and were maintained at 37oC for 3 days before pharmacological 

manipulation. For other RPTC experiments, isolated renal proximal tubules were plated in 35 mm 

dishes and used at confluence 6 days after initial plating. All experiments were carried out in 

accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals 

of the National Institutes of Health. All procedures were approved by the Institutional Animal 
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Care and Use Committees of the Medical University of South Carolina and the University of 

Arizona and appropriate efforts were made to reduce animal suffering. 

Measurement of oxygen consumption. The oxygen consumption rate (OCR) of RPTCs was 

measured using the Seahorse Bioscience XF-96 Extracellular Flux Analyzer as previously 

described.623 RPTCs in 96-well assay plates were treated with vehicle control (dimethylsulfoxide 

(DMSO), <0.5%) or with experimental compounds. Basal OCR was measured, followed by 

injection of 10 µM carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) to allow for 

the measurement of uncoupled OCR (FCCP-OCR), a marker of MB. 

Protein isolation and immunoblotting. Freshly isolated RPTCs were suspended in protein lysis 

buffer (1% Triton X-100, 150 mM NaCl, and 10 mM Tris-HCl, pH 7.4; 1 mM EDTA; 1 mM 

EGTA; 2 mM sodium orthovanadate; 0.2 mM phenylmethylsulfonyl fluoride; 1 mM HEPES, pH 

7.6) containing protease inhibitors and phosphatase inhibitors (Sigma-Aldrich, St. Louis, MO). 

Following sonication, protein was quantified using a bicinchoninic acid assay, subjected to SDS-

PAGE, transferred onto nitrocellulose membranes, and incubated with primary and secondary 

antibodies. Membranes were detected using chemiluminescence and processed using ImageJ 

(NIH, Bethesda, MD) software. 

Nucleic acid isolation and quantitative polymerase chain reaction. To measure RNA expression, 

RPTC were scraped in TRIzol (Life Technologies, Grand Island, NY), and RNA was isolated 

using a phenol-based centrifugation method. cDNA was reversed transcribed from 5 µg RNA 

using the iScript Advanced cDNA Synthesis Kit (BioRad, Hercules, CA), diluted 1:10, and 5 µL 

added to a real-time SYBR green quantitative polymerase chain reaction master mix (BioRad). 

Changes in gene expression were calculated based on the Δ-Δ threshold cycle method. The 

following primers were used: PGC1α forward (AGGAAATCCGAGCCGAGCTGA), PGC1α 

reverse (GCAAGACGGAGACACATCAAA), NDUFS1 forward 

(AGATGATTTGGGAACAACAG), NDUFS1 reverse (TAGGGCTTAGAGGTTAGAGC), 



87 

tubulin forward (CTCTCTGTCGATTACGGCAAG), and tubulin reverse 

(TGGTGAGGATGGAGTTGTAGG). 

To measure mtDNA copy number, RPTC were scraped in phosphate buffered saline, and 

DNA was extracted using the DNeasy Blood and Tissue kit (QIAGEN, Valencia, CA). PCR 

products were amplified from 50 ng of cellular DNA using a real-time SYBR green quantitative 

polymerase chain reaction master mix (BioRad). For estimation of mtDNA, the NADH 

dehydrogenase subunit 6 (ND6) gene was used and normalized to tubulin. The following primers 

were used: ND6 forward (ACTGCGATGGCAACTGAGGAGTAT), ND6 reverse 

(ACCATAACTATACAACGCCGCCAC), tubulin forward (CTCTCTGTCGATTACGGCAAG), 

and tubulin reverse (TGGTGAGGATGGAGTTGTAGG). 

Measurement of cyclic nucleotides. RPTCs in 35-mm dishes were treated with vehicle control or 

the compound of interest for 1 h. RPTCs were then harvested according to the manufacturer’s 

protocol (Cayman Chemical, Ann Arbor, MI). Levels of cAMP and cGMP were measured using 

a commercially available enzyme-linked immunosorbent assay kit. Values were normalized to 

protein as quantified by a bicinchoninic acid assay followed by normalization to vehicle control 

for each biological replicate. 

Molecular modeling. Modeling, simulations, and visualizations were performed using MOE 

(Molecular Operating Environment) version 2015.1001 (Chemical Computing Group). The 

structural files used as input for analysis and docking simulations were PDB codes 3NYA, 3NY8, 

4LDE, 4LDL, 4LDO, and 5D5B. Before analysis and simulations, all atoms and molecules other 

than the receptor and the ligand were removed. The receptor and all ligands were protonated at 

pH 7.4 in MOE. Initial placement calculated 30 poses per molecule using triangle matching 

placement with London dG scoring. All 30 poses were then refined using induced fit with London 

dG scoring. Ligand interactions were assessed using the protein-ligand interaction fingerprint 

(PLIF) function in MOE. To score interaction frequencies, interactions with individual atoms 
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were tabulated. Interactions with the active ligand formoterol were assigned a value of 1, while 

interactions with the inactive ligand clenbuterol were assigned a value of -1, and interactions for 

all poses across all crystal structures were added to generate overall ligand interaction frequencies 

at structural features. 

Statistical analysis. Data are expressed as means + S.E.M. (N > 3) for all experiments. Each N 

represents a biological replicate. Multiple comparisons of normally distributed data were 

analyzed by one-way analysis of variance, as appropriate. Single comparisons were analyzed with 

the Wilcoxon signed rank test where appropriate. The criterion for statistical differences was 

p<0.05 for all comparisons. 
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CHAPTER 3  

PROXIMAL TUBULE CELL DELETION OF THE β2 ADRENERGIC RECEPTOR 

PREVENTS FORMOTEROL-INDUCED RECOVERY OF MITOCHONDRIAL AND RENAL 

FUNCTION AFTER ISCHEMIA-REPERFUSION INJURY 
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Introduction 

AKI is a rapid loss of renal function that occurs in over 20% of hospitalized patients and 

has a mortality rate of 25%.2,3 AKI has numerous causes, including hypotension, nephrotoxic 

drug administration, and renal ischemia-reperfusion injury (IRI).5 Unfortunately, treatment of 

AKI remains limited to supportive care and renal replacement therapy.  

The difficulty in treating AKI is the numerous cell types involved, including immune 

cells,139 endothelial cells,624 and the renal epithelium.113 RPTC are a highly oxidative and 

regenerative cell type that plays a central role in the pathogenesis of AKI.176,177 RPTC exhibit 

mitochondrial fragmentation and dysfunction with persistent suppression of MB after 

AKI.203,205,207 Transgenic mouse models have shown that decreased MB worsens AKI, while 

increased MB accelerates recovery.625 

Drugs that increase MB accelerate recovery from AKI with concomitant rescue of 

mitochondrial protein expression and function.567 One such drug is the FDA-approved β2AR 

agonist formoterol.567  We reported that formoterol treatment restored renal function with 

concomitant increases in mitochondrial protein expression and function after AKI in mice.231 

Recently, we elucidated the mechanism of formoterol-induced MB in RPTC.626 Formoterol 

binding to the β2AR results in the release of Gβγ heterodimer, the activation of Akt, the 

phosphorylation of eNOS, and increased soluble guanylyl cyclase activity and cGMP.  This 

pathway increased PGC-1α, the master regulator of MB,232 with concomitant induction of MB. 

Because the β2AR is ubiquitously expressed (e.g. T cells, macrophages, neutrophils, 

endothelial cells and RPTC), it is not clear which cell(s) are responsible for formoterol induced 

MB and recovery of renal function following IR-induced AKI. The goal of this study was to 

determine the specific role of RPTC β2AR in AKI and formoterol-induced recovery of 

mitochondrial and renal function using a mouse with proximal tubule specific deletion of the 

β2AR.627 
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Results and Discussion 

RPTC-specific deletion of the β2AR in mice was achieved by breeding γGT-Cre mice 

with ADRB2Flox/Flox (WT) mice to create a γGT-Cre:ADRB2Flox/Flox mouse (KO) (Figure 3-1A). 

To assess expression of the β2AR in RPTC in these mice, renal cortical ADRB2 DNA and mRNA 

were measured using qPCR. Consistent with loss of β2AR in RPTC, KO mice had an 80% 

reduction in renal cortical ADRB2 DNA and mRNA expression and increased γGT-Cre DNA 

expression relative to WT mice (Figure 3-1B-D). 
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Figure 3-1. γGT-Cre:ADRB2Flox/Flox mice have proximal tubule specific deletion of the β2 
adrenergic receptor. A. DNA electrophoresis of: an ADRB2+/+ mouse homozygous for ADRB2+ 
(lane 1) and not expressing gGT-Cre (lane 2); a mouse γGT-Cre:ADRB2+/+ homozygous for 
ADRB2+ (lane 3) and expressing gGT-Cre (lane 4); and a γGT-Cre:ADRB2Flox/Flox mouse 
homozygous for ADRB2Flox (lane 5) and expressing gGT-Cre (lane 6).  B. RT-PCR of ADRB2 
mRNA in ADRB2Flox/Flox and γGT-Cre:ADRB2Flox/Flox mice. C, D. PCR of ADRB2 (C) and γGT-
Cre (D) DNA. All samples are from renal cortex. Mean+SEM. N=4-5, *-p<0.05, Student’s T-test. 
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The role of RPTC β2AR on recovery from AKI was determined in KO and WT mice 

subjected to renal IRI followed by treatment with vehicle or formoterol (0.3 mg/kg, i.p) after 24 h 

and then daily for 144 h. WT and KO mice had similar increases in SCr at 24 h, indicating no 

difference in initial injury (Figure 3-2A). As previously described,231 WT mice treated with 

formoterol exhibited recovery from AKI at 144 h as measured by decreases in SCr and renal 

cortical KIM-1 protein (Figure 3-2B, E). In contrast, KO mice treated with formoterol did not 

exhibit decreases in SCr and renal cortical KIM-1 at 144 h. These findings were confirmed by 

histopathology in that formoterol-treated WT mice had less necrosis than vehicle-treated animals, 

while formoterol failed to decrease necrosis in KO mice at 144 h (Figure 3-2C, D). Together, 

these findings provide evidence that following AKI, formoterol exerts its effects on renal 

recovery by activating the RPTC β2AR. 
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Figure 3-2. Proximal tubule deletion of the β2 adrenergic receptor blocks the effects of 
formoterol on renal function following AKI. ADRB2Flox/Flox and γGT-Cre:ADRB2Flox/Flox mice 
were subjected to sham or renal IRI surgery. Mice were treated with 0.3% DMSO (Vehicle) or 
0.3 mg/kg formoterol (Formoterol) once daily beginning at 24 h and were euthanized at 144 h. A, 
B.) Serum creatinine at 24 h (A) and 144 h (B) following IR. C.) PAS stained kidney sections. 
D,E.) Semi-quantitative scoring of tubular necrosis (D). E.) Representative blot of renal cortical 
KIM-1 at 144 h following IRI. FFS-ADRB2Flox/Flox sham, FFV-ADRB2Flox/Flox IR+0.3% DMSO, 
FFF-ADRB2Flox/Flox IR+0.3 mg/kg formoterol, CFS-γGT-Cre:ADRB2Flox/Flox Sham, CFV- γGT-
Cre:ADRB2Flox/Flox IR+0.3% DMSO, CFF- γGT-Cre:ADRB2Flox/Flox IR+Formoterol. Mean+SEM. 
N=4-9. Different letters denote p<0.05, Two-Way ANOVA with Fisher’s LSD test. 
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 RPTC have high mitochondrial content to maintain proper solute transport across the 

tubular lumen.112,175,176 Following AKI, MB is persistently suppressed and recovery of 

mitochondrial content is associated with recovery of renal function and improved outcomes.205 

The effects of RPTC β2AR on mitochondrial content were assessed by measuring mtDNA and 

mitochondrial proteins using qPCR and immunoblot analysis, respectively. Formoterol restored 

mtDNA copy number in WT but not KO mice after IRI (Figure 3-3A). Similarly, KO mice 

subjected to IRI and treated with formoterol demonstrated no recovery of nuclear-encoded 

NDUFS1 and the mitochondrial-encoded COX1, electron transport chain (ETC) proteins and 

markers of MB (Figure 3-3B). Thus, activation of RPTC β2AR by formoterol rescues markers of 

MB following AKI.  Interestingly, KO shams had elevated expression of NDUFS1, which 

suggests that the β2AR may regulate mitochondrial homeostasis in healthy RPTC. 
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Figure 3-3. Proximal tubule cell β2 adrenergic receptor mediates formoterol-induced rescue of 
mitochondrial homeostasis following IRI-AKI. A.) Mitochondrial DNA copy number. B.) 
Representative blots and quantification of nuclear-encoded (NDUFS1) and mitochondrial-
encoded (COX1) proteins in renal cortex 144 h after IRI. C.) Representative blots and 
quantification of mitochondrial dynamic proteins Mfn2 and Drp1 in renal cortex 144 h after IRI. 
FFS-ADRB2Flox/Flox sham, FFV-ADRB2Flox/Flox IR+0.3% DMSO, FFF-ADRB2Flox/Flox IR+0.3 
mg/kg formoterol, CFS-γGT-Cre:ADRB2Flox/Flox sham, CFV- γGT-Cre:ADRB2Flox/Flox IR+0.3% 
DMSO, CFF- γGT-Cre:ADRB2Flox/Flox IR+0.3 mg/kg Formoterol. Mean+SEM. N=4-9. Different 
letters denote p<0.05, Two-Way ANOVA with Fisher’s LSD test. 
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To further understand mitochondrial changes under these experimental conditions in the 

absence and presence of formoterol, electron micrographs were obtained and mitochondrial 

number and morphology were quantified using ImageJ and the Trainable Weka Segmentation 

plugin. In WT mice, renal cortical mitochondrial number and total mitochondria area decreased 

after IRI and formoterol restored these parameters, indicating that formoterol induced MB (Figure 

3-4A-C). Sham-operated KO mice had fewer mitochondria, providing evidence that RPTC β2AR 

regulates mitochondrial homeostasis under physiological conditions. 

In addition to the restoration of ETC proteins, formoterol restored mitochondrial fission 

and fusion proteins Drp1 and Mfn2, respectively, in WT but not KO mice (Figure 3-3C). Because 

Drp1 and Mfn2 are regulated by the PGC-1α,246,628,629 and expression of both proteins is restored 

following formoterol-treatment in WT mice, the recovery of Mfn2 and Drp1 is linked to 

formoterol-induced activation of PGC-1α. Drp1 is thought to be detrimental following injury by 

enhancing mitochondrial fragmentation, reactive oxygen species production, and apoptosis.225 

Following AKI, mitochondrial fragmentation is increased in RPTC in a Drp1-dependent manner 

203, and decreased Mfn2 expression potentiates this fragmentation.227,630  As such, formoterol 

activation of β2AR and restoration of Drp1 and Mfn2 expression may improve mitochondrial 

dynamics and contribute to recovery of mitochondrial function after IRI by affecting 

mitochondrial dynamics. 
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Figure 3-4. The role of proximal tubule-cell β2 adrenergic receptor on mitochondrial content and 
morphology in renal cortex. A.) Representative electron micrographs of ADRB2Flox/Flox and γGT-
Cre:ADRB2Flox/Flox subjected to sham or IRI surgery followed by treatment with 0.3% DMSO or 
0.3 mg/kg formoterol daily for 144 h. B.) Quantification of mitochondria per field. C.) 
Quantification of total mitochondrial area per field. All images were acquired at x8,200 
magnification with at least 5 fields per animal. N=3-8. Mean+SEM. Different letters indicate 
p<0.05, Two-Way ANOVA with Fisher’s LSD test. 
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Proper balance of MB, fission, and fusion is important for recovery from AKI. Deletion 

of PGC-1α, a key transcriptional regulator of MB, worsens RPTC injury while its overexpression 

promotes MB to accelerate recovery.205,625 Pharmacologic induction of MB accelerates recovery 

of mitochondrial and renal function following AKI.231,631,632 Formoterol-treated mice lacking the 

β2AR in RPTC failed to recover mtDNA copy number, mitochondrial protein expression, and 

mitochondrial number and area following AKI. In addition, sham-operated KO mice had fewer 

total mitochondria without a decrease in mtDNA copy number and elevated NDUFS1 protein 

expression. These data provide evidence that the β2AR plays a role in RPTC mitochondrial 

homeostasis in healthy mice. While previous studies have shown that formoterol increases 

mRNA, protein, and functional markers of mitochondria in the kidney,231,567 this study shows for 

the first time that formoterol induces bona fide MB in RPTC. In summary, these data underscore 

the importance of RPTC mitochondria as a therapeutic target, that β2AR regulates renal 

mitochondrial homeostasis, and that GPCR ligands such as formoterol can induce MB to 

accelerate recovery from renal function.  

Methods: 

Animal Use. ADRB2Flox/Flox mice were mated with γGT-Cre mice to obtain γGT-

Cre:ADRB2Flox/Flox mice. Eight- to ten-week-old mice  were subjected to bilateral renal ischemia-

reperfusion injury as previously described.207 Dosing was initiated 24 h after reperfusion, and 

mice were given a daily injection of 0.3 mg/kg formoterol fumarate dihydrate (Sigma-Aldrich 

F9552) or vehicle (0.3% DMSO in normal saline) via intraperitoneal injection.  Blood was 

collected by retro-orbital bleeding puncture and serum creatinine (SCr) was determined using the 

Creatinine Enzymatic Reagent Assay kit (Diazyme) according to manufacturer’s protocol. All 

experiments were carried out in accordance with the recommendations in the Guide for the Care 

and Use of Laboratory Animals of the National Institutes of Health. All procedures were 
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approved by the University of Arizona Institutional Animal Care and Use Committee and 

appropriate efforts were made to reduce animal suffering. 

Nucleic acid isolation and quantitative polymerase chain reaction. RNA was extracted from 

frozen renal cortex in TRIzol isolated using a phenol-based centrifugation method (Life 

Technologies, Grand Island, NY). cDNA was reversed transcribed using the iScript Advanced 

cDNA Synthesis Kit (BioRad, Hercules, CA) and was added to a real-time SYBR green 

quantitative polymerase chain reaction master mix (BioRad). Changes in gene expression were 

calculated based on the Δ-Δ threshold cycle method. Primers are reported in Table 3-1. 

Mouse tail tips were lysed using DirectPCR Lysis reagent (Viagen). Genomic DNA was 

amplified using Promega 2X PCR Master Mix in accordance with manufacturer’s protocols. 

Amplified DNA was separated on a 2.5% agarose gel and visualized by ethidium bromide 

fluorescence. 

To measure mtDNA copy number, DNA was extracted from frozen renal cortex using the 

DNeasy Blood and Tissue kit (QIAGEN, Valencia, CA). PCR products were amplified from 5 ng 

of cellular DNA using a real-time SYBR green quantitative polymerase chain reaction master mix 

(BioRad). For estimation of mtDNA, the NADH dehydrogenase subunit 6 (ND6) gene was used 

and normalized to β-actin. 
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Table 3-1. Primer sequences. 

Gene Forward Reverse 
ADRB2Flox CCA AAG TTG TTG CAC GTC 

AC 
GCA CAC GCC AAG GAG ATT AT 

γGT-Cre GCT CTT GGG AGA AGT CAT 
GC 

CAT GTT TAG CTG GCC CAA AT 

ADRB2 GTA CCG TGC CAC CCA GA CCC GGG AAT AGA CAA AGA CCA 
TC 

ND6 TCC AAA CAC AAC CAA CAT 
CC 

TTG GCA TTA AAG CCT TCA CC 

β-Actin GGG ATG TTT GCT CCA ACC 
AA 

GCG CTT TTG ACT CAG GAT TTA A 
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Protein isolation and immunoblotting. Frozen renal cortex was suspended in protein lysis buffer 

(1% Triton X-100, 150 mM NaCl, and 10 mM Tris-HCl, pH 7.4; 1 mM EDTA; 1 mM EGTA; 2 

mM sodium orthovanadate; 0.2 mM phenylmethylsulfonyl fluoride; 1 mM HEPES, pH 7.6) 

containing protease inhibitors and phosphatase inhibitors (Sigma-Aldrich, St. Louis, MO). 

Following sonication, protein was quantified using a bicinchoninic acid assay, subjected to SDS-

PAGE, transferred onto nitrocellulose membranes, and incubated with primary and secondary 

antibodies. Membranes were detected using chemiluminescence and processed using ImageJ 

(NIH, Bethesda, MD) software. Antibodies are reported in Table 3-2. 

Electron Microscopy. Renal cortex was fixed and sectioned for transmission electron microscopy. 

Images were viewed by FEI Tecnai Spirit microscope operated at 100 kV and captured using an 

AMT 4 Mpixel camera. Mitochondrial count and morphology were analyzed using the Trainable 

Weka Segmentation plugin in ImageJ. 

Histopathology. Kidney sections approximately 5–6 microns from animals at 144 hours after I/R 

or sham surgery were stained with hematoxylin and eosin and PAS, and the degree of 

morphologic changes was determined by light microscopy in a blinded fashion. Loss of brush 

border and necrosis were chosen as indicators of morphological damage to the kidney. These 

measures were evaluated on a scale from 0 to 4, which ranged from not present (0), mild (1), 

moderate (2), severe (3), and very severe (4). 

Statistical analysis. Data are expressed as means + S.E.M. (N > 3) for all experiments. Each N 

represents a different animal. Multiple comparisons of normally distributed data were analyzed 

by two-way analysis of variance. Single comparisons were analyzed with a T-test where 

appropriate. The criterion for statistical differences was p<0.05 for all comparisons. 
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Table 3-2. Antibodies 

Protein Manufacturer Cat. No. Lot No. Dilution 
Actin Santa Cruz sc-47778 J2816 1:1,000 
Mfn2 Santa Cruz sc-50331 F1614 1:1,000 
Drp1 Santa Cruz sc-32898 F1715 1:1,000 
NDUFS1 Abcam ab96428 GR70572-10 1:1,000 
COX1 Abcam ab14765 GR291384-5 1:1,000 
KIM-1 R&D Systems AF1817 KCA0317041 1:1,000 
Donkey Anti-Goat 
IgG 

Abcam ab97110 GR302038-10 1:5,000 

Goat Anti-Rabbit IgG Abcam ab6721 GR3204153-1 1:2,000 
Anti-Mouse IgG Abcam ab97046 GR264912-2 1:10,000 
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CHAPTER 4  

CONCLUSIONS AND FUTURE DIRECTIONS  
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Summary of Relevant Findings 

AKI occurs commonly in hospitalized patients and carries a high morbidity and mortality 

with no treatments beyond renal replacement therapy. AKI is characterized by mitochondrial 

dysfunction, particularly in the RPTC. The induction of MB is a therapeutic target for AKI. Our 

group has shown that formoterol, a β2AR agonist, can induce MB in vitro and in vivo, and 

stimulate recovery of mitochondrial and renal function following AKI in mice.  

Our in vitro study using rabbit RPTC elucidated the signaling pathway by which 

formoterol induces MB. The results showed that formoterol induces MB through a Gβγ-Akt-

eNOS-cGMP-dependent pathway, while clenbuterol fails to activate this pathway. This study was 

the first to associate Gβγ- and cGMP-dependent signaling with β2AR-induced MB. 

Understanding differences in ligand bias enable more targeted application of 

pharmacotherapy to various disease states. Having identified differences in signaling between 

formoterol and clenbuterol, we hypothesized that these ligands interacted with the β2AR at 

different residues. To understand the structural basis of these differences in signaling, formoterol 

and clenbuterol were docked to the orthosteric binding site of both inactive (3NYA, 3NY8, 

5D5B) and active (4DLE, 4LDL, 4LDO) crystal structures of the β2AR. For each pose, receptor-

ligand interactions were tabulated at each structural feature. Each interaction was assigned a value 

of +1 for formoterol and -1 for clenbuterol, and interactions were summed for all six crystal 

structures. The methoxyphenyl group of formoterol showed a greater likelihood of aromatic 

interactions with W109 and V114 and contact interactions with F193. Interestingly, the 

formamide and hydroxyl groups of formoterol exhibited a greater interaction frequency with the 

backbone of C191, but the amino group of clenbuterol was more likely to engage in strong 

interactions at that site. Similarly, the secondary amino group of both formoterol and clenbuterol 

interacted with D113, but formoterol was more likely to do so with strong hydrogen bond or ionic 

interactions. Overall, the longer and larger functional groups of formoterol allowed it to stretch 
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across the binding pocket of the β2AR receptor to simultaneously interact with TM3, TM5, and 

ECL2 in a manner distinct from clenbuterol and may drive the differences in signaling between 

formoterol and clenbuterol. These interaction profiles provide key structural data for the 

development of β2AR agonists that selectively activate specific signaling programs. 

AKI is the transient loss of renal function following an insult, such as nephrotoxicant 

exposure, sepsis, or ischemia. Numerous cell types play a role in the pathogenesis of AKI, 

including immune, endothelial, and RPTC. Our laboratory has demonstrated that the β2AR 

agonist formoterol accelerates the recovery of renal function in mice following ischemia-

reperfusion injury (IRI) with associated rescue of mitochondrial proteins. However, the cell type 

or types responsible for this recovery remain unknown. 

To assess the role of RPTC in formoterol-induced recovery of renal function, we 

generated a proximal tubule-specific knockout of the β2AR (γGT-Cre:ADRB2Flox/Flox). These mice 

were subjected to renal IRI, followed by once daily dosing with formoterol beginning at 24 h and 

euthanasia at 144 h. Compared to wild-type controls (ADRB2Flox/Flox), the γGT-Cre:ADRB2Flox/Flox 

mice had lower renal cortical mRNA expression of the β2AR. Following IRI, vehicle-treated 

ADRB2Flox/Flox and γGT-Cre:ADRB2Flox/Flox mice exhibited a modest but incomplete recovery of 

renal function as measured by serum creatinine. Treatment with formoterol restored renal 

function in ADRB2Flox/Flox but not γGT-Cre:ADRB2Flox/Flox  mice. Similarly, formoterol decreased 

renal injury as measured by KIM-1 and tubular necrosis in ADRB2Flox/Flox but not γGT-

Cre:ADRB2Flox/Flox  mice. Interestingly, treatment with formoterol restored brush border in both 

genotypes, albeit to a lesser extent in γGT-Cre:ADRB2Flox/Flox mice. Together, these data 

demonstrate that formoterol acts through RPTC β2AR to exert its effects on renal function in 

AKI. 
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Many acute organ injuries and chronic degenerative diseases, including AKI, are 

associated with persistent disruptions in mitochondrial homeostasis. The induction of MB is 

therefore a promising therapeutic target for such diseases, particularly AKI. Our laboratory has 

demonstrated that treatment with the β2AR agonist formoterol accelerates the recovery of renal 

function following AKI with associated rescue of mitochondrial protein expression. However, 

true MB (i.e., the formation of new mitochondria) has not been demonstrated. Mice lacking the 

β2AR in proximal tubule cells (γGT-Cre:ADRB2Flox/Flox) and wild-type controls (ADRB2Flox/Flox) 

were subjected to renal IRI, followed by once daily treatment with formoterol beginning 24 h and 

euthanasia at 144 h. At 144 h, ADRB2Flox/Flox mice treated with formoterol exhibited recovery of 

mitochondrial DNA copy number (mtDNA) and the electron transport chain proteins NDUFS1 

and COX1. However, γGT-Cre:ADRB2Flox/Flox mice treated with formoterol did not demonstrate 

recovery of mtDNA, NDUFS1, or COX1. Similarly, ADRB2Flox/Flox mice treated with formoterol 

demonstrated recovery of the mitochondrial fission and fusion proteins Drp1 and Mfn2, while 

expression of these markers was unaffected by formoterol treatment in γGT-Cre:ADRB2Flox/Flox 

mice. To determine whether the recovery of mtDNA and mitochondrial protein expression was 

due to increased MB, electron microscopy was used to quantify mitochondrial number and 

morphology. In ADRB2Flox/Flox mice but not γGT-Cre:ADRB2Flox/Flox mice, formoterol treatment 

increased both mitochondrial number and the total mitochondrial area following IR relative to 

vehicle-treated mice. In both genotypes, mice subjected to IRI regardless of treatment had 

increased mitochondrial roundness, consistent with injury. There was no difference in 

mitochondrial form factor among the groups, despite the changes in Drp1 and Mfn2 protein 

expression. Together, these data show for the first time that formoterol acts on RPTC β2AR to 

induce MB to accelerate recovery of renal function following AKI.  

These studies demonstrated that formoterol activates a Gβγ-Akt-eNOS-cGMP signaling 

pathway to induce MB in RPTC. This pathway was not activated by all β2AR agonists, and 
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activation of this pathway correlated with specific receptor-ligand interaction profiles. We 

demonstrated that formoterol acts on RPTC β2AR to accelerate the recovery of renal function and 

mitochondrial protein expression. Finally, using electron microscopy, we demonstrated that 

formoterol increases mitochondrial number and density in RPTC. These studies demonstrate that 

specific GPCR-ligand interactions can drive distinct signaling pathways to affect mitochondrial 

homeostasis and organ function. 

Future Directions 

We have identified that formoterol, but not clenbuterol, activates a Gβγ-Akt-eNOS-

cGMP pathway to induce MB. Furthermore, we found distinct receptor-ligand interaction profiles 

for β2AR agonists that induce and do not induce MB. These data are suggestive of biased 

agonism through the β2AR. The key determinant of ligand bias is reversal of efficacy.633 In 

primary RPTC, both formoterol and clenbuterol increased cAMP accumulation, but clenbuterol 

was less efficacious than formoterol (Figure 4-1A). Treatment with formoterol, but not 

clenbuterol, also activated Akt in a concentration-dependent manner (Figure 4-1B), and neither 

agonist affected ERK1/2 phosphorylation (Figure 4-1C). These data fail to prove bias between the 

two ligands, as the increased efficacy of formoterol may reach a threshold to activate Akt 

phosphorylation. Furthermore, previous studies in other cell lines identified clenbuterol as a 

partial agonist for cAMP. Based on these data, further work is required to elucidate the potential 

impact of biased agonism on β2AR-mediated MB.  

While primary RPTC are a useful tool for the identification of inducers of MB and for 

confirmation of signaling pathways,634 their recalcitrance to genetic manipulation (and therefore 

reliance on pharmacologic inhibitors) makes them a lesser model for elucidation of ligand bias. 

As such, cell lines must be identified that: recapitulate the effects of our panel of β2AR agonists 

on MB; and demonstrate similar signaling as observed in RPTC following formoterol stimulation. 
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Once a model is developed, the efficacy of β2AR agonists for various signaling pathways 

(e.g., cAMP/PKA, NO/cGMP, Ca+2-dependent signaling) can be identified. Based on efficacy 

profiles, signaling pathways that are activated by inducers of MB can be identified. Furthermore, 

agonists can be clustered based on their efficacy profiles, and these clusters can be compared to 

pharmacophore models and docking experiments to identify structural determinants of these 

signaling pathways. Using immortalized cell lines also allows for elucidation of the effects of 

formoterol and other β2AR agonists on G protein, arrestin, and kinase recruitment to the β2AR.  

Pre-treatment with the GRK2 inhibitor Cmpd101 prevented formoterol-induced increases 

in FCCP-OCR without affecting Akt phosphorylation (Figure 4-2), suggesting that formoterol 

activates GRK2 in a pathway distinct or downstream from Akt. Understanding whether this is due 

to a direct interaction between GRK2 and the receptor or through some other pathway would 

provide important mechanistic insights to GPCR-mediated MB. 
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Figure 4-1. The effects of formoterol on cAMP accumulation and Akt and ERK1/2 
phosphorylation. RPTC were treated with formoterol or clenbuterol for 30 min. Cyclic 
nucleotides and protein were extracted. cAMP accumulation was measured by ELISA (A). 
Immunoblot analysis was used to assess the phosphorylation of Akt (B) and ERK1/2 (C).  N=3-6. 
No statistical significance between drugs was determined by Two-Way ANOVA. 
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Figure 4-2. The effects of GRK2 inhibition on formoterol-induced MB and Akt phosphorylation. 
A. RPTC were pre-treated with 300 nM Cmpd101 (a GRK2/3 inhibitor) for 30 min, followed by 
treatment with formoterol for 24 h. FCCP-OCR was measured using the Seahorse XF96 analyzer. 
B. RPTC were pre-treated with 300 nM Cmpd101 for 30 m, followed by treatment with 
formoterol for 30 min. Akt phosphorylation was assessed by immunoblot. Mean + SEM, N=4-6. 
*-p<0.05 vs. Vehicle, #- p<0.05 vs. 30 nM Formoterol, One-Way ANOVA with Sidak’s multiple 
comparisons test. 
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Formoterol accelerates the recovery of renal function in mice subjected to IR-induced 

AKI. However, there are numerous causes of AKI, and no single mouse model fully recapitulates 

human disease. The disconnect between mouse models and human disease is one of the obstacles 

to the development of effective therapeutics for AKI. As such, the effects of formoterol in other 

models of AKI should be explored. Activation of the β2AR by terbutaline or overexpression is 

renoprotective in mouse models of septic AKI,578-580,635-637 however,  β2AR activation reduces 

creatinine clearance in healthy rats.584 Because formoterol activates Gβγ-dependent signaling 

distinct from other β2AR agonists, the detrimental effects of β2AR signaling observed in the rat 

study may be ameliorated by treatment with formoterol. Additionally, preliminary data in 

proximal tubule cell lines demonstrated that administering formoterol after LPS decreases TNF-α 

mRNA expression at 24 h (Figure 4-3). These data indicate that formoterol may have utility in 

models of non-ischemic AKI, thereby expanding its future clinical utility. 
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Figure 4-3. Formoterol decreases TNFα expression following LPS administration in TKPTS 
cells. The proximal tubule TKPTS cell line was treated with LPS (10 µg/mL) for 1 h, followed by 
treatment with 10, 30, or 100 nM formoterol. After 24 h, mRNA was extracted, and TNFα 
expression was measured by RT-qPCR. Mean+SEM, N=5-6. *-p<0.05 vs. Vehicle, #-p<0.05 vs 
LPS 10 µg/mL, One-Way ANOVA. 
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Formoterol is used clinically for the treatment of asthma and COPD, but its use is limited 

by a black-box warning for severe asthma exacerbations. Because airway smooth muscle 

expresses high levels of β2AR, current inhaled formulations are designed to minimize systemic 

distribution of formoterol. However, for AKI, an intravenous or oral formulation would be 

required to achieve sufficient drug concentrations in RPTC. Additionally, since its patent has 

expired, formoterol is not an attractive lead compound for drug companies. Two studies would 

help overcome this barrier to clinical translation. One is employing electronic health record 

databases to identify potential correlations between formoterol use and renal dysfunction. Based 

on our preclinical results, we expect that formoterol use is negatively correlated with the 

development of AKI. However, identifying proper patient controls and obtaining a sufficient 

patient population to achieve statistical power may prove challenging.  

Another study to increase the likelihood of successful application of formoterol as 

treatment for AKI is the development of a targeted formulation of formoterol. Recent work has 

identified nanoparticle formulations that selectively target RPTC;638 however, new formulations 

may be necessary to target plasma membrane receptors, as opposed to intracellular targets. A new 

formulation could be patented by drug companies, facilitating the funding of potentially costly 

clinical trials.  

While most patients recover from their initial bout of AKI, they are sensitized to future 

renal and cardiovascular dysfunction, and some patients progress from AKI into CKD. 

Formoterol accelerates the recovery of renal function in the acute recovery phase of AKI. The 

effects of formoterol on the AKI-CKD transition, cardiorenal syndrome, and CKD itself are not 

known. Identifying the therapeutic effects of formoterol in these disease processes would allow 

for more effective identification of patients who would benefit from formoterol administration. 

We generated a mouse with a RPTC-specific deletion of the β2AR and observed that 

RPTC β2AR is necessary for the effects of formoterol on renal function and MB following AKI. 
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Healthy mice lacking RPTC β2AR had normal renal function as measured by SCr; however, we 

observed an increase in NDUFS1 protein expression and increased mitochondrial length. 

Additionally, these mice had fewer mitochondria and a lower mitochondrial density. Given the 

oxidative state of RPTC, it is possible that mice lacking RPTC β2AR have a subclinical disruption 

in mitochondrial homeostasis that disrupts solute transport and sensitizes the kidney to injury. 

The β2AR has been implicated in renal sodium transport and Na+/K+-ATPase expression.639,640 

Urinalysis could be performed on ADRB2Flox/Flox and γGT-Cre:ADRB2Flox/Flox mice to identify 

changes in urinary electrolyte concentrations.  

Additional experiments could be performed on male and female mice of varying ages to 

identify any sex differences or age-dependent differences in renal function caused by lack of the 

β2AR. These experiments would provide an important link between mitochondrial homeostasis 

and basic renal physiology, and these data will inform potential effects of β2AR polymorphisms 

on renal function. 

Endothelial and immune cells play important roles in both the injury and recovery phases 

of AKI.139,624 Because the β2AR is ubiquitously expressed, it is reasonable to infer that formoterol 

exerts an effect on endothelial and immune cell function in AKI and in other diseases. 

Experiments could identify levels of different circulating cytokines at different times after AKI 

and how formoterol affects these cytokines. Because cytokines are secreted by and affect the 

infiltration of different immune cell types, these data will allow for a more focused examination 

of infiltrating immune cells following AKI. 

Administration of formoterol following AKI increases the protein expression of electron 

transport chain proteins as well as proteins associated with mitochondrial fission and fusion. 

However, we found that formoterol did not affect the mRNA expression of PGC-1α, COX1, 

NDUFS1, or ND1 following IR (Figure 4-4). Because tissue was taken after multiple doses of 

formoterol, these findings may be due to a negative feedback pathway following formoterol-
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induced MB that prevent excessive mitochondrial content. Similarly, these findings could be due 

to desensitization of the β2AR following stimulation by formoterol.  

Another potential explanation for these findings is the effect of formoterol on mitophagy, 

or the clearance of damaged mitochondria. Controlled mitophagy is generally renoprotective,212 

but excessive or uncontrolled mitophagy leads to a lethal energy imbalance and subsequent cell 

death.641 The findings of recovered mitochondrial protein but not mRNA expression may suggest 

that formoterol can inhibit mitophagy. Mitophagy is inhibited by mammalian target of rapamycin 

(mTOR), which is a known downstream target of Akt. Because formoterol increases Akt 

phosphorylation, formoterol may play a role in the regulation of mitophagy. 

  To assess the role of mitophagy on the effects of formoterol, protein expression of 

markers of autophagy (e.g., LC3BII, p62, and p-mTOR) could be measured. To confirm that 

changes in these proteins are due to mitophagy rather than general autophagy, the MitoTimer 

mouse could also be used. This mouse has a mitochondrial fluorescent protein that shifts from 

green to red fluorescence following oxidative stress,642 allowing for the visualization of old or 

damaged mitochondria. In this system, red punctate mitochondria are generally considered to be 

targeted for lysosomal degradation. These mice could therefore be used to quickly visualize 

mitochondria in multiple organs to determine the effects of formoterol or other inducers of MB 

on mitochondrial content, morphology, and degradation. 
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Figure 4-4. Formoterol does not increase mRNA expression of markers of MB following AKI. 
ADRB2Flox/Flox (Flox/Flox) and γGT-Cre:ADRB2Flox/Flox (CreLox) mice were subjected to renal IR 
followed by treatment with formoterol. mRNA expression of PGC-1α, COX1, NDUFS1, and 
ND1 was measured by RT-qPCR in renal cortex 144 h post-injury. Mean + SEM. N=3-9. 
Different subscripts indicate p<0.05, Two-Way ANOVA followed by Fisher’s LSD test.   
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We identified the Gβγ-Akt-eNOS-cGMP pathway as necessary for formoterol-induced 

MB in vitro. Other work in our lab has identified this pathway as important for 5HT1F receptor-

mediated MB in cultured RPTC.541 The importance of this pathway in vivo remains unclear. 

Preliminary data demonstrated that formoterol increases Akt phosphorylation in mouse renal 

cortex 30 min after administration and that this phosphorylation is blocked by pretreatment with 

gallein (Figure 4-5A, C); furthermore, mice have elevated cGMP levels at 30 and 60 min 

following formoterol administration (Figure 4-5B). At 24 h following formoterol administration, 

renal cortical ATPSβ increased, and this increase was also blocked by pretreatment with gallein 

(Figure 4-5D). To examine the effects of formoterol in AKI, mice were subjected to IRI, followed 

by treatment with formoterol or diluent 24 h after injury. At 30 min after drug administration, Akt 

phosphorylation was elevated regardless of treatment; however, mice treated with formoterol 

exhibited decreased ERK1/2 phosphorylation (Figure 4-6A). In mice treated with formoterol, 

there was decreased renal injury and recovery of renal function and mitochondrial protein 

expression 24 h following drug administration (Figure 4-6B-D). Further work is necessary to 

determine the signaling pathway(s) activated by formoterol in the injured kidney and the role of 

this signaling in recovery of renal function. 
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Figure 4-5. Formoterol activates Akt in a Gβγ-dependent manner to induce MB in vivo. A. Male 
C57Bl/6 mice were treated with 0.3 mg/kg formoterol or 0.3 mg/kg clenbuterol for 30 min. Akt 
phosphorylation at S473 was measured in renal cortex. B. Male C57Bl/6 mice were treated for 30 
min or 1 h with 0.3 mg/kg formoterol. Accumulation of cGMP in the renal cortex was measured 
by ELISA. C. Male C57Bl/6 mice were pre-treated with 30 mg/kg gallein for 1 h followed by 
treatment with 0.3 mg/kg formoterol for 30 min. Akt phosphorylation was measured at S473 in 
renal cortex. D. Male C57Bl/6 mice were pre-treated with 30 mg/kg gallein for 1 h followed by 
treatment with 0.3 mg/kg formoterol for 24 h. ATPSβ levels were measured in the renal cortex. 
Mean + SEM. N=4-6 *- p<0.05 vs. 0.3% DMSO, #- p<0.05 vs 0.3 mg/kg Formoterol. 
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Figure 4-6.Formoterol modulates ERK1/2 phosphorylation, renal function, and MB early after 
AKI. Male C57Bl/6 mice were subjected to 18.5 min of warm ischemia followed by reperfusion. 
24 h after injury, 0.3 mg/kg formoterol was administered. A. Mice were euthanized 30 min after 
formoterol administration, and renal cortical Akt and ERK1/2 phosphorylation were measured by 
immunoblot. B. Mice were euthanized 24 h after formoterol administration. Renal cortical 
expression of the injury markers KIM-1 and NGAL was assessed by immunoblot analysis. C. 
Serum was obtained 24 h after AKI and 24 h after formoterol administration. BUN and SCr were 
measured. D. Mice were euthanized 24 h after formoterol administration, and renal cortical 
mitochondrial protein expression was measured by immunoblot analysis. Mean + SEM. N=4-8 *- 
p<0.05 vs. Sham, #- p<0.05 vs IR+0.3%DMSO, One-Way ANOVA with Fisher’s LSD test.  
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Numerous drugs are known to induce MB, and we have identified several compounds 

that induce MB to accelerate the recovery of renal function following AKI. Among these 

compounds are the SIRT1 activator SRT1720,230 the MEK/ERK inhibitor trametinib,632 the 

phosphodiesterase inhibitor sildenafil, the 5HT1F
 receptor agonist LY344864, and the β2AR 

agonist formoterol. Both formoterol and LY344864 are known to activate Gβγ-Akt-eNOS-

cGMP-dependent signaling to induce MB in vitro;541 however, while formoterol increases cAMP 

through Gαs-dependent signaling, LY344864 activates the inhibitory Gαi and also inhibits 

ERK1/2 phosphorylation. All of these compounds activate signaling pathways that converge upon 

PGC-1α to induce MB. However, it is unlikely that these drugs only upregulate genes associated 

with MB. It is therefore important to determine other potentially beneficial or deleterious 

pathways activated by these compounds. For example, mice could be subjected to renal IR (or 

other organ injury) and treated with different inducers of MB. Tissue from these mice would then 

be subjected to transcriptomic analysis to identify transcriptional networks that are affected by 

these compounds. Using a panel that includes GPCR ligands as well as more targeted drugs, the 

data may be used to determine the roles of specific components of signaling pathways on gene 

expression. Due to the heterogeneous population of AKI patients, these data will help identify 

more specific patient populations to facilitate future clinical studies. 
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