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The Origin and Neuronal Function of In Vivo
Nonsynaptic Glutamate

David A. Baker, Zheng-Xiong Xi, Hui Shen, Chad J. Swanson, and Peter W. Kalivas

Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425

Basal extracellular glutamate sampled in vivo is present in
micromolar concentrations in the extracellular space outside
the synaptic cleft, and neither the origin nor the function of this
glutamate is known. This report reveals that blockade of gluta-
mate release from the cystine–glutamate antiporter produced a
significant decrease (60%) in extrasynaptic glutamate levels in
the rat striatum, whereas blockade of voltage-dependent Na�

and Ca2� channels produced relatively minimal changes (0–
30%). This indicates that the primary origin of in vivo extrasyn-
aptic glutamate in the striatum arises from nonvesicular gluta-
mate release by the cystine–glutamate antiporter. By measuring
[35S]cystine uptake, it was shown that similar to vesicular
release, the activity of the cystine–glutamate antiporter is neg-
atively regulated by group II metabotropic glutamate receptors
(mGluR2/3) via a cAMP-dependent protein kinase mechanism.
Extracellular glutamate derived from the antiporter was shown
to regulate extracellular levels of glutamate and dopamine.

Infusion of the mGluR2/3 antagonist (RS)-1-amino-5-
phosphonoindan-1-carboxylic acid (APICA) increased extracel-
lular glutamate levels, and previous blockade of the antiporter
prevented the APICA-induced rise in extracellular glutamate.
This suggests that glutamate released from the antiporter is a
source of endogenous tone on mGluR2/3. Blockade of the
antiporter also produced an increase in extracellular dopamine
that was reversed by infusing the mGluR2/3 agonist (2R,4R)-4-
aminopyrrolidine-2,4-dicarboxlylate, indicating that antiporter-
derived glutamate can modulate dopamine transmission via
mGluR2/3 heteroreceptors. These results suggest that nonve-
sicular release from the cystine–glutamate antiporter is the
primary source of in vivo extracellular glutamate and that this
glutamate can modulate both glutamate and dopamine
transmission.

Key words: microdialysis; glutamate; cystine; striatum; non-
vesicular; cystine–glutamate antiporter; system xc

Glutamate is the major excitatory neurotransmitter in the CNS
system and is involved in many aspects of brain functioning in
normal and diseased states (Greenamyre et al., 1988; Coyle and
Puttfarcken, 1993; Moghaddam and Adams, 1998; Tapia et al.,
1999; Marino et al., 2001). Despite intensive effort, the cellular
mechanisms regulating glutamate neurotransmission have not
been fully characterized. Although synaptically released gluta-
mate has been studied in great detail, basal extracellular gluta-
mate measured in vivo is present in micromolar concentrations in
the extracellular space outside the synaptic cleft, and neither the
origin nor the function of this pool of glutamate is known
(Timmerman and Westerink, 1997). Given the extrasynaptic lo-
cation of Na�-dependent glutamate transporters, as well as group
II and III metabotropic glutamate receptors (mGluR2/3; Alagar-
samy et al., 2001; Tamaru et al., 2001), this extracellular pool of
glutamate has access to mechanisms for regulating the glutamate
transmission.

Although the origin has not been identified, in vivo extrasyn-
aptic glutamate is maintained by nonvesicular release because
levels are relatively insensitive to blockade of voltage-dependent
Na� and Ca2� channels (Bradford et al., 1987; Miele et al., 1996;
Timmerman and Westerink, 1997). The continuous release of

nonvesicular glutamate has also been detected in hippocampal
tissue slices using patch-clamp recording (Jabaudon et al., 1999),
indicating that it is not an artifact of microdialysis. Akin to the in
vivo situation, the source of nonvesicular release in hippocampal
tissue slices was not identified, although several mechanisms were
excluded, including Ca2�-dependent release by astrocytes, trans-
membrane diffusion, and leakage from Na�-dependent gluta-
mate transporters or volume-sensitive Cl� channels (Jabaudon et
al., 1999).

Another source of nonvesicular glutamate release is from the
cystine–glutamate antiporter (Bannai, 1986; Murphy et al., 1990;
Warr et al., 1999). The antiporter is a plasma membrane-bound,
Na�-independent, anionic amino acid transporter that exchanges
extracellular cystine for intracellular glutamate (Bannai, 1986;
Danbolt, 2001). It exists as two separate proteins, the light chain
xCT that is unique to the cystine–glutamate antiporter and the
heavy chain 4F2 that is common to many amino acid transporters
(Sato et al., 1999; Bridges et al., 2001). Similar to Na�-dependent
glutamate transporters, the antiporter is ubiquitously distributed
on cells throughout the body, although in the brain it may be
preferentially located on glia (Cho and Bannai, 1990; Murphy et
al., 1990; Danbolt, 2001; Pow, 2001).

In the present report it was shown that in vivo extrasynaptic
glutamate in the rat striatum is maintained by glutamate released
from the cystine–glutamate antiporter. Similarities in the regula-
tion of synaptic vesicular glutamate and extrasynaptic glutamate
supplied by antiporter release were revealed by showing that
extrasynaptic glutamate derived from the antiporter is regulated
by mGluR2/3 and Na�-dependent glutamate transporters. Fi-
nally, it was found that glutamate derived from the antiporter
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provides endogenous in vivo tone on mGluR2/3 that are regulat-
ing the extracellular levels of glutamate and dopamine.

MATERIALS AND METHODS
Animals and surgeries. Male Sprague Dawley rats (Harlan, Indianapolis,
IN) weighing 275–300 gm were individually housed in a temperature-
controlled colony room with a 12 hr light /dark cycle (lights on at 7:00
A.M.) with food and water available ad libitum. The housing conditions
and care of the rats was in accordance with the Animal Welfare Act, and
all procedures were approved by the Medical University of South Caro-
lina’s Institutional Animal Care and Use Committee. Rats included in
the microdialysis studies were anesthetized with a combination of ket-
amine (100 mg/kg, i.m.) and xylazine (3 mg/kg, i.m.). Using coordinates
derived from the Paxinos and Watson atlas (1998) (�1.6 mm anterior
and �2.5 mm mediolateral to bregma and �4.7 mm from the surface of
the skull at a 6 o angle from vertical), bilateral guide cannulas (20 gauge,
14 mm; Plastics One, Roanoke, VA) were implanted above the ventral
striatum to allow the microdialysis probes, which extend beyond the tip
of the guide cannulas by 2 mm, to be placed in the ventral striatum.
Guide cannulas were secured to the skull using four skull screws (Small
Parts, Roanoke, VA) and dental acrylic. After surgery, rats were given at
least 5 d to recover before testing.

Compounds. DL-threo-B-benzyloxyaspartate (TBOA) was generously
donated by Dr. Keiko Shimamoto of the Suntory Institute for Bioorganic
Research (Osaka, Japan) and was dissolved directly into dialysis buffer.
Cystine (Sigma, St. Louis, MO) and [ 35S]cystine (Amersham, Arlington
Heights, IL) were dissolved in 0.05 M HCl and diluted using dialysis or
Krebs’–Ringer’s solution phosphate buffer (KRP) (in mM: 118 NaCl, 25
NaHCO3, 4.7 KCl, 1.3 CaCl2, 1.2 MgSO4, 1.2 KH2PO4, 5.0 HEPES, and
10 glucose, pH 7.4) buffer for in vivo or in vitro experiments, respectively.
( S)-4-carboxyphenylglycine (CPG), (RS)-1-aminoindan-1,5-dicarboxylic
acid (AIDA), (RS)-1-amino-5-phosphonoindan-1-carboxylic acid
(APICA), and (2 R,4 R)-4-aminopyrrolidine-2,4-dicarboxlylate (APDC;
Tocris-Cookson, Ballwin, MO) were dissolved in one equivalent NaOH
and diluted in dialysis buffer or KRP. All remaining compounds were
purchased from Sigma and dissolved in dialysis buffer for microdialysis
experiments or KRP buffer for in vitro uptake experiments, including
tetrodotoxin (TTX), the L-type Ca 2� channel blocker diltiazem (DTZ),
the P/Q-type Ca 2� channel blocker �-conotoxin MVIIC (MVIIC), the
N-type Ca 2� channel blocker �-conotoxin GVIA (GVIA), and the
cAMP-dependent protein kinase (PKA) inhibitor and activator, Rp-
adenosine 3,5-cyclic monophospothioate triethylamine (Rp-cAMPS) and
Sp-adenosine 3,5-cyclic monophospothioate triethylamine (Sp-cAMPS),
respectively.

In vivo microdialysis. Microdialysis probes were constructed as de-
scribed by Robinson and Whishaw (1988) except both the inlet and outlet
tubing consisted of fused silica. The active region of the dialysis mem-
brane was between 2 and 3 mm in length and �0.22 mm in diameter. The
recovery for probes with this design ranged from 6 to 11% at 32°C. The
night before the experiment, the probes were inserted through the guide
cannulas into the ventral striatum. The next day, dialysis buffer (in mM:
5 glucose, 140 NaCl, 1.4 CaCl2, 1.2 MgCl2, and 0.15% PBS, pH 7.4) was
pumped through the microdialysis probes at a rate of 2 �l /min. Two
hours later, baseline samples were collected. Liquid switches (Uniswitch;
Bioanalytical Systems, West Lafayette, IN) were used to minimize pres-
sure fluctuations while changing dialysis buffers with varying concentra-
tions of drug. The standard protocol used for microdialysis experiments
involved the collection of five 20 min baseline samples, followed by three
additional 20 min samples for each concentration of a given drug or
combination of drugs, as indicated in the figures. An exception to the
standard protocol is the experiments presented in Figure 6, in which 1.0
�M APICA and 0.5 �M CPG were infused for 2 and 3 hr, respectively.
The other exception is the experiment presented in Figure 3, in which six
10 min baseline samples were collected. Afterwards, additional 10 min
samples were collected during reverse dialysis of CPG (0 or 5.0 �M) for
1 hr, followed by reverse dialysis of the same dose of CPG plus K � (80
mM) for 30 min. This procedure was then repeated 2 hr later with the
other dose of CPG. The order of CPG dose (i.e., 0 or 5 �M) was
counterbalanced across rats. Because there was not a significant order
effect, the data for each CPG dose (i.e., 0 or 5.0 �M) was collapsed across
the order of presentation. The concentrations of the compounds were
selected from previous microdialysis studies (APDC, APICA, GVIA,
CPG, Xi et al., 2002; TTX, Miller and Abercrombie, 1999; DTZ, Hu et
al., 1999; GVIA and MVIIC, Okada et al., 1998, Bergquist et al., 1998)
or efficacy estimates (TBOA, Shimamoto et al., 1998).

Glutamate and dopamine quantification. Microdialysis samples ana-
lyzed for glutamate only were collected into vials containing 10 �l of 0.05
M HCl. Samples analyzed for dopamine were collected into 20 �l of
mobile phase (see description below). The concentration of glutamate in
dialysis samples was determined using HPLC coupled to fluorescence
detection. Precolumn derivitization of glutamate with O-pthalaldehyde
was performed using a Gilson (Middleton, WI) 231 XL autosampler.
The mobile phase consisted of 13% acetonitrile, 100 mM Na2HPO4, and
0.1 mM EDTA, pH 5.90. Glutamate was separated using a reversed-phase
column (3 �M; 100 � 4.2 mm; Bioanalytical Systems) and was detected
using a Shimadzu (Columbia, MD) 10RF-A fluorescence detector with
an excitation wavelength of 320 nm and an emission wavelength of 400
nm. Dopamine was determined using HPLC coupled to electrochemical
detection. The mobile phase consisted of 15% acetonitrile, 10% metha-
nol, 150 mM NaH2PO4, 4.76 mM citric acid, 3 mM SDS, and 50 �M EDTA,
pH 5.6. Dopamine was separated using a reversed-phase column (3 �M;
100 � 4.2 mm; Bioanalytical Systems) and was detected using coulomet-
ric detection (ESA Inc., Bedford MA). Three electrodes were used, a
preinjection port guard cell (�0.25 V) to oxidize the mobile phase, an
oxidation analytical electrode (�0.22 V) and a reduction analytical
electrode (�0.150). The concentration of glutamate and dopamine in
dialysis samples was quantified by comparing peak heights from samples
and external standards.

[35S]cystine uptake. Rats were decapitated, and the striatum was rap-
idly dissected and cut into 350 � 350 �m slices using a McIlwain tissue
chopper. The slices were then washed five times for 10 min each at 37°C
in oxygenated KRP. The slices were incubated at 37°C in oxygenated
KRP buffer containing 1.0 �M [ 35S]cystine (0.1 �Ci) for 15 min. Cystine
uptake can also occur via two other mechanisms, XAG and �-glutamyl
transpeptidase (Knickelbein et al., 1997). To isolate cystine uptake to
cystine–glutamate exchange, the XAG inhibitor aspartate (1 mM) and the
�-glutamyl transpeptidase inhibitor acivicin (1 mM) were added to the
incubation buffer. Incubation was terminated by rapidly washing the
tissue three times using ice-cold KRP. Slices were then solubilized using
1% SDS, and the level of radioactivity was determined using a liquid
scintillation counter. Radioactivity counts from known concentrations of
[ 35S]cystine were used to determine the concentration of [ 35S]cystine in
tissue slices. Protein content in the slices was measured using the Brad-
ford assay. Cystine uptake in the presence of unlabelled 1 mM cystine was
used to identify nonspecific labeling and was subtracted from all data.
The concentrations of compounds used in these experiments are similar
to those used in previous studies (Rp-cAMP, Bedi et al., 1998; Sp-cAMP,
Kaji et al., 1996, Hu et al., 2001; APDC, Mistry et al., 1998, Doi et al.,
2002; APICA, Krenz et al., 2000) and/or efficacy estimates in rat (APDC
and APICA, Schoepp et al., 1995, 1999). The high dose of the PKA
activator Sp-cAMP (1 mM) was chosen to provide a high signal to detect
any potential inhibition by APDC (Kaji et al., 1996; Hu et al., 2001).

Histology and statistical analyses. Rats included in the microdialysis
studies were given an overdose of pentobarbital, and the brains were fixed
by intracardiac infusion of 0.9% saline followed by 1% formalin solution.
Brains were then removed and stored in 1% formalin for at least 1 week
before sectioning. The tissue was then blocked, and coronal sections (100
�M) were cut and stained with cresyl violet to verify probe placements.
All probes were located in the ventral 50% of the striatum, correspond-
ing to the nucleus accumbens and ventral portion of the caudate. The
SPSS statistics package was used to perform the statistical analyses. Data
were analyzed using one-way ANOVA with drug concentration as a
repeated factor. Significant main effects were further analyzed using
Fisher’s LSD when appropriate. Microdialysis data for each rat are
presented as percentage of change from baseline.

RESULTS
The origin of extracellular glutamate
The contribution of vesicular release to extracellular glutamate
concentrations in the rat striatum was determined by reverse
dialysis of the voltage-dependent Na� channel blocker TTX, the
L-type Ca2� channel blocker DTZ, the P/Q-type Ca2� channel
blocker MVIIC, or the N-type Ca2� channel blocker GVIA.
Basal concentrations of extrasynaptic glutamate (mean � SEM)
from rats treated with TTX, DTZ, MVIIC, or GVIA were 1.33 �
0.29, 2.44 � 0.41, 1.26 � 0.30, and 3.47 � 0.67 �M, respectively.
Figure 1a illustrates that reverse dialysis of TTX, DTZ, and
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MVIIC failed to significantly decrease extrasynaptic glutamate
levels, whereas reverse dialysis of GVIA produced a significant
30% decrease in basal extrasynaptic glutamate levels.

The contribution of nonvesicular release of glutamate to extra-
cellular levels was determined by inhibiting cystine–glutamate
exchange. Inhibition of cystine–glutamate exchange has been
previously demonstrated in vitro using homocysteic acid (Bannai
and Ishii, 1982; Murphy et al., 1990) and CPG (Ye et al., 1999),
which blocks both [35S]cystine uptake and [3H]glutamate release,
indicating that it is not transported (Ye et al., 1999). Basal
concentrations of extrasynaptic glutamate (mean � SEM) from
rats treated with HCA or CPG were 2.11 � 0.52 and 4.00 � 1.03
�M, respectively. In contrast with the relatively modest effect
obtained after blockade of vesicular release, reverse dialysis of
the cystine–glutamate exchange inhibitors HCA or CPG pro-
duced a 60% decrease in basal extrasynaptic glutamate (Fig. 1a).

To verify that CPG and HCA directly inhibit cystine–gluta-
mate exchange, the uptake of [35S]cystine in rat striatal tissue
slices was measured in the presence and absence of these inhib-
itors. Figure 2 illustrates that both CPG and HCA decreased in
vitro [ 35S]cystine uptake by �80%. The lack of an effect of the
group I mGluR antagonist AIDA or NMDA on the uptake of
[35S]cystine in tissue slices demonstrates that blockade of cystine
uptake by CPG and HCA was not caused by other known actions
of these drugs (Lehmann et al., 1988; Hayashi et al., 1994;
Schoepp et al., 1999), including inhibiting group I mGluRs or
stimulating NMDA receptors, respectively (Fig. 2).

To examine whether vesicular and nonvesicular release com-
prises independent pools of glutamate in the striatum, in vivo
microdialysis was used to examine the effect of blocking cystine–
glutamate exchange on potassium-induced release of glutamate.
Basal concentrations of extrasynaptic glutamate (mean � SEM)
before infusion of 0 or 5.0 �M CPG were 1.83 � 0.36 and 2.01 �
0.41 �M, respectively. Figure 3 indicates that reverse dialysis of 80
mM K� produced a significant increase in extracellular glutamate

levels in the striatum relative to the hour before stimulation.
Pretreatment with 5.0 �M CPG did not decrease K�-induced
release of glutamate. In fact, the 5.0 �M CPG group showed a
nonsignificant trend toward potentiating K�-induced increase in
extracellular glutamate (0.5 �M CPG infusion � SEM � 291 �
95; mean change from 0 �M CPG � SEM � 194 � 35).

Figure 2. CPG and HCA directly block the cystine–glutamate anti-
porter. The uptake of [ 35S]cystine in striatal tissue slices incubated was
measured in the presence and absence of CPG, HCA, the group I mGluR
antagonist AIDA, or NMDA (N � 4/drug). Data are presented as
[ 35S]cystine uptake in the presence of inhibitors expressed as percentage
of change of [ 35S]cystine uptake in the absence of inhibitors. A one-way
ANOVA on [ 35S]cystine uptake indicated a significant effect of drug
concentration for CPG (F(3,9) � 47.23; p � 0.05) and HCA (F(3,9) � 15.74;
p � 0.05) . *p � 0.05, difference from [ 35S]cystine uptake in the absence
of inhibitors (Fisher’s LSD post hoc analysis).

Figure 1. In vivo microdialysis was used to sample extrasynaptic glutamate in the striatum before and after reverse dialysis of the Na �-channel blocker
TTX (n � 9), the L-type Ca 2� channel blocker diltiazem (n � 7), the P/Q-type Ca 2� channel blocker MVIIC (n � 6), the N-type Ca 2� channel blocker
GVIA (n � 8), or the cystine–glutamate antiporter inhibitors HCA (n � 6) and CPG (n � 7). a, Data are presented as mean (� SEM) glutamate
(percentage of baseline levels) from samples collected during baseline (100 min) or at each drug concentration (60 min/concentration). b, Data from a
are presented as glutamate across 20 min samples for rats receiving GVIA (0 or 10 �M) or CPG (0, 0.05, 0.5, 5.0, and 50 �M). The downward pointing
arrow indicates the beginning of the infusion of GVIA or CPG. Upward pointing arrows indicate increases in CPG concentration as described in a. A
one-way ANOVA on glutamate levels indicated a significant effect of drug concentration for GVIA (F(1,5) � 6.75; p � 0.05), HCA (F(4,20) � 10.19; p �
0.05), and CPG (F(4,24) � 18.64; p � 0.05). *p � 0.05, compared with baseline levels difference from baseline (Fisher’s LSD post hoc analysis).
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Regulation of the cystine–glutamate antiporter by
mGluR2/3 and PKA
Because group II mGluRs have been shown to inhibit vesicular
release of glutamate (Conn and Pin, 1997; Anwyl, 1999), cystine
uptake in striatal tissue slices was used to determine whether
mGluR2/3 also regulates cystine–glutamate antiporters. Figure
4a illustrates that the mGluR2/3 agonist APDC produced a dose-
dependent decrease in [35S]cystine uptake in striatal tissue slices
that was reversed by coadministration of the mGluR2/3 antago-
nist APICA (Fig. 4b). The role of PKA in the inhibition of
cystine–glutamate exchange by APDC was examined because
mGluR2/3 is Gi-coupled and inhibits PKA activity (Cartmell and
Schoepp, 2000), as well as the fact that the sequence of human Xct
contains two consensus PKA phosphorylation sites (revealed in a
search for common motifs using GCG; Biomedical Computing
Resources, Medical University South Carolina). Figure 4c illus-
trates that the PKA inhibitor Rp-cAMPS produced a significant
decrease in [35S]cystine uptake, revealing a role for PKA phos-
phorylation in regulating cystine–glutamate exchange. Although
activation of PKA by Sp-cAMPS did not affect [35S]cystine
uptake, in the presence of Sp-cAMPS, APDC failed to signifi-
cantly decrease [35S]cystine uptake (Fig. 4c).

In vivo microdialysis was used to determine whether Na�-
dependent glutamate transporters regulate the extracellular glu-
tamate that is derived from cystine–glutamate exchange. Basal
concentrations of extrasynaptic glutamate (mean � SEM) from
rats treated with TBOA or TBOA plus CPG were 3.87 � 0.11 and
1.67 � 0.20 �M, respectively. Figure 5 illustrates that reverse
dialysis of the broad-spectrum inhibitor of Na�-dependent glu-
tamate transport TBOA (Shimamoto et al., 1998) produced a
significant increase in extrasynaptic glutamate in the striatum.

The TBOA-induced rise in extracellular glutamate was prevented
by previous infusion of the cystine–glutamate exchange inhibitor
CPG.

Glutamate released by the cystine–glutamate
antiporter modulates mGluR2/3 and the levels of
extracellular glutamate and dopamine
Group II mGluRs are located perisynaptically on axon terminals
and are therefore directly accessible by extrasynaptic glutamate
released via the cystine–glutamate antiporter (Tamaru et al.,
2001). Using mGluR2/3 antagonists it was previously shown that
endogenous tone exists on these receptors in vivo (Baskys and
Malenka, 1991; Cochilla and Alford, 1998; Hu et al., 1999; Xi et
al., 2002). In vivo microdialysis was used to determine whether the
cystine–glutamate antiporter is the source of glutamate that pro-
vides tonic in vivo stimulation to mGluR2/3. Figure 6a illustrates
that infusion of the mGluR2/3 antagonist APICA into the stria-
tum significantly increased extrasynaptic glutamate levels. Co-
infusion of the cystine–glutamate exchange inhibitor CPG pre-
vented the APICA-induced rise in extrasynaptic glutamate (Fig.
6a). In parallel with the reduction in glutamate, blockade of
cystine–glutamate exchange produced a significant increase in
extrasynaptic dopamine levels (Fig. 6b). The CPG-induced in-
crease in dopamine was reversed after co-infusion of the group II
agonist APDC (Fig. 6c). Basal concentrations of extrasynaptic
glutamate (mean � SEM) from rats treated with APICA alone,
CPG alone, or APICA plus CPG were 3.36 � 0.70, 3.70 � 0.74,
and 4.25 � 0.87 �M, respectively. Basal concentrations of extra-
synaptic dopamine from rats treated with CPG alone or CPG
plus APDC were 1.73 � 0.26 and 1.85 � 0.42 nM, respectively.

DISCUSSION
The major finding in the present report is that in vivo extracellular
glutamate in the rat striatum is maintained primarily by nonve-
sicular glutamate release from the cystine–glutamate antiporter.
The importance of this finding is evident, in part, from the
observation that nonvesicular glutamate release from the anti-
porter regulates extracellular concentrations of both glutamate
and dopamine by providing endogenous tone to mGluR2/3. This
finding poses the possibility that nonvesicular release of glutamate
shapes synaptic activity.

The origin of extrasynaptic glutamate
Extracellular glutamate in vivo is present in micromolar concen-
trations outside the synapse and is primarily maintained by non-
vesicular release (Herrera-Marschitz et al., 1996; Timmerman
and Westerink, 1997). The present data reveals that blockade of
nonvesicular glutamate release from cystine–glutamate antiport-
ers by reverse dialysis of HCA or CPG produces a 60% decrease
in extrasynaptic glutamate measured in vivo. Furthermore, CPG
and HCA directly inhibited [35S]cystine uptake in striatal tissue
slices, whereas NMDA and the group I mGluR antagonist AIDA
were ineffective. The latter finding indicates that the effects of
CPG and HCA on the cystine–glutamate antiporter are indepen-
dent of previously described actions at group I mGluRs or
NMDA receptors, respectively (Lehmann et al., 1988; Hayashi et
al., 1994; Schoepp et al., 1999). This is consistent with previous
research showing that blockade of group I mGluR or stimulation
of NMDA receptors does not decrease extracellular glutamate
levels (Yamamoto et al., 1999; Hashimoto et al., 2000; Swanson et
al., 2001). Thus, these data are the first to reveal that nonvesicular
glutamate release from cystine–glutamate antiporters is the pri-
mary source of extracellular glutamate in the striatum. A recent

Figure 3. In vivo microdialysis was used to sample extrasynaptic gluta-
mate in the striatum after reverse dialysis of K � alone (i.e., 0 �M CPG �
K �; n � 8) or after reverse dialysis of 5.0 �M CPG followed by 5.0 �M
CPG plus K � (80 mM; n � 8). Mean extracellular glutamate levels (�
SEM) in the 0 �M CPG experiment were 1.83 � 0.36 �M during baseline
and 1.52 � 0.28 �M during 0 �M CPG. The decrease in extracellular
glutamate during the 0 �M CPG treatment was not significantly different
from baseline and was essentially caused by a single rat that exhibited
stable basal levels but exhibited a drop in glutamate while switching
dialysis buffer. In the 5.0 �M CPG experiment, extracellular glutamate
levels were 2.01 � 0.41 �M during baseline and 1.33 � 0.24 during 5.0 �M
CPG. Because 5.0 �M CPG lowered extracellular glutamate levels, the
data presented are normalized to glutamate levels at 0 or 5.0 �M CPG. A
two-way ANOVA on glutamate levels across time between rats treated
with 0 or 5.0 �M CPG indicated a significant effect of time (F(3,42) � 3.337;
p � 0.05). *p � 0.05, difference from respective CPG baseline (0 or 5.0
�M; Fisher’s LSD post hoc analysis).
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finding that continuous release of nonvesicular glutamate de-
tected in hippocampal tissue slices regulates synaptic transmis-
sion (Jabaudon et al., 1999) poses the possibility that glial cells
regulate synaptic activity throughout the brain not only by clear-
ing extrasynaptic glutamate, but by releasing it as well.

Vesicular glutamate has also been shown to contribute to basal
glutamate levels in the striatum. For instance, blockade of vesic-
ular glutamate release by has been demonstrated to deplete basal
glutamate levels in the striatum as much as 50% (Newcomb and
Palma, 1994; Herrera-Marschitz et al., 1996) (but see, Westerink
et al., 1989; You et al., 1994). The present data obtained similar
results insofar as blockade of vesicular release after reverse dial-

ysis of the N-type Ca2� channel blocker GVIA produced a
statistically significant decrease in extracellular glutamate levels
(30%). As opposed to N-type Ca2� channels, blockade of
voltage-dependent Na� channels failed to decrease extracellular
glutamate levels; a finding demonstrated previously (Westerink et
al., 1987). This indicates that although a vesicular component
contributes to basal glutamate levels, it is not in response to
action potentials. Interestingly, recent evidence indicates that
N-type Ca2� channels, as well as vesicular scaffolding proteins,
are present in glial cells (Parpura et al., 1995; Jeftinija et al., 1997;
Verkhratsky et al., 1998). Thus, the detected vesicular component
of basal glutamate levels may arise, in part, by vesicular release of
glutamate from glia, which has been demonstrated in vitro (Par-
pura et al., 1994; Bezzi et al., 1998; Araque et al., 2000; Haydon,
2001; Pasti et al., 2001). Alternatively, it could be caused by
spontaneous vesicular release of glutamate in neurons (Pare et al.,
1998). Regardless of the source of vesicular glutamate, the
present data demonstrate that although basal glutamate levels in
the striatum are derived by vesicular and nonvesicular glutamate
release, the major contributor is from nonvesicular cystine–glu-
tamate exchange. Furthermore, the vesicular and nonvesicular
components of basal glutamate levels are distinct pools of gluta-
mate because blockade of cystine–glutamate exchange did not
alter potassium-induced glutamate release, which has been shown
repeatedly to be of vesicular origin (Paulsen and Fonnum, 1989;
Forray et al., 1999; Ueda et al., 2000).

Regulation of the cystine–glutamate antiporter
In parallel with the regulation of synaptic vesicular glutamate
release, extrasynaptic nonvesicular glutamate release from cys-
tine–glutamate antiporters was found to be regulated by
mGluR2/3 receptors and Na�-dependent glutamate transport.
Vesicular glutamate release from neurons is negatively regulated
by mGluR2/3 autoreceptors (Baskys and Malenka, 1991; Cochilla
and Alford, 1998; Hu et al., 1999; Xi et al., 2002). Similarly, the

Figure 4. The cystine–glutamate antiporter is regulated by group II mGluR autoreceptors via a PKA-dependent mechanism. The uptake of [ 35S]cystine
in striatal tissue slices was measured in the presence and absence of the group II agonist APDC, the group II antagonist APICA, the PKA activator
Sp-cAMPS, or the PKA inhibitor Rp-cAMPS (n � 4–10/group). Data are presented as [ 35S]cystine uptake in the presence of inhibitors expressed as
percentage of change of [ 35S]cystine uptake in the absence of inhibitors. A one-way ANOVA on [ 35S]cystine uptake indicated a significant effect of drug
concentration for APDC alone (F(3,27) � 5.34; p � 0.05), APDC plus APICA (F(3,9) � 5.23; p � 0.05), and Rp-cAMPS (F(1,3) � 10.47; p � 0.05). *p �
0.05, difference from [ 35S]cystine uptake in the absence of inhibitors (Fisher’s LSD post hoc analysis).

Figure 5. Na �-dependent glutamate transporters shape the effect of
glutamate released from the cystine–glutamate antiporter. In vivo micro-
dialysis was used to sample extrasynaptic glutamate in the striatum before
and after infusion of the broad spectrum Na �-dependent glutamate
transport inhibitor TBOA alone (n � 6) or with the cystine–glutamate
exchange inhibitor CPG (n � 6). A one-way ANOVA on glutamate levels
indicated a significant effect of drug concentration for only TBOA alone
(F(3,30) � 9.45; p � 0.05). *p � 0.05, difference from baseline (Fisher’s
LSD post hoc analysis).
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mGluR2/3 agonist APDC decreased the rate of cystine–gluta-
mate exchange, evident as a decrease in [35S]cystine uptake into
striatal tissue slices and a reduction in the extracellular level of in
vivo glutamate. Also, mGluR2/3 is GI-coupled to inhibit adenylyl
cyclase and the subsequent activation of PKA (Conn and Pin,
1997; Schoepp et al., 1999). Thus, decreased vesicular glutamate
release from neurons by stimulating mGluR2/3 has been shown to
arise in part from reducing PKA phosphorylation of N-type
calcium channels (Lin et al., 2000; Alagarsamy et al., 2001).
Similarly, the APDC-induced decrease in [35S]cystine uptake in
the present study was mimicked by the PKA inhibitor Rp-cAMPS
and reversed by the PKA activator Sp-cAMPS. Finally, Na�-
dependent glutamate transporters shape the effects of vesicular
glutamate on synaptic activity by clearing extracellular glutamate
from the synaptic space (Danbolt, 2001). In parallel, blockade of
Na�-dependent glutamate transporters in the present study pro-
duced a significant increase in extracellular glutamate levels in
the striatum that was prevented by blockade of the cystine–
glutamate antiporter, indicating that Na�-dependent glutamate
transporters clear nonvesicular glutamate released by the anti-
porter. Thus, just as synaptic vesicular glutamate release is regu-
lated by mGluR2/3 and by Na�-dependent transporters, extra-
synaptic nonvesicular glutamate released from the antiporter is
also regulated by these cellular mechanisms. The primary loca-
tion of the antiporter may be on glia (Pow, 2001) posing the

existence of parallel mGluR2/3-mediated mechanisms for regu-
lating two pools of glutamate, one arising from neurons main-
tained by vesicular release and one arising from glia maintained
by nonvesicular release.

Cystine–glutamate exchange provides endogenous
tone on mGluR2/3 regulating extracellular glutamate
and dopamine
Although glial and neuronal glutamate release systems are par-
allel, the cellular localization of cystine–glutamate antiporters on
glial cells neighboring neurons (Pow, 2001) and the extrasynaptic
location of mGluR2/3 on axon terminals (Alagarsamy et al., 2001)
pose the possibility that these systems influence one another. In
support, earlier studies have shown that blockade of mGluR2/3
produces an increase in extracellular levels of glutamate and
dopamine, implying the existence of endogenous stimulation of
these receptors that is capable of modulating synaptic activity
(Hu et al., 1999; Xi et al., 2002). The present data demonstrate
that cystine–glutamate antiporters are a source of glutamate
supplying endogenous stimulation to mGluR2/3. In support and
consistent with recent reports showing that nonvesicular gluta-
mate release in vitro regulates glutamatergic synaptic transmis-
sion (Jabaudon et al., 1999; Warr et al., 1999), blockade of the
antiporter prevented the rise in extracellular glutamate associ-
ated with mGluR2/3 blockade. Blockade of the antiporter also

Figure 6. Glutamate released from the cystine–glutamate antiporter tonically stimulates group II mGluRs regulating glutamate and dopamine release.
a, Extrasynaptic glutamate sampled in vivo from the striatum using microdialysis before and after infusion of the group II mGluR antagonist APICA
alone (n � 11) or with CPG (n � 6). b, Extrasynaptic glutamate (n � 6) and dopamine (n � 5) sampled from the striatum before and after infusion
of CPG alone for 3 hr. c, Extrasynaptic dopamine sampled from the striatum before and after infusion of CPG with the group II mGluR agonist APDC
(n � 4). Data are presented as mean (� SEM) glutamate (percentage of baseline) from samples collected during baseline (100 min) or at each drug
concentration (60 min/concentration). A one-way ANOVA indicated a significant effect of APICA alone (F(1,10) � 5.21; p � 0.05) or APICA plus CPG
(F(2,10) � 6.652; p � 0.05) on glutamate levels (a), CPG alone on glutamate (F(3,18) � 4.00; p � 0.05) or dopamine levels (F(3,12) � 4.82; p � 0.05) (b),
and CPG plus APDC (F(3,9) � 9.21; p � 0.05) (c). *p � 0.05, difference from baseline (Fisher’s LSD post hoc analysis). �p � 0.05, difference from CPG
alone (Fisher’s LSD).
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increased extracellular dopamine levels, which are well charac-
terized to be of vesicular, synaptic origin (Timmerman and Wes-
terink, 1997). Moreover, the increase in dopamine was reversed
by stimulating mGluR2/3, indicating that glutamate derived from
cystine–glutamate exchange is providing tone to presynaptic
mGluR2/3 heteroreceptors. The relevance of glutamate sampled
using microdialysis has been questioned because it was derived
from nonvesicular release (Timmerman and Westerink, 1997).
Thus, an important implication of the present data set is to
provide an in vivo demonstration that nonvesicular neurotrans-
mitter release can contribute to synaptic activity.

These data reveal the primary source of basal extrasynaptic
glutamate in the striatum is the cystine–glutamate antiporter,
with a lesser contribution by vesicular glutamate. Moreover, non-
vesicular glutamate released from this antiporter, which may be
primarily in glial cells (Pow, 2001), was shown to provide in vivo
tone to mGluR2/3 that regulate both glutamate and dopamine
transmission. These data also indicate that parallels exist in the
cellular regulation of nonsynaptic glutamate from glia and syn-
aptic glutamate from neurons because both are controlled by
mGluR2/3 and Na�-dependent transporters. Recently, the tradi-
tional view of the synapse has been challenged by in vitro studies
suggesting that vesicular glutamate release from glial cells con-
tributes to synaptic activity (Parpura et al., 1994; Bezzi et al.,
1998; Araque et al., 2000; Haydon, 2001; Pasti et al., 2001). The
present data complement the notion that our current view of
neurotransmission is incomplete by providing in vivo evidence
that nonvesicular glutamate release, via cystine–glutamate ex-
change, also contributes to synaptic transmission.
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