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ABSTRACT 
 

JENNIFER LINTON HARMON.  Serotonin Receptor 2-Induced Mitochondrial Biogenesis 

as a Therapeutic Strategy for the Treatment of Multiple Pathologies.  (Under the 

direction of CRAIG C. BEESON and RICK G. SCHNELLMANN)  

 

Mitochondrial dysfunction is a common pathophysiological feature in many acute and 

chronic organ injury states.  Often, this mitochondrial dysfunction is sub-lethal and 

persistent and is a major contributor to loss of cellular function in the absence of cell 

death.  Mitochondrial biogenesis (MB) is the process by which new mitochondria are 

created, and studies have demonstrated that pharmacological induction of MB can 

reverse loss of mitochondrial content, improve mitochondrial function and reduce 

measures of acute organ injury.  

 

Several classes of pharmacological agents that induce MB through divergent 

mechanisms have been identified.  Previous studies demonstrated that 2,5-Dimethoxy-

4-iodoamphetamine (DOI), a potent but non-specific serotonin receptor 2 (5-HT2) 

receptor agonist, was able to induce MB.  Based on these findings, we screened a panel 

of 5-HT2 receptor-specific agonists and antagonists and found that both the potent 5-

HT2C receptor agonist CP-809,101 and antagonist SB-242,084 were able to induce MB 

at nanomolar concentrations in RPTC and that these 5-HT2C receptor ligands were able 

to induce MB in mouse renal cortex.  Further work with these compounds using genetic 

manipulation of 5-HT2 receptor expression in both knockout mouse models and 

treatment of primary RPTC with siRNA directed toward either the 5-HT2A or 5-HT2C 

receptor revealed that the observed ability of both of these compounds to induce 

biogenesis is dependent on the expression of the 5-HT2A receptor.   

 



xii 

 

After identifying the 5-HT2 receptor responsible for the biogenic capacity of both ligands, 

we identified another drug, amoxapine, as a potent 5-HT2A/2C receptor antagonist and 

potential inducer of MB.  Amoxapine increased cellular respiration, a marker of MB, in 

primary renal proximal tubule cells (RPTC) and induced an increase in PGC-1α mRNA 

expression; additionally, it increased peroxisome proliferator-activated receptor gamma 

co-activator (PGC-1a) mRNA expression in mouse renal cortex, indicating that it might 

be a potential pharmacological therapy for treatment of acute organ injury.  However, 

daily amoxapine treatment of mice exposed to folic acid-induced acute kidney injury (FA-

AKI) did not reverse mitochondrial deficits and did not improve renal function or survival 

in these mice.   

 

Having identified the potential benefits of acute organ injury treatment with 

pharmacological inducers of MB, we observed that traumatic brain injury (TBI) caused 

the disruption of mitochondrial homeostasis in both the ipsilateral striatum and cortex 

after closed cortical impact (CCI), with concomitant increases in signaling through 

pathways associated with post-injury mitochondrial dysfunction.  Future work 

characterizing the pattern of mitochondrial dysregulation and elucidating the signaling 

pathways that contribute to the suppression of mitochondrial function may reveal novel 

drug targets for pharmacological management of TBI as well as other acute organ injury 

states.
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CHAPTER ONE 
 

INTRODUCTION 

 

MITOCHONDRIAL BIOLOGY 

Structure and Function of Mitochondria 

Mitochondria are subcellular organelles that are responsible for many processes that are 

critical to cellular function, including production of energy in the form of adenosine 

triphosphate (ATP), maintenance of calcium homeostasis, regulation of apoptosis, and 

generation of reactive oxygen species (ROS) in response to both physiological and 

pathological stimuli (1).  These organelles have a unique double-membrane structure, 

which allows for sequestration of proteins and other mitochondrial contents into four 

locations: the outer mitochondrial membrane (OMM), the intermembrane space, the 

inner mitochondrial membrane (IMM) that contains the five electron transport chain 

(ETC) complexes and is organized into cristae to regulate ATP production rates, and the 

matrix, which is the innermost compartment in which many of the processes governing 

ATP production occur and is a major site for the generation of reactive oxygen species 

and free radicals (1-4) .  Additionally, the mitochondrial matrix contains mitochondrial 

DNA (mtDNA) and the enzyme manganese superoxide dismutase (MnSOD; SOD2), 

which comprises the primary defense against oxidant damage to the ETC and mtDNA 

(4).   

 

Mitochondria contain their own DNA, which has a double-stranded circular structure and 

encodes 13 proteins of the electron transport chain complexes, as well as 22 transfer 

RNAs and 2 ribosomal RNAs (1).  Transcription and replication of mtDNA are performed 

by nuclear-encoded proteins which are, respectively, mitochondrial transcription factor A 
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(TFAM) and DNA polymerase γ (POLG) in concert with the TWINKLE helicase (1).  A 

single mitochondrion can contain thousands of copies of mtDNA, and the relatively high 

rate of mtDNA mutation can result in populations of mtDNA with slightly different 

sequences—as well as populations of mitochondria with differences in mtDNA existing 

within one cell— which is called heteroplasmy (5).  However, the sorting of mtDNA 

through mitochondrial fission and fusion, as well as the process of mitophagy, comprise 

a highly coordinated mechanism for the removal and degradation of mtDNA with 

deleterious mutations (2). 

Mitochondrial Biogenesis 

Mitochondria are highly dynamic organelles requiring tight regulation of mitochondrial 

number and function, which hinges upon mitochondrial biogenesis (MB), the process by 

which mitochondria grow and divide, resulting in alterations to mitochondrial size, 

number, mass and/or function (2, 6).  This process is multifaceted, requiring the 

coordination of fission, fusion, mtDNA replication, transcription of genes from both 

mitochondrial and nuclear DNA, and the translation and import of proteins encoded in 

the nucleus (Fig. 1-1) (2, 6).  Transcriptional regulation, including the major signaling 

mechanisms that control this process, is the best characterized and most easily 

pharmacologically-modulated facet of MB, although post-translational modulation of key 

regulatory proteins is also a viable target for therapeutic induction of MB (7).  
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Fig. 1-1.  Schematic Representation of Mitochondrial Biogenesis. Peroxisome 

proliferator-activated receptor gamma co-activator (PGC-1a) activates nuclear 

transcription factors (NTFs) leading to transcription of nuclear- encoded proteins and of 

the mitochondrial transcription factor Tfam. Tfam activates transcription and replication 

of the mitochondrial genome. Nuclear-encoded proteins are imported into mitochondria 

through the outer- (TOM) or inner (TIM) membrane transport machinery. Nuclear- and 

mitochondria-encoded subunits of the respiratory chain are then assembled (6). 
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Transcriptional Regulation of Mitochondrial Biogenesis 

Peroxisome-Proliferator-Activated Receptor γ Co-activator α (PGC-1α)   

PGC-1α, a non-DNA binding co-activator of a number of nuclear transcriptional factors, 

is a critical stimulator and the “master regulator” of MB that is responsive to a number of 

physiological and pathological stimuli in the cell (6, 8).  First identified in muscle and 

brown adipose and highly expressed in tissues with high energy demands, such as 

kidney, liver, heart and brain, this protein both strongly induces expression of and co-

activates nuclear respiratory factors (NRF 1 and 2) to promote the further transcription of 

mitochondrial proteins, which are then translated into precursor proteins in the cytosol 

and imported into the mitochondria by the translocases of the outer and inner 

membranes (6, 8-11).  In the nucleus, NRFs are responsible for transcription of oxidative 

phosphorylation (ETC) proteins as well as TFAM, which translocates to the 

mitochondrial matrix to coordinate the transcription of the 13 proteins encoded by the 

mtDNA and stabilize the mitochondrial genome  (5, 8-10).   

 

Regulation of PGC-1α by Cell Signaling Pathways 

Many cell signaling pathways have been implicated in the induction of PGC-1α, including 

cyclic AMP (cAMP) via the cAMP response element-binding protein (CREB), calcium via 

calcineurin and calcium/calmodulin-dependent protein kinase (CAMK), SIRT1, AMP 

kinase (AMPK), mitochondrial target of rapamycin (mTOR), myocyte enhancement 

factor-2 (MEF2), p38 MAPK, and nitric oxide (NO) via guanylyl cyclase activation and 

generation of cyclic GMP (cGMP) (Fig. 1-2) (2, 5-7, 12-23).  Through these pathways, 

PGC-1α can respond to a physiological or pathological stress and can be manipulated 

by pharmacologic agents.   



5 

 

 

 
Fig. 1-2. PGC-1α Regulatory Cascade. Thyroid hormone (TH), nitric oxide synthase 
(NOS/cGMP), p38 mitogen-activated protein kinase (p38MAPK), sirtuins (SIRTs), 
calcineurin, calcium-calmodulin-activated kinases (CaMKs), adenosine-monophosphate-
activated kinase (AMPK), cyclin-dependent kinases (CDKs), and β-adrenergic 
stimulation (β/cAMP) have been shown to regulate expression and/or activity of PGC-1α. 
PGC-1α then co-activates transcription factors such as nuclear respiratory factors 
(NRFs) known to regulate mitochondrial biogenesis.(6)  
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Physiological Induction of PGC-1α    

PGC-1α induction is responsible for the cellular response to a number of physiological 

stressors, including caloric restriction, cold exposure and exercise.  In situations in which 

caloric intake is restricted, PGC-1α is increased through a NO-induced increases in 

SIRT1 expression (24, 25). This increase in PGC-1α leads to mitochondrial adaptation 

and metabolic reprogramming toward glycogen and fat mobilization, gluconeogenesis 

and ketogenesis, the end result of which is a shift in energy production and increase in 

lifespan and longevity (25, 26).   

 

PGC-1α is also responsible for thermogenesis in response to cold exposure; when 

exposed to cold for 12 h, an increase in PGC-1α mRNA was observed in mouse 

peripheral tissues, such as skeletal muscle and brown adipose tissue (27).  Downstream 

of this increase in PGC-1α is an increase in uncoupling proteins (UCP 1 and 2) , which 

collapse the proton gradient established by electron transport chain, requiring increased 

flux through the ETC and resulting in a net increase in body temperature (27, 28).   

 

Finally, exercise is also a potent inducer of PGC-1α in fat and in skeletal muscle (29-31).  

This increase in PGC-1α is an adaptation to both acute and chronic physical activity 

through independent signaling pathways.  In periods of acute exercise, PGC-1α 

transcription is activated transiently by calcium signaling through calcineurin A; however, 

chronic exercise activates AMPK as well as an autoregulatory signaling loop that 

includes MEF2 and CAMK, the end result of which is an altered distribution of muscle 

tissue from fast-twitch type II to slow twitch type I, the oxidative fibers that promote 

endurance  (30-33). 
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Induction of PGC-1α after Cellular Injury   

Many organ pathologies that provoke cellular injury through hypoxia, reactive oxygen 

species, or inflammation can also induce cellular stress responses that result in the 

increase of mitochondrial biogenesis by induction of PGC-1α.  Both C2C12 myoblasts 

exposed to hypoxic conditions and the skeletal muscle of mice that underwent arterial 

ligation-induced hypoxia demonstrated an increase in both PGC-1α mRNA and protein 

after 3 h of oxygen deprivation (34).  Further examination of  hypoxia in cultured primary 

cardiac myocytes demonstrated that this increase in PGC-1α is due to increased 

signaling through the AMPK pathway and results in increased uncoupled respiration, 

which suggests that PGC-1α participates in a compensatory mechanism to meet ATP 

demands during periods of hypoxia in the highly energy-dependent heart (35).   

 

Reperfusion after hypoxia also initiates a cascade of events that leads to induction of 

PGC-1α as a result of increased oxidant stress.  Multiple studies have demonstrated that 

cells treated with a non-lethal dose of an oxidant such as hydrogen peroxide or tert-butyl 

hydrogen peroxide (TBHP), which depletes the cellular antioxidant molecule glutathione, 

can induce an increase in PGC-1α and thereby mtDNA copy number and mitochondrial 

mass in both primary cells and immortalized cell lines isolated from a variety of different 

organs, including liver, kidney, heart and brain (36-38).  Many signaling pathways have 

been implicated in the oxidant-induced increase in PGC-1α expression, including 

phosphatidylinositol 3’-kinase (PI3K)-Akt, NO/nNOS, p38 MAPK, Src, and epidermal 

growth factor receptor (EGFR) transactivation (36-39).  Although oxidative stress can be 

propagated by increases in mitochondrial content, PGC-1α can also activate a number 

of antioxidant defenses through direct associate of PGC-1α with transcription factors at 

the promoters of genes encoding the mitochondrial antioxidant proteins SOD2 and 
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UCP2, indicating a functional role for its observed, though seemingly paradoxical, 

induction by oxidative stress (40). 

 

Finally, inflammatory stress can activate signaling pathways leading to the induction of 

mitochondrial biogenesis, which has been identified as a survival factor in patients who 

fully recover from  sepsis, a massive systemic inflammatory process (41).  

Lipopolysaccharide (LPS or endotoxin) is an inflammatory factor released from gram-

negative bacteria; although it has been demonstrated to damage mitochondria, it has 

also been shown to increase expression of PGC-1α both indirectly through activation of 

the PI3K-Akt signaling pathway by ROS but also directly through an increase in 

circulating cytokines and subsequent activation of p38 MAPK tumor necrosis factor-α 

(TNF-α) (42, 43).  Although this induction of PGC-1α is a likely mechanism to sustain 

ATP production in the face of mitochondrial injury due to inflammation and acute 

oxidative stress, it also contributes to cachexia, a negative consequence of cytokine 

release that features both maladaptive thermogenesis and excessive energy 

expenditure (22).   

 

Pharmacological Induction of PGC-1α   

Finally, there are many diverse classes of pharmacological agents that have been 

demonstrated to increase PGC-1α and induce mitochondrial biogenesis in a variety of 

organ systems.  These pharmaceutical classes have three general mechanisms of 

action: duplication of the actions of PGC-1α on peroxisome proliferator activator receptor 

γ (PPARγ), alteration to its activating or deactivating post-translational modifications, and 

activation of one or more of the many signaling pathways that have been previously 
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implicated in increased transcription of PGC-1α as a result of exposure to either 

physiological or pathological stimuli.   

 

One mechanism of pharmacological induction of MB is direct activation of PPARγ,  

which recapitulates the effects of its co-activator PGC-1α (44).  Drugs in the 

thiazolidinedione (TZD) class are the best-characterized inducers of mitochondrial 

biogenesis by this mechanism (44-46).  In human umbilical vein endothelial cells 

(HUVECs), treatment with the TZDs pioglitazone and ciglatazone resulted in increases 

in mRNA expression of PGC-1α, as well as its downstream targets NRF-1, TFAM and 

SOD2, and increased both mtDNA copy number and mitochondrial density (46).  Further 

study in a line of human neuron-like cells recapitulated the increase in mtDNA copy 

number as a result of pioglitazone treatment, and further linked this drug to increases in 

ETC complex I and IV proteins and activity as well as to increased mitochondrial function 

indicated by increases in cellular oxygen consumption (44).  Finally, pioglitazone was 

also demonstrated to restore both PGC-1α mRNA expression and mtDNA copy number 

in human adipose tissue from patients with diabetes, which at baseline were both 

decreased when compared to tissue from non-diabetic controls (45).  These results 

indicate that TZDs have potential for induction of MB to treat a variety of pathological 

processes, including mitochondrial damage caused by chronic hyperglycemia.   

 

PGC-1α can also be activated through post-translational modulation, such as 

deacetylation by SIRT1 and phosphorylation by AMPK (8).  Several different drug 

classes have been demonstrated to activate SIRT1, which leads to deacetylation and 

subsequent activation of PGC-1α. Treatment of primary rabbit RPTC with common 

dietary isoflavones, including the soy phytoestrogens genestein and daidzein, increased 

SIRT1 expression; at the same doses that increased SIRT1, these compounds also 
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caused a decrease in acetylated PGC-1α and concomitant increase in PGC-1α protein 

expression, ETC complex protein expression, uncoupled oxygen consumption and 

increased ATP production (47).  Finally, the SIRT1 activator SRT1720 was also shown 

to decrease acetylated PGC-1α in primary rabbit RPTC, which resulted in a dose-

dependent increase in expression of proteins from ETC complexes I and V and 

uncoupled cell respiration; additionally, SRT1720 increased mtDNA copy number and 

ATP production (48).  These studies strongly indicate that modulation of post-

translational modifications of PGC-1α, particularly through deacetylation via SIRT1, is a 

promising strategy to induce MB across different highly energy-dependent tissues.   

 

The final strategy for induction of MB is through pharmacological modulation of signaling 

pathways previously identified to increase transcription of PGC-1α.  β2 adrenergic 

receptor activation has also been demonstrated to induce MB through increased 

expression of PGC-1α (45).  For example, the β2 adrenergic receptor is a G-protein 

coupled receptor (GPCR), the activation of which mobilizes the Gs subunit to stimulate 

adenylyl cyclase, which results in the release of cAMP; subsequent CREB activation and 

binding to the PGC-1α promoter is a well-characterized signaling pathway linked to the 

induction of MB (1, 49).  Systemic administration of a dose of norepinephrine exceeding 

physiological concentrations increased PGC-1α and TFAM mRNA in rat adipose tissue; 

the norepinephrine-induced increase in PGC-1α was blocked by the β2 adrenergic 

receptor antagonist propranolol, indicating that the β2 adrenergic receptor activation can 

induce MB (29).  Additionally, administration of the β2 adrenergic receptor-specific 

agonist formoterol was able to increase PGC-1α mRNA, as well as other molecular and 

functional markers of MB, in primary rabbit renal proximal tubule cells, adult feline 

cardiomyocytes and in mouse renal, cardiac, and skeletal muscle tissues (50, 51). 
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Inhibition of phosphodiesterase 5 (PDE5) has been shown to increase PGC-1α 

expression and other markers of MB in multiple tissues through an increase in cGMP, 

which has been identified as a pro-MB signaling molecule (19).  PDE5 is an intracellular 

enzyme that selectively cleaves cyclic GMP to GMP, as opposed to other PDEs that 

either cleave both cGMP and cAMP or cAMP alone (52).  Treatment of primary rabbit 

RPTC with a panel of drugs inhibiting all three types of cyclic nucleotide 

phosphodiesterases identified PDE inhibitors that increased intracellular levels of cGMP 

also increased uncoupled cellular respiration rates and expression of PGC-1α and other 

mRNAs encoding mitochondrial proteins (52).  Additionally, treatment of mice with the 

PDE5 inhibitor sildenafil increased renal PGC-1α mRNA, as well as mRNA expression of 

other mitochondrial proteins, mtDNA copy number and ATP production (52).  Similarly, 

tadalafil, a long-acting PDE5 inhibitor, increased PGC-1α protein expression and 

improved respiration in mitochondria isolated from mice in a model of type 2 diabetes; 

although cGMP was not directly implicated in this effect, it is likely responsible for the 

increased eNOS activity and subsequent Akt and AMPK activation observed as a result 

of tadalafil treatment (53).       

 

The serotonin, or 5-hydroxytryptamine, receptor class 2 (5-HT2) is another family of 

GPCRs that have been shown to induce MB (54).  Serotonin signaling through the 5-

HT2B receptor was identified as a pro-survival pathway for cardiac mitochondria, so it 

was hypothesized that activation of this receptor would induce MB (55).  Treatment of 

primary rabbit RPTC with DOI, a non-specific 5-HT2 receptor agonist increased protein 

expression of PGC-1α, as well as expression of proteins from ETC complexes I and V; 

additionally, DOI increased both basal and uncoupled respiration and increased ATP 

production 24 h after initial treatment (56).  These results indicate that induction of 

signaling through the 5-HT2 class of receptors is a viable strategy to induce MB and that 
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identification of the specific receptor in this class responsible for DOI’s effects is a 

necessary step to further identify more specific and potent biogenic agents.  

 

5-HT2 Receptor Biology 

The biological roles of 5-HT are mediated by several families of receptors, which are 

classified according to structure and function. The 5-HT2 family of receptors is composed 

of three receptor sub-types: 5-HT2A, 2B and 2C; canonical signaling through these 

receptors is Gq-coupled and their activation initiates phospholipase C (PLC) cleavage of 

phosphoinositol 4,5-bisphosphate (PIP2) to diacyl glycerol (DAG) and inositol 

triphosphate (IP3), the latter of which translocates to the endoplasmic reticulum to cause 

release of intracellular calcium, which can subsequently initiate signaling through a 

number of pathways, several of which have been demonstrated to increase expression 

of PGC-1α, as detailed below in Fig 1-3 (2, 19, 20, 56, 57).  Although these receptors 

are in the same class and have shared characteristics in sequence, structure and 

pharmacology, they do have some differences in their distributions of expression, 

biological functions, distributions of expression,  associated pathologies and signaling 

pathways (58).  
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Fig 1-3.  Schematic of Potential 5-HT2 Receptor Mediated Mitochondrial 

Biogenesis Pathways.  Ligand binding to 5-HT2 receptors and subsequent canonical 

signal transduction through the Gαq protein can initiate a number of signal transduction 

pathways through the that have been previously demonstrated to induce mitochondrial 

biogenesis, including calmodulin/CamK, nitric oxide synthase/guanalyl cylase, AMPK 

and p38 MAPK (2, 19, 20, 56, 57).    
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The 5-HT2A Receptor 

The 5-HT2A receptor is highly expressed in the tissues of the CNS, with prominent 

expression in the cerebral cortex; additionally, low levels of 5-HT2A receptor mRNA have 

been detected in peripheral tissues such as kidney, platelets and smooth muscle and it 

has been demonstrated to mediate smooth muscle contraction and platelet aggregation 

(57-60).  In the CNS, this receptor plays a role in modulation of both aggressive behavior 

and sleep and is implicated in the pathogenesis of schizophrenia, anxiety, epilepsy, 

migraine and depression (57, 61, 62).  Agonists for the 5-HT2A receptor tend to have 

hallucinatory effects, while its antagonists have been demonstrated to have atypical 

antipsychotic effects (63, 64).   

 

The signaling pathways associated with the 5-HT2A receptor are complex and are 

activated differentially in response to a number of factors.  Like all 5-HT2 receptors, it is a 

Gq-coupled receptor and canonical signaling through this receptor is mediated by 

intracellular calcium release (58).  However, the coupling of several other pathways—

both G-protein-dependent and independent—has been described in the literature (58, 

65, 66).  In addition to Gq coupling, it has been reported that the 5-HT2A receptor can 

permissively couple to the Gαi/0 protein in the kidney and that treatment of renal 

mesangial cells with 5-HT2A receptors with the endogenous agonist 5-HT resulted in both 

increased phosphoinositol turnover and decreased adenylyl cyclase activity, indicating 

that this receptor signals through concomitant coupling to multiple G proteins in this 

tissue (66).  Additionally, there is evidence that the 5-HT2A receptor signals through G 

protein-independent coupling to phospholipase D (PLD) and phospholipase A2 (PLA2) 

and that agonists for this receptor can signal simultaneously through both canonical G-

protein dependent phospholipase C activation  and independent PLA2 signaling  (58, 65).  
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There is ample evidence that scaffolding proteins in the β-arrestin family are an 

important regulator of 5-HT2A receptor signaling (63, 67-70).  Although the traditional 

paradigm describes the role of these proteins in desensitization of the 5-HT2A receptor 

through intracellular sequestration of the activated receptor, it is now recognized that 

these proteins can also mediate activation of Akt/GSK3β signaling by certain 5-HT2A 

receptor ligands (63, 67).  Interestingly, some of the physiological effects of endogenous 

5-HT signaling are dependent on β-arrestin-mediated activation of Akt/GSK3β signaling, 

indicating that this “non-canonical pathway” is an important component of native 5-HT2A 

receptor function (68-70). 

 

Finally, constitutive activity of the 5-HT2A receptor has been reported and is implicated in 

the neuronal processes mediating learning behavior (71).  Given the accumulation of 

information about ligand activity that does not bifurcate neatly into agonist/antagonist 

categorization and the fact that most characterization of agonist or antagonist behavior 

at the 5-HT2A receptor has been performed by assessing the ability of a ligand to either 

elicit or block calcium or IP3 accumulation, it is possible that many ligands classically 

defined as antagonists may be better identified as inverse or biased agonists.  

Additionally, inverse agonism, which is the cessation of constitutive receptor activity 

upon binding of a ligand, must now be considered both as a complicating factor in the 

identification of drugs that antagonize the 5-HT2A receptor but may also represent a 

novel therapeutic modality to treat several diseases (71). 

 

The 5-HT2B Receptor  

The 5-HT2B receptor has the broadest mRNA distribution in the 5-HT2 receptor class and 

is expressed in almost every organ system in the body (59).  Although it has been 
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implicated in smooth muscle contraction in the stomach, little else is known about its 

function due to the paucity of 5-HT2B receptor specific agonists (72).  Like the other 5-

HT2 receptors, its primary signaling mechanism is Gαq protein activation of PLC; 

pleiotropic signaling of this receptor is understudied, although some studies have 

indicated that this receptor can also activate PLA2, ERK and endothelial nitric oxide 

synthase (eNOS) (58). 

 

Nebigil et al. identified the 5-HT2B receptor as a novel target in survival signaling in 

cardiomyocytes and demonstrated that mice lacking this receptor had altered cardiac 

mitochondria structure and function (55).  While ablation of this receptor led to a dilated 

cardiac phenotype, its overexpression led to a hypertrophic phenotype, which suggests 

that balanced signaling through this receptor is paramount for development and 

maintenance of proper cardiac structure as well as preservation of mitochondrial function 

(73). 

 

The 5-HT2C Receptor  

The 5-HT2C receptor has the most limited pattern of mRNA expression and has 

traditionally be described as being localized entirely to the CNS, with prominent 

expression in the choroid plexus, nucleus accumbens and hippocampus (58, 59).  

Although this receptor shares 80% transmembrane domain amino acid and 49% total 

amino acid homology with the 5-HT2A receptor, agonism of these receptors results in 

physiologically opposite effects (eg. anxiogenic vs. anxiolytic) (60, 74).  This receptor is 

implicated in motor function and in feeding behavior; agonists of this receptor suppress 

appetite, while 5-HT2C receptor antagonists have anxiolytic properties (57, 75-77).  
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Additionally, the 5-HT2C receptor is implicated in the pathophysiology of depression, 

schizophrenia and Parkinson’s disease (78). 

 

Like all 5-HT2 receptors, the 5-HT2C receptor is primarily coupled to the Gαq protein, the 

activation of which leads to release of calcium from the endoplasmic reticulum and the 

activation of downstream signaling pathways (58).  In addition to Gαq protein-mediated 

signaling, the 5-HT2C receptor can activate PLD through the Gα13 protein and PLA2 

through an unknown signal transduction molecule (58, 78). 

 

Mitochondrial-Nuclear Interactions and Retrograde Signaling  

Although transcriptional control and nucleus-to-mitochondrial signaling is a critical facet 

of mitochondrial homeostasis, regulation of mitochondrial biogenesis through retrograde 

mitochondria-to-nucleus signaling also plays an important role in the cellular 

maintenance of mitochondrial function and number.  Retrograde signaling allows for 

information regarding mitochondrial function to be relayed back to the nucleus and thus 

integrated into the genetic network therein, providing a mechanism for the cell to monitor 

several markers of mitochondrial health, including cellular metabolism and calcium 

dynamics (79).  Furthermore, it allows for cells to assess their energetic state prior to cell 

proliferation, as a disruption in mitochondrial bioenergetics would preclude the cell from 

proliferating successfully (79). Current evidence suggests that retrograde mitochondrial 

signaling is regulated by a number of diverse mechanisms at both the transcriptional and 

translational levels.   

 

Translational control of retrograde signaling is especially important for assessing 

mitochondrial health prior to cell proliferation and occurs through two processes: 
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mitochondrial ribosomal stalling and mitochondrial peptide export.  Mitochondrial 

ribosomal stalling results in the accumulation of Opa1, a protein that is critical for IMM 

fusion and maintenance of the mitochondrial cristae; as a result of this accumulation, the 

mitochondrial membrane loses its potential, creating a stress signal that leads to the 

inhibition of cellular proliferation (79).  In invertebrates, the translocation of the bZip 

transcription factor ATFS-1 from the mitochondria to the nucleus in response to protein 

stress results in the activation of a gene expression profile that is consistent with an 

unfolded protein response; this response then leads to the export of mitochondrial 

peptides into the cytoplasm, which may block peptide import into the mitochondrial and 

trigger a retrograde downregulation of gene expression (79).   

 

A number of pathways have been implicated in the transcriptional control of retrograde 

signaling from the mitochondria to the nucleus.  Mitochondrial stress induced in 

mammalian cells by either uncoupling of the proton gradient or depletion of mtDNA led 

to the activation of Ca2+/calmodulin-responsive calcineurin, resulting in increased 

expression of genes involved in calcium transport and storage, leading to increased 

cytosolic free Ca2+ and alterations in cellular morphology (80).  Furthermore, 

mitochondrial calcium stress has also been demonstrated to activate calcineurin, as well 

as protein kinase C, the JNK/MAPK pathways and CamKIV, all of which result in the 

activation of different nuclear transcription factors that have been shown to alter 

mitochondrial dynamics and function, including NFκB and CREB (80).  Finally, the 

activation of the transcription factor CCAAT-enhancer-binding protein homologous 

protein (CHOP) by calcium stress provides another link between retrograde signaling 

and the unfolded protein response, and further indicate that this mitochondria-to-nuclear 

signaling is an important facet of mitochondrial quality control (81). 
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ACUTE KIDNEY INJURY 

 

Definition of Acute Kidney Injury 

Acute kidney injury (AKI) is defined broadly as a loss of renal function over hours to 

days; diagnosis of this loss of renal function is performed using the RIFLE (Risk, Injury, 

Failure, Loss of Function, End-stage renal disease) or AKIN (Acute Kidney Injury 

Network) criteria, which combine assessments of increasing serum creatinine and 

decreasing urine output to stratify patients into stages that correspond to severity of 

injury (Fig. 1-4) (82, 83). Since outcomes are directly correlated with the severity of AKI, 

this staging strategy is then used to determine further course of action for treatment of 

kidney injury (84).  The treatment strategies for patients with AKI can vary significantly 

due to expected outcome and potential for recovery; for example, patients who are in 

Stage 1 AKI may benefit from early intensive therapy to prevent further damage to the 

kidney, whereas early and frequent renal replacement therapy can improve survival and 

promote recovery in patients diagnosed with later stage AKI (85).   
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Fig. 1-4.  The RIFLE and AKIN Criteria for Classification of AKI.  (a) Risk, Injury, 

Failure, Loss of renal function and End-stage kidney disease (RIFLE) and (b) Acute 

Kidney Injury Network (AKIN) classifications for acute kidney injury (adapted from 

Bellomo et al.[8] and Mehta et al.,[9] with permission from BioMed Central). ARF= acute 

renal failure; Cr = creatinine; GFR= glomerular filtration rate; RRT = renal replacement 

therapy; UO= urine output (86).  
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The Impact of AKI on Population Health   

AKI in the acute care setting can have a profound effect on morbidity and mortality of 

hospitalized patients, with in-hospital mortality of patients with AKI ranging from 24-75% 

and a 30-40% mortality rate for all patients with AKI (82).  Additionally, 3-16% patients 

admitted to intensive care units have acute kidney injury, with a mortality rate that is 3x 

higher that of AKI patients outside of the ICU (87).  Overall, AKI is estimated to result in 

34 million hospitalizations per year, with associated expenditures attributed to hospital-

acquired AKI exceeding $10 billion (84).   

 

Causes of AKI   

AKI has many diverse causes, which are broadly organized into three categories: 

prerenal, postrenal, and intrinsic/intrarenal.  Prerenal causes of AKI comprise any 

primary injury or pathology, that restricts blood flow to the kidney while initially 

preserving tubular and glomerular function; common causes of prerenal AKI include 

cardiac failure or surgery, septic shock, and liver failure (85).  Urinary outflow obstruction 

gives rise to postrenal AKI, which is the least common cause (85).  Finally, intrinsic or 

intrarenal causes of AKI are defined by the renal structure that is primarily injured (eg. 

tubular or glomerular) and most often result from either ischemic or toxic insult (85).  

While these distinctions are made between the three causes of AKI, it should be noted 

that it is not uncommon for patients to experience multiple insults, and the presence of 

one cause of AKI can predispose the kidney to further damage; for example, sustained 

prerenal AKI is a risk factor for the development of intrinsic AKI, especially in vulnerable 

populations such as hospitalized patients and the elderly (85).  This review will focus on 

intrinsic AKI caused by acute toxicity or ischemic and the pathogenesis thereof.  The 

proximal tubular epithelial cells are highly vulnerable to both ischemic and toxic injury, 
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and the severity of tubular injury can usually be correlated with the severity of the insult 

(eg. dose of drug or length of ischemia) (88).  Since the proximal tubular epithelium 

requires high energy production to maintain crucial transport functions and since 

mitochondrial dysfunction plays a major role in the pathophysiology of both toxic and 

ischemic AKI, emphasis will be placed on the complex and diverse mechanisms of 

mitochondrial pathology in these disease processes. 

 

Pathogenesis of Cisplatin-Induced AKI 

Cisplatin, a common anti-neoplastic agent, is a nephrotoxic compound that is rapidly 

absorbed in the kidney, especially the proximal straight tubule, via peritubular uptake in 

the first hour after its administration (89).  Once inside the renal proximal tubule cells 

(RPTC), it is converted to several highly reactive species, which deplete glutathione, 

increase oxidative stress, and may cause DNA damage (89).  Other mechanisms of 

cellular damage include mitochondrial swelling that likely results from increased 

oxidative stress, activation of mitogen activated protein kinases (MAPKs), activation of 

Caspase 3 leading to apoptosis, increased tumor necrosis factor α (TNFα) that 

propagates oxidative stress, and accumulation of inflammatory mediators that may 

mediate damage to surrounding renal structures (89). The mitochondria are responsible 

for the generation and propagation of reactive oxygen species (ROS) as well as major 

targets of these species; calcium (Ca2+) dysregulation in the mitochondria has been 

linked to increased ROS following cisplatin administration (90).  Additionally, increases in 

mitochondrial calcium concentrations can also trigger the mitochondrial permeability 

transition (MPT) and initiate the intrinsic apoptotic molecular cascade which results in 

the cleavage of Caspase 3.  Finally, cisplatin administration causes significant 

decreases in renal adenosine triphosphate (ATP), the primary energy currency used by 
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cells and the final product of the electron transport chain in the mitochondria, indicating 

that there is a direct decrease in mitochondrial function (91).  Therefore, mitochondria 

are central to several of the cellular damage mechanisms involved in cisplatin-induced 

AKI.    

 

Pathogenesis of Myoglobinuric AKI 

Rhabdomyolysis, the dissolution of skeletal muscle that results in the leakage of 

myoglobin into the blood, can be induced by a number of traumatic and non-traumatic 

events, including crush injuries, alcohol or illicit drug use, extreme strenuous exercise, or 

viral infection (92).  

 

Myoglobinuric AKI develops in 13-50% of rhabdomyolysis cases and results from 

myoglobin circulation to the kidney, where it is filtered by the glomerulus and is 

endocytosed into tubular epithelial cells (92, 93).  In the presence of an acidic urine 

environment, the ferrous iron in myoglobin can be oxidized to ferric oxide in the 

mitochondria via the Fenton reaction, generating ROS in the form of a hydroxyl radical 

(92).  In the animal models of of myoglobinuric AKI, increased nitrosative stress in 

isolated renal mitochondria, decreased mitochondrial membrane potential, increased 

lipid peroxidation and decreased ATP production were observed, further demonstrating 

that myoglobinuria induces acute mitochondrial dysfunction in the kidney (93, 94).  

 

Pathogenesis of Septic AKI 

Sepsis is the pathological consequence of a systemic inflammatory response to severe 

infection, particularly to the presence of lipopolysaccharide (LPS) or endotoxin that is 

released by gram negative bacteria.  While sepsis alone carries a high mortality rate, 
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septic AKI doubles the rate of mortality (95).  The cellular pathophysiology of septic AKI 

is multifactorial and results from both prerenal and intrinsic renal injury.  First, there is 

direct damage to the glomerular endothelium that is mediated by TNFα; this damage 

increases glomerular permeability and contributes to the leakage of protein, particularly 

albumin, into the urine (96).  Tubular structural damage is not necessarily a feature of 

septic AKI, but both functional and molecular changes have been demonstrated to 

occur.  One prominent observation is that mitochondria in the septic RPTC are 

susceptible to swelling; additionally, inactivation of the tubular mitochondrial electron 

transport chain complexes resulting in decreased renal ATP levels and decreased 

activity of manganese superoxide dismutase (MnSOD or SOD2), a mitochondrial 

antioxidant protein, further indicate that mitochondria play a central role in the 

development of septic AKI (95, 97).  Finally, antioxidant therapy focused on the 

mitigation of mitochondrial damage was demonstrated to decrease oxidative stress and 

preserve peritubular capillary function, which suggests that mitochondrial-targeted 

therapies hold promise for the treatment of septic AKI (97).   

 

Pathogenesis of Ischemic/Reperfusion (I/R)-Induced AKI  

Vascular Changes in I/R-AKI 

One prominent feature of the pathophysiology of I/R-AKI is changes in the renal 

vasculature after injury.  Reduced response to vasodilatory signals by renal arterioles 

leads to persistent vasoconstriction and subsequent decreases in glomerular filtration 

rate (GFR), one measure of kidney function after AKI (98).  This vasoconstriction can be 

attributed to a number of factors including decreased production of nitric oxide (NO) by 

damaged endothelial cells and the production of a number of vasoactive cytokines, 

including TNF-α, IL-1β and endothelin, by increased adhesion and activation of 
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leukocytes (99).  Additionally, mitochondrial calcium accumulation may lead to a 

subsequent increase in cytosolic calcium that is implicated in an increased sensitivity to 

renal nerve-stimulated vasoconstriction (100). 

 

Tubular Epithelium Damage and Structural Changes in I/R-AKI   

RPTC are highly susceptible to damage following ischemic injury; under physiological 

circumstances, RPTC are attached to a basement membrane and maintain a polarity, 

with both an apical and a basolateral membrane.  The most critical protein of the 

basolateral membrane is the Na+/K+-ATPase, which utilizes ATP to set up the sodium 

gradient that drives subsequent secondary and tertiary transport processes in both the 

apical and basolateral membranes; after ischemic injury, decreases in cellular ATP 

cause a loss of cellular polarity during which the Na+/K+-ATPase translocates from the 

basolateral membrane into the cytoplasm, which decreases transport of both sodium 

and other solutes across the cell membrane (100, 101).  Death of RPTC by necrosis 

results from a number of insults, including acute oxidative stress and decreased ATP 

production, which will be discussed further in another section (98, 102).  As a result, 

there is shedding of both necrotic cells as well as viable cells that have lost basolateral 

expression of integrin receptors, which causes obstruction of the tubular lumen; recovery 

of the proximal tubules, however, can be accomplished by the dedifferentiation, 

migration, proliferation and subsequent redifferentiation of the intrinsic surviving 

epithelial cells into a repopulated tubular epithelium (Fig. 1-6) (99, 100, 103-105). 
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Fig. 1-5.  Normal Repair in Ischemic AKI.  The current understanding of tubular injury 

and repair after ischemic AKI. With IRI, the normally highly polar epithelial cell loses its 

polarity and brush border with proteins mislocated on the cell membrane. With 

increasing time/severity of ischemia, there is cell death by either necrosis or apoptosis. 

Some of the necrotic debris is released into the lumen. Viable epithelial cells migrate and 

cover denuded areas of the basement membrane. These cells undergo division and 

replace lost cells. Ultimately, the cells go on to differentiate and reestablish the normal 

polarity of the epithelium (99).  



27 

 

Mitochondrial Injury in I/R-AKI 

 The role of mitochondria in I/R-AKI has been extensively studied in a number of in vitro 

models, animal models and human disease states.  One of the major roles of 

mitochondria in the pathogenesis of AKI is the generation of ROS after reperfusion, 

which is generally considered the most significant cause of injury to the renal tubular 

epithelium after an I/R insult (85, 102, 106, 107).   Additionally, ischemia also causes a 

decrease in MnSOD activity that is more profound than the decrease in the cytosolic 

copper/zinc superoxide dismutase (Cu/ZnSOD or SOD1), which indicates that the 

increase in ROS is more localized to the mitochondrial matrix (106).  Excessive ROS—

especially in the mitochondrial matrix—can cause damage to the lipids of the inner 

mitochondrial membrane, mtDNA and the proteins of the electron transport chain; 

oxidative injury to the ETC then leads to the propagation of ROS at Complexes I and III 

(98, 108).  The consequences of acute increases in ROS after I/R injury may be long-

lasting.  mtDNA has limited repair mechanisms and is susceptible to deletions and 

mutations that could result in inactivation of the electron transport chain; this could 

further propagate ROS generation and inhibit ATP production past the acute phase 

(106).  

 

ATP depletion is another facet of mitochondrial dysfunction in I/R-AKI; decreased flux 

through the ETC as a result of decreased oxygen to serve as the final electron acceptor 

in the chain results in decreased ATP levels, which contributes to loss of epithelial cell 

polarity and inability of RPTC to maintain transport gradients across their membranes, 

leading to increased intracellular calcium concentration (85, 109).   Decreases in ATP 

production in renal mitochondria after I/R were correlated with decreases in 

mitochondrial membrane potential; protection against this decrease in ATP by the 

addition of citric acid cycle metabolites preserved mitochondrial membrane potential 
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(110). Finally, depletion of ATP in an in vitro model of AKI led to increased fragmentation 

of mitochondria and disruption of mitochondrial dynamics, associated with the activation 

and translocation of dynamic-related protein 1 (Drp1), a mitochondrial fission protein 

(111).  Transfection of RPTC with a dominant-negative Drp1 lead to a preservation in 

mitochondrial morphology as well as decreased cytochrome c release, indicating that 

ATP levels may be linked to apoptosis following I/R injury through disrupted 

mitochondrial dynamics (111). 

 

Therefore, mitochondrial induction of apoptosis also contributes to the pathophysiology 

of AKI following I/R injury.  One mechanism by which mitochondria contribute to 

apoptosis after I/R injury is via the mitochondrial permeability transition (MPT), which 

can arise as a result of reduced mitochondrial membrane potential or mitochondrial 

calcium dysregulation and leads to the collapse of ATP production (98, 106, 112).  The 

result of the MPT is the release of cytochrome c, which is usually sequestered in the 

mitochondrial inter-membrane space; when cytochrome c is released into the cytosol, it 

activates Caspase 3 and triggers the intrinsic apoptotic pathway (113).   

 

Treatment of Acute Kidney Injury 

Experimental Treatments for Vascular Injury in AKI 

Several experimental treatments for vascular causes of AKI have been studied in both 

AKI patients as well as in animal models of AKI.  Several catecholamine treatments were 

suggested for the pharmacological management of AKI, though the benefit of these 

drugs is controversial.  Norepinephrine, which increases systemic blood pressure, was 

administered to patients who have hypotensive vasodilation as a result of AKI; since 

most patients who have AKI are already in a vasoconstricted state, this therapy would 
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have limited use for the general population of AKI patients (86).  Dopamine, which 

dilates renal arterioles and improves renal blood flow, has been administered as both a 

prophylactic agent for AKI as well as in patients who have already developed AKI (85).  

However, increased risks of systemic side effects such as tachycardia and gut necrosis, 

as well as a lack of evidence of clinical efficacy, have limited the use of this drug as a 

therapeutic for AKI (85, 86).  Other non-catecholamine vasodilatory therapeutics have 

been suggested for treatment of AKI, though none of these drugs have been approved 

for this use in patients.  For example, calcium-channel blockers, which prevent the 

increase in intracellular calcium in vascular smooth-muscle cells, promote vasodilation 

after AKI and have been shown to improve outcomes and reduce tubular necrosis after 

renal transplantation; however, these drugs pose the risk of overcorrecting vascular 

tone, causing hypotension and decreased renal perfusion in the already-damaged 

kidney (85).  Furthermore, vasodilatory atrial natriuretic peptide (ANP) reduces the 

severity of AKI in animals, as well as to reduce need for dialysis in these animals, and is 

the most promising vasodilatory agent to date (85).  Small randomized control trials 

(RCT)  have duplicated these effects in patients after cardiac surgery, but ANP needs 

further examination in larger trials to become an established pharmacological modality 

(86). 

 

Experimental Therapeutics for Tubular-Cell Injury 

Most experimental pharmacological therapeutics to treat tubular-cell injury have focused 

on the use of osmotic agents and diuretics to restore the solute balance that is disrupted 

by the intracellular translocation of the Na+/K+-ATPase after an acute ischemic event, the 

purpose of which is to reduce cellular swelling and tubular obstruction caused by this 

osmotic imbalance (85).  Mannitol, an osmotic agent, prevents the delay in kidney graft 
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function that results from ischemia as well as to treat early myoglobinuric renal failure 

(85).  Loop diuretics, such as furosemide and bumetanide, protect against renal 

ischemia, especially when used in conjunction with an osmotic agent; however, these 

agents are likely to only have clinical benefit for patients with mild renal ischemic 

damage (85, 86).  

 

Limitations on Treatments for Vascular or Tubular-Cell Injury   

As demonstrated in previous discussion, many therapies designed to reduce vascular or 

tubular-cell injury have shown limited promise in clinical trials.  Some minor factors that 

contribute to this limitation are poor patient recruitment, poor optimization of drug dose 

or administration schedule, poor attention to both disease and patient heterogeneity and 

poor recognition of the reality that combination therapy is most likely necessary for a 

treatment to be viable and clinically relevant (86).  However, the most limiting factor for 

developing pharmacological interventions for AKI is poor early diagnosis of patients and 

a lack of good biomarkers to measure both the onset of renal injury and the severity of 

the injury; for example, the window for detection of AKI using the current standard of 

diagnosis, serum creatinine, is 24-48h after injury (86).  As a result of the lag between 

injury and ability to detect this injury, patients with less severe disease who could benefit 

from early intervention are not identified or provided treatment that could prevent further 

damage and disease progression; furthermore, there are no current pharmacological 

agents that could prevent ischemic cellular damage, although there have been some 

preclinical advancements in discovery of drugs that can prevent or reverse this cellular 

damage.  As a result, current drug discovery is focused on developing agents that 

address the pathways of cellular injury, including inflammation cascades, both intrinsic 

and extrinsic apoptosis pathways, and the multifaceted aspects of mitochondrial 
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dysfunction addressed previously in this review (86).   Therefore, the most promising 

avenues of further research are improved development of biomarkers that predict injury 

or identify early stages of AKI and further development of agents that modulate 

intracellular mechanisms of ischemic tubular cellular injury.  Current research in both of 

these areas of interest will be reviewed shortly.  

 

Biomarkers of AKI 

Traditional biomarkers of AKI 

The current biomarkers most frequently used in the clinical setting are serum creatinine 

(SCr) and blood urea nitrogen (BUN); although these biomarkers have limited utility in 

identifying early AKI, they are popular because they are easy to measure and are 

inexpensive (114).  Because both of these markers are measures of protein metabolism, 

they are significantly dependent on muscle mass and tubular secretion and have a wide 

range of normal values that vary with non-renal factors such as body weight, age, sex, 

and liver function (114, 115). This variability negatively affects the ability of clinicians or 

researchers to accurately assess severity of AKI or to predict an individual patient’s likely 

clinical outcome, which increases the risk of failure for clinical trials and drug 

development (115).   

 

Novel Biomarkers of AKI 

Recent research has prioritized the development of novel biomarkers of tubular injury 

AKI, which may better predict both development and severity of disease; the goal of this 

research is to identify markers that have the same benefits of existing markers, such as 

ease and affordability, while improving the specificity and early detection over those 
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achievable by either SCr or BUN (115).  Two promising novel biomarkers for AKI 

detection and stratification of injury severity are neutrophil gelatinase-associated 

lipocalin (NGAL) and kidney injury molecule-1 (KIM1).  NGAL is a protein that is 

expressed at low concentrations in the epithelial cells of several organs, including the 

lung and stomach, but injury to epithelial cells greatly increases its expression (115).  

NGAL has the positive feature of being increased in both blood and urine after AKI and 

is one of the earliest biomarkers discovered (115).  Translational studies with this 

biomarker have demonstrated that it correlates highly with SCr in the later phases of AKI 

and that increases in NGAL in the period of time 2-6 h after cardiac surgery were 

predictive of subsequent development of AKI; therefore, studies characterizing patterns 

of NGAL expression show that it has promise as a very specific and robust measure for 

development of AKI, although the fact these studies were small and largely performed in 

patients with uncomplicated AKI and few comorbidities necessitates further 

demonstration of its utility (115).   

 

KIM-1 was initially discovered as a tubular protein that is undetectable in normal kidneys 

but is greatly increased in dedifferentiated proximal tubule cells; in both human renal 

injury and animal models of AKI, expression of KIM-1 was positively predictive of and 

correlative with degree of renal injury while correlating negatively with renal function 

(116).  In addition to increases of KIM-1 in renal cells measured after kidney biopsy, 

there is urinary detection of one proteolytically-cleaved domain of the protein after 

ischemic AKI, which differentiates this pathology from both prerenal AKI and chronic 

kidney disease and may allow clinicians to identify patients who could benefit from 

certain therapies (115).  The discovery of these molecules yields promise for the 

improvement of early and specific clinical detection of ischemic AKI, but further 

development is needed to achieve the ease of use and affordability of current markers.  
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Furthermore, the individual strengths of these biomarkers, as well as those of SCr and 

BUN in later stages of AKI, indicate that these markers might best function as part of a 

serum or urine panel approach for AKI detection and risk stratification (115). 

 

Laboratory Models of Mitochondrial Dysfunction in Acute Kidney Injury 

Development of pharmacological treatment for AKI necessitates both in vitro and in vivo 

models that accurately mimic the patterns of cellular injury seen in clinical cases of AKI.  

A number of models that duplicate various aspects of molecular damage after AKI have 

been developed and are well-characterized in the literature.   

In Vitro Model: Tert-butyl Hydroperoxide-induced Oxidant Injury in Primary Rabbit RPTC 

Because oxidant damage is the most significant contributing factor to tubular cell injury 

after renal I/R injury, a cellular model that duplicates this oxidant injury in renal tubular 

cells is critical to the development of drugs to treat AKI.  Although immortalized renal 

tubular cells are commercially available, their relative lack of reliance on oxidative 

phosphorylation to generate ATP makes them an undesirable candidate for in vitro 

models of oxidative damage.  Thus, an in vitro model to duplicate the physiology of the 

ischemic renal tubule was required.  To address this need, an isolation procedure for 

primary RPTC, a growth medium with supplements to promote oxidative 

phosphorylation, and an incubation procedure that duplicates the shear stress of the 

renal tubule to promote differentiation of these cells were developed and have provided 

researchers with an optimized cell population with a similar metabolic profile to in vivo 

RPTC (117).  To model the oxidant damage from renal I/R injury, tert-butyl 

hydroperoxide (TBHP) was used as a model hydroperoxide that undergoes catalysis by 

glutathione peroxidase and cytochrome P-450s to respectively cause glutathione 

oxidation and formation of hydroxyl radicals (118).  This initial oxidant injury provokes a 
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cascade of cellular damage, including lipid peroxidation by hydroxyl radicals, 

dysregulation of sodium transport, and glutathione depletion (118). As this cascade is 

very similar to that seen in vivo in renal I/R injury, this model has proven utility in 

examining mitochondriaI dysfunction in the context of subcellular tubular epithelial 

damage caused by acute oxidative stress (48, 56).   

 

In this model system, it was demonstrated that treatment with 200 µM TBHP was 

sufficient to disrupt several markers of mitochondrial homeostasis in primary rabbit 

RPTC (Fig. 1-7).  24h after a 6h treatment with TBHP, RPTC demonstrated decreases in 

both FCCP-uncoupled respiration and ATP content, indicating that acute oxidant injury is 

sufficient to cause significant mitochondrial dysfunction (48, 56, 118).  These decreases 

in functional markers were correlated with cell death and changes in cellular morphology 

at the same time point after injury, indicating that there is a temporal relationship 

between acute oxidative stress, mitochondrial dysfunction and cell injury (48).  However, 

additional work in our laboratory demonstrated that there is an increase in PGC-1α 

protein expression 1-3 days after acute oxidant injury that is dependent on both p38 

MAPK and EGFR activation, but that PGC-1α protein levels drop precipitously at 4 days 

after injury and remain suppressed through 6 days after TBHP treatment (38).  It was 

further demonstrated that both basal and FCCP-uncoupled respiration return to control 

levels by 6 days after TBHP exposure, and that the recovery of these markers of 

mitochondrial function preceded improvements in cellular function as measured by 

recovery in activity of the Na+/K+-ATPase (38, 119).     
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Fig. 1-6.  Disruption of Mitochondrial Function after TBHP Treatment.  200 µM 

TBHP treatment causes early dysfunction in RPTC ATP content (A) and uncoupled 

respiration (B) that recover over four days post-injury.  Data are presented as means ± 

SE, n ≥ 4. *P< 0.05, significantly different from controls (119). 
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In Vivo Model: Bilateral Renal I/R Injury 

To duplicate the patterns of ischemic injury in AKI, a model of mouse I/R injury was 

developed.  In this model, the renal pedicle is clamped for 20 minutes and then allowed 

to reperfuse (120, 121).  Some of the positive features of this model in the duplication of 

clinical AKI are the presence of acute tubular necrosis, reproducibility of the procedure, 

the similarity of its injury and recovery process to that seen in humans and the 

recapitulation of the inflammatory response demonstrated in human disease; however, 

as a pure ischemia process, it does not completely model the vascular effects of AKI and 

therefore simplifies the demands for therapeutic support in acute disease (121).   

 

One of the additional benefits of this model in the development of pharmacological 

agents that prevent or reverse patterns of molecular damage in AKI is the extensive 

characterization of mitochondrial damage in the first week after I/R injury (120, 122).  

Ligation of the renal pedicle for 20 minutes was sufficient to significantly decrease kidney 

function and disrupt mitochondrial homeostasis (Fig 1-8).  24 h after initiation of renal 

reperfusion, there was a significant increase in the renal injury biomarker SCr; this 

marker, as well as the tubular injury marker KIM-1, remained significantly increased 

through 6 days after injury (120, 122).  These increases in AKI biomarkers were 

correlated with significant decreases in mRNA expression of nuclear-encoded NDUFB8 

and ATP synthase β, as well as mitochondrial-encoded ND6 and COXI (122).  These 

decreases in mRNA for electron transport chain proteins was accompanied by a 

decrease in the respective protein levels for NDUFB, COXI and ATP synthase β; the 

decreases in both mRNA and protein for these mitochondrial markers were detectable at 

24 h and persisted through 6 days after initial reperfusion (120, 122).  These disruptions 

in mitochondrial homeostasis were accompanied by decreases in tubular FCCP-

uncoupled oxygen consumption through 6 days after treatment, and this decrease in 
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mitochondrial function was coincident with increases in tubular necrosis, further 

indicating that mitochondrial dysfunction is a major contributing factor to persistent 

tubular cell injury after AKI (120).     
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Fig. 1-7.  Suppression of Renal Function and Depletion of Mitochondrial Proteins 

After I/R-AKI.  Serum creatinine levels were significantly elevated 24 h after reperfusion, 

and then slowly decreased between 24 and 144 h without returning to normal levels (A). 

mRNA from sham and I/R mice was analyzed by qRT-PCR for expression of nuclear-

encoded respiratory genes NDUFB8 and ATP synthase β and the mitochondrial-

encoded genes ND6 and COXI at 24, 72, and 144 h after injury (B).  Expression of 

mitochondrial respiratory proteins from kidneys of sham and I/R mice was examined by 

immunoblot analysis (C).  Bars with different superscripts are significantly different from 

one another (P < 0.05) (122). 
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Mitochondrial Strategies for the Treatment of AKI   

Inhibition of Apoptosis 

Several promising pharmacological therapies for treatment of AKI focus on inhibition of 

apoptosis.  Since caspase-3 is a protease that is involved in both the intrinsic and 

extrinsic pathways of apoptosis and has been demonstrated to play a role in hypoxic 

kidney injury, inhibiting its activation is an attractive strategy for blocking pro-apoptotic 

signals from either inflammatory mediators or mitochondrial dysfunction; preventing its 

activation in a rat I/R model of AKI did improve SCr, but tubular injury remained 

unchanged (86).  Another anti-apoptotic therapeutic that has been investigated is 

minocycline, a second-generation tetracycline antibiotic; in addition to its antibiotic 

mechanisms of action, minocycline has been demonstrated to shift the expression of the 

Bcl-2 family of proteins toward anti-apoptotic signaling in the central nervous system and 

to inhibit the MPT in an animal model of liver ischemia (123, 124).  Early work with 

minocycline in a rat model of renal I/R injury found that it was able to reduce tubular cell 

necrosis, indicating that further exploration of this compound may be warranted in 

clinical trials (86).  Finally, it should be noted that administration of cyclosporine A, which 

is a traditional inhibitor of the MPT, would be an attractive treatment strategy and has 

been demonstrated to be effective in reducing I/R injury in other organ systems, but it is 

not a candidate drug for renal I/R injury due to its vasoconstrictive effects (125-128).  

Conclusions from current work indicate that some inhibitors of  apoptosis may be good 

candidates for pharmacological treatment of AKI and warrant further research; however, 

an argument can be made that inhibiting apoptosis in cells that would otherwise undergo 

this process would result in persistent renal injury due to survival of cells that would 

otherwise be too damaged to remain intact.  Therefore, addressing the mechanisms of 

reversible sub-lethal cellular damage that are upstream of apoptosis may be a more 
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high-yield strategy to inhibit cell death, improve cellular repair and preserve tubular 

structure after an acute ischemic kidney injury. 

 

Treatment with Antioxidants 

Since oxidant injury from reactive oxygen species such as superoxide and hydroxy 

radicals, as well as downstream oxidative species such as lipid peroxides, is considered 

the primary mediator of kidney injury arising from an acute I/R insult, scavenging or 

inactivating these species is an attractive therapeutic strategy to target early initiators of 

cell damage and consequent death.  Treatment with the antioxidant U83836E, a 2-

methylaminochroman that protects against oxidant injury by interacting with ferrous iron 

to prevent the Fenton reaction and by scavenging peroxyl radicals, decreased  oxidized 

glutathione and significantly preserved ATP production in a rat I/R model of AKI, 

resulting in decreased tubular necrosis and increased tubular regeneration (129).  

Treatment with this antioxidant also reduced SCr and BUN in animals exposed to I/R to 

sham levels as early as 24h after reperfusion, indicating that this is a viable therapeutic 

strategy to improve renal function after AKI (129).  Additional recent research has 

focused on antioxidant therapy that is specifically targeted to the mitochondria, since 

these organelles are exquisitely sensitive to oxidant damage and therefore responsible 

for propagation of ROS.  In a cecal ligation puncture (CLP) model of septic AKI, in which 

acute oxidant damage is an important pathophysiological process, treatment with the 

mitochondrial-targeted antioxidant Mito-TEMPO significantly decreased mitochondrial 

superoxide production by preserving Mn-SOD activity, which is pathologically inactivated 

in the early phases of AKI (97).  The effects of this antioxidant therapy were preservation 

of ETC function, as measured by oxygen consumption and kidney ATP levels, significant 

improvement in BUN levels, and a significantly increased survival rate of injured animals 



41 

 

(97).  The results of these studies strongly suggest the utility of antioxidant therapy after 

AKI, especially in the context of combination therapy with other therapeutics. 

 

Treatment with Mitochondrial Biogenic Agents 

Another strategy to preserve renal function and support tubular cell recovery after AKI is 

to increase mitochondrial number and improve function of existing mitochondria through 

the induction of mitochondrial biogenesis.  Prior to examination of pharmacological 

induction of mitochondrial biogenesis as a therapeutic strategy for treatment of AKI, 

proof-of-concept studies were performed utilizing adenoviral over-expression of PGC-1α, 

the “master regulator of mitochondrial biogenesis,” in primary RPTC.  While over-

expression of PGC-1α prior to treatment with the oxidant TBHP potentiated resultant 

decreases in mitochondrial function as measured by cellular oxygen consumption, over-

expression of PGC-1α after the induction of injury by TBHP preserved mitochondrial 

function and ATP production and restored decreased mitochondrial ETC proteins ATP 

Synthase-β and ND6 to baseline levels (130).  The results of this study thereby 

supported the hypothesis that induction of mitochondrial biogenesis is a viable treatment 

option for the preservation of mitochondrial function after AKI.   

 

Following the success of genetic modulation of mitochondrial biogenesis in improving 

RPTC mitochondrial function after acute oxidant injury, work was done to examine if 

pharmacological inducers of mitochondrial biogenesis would likewise improve 

mitochondrial function and, furthermore, improve cellular recovery in both in vitro and in 

vivo models of ischemic kidney injury.  In the primary RPTC treated with 400 µM TBHP, 

the SIRT1 activator SRT1720, which had been previously demonstrated to increase both 

total PGC-1α protein and activated (deacetylated) PGC-1α in naïve RPTC, preserved 
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ATP production and significantly recovered uncoupled cellular respiration (48).  Although 

approximately 50% of RPTC in a previously confluent monolayer have died and 

sloughed off 6h after TBHP treatment, the improvements in mitochondrial function 

observed after addition of SRT1720 to the cell media improved recovery, migration and 

regeneration of the remaining cells when compared to those that received only vehicle 

control treatment (48).  Similarly, 24h treatment with 10 µM DOI, a 5-HT2 receptor pan-

agonist that had been demonstrated to increase ATP levels and nuclear-encoded 

mitochondrial proteins in naïve RPTC, promoted recovery of uncoupled respiration in 

cells that had been treated with 400 µM TBHP (56).    

 

While improvements in mitochondrial function and cell recovery in the in vitro TBHP 

model of acute oxidant injury with mitochondrial biogenic agents supported the 

hypothesis that biogenic agents have utility in the treatment of AKI, the homogenous 

nature of this model and its inability to recapitulate multifactorial nature of human AKI 

reduced the impact of these findings.  Therefore, it was necessary to examine the effects 

of these drugs in a more complex animal model of AKI.   

 

To examine the effects of pharmacologically-induced mitochondrial biogenesis on 

mitochondrial and disease progression in a more clinically relevant model of AKI, mice 

that had been exposed to 20 min of renal pedicle ligation were treated daily for five days 

after initial reperfusion with 0.3 mg/kg formoterol, a β2-adrenergic agonist that had been 

previously demonstrated to increase uncoupled respiration and mtDNA copy number in 

primary RPTC at nanomolar concentrations (50, 120).  Treatment of these mice was 

initiated 24 h after the initial injury, which is a highly clinically relevant timeline due to 

delayed identification and stratification of patients with AKI in the hospital setting.  Six 

days after I/R injury, expression of both nuclear- and mitochondrial-encoded proteins 
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comprising subunits of different ETC complexes were decreased in I/R mice that had 

only received vehicle treatment but were returned to baseline levels by formoterol 

treatment (Fig 1-9) (120).   
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Fig. 1-8.  Formoterol (Form) restored mitochondrial protein expression after I/R-

induced AKI.  Mice were subjected to sham or I/R surgery and subsequent treatment 

with vehicle (Veh) or formoterol.  Markers for MB were evaluated via immunoblot 144 

hours after surgery. Shown are renal cortical lysate and mitochondrial ETC proteins 

NDUFB8 (middle graph) and COX I (bottom graph). Densitometric semiquantification is 

shown below the representative blots. Samples were analyzed via one-way ANOVA 

followed by a Student–Newman–Keuls post-hoc test to evaluate differences between 

groups. Bars with different superscripts are significantly different from one another. Data 

points are mean±SEM and are relative values compared with control (n=6, p < 0.05) 

(120).  
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Coincident with these improvements in mitochondrial protein content were preserved 

uncoupled respiration in I/R mice treated with formoterol in comparison to the decreased 

respiration observed in I/R mice treated with only vehicle; furthermore, these 

improvements in mitochondrial function were correlated with improved markers of renal 

function, including the return of SCr in formoterol-treated I/R mice to baseline levels six 

days after initial injury, compared to the persistent increase in SCr in vehicle-treated 

SCr, and a significant reduction in the renal expression of KIM-1 in formoterol-treated I/R 

mice (Fig 1-10) (120).  These results strongly suggest that pharmacologically-induced 

mitochondrial biogenesis is a viable treatment for the reversal of mitochondrial 

dysfunction and the promotion of tubular cell recovery after ischemic AKI, which holds 

promise in further reduction of organ damage and improved outcomes for human AKI 

patients.  Furthermore, these results indicate that formoterol, which is an FDA-approved 

drug currently used for the treatment of asthma, may be a good candidate for further 

exploration and consequent transition to human clinical trials.    
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Fig. 1-9.  Treatment with Formoterol Restored Kidney Function and Mitigated 

Proximal Tubule Injury. Mice were subjected to sham or I/R surgery and subsequent 

treatment with vehicle (Veh) or formoterol (Form). Kidney function was assessed via 

serum creatinine (A) and tubular injury via KIM-1 immunoblot analysis (B). KIM-1 protein 

was measured in kidneys from mice 144 hours after injury and quantified by 

densitometry. Samples were analyzed via one-way ANOVA followed by a Student–

Newman–Keuls post hoc test to evaluate differences between groups. Data points are 

mean ±SEM; with bars with different superscripts are significantly different from one 

another (n=5, P < 0.01). GAPDH, glyceraldehydes 3-phosphate dehydrogenase (120).  
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TRAUMATIC BRAIN INJURY 

Definition of Traumatic Brain Injury 

Traumatic brain injury (TBI) is broadly defined as any injury “affecting brain function 

resulting from non-penetrating loading of the contact and non-contact type;” in this 

context, contact loading is an injury resulting from physical impact to the head, while 

non-contact loading is an injury sustained from force exerted from a distance, the 

prototypical examples of which are acceleration/deceleration injuries as well as 

explosive force from a blast (131).    TBI can be further categorized into focal or diffuse 

injuries; in focal injury, the primary damage is localized to a particular brain region, while 

diffuse injuries are distributed throughout the brain and are associated with global axonal 

damage or swelling of brain substructures (131, 132).  Although the patterns of injury 

differentiate these two types of TBI, they share similar pathophysiological characteristics 

which will be described later in this review.   

 

The Impact of TBI on Population Health 

TBI is a serious global health problem and is the leading cause of global morbidity and 

mortality in people younger than 45 (132, 133).  The United States averages 1.7 million 

TBI cases per year, 50,000 of which result in death (133, 134).  TBI is twice as common 

in males as in females, and most likely to be experienced by children aged 0-4 and 

adolescents aged 15-19 (133).  Additionally, there are subpopulations of Americans who 

are at higher risk of sustaining a TBI; primarily, these patients are involved either in 

active military service or participate in sports and other high-contact recreation activities 

(133).  Although TBI is considered an acute injury, it can result in lifelong deficits in 

motor, cognitive, behavioral and emotional function; these deficits can range from minor 

inabilities to perform daily activities to debilitating life-long disability requiring constant 
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care (133).  Additionally, TBI renders patients more susceptible to further neurological 

complications and has been linked to increased risk of addiction, depression and 

Alzheimer’s disease, among other chronic conditions (133).  Finally, the financial burden 

of TBI is multifaceted and comprises direct medical costs of hospitalizations and 

associated medical visits as well as lost productivity and inability to return to work; with 

all factors considered, the lifelong cost of TBI is estimated at $60-221 billion per year 

(133, 134).  At this point in time, treatment for TBI is non-curative and focused on 

symptom management, with no efficacious approved therapeutic options to directly 

address the underlying cellular pathophysiology of the disease, and public health efforts 

focused on prevention of TBI through education and risk-reduction programs (134).  The 

paucity of neuroprotective pharmacological therapies thus far is due to multiple factors, 

including the narrow therapeutic window for intervention, difficulties in identifying the 

best route of administration (eg. Intravenous vs. intrathecal), consideration of BBB 

function, and clinical heterogeneity of injury profile and underlying conditions that 

influence recovery and are difficult to duplicate in commonly used animal models (135).  

Although shortcomings in these models have been clearly identified, development of 

more complicated and relevant models is a complex task, thus current rodent models of 

TBI will continue to predominate in the foreseeable future (135). 

 

Animal Models of TBI 

Several animal models of TBI have been developed to provide opportunities for 

mechanistic study and drug discovery through recapitulation of the pathophysiology of 

either focal or diffuse injury, although it should be noted that no singular animal model is 

sufficient to duplicate the full panel of acute and chronic patterns cellular injury after TBI 

(136).   
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Focal TBIs are usually modeled through local skull distortion and direct contact of an 

impacting injury to the brain (136).  The most common and best characterized animal 

model of focal TBI is the fluid percussion model, in which a craniotomy is performed and 

a fluid pressure pulse is delivered through a saline-filled reservoir (131, 136).  The 

benefit of this model is that the impact is able to be modulated to recapitulate a range of 

severities of injury that yield experimentally quantifiable motor and cognitive deficits, but 

it is disadvantageous because it is not directly clinically relatable (136).  Another model 

of focal TBI is controlled cortical impact (CCI), an invasive method that uses an impactor 

to direct mechanical injury to the exposed dura of an area of the brain exposed by 

craniotomy (136).  This model is beneficial because the parameters of injury are easily 

controlled and modified to model a spectrum of injury severity, although the use of 

craniotomy in this model reduces its clinical relevance to human injury, in which skull 

fracture is not necessarily well-correlated with severity of damage (131, 136).  A final 

model for focal brain injury is the weight drop method in which a guided weight impacts 

either the closed skull or exposed dura, though this model is limited by lack of control 

over the impact velocity and risk of rebound impact, both of which lead to unpredictability 

and lack of consistency in the resulting brain deformities (136).   

 

Diffuse injury is best modeled through restrained head acceleration models; these 

models are desirable because they are able to accurately recapitulate the diffuse axonal 

injury that is a critical pathological consequence of human diffuse TBI (136).  However, 

these models have only been successfully performed in higher order mammals such as 

miniature pigs and several species of primates, because their brain structure and relative 

brain mass compared to weight is more similar to that of humans (136).  Therefore, the 

expense and logistical requirements of these models limits their usefulness and 
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precludes their use for early phases of drug discovery, in which high numbers of animals 

are required to mitigate the effects of drug attrition due to toxicity or inability to elicit the 

desired therapeutic response.   

 

Pathophysiology of TBI 

The development of neurological injury after an initial traumatic event is classified into 

two phases.  The first stage is primary damage at the immediate moment of injury; it is a 

irreversible result of mechanical force on the brain and can occurs as a contusion, 

laceration, intracranial hemorrhage or diffuse axonal injury (132, 136).  Secondary injury 

is a result of the activation of a physiological cascade characterized by toxicity from 

excessive release of excitatory neurotransmitters, which results in increased calcium 

flux, hypoxia, and the consequent increase in ROS and protease activation (132, 136, 

137).  Other features of secondary injury include increased inflammation and cytokine 

signaling, as well as deficits in respiration and mitochondrial function (Fig 1-11 )(132, 

136).   
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Fig. 1-10.  Mechanisms of Cell Injury Following TBI.  Acute traumatic injury to the 

brain or spinal cord causes mechanical damage and energy failure in parenchymal cells 

and endothelia that comprise the blood-brain and blood-spinal cord barriers (BBB and 

BSCB, respectively). Secondary injury mechanisms exacerbate tissue damage and 

BBB/BSCB dysfunction (138).  
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Inflammation and TBI   

Robust immune activation is a common molecular cascade observed in both the acute 

and chronic temporal phases after TBI; this immune response includes local infiltration of 

peripheral inflammatory cells, activation of microglia, reactive astrocytosis and release of 

many cytokines into the cerebrospinal fluid (CSF) and blood (135, 139-141).  The 

relationship of cytokine release to brain injury, function, and recovery is complicated, 

with some cytokines designated as pro-recovery markers and others identified as drivers 

of common complications of TBI (140, 142).  Although there are many cytokines 

expressed after TBI, this review will focus on the pro- and anti-inflammatory cytokines 

that have been demonstrated to have the most profound effects on tissue damage and 

clinical outcome.   

 

One of the maladaptive consequences of inflammatory activation is increased blood-

brain barrier (BBB) permeability, which contributes to subsequent life-threatening 

increases in intracranial pressure, one of the leading contributors to neuronal death and 

the best predictor of poor outcome after TBI (137, 140).  One factor that has been 

demonstrated to contribute to BBB permeability is increased accumulation of ROS-

releasing peripheral leukocytes in damaged tissue; in both experimental animal models 

as well as analysis of CSF in patients who have experienced severe TBI.  Increases in 

intercellular adhesion molecule (ICAM-1), which mediates leukocyte adhesion and 

subsequent infiltration, have also been positively correlated with degradation of the BBB 

(140, 142).  Additional work suggests that matrix metalloproteinase-9 (MMP-9) also 

contributes to BBB permeability, and that MMP is activated by the cytokine TNF-α, which 

is released by activated microglia after TBI (141, 143-145).   
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Cytokine release from activated microglia is resolved into temporal phases, with pro-

inflammatory cytokines released in the M1 phase (1-2 d), followed by the reflexive 

release of regulatory anti-inflammatory cytokines in a M2 (2-5 d) (139, 144).  Cytokines 

that are prominent in this secondary M2 phase are IL-10 and transforming growth factor 

β (TGF-β) (139, 144, 146).  IL-10 actively suppresses TNF-α and attenuates other non-

inflammatory pathways, such as production of ROS; this increased expression of IL-10 is 

associated with neurogenesis and recovery after TBI (147-149).  Additionally, 

administration of exogenous IL-10 as late as 1 h after experimental fluid percussion 

injury resulted in decreases in pro-inflammatory cytokines and improved neurological 

function, indicating that the anti-inflammatory response is critical to recovery after acute 

injury and that pharmacologically mimicking the M2 phase at an earlier time point is a 

promising strategy to reduce the severity of tissue damage after TBI (147).  These 

results were supported by evidence that administration of IL-10 after excitotoxic spinal 

cord injury, which shares several pathological features with TBI, mitigated cell loss and 

prevented advanced gray matter damage in the post-acute phase, which further 

suggests that IL-10 is a long-term pro-survival factor that can positively affect chronic 

outcomes after acute neurological injury states (148).   

 

Another prominent anti-inflammatory mediator in acute TBI is TGF-β, which is released 

in the delayed M2 phase of microglia activation (144, 145).   TGF-β is responsible for 

several facets of recovery after acute neurological trauma and is capable of promoting 

neurogenesis through both anti-inflammatory signaling and stimulation of neural stem 

cell proliferation, migration and growth (150).  Although its promotion of this stem cell 

growth has a direct effect on neurogenesis, the indirect effects of its anti-inflammatory 

properties in neurogenesis are less understood, but its suppressive effect on TNF-α 

expression is likely one contributor to its protective effects (140).   
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IL-6 is unique in that it has both pro- and anti-inflammatory effects; although it peaks in 

the early M1 phase with other cytokines that have been linked to increased severity and 

damage after TBI, it is observed to promote cellular recovery and tissue regeneration 

and is positively correlated with better Glascow Coma Score after acute neurological 

injury(140, 145).  The nature of this duality in its inflammatory effect is still being 

explored, but current evidence suggests that low levels of IL-6 after injury may be 

protective, while increased plasma concentrations, especially those above 100 pg/mL, 

correlate with more severe injury and poor outcome after TBI (145, 149).  Additionally, 

the patterns of expression between cell types may contribute to its paradoxical effects; 

for example, astrocyte overexpression of IL-6 leads to a maladaptive chronic reactive 

astrocytosis and neuronal loss, but its secretion by microglia leads to inhibition of TNF-α 

may therefore exert a more beneficial effect (140, 149).  

 

Mitochondrial Dysfunction and TBI   

Overview of Mitochondrial Dysfunction after TBI 

Post-TBI, neurons are susceptible to both necrosis and apoptosis (132, 151).  Necrosis, 

or uncontrolled cell death, occurs due to total metabolic failure, ATP depletion, and 

irreversible cell injury and is the most likely fate of cells directly affected by the primary 

mechanical and most severe ischemic injury (132, 151).  Apoptosis, or programmed cell 

death, is likely to affect cells in the penumbra of the initial injury, which are cells that 

initially undergo only sub-lethal injury; these cells are still structurally intact and partially 

functioning to produce some ATP, and their injury is potentially reversible, making these 

cells the target of therapeutic intervention (132, 151). There is increasing evidence that 

initial sub-lethal mitochondrial dysfunction in the secondary phase after TBI (and other 
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ischemic cerebral events) is highly associated with the changes in cellular and tissue 

structure and function, as well as the lasting behavioral, cognitive and motor deficits 

observed after these injuries (152).  These patterns of dysfunction after TBI are still 

being elucidated, but current research on these mechanisms of dysfunction can be 

broken into several subsets, including acute oxidative stress, mitochondrial calcium 

dysregulation, ETC and associated metabolic enzyme dysfunction, and altered 

modulation of autophagy and apoptosis (152).  When these aspects of mitochondrial 

dysfunction become sufficiently severe, altered mitochondrial structure and diminished 

function are observed.  Because each of these mechanisms can adversely affect other 

aspects of mitochondrial function, and because any of these mitochondrial pathways can 

be therapeutically modulated to contribute to improved mitochondrial health after TBI, it 

is necessary to further elucidate the contributions these factors make to overall 

mitochondrial and cellular injury.   

 

Increased Oxidative Stress after TBI 

Ischemia is a pathological feature common to many acute neurological injury processes; 

the effects of ischemia are very serious, and even a lesion as small as 10% of the total 

brain volume is sufficient to result in a severe neurological outcome, such as coma or 

persistent vegetative state (132).   Oxidative stress created by the influx of ROS 

generated by these patterns of acute ischemia and subsequent reperfusion, as well as 

those generated by the increased inflammatory mediators and glutamate-mediated 

excitotoxicity, is one of the most important determinants of secondary molecular injury 

after TBI (135, 153).        
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In physiological circumstances, molecular oxygen, the final electron receptor in the ETC, 

is fully reduced to water by Complex IV; however, reperfusion after ischemia causes an 

inflow of excessive molecular oxygen, which is only partially reduced to superoxide 

(152).  Under basal conditions, small amounts of ROS are generated, but the redox 

balance of the mitochondrion is tightly controlled by modulation of expression of the 

mitochondrial antioxidant proteins SOD2 and UCP2 by two mechanisms: 1) increased 

transcription through a PGC-1α-mediated pathway and 2) protein kinase D 

(PKD)/transcription factor nuclear factor κB (NF- κB) mitochondrion-to-nucleus signaling 

that  results in increased SOD2 expression as a result of a compensatory mitochondrial 

ROS detoxification program (153-155).  After acute ischemia, these antioxidant 

detoxification mechanisms are overwhelmed by the influx of molecular oxygen and 

resultant increased ROS, disrupting the redox balance and shifting toward an increased 

oxidative state (156).  Furthermore, this increased presence of ROS can create other 

oxidative species such as peroxynitrite, a highly reactive anion that further propagates 

oxidative damage and disrupts the structure and function of a variety of mitochondrial 

components through oxidation of lipids, proteins and mtDNA (135, 151, 152, 157, 158).  

 

One mitochondrial component easily disrupted by lipid peroxidation as a result of 

increased ROS is the IMM; with increased oxidation of lipids, the fluidity and structure of 

the IMM is disrupted, which affects the structure and efficacy of the ETC components, 

further inducing generation of ROS at Complexes I and III (108, 152, 159).  Oxidation of 

mitochondrial proteins further contributes to the dysfunction of the ETC; additionally, the 

disruption of the structure of these proteins as a result of oxidation makes them 

susceptible to degradation by proteases, causing decreased protein content and 

subsequent dysfunction of the mitochondria (152).  Finally, ROS can cause oxidative 

damage to mtDNA, which is located in the mitochondrial matrix where ROS are highly 
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induced after acute ischemic injury and which has poor quality control mechanisms to 

remove damaged bases or repair lesions (151, 152).  The end result of the oxidative 

insults on mtDNA in the setting of acute brain injury is deletion of portions of the mtDNA 

and depletion of mtDNA copy number, a common result of increased oxidative stress on 

the mtDNA; susceptibility to these mtDNA deletions increases with age and may 

correlate with decreased post-injury survival of particular cell populations and prognosis 

of patients after an acute ischemic event (160, 161).  Finally, acute CCI in mice 

increased molecular markers of autophagy in ipsilateral hippocampus, and ultrastructural 

analysis of this tissue through transmission electron micrography (TEM) discovered 

increased autophagic vesicles, indicating that increased oxidative stress leads to 

increased organelle recycling after TBI (162).  However, current literature on the effects 

of this increased autophagy conflict in its assessment of autophagy as a pro-survival or 

pro-death mechanism in cells affected by TBI (162, 163). 

 

 Calcium Dysregulation after TBI 

Another facet of mitochondrial injury after TBI is excessive intracellular calcium 

concentration as a result of excitotoxic glutamate signaling through NMDA receptors on 

cellular membranes in both the directly affected tissue as well as the surrounding 

affected penumbra of injury (164).  Mitochondria are responsible for cellular calcium 

homeostasis and can sequester calcium through the mitochondrial calcium uniporter to 

buffer cytosolic calcium concentrations, alterations of which can induce activation of 

calpains and other proteases (135, 156, 158, 165).  Additionally, damage to the 

endoplasmic reticulum further shifts the onus of calcium buffering to mitochondria and 

exacerbates the increases in calcium concentration caused by increased glutamate 

signaling (152).  The effects of mitochondrial calcium dysregulation are multifaceted and 
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include increased ROS generation, cytoskeletal damage due to increased protease 

activity, and initiation of apoptosis (135, 152, 153).   

 

Initiation of Apoptosis after TBI 

The end result of uncontrolled oxidative stress and overwhelming calcium concentrations 

after TBI is apoptosis through mitochondrial signaling (135, 152).  This process is the 

intrinsic, or mitochondrial, pathway of apoptosis and occurs in three phases: an initiation 

phase during which cells activate both pro-apoptotic and pro-survival pathways as the 

result of increased stress, the integration phase in which these signals all converge at 

mitochondria, and the post-mitochondrial phase (151, 152, 166).  Although activation of 

the initiation phase does not necessarily result in apoptosis, the tipping point comes in 

the integration phase, when lethal signaling exceeds the simultaneous pro-survival 

signaling; these “death signals” lead to the MPT, and the permeability of the 

mitochondrial membranes results in initiation of the post-mitochondrial phase, a process 

that includes loss of membrane potential, subsequent deficits in ATP synthesis due to 

dissipation of the proton gradient, further uncontrolled ROS production, and release of 

cytochrome c into the cytosol (152, 166, 167).  After translocation to the cytosol, 

cytochrome c interacts with the apoptosome to activate the “initiator” caspase 9, which 

subsequently activates the “executioner” caspase 3, the most abundant caspase in the 

CNS, and results in apoptosis (137, 166).   

 

Alterations in Mitochondrial Protein Content, Structure and Function 

Damage that is not severe enough to provoke the MPT after oxidant- and calcium-

induced molecular stress can still yield mitochondrial damage with decreased protein 

content, altered structure and diminished function.  Acute and sub-chronic changes in 
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mitochondrial protein, especially the proteins comprising the complexes of the ETC, is 

one of the least studied facets of post-TBI mitochondrial damage, despite the fact that 

these changes in ETC content directly influence mitochondrial function and ability to 

produce ATP.  However, a few studies have demonstrated changes in mitochondrial 

protein content in experimental models of TBI.  In in vitro mechanical stretch model of 

mild TBI, gene expression for complexes I, III, IV and V of the ETC was significantly 

decreased 24 h after injury; however, gene expression had returned to baseline at 72 h 

post-injury, indicating that the mechanical damage used for this model may not be 

significant enough to recapitulate the complex post-injury cellular milieu that is present in 

the secondary phase of TBI (168).  Glutamate oxaloacetate transaminase, a 

mitochondrial protein that participates in the glutamate pathway used as an alternative 

energy-production mechanism by neurons, was demonstrated to be decreased in a blast 

injury model of TBI; the decrease of this protein is significant, because it indicates that 

TBI has a global effect on the energy production capabilities of the cell and leaves it 

more susceptible to cell death as a result of diminished ATP production (169).  Finally, 

animals that were exposed to a mild TBI followed by repeated stress exposure had 

decreased ETC proteins in both ipsilateral hippocampus and cortex 7 d after injury, 

which correlated with decreased behavioral outcomes in these animals and indicates 

that changes in mitochondrial protein content may play a role in chronic deficits in 

neurological function after TBI (170).  This relationship between ETC function and 

chronic neurological dysfunction is supported by the finding that many chronic 

neurodegenerative diseases share dysfunction of ETC complex I as a common 

pathophysiological feature (171).   

 

Changes in mitochondrial structure are another pathological feature of TBI and can 

result from altered fission/fusion signaling as well as membrane fluidity caused by lipid 
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peroxidation (151, 152).  In a CCI model of TBI, ipsilateral cortical tissue demonstrated 

minor alterations in mitochondrial structure as early as 30 minutes after injury; 12 h after 

injury, almost all mitochondria in this tissue had altered morphology, including 

mitochondrial matrix condensation, cristae disruption, and swelling, which is indicative of 

increased mitochondrial membrane permeability (157).  Even at 24 h post-injury, not all 

mitochondria in a single field presented with the same degree of structural dysfunction, 

indicating that heteroplasmy may contribute to differential mitochondrial susceptibility to 

damage(157, 172). 

 

Diminished function, as measured by decreases in the oxygen consumption/cellular 

respiration and/or decreased ATP production, has been demonstrated in several models 

of TBI.  Persistent decreases in ATP production were observed in both in vitro and in 

vivo models of TBI and were correlated with other mitochondrial damage markers, 

including lipid peroxidation, decreased ETC gene expression and mitochondrial enzyme 

activity (135, 168, 169, 173).  In addition to its role in both necrosis and apoptosis, ATP 

depletion in both the cortex and hippocampus following CCI caused an early disruption 

of synaptic homeostasis due to an inability to maintain ion transport through ATP-

dependent channels, which further exacerbates calcium dysregulation and subsequent 

ROS production as well as reduces the cellular pool of glutamate available to feed into 

the neuron’s secondary energy production mechanisms (173). 

 

In a mouse CCI model, the respiration of cells isolated from both the ipsilateral cortex 

and hippocampus was decreased as early as 30 minutes after injury; this was followed 

by a reflexive recovery of respiration at 1 h post-injury, indicating that an initial severe 

irreversible mitochondrial dysregulation may result from the stress of the primary injury 

and that these critically dysfunctional mitochondria are rapidly cleared, leaving 
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mitochondria that are sub-lethally injured and capable of temporarily maintaining ETC 

function (157).  However, by 3 h post-injury, the oxygen consumption by these cells is 

once more significantly decreased in both of these tissues and remains suppressed 

through 72 h after initial insult, suggesting that there is an ongoing loss of mitochondrial 

function that is likely the result of the many mitochondrial damage patterns initiated in 

the secondary damage phase of TBI (157, 165).  Additionally, the measured respiration 

of mitochondria isolated from debrided cortical tissues of human TBI patients was 

generally positively correlated with Glascow Coma Score, suggesting that early 

preservation of mitochondrial function is an important factor in recovery after TBI (174).   

 

Mitochondrial Strategies for Treatment of TBI 

Antioxidant Administration and ETC Bypass to Reduce Oxidative Stress  

Because increased oxidative stress is the major contributing factor of mitochondrial 

dysfunction after TBI and many antioxidants have been used to successfully treat other 

acute injury states, decreasing oxidative species is an attractive treatment strategy to 

treat early mitochondrial dysfunction after TBI (135, 153).  To combat the increase in 

superoxide production that results from ischemia and reperfusion, as well as mechanical 

injury, scavengers such as modified SOD have been tested; however, these 

interventions have a very narrow therapeutic window, which has limited their success in 

clinical trials (153).   

 

Although the increase in ROS after injury is rapid and transient, those acute oxidative 

species react with other biomolecules to create highly reactive aldehyde, carbonyl, and 

nitrosyl groups on lipids and proteins that participate in the propagation of oxidative 

stress and inflammation; because these reactive molecules are abundant in the 3-12 h 
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window after TBI in both the cortex and hippocampus, they are an attractive target for 

mitigation of mitochondrial damage  (137, 153, 157).  In a mouse CCI model, the lipid 

peroxide scavenger U-83836E significantly reduced both cortical expression of both the 

lipid peroxide-associated reactive aldehyde 4-hydroxynonenal (4-NHE) and its 

downstream protein nitration product; in these same animals, a concomitant 

improvement in mitochondrial calcium buffering capacity and recovery of RCR was 

observed, suggesting that reducing the secondary byproducts of early oxidative stress 

may confer significant protection against mitochondrial dysfunction (175).  Similarly, 

drugs used in animal models to scavenge reactive carbonyl groups, such as D-

penicillamine, carnosine, and hydralazine, have also demonstrated post-TBI 

neuroprotective effects, including decreased cell permeability, decreased neuron 

necrosis, reduced infarct size, preservation of BBB function, and improved neurological 

recovery (153).  Another strategy that has been tested in animal models is removal of 

reactive biomolecules through support of the cell’s native antioxidant defenses; for 

example, drugs that replenish stores of glutathione, such as n-acetylcysteine (NAC) and 

γ-glutamylcysteine, decreased protein carbonyls, improved respiratory capacity and 

calcium homeostasis and decreased autophagy after TBI, resulting in preserved BBB 

structure, reduced cerebral edema and decreased lesion volume (153).  Following its 

successful use in animals, NAC was administered to patients with mild blast-induced 

TBI, resulting in improved behavioral consequences, such as preserved memory 

function (153).   

 

 Although most antioxidant strategies employ the use of drugs that removed existing 

reactive molecules, another proposed strategy to decreased oxidative stress is to 

prevent the formation of ROS.  Mitochondrial uncoupling, which collapses the 

mitochondrial protein gradient and increase electron transport chain flux, depletes the 
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pool of molecular oxygen that is susceptible to oxidation, and both genetic 

overexpression of uncoupling proteins and administration of the pharmacological 

uncouplers 2,4-DNP and FCCP were able to decrease cortical ROS production, support 

mitochondrial calcium buffering, reduce cortical tissue damage, and improve behavioral 

outcome after TBI (176, 177).  Another proposed strategy to decrease ROS production 

is electron chain bypass, a method that uses mild redox agents to decrease ROS at ETC 

complexes I and III, which are the major sites of ROS generation in the mitochondria 

(108, 178).   

 

Inhibition of Mitochondrial Permeability Transition after TBI 

Another common mitochondrial target for the treatment of TBI is reduction of apoptosis 

through inhibition of the MPT that results from mitochondrial calcium dysregulation 

caused by glutamate toxicity.  Two inhibitors of the MTP, Cyclosporin A (CsA) and 

NIM811, have been used in numerous animal studies and human trials of TBI.  Use of 

CsA in rodent models of TBI demonstrated decreased mitochondrial swelling in 

traumatically injured neurons, increased mitochondrial membrane potential, and 

decreased cortical lesion volume (126-128, 152, 179).  In early human trials, however, 

CsA has demonstrated limited efficacy in improving long-term neurological outcome 

(135).  The disparity in efficacy of CsA in animals versus humans may be due to 

differences in time of administration; animals were treated anywhere from 30 min before 

to 1 h after injury, but humans were treated anywhere up to 8-12 h after injury, which 

may be too late to efficiently prevent a significant amount of mitochondrial 

permeabilization (126-128, 135).  Additionally, CsA is an immunosuppressant drug, so a 

non-immunosupressive MPT inhibitor, NIM811, was developed and tested in rodent CCI 

models.  Treatment with NIM811 after TBI recapitulated the effects of post-TBI CsA 
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treatment, including increased mitochondrial respiration, cortical tissue sparing, and 

improved spatial memory; however, it has similar initiation time requirements to CsA, 

indicating that it may have the same limitations for clinical utility (180, 181).   

 

Induction of Mitochondrial Biogenesis as a Potential Treatment for TBI   

Because mitochondrial biogenesis is a necessary and beneficial response to cellular 

stress, induction of mitochondrial biogenesis has been identified as a potential novel 

treatment modality for TBI (137).  Although no pharmacological inducers of mitochondrial 

biogenesis have yet been used to treat TBI, it has been demonstrated that both 

hypothermia and fasting are potential neuroprotective treatments for acute ischemic 

brain injury (182, 183).  Since cold exposure and calorie restriction are well-

characterized inducers of mitochondrial biogenesis, it is likely that this response is at 

least partially responsible for the neuroprotective effects of these treatments (24, 27).  

Additionally, the ability of the mitochondrial biogenic drug formoterol to preserve 

mitochondrial protein expression, improve mitochondrial respiration, promote cell 

recovery and support organ function after acute ischemic insult to the kidney, a disease 

state that mirrors many of the pathophysiological features of acute brain ischemia, 

further supports the hypothesis that pharmacological induction of mitochondrial 

biogenesis is a viable treatment strategy for TBI (120).   
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Chapter Two 

 
5-HT2 Receptor Regulation of Mitochondrial Genes: 

Pharmacological Effects of Agonists and Antagonists 

 

ABSTRACT 

Mitochondrial biogenesis (MB) is an important physiological process that occurs under 

both basal and physiological stress conditions, such as cold exposure and fasting.  In 

both acute and chronic injury settings, mitochondria are often dysfunctional, which leads 

to further secondary deficits in cell function, including increased production of reactive 

oxygen species (ROS) and decreased energy production.  Deficits in energy production 

are especially deleterious for those organs that require levels of ATP to conduct 

transport activities and critical cell signaling through ion flux.  Both recent and current 

research have revealed that recovery of mitochondrial function is necessary for recovery 

of cellular function and  that induction of mitochondrial biogenesis through activation of 

peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α ) is a novel 

strategy for the treatment of a variety of acute and chronic diseases.  In this study, we 

tested the ability of the 5-HT2C receptor agonist CP-809,101 and the 5-HT2C receptor 

antagonist SB-242, 084 to induce mitochondrial biogenesis and found that both agonist 

and antagonist increased both respiration rates and PGC-1α mRNA expression in 

primary cultures of renal proximal tubules cells (RPTC).  Additionally, both CP-809,101 

and SB-242,084 increased mRNA expression of both PGC-1α and the mitochondrial 

proteins ND1 and NDUFB8.  Although these compounds are classically defined as 5-

HT2C ligands, we found that they still increased MB mRNA expression in both RPTC in 

which the 5-HT2C receptor has been down-regulated by siRNA and in the kidney cortex 

of mice lacking the 5-HT2C receptor.  Interestingly, the ability of these compounds to 
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increase PGC-1α mRNA in RPTC was determined to be dependent on the 5-HT2A 

receptor, for which both of these compounds have a 100 nM affinity.  These results 

indicate that modulation of 5-HT2A receptor signaling results in the induction of MB and 

that treatment with these drugs may be an effective therapeutic option for treatment of 

both acute and chronic organ disease.  Since these drugs were screened in renal tissue, 

they may be particularly useful in the treatment of acute kidney injury (AKI), a pathology 

for which few reparative treatments currently exist.   
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INTRODUCTON 

Mitochondrial dysfunction is a pathological state underlying many diseases, including 

chronic diseases such as diabetes, Alzheimer’s disease, Huntington’s disease and 

amyotrophic lateral sclerosis (ALS or Lou Gehrig’s syndrome) and acute injuries to the 

heart, liver and kidney (151, 164, 172, 184-186).  The organ systems most susceptible to 

mitochondrial dysfunction are those with high energy requirements. The renal system, 

which requires high levels of ATP to drive the transport processes necessary for active 

tubular transport, is at risk for mitochondrial dysfunction caused by acute 

ischemia/reperfusion, drugs, toxicants and diabetes (187). It has been demonstrated that 

recovery of mitochondrial function precedes recovery of cellular structure and function in 

an RPTC model of oxidant injury (112, 188-190).  Although recovery of mitochondrial 

function after acute kidney injury is critical to recovery of both cellular and organ 

function, our laboratory has previously reported that mitochondrial proteins are 

suppressed up to 144 h after initial ischemic injury, which indicates that promoting the 

recovery of mitochondrial function is a viable  therapeutic strategy for the treatment of 

AKI (122).  

 

One potential strategy for improving mitochondrial function is promotion of mitochondrial 

biogenesis (MB), an intricate process that drives the coordinated transcription of both 

mitochondrial DNA- and nuclear-encoded genes to increase cellular mitochondrial 

content.  Mitochondrial health and homeostasis is maintained through MB, mitochondrial 

fission and fusion, and mitophagy; under physiological conditions, these mechanisms 

function together to remove unhealthy mitochondria (171).  Central to this process is the 

induction of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), 

the “master regulator of MB,” (191). Increases in PGC-1α lead directly and indirectly to 
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the transcription of genes necessary for mitochondrial function, including nuclear 

respiratory factor (NRF) and mitochondrial transcription factor A (TFAM), and genes that 

encode proteins of ETC complexes (192).  The net result of increased PGC-1α is the 

upregulation of the proteins of the ETC, which results in greater electron flux and an 

increase in ATP production. PGC-1α can be induced by a number of both physiological 

and pathological stimuli, including cold exposure, caloric restriction, exercise and acute 

injury, and both pharmacologically- and genetically-induced increases in PGC-1α  

ameliorate mitochondrial dysfunction in several model systems, including acute oxidant 

injury in renal proximal tubular cells (RPTC), ALS and Huntington’s disease ((158, 186, 

193-196). 

 

Many signaling pathways have been implicated in the upregulation of PGC-1α 

transcription, including cAMP through CREB, AMP-kinase, calcineurin A/MEF-2, 

calcium/calmodulin-dependent protein kinase (CAMK-IV), NO/cGMP, and mTOR (16, 

18-21, 24, 32, 33, 193). Additionally, our laboratory has identified the roles of Src, p38 

MAPK and EGFR transactivation in the signaling pathway that leads to increased PGC-

1α expression in response to oxidant injury in RPTC (197).  Our group has previously 

identified several pharmacological targets that activate these signaling pathways and 

increase PGC-1α activity, including the 2 adrenergic receptor, phosphodiesterases and 

the 5-HT2 class of receptors (54, 56, 198, 199).  Although the roles of several of these 

targets in the induction of renal MB have now been fully characterized, little work has 

been done to fully understand the role of the 5-HT2 receptor in mitochondrial signaling.  

 

The 5-HT2 family of receptors is composed of three receptor sub-types: 5-HT2A, 2B and 

2C.  All 5-HT2 receptors are G-protein-coupled receptors (GPCRs) traditionally described 

as being coupled to Gq/11 protein for their signal transduction, though some groups have 
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suggested that at least some of the receptor subtypes in this class may also couple to 

Gi/0 (200-202). Signaling through these receptors through Gq/11 or the Gi/0 second 

messengers can lead to activation of pathways previously implicated in the regulation of 

PGC-1α.  Additionally, 5-HT was identified as a survival factor for mitochondria in 

cardiomyocytes through 5-HT2B receptor signaling (203).  Several studies examining 5-

HT2 receptor signaling in the kidney demonstrated expression of 5-HT2A, 2B and 2C mRNA 

in primary renal tubule cells; additionally, 5-HT2A protein was found to be expressed in 

renal mesangial cells (66, 204).  

 

Subsequently, our laboratory investigated the role of renal 5-HT2 mitochondrial signaling 

and demonstrated that the non-specific 5-HT2 receptor agonist DOI induced MB and 

ameliorated mitochondrial dysfunction caused by acute tert-butyl hydrogen peroxide 

(tBHP)-induced oxidant injury in RPTC   These data suggest that this family of receptors 

is involved in mitochondrial homeostasis in the kidney (54).  Since DOI is a pan-agonist, 

we could not assign the MB activity to a specific 5-HT2 receptor.   

 

The availability of potent and specific 5HT2 receptor ligands have made it possible to 

investigate receptor specificity for the induction of MB. In this study we demonstrate the 

expression of the 5HT2C receptor in primary RPTC and describe the ability of both a 

classically-defined 5-HT2C agonist and an antagonist to induce MB in the kidney.  

Furthermore, we used both a 5-HT2C knockout mouse and siRNA directed to 5-HT2C and 

5-HT2A mRNA to study the role of these receptors in MB in the kidney.   
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MATERIALS AND METHODS 

Reagents   

CP-809,101 and SB-242,084 were purchased from Tocris Bioscience (Ellisville,MO).  All 

other chemicals were purchased from Sigma Aldrich (St. Louis, MO).   

Animal Care and Use.  All experiments were performed in strict accordance with the 

guidelines in the Guide for the Care and Use of Laboratory Animals of the National 

Institutes of Health.  All protocols were approved by the Institutional Animal Care and 

Use Committee at the Medical University of South Carolina, or Columbia University and 

appropriate efforts were made to reduce animal suffering. 

Isolation and Culture of Proximal Tubules   

Female New Zealand white rabbits (1.5-2.0 kg) were purchased from Charles River 

Laboratories (Wilmington, MA).  Renal proximal tubule cell (RPTC) isolation was 

performed using the iron oxide perfusion method described previously and cultured 

under improved conditions as previously described (205).    Three days after initial 

plating, de-differentiated RPTC were trypsinized and re-plated on XF-96 polystyrene cell 

culture microplates (Seahorse Bioscience, North Bellerica, MA) at a density of 18,000 

cells/well and maintained at 37oC for 3 days before experimentation (206).  For other 

RPTC experiments, isolated renal proximal tubules were plated in 35-mm dishes used 8 

days after initial plating.  RPTC were treated with experimental compounds for 24 h.   

Oxygen Consumption 

The oxygen consumption rate (OCR) of RPTC was measured using the Seahorse 

Bioscience XF-96 Extracellular Flux Analyzer as previously described (206).  Each 96-

well assay plate was treated with vehicle control (DMSO <0.5%), and 1, 10 and 100 nM 

concentrations of the experimental compounds.  Basal OCR was measured before 

injection of carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP, 0.5 uM), 
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which allows for the measurement of uncoupled OCR (FCCP-OCR), a marker of MB 

(117).  Compounds that increased FCCP-OCR by 15% were considered positive for 

induction of MB.   

5-HT2C Receptor Protein Expression 

5-HT receptor proteins were isolated from RPTC as previously described (207).  A 30 µg 

sample of the resulting protein was then treated with either N-Glycosidase F (PNGase; 

New England BioLabs, Ipswich, MA) according to the manufacturer’s instructions or 

temperature-matched control conditions for 2 h, then loaded onto an SDS-PAGE gel.  

After electrophoretic transfer to nitrocellulose, 5HT2C protein levels were determined by 

immunoblot analysis using an anti-5HT2C receptor monoclonal antibody (1:250, Santa 

Cruz Biotechnology, Santa Cruz, CA; SR-2C (D-12)) and an anti-β-actin antibody 

(1:1000, Santa Cruz Biotechnology), respectively, followed by an HRP-labeled anti-

mouse secondary antibody (1:1000, Santa Cruz Biotechnology).  The secondary 

antibody was detected with SuperSignal West Pico Chemiluminescent Substrate 

(Thermo Fisher Scientific, Rockford, IL).   

In vivo Mouse Studies 

Male C57/Bl6 mice (6-8 weeks old) were purchased from the National Cancer Institute 

(Bethesda, MD).  Mice were individually housed in a temperature-controlled room under 

a 12-h light/dark cycle and randomly assigned to either vehicle control group or one of 

two treatment groups.  Mice were administered a single intraperitoneal dose of either 

diluent (40% (2-Hydroxypropyl)-β-cyclodextrin in 0.9% saline), CP-809,101 (1 mg/kg) or 

SB-242,084 (1 mg/kg) and euthanized 24 h later.  Kidneys were isolated and snap 

frozen for quantitative PCR (qPCR) analysis.  
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Generation of 5-HT2C Transgenic Mice  

5-HT2C transgenic mice on a 129SvEv/Tac background were bred as described 

previously (208).  Briefly, 5-HT2C is an X-linked gene; therefore, female mice 

heterozygotic for the transgene were bred with wild -type (WT) male mice, generating 

WT and heterozygote female mice, and WT and 5HT2C null male offspring.  Tail clips 

were taken and lysed overnight for PCR genotyping identification of the animals. Mice 

were weaned at 3-4 weeks single sex group house under standard conditions until 

adulthood.  

5-HT2C Transgenic Mouse Experiments 

Animals were housed on a 12 h light/dark cycle with food and water available ad libitum.  

At 6-9 weeks of age, 5-HT2C WT and KO mice were randomly assigned to vehicle 

control, CP-809,101 (1 mg/kg) or SB-242,084 (1 mg/kg) treatment groups and treated as 

described above.  24h following a single injection of either diluents or drug, mice were 

euthanized, and kidneys were isolated and snap-frozen for quantitative PCR (qPCR) 

analysis.  

Generation of 5-HT2A Transgenic Mice 

5-HT2A KO mice andWT littermate controls on a 129SvEv/Tac background were 

originally obtained from Taconic (Taconic Farms). Mice heterozygous for a transgenic 

STOP cassette flanked by 

LoxP sites located upstream of the htr2a gene were crossed, generating WT, KO, and 

heterozygous littermates, identified by PCR genotyping (209, 210).  Mice were weaned 

at 3–4 weeks of age and were single sex group house under standard conditions until 

adulthood.  

5-HT2A Transgenic Mouse Experiments 
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Animals were housed on a 12 h light/dark cycle with food and water available ad libitum.  

At 6-9 weeks of age, 5-HT2A WT and KO mice were randomly assigned to vehicle 

control, CP-809,101 (1 mg/kg) or SB-242,084 (1 mg/kg) treatment groups and treated as 

described above.  24h following drug treatment mice were euthanized, and dissections 

were performed to obtain the organs and tissues of interest for quantitative PCR (qPCR) 

analysis.  

5-HT2C and 5-HT2A Knockout Experiments in RPTC  

Rabbit mRNA sequences for 5-HT2A and 5-HT2C receptor were obtained from Ensembl.  

The BLOCK-iT™ RNAi Designer (Invitrogen) was used to design siRNA to these 

sequences.  Two days past confluency, RPTC were treated with either 200 nM 

siGenome non-targeting siRNA #3, 100 nM of both 2C1 and 2C2 siRNA or 100 nM of 

both 2A1 or 2A2 siRNA (Table 2).  72 h after siRNA treatment, RPTC were treated for 24 

h with the experimental drugs and harvested for RT-PCR analysis.   

Real-Time Reverse Transcription-PCR 

Total RNA was extracted from RPTC or renal cortex samples using TRIzol reagent 

(Invitrogen) according to the manufacturer’s protocol.  cDNA was synthesized via 

reverse transcription using the RevertAid First Strand cDNA kit (Thermo Fisher 

Scientific, Waltham, MA) with 1-2 ug of RNA.  PCR products were amplified from 5 uL of 

cDNA template using 2x Maxima SYBR green qPCR master mix (Thermo Fisher 

Scientific) and 400 nM concentrations of each primer (Integrated DNA Technologies, 

Inc., Coralville, IA).  Primer sequences for PGC-1α, ND1, NDUFB8, and β-actin were 

described previously (50, 122).    

Statistics 
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Data are presented as means ± SEM.  Single comparisons for normal data were 

performed using a Student’s t-test, whereas data found to not have a normal distribution 

were subjected to a Mann-Whitney U-test.  Multiple comparisons for normal data were 

performed using one-way analysis of variance (ANOVA) with an appropriate post-hoc 

test to compare multiple means.  Kruskal-Wallis one-way analysis of variance was used 

to do multiple comparisons for non-normal data, and a Holm-Sidak’s post-test was used 

to compare multiple means.    Single and multiple comparison data were considered 

statistically significantly different at P ≤ 0.5.  RPTC isolated from a single rabbit 

represented an individual experiment (n=1) and were repeated until n ≥ 4 was obtained.  

Rodent studies were repeated until n ≥ 3 was obtained. 

 

 

 

  



75 

 

RESULTS 

The 5-HT2 Receptors are Expressed in the Kidney and in RPTC 

 5-HT2A , 2B and 2C receptor mRNAs were identified in RPTC (Fig. 1A).  The reported 

molecular weight of the 5-HT2c receptor is 48 kDa; this molecular weight corresponds to 

the receptor after it has undergone one N-glycosylation.  Additionally, it has been 

reported that the receptor is also expressed as a 60 kDa protein N-glycosylated at two 

sites and as a 38 kDa protein with no N-glycosylations.  In mouse frontal cortex, the 

receptor is more prominently expressed as the 48 kDa receptor, although the 38 kDa 

receptor is also expressed (Fig. 1B).  Conversely, the most prominent isoforms detected 

in the mouse kidney is the 38 kDa non-glycosylated protein, with lower expression of the 

60 kDa and 48 kDa glycosylated proteins (Fig. 1B).   

In both rat and rabbit frontal cortex, the 5-HT2c receptor is expressed as both the 48 kDa 

and 60 kDa glycosylated receptors, but there is little or no expression of the 38 kDa non-

glycosylated protein.  In RPTC, all three isoforms of the receptor are expressed, with the 

60 kDa receptor expressed most prominently.  Treatment of the isolated receptor protein 

with PNGase for two hours decreased the quantity of the 60 kDa receptor and increased 

the quantity of the 38 kDa receptor (Fig. 1C).  
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Fig. 2-1.  5-HT2 Receptors are Expressed in Renal Tissue.  5-HT2A, 5-HT2B and 5-

HT2C receptor mRNA expression were measured in RPTC using GAPDH as a control 

gene (A).  5-HT2C receptor protein expression was analyzed by immunoblot in mouse 

frontal cortex and renal cortex (B) and in RPTC both in the presence and absence of 

Peptide N-Glycosidase F (C).  Ms FC = Mouse Frontal Cortex; Ms RC = Mouse Renal 

Cortex; RPTC = Renal Proximal Tubule Cell.   
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Both a Classical 5-HT2C Agonist and Antagonist Induce MB in RPTC 

RPTC were plated in XF-96 plates and grown under improved culture conditions that 

maintain polarity, differentiated function and respiration rates similar to in vivo renal 

proximal tubule cells (198, 205).  RPTC were treated for 24 h with either vehicle control 

(0.5% DMSO), CP-809,101 (selective 5-HT2C agonist; 0.1, 1, 10 and 100 nM) or SB-

242,084 (selective 5-HT2C antagonist; 0.1, 1, 10 and 100 nM).  CP-809,101 increased 

FCCP-OCR relative to vehicle controls at 100 nM (Fig. 2A).  SB-242,084 increased 

FCCP-OCR relative to vehicle controls at 1, 10 and 100 nM (Fig. 2B). It should be noted 

that the Kd for CP-809,101 and SB-242,084 for the 5-HT2C receptor are 0.1 nM and 10 

nM, respectively (Table 1). CP-809101 is1000-fold more potent at the 5-HT2C receptor 

compared to 5-HT2A and 5-HT2B receptors, respectively (Table 1) (211).  Similarly, SB-

242,084 is 100-fold more potent at the 5-HT2C receptor compared to 5-HT2A and 5-HT2B 

receptors, respectively (Table 1) (77). 

    

To demonstrate that these increased FCCP-OCR rates resulted from increased MB, 

PGC-1α mRNA were measured using quantitative PCR.  PGC-1α mRNA was increased 

at 10 and 100 nM CP-809,101 and at 10 and 100 nM SB-242,084 (Fig. 2C and 2D).  

These results indicate that 5-HT2C agonists and antagonists potently increase some 

markers of MB in RPTC.    
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Fig. 2-2.  Both a 5-HT2C Agonist and Antagonist Induce MB in RPTC.  RPTC were 

treated with either CP-809,101 (A) or SB-242,084 (B) for 24 h. FCCP-uncoupled 

mitochondrial respiration was measured using the Seahorse XF-96 instrument. RPTC 

PGC-1α mRNA expression was measured using tubulin as a control gene following 24 h 

of treatment with either CP-809,101 (C) or SB-242,084 (D).  Data were analyzed using 

Kruskal-Wallis with Dunn’s multiple comparison test.  Data are represented as mean ± 

S.E.M., n≥5.*, p < 0.05 vs. vehicle control.  n ≥ 3, * p <0.05;  
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5-HT2C Agonist and Antagonist Induce MB in vivo 

In kidney cortex of male C56/Bl6 mice treated with 1 mg/kg of CP-809,101 for 24h, PGC-

1α mRNA increased 1.6-fold, while mRNA expression of the mitochondrial-encoded 

gene NADH dehydrogenase 1 (ND1) and nuclear-encoded gene NDUFB8 increased 

1.9- and 1.9-fold, respectively (Fig 3).  ND1 and NDUFB8 are mitochondrial proteins. 

Mice treated with 1 mg/kg of SB-242,084 for 24 h demonstrated a 1.9-fold increase in 

renal cortical PGC-1α mRNA, with a concomitant 1.4- and 1.9-fold increase in ND1 and 

NDUFB8 mRNA, respectively (Fig. 3).  There were no changes in mtDNA copy number 

or mitochondrial protein expression between vehicle and either 1 mg/kg CP-809,101 or 1 

mg/kg SB-242,084 at this time point (Fig. 1-3).   
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Fig. 2-3.  Both a 5-HT2C Agonist and Antagonist Induce Mitochondrial Gene 

Expression in Naïve Mouse Kidney Cortex.  C57/Bl6 mice were treated with a single 

intraperitoneal dose of CP-809,101 or SB-242,084.   PGC-1α, ND1 and NDUFB8 mRNA 

expression in renal cortex were determined by RT-PCR using actin as a control gene. 

mtDNA copy number was determined by qPCR, using ND1 for the mtDNA gene and 

actin for the nuclear control gene.  Values reported as mean ± SEM.  Student’s t- test 

was used to determine significance. n ≥ 3, * p < 0.05. 
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Both a Classical 5-HT2C Agonist and Antagonist Induce Renal MB in vivo in Mice 

Lacking the 5-HT2C Receptor 

At baseline, mice lacking the 5-HT2C receptor have 20% less PGC-1 mRNA compared 

to WT control mice, but there is no difference in either ND1 or NDUFB8 mRNA between 

the two groups (Fig. 2-4A-F).  

Treatment of WT mice with CP-809,101 did not increase PGC-1α, ND1 or NDUFB8 

mRNA over vehicle (Fig. 2-4A-C), while treatment of these mice with SB-242,084 

increased ND1 mRNA 1.5-fold but did not increase PGC-1α or NDUFB8 mRNA over 

vehicle treatment (Fig. 2-4D-4F).   

Treatment of the 5-HT2C knockout mice with CP-809,101 induced a 1.5- and 1.4-fold 

increase in ND1 and NDUFB8 mRNA, respectively, though PGC-1α mRNA expression 

remained unchanged (Fig. 2-4A-C).  Treatment with SB-242,084 increased PGC-1α 

mRNA 1.5 fold over vehicle-treated 5-HT2C knockout mice (no change over vehicle-

treated WT 5-HT2C mice), with 1.5-fold changes in both ND1 and NDUFB8 mRNA (Fig. 

2-4D-F).   
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Fig. 2-4.  Both a Classical 5-HT2C Agonist and Antagonist Induce Renal MB in vivo 

in Mice Lacking the 5-HT2C Receptor.  5-HT2C receptor WT and KO 129Sv mice were 

treated with a single intraperitoneal dose of CP-809,101 or SB-242,084 and euthanized 

24 h post-injection.   PGC-1α (A, D) ND1 (B, E) and NDUFB8 (C, F) mRNA expression 

in renal cortex were determined by RT-PCR using actin as a control gene. Fold 

expression of change in each group are reported relative to the WT – Vehicle group.  

Values reported as mean ± SEM; bars with different superscripts are significantly 

different from one another.  Mann-Whitney U test was used to determine significance. n 

≥ 5, p <0.05.   
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Both a Classical 5-HT2C Agonist and Antagonist Induce MB in RPTC Treated with 

5-HT2C siRNA But Not in RPTC Treated with 5-HT2A siRNA 

In RPTC pretreated for 72 h with 200 nM scramble siRNA, treatment with 10 nM CP-

809,101 increases PGC-1α mRNA PGC-1a mRNA 1.5-fold; similarly, RPTC pretreated 

with 100 nM concentrations of two pooled siRNA directed toward 5-HT2C mRNA have a 

1.5-fold increase in PGC-1α mRNA after 24 h treatment with 10 nM CP-809,101 

compared with matched siRNA- and vehicle-treated RPTC (Fig. 2-5A). However, RPTC 

pretreated with 100 nM concentrations of two pooled siRNA directed toward 5-HT2A 

mRNA demonstrate no increase in PGC-1α mRNA after 24 h treatment with 10 nM CP-

809,101 compared with matched siRNA- and vehicle-treated RPTC (Fig. 2-5A). 

Similarly, 24h treatment of RPTC with 10 nM SB-242,084 after 72 h pretreatment with 

either 200 nM scramble siRNA  or 100 nM concentrations of two pooled siRNAs directed 

toward 5-HT2C mRNA increased PGC-1α mRNA by 1.2-fold compared to matched 

siRNA- and vehicle-treated RPTC (Fig. 2-5B). However, 24h treatment of RPTC with 10 

nM SB-242,084 after pretreatment with 100 nM concentrations of two pooled siRNAs 

directed toward 5-HT2A mRNA does not increase PGC-1α mRNA compared with 

matched siRNA- and vehicle-treated RPTC (Fig. 2-5B). 
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Fig. 2-5.  Both a Classical 5-HT2C Agonist and Antagonist Induce MB in RPTC 

Treated with 5-HT2C siRNA But Not in RPTC Treated with 5-HT2A siRNA.  RPTC 

were pretreated with negative control or siRNA directed toward 5-HT2C or 5-HT2A 

receptor for 72 h then treated with vehicle, CP-809,101 (A) or SB-242,084 (B) for 24 h. 

PGC-1α mRNA expression was measured using tubulin as a control gene.  Data were 

analyzed using a Mann-Whitney U test between each siRNA + vehicle group and its 

corresponding amoxapine treatment group.  Data are represented as mean ± S.E.M., n≥

5.*, p < 0.05 vs. siRNA-matched vehicle control.    
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DISCUSSION 

Mitochondrial homeostasis is an exquisitely controlled cellular process which requires 

the constant coordination and interaction of both nuclear- and mitochondrial DNA-

encoded proteins to maintain energy production and includes the dynamic processes of 

fission, fusion and mitophagy (171).  Disruption of mitochondrial homeostasis is a 

common pathological process to a multitude of diseases that span almost every organ 

system, especially those that require high energy production for proper tissue function.  

Moreover, mitochondria can propagate initial oxidative stress caused by toxicant 

exposure or acute ischemic insult and are often serve as both a target and a cause of 

acute oxidant injury.  Because mitochondrial damage is often the inciting pathological 

feature of acute injury and can contribute to overall tissue damage via release of ROS 

and induction of apoptosis, early intervention to correct mitochondrial dysregulation is an 

attractive therapeutic strategy for a variety of acute injuries.  Additionally, mitochondrial 

dysregulation is a common pathological feature of many chronic illnesses, and 

approaches that support mitochondrial health have been shown to improve to overall 

function in animal models of chronic diseases (185, 196, 212).  Therefore, 

pharmacological inducers of MB represent a novel class of therapeutic agents to 

preserve or restore mitochondrial and overall cellular function in multiple models of both 

acute and chronic disease.   

 

Although overwhelming evidence suggests that induction of MB represents a robust 

opportunity for treatment of a variety of diverse diseases, attempts to identify 

pharmacological inducers of MB have not yielded clinical options for treatment of 

mitochondrial dysfunction in the setting of acute or chronic disease.  The recognition of a 

number of pathways implicated in the induction of MB has allowed our laboratory to 

identify a series of existing drug classes that may influence and promote biogenic 



86 

 

signaling.  Identification of these drug classes allows us to focus our discovery approach 

on existing pharmaceuticals, leading to accelerated characterization of safe and 

clinically-established drugs to treat severe illnesses that are currently only treated with 

supportive measures.  

 

The 5-HT2 family of receptors act through both canonical and non-canonical signaling 

pathways previously identified to be important in the induction of MB.  Additionally these 

receptors have an established library of potent and specific agonists and antagonists 

that are currently prescribed for clinical use in the treatment of a variety of neurological 

and psychiatric illnesses. Therefore, we determined that established 5HT2 ligands 

represented a potential opportunity for the discovery of a safe and effective treatment to 

induce MB in a clinical setting. Briefly, the 5-HT2 receptors are classically defined to be 

coupled to Gq/11 proteins, which activate the phospholipase C second-messenger 

pathway and leads to release of intracellular calcium (141, 201).  Increased intracellular 

calcium can activate a number of additional pathways, including the CaMK, NOS and 

cGMP pathways, which have established roles in the induction of MB.  Early 

examinations of these classes of compounds by our laboratory demonstrated that DOI, a 

5-HT2 pan-agonist, induced MB at relatively high concentrations that were non-specific 

for a single 5-HT2 receptor.  Though this class of receptors—especially the 5-HT2A and 

5-HT2C receptors—have high degrees of structural and functional homology, we 

hypothesized that it was likely that DOI was interacting with one specific receptor in this 

family to induce MB (213).   

 

To probe the 5-HT2 receptor specificity for the induction of MB, we used a preliminary 

respirometric screen to identify several specific 5-HT2 ligands that induced MB.  Our 

most potent ligands were specific for the 5-HT2C receptor, so we next verified that this 



87 

 

receptor was expressed in both mouse renal cortex and in primary rabbit RPTC.  With 

RT-PCR, we demonstrated that mRNA for all three 5-HT2 receptors was expressed in 

the kidney.  A protein isolation previously shown to enrich the quantity of 5-HT2 receptors 

detectable in a sample was performed, and Western blot analysis of these isolates 

identified that the 5-HT2C protein was expressed in our cells in a 60 kDa band.  This 60 

kDa band was determined to be 5-HT2C receptor with two N-glycosylations, which was 

verified by treatment with PNGase, which decreased the 60 kDa band and increased a 

38 kDa band that conforms with a reported non-glycosylated 5-HT2C receptor (214).  

The presence of the 60 kDa N-glycosylated band, previously identified in vivo in the 

hippocampus and choroid plexus, is significant because it indicates the presence of a 

mature 5-HT2C receptor.  The presence of mature 5-HT2C receptor, previously thought to 

be expressed almost exclusively in the CNS, in the kidney introduces a novel drug target 

for renal MB.  Moreover, we suggest this mature 5-HT2C receptor may play a novel role 

in renal cellular homeostasis that differs from its function in the CNS.   

 

After verifying that the mature 5-HT2C receptor was present in primary RPTC, we used 

secondary in vitro assays to further characterize our most promising drug leads from our 

preliminary respirometric screen:  CP-809,101 and SB-242,084.  CP-809,101 is a potent 

5-HT2C agonist, with a pEC50 of 9.96 for 5-HT2C and 1000-fold selectivity over the 5-HT2A 

and 5-HT2B receptors (215).  SB-242,084 is a potent 5-HT2C antagonist, with a pKi of 8.2-

9.0 for 5-HT2C and 100-fold selectivity over the 5-HT2A and 2B receptors (77, 216).  We 

expected that CP-809,101 but not SB-242,084 would induce MB.  However, both of 

these compounds increased FCCP-OCR at nanomolar concentrations and increased 

PGC-1α mRNA at 10nM concentrations in vitro, which indicates that these compounds 

are inducing MB at concentrations specific for the 5-HT2C receptor. Because of the 

paradoxical nature of both an agonist and an antagonist for the same receptor producing 
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the same biological outcome, we decided to further characterize their potential to induce 

MB in vivo. 

 

Vehicle, CP809,101 and SB-242,084 were administered ip to naïve C57/Bl6 mice at 1 

mg/kg.  These doses were consistent with those previously administered to animals and 

reported in the literature by other groups, with CP-809,101 reported to be given at doses 

from 0.3-56 mg/kg and SB-242,084 reported to be given at doses from 0.01-10 mg/kg 

(215). Both CP-809,101 and SB-242,084 significantly increased PGC-1α mRNA, as well 

as mRNA for the mitochondrial DNA-encoded gene ND1 and the nuclear DNA-encoded 

gene NDUFB8. These results demonstrate that CP-809,101 and SB-242,084, a 5-HT2C 

agonist and antagonist, respectively, both increase mRNAs associated with MB in the 

renal cortex.  

 

We next sought to verify that these two compounds were inducing MB through the 5-

HT2C receptor, for which both compounds have 100-1000x specificity over the 5-HT2A 

and 5-HT2B receptors.  To probe this, we treated either WT or 5-HT2C KO mice with 1 

mg/kg CP-809,101 and 1 mg/kg SB-242,084, which had been demonstrated to induce 

renal MB in C57/Bl6 mice.  Our first observation was that 5-HT2C KO mice had a 20% 

decrease in PGC-1α mRNA compared to WT mice, which we suggest indicates a role for 

the 5-HT2C receptor in physiological renal mitochondrial homeostasis.  Treatment of WT 

129sv mice with 1 mg/kg CP-809,101 did not increase any mRNA measures of MB in 

the kidney, whereas treatment with 1 mg/kg SB-242,084 increased ND1 mRNA 

expression, with no changes measured in PGC-1α or NDUFB8 mRNA.  

 

The difference between the molecular response of these naïve WT mice and naïve 

C57/Bl6 mice to treatment with both CP-809,101 and SB-242,084 may reflect a diverse 
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pattern of 5-HT2 receptor expression between these two inbred mouse strains.  

Differences in genetics between inbred mouse strains has been linked to diversity in 

response to both pharmacological therapies and disease agents (e.g. LPS) and is 

identified as a limiting factor in the use of mouse models to perform research on disease 

mechanisms as well as drug discovery (217).  Furthermore, it has been reported that 

there are differences in 5-HT2C RNA editing that leads to strain-specific differences in the 

expression of 24 different 5-HT2C receptor isoforms, which display different levels of 

constitutive activity and functional response to stimulation with 5-HT (132, 218).  It is 

reasonable to expect that these strain differences in expression patterns may be 

extrapolated to the 5-HT2A and 5-HT2B receptors as well and may require generation of 

separate dose-response analyses for induction of MB by our lead compounds in 

individual mouse strains. 

 

After characterizing the response of WT 129sv mice to our two drugs of interest, we next 

sought to compare the response of WT and KO mice to these agents. Interestingly, 

treatment of 5-HT2C KO mice with CP-809,101 led to increases in both ND1 and 

NDUFB8 mRNA and treatment of 5-HT2C KO mice with 1 mg/kg SB-242,084 increased 

PGC-1α, ND1 and NDUFB8 mRNA expression.  These results indicate that these 

compounds, though classically identified as a specific 5-HT2C agonist and antagonist, 

respectively, do not increase mRNA markers of MB through their actions at the 5-HT2C 

receptor.   

 

Because these compounds induced MB in mice lacking the 5-HT2C receptor, we 

hypothesized that biogenic signaling by these compounds is dependent on the 5-HT2A 

receptor.  We then utilized siRNA-directed knockdown of either the 5-HT2A or 5-HT2C 

receptor in our primary RPTC model to further probe the receptor specificity of the 



90 

 

biogenic response to our lead compounds.  Similar to our studies with 5-HT2C KO mice, 

treatment of RPTC with either CP-809,101 or SB-242,084 after pre-treatment with siRNA 

directed toward the 5-HT2C receptor increased PGC-1α mRNA to the same magnitudes 

as those observed after treatment of these compounds in negative control siRNA-treated 

cells.  However, no increases in PGC-1α mRNA were detected in RPTC treated with 

these either of these compounds after pre-treatment with 5-HT2A receptor siRNA.  The 

most likely explanation for these results is that the ability of these compounds to induce 

MB is via signaling through the 5-HT2A receptor, the expression of which has been 

previously reported in the kidney (144, 200, 213, 219, 220).   

 

Our observations that both a classically identified agonist and antagonist for the same 

pharmacological target receptor are contradictory, but there are several potential 

explanations for the paradoxical effect we see with both of these compounds.  The first 

potential explanation is that the action of these compounds on the 5-HT2 class of 

receptors is not identical in the CNS and the kidney.  Most of the compounds defined as 

either 5-HT2A agonists or antagonists have been characterized as such in the CNS or in 

cell lines overexpressing the 5-HT2A receptor.  Thus, it is possible that physiological 

signaling via this receptor in the kidney diverges from that in the CNS and that these two 

ligands both act as agonists in this system, signaling through a calcium-mediated 

pathway to increase cGMP, which has been demonstrated by our laboratory to be 

important for pharmacological induction of renal MB (199).  Another explanation is that 

these two drugs act through divergent pathways, which later converge on PGC-1α to 

induce MB.  In this case, it is still likely that CP-809,101, a 5-HT2C agonist, is signaling 

through a calcium-mediated pathway to increase cGMP and induce MB.  However, it is 

possible that SB-242,084 serves as an inverse agonist in the kidney, acting upon a 

constitutively active 5-HT2A receptor to induce MB. The 5-HT2A receptor in the kidney has 
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been shown to couple to the Gi/0 protein, which inhibits adenyl cyclase. Furthermore, it 

has been suggested that constitutive activity of these receptors has an important 

physiological role and that inverse agonists for these receptors may have broad 

therapeutic potential (181, 200).  Therefore, we suggest that SB-242,084 may serve as 

an inverse agonist for a constitutively active Gi/0-coupled 5-HT2A receptor.  Since the Gi/0 

protein inhibits adenylyl cyclase, inverse agonism would increase intracellular cAMP, 

which regulates PGC-1α expression and activity via the PKA/CREB signaling pathway 

(135).  Future studies are focused on further elucidating the signaling pathways by which 

these drugs induce MB.   

 

Our results indicate that both 5-HT2C receptor agonists and antagonists can result in the 

induction of MB both in vitro and in vivo, though these effects appear to be independent 

of the 5-HT2C receptor.   Although neither of our compounds induces biogenesis through 

5-HT2C signaling, we see a reduction of PGC-1α mRNA in 5-HT2C KO mice as compared 

to WT and suggest that the 5-HT2C receptor is important for maintenance of 

mitochondrial homeostasis in the kidney.  Therefore, more work should be done to 

investigate the contribution of renal 5-HT2C and 5-HT2A receptor signaling to 

maintenance of mitochondrial homeostasis and promotion of MB in the kidney.  

Furthermore, we suggest that both agonists and antagonists of 5-HT2 receptors are 

viable candidates for the treatment of kidney disease, and future studies will explore the 

ability of these compounds to rescue or support mitochondrial function after an 

established model of acute kidney disease.  The use of 5-HT2A antagonism is an 

attractive approach, because it avoids possibility of non-mitochondrial cardiotoxicity 

through agonism of the 5-HT2B receptor (73, 221).  This 5-HT2B receptor-mediated 

cardiotoxicity is a serious side effect that has limited drug discovery and safety of 5-HT2 

class agonists, since most of these compounds do activate the 5-HT2B receptor at 
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increasing concentrations, a factor that resulted the Food and Drug Administration’s 

approval of the appetite suppressant fenfluramine being rescinded in (222, 223).  

Additionally, these compounds were developed for use in the CNS, and we therefore 

suggest that these drugs may be novel drug candidates for the treatment of 

mitochondrial dysfunction in both acute and chronic neurological pathologies, including 

stroke, Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and ALS. 
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CHAPTER THREE 
   
AMOXAPINE, A NON-SELECTIVE POTENT 5-HT2A/2C RECEPTOR 
ANTAGONIST, INDUCES RENAL MITOCHONDRIAL BIOGENESIS 
 

ABSTRACT 

Acute kidney injury (AKI) is a critical disease process that accounts for a significant 

number of hospitalizations, has a high associated mortality rate and accounts for 

approximately $10 billion in medical spending each year.  Many disparate mechanisms 

of AKI have common pathophysiological features, which converge on mitochondrial 

dysfunction and associated membrane disruption, respiratory deficits and loss of energy 

production.  Recent studies have examined patterns of mitochondrial dysfunction 

following AKI and have demonstrated that mitochondrial content and function are rapidly 

lost after an acute ischemic event and that these mitochondrial deficits persist through at 

least 6-14 d after the initiating injury.  Further studies have demonstrated that 

pharmacological stimulation of mitochondrial biogenesis (MB) can reverse or mitigate 

mitochondrial dysfunction after AKI, resulting in improvement in renal tubular function.  

Additionally, previous work identified that both an agonist and an antagonist of the 5-

HT2A receptor were capable of inducing MB in the kidney.  In this study, we further tested 

the ability of amoxapine, another potent but non-specific 5-HT2A/2C receptor antagonist, 

to induce renal MB.  We found that amoxapine increased both cellular respiration and 

PGC-1α mRNA expression in primary renal proximal tubules at nanomolar 

concentrations.   Through the use of siRNA, we determined that increased PGC-1α 

mRNA expression stimulated by amoxapine in RPTC depends on expression of the 5-

HT2A receptor.  Additionally, daily injections of 0.3 mg/kg amoxapine induced PGC-1α 

mRNA expression in mouse kidney cortex at 48 h post-initial injection, but interestingly, 

amoxapine had no effect on MB in three CNS tissues: frontal cortex, hippocampus, or 
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striatum.  Finally, despite its promise as a biogenic agent, amoxapine did not increase 

mitochondrial mRNA expression or mtDNA copy number and failed to restore renal 

function following folic acid-induced AKI (FA-AKI).  These results indicate that 

amoxapine induces renal MB through antagonism of the 5-HT2A receptor, but that the 

use of this therapeutic may be limited by other cellular injury factors present in the acute 

phase after initial insult.   
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INTRODUCTION 

Acute kidney injury (AKI), the loss of renal function over hours to days, is a severe 

pathological state with high percentages of mortality, especially in patients who develop 

this disease in a hospital setting, resulting in more than $10 billion of associated costs 

(82-84).  Despite the serious consequences of this disease state, current therapies to 

treat AKI are largely supportive, and there are no current therapies that reverse the 

molecular mechanisms of cellular damage that are prominent pathophysiological 

features common to all causes of AKI, including toxicant and ischemia/reperfusion AKI.   

 

One significant cause of AKI is ischemia/reperfusion, the most serious consequence of 

which is increased renal tubular oxidative stress (85, 102, 106, 107).  Oxidative stress 

resulting from an acute increase in ROS induced by the sudden influx of oxygen 

following reperfusion is propagated by the generation of secondary reactive species, 

such as lipid peroxides and protein carbonyls, which disrupt the structure of the inner 

mitochondrial membrane and electron transport chain and cause mtDNA damage and 

loss (159, 161).  

 

The consequence of acute oxidant stress in the mitochondria is a loss of mitochondrial 

function.  Our laboratory has demonstrated that 20 minutes of renal pedicle ligation 

followed by reperfusion induced a decrease of both mRNA and protein expression of 

ETC components, including mitochondrial-encoded COXI and nuclear-encoded 

NDUFB8 and ATP synthase β, which persisted through 6 d post-injury and were 

accompanied by a persistent decrease in cellular respiration (120, 122).  These markers 

of mitochondrial dysfunction were correlated with increased renal injury markers, 

including increased SCr and KIM-1, which did not return to control levels by 6 d post-

injury (120, 122).  Additionally, our laboratory determined that restoration of 
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mitochondrial function after acute oxidant injury to RPTC was required for recovery of 

cellular function (38, 119).  Therefore, mitochondria are an important pharmacological 

target for treatment of AKI and improving mitochondrial function could promote tubular 

recovery and proliferation, which no current clinical treatment modality accomplishes. 

 

An attractive strategy to improve mitochondrial function after acute injury is the 

pharmacological induction of MB, one of the processes by which mitochondrial 

homeostasis in maintained.  MB requires coordination of transcription of both nuclear- 

and mitochondrial-encoded genes and is under the exquisite control of peroxisome 

proliferator-activated receptor gamma coactivator-1α (PGC-1α), the “master regulator of 

MB” (6).  Our laboratory determined that overexpression of PGC-1α in RPTC after TBHP 

treatment promotes recovery of mitochondrial protein expression, cellular respiration, 

and ATP content, indicating that induction of MB can reverse the mitochondrial 

dysfunction after acute oxidant injury (130).  Additionally, our laboratory demonstrated 

that pharmacological induction of MB through stimulation of the β2-adrenergic receptor 

with the agonist formoterol recovers expression of both nuclear-encoded protein 

NDUFB8 and mitochondrial-encoded COXI 6 d after renal pedicle ligation (120).  

Additionally, treatment with formoterol promoted recovery of renal cortical mitochondrial 

respiration, mitigated tubular necrosis, and reduced renal injury markers SCr and KIM-1 

(120).  These results provide strong evidence that pharmacological induction of MB is a 

high-yield strategy to prevent persistent decreases in mitochondrial content and function 

and to improve tubular cell recovery after acute I/R injury.   

 

PGC-1α is under tight physiological control, and a number of signaling pathways have 

been implicated in its induction, including cAMP through CREB, AMP-kinase, calcineurin 

A/MEF-2, calcium/calmodulin-dependent protein kinase (CAMK-IV), NO/cGMP, and 
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mTOR (16, 18-21, 24, 27, 32, 33).  Our group has identified a number of compounds 

that induce mitochondrial biogenesis through diverse mechanisms using several 

different pharmacological classes, including β2-adrenergic agonists, phosphodiesterase 

inhibitors, SIRT1 activators, isoflavones, and 5-HT2 receptor agonists and antagonists 

(47, 48, 50, 52, 56). 

 

Our laboratory previously characterized the ability of a number of 5-HT2 receptor 

agonists and antagonists to induce MB in RPTC and mouse renal cortex.  The 5-HT2 

family of receptors is composed of three receptor sub-types (2A, 2B and 2C), all of which 

are G-protein-coupled receptors (GPCRs) traditionally characterized to signal through 

Gq/11 protein, leading to the release of intracellular calcium and downstream activation of 

several pathways associated with MB, including CAMK/calmodulin signaling and 

NO/cGMP production (200-202).  DOI, a non-selective 5-HT2 receptor agonist, was 

shown to increase PGC-1α expression as well as expression of nuclear-encoded ETC 

proteins NDUFB8 and ATP synthase β (56).  Furthermore, DOI promoted recovery of 

cellular respiration after TBHP treatment, indicating that 5-HT2 receptor agonism is a 

promising strategy to reverse AKI through promotion of MB (56).   

 

Further investigation of this class of receptors demonstrated that both classically-defined 

5-HT2C agonist CP-809,101 and antagonist SB-242,084 were capable of increasing 

cellular respiration and PGC-1α mRNA expression in RPTC as well as mRNA 

expression of PGC-1α, mitochondrial-encoded ND1 and nuclear-encoded NDUFB8 in 

mouse kidney cortex.  Through the use of mice lacking the 5-HT2 receptor as well as 

RPTC treated with siRNA directed toward either the 5-HT2A or 5-HT2C receptor, our 

laboratory further determined that both CP-809,101 and SB-242,084 induced MB 

through the 5-HT2A receptor.  Although the effect of these drugs is not mediated by the 5-



98 

 

HT2C receptor, mice that do not express this receptor have a 20% decrease in PGC-1α 

mRNA expression under baseline conditions, indicating that the 5-HT2C may play a novel 

role in regulation of renal mitochondrial homeostasis. 

 

Induction of MB through antagonism of the 5-HT2A receptor is a more promising strategy 

for treatment of AKI because it avoids the risk of off-target 5-HT2B receptor-mediated 

non-mitochondrial cardiotoxicity common to 5-HT2 receptor agonists (73, 221-223).  A 

number of selective serotonin reuptake inhibitors (SSRIs) currently approved by the FDA 

for use as antidepressants are also potent non-specific 5-HT2A/C receptor antagonists, 

the investigation of which may lead to the expedited development of a safe effective 

drug to induce renal MB and treat AKI (224).  In this study, we demonstrate the ability of 

the non-specific 5-HT2A/2C receptor antagonist amoxapine to induce MB in the kidney 

through the 5-HT2A receptor.  Furthermore, we sought to identify the effects of 

amoxapine on MB in other organ systems and examined its effect on mitochondrial 

homeostasis following folic acid-induced AKI (FA-AKI).   
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MATERIALS AND METHODS 

Reagents 

 Amoxapine and all other chemicals were purchased from Sigma Aldrich (St. Louis, MO).  

Animal Care and Use 

All experiments were performed in strict accordance with the guidelines in the Guide for 

the Care and Use of Laboratory Animals of the National Institutes of Health.  All 

protocols were approved by the Institutional Animal Care and Use Committee at the 

Medical University of South Carolina, and appropriate efforts were made to reduce 

animal suffering. 

Isolation and Culture of Proximal Tubules 

Female New Zealand white rabbits (1.5-2.0 kg) were purchased from Charles River 

Laboratories (Wilmington, MA).  Renal proximal tubule cell (RPTC) isolation was 

performed using the iron oxide perfusion method described previously and cultured 

under improved conditions as previously described (205).    Three days after initial 

plating, de-differentiated RPTC were trypsinized and re-plated on XF-96 polystyrene cell 

culture microplates (Seahorse Bioscience, North Bellerica, MA) at a density of 18,000 

cells/well and maintained at 37oC for 3 days before experimentation (206).  For other 

RPTC experiments, isolated renal proximal tubules were plated in 35-mm dishes used 8 

days after initial plating.  RPTC were treated with experimental compounds for 24 h.   

Oxygen Consumption.   

The oxygen consumption rate (OCR) of RPTC was measured using the Seahorse 

Bioscience XF-96 Extracellular Flux Analyzer as previously described (206).  Each 96-

well assay plate was treated with vehicle control (DMSO <0.5%), and 1, 10 and 100 nM 

concentrations of the experimental compounds.  Basal OCR was measured before 
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injection of carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP, 0.5 uM), 

which allows for the measurement of uncoupled OCR (FCCP-OCR), a marker of MB 

(117).  Compounds that increased FCCP-OCR by 15% were considered positive for 

induction of MB.   

In vivo mouse studies  

 Male C57/Bl6 mice (6-8 weeks old) were purchased from the National Cancer Institute 

(Bethesda, MD).  Mice were individually housed in a temperature-controlled room under 

a 12-h light/dark cycle and randomly assigned to either the vehicle control or the drug 

treatment group.  Mice were administered a daily intraperitoneal dose of either diluent 

(40% (2-Hydroxypropyl)-β-cyclodextrin in 0.9% saline) or amoxapine (0.3 mg/kg) and 

euthanized 24, 48 or 120 h after the initial dose.  Kidneys were isolated and snap frozen 

for quantitative PCR (qPCR) analysis.     

5-HT2C and 5-HT2A Knockout Experiments in RPTC 

Rabbit mRNA sequences for 5-HT2A and 5-HT2C receptor were obtained from 

Ensembl.  The BLOCK-iT™ RNAi Designer (Invitrogen) was used to design siRNA to 

these sequences.  Two days past confluency, RPTC were treated with either 200 nM 

siGenome non-targeting siRNA #3, 100 nM of both 2C1 and 2C2 siRNA or 100 nM of 

both 2A1 or 2A2 siRNA (Table 2).  72 h after siRNA treatment, RPTC were treated for 24 

h with experimental drugs and harvested for RT-PCR analysis.   

Folic Acid Animal Model 

Male C57BL/6 mice (8-10 weeks of age) were given a single intraperitoneal injection of 

250 mg/kg folic acid dissolved in 250mM sodium bicarbonate or saline control as 

described previously (52, 225). Mice were given intraperitoneal injections of either 
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diluents or amoxapine (0.3 mg/kg) every 24 hours beginning 1d after FA injection. Mice 

were euthanized at 7d, and kidneys were removed and snap-frozen for qPCR analysis.   

Real-Time Reverse Transcription-PCR  

Total RNA was extracted from RPTC or renal cortex samples using TRIzol reagent 

(Invitrogen) according to the manufacturer’s protocol.  cDNA was synthesized via 

reverse transcription using the RevertAid First Strand cDNA kit (Thermo Fisher 

Scientific, Waltham, MA) with 1-2 ug of RNA.  PCR products were amplified from 5 uL of 

cDNA template using 2x Maxima SYBR green qPCR master mix (Thermo Fisher 

Scientific) and 400 nM concentrations of each primer (Integrated DNA Technologies, 

Inc., Coralville, IA).  Primer sequences for PGC-1α, ND1, NDUFB8, and β-actin were 

described previously (50, 122).  The previously described ΔΔ-Ct analysis method was 

used to calculate fold changes in expression (50).    

Mitochondrial DNA Content 

Relative quantity of mtDNA in mouse renal cortical tissue samples was measured using 

real-time PCR.  After treatment, DNA was isolated from tissues using the DNEasy Blood 

and Tissue Kit (Qiagen, Valencia, CA), and qPCR was performed using 5 ng of cellular 

DNA.  Expression of NADH dehydrogenase 1 (ND1), a mitochondrial gene, was 

measured and normalized to nuclear-encoded β-actin.  The ΔΔ-Ct analysis method was 

used to calculate fold changes in expression (50).             

Immunoblot Analysis 

Mouse kidney cortex was homogenized in 500 µL of protein lysis buffer (1% Triton X-

100, 150 mM NaCl, 10 mM Tris-HCl, pH 7.4; 1 mM EDTA; 1 mM EGTA; 2 mM sodium 

orthovanadate; 0.2 mM phenylmethylsulfonyl fluoride; 1 mM HEPES, pH 7.6; 1 μg/ml 

leupeptin; and 1 μg/ml aprotinin) using a Polytron homogenizer. The homogenate was 
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stored on ice for 10 min and then centrifuged at 10000 g for 10 min at 4°C. The 

supernatant was collected, and protein was determined using a bicinchoninic acid kit 

(Sigma, St. Louis, MO) with bovine serum albumin as the standard. Proteins (50–75 μg) 

were separated on 4 to 20% gradient SDS-polyacrylamide gels and transferred to 

nitrocellulose membranes. Membranes were blocked either in 5% dried milk or BSA in 

TBST (0.1% Tween 20 in 1× Tris-buffered saline) and incubated with 1:1000 antibody 

dilutions of anti-PGC-1α (EMD, Billerica, MA); COX-1 (Abcam, Cambridge, MA); anti-

NDUFS1 (Abcam, Cambridge, MA); and anti-GAPDH (Fitzgerald, Acton, MA) overnight 

at 4C. After incubation for 2 h at room temperature with secondary antibodies (1:2000) 

conjugated with horseradish peroxidase, membranes were detected by 

chemiluminescence.  Densitometric analysis was performed using ImageJ (226).   

Statistics 

Data are presented as means ± SEM.  Single comparisons for normal data were 

performed using a Student’s t-test, whereas data found to not have a normal distribution 

were subjected to a Mann-Whitney U-test.  Multiple comparisons for normal data were 

performed using one-way analysis of variance (ANOVA) with an appropriate post-hoc 

test to compare multiple means.  Kruskal-Wallis one-way analysis of variance was used 

to perform multiple comparisons for non-normal data, and a Holm-Sidak’s post-test was 

used to compare multiple medians.    Single and multiple comparison data were 

considered statistically significantly different at P ≤ 0.05.  RPTC isolated from a single 

rabbit represented an individual experiment (n=1) and were repeated until n ≥ 4 was 

obtained.  Rodent studies were repeated until n ≥ 3 was obtained. 
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RESULTS 

Amoxapine, a 5-HT2A/2C Antagonist, Induces MB in RPTC 

RPTC were plated in XF-96 cell plates and incubated under previously described 

conditions that preserve the polarity, differentiation, function and respiratory capacity of 

in vivo RPTC (50, 205).  RPTC were treated for 24 h with vehicle control or amoxapine 

(0.1, 1, 10, 100 nM).  A significant increase in FCCP-OCR was observed at all doses 

relative to vehicle controls (Fig. 3-1A).  It should be noted that the KD for amoxapine is 1 

nM for both the 5-HT2A and 5-HT2C receptors, but it is not reported to act as an 

antagonist on the 5-HT2B receptor.   

 

Because pharmacological agents can increase respiration through mechanisms other 

than mitochondrial biogenesis, we treated 35 mm plates of RPTC grown under optimized 

conditions with either vehicle control or amoxapine (30 and 100 nM) and measured 

PGC-1α mRNA expression.  Both 30 and 100 nM concentrations of amoxapine 

increased PGC-1α mRNA expression by 1.2 and 1.25-fold respectively (Fig. 3-1B).  

These results indicate that amoxapine, a 5-HT2 receptor antagonist, induces MB in 

RPTC. 
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Fig. 3-1.  Amoxapine, a 5-HT2A/2C Antagonist, Induces MB in RPTC.  RPTC were 
treated with amoxapine for 24 h. FCCP-uncoupled mitochondrial respiration was 
measured using the Seahorse XF-96 instrument (A). PGC-1α mRNA expression was 
measured using tubulin as a control gene (B).  Data were analyzed using Kruskal-Wallis 
test followed by Dunn’s Multiple Comparison Test.  Data are represented as mean ± 

S.E.M., n≥5.*, p < 0.05 vs. vehicle control.  
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siRNA Knockdown of the 5-HT2A Receptor Prevents Induction of MB by Amoxapine 

Because amoxapine is a potent, but non-selective, antagonist of both the 5-HT2A 

receptor and the 5-HT2C receptor, we pretreated RPTC for 72 h with negative control 

siRNA or siRNA directed toward either the 5-HT2A receptor or 5-HT2C receptor.  We then 

measured PGC-1α mRNA expression after 24 h of treatment with either diluent or 30 nM 

amoxapine, a dose that was previously demonstrated to effectively increase this MB 

marker in RPTC.  Consistent with the results in naïve RPTC, PGC-1α mRNA expression 

was increased 1.2 fold in RPTC pretreated with negative control siRNA (Fig. 3-2).  

Similarly, 72 h pretreatment with siRNA directed toward the 5-HT2C receptor did not 

abrogate the biogenic capacity of amoxapine and even potentiated its ability to stimulate 

MB, resulting in a 1.6-fold increase of PGC-1α mRNA expression 24 h after treatment 

(Fig. 3-2).  Conversely, pretreatment with siRNA directed toward the 5-HT2A receptor for 

72 h completely blocked an increase in PGC-1α mRNA expression after 24 h of 30 nM 

amoxapine treatment (Fig. 3-2).  These results strongly suggest that amoxapine induces 

MB through 5-HT2A receptor signaling.   
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Fig. 3-2.  siRNA Knockdown of the 5-HT2A Receptor Prevents Induction of MB by 

Amoxapine.  RPTC were pretreated with negative control or siRNA directed toward 5-

HT2C or 5-HT2A receptor for 72 h then treated with either vehicle or amoxapine for 24 h. 

PGC-1α mRNA expression was measured using tubulin as a control gene.  Data were 

analyzed using a Mann-Whitney U test between each siRNA + vehicle group and its 

corresponding amoxapine treatment group.  Data are represented as mean ± S.E.M., n≥

5, *p < 0.05 vs. siRNA-matched vehicle control. 
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Amoxapine Induces PGC-1 In Vivo 

Male C57/Bl6 mice were treated with daily intraperitoneal doses of either amoxapine (0.3 

mg/kg) or diluent and euthanized 24, 48 or 120 h after the initial injection.  In kidney 

cortex, amoxapine increased PGC-1α mRNA expression 1.25 fold 48 h after the initial 

dose of amoxapine, but no difference in PGC-1α mRNA expression was observed at 24 

(d.n.s.) or 120 h after amoxapine treatment (Fig. 3-C).  No change in mtDNA copy 

number was observed at 24, 48 or 120 h after amoxapine treatment.  We further 

investigated the 0.3 mg/kg amoxapine treatment and found that it did not increase renal 

cortical expression of PGC-1α protein, nor expression of either COXI, a mitochondrial-

encoded protein, or NDUFS1, a nuclear-encoded protein at 48 h (Fig. 3-2D and F) or 

120 h (Fig 3-2E and G) after initial injection.   
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Fig. 3-3.  Amoxapine Induces PGC-1 mRNA In Vivo.  C57/Bl6 mice were treated 

with daily intraperitoneal doses of amoxapine and euthanized at 24, 48 and 120 h after 

initial amoxapine injection.  PGC-1α mRNA expression was determined by RT-PCR 

using actin as a control gene. mtDNA copy number was determined by qPCR, using 

ND1 for the mtDNA gene and actin for the nuclear control gene.  PGC-1α, COXI and 

NDUFS1 protein expression were determined with immunoblot analysis using GAPDH 

as a loading control.  PGC-1α mRNA expression and mtDNA copy number were 

measured in renal cortex at 24 (d.n.s.), 48 (A) and 120 h (B) after initial dose of 

amoxapine.  PGC-1α, COXI and NDUFS1 protein expression were measured at 48 (C) 

and 120 (D) h after initial amoxapine injection. Values reported as mean ± SEM.  Mann-

Whitney U test was used to determine significance. n =4-9, *p < 0.05. 
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Amoxapine Does Not Induce MB in CNS Tissue In vivo 

Because amoxapine was first characterized and developed as an anti-depressant drug 

and is designed to cross the blood-brain barrier (BBB), we then examined its ability to 

induce MB in three CNS tissues.  We measured PGC-1α mRNA expression and mtDNA 

copy number, two markers of MB, after 0.3 mg/kg amoxapine treatment in the frontal 

cortex, hippocampus and striatum at 48 h after the initial dose because this is the time 

point at which MB was increased in the kidney cortex.  However, at this time point, no 

increase in either of those MB markers was demonstrated in frontal cortex, hippocampus 

or striatum (Fig 3-4A-C). 
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Fig. 3-4.  Amoxapine Does Not Induce MB in CNS Tissue In Vivo.  PGC-1α mRNA 

expression was determined by RT-PCR using actin as a control gene. mtDNA copy 

number was determined by qPCR, using ND1 for the mtDNA gene and actin for the 

nuclear control gene.  PGC-1α mRNA expression and mtDNA copy number were at 48 h 

after initial amoxapine injection in frontal cortex (A), hippocampus (B) and striatum (C).  

Values reported as mean ± SEM.  Mann-Whitney U test was used to determine 

significance. n =4-9.  
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Amoxapine Does Not Promote Recovery of MB after FA-induced AKI 

Because 0.3 mg/kg amoxapine increased MB markers in the kidney cortex of naïve 

mice, we hypothesized that this drug would promote recovery of MB after AKI induced 

by injection of FA, which our laboratory previously demonstrated to severely decrease 

both mitochondrial biogenesis and renal function (227).  FA-treated mice given diluent 

alone had reduced PGC-1α, TFAM and COXI mRNA expression at ~50% and ~30% of 

control, respectively.  Folic acid also decreased mitochondrial-encoded COXI mRNA 

expression and mtDNA copy number to ~25% and ~30% of control, respectively.  

Amoxapine treatment did not significantly change expression of any of these MB 

markers (Fig. 3-5A-D).   
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Fig. 3-5.  Amoxapine Does Not Promote Recovery of MB after FA-induced AKI.   

PGC-1α (A), TFAM (B) and COXI (C) mRNA expression were determined by RT-PCR 

using actin as a control gene.  mtDNA copy number was determined by qPCR, using 

ND1 for the mtDNA gene and actin for the nuclear control gene (D).  These markers 

were measured in control, FA-AKI and FA-AKI + 0.3 mg/kg amoxapine groups in renal 

cortex 7 d post-injury.  Values reported as mean ± SEM; bars with different superscripts 

are significantly different from one another.  One-way ANOVA with Bonferroni post-hoc 

test was used to determine significance. *p < 0.05, n ≥ 4..    
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Amoxapine Does Not Restore Renal Function or Promote Survival after FA-

induced AKI 

To test the hypothesis that amoxapine treatment would promote renal recovery, BUN 

was measured in serum collected 1, 2, 4 and 7 d after FA injection.  At all time points 

measured after injury, FA mice treated with diluent alone had a ~8-fold increase in BUN 

over control (Fig. 3-6A).  There was no significant difference in BUN in FA mice treated 

with amoxapine from those treated with diluent control (Fig. 3-6B).  Additionally, survival 

7 d after FA injection was 76% of control, and treatment with amoxapine did not 

significantly alter that survival percentage (Fig. 3-5C).  These results suggest that FA-

induced AKI is a severe injury and that the failure of amoxapine treatment to significantly 

induce MB in this model prevents it from promoting recovery of renal function and 

improving survival in FA-treated mice. 
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Fig. 3-6.  Amoxapine Does Not Restore Renal Function or Promote Survival after 

FA-induced AKI.  AKI was induced in C57BL/6 by a single intraperitoneal injection of 

FA. Mice received daily injections of amoxapine (0.3 mg/kg) or saline vehicle beginning 

24h after FA.  Kidney function was assessed via serum creatinine at 1, 2, 4 and 7 d post-

injury (A).   A Kaplan-Meier Survival Curve was generated using % survival of each 

group on each day after FA-AKI (B).  Differences between FA and control (*) and FA + 

amoxapine and control (#) groups were analyzed using a Mann-Whitney U test.  N=4-14, 

*, # p < 0.05 compared to control.        
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DISCUSSION 

Mitochondrial dysfunction is a well-characterized pathophysiological consequence and 

initiator of acute kidney injury, and previous work demonstrated that pharmacological 

induction of MB promoted recovery of tubular structure and decreased markers of renal 

injury after I/R-AKI (120).  Additionally, recent work in our laboratory characterized a 

pattern of mitochondrial dysfunction after FA-AKI and demonstrated that treatment with 

the PDE5 inhibitor sildenafil partially restored mtDNA copy number as well as expression 

of TFAM and COXI mRNA; the mitigation of these mitochondrial damage markers was 

correlated with a decrease in the renal injury marker KIM-1 (52).  The conclusion drawn 

from these studies is that stimulation of MB is a promising novel opportunity to treat 

cellular damage in the face of AKI.  In this study, we examined the ability of amoxapine, 

a 5-HT2A/2C receptor antagonist, to induce MB in RPTC and in both naïve and FA-AKI 

mouse renal cortex by measuring PGC-1α mRNA expression, mtDNA copy number and 

expression of mRNAs for mitochondrial proteins 24-120 h after drug administration. 

 

Previous studies in our laboratory demonstrated that CP-809,101, a 5-HT2C receptor 

agonist, and SB-242,084, a 5-HT2C receptor antagonist, were both capable of inducing 

MB in both RPTC and mouse renal cortex but, contrary to our expectations, biogenic 

signaling by these compounds was dependent on the expression of the 5-HT2A receptor.  

We found antagonism of the 5-HT2A receptor to have more potential for drug 

development, because agonists of any member in the 5-HT2 receptor class frequently 

exerts non-specific effects on other 5-HT2 receptors at increasing doses; the possibility of 

off-target effects makes these agonists less attractive drug leads due to the risk of non-

mitochondrial cardiotoxicity mediated by the 5-HT2B receptor (73, 221-223).  Additionally, 

5-HT2A receptor specific agonists are not candidates for clinical use because most potent 

agonists of this receptor are hallucinogenic (228).  Finally, it was found that many FDA-
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approved SSRIs are also potent antagonists at the 5-HT2A and 5-HT2C receptors, which 

led to the identification of a panel of readily available and clinically safe drugs with 

potential to induce MB in the kidney (224).  An initial screen of this panel of drugs 

suggested that the antidepressant amoxapine was a candidate drug lead and warranted 

further analysis of its mitochondrial biogenic capabilities. 

 

Amoxapine is a non-specific but potent 5-HT2A/2C receptor antagonist, with a KD of 1 nM 

for both receptors (224).  Amoxapine has no reported antagonist effects on the 5-HT2C 

receptor, but it inhibits the norepinephrine, serotonin and dopamine transporters at 60 

nM, 16 nM, and 4 µM, respectively (229).  Therefore, it has 60-fold selectivity for the 5-

HT2A/2C receptors over the serotonin transporter, which we found acceptable to avoid 

potential competing effects of increased native serotonin signaling on MB. 

 

In RPTC, amoxapine was demonstrated to increase FCCP-uncoupled respiration at 0.1, 

1, 10 and 100 nM doses, which is consistent with its Kd values for both the 5-HT2A and 5-

HT2C receptors.  To verify that this increase in respiration was due to increased MB, we 

measured PGC-1α mRNA and found it to be increased at 30 and 100 nM concentrations 

of amoxapine. 

 

Because we previously found that biogenic signaling at the 5-HT2 class of receptors was 

dependent on the expression of the 5-HT2A receptor, we hypothesized that this was also 

the mechanism by which amoxapine induced increases in respiration and PGC-1α 

mRNA expression.  However, the relatively low Kd value of amoxapine for the 

norepinephrine transporter introduced the possibility that its biogenic effect was 

secondary to β2 adrenergic receptor agonism by increased extracellular norepinephrine 

concentrations.  RPTC were pretreated for 72 h with negative control siRNA or siRNA 
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directed against either the 5-HT2A and 5-HT2C receptors and then treated for 24 h with 30 

nM amoxapine.  Amoxapine increased PGC-1α mRNA expression in both RPTC 

pretreated with negative control siRNA as well as siRNA directed against the 5-HT2C 

receptor, but no increase in PGC-1α mRNA was observed in RPTC pretreated with 

siRNA against the 5-HT2A receptor.  These results indicate that amoxapine induces MB 

through the 5-HT2A receptor, which is consistent with our findings using other drugs in 

this class of biogenic agents. 

 

Given the ability of amoxapine to induce MB in RPTC, we decided to further characterize 

its biogenic capability in vivo.  We administered daily injections of amoxapine (0.3 mg/kg, 

ip) into C57/Bl6 mice and collected kidneys 24, 48 and 120 h after initial injection to 

screen for MB.  PGC-1α mRNA was increased in renal cortex compared to vehicle 

control at 48 h after initial injection, but no significant difference was found between 

vehicle and amoxapine-treated kidney cortex at 24 or 120 h after injury.  Additionally, no 

change in mitochondrial DNA copy number was detected at any time point examined in 

this study, and PGC-1α, COXI and NDUFS1 protein expression was unchanged at 48 

and 120 h after initial injection of amoxapine.  The increase of PGC-1α mRNA in 

absence of secondary markers of MB, such as increased mtDNA copy number or 

mitochondrial protein expression, may indicate the activation of negative regulatory 

mechanisms that oppose PGC-1α.  Increased mitochondrial production in the absence 

of physiological necessity can be maladaptive and lead to increased production of ROS, 

so PGC-1α and its downstream effectors can be negatively modulated by several 

mechanisms, including the negative regulatory proteins RIP140 and GCN5-L1 (230, 

231). 
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Because the 5-HT2A receptor is highly expressed in the CNS and because amoxapine is 

designed to cross the BBB, we sought to determine if 0.3 mg/kg amoxapine could also 

induce MB in CNS tissues.  We detected a maximal effect on renal MB at 48 h post-

initial injection of amoxapine, so at this time point, we screened for increases in PGC-1α 

mRNA expression or mtDNA copy number in the frontal cortex, hippocampus and 

striatum, but found that neither of these markers of MB was increased in any of these 

tissues.  Due to the differences in receptor expression levels, it is interesting that the 

biogenic capacity of the 5-HT2A receptor antagonist amoxapine is specific to the kidney.  

However, Garsnovskaya et al. demonstrated that the 5-HT2A receptor displays both 

canonical Gq and non-canonical Gi/0 protein signaling in the kidney, and these 

differences in tissue- and cell type-specific signaling profiles may explain the specificity 

of its biogenic effects. 

 

Given this renal specificity for the induction of MB and previous work in our laboratory 

that demonstrated the ability of pharmacologically-induced MB to promote recovery of 

renal function after AKI, we next sought to determine if treatment with amoxapine would 

mitigate mitochondrial dysfunction and decrease renal damage markers in folic acid-

induced AKI.  Unlike the results achieved with sildenafil, 0.3 mg/kg amoxapine was not 

sufficient to induce MB in FA-AKI kidneys, as demonstrated by the persistent decrease 

in mtDNA copy number and expression of mitochondrial mRNAs in FA-AKI kidneys 

treated with both vehicle and amoxapine.  Additionally, amoxapine did not significantly 

alter renal function after FA-AKI, as determined by persistently increased BUN in both 

the vehicle-treated and amoxapine-treated groups though seven days after initial injury.  

Finally, amoxapine failed to significantly increase survival of FA-AKI mice over those 

treated with vehicle. 
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Given the utility of sildenafil to induce MB and promote recovery after FA-AKI, it is 

surprising that amoxapine exerts no effects on the mitochondrial markers studied in this 

experiment.  However, there are several possibilities that may explain these results.  The 

first is that the 5-HT2A receptor is expressed at the membrane, whereas PDE5 is 

intracellular cytosolic protein.  One well-characterized pathophysiological effect of AKI is 

the loss of tubular cell polarity and the loss or relocation of membrane-bound proteins, 

such as Na+/K+-ATPase (100, 101).  It is therefore possible that the disorganization of 

the tubular epithelial cell membrane leads to decreased expression of the 5-HT2A 

receptor, decreasing the intended target of amoxapine and inhibiting its ability to induce 

MB.  Additionally, dedifferentiation, proliferation, migration and re-differentiation of 

epithelial cells to repopulate the renal tubular epithelium is a critical process in the 

recovery of renal function.  In our in vitro model, we have observed that RPTC need to 

continue in culture for 2 d past confluency to differentiate sufficiently for expression of 

the 5-HT2A receptor.  This lag in 5-HT2A receptor expression in differentiating cells, which 

populate the recovering tubular epithelium, especially when compared to the expression 

of an intracellular target such as PDE, may also explain the disparity in response of FA-

AKI to these two pharmacological agents. 

 

Although the utility of amoxapine in treatment of acute injury does appear to be limited, 

more research with this compound is warranted in mitochondrial dysfunction observed in 

chronic models of renal injury, which are less likely to have the membrane deficits or 

heterogeneous differentiation profile characteristic of AKI.   
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CHAPTER FOUR 
 

DISRUPTION OF MITOCHONDRIAL HOMEOSTASIS FOLLOWING 
SEVERE TRAUMATIC BRAIN INJURY 

 

ABSTRACT 

Numerous studies have demonstrated that traumatic brain injury (TBI) results in 

oxidative stress and calcium dysregulation in mitochondria, indicating that mitochondrial 

damage is a major component of TBI pathology. However, little work has examined the 

time course of molecular mitochondrial damage during the first week post-injury.  We 

examined markers of mitochondrial homeostasis after closed cortical impact (CCI), a rat 

model of severe TBI.  In ipsilateral striatum, CCI caused a reduction in PGC-1α mRNA at 

3 and 6 d post-injury and reduced mtDNA copy number at 3 d post-injury that recovered 

by 6 d.  In ipsilateral cortex, CCI reduced PGC-1α mRNA in ipsilateral cortex at 6 d post-

injury.  Additionally, expression of mitochondrial-encoded mRNAs COXI and ND1 were 

decreased at 3 and 6 d after injury in ipsilateral striatum and at 6 d post-injury in 

ipsilateral cortex, while corresponding mitochondrial protein expression was not 

decreased.  Treatment of CCI rats with amoxapine, which was demonstrated previously 

to induce mitochondrial biogenesis (MB), did not promote recovery of markers of 

mitochondrial homeostasis in either ipsilateral striatum or cortex.  The inability of a 

mitochondrial biogenic agent to effectively mitigate mitochondrial dysregulation after TBI 

suggests the persistent activation of multiple signaling pathways that may continue to 

suppress mitochondrial homeostasis in the sub-acute phase of days to weeks post-TBI.  

We detected increased antioxidant mRNA and well as increased cytokine mRNA 

expression as well as an induction of microRNAs demonstrated in other tissues to 

disrupt markers of mitochondrial homeostasis.  These findings reveal that there may be 

differential susceptibilities of different brain structures to mitochondrial injury.  These 
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results further indicate that molecular pathways demonstrated to interfere with 

mitochondrial homeostasis and function are continually activated after TBI and that this 

persistent suppressive signaling may yield novel drug targets for the treatment of 

mitochondrial dysfunction following TBI.    
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INTRODUCTION 

Traumatic brain injury (TBI) is a serious public health concern that contributes 

significantly to morbidity and mortality in people younger than 45 both globally and in the 

United States, which averages 1.7 million TBI cases per year (132-134).  Although TBI 

can result from a number of traumatic events that inflict a non-penetrating injury, certain 

populations are considered at high-risk, particularly  those in active military service who 

are at risk for blast injury or those who participate in sports and other high-contact 

recreational activities (133).   

 

Although TBI is an acute insult, it has chronic and lifelong sequelae, including functional 

deficits in multiple brain structures that lead to decreased ability to complete motor and 

memory tasks and inhibition of behavior and emotional control (133).  When costs 

incurred for direct medical care are combined with the lifelong costs of diminished 

productivity and loss of ability to work, they total between $60-221 billion per year (133, 

134).  Despite the serious burden of this disease both on individual patients and to 

society at large, treatment options for TBI in the acute to sub-acute phase are largely 

supportive and are designed to treat the symptoms of the injury without addressing the 

underlying molecular pathways that contribute to or cause those symptoms. 

 

TBI can be classified into two phases: the primary phase which results immediately and 

irreversibly due to mechanical force and the secondary phase, a delayed phase in which 

the activation of multiple physiological cascades results in ischemia, swelling and 

dysfunction in several neuronal cell types (136, 137).  Traditionally, the physiological 

features that comprise the secondary phase of TBI are separated into two distinct 

categories: increased inflammatory signaling and glutamate excitotoxicity (136, 137).   
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The release of cytokines by microglia, the resident macrophages in the brain, in the 

secondary phase of TBI has several consequences, some of which are in direct 

opposition to each other (232). The first phase of cytokine release involves the 

generation of increased pro-inflammatory cytokines such as TNF-α, which activates 

metalloproteinase-9 (MMP-9) and contributes to blood-brain barrier (BBB) permeability, 

indirectly leading to neuronal death after TBI (141, 143-145).  IL-6, which is also 

released in the first phase, has both pro-inflammatory and anti-inflammatory effects and 

may be protective at low concentrations of release by microglia but becomes 

maladaptive at high concentrations and when expressed by astrocytes (140, 145, 149).  

The second phase involves the release anti-inflammatory mediators, including IL-10 and 

TGF-β, both of which suppress TNF-α (139, 140, 142, 144-146, 148, 149). 

 

Glutamate toxicity results in increased calcium flux into neuronal cells and hypoxia, 

which then leads to mitochondrial dysfunction (132, 136, 137).  Mitochondrial 

dysfunction is a prominent feature of TBI and has been linked to broad changes in cell 

and tissue structure and function and contributes prominently to the chronic neurological 

deficits experienced by TBI patients (152).  These disruptions in mitochondrial function 

are multi-factorial, and include the increased production of reactive oxidative species 

(ROS), calcium dysregulation leading to initiation of the mitochondrial permeability 

transition and, if mitochondrial injury is sufficiently severe, initiation of apoptosis (135, 

152, 153). 

 

Sub-lethal mitochondrial dysfunction involves patterns of damage that are not severe 

enough to induce mitochondrial permeability and resultant apoptosis but still contribute 

strongly to decreased cellular function post-TBI.  Although increased oxidative stress, 
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disrupted calcium homeostasis and downstream apoptotic signaling after TBI have been 

well-characterized and targeted for pharmacological intervention, little work has been 

performed to characterize deficits in mitochondrial biogenesis and the maintenance of 

mitochondrial homeostasis. 

 

Mitochondrial biogenesis (MB) is a process that contributes to maintenance of 

mitochondrial homeostasis by increasing mitochondrial number or content through the 

coordination of mitochondrial dynamics, mtDNA replication and transcription of both 

nuclear- and mitochondrial-encoded genes that encode mitochondrial proteins, including 

components of the ETC (2, 6).  MB occurs as the result of activation of peroxisome 

proliferator-activated receptor γ co-activator 1-α (PGC-1α), the “master regulator” of MB, 

which binds to and co-activates a number of nuclear transcription factors implicated in 

maintenance of mitochondrial content, structure and function, resulting in increased flux 

through the ETC and a net increase in ATP production (2, 6).  Disruption of MB has 

been identified in the pathophysiology of both acute and chronic disease of several 

organs with high energy demands, including heart, liver and kidney (122, 225, 234-237).  

Furthermore, pharmacological induction of MB has been demonstrated to promote 

recovery in several models of acute organ injury (52, 120). 

 

Here, we report that controlled cortical impact, a model of focal TBI, disrupts 

mitochondrial homeostasis in the ipsilateral striatum and cortex and describe a putative 

relationship between cytokine release and mitochondrial disruption through induction of 

miRNAs.    
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MATERIALS AND METHODS 

Reagents 

Amoxapine and all other chemicals were purchased from Sigma Aldrich (St. Louis, MO) 

unless otherwise noted.  

Animal Care and Use 

All experiments were performed in strict accordance with the guidelines in the Guide for 

the Care and Use of Laboratory Animals of the National Institutes of Health.  All 

protocols were approved by the Institutional Animal Care and Use Committee at the 

Medical University of South Carolina, and appropriate efforts were made to reduce 

animal suffering. 

Controlled Cortical Impact (CCI) 

 Male Long-Evans Rats (3-4 months old) were anesthetized with ketamine/xylazine 

(100mg/10 mg/kg i.p.), placed into a stereotaxic frame and a 4mm craniotomy (0.5mm 

anterior and 4mm lateral to bregma) was created centered over the right forelimb area of 

the sensorimotor cortex (Fl-SMC).  A controlled cortical impact (CCI) was induced using 

a Benchmark Stereotaxic Impactor (Leica, Buffalo Grove, IL) with a 3mm diameter 

impact tip angled 18o away from the vertical, permitting the tip to impact perpendicular to 

the surface of the brain, 1.7 D.V.  The impactor tip penetrated the exposed brain at 

3.0m/s for 300ms. After the impact, the wound was covered with gel film and dental 

acrylic and the incision was sutured. Topical antibiotics were applied to the incision and 

Buprenorphin (0.05mg/ml) was administered subcutaneously.  Sham animals received 

all drugs and were placed into a stereotaxic frame, after which an incision and fascia 

retraction are performed and then closed with sutures.  In the 6 day injury studies, one 

group of rats was given daily intraperitoneal injections of 0.3 mg/kg amoxapine.  

Euthanasia was performed 24 h after the final dose of amoxapine. 
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Euthanasia /Tissue Extraction 

Animals were overdosed with of sodium pentobarbital (Euthasol, 100mg/kg, i.p.).  When 

animals were non-responsive to toe and tail pinch, an incision was made to reveal the 

cisterna magna and CSF fluid was extracted through a small puncture via 25 gauge 

syringe.  Animals were then decapitated and brain areas were quickly dissected to 

isolate ipsi- and contra-injury sensory and motor cortices, hippocampus, and striatum.   

Motor Behavior Assessment: Ladder Task 

The ladder task was used to assess coordinated forelimb use, stepping accuracy, and 

limb placement. The ladder apparatus is made of two plexiglass walls, with 3mm pegs 

spaced 1cm apart from each other. The ladder is raised ~20cm off the ground with a 

neutral start cage and the animal’s home cage at the end. Animals were allowed to walk 

freely across the ladder and videotaped for three trials. Scoring of the steps was done 

with slow motion video replay and based on a previously established rating scale (238). 

The total number of steps and missteps were calculated and scored on a scale (0-6) 

based on how the animal places the forelimb on the rungs of the ladder. Errors were 

counted when an animal completely missed the ladder rung and a fall occurred (score of 

0) or placed the limb but when weight bearing either fell (score of 1) or slipped (score of 

2). Percent error was calculated as: (#0+1+2)/total steps. 

Real-Time Reverse Transcription-PCR – Mitochondrial and Inflammatory Gene 

Expression  

Total RNA was extracted from cortex, hippocampus and striatum samples using TRIzol 

reagent (Invitrogen) according to the manufacturer’s protocol.  cDNA was synthesized 

via reverse transcription using the RevertAid First Strand cDNA kit (Thermo Fisher 

Scientific, Waltham, MA) with 0.5-2 ug of RNA.  PCR products were amplified from 5 uL 

of cDNA template using 2x Maxima SYBR green qPCR master mix (Thermo Fisher 
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Scientific) and 400 nM concentrations of each primer (Integrated DNA Technologies, 

Inc., Coralville, IA) (Table 1).  Fold changes in expression were calculated using the ΔΔ-

Ct analysis method detailed previously by Wills et al. (50).   

Mitochondrial DNA Content 

Relative quantity of mtDNA in rat CNS tissue samples was measured using real-time 

PCR.  After treatment, DNA was isolated from tissues using the DNEasy Blood and 

Tissue Kit (Qiagen, Valencia, CA), and qPCR was performed using 5 ng of cellular DNA.  

Expression of NADH dehydrogenase 1 (ND1), a mitochondrial gene, was measured and 

normalized to nuclear-encoded β-actin (Table 1).  The previously described ΔΔ-Ct 

analysis method was used to calculate fold changes in expression (50).     

Immunoblot analysis   

Cortex or striatum tissue was homogenized in 500 µL of protein lysis buffer (1% Triton X-

100, 150 mM NaCl, 10 mM Tris-HCl, pH 7.4; 1 mM EDTA; 1 mM EGTA; 2 mM sodium 

orthovanadate; 0.2 mM phenylmethylsulfonyl fluoride; 1 mM HEPES, pH 7.6; 1 μg/ml 

leupeptin; and 1 μg/ml aprotinin) using a Polytron homogenizer. The homogenate was 

then centrifuged at 10000g for 10 min at 4°C. The supernatant was collected, and 

protein was determined using a bicinchoninic acid kit (Sigma, St. Louis, MO) with bovine 

serum albumin as the standard. Proteins (50–75 μg) were separated on 4 to 20% 

gradient SDS-polyacrylamide gels and transferred to nitrocellulose membranes. 

Membranes were blocked either in 5% dried milk or BSA in TBST (0.1% Tween 20 in 1× 

Tris-buffered saline) and incubated with 1:1000 antibody dilutions of anti-PGC-1α (EMD, 

Billerica, MA); COX-1 (Abcam, Cambridge, MA); anti-ND1 (Abcam, Cambridge, MA); 

anti-NDUFB8 (Invitrogen, Grand Island, NY); anti-NDUFS1 (Abcam, Cambridge, MA); 

and anti-GAPDH (Fitzgerald, Acton, MA) overnight at 4°C. After incubation for 2 h at 

room temperature with secondary antibodies (1:2000) conjugated with horseradish 
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peroxidase, membranes were detected by chemiluminescence.  Image analysis and 

densitometry were performed using Image-J software.   

Real-Time Reverse Transcription-PCR – miRNA Expression  

Total RNA was extracted from cortex and striatum samples using TRIzol reagent 

(Invitrogen) according to the manufacturer’s protocol.  cDNA was synthesized via 

reverse transcription using the Kit iScript Advanced cDNA (Bio-Rad, Hercules, CA) with 

0.5-2 ug of RNA and 400 n M of the specific RT primer (Table 2) for each miRNA 

following the stem-loop pulsed  RT-PCR method previously described by Varkonyi-Gasic 

et al. (239).  PCR products were amplified from 5 uL of cDNA template using 2x Maxima 

SYBR green qPCR master mix (Thermo Fisher Scientific) and 400 nM concentrations of 

primers (Integrated DNA Technologies, Inc., Coralville, IA) (Table 2).  Target miRNAs 

were amplified with a specific forward primer and a universal reverse primer.  U6 was 

used to normalize target miRNA expression and was amplified with a specific forward 

primer and a reverse primer that is identical to its RT primer.  Fold changes in 

expression were calculated using the ΔΔ-Ct analysis method previous described (50).   

Statistics 

Data are presented as means ± SEM.  Single comparisons for normal data were 

performed using a Student’s t-test, whereas data found to not have a normal distribution 

were subjected to a Mann-Whitney U-test.  Multiple comparisons for normal data were 

performed using one-way analysis of variance (ANOVA) with an appropriate post-hoc 

test to compare multiple means.  Kruskal-Wallis one-way analysis of variance was used 

to perform multiple comparisons for non-normal data, and an appropriate post-hoc test 

was used to compare multiple medians.    Single and multiple comparison data were 

considered statistically significantly different at P ≤ 0.05.  Rodent studies were repeated 

until n ≥ 3 was obtained. 
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RESULTS 

CCI to the SMC Causes Unilateral Forelimb Motor Deficits 

To first examine the gross effect of TBI on motor function, both sham and CCI rats were 

assessed using the ladder task.  One day after injury, CCI rats had a 10-fold increase in 

impaired limb placement error compared to that of sham rats (Fig. 4-1).   The forelimb 

motor deficit slightly recovers at 6 d post-injury, but a 5-fold increase in impaired limb 

placement error in CCI rats over sham rats persists to this time point (Fig. 4-1).  No 

significant alteration in foot slip was observed in the unimpaired limb (data not shown).  

These results indicate that motor function is significantly altered in this model of TBI and 

provide evidence that the injury sustained to the SMC by CCI is severe, specific to the 

site of injury, and sustained in the sub-acute phase after initial insult.   
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Fig. 4-1.  CCI to the SMC Causes Unilateral Forelimb Motor Deficits.  Rats were 

subjected to either sham or CCI treatment.  Their performance on the ladder task for 

forelimb motor function was assessed pre-injury and at 1 and 6 d post injury by 

measuring the percent error in impaired limb foot slip.  Differences between sham and 

TBI were analyzed using the Mann-Whitney U test.  Data are reported as mean ± SEM.  

n = 7-8, *p < 0.05 between sham and TBI groups at each day.  
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CCI Results in Altered Mitochondrial Homeostasis in Tissues Ipsilateral to Injury 

To screen for mitochondrial damage in the sub-acute phase after injury, PGC-1α mRNA 

expression and mtDNA copy number were measured in both ipsilateral cortex, 

hippocampus and striatum at 1, 3 and 6 d after CCI.  Neither PGC-1α mRNA expression 

nor mtDNA copy number was changed in the ipsilateral cortex at 1 or 3 d after injury (Fig 

4-2A and B).  Six days after CCI, there was a 20% decrease in ipsilateral cortical PGC-

1α mRNA expression compared to sham control but mtDNA copy number remained 

unchanged (Fig. 4-2C).  One day after injury, there was no change in either PGC-1α 

mRNA expression or mtDNA copy number in ipsilateral hippocampus (Fig. 4-2D).  Three 

days post-CCI, mtDNA copy number in the hippocampus was decreased to 65% of 

control, but PGC-1α mRNA expression remained unchanged (Fig. 4-2E).  Six days after 

injury, mtDNA copy number had returned to sham control levels in the hippocampus, 

and no change in PGC-1α mRNA expression was detected (Fig. 4-2F).  No change in 

either of our mitochondrial homeostasis markers was observed in the ipsilateral striatum 

1 d after initial CCI, but both PGC-1α mRNA expression and mtDNA copy number were 

decreased to 60% of sham control  by 3 d post-injury (Fig. 4-2G and H).  Ipsilateral 

striatal mtDNA copy number had recovered to sham control levels by 6 d after initial 

injury, but PGC-1α mRNA expression remained significantly suppressed to 75% of sham 

control expression at this time point (Fig. 4-2I).  These results are suggestive of a pattern 

of disrupted mitochondrial homeostasis in tissue ipsilateral to CCI that is initiated in the 

secondary phase (post-1 d) of acute injury and indicate that injury to the cortex has 

associated deleterious effects on diverse structures of the affected brain, including the 

hippocampus and striatum.  The differential time courses in injury between these three 

structures and the delay observed before detection of cortical mitochondrial dysfunction 

may indicate disparate susceptibilities to and defenses against mitochondrial injury 

between different tissues of the brain.   
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Fig. 4-2.  CCI Results in Altered Mitochondrial Homeostasis in Tissues Ipsilateral 

to Injury.  PGC-1α mRNA expression was determined by RT-PCR using tubulin as a 

control gene. mtDNA copy number was determined by qPCR, using ND1 for the mtDNA 

gene and actin for the nuclear control gene.  These markers were measured in the 

ipsilateral cortex at 1 d(A) 3 d (B) and 6 d (C) 6 d post-injury; in the ipsilateral 

hippocampus at 1 d (D) 3 d (E) and 6 d (F) post-injury and in the ipsilateral striatum at 1 

d (G) 3 d (H) and 6 d (I) post-injury . Values reported as mean ± SEM. Either Student’s 

T-test or Mann-Whitney U test was used to determine significance. *p < 0.05, n =4-16. 
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CCI Does Not Result In Altered Mitochondrial Homeostasis in Tissues 

Contralateral to Injury 

To determine if unilateral CCI resulted in only unilateral mitochondrial dysfunction, PGC-

1α mRNA expression and mtDNA copy number were measured in contralateral cortex, 

hippocampus and striatum at 1, 3 and 6 d after injury.  No change in either of these 

markers was detected in any tissue studied at any time point after injury (Fig. 4-3A-I).  

These results demonstrate that unilateral impact to the SMC produces a unilateral 

pattern of disrupted mitochondrial homeostasis in the acute through sub-acute phase.   
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Fig. 4-3.  CCI Does Not Result In Altered Mitochondrial Homeostasis in Tissues 

Contralateral to Injury.  PGC-1α mRNA expression was determined by RT-PCR using 

tubulin as a control gene. mtDNA copy number was determined by qPCR, using ND1 for 

the mtDNA gene and actin for the nuclear control gene.  These markers were measured 

in the contralateral cortex at 1 d (A) 3 d (B) and 6 d (C) 6 d post-injury; in the 

contralateral hippocampus at 1 d (D) 3 d (E) and 6 d (F) post-injury and in the 

contralateral striatum at 1 d (G) 3 d (H) and 6 d (I) post-injury . Values reported as the 

mean ± SEM. Either Student’s T-test or Mann-Whitney U test was used to determine 

significance. n =4-8. 
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CCI Results in Decreased mtDNA Transcripts in Ipsilateral Striatum and Cortex   

To further characterize mitochondrial deficits following CCI seen in the ipsilateral 

striatum and cortex, we measured an additional panel of mRNAs associated with 

mitochondrial homeostasis, including the nuclear-encoded mitochondrial transcription 

factor A (TFAM) and NDUFS1 and mitochondrial-encoded COXI and ND1.  In addition to 

the previously described decreases in PGC-1α mRNA expression and mtDNA copy 

number in ipsilateral striatum at 3 d post-injury, mitochondrial-encoded COXI and ND1 

mRNAs are both decreased to 70% of those in sham control animals, but no differences 

in nuclear-encoded mRNAs was observed (Fig. 4-4A).  Similar to PGC-1α, both COXI 

and ND1 mRNA remain suppressed to 80% at 6 d post-injury, while TFAM and NDUFS1 

mRNA expression remain unchanged (Fig. 4-4B).  Similarly, in ipsilateral cortex 6 d post-

injury, which is the first time point at which we detected a decrease in PGC-1α mRNA 

expression in our initial screen, we observed a decrease in COXI and ND1 mRNA 

expression to 60% that of sham control rats (Fig. 4-4C).  These results point to the 

possibility that the secondary phase of damage following acute CCI initiates multiple 

mechanisms of injury with independent causes and points of impact along the pathways 

that comprise mitochondrial homeostasis.     
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Fig. 4-4.  CCI Results in Decreased mtDNA Transcripts in Ipsilateral Striatum and 

Cortex.  PGC-1α, TFAM, COXI, ND1 and NDUFS1 mRNA expression were determined 

by RT-PCR using tubulin as a control mRNA.  These markers were measured in the 

ipsilateral striatum at 3 d (A) and 6 d (B) post-injury and in the ipsilateral cortex at 6 d (C) 

post-injury.  Values reported as mean ± SEM.  Student’s T-test or Mann-Whitney U test 

was used to determine significance. *p < 0.05, n =4-16.  
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CCI Does Not Affect Mitochondrial Protein Expression In the First Six Days After 

Injury 

To assess if decreases in mRNA expression observed in the ipsilateral and striatum and 

cortex 6 d after injury had further consequences, we measured the expression of three 

mitochondrial proteins at this time point.  We observed no change in PGC-1α, ND1 or 

NDUFS1 protein expression in either the ipsilateral striatum (Fig. 4-5A and B) or cortex 

(Fig. 4-5C and D), despite the decrease we had observed in PGC-1α and ND1 mRNA 

expression in both tissues.  These results are interesting, because decreased mRNA 

expression is expected to result in coordinating decreased protein expression, especially 

when mRNA expression is suppressed over days, as we observed in the ipsilateral 

striatum.   
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Fig. 4-5.  CCI Does Not Affect Mitochondrial Protein Expression In the First Six 

Days After Injury.  PGC-1α, COXI, ND1 and NDUFS1 protein expression were 

determined using immunoblot analysis using GAPDH as a loading control.  These 

markers were measured 6 d post-injury in the ipsilateral striatum (A) and ipsilateral 

cortex (B).  Values reported as mean ± SEM.  n = 5-6.  
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Amoxapine Does Not Promote Recovery of Mitochondrial Content after CCI 

Our laboratory had previously demonstrated that amoxapine, a potent 5-HT2A/2C 

antagonist, was capable of inducing MB in mouse kidney cortex.  Because it is used 

clinically as an antidepressant and is thus designed to penetrate the BBB, we 

hypothesized that amoxapine would reverse patterns of mitochondrial disruption and 

promote recovery of motor function in CCI rats 6 d after initial injury.  In ipsilateral cortex, 

PGC-1α and COXI mRNA expression was decreased to 75% and 60% of sham controls, 

respectively in both CCI rats given diluent and those given amoxapine (Fig. 4-7A).  

Although significance wasn’t achieved, there was a strong trend toward decreased ND1 

mRNA expression in the cortex of CCI rats given either diluent or amoxapine (Fig. 4-7A).  

Similarly, PGC-1α and ND1 mRNA in CCI rats given diluent were both expressed at 75% 

of sham control in the striatum and remained similarly suppressed in CCI rats treated 

with amoxapine (Fig. 4-7B).  COXI mRNA was not significantly decreased in the striatum 

of these CCI rats, although its expression in both diluent and amoxapine-treated animals 

trended toward a decrease (Fig. 4-7B).  These results indicate that amoxapine is not an 

effective inducer of MB in this model and has limited utility as a pharmacological 

treatment for TBI.      
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Fig. 4-6.  Amoxapine Does Not Promote Recovery of Mitochondrial Content after 

CCI.  PGC-1α, COXI and ND1 mRNA expression were determined by RT-PCR using 

tubulin as a control gene.  These markers were measured in sham, TBI and TBI + 0.3 

mg/kg amoxapine groups in ipsilateral cortex (A) and striatum (B) at POD 6.  Values 

reported as mean ± SEM; with bars with different superscripts are significantly different 

from one another.  Kruskal-Wallis test with Dunn’s post-test was used to determine 

significance. *p < 0.05, n =14-16.    
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CCI Induces Antioxidant Mechanisms in Ipsilateral Striatum and Cortex 

Because amoxapine did not reverse the observed disruptions in mitochondrial DNA and 

mRNA expression, we next hypothesized that there were ongoing mechanisms of injury 

in the first 6 days after TBI that were not able to be overcome by stimulation of 

mitochondrial biogenesis.  We hypothesized that one such mechanism of injury was 

increased oxidative stress, a hallmark of TBI pathophysiology that disrupts mitochondrial 

function and propagates mitochondrial injury, so we next sought to identify potential 

markers of acute oxidant stress in our CCI model.  To measure potential oxidative stress 

signaling, we measured mRNAs for two antioxidant proteins: superoxide dismutase 2 

(SOD2) and uncoupling protein 2 (UCP2).  In the ipsilateral striatum, SOD2 mRNA 

expression was increased 1.4-fold over sham control at 1 d after injury but had returned 

to sham control levels by 3 d (Fig. 4-6A).  Conversely, ipsilateral striatal UCP2 

expression remained unchanged at 1 d after CCI, but increased 3-fold over sham control 

at 3 d and remained elevated 2-fold at 6 d post-injury (Fig. 4-6B).  Cortical SOD2 mRNA 

expression followed an identical pattern to the striatum, with a 1.5-fold increase 

observed at 1 d post-CCI that returned to baseline levels at 3 d after injury (Fig. 4-6C).  

Expression of UCP2 mRNA in ipsilateral cortex remained at baseline levels 1 d post-

injury, but increased 3-fold above sham control levels at 3 d after CCI; unlike the 

striatum, cortical UCP2 mRNA continued to increase and was expressed  >4-fold  over 

sham controls at 6 day after cortical impact (Fig. 4-6D).  These results are suggestive of 

a multi-phase antioxidant program following injury and indicate that oxidative stress is a 

consequence of acute CCI that begins early after injury, affects multiple brain structures 

simultaneously and persists through the first six days after initial insult.   
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Fig. 4-7.  CCI Induces Antioxidant Mechanisms in Ipsilateral Striatum and Cortex.  

SOD2 and UCP2 mRNA expression were determined by RT-PCR using tubulin as a 

control mRNA.  In ipsilateral striatum, SOD2 mRNA expression was measured at 1, 3 

and 6 d post-injury (A) and UCP2 mRNA expression was measured at 1, 3 and 6 d post-

injury (B).  In ipsilateral cortex SOD2 mRNA expression was measured at 1, 3 and 6 d 

post-injury (C) and UCP2 mRNA expression was measured at 1, 3 and 6 d post-injury 

(D).  Values reported as mean ± SEM.  Student’s T-test or Mann-Whitney U test was 

used to determine significance. *p < 0.05, n =4-16.   
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CCI Induces Expression of Pro-Inflammatory and Anti-Inflammatory Cytokines  

Based on the inability of amoxapine to induce MB in this model, we hypothesized that 

persistent activation of suppressive pathways by diverse effector molecules may limit 

pharmacological induction of MB.  In light of increasing evidence that inflammation can 

modulate PGC-1α mRNA expression and contribute to mitochondrial dysfunction in 

acute injury states, we measured mRNA expression for IL-6 and TGF-β, which have 

been demonstrated to upregulate miRNAs that interfere with mitochondrial homeostasis.  

In ipsilateral striatum of CCI rats, IL-6 mRNA expression was increased 2-fold at 1 d 

post-CCI but returned to baseline at 3 and 6 d (Fig. 4-8A).  Conversely, ipsilateral striatal 

TGF-β mRNA was decreased to 60% of sham control levels at 1 d post-injury, returned 

to baseline levels at 3 d, and was increased 1.25-fold at 6 d after CCI (Fig. 4-8B).  

Interestingly, ipsilateral cortical expression of IL-6 mRNA compared to sham control was 

increased 4.5-fold at 1 day after injury, returned to baseline at 3 d, and increased 2-fold 

at 6 days post-injury (Fig. 4-8C).  TGF-β mRNA expression in ipsilateral cortex was 

unchanged at 1 and 3 d post-injury and significantly increased 1.3-fold over sham at 6 d 

after initial insult.  These results reveal complex patterns of cytokine expression in both 

ipsilateral striatum and cortex that may contribute to the dysregulation of mitochondrial 

homeostasis following CCI. 

 

  



144 

 

 

Fig. 4-8.  CCI Induces Expression of Pro-Inflammatory and Anti-Inflammatory 

Cytokines.  IL-6 and TGF-β mRNA expression were determined by RT-PCR using 

tubulin as a control gene.  In ipsilateral striatum, IL-6 mRNA expression was measured 

at 1, 3 and 6 d post-injury (A) and TGF-β mRNA expression was measured at 1, 3 and 6 

d post-injury (B).  In ipsilateral cortex IL-6  mRNA expression was measured at 1, 3 and 

6 d post-injury (C) and TGF-β mRNA expression was measured at 1, 3 and 6 d post-

injury (D).  Values reported as mean ± SEM.  Student’s T-test or Mann-Whitney U test 

was used to determine significance. *p < 0.05, n =4-16.   
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CCI Induces Expression of Mitochondria-Disrupting miRNAs in Ipsilateral Striatum 

and Cortex 

We therefore hypothesized that miRNAs described in the literature to target SOD2 and 

PGC-1α mRNA would be increased in both striatum and cortex ipsilateral to injury.  In 

the striatum, miR-21 was increased 2.5-fold over sham control rats at 3 d, but the 

increase in expression was completely attenuated by 6 d after CCI (Fig. 4-9A).  miR-155 

was induced earlier and with greater magnitude in the striatum, with a 2-fold increase at 

1 d, a 5-fold increase at 3 d, and a return to 2-fold increased expression over sham 

control at 6 d post-injury (Fig. 4-9B).  In ipsilateral cortex, miR-21 expression is 

unchanged at 1 d post-injury in CCI rats compared to sham controls but increases 

steadily at later time points with a respective ~4-fold and ~5.5-fold  increase in 

expression at 3 and 6 d post-injury (Fig. 4-9C).  Additionally, miR-155 is strongly induced 

in cortex following CCI, with 6-fold, 10-fold and 13-fold increases at 1, 3 and 6 days, 

respectively, in CCI rats compared to sham controls (Fig. 4-9D).  These results are very 

interesting and indicate that increased miRNA expression may be one mechanism of 

mitochondrial suppression following CCI and represents a novel target to prevent 

mitochondria disruption in TBI. 
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 Fig. 4-9.  CCI Induces Expression of Mitochondria-Disrupting miRNAs in 

Ipsilateral Striatum and Cortex.  miR-21 and miR-155 mRNA expression were 

determined by RT-PCR using U6 as a control miRNA.  In ipsilateral striatum, miR-21 

expression was measured at 1, 3 and 6 d post-injury (A) and miR-155 expression was 

measured at 1, 3 and 6 d post-injury (B).  In ipsilateral cortex miR-21 expression was 

measured at 1, 3 and 6 d post-injury (C) and miR-155 expression was measured at 1, 3 

and 6 d post-injury (D).  Values reported as mean ± SEM.  Student’s T-test or Mann-

Whitney U test was used to determine significance. *p < 0.05, n =4-16.   
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CCI Causes Minimal Alterations in Contralateral Signaling Associated with 

Mitochondrial Dysregulation 

Because we detected no changes in mitochondrial homeostasis in the contralateral 

striatum at 1, 3 or 6 days after initial insult, we wanted to examine the effect of acute 

injury on contralateral striatal signaling mechanisms we demonstrated to be altered in 

ipsilateral striatum post-CCI.  We first measured SOD2 and UCP2 mRNA expression to 

determine if CCI caused increased oxidative stress in contralateral striatum.  No change 

in SOD2 mRNA expression was detected at any time after injury, and UCP2 mRNA 

expression remained unchanged at days 1 and 3 but increased 1.5-fold 6 d post-injury 

(Fig. 4-10A and B).  Neither IL-6 or TGF-β mRNA expression changed at any time post-

injury, and expression of inflammation-associated miR-21 and miR-155 was unaltered at 

all time points examined after CCI (Fig. 4-10C-F).  When considered with earlier findings 

that mitochondrial markers were unaltered in contralateral tissues, these results are 

consistent with studies that demonstrate deleterious effects of persistent oxidative stress 

on mitochondrial homeostasis.  These findings further support a mechanistic link 

between inflammation and mitochondrial dysregulation through increased miRNA 

expression.         

 

 

 

 

 

 

 

 



148 

 

  

 
 
Fig. 4-10.  CCI Causes Minimal Alterations in Contralateral Signaling Associated 
with Mitochondrial Dysregulation.  SOD2, UCP2, IL-6 and TGF-β mRNA were 
measured using tubulin as a control gene.  miR-21 and miR-155 expression were 
determined by RT-PCR using U6 as a control gene.  At 1, 3 and 6 d post-injury, SOD2 
(A), UCP2 (B), IL-6 (C), TGF-β (D), miR-21 (E) and miR-155 expression (F) were 
measured in contralateral striatum.  Values reported as mean ± SEM.  Student’s T-test 
or Mann-Whitney U test was used to determine significance. *p < 0.05, n =4-16.   
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DISCUSSION 

Traumatic brain injury is a multi-faceted acute injury state with a complex 

pathophysiology comprised of diverse pathways.  The secondary phase of TBI is 

comprised of two prominent mechanisms: inflammatory signaling resulting from 

activation of resident microglia in the affected brain tissues and mitochondrial 

dysfunction consequent to increased oxidative stress and calcium flux caused by 

glutamate excitotoxicity.  Although traditionally the effects of these pathways have been 

considered largely independent of each other, research increasingly suggests the 

existence of an axis between inflammatory and mitochondrial signaling (213, 240).   

 

Current research has identified mitochondrial dysfunction as a target for pharmacological 

management of TBI; however, therapeutics that have been developed and tested in 

either animal models or TBI patients have uncovered several limitations in drug 

discovery for this disease, the most prominent of which is the narrow therapeutic window 

in which drug administration is effective (126-128, 135, 153, 172, 180, 181).  Therefore, 

identification of a facet of mitochondrial dysfunction that peaks in the sub-acute phase of 

injury (days-weeks post-insult) and is subject to pharmacological modulation is 

paramount.  Furthermore, little work has focused on characterizing the pattern and time 

course of mitochondrial dysregulation in separate structures after TBI, the determination 

of which would guide identification of an ideal therapeutic window for the treatment of 

post-TBI mitochondrial dysfunction.  Finally, differential susceptibilities to mitochondrial 

injury in diverse tissues and cell types comprising the brain is an understudied area; for 

example, research into the effects of TBI on hippocampal function and subsequent 

memory deficit is extensive, whereas little is known about mitochondrial damage in the 

striatum after TBI, despite the fact that the striatum is increasingly implicated in 

emotional deficits that persist into the chronic phase of disease (241). 
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To first assess if differences in mitochondrial homeostasis are apparent in different brain 

structures and/or different time frames post-TBI, we performed CCI on naïve Long-

Evans rats and collected ipsilateral and contralateral cortex, hippocampus and striatum 

at 1 d, 3 d and 6 d post-injury.  Because the model we use delivers a unilateral impact to 

the sensorimotor cortex (SMC), we are able to assess motor deficits by comparing the 

percent error made by the affected forelimb during completion of a ladder task to that 

made by the unaffected forelimb and therefore verify that this injury causes severe 

deficits that are readily apparent as early as 1 d and persist through 6 d after insult. 

 

To screen for differences in mitochondrial biogenesis and/or mitochondrial content, we 

measured PGC-1α mRNA and mtDNA copy number in all tissues at all time points 

collected.  At 1 d post-injury, we detected no changes in PGC-1α mRNA or mtDNA copy 

number in ipsilateral or contralateral cortex, hippocampus or striatum.  3 d after injury, 

mtDNA was significantly decreased in ipsilateral hippocampus, and both PGC-1α mRNA 

and mtDNA copy number were significantly decreased in ipsilateral striatum.  By 6 d 

after initial insult, mtDNA copy number had recovered to baseline levels in ipsilateral 

hippocampus, and PGC-1α mRNA was significantly decreased in both ipsilateral cortex 

and striatum.  No differences in either of these measures were detected in contralateral 

tissues at 3 or 6 d post-injury. 

 

In light of the decreased mitochondrial homeostasis markers observed in the striatum at 

3 and 6 d and cortex at 6 d after impact, we decided to probe more markers of 

mitochondrial homeostasis in these tissues.  We determined that expression of two 

mitochondrial-encoded components of the ETC was significantly decreased, while no 

difference was detected in nuclear-encoded NDUFS1 or TFAM mRNA. 
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Because TFAM was unchanged, the significant decrease in transcription of both 

mitochondrial-encoded genes is likely due to decreased mtDNA in the days previous to 

those sampled.  In the case of the striatum, decreased mtDNA was detected at 3 d but 

had recovered by 6 d after injury; interestingly, the mitochondrial-encoded markers were 

at 60% of control at 3 d post-injury but had increased to 80% of control at 6 d after initial 

insult; these findings further support a hypothesis that decreased transcription of 

mitochondrial-encoded genes secondary to depletion of mtDNA is one mechanism by 

which mtDNA-encoded mRNA are decreased. However, the observation that ND1 and 

COXI mRNA transcription have not fully recovered when mtDNA has returned to control 

levels indicates that additional mechanisms for their depletion may also exist. Although a 

significant decrease in ipsilateral cortical mtDNA was not detected, one explanation is it 

significantly decreases and then recovers between days 3-6 and that the detected 

decreases in ND1 and COXI are artifacts of this change.   

 

Since the cortex is the site of impact, it is very interesting that the ipsilateral striatum has 

significant decreases in mitochondrial homeostasis before any molecular deficits are 

detected in the cortex.  Additionally, it is interesting that the decrease in PGC-1α mRNA 

in ipsilateral striatum is persistent through 6 d after injury and that the cortex first 

presents with a decrease in this same marker at this time point, suggesting a continued 

activation of damage-associated molecular pathways in both tissues. 

 

Although we demonstrated that there were significant decreases in PGC-1α mRNA as 

well as mitochondrial-encoded gene expression in both the ipsilateral striatum and 

cortex at 6 d post-injury, no decreases in expression of corresponding proteins were 

detected.  The sustained expression of PGC-1α protein is consistent with the unchanged 

expression of TFAM and NDUFS1 mRNA observed previously, since their transcription 
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is induced both directly and indirectly by the interaction of PGC-1α with transcription 

factors driving their expression.  Additionally, these results may indicate that both the 

genes encoding PGC-1α as well as mitochondrial genes are excessively expressed, with 

a sensing mechanism that targets these mRNAs for degradation at baseline levels of 

physiological function (242). 

 

After identifying a pattern of mitochondrial disruption in the sub-acute phase after TBI, 

we hypothesized that administering a mitochondrial biogenic agent to rats given CCI 

would reverse the observed deficits in mitochondrial homeostasis markers.  Amoxapine, 

a 5-HT2A/2C antagonist that had previously been shown to induce MB and cross the BBB, 

was given daily to a group of CCI rats starting at 1 d post-injury, and mitochondrial 

homeostasis markers were measured 6 d after initial cortical impact.  Decreases in 

mitochondrial homeostasis markers in CCI rats who were given diluent were comparable 

to those observed in previous experiments.  However, contrary to expectations, 

treatment with amoxapine did not improve any of these mitochondrial measures.  These 

results, paired with our earlier observations that deficits in mitochondrial homeostasis 

were persistent through the sub-acute phase of injury, suggest the ongoing activation of 

pathways that suppress several facets of mitochondrial health.  It is possible that 

attempts to support mitochondrial function and biogenesis are not sufficient to overcome 

persistent activation of suppressive elements and that identifying these suppressive 

pathways will provide additional targets for pharmacological intervention to improve 

mitochondrial health and patient outcome after TBI. 

 

Since acute oxidative stress has been demonstrated to contribute to depletion of 

mtDNA, we first assessed for persistent increases in oxidant markers (161).  The 

antioxidant proteins SOD2 and UCP2 are activated in two phases.  Release of ROS in 
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the early acute injury state activates a protein kinase D/NF-κB signaling pathway that 

results in the rapid induction of SOD2; after detoxification of acute ROS is complete, 

UCP2 is upregulated to sequester reactive lipid peroxides from the contents of the 

mitochondrial matrix by translocating them across the inner mitochondrial membrane 

and into the inner membrane space (155, 243).  Both ipsilateral striatum and cortex have 

early increases in SOD2 mRNA, which returns to baseline as UCP2 mRNA increases.  

In the striatum, UCP2 mRNA decreases at 6 d compared to 3 d post-injury, but in the 

cortex, it continues to increase.  These results indicate the persistent presence of 

reactive oxidative molecules in the mitochondria after TBI and provide a potential 

mechanism for the observed decrease in mtDNA copy number in the ipsilateral striatum.  

As previously discussed, it is possible that mtDNA copy number is decreased in the 

ipsilateral cortex between 3-6 d post-injury and that steadily increasing levels of UCP2 

mRNA indicate an ongoing and strongly-induced compensatory mechanism to mitigate 

continued generation of reactive molecules. 

 

Recent studies have demonstrated several pathways connecting inflammatory signaling 

and mitochondrial dysfunction (213, 240).  Analysis of inflammation markers implicated 

by others in TBI pathophysiology demonstrated early increases in IL-6 mRNA and 

increased induction of TGF-β mRNA that became significantly increased at 6 d post-

injury in both ipsilateral striatum and cortex.  The ipsilateral cortex displayed in an 

interesting pattern of IL-6 mRNA expression, with a strong induction at 1 d, a return to 

baseline at 3 d and a significant increase again at 6 d post-injury.  Since IL-6 is 

considered both a pro- and anti-inflammatory cytokine in TBI pathophysiology, one 

explanation for this pattern is that early increases in this cytokine indicate increased pro-

inflammatory signaling while later induction may indicate a transition to an anti-

inflammatory state; the concomitant increase in mRNA expression of TGF-β, another 
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anti-inflammatory mediator in TBI, suggests activation of an anti-inflammatory phase of 

signaling (140, 149).Finally, we suggest that increased inflammation in the sub-acute 

phase of TBI contributes to mitochondrial dysregulation through induction of miRNAs, 

non-coding RNAs that both promote degradation and block translation of their target 

mRNAs.  MiR-21,which is induced by both IL-6 and TGF-β and has been demonstrated 

to decrease SOD2 mRNA, was increased significantly in both tissues; it returned to 

baseline in striatum at 6 d but continued to increase in ipsilateral cortex (244-246).  

These results are consistent with previous reports that miR-21 is increased after TBI in 

the cortex.  Additionally, miR-155, which is induced by TGF-β and suppresses PGC-1α 

mRNA expression, was significantly increased at all time points in both tissues (244, 

247). 

 

Our results suggest that the striatum is highly susceptible to disruptions in mitochondrial 

homeostasis in the sub-acute phase after TBI and further indicate that these disruptions 

may be secondary to increased cytokine release and induction of miRNA expression 

after acute insult.  Although our findings are consistent with other reports that the 

striatum is more sensitive to mitochondrial damage than either cortex or hippocampus, 

there are other potential explanations for our observations (194).  Our model of CCI 

inflicts a severe cortical injury, and the most injured cells likely undergo rapid necrosis 

and are degraded by activated microglia; as a result, it is possible that our methods 

sample the cells that were functional enough to survive and that we are therefore not 

accurately capturing the effects of early mitochondrial dysfunction.  Furthermore, it is 

possible these surviving cells contain mitochondria with sub-lethal injury and that the 

delayed disruption in mitochondrial homeostasis represents decompensation of those 

surviving mitochondria that do not sufficiently recover.  The detection of continuing 
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mitochondrial disruptions in our latest point examined warrants further examination of 

mitochondrial dysfunction in the period of weeks to months post-injury. 

 

It is also interesting that both miRNAs studied were much more strongly induced in the 

cortex than the striatum, despite the fact that the striatum seems to be more susceptible 

to mitochondrial disruptions at those same time points.  It is possible that the cortex has 

a higher baseline expression of PGC-1α mRNA and that, therefore, miR-155 must be 

more highly induced to cause a decrease in its expression.  Given reports that miRNA 

can exert effects on surrounding tissues via paracrine signaling, it is further possible that 

the miRNAs detected in the striatum are generated in the cortex and then released by 

dying cortical cells before signaling to adjacent striatal cells (248, 249). 

 

Finally, the relationship between IL-6 and TGF-β and the disruption of mitochondrial 

homeostasis is contradictory, since both of these inflammatory mediators are considered 

pro-survival cytokines (140).  It is possible that the observed mitochondrial deficits are 

due to completely separate mechanisms, with mtDNA copy number depleted by acute 

oxidative stress and downregulation of PGC-1α mRNA by pro-survival cytokines to 

decrease mitochondrial generation of ROS.  The participation of NF-κB in both induction 

of SOD2 as well as in the regulation of PGC-1α indicates that inflammatory mediators 

may play a significant role in the modulation of acute oxidative stress through several 

coordinated pathways.  Therefore, it is possible that disruption of mitochondrial 

homeostasis in the acute and sub-acute phase of TBI serves a protective role and that 

pharmacological intervention to increase mitochondrial content or function in this acute 

phase would have deleterious effects.  However, it is further possible that these 

pathways are beneficial in the early phase, but become maladaptive after the first few 

days post-injury and that better understanding of the delicate balance between beneficial 
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and harmful mitochondrial dysregulation in TBI may lead to a better identification of an 

ideal therapy window and therefore improve mitochondrial therapeutic research.  

Furthermore, additional research to determine if a causative relationship exists between 

the identified putative pathways disrupting mitochondrial homeostasis may identify novel 

upstream targets to mitigate mitochondrial dysfunction following TBI. 
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CHAPTER 5 
 

SUMMARY, CONTRIBUTION AND FUTURE DIRECTIONS 
 

SUMMARY OF CURRENT LITERATURE 

Pharmacological Induction of Mitochondrial Biogenesis for Treatment of AKI 

Acute injury states in multiple organ systems share common pathophysiological 

features, including vascular disturbances, inflammation and mitochondrial dysfunction.  

Mitochondrial dysfunction is a critical mechanism of subcellular injury after ischemic 

injury in organs with high energy requirements, such as kidney and brain, and 

improvement of mitochondrial function through pharmacological induction of 

mitochondrial biogenesis (MB) or modulation of newly described mitochondrial 

suppressive pathways is a novel therapeutic option for treatment of acute organ injury 

that provides a variety of potential drug targets. 

 

Previous work with our in vitro primary renal proximal tubule (RPTC) model 

demonstrated that oxidant stress induced mitochondrial dysfunction, as measured by 

decreased cellular respiration and ATP content, and that the return of these injury 

markers to baseline preceded recovery of cellular function (119).  Furthermore, 

treatment of cells exposed to oxidant injury with pharmacological agents demonstrated 

to induce mitochondrial biogenesis increased markers of mitochondrial function, 

including mitochondrial protein expression, ATP content and cellular respiration (47, 48, 

56).   

 

Additional work in our laboratory has demonstrated that both acute ischemia/reperfusion 

acute kidney injury (I/R-AKI) and folic acid-induced AKI (FA-AKI) induced a suppression 
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of mitochondrial mRNA and protein expression that was detectable at 1 d post-injury and 

persisted through 6 d post-injury (122).  Treatment of I/R-AKI mice with formoterol, a β2-

adrenergic receptor agonist previously demonstrated to induce MB in naïve mouse 

kidney, improved mitochondrial mRNA and protein expression and mitochondrial 

respiration and promoted recovery of renal function as demonstrated by decreased 

serum creatinine and reduced renal tubular necrosis in kidneys of formoterol-treated I/R-

AKI mice (120).  Finally, sildenafil, a PDE5 inhibitor and inducer of MB in both RPTC and 

naïve mouse kidney, increased mitochondrial mRNA expression and mtDNA copy 

number in FA-AKI mouse kidney and decreased kidney injury molecule-1 (KIM-1) 

expression (52).   

 

These results suggest that pharmacological induction of MB is a viable strategy to 

reverse mitochondrial dysfunction following AKI and that reversal of mitochondrial 

dysfunction promotes recovery of renal function in multiple etiologies of AKI.  Since 

acute injury in many organ systems share mitochondrial dysfunction as a common 

pathophysiological feature, these results may indicate that MB is a potential target for 

treatment of multiple acute organ injury states.   

 

Further work in our laboratory identified the 5-HT2 class of receptors as a potential target 

for the induction of MB.  Treatment of primary RPTC with the 5-HT2 non-selective 

agonist DOI increased cellular respiration and increased mitochondrial protein 

expression (56).  Additionally, DOI promoted recovery of cellular respiration after TBHP-

induced oxidant injury in RPTC, further indicating that the 5-HT2 class of receptors is a 

viable target for pharmacological induction of MB and promotion of cellular recovery after 

AKI.  However, the 5-HT2 receptor class is composed of three diverse receptors, 5-HT2A, 
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5-HT 2B and 5-HT2C, and more work was warranted to determine if an individual receptor 

in this class is responsible for the observed biogenic effects of DOI.   

Mitochondrial Dysfunction in Traumatic Brain Injury 

Like AKI, mitochondrial dysfunction as a result of acute oxidant stress is the primary 

mechanism of cell death following traumatic brain injury (TBI).  In the immediate phase 

after initial insult, necrosis occurs secondary to total metabolic failure and ATP depletion.  

The secondary phase of injury is marked by subcellular injury that converges on 

mitochondrial dysfunction as a result of glutamate toxicity and ischemia, during which 

rapid increases in ROS generation cause propagation of oxidative stress through 

generation of reactive biomolecules such as lipid peroxides and protein carbonyls (135, 

151, 152, 157, 158).  These altered biomolecules disrupt the structure of the inner 

mitochondrial membrane (IMM), which distorts its structure and diminishes efficacy of 

the ETC components, further propagating ROS production at Complexes I and III (108, 

152, 159).   

 

Glutamate excitotoxicity causes an excessive influx of calcium, leading to an increased 

intracellular calcium concentration both in tissues directly affected by mechanical injury 

and those in the surrounding affected penumbra of injury (164).  Excess intracellular 

calcium can lead to activation of calpains and other proteases, so mitochondrial 

sequestration of calcium through the mitochondrial calcium uniporter is important in the 

maintenance of cytosolic calcium homeostasis (135, 156, 158, 165).  However, 

excessive calcium influx into the mitochondria can activate the mitochondrial 

permeability transition (MPT), in which the opening of mitochondrial permeability 

transition pores results in collapse of the mitochondrial proton gradient, ATP depletion 

and release of cytochrome c into the cytosol (152, 166, 167).  Once translocated to the 
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cytosol, cytochrome c initiates cleavage of caspases 9 and 3, resulting in apoptosis 

(137, 166).   

 

Both acute oxidative stress and calcium dysregulation cause a pattern of mitochondrial 

dysfunction with multiple potential targets for modulation of mitochondrial damage 

signaling after TBI.  Current mitochondrial-directed therapies for TBI have focused on 

two main targets: reduction of oxidative injury using antioxidant therapy and electron 

transport chain bypass as well as inhibition of apoptotic signaling through inhibition of 

the MPT.  However, these therapies have been severely limited by a number of factors, 

including narrow therapeutic windows for efficacy and a poor understanding of the time 

course of mitochondrial disruption and dysfunction after injury (126-128, 135, 153).   

 

Although much research has implicated oxidative stress and apoptosis as the primary 

drug targets for mitigation of mitochondrial injury following TBI, little work has focused on 

the disruptions in mitochondrial biogenesis or alterations in mtDNA copy number and 

mitochondrial mRNA and protein expression.  Furthermore, research in other ischemic 

organ injury states has demonstrated that mitochondrial homeostasis is persistently 

disrupted in days to weeks after insult, indicating that these patterns of mitochondrial 

disruption may have relatively large therapeutic windows in which support of 

mitochondrial function contributes to survival of cells that have been exposed to a sub-

lethal injury (52, 120).  Therefore, further exploration of the effects of TBI on 

mitochondrial homeostasis and function may reveal novel therapeutic targets to prevent 

cell death in the sub-acute phase of injury.   

 

Finally, there is increasing evidence in other organ systems that cytokines released 

during inflammatory pathway activation after acute injury may suppress mitochondrial 



161 

 

biogenesis and homeostasis through direct interaction of inflammatory mediators with 

PGC-1α (213, 240).  Additionally, current research has identified microRNAs (miRNAs) 

induced by both pro- and anti-inflammatory cytokines that are responsible for both direct 

and indirect down-regulation of several mitochondrial homeostasis targets, including 

SOD2 and PGC-1α (244-247, 250).  Although the expression of two of these miRNAs, 

miR-21 and miR-155, have been demonstrated in the brain in acute injury states, no 

work to date has linked their expression to decreased mitochondrial homeostasis after 

TBI (246, 251).   

CONTRIBUTIONS TO THE FIELD 

The Role of the 5-HT2 Receptor in Mitochondrial Biogenesis  

Previous work in our laboratory demonstrated that the non-selective 5-HT2 receptor 

agonist DOI was capable of inducing MB in primary RPTC.  However, the 5-HT2 receptor 

class is composed of three receptor subtypes, 5-HT2A,5-HT 2B and 5-HT2C, with different 

patterns of expression and physiological functions, and the dose of DOI used was non-

specific for any of these receptor subtypes.  Using a Seahorse Extracellular Flux assay 

to screen for biogenic molecules, we identified two potent inducers of MB: 5-HT2C 

receptor agonist CP-809,101 and 5-HT2C receptor antagonist SB-242,084, both of which 

increased FCCP-uncoupled oxygen consumption at nanomolar concentrations.  

Because 5-HT2C receptor protein expression was previously described as being entirely 

localized to CNS tissue, we verified its expression in both whole mouse, rat and rabbit 

kidney as well as in RPTC, reporting for the first time expression of this receptor outside 

the CNS.  After confirming that the receptor was expressed in our tissues of interest, we 

verified that both CP-809,101 and SB-242,084 increased PGC-1α mRNA expression, 

indicating that the observed increases in cellular respiration were due to increased MB.  

Therefore, we reported that both an agonist and antagonist paradoxically elicited the 
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same phenotypic response in the same cell type and sought to further characterize the 

biogenic potential of these compounds in renal tissue. 

 

Both CP-809,101 and SB-242,084 induced increases in PGC-1α mRNA expression as 

well as expression of both nuclear- and mitochondrial-encoded mRNAs for components 

of the ETC in the kidney cortex of naïve C57BL/6 mice at 1 mg/kg doses, further 

indicating that these compounds were potent inducers of MB.   

 

Because both an agonist and antagonist elicited the same biogenic effect, we proposed 

that these compounds might exert their biogenic effects through two different 5-HT2 

receptors via non-canonical signaling pathways.  Because these compounds both 

considered specific ligands for the 5-HT2C receptor, we administered both drugs to mice 

lacking this receptor.  In the absence of this receptor, our markers of MB were more 

strongly induced, indicating that the action of these compounds at this receptor in the 

renal cortex is not responsible for their observed biogenic effect.  Interestingly, however, 

we did observe a 20% decrease in PGC-1α mRNA expression in diluent-treated 5-HT2C 

receptor KO mice compared to diluent-treated WT mice, suggesting that the 5-HT2C 

receptor may play a novel role in the endogenous maintenance of mitochondrial 

homeostasis in the kidney. 

 

After discovering that these compounds did not induce MB through the 5-HT2C receptor, 

we next hypothesized that their biogenic actions were due to interaction with the 5-HT2A 

receptor.  We repeated our previous experiment using 129Sv mice lacking the 5-HT2A 

receptor but failed to elicit increases in our biogenic markers in the WT mice.  We posit 

that these observed differences in the ability of these compounds to induce MB may be 

due to the effect of strain differences in 5-HT2 receptor biology, mitochondrial biogenesis 
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regulation or drug clearance capabilities.  Given our inability to interpret the results of our 

5-HT2A receptor KO mouse experiment, we treated RTPC with siRNA directed toward 

either the 5-HT2A or 5-HT2C receptor for 72 h and then treated them with either the 

agonist CP-809,101 or antagonist SB-242,084.  Both CP-809, 101 and SB-242,084 

increased PGC-1α mRNA in RPTC treated with either negative control siRNA or  5-HT2C 

receptor siRNA , but RPTC treated with 5-HT2A receptor siRNA had no change in PGC-

1α mRNA expression with either drug.  These results strongly indicate that agonism of 

the 5-HT2A receptor is mechanism by which 5-HT2 receptor ligands induce mitochondrial 

biogenesis and that the 5-HT2A receptor is a novel target for the induction of MB to treat 

mitochondrial dysfunction and promote cellular recovery in acute renal injury states.   

 

Although both the agonist CP-809,101 and antagonist SB-242,084 induce MB in renal 

cortex, neither drug is a good candidate for further pharmaceutical development.  In 

further testing to determine safety, CP-809,101 was determined to be genotoxic, while 

recent experiments with SB-242,084 in primates have suggested that it has a 

psychostimulant effect that may contribute to abuse potential (75, 252).  Due to the risks 

inherent in developing a novel drug through Phase I clinical trials, we decided to screen 

compounds within our target classes that have already passed safety testing in humans.  

While no potent agonists of the 5-HT2A receptor have undergone extensive 

pharmaceutical development, we identified a number of FDA-approved pharmaceuticals 

that act as potent antagonists at the 5-HT2A receptor and found that the drug amoxapine, 

an SSRI/SNRI that also acts as a potent antagonist at both the 5-HT2A and 5-HT2C 

receptor, increased FCCP-uncoupled cellular respiration in a primary screening assay.  

Further investigation of this compound revealed that amoxapine increased PGC-1α 

mRNA in RPTC and that this observed increase was dependent on the 5-HT2A receptor, 
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which supported our earlier observations that the 5-HT2A receptor was responsible for 

the biogenic capacity of 5-HT2 receptor ligands.   

 

Amoxapine was demonstrated to increase PGC-1α mRNA expression in naïve mouse 

kidney but had no effect on PGC-1α mRNA expression in CNS tissues, including frontal 

cortex, hippocampus and striatum.  These results indicate that this compound may 

induce biogenesis through a non-canonical signaling pathways downstream of the 5-

HT2A receptor, which has been demonstrated to couple pleiotropically to multiple G 

proteins (66).  In addition to non-canonical coupling to the Gi/0 receptor, the 5-HT2A 

receptor has been shown to couple to both phospholipase D (PLD) and phospholipase 

A2 (PLA2) (58, 65, 66).  Finally, it has been demonstrated that some 5-HT2A receptor 

ligands can signals independent of G protein coupled through β-arrestin-mediated 

activation of Akt/GSK3β (67, 69, 70).  

 

Finally, amoxapine did not significantly increase mitochondrial biogenesis or 

homeostasis markers in renal cortex of FA-AKI mice and had no beneficial effect on 

either renal function or survival post-injury.  Given that sildenafil, an inhibitor of 

intracellular PDE5, did recover some mitochondrial content and renal function after FA-

AKI, these results were surprising.  It is possible that this very severe injury induces 

dedifferentiation and migration cells in sub-lethally injured renal tubular cells, which 

causes downregulation of 5-HT2A receptor at the cell membrane, or that disruption of the 

tubular cell membrane is sufficient to effect 5-HT2A receptor expression at the cell 

surface.  These results suggest that this class of receptors may not be a viable target for 

the treatment of severe acute renal tubular dysfunction, but that they may still have utility 

in treatment of chronic mitochondrial dysfunction that persists after the migrated tubular 

cells have proliferated and redifferentiation.   



165 

 

 

Disruptions in Mitochondrial Homeostasis Following TBI  

Given the body of work that exists about mitochondrial dysfunction as a result of 

increased oxidative stress and calcium dysregulation following TBI, we hypothesized 

that mitochondrial homeostasis and biogenesis would be disrupted in the ipsilateral 

cortex and in the in the penumbra  surrounding the initial injury site in the first week after 

insult in a controlled cortical impact (CCI) rat model of TBI.  We found that the first 

detected decreases in mtDNA copy number expression of PGC-1α, ND1 and COXI 

mRNA were in the ipsilateral striatum; expression of the three mRNAs remained 

suppressed through 6 d post-injury but mtDNA copy number recovered at this time.  The 

cortex had a delayed disruption in mitochondrial homeostasis but displayed a decrease 

in PGC-1α, ND1 and COXI mRNA at 6 d after injury.  These results indicate persistent 

activation of pathways that contribute to mitochondrial dysregulation and may serve as 

therapeutic targets for treatment of TBI.  However, the protein expression of all of these 

markers remained unchanged, indicating that there may be an early compensation 

mechanism to support MB as well as ETC function in the face of decreased mRNA 

expression.   

 

We next hypothesized that treatment of CCI rats with a therapeutic that induces MB 

would be a beneficial strategy for management of mitochondrial disruption after TBI.  We 

chose to use the previously described biogenic compound amoxapine because it was 

first designed as a neuroactive drug and is known to cross the BBB.  However, 

amoxapine treatment did not significantly increase any of the suppressed markers of 

mitochondrial homeostasis at 6 d post-injury.  Since this CCI model is considered a 

severe injury, it is possible that the cell damage is too harsh for effective recovery of 
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mitochondrial homeostasis or cellular function.  It also provides further evidence of 

persistent activation of damage pathways that continue to actively suppress 

mitochondrial content regulation and/or function and suggests that attempts to induce 

MB may not be able to overcome these suppressive mechanisms.   

 

We further hypothesized that these suppressive mechanisms may exert differential 

effects on markers of mitochondrial homeostasis.  A detected increase in SOD2 mRNA 

at 1 d and UCP2 mRNA at 3 d and 6 d post injury in cortex and striatum provide 

evidence of both increased ROS production as well as propagation of oxidative stress by 

lipid peroxides and may represent a mechanism of mtDNA depletion, which has been 

demonstrated to occur as a result of acute oxidant injury (161).  Time-dependent 

expression patterns of the cytokines IL-6 and TGF-β indicate the induction of both pro- 

and anti-inflammatory signaling and subsequent increases in their downstream targets 

miR-21 and miR-155 provide a putative link between the observed cytokine signaling 

and mitochondrial disruptions in both ipsilateral striatum and cortex.  The absence of 

mitochondrial suppression as well as lack of antioxidant, cytokine or miRNA induction in 

contralateral tissues may lend further support to the existence of a link between these 

damage mediators and disruption of mitochondrial homeostasis.   

FUTURE DIRECTIONS 

The Role of the 5-HT2 Receptor in Mitochondrial Biogenesis  

Further research is warranted into the potential signaling pathways that lead to induction 

of MB through the 5-HT2A receptor.  One prominent question that is yet to be answered 

is if both agonists and antagonists elicit MB through an identical signaling pathway or 

through divergent signaling pathways.  Given the body of research that indicates that the 

5-HT2A receptor can couple to a number of non-canonical signal pathways, it is likely that 
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these ligands signal through separate pathways to induce biogenesis.  There are several 

techniques that can be employed to detect divergent signaling pathways that lead to 

induction of MB by these compounds.  The first technique is to probe for release of 

signaling molecules that have been previously connected to biogenic signaling.  There 

are commercially available ELISA kits that allow for detection of cAMP and cGMP after 

stimulation with a compounds; previous work in our laboratory has successfully reported 

the involvement of these mediators, particular cGMP, in the stimulation of MB in primary 

RPTC, making this signaling molecule a high-yield target for elucidation of 5-HT2A-

induced MB signaling (52).  Additional work in our laboratory has successfully utilized 

pretreatment with a panel of inhibitors for common biogenic signaling pathways to probe 

for involvement of these pathways in biogenic signaling in response to physiological 

stimulus; pretreatment of RPTC with these inhibitors prior to administration of known 5-

HT2A receptor-targeted biogenic agents and subsequent measurement of PGC-1α 

mRNA expression may provide further information as to the signaling pathway(s) that 

mediate 5-HT2A receptor-induced MB (38). 

 

The final potential direction for this project is to use bioinformatics to examine chemical 

features within the 5-HT2A receptor ligands that induce MB and to determine if our 

biogenic agonists and antagonists share chemical elements that could provide evidence 

of signaling through similar 5-HT2A receptor-mediated mechanisms.  Additionally, these 

comparisons of similarity can also identify a potential pharmacophore to design 

improved biogenic ligands for this receptor.  Alternately, use of this approach to compare 

differences between 5-HT2A receptor ligands that induce MB and those that do not may 

help identify the critical drug-receptor molecular interactions for successful induction of 

MB.   
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Disruptions in Mitochondrial Homeostasis Following TBI  

There are many exciting avenues for further characterization of the patterns of 

mitochondrial disruption observed after acute CCI and for elucidation of potential 

suppressive pathways that inhibit recovery of mitochondrial function in naïve CCI rats or 

those treated with biogenic agents.   

 

Because there is evidence that mitochondrial homeostasis is still disrupted at the latest 

time point we analyzed after TBI, it would be beneficial to follow patterns of disruption in 

the time period of weeks to months after CCI.  The maintenance of mitochondrial protein 

expression, despite persistent decreases in PGC-1α, ND1 and COXI mRNA expression, 

indicates that there may be a compensatory mechanism to maintain mitochondrial 

function in the sub-acute phase of days after injury.  It would be interesting to determine 

if such a compensatory mechanism exists and if eventually the mitochondria 

decompensate and begin to demonstrate decreases in mitochondrial protein expression.   

 

Another exciting avenue of research is the elucidation of potential mitochondrial 

suppression pathways.  Our current research has indicated that surrogate markers of 

persistent oxidative injury, inflammatory mediators and suppressive miRNAs 

downstream of these inflammatory mediators are all increased in ipsilateral striatum and 

cortex when a concomitant decrease in mitochondrial homeostasis markers is also 

observed.  Neither these mediators nor mitochondrial dysregulation are detected in the 

contralateral tissues, which can be considered further evidence of the relationship 

between these damage pathways and mitochondrial disruption after TBI.  

Pharmacological agents that block these signaling pathways are commercially available.  

Pretreatment with antioxidants or with lipid peroxide scavengers can probe the 

relationship between persistent oxidative stress and depletion of mtDNA copy number.  
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Additionally, pretreatment with a monoclonal antibody directed toward IL-6 or with the 

TGF-β receptor antagonist GW 788388 could reveal a relationship between these 

agents and decreased mitochondrial homeostasis markers and would also indicate if 

expression of these cytokines leads to increased miR-21 and/or miR-155 expression.  

Finally, pretreatment with antagomirs that target and neutralize miR-21 and miR-155 

would provide evidence of the relationship between these microRNAs and mitochondrial 

suppression following TBI.  Although custom synthesis of these antagomirs would be 

prohibitively expensive, they are currently produced by Regulus Therapeutics, a 

company that has previously collaborated with academic researchers to answer 

questions such as ours.  Although delivery of these antagomirs to the brain is another 

potential prohibitive factor, we may be able to harness the pathological increase in BBB 

permeability following TBI to increase delivery of these therapeutics.  These exciting 

experiments could elucidate for the first time important signaling mechanisms leading to 

disruption of mitochondrial homeostasis and function after TBI.  Elucidation of these 

pathways would also identify a number of novel drug targets for treatment of TBI and 

increase options for combination therapy to promote mitochondrial recovery after TBI. 

 

A hypothesis proposed by other research groups is that differing cell populations in the 

striatum and cortex may contribute to their differential susceptibilities to mitochondrial 

injury (194).  Therefore, immunohistological examinations of tissue sections collected 

following TBI could identify if antibody-labeled mitochondrial components are 

differentially altered in these different cell types. 

 

Additional potential experiments include the development of a more clinically relevant 

model of TBI, since our current CCI model mimics severe injury.  The majority of clinical 

cases are either mild or moderate in severity.  The benefit of development of various 
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severity models is two-fold. First, it would allow us to determine if our observations about 

the striatum’s increased susceptibility to mitochondrial disruption compared to that of the 

cortex is valid.  It is possible that the severe model causes fulminant injury to the 

affected cortex, resulting in massive cell death, and that cells sampled in our 

experiments are those that are functioning well enough to survive; if this is the case, the 

decrease in PGC-1α mRNA expression observed a 6 d post-injury in this tissue may 

indicate persistent insult to mitochondrial structure and homeostasis and may represent 

decompensation of surviving sub-lethally injured mitochondria.  To probe this 

hypothesis, a potential experiment would be to decrease the depth of penetration of the 

Impactor and determine whether cortical mitochondrial disruptions were detected at 

earlier time points.  Finally, the current severity of our CCI model may limit our ability to 

effectively promote mitochondrial recovery, and mild to moderate TBI may be more 

responsive to treatment with MB agents.    
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