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PHILIPP MCCONNELL SUMMERS.  Extensive and Persistent Disruption of 
Neurovascular Coupling by a Single Cerebral Microinfarct.  (Under the direction of Andy 
Shih). 

Abstract 
 
Cerebral microinfarcts (CMI), microscopic brain lesions caused by blockade of small 
blood vessels, have recently emerged as a potential determinant of cognitive 
decline. Though small in size, our recent work demonstrated that a single, 
strategically placed CMI was sufficient to disrupt sensory input in a behavioral task. 
However, the means by which such small lesions disrupt brain function remain 
poorly understood. We imaged vascular function in awake, head-fixed mice using 
two-photon microscopy to examine the impact of CMI on neurovascular coupling. 
CMI were generated in cortex by photothrombotic occlusion of single penetrating 
vessels through a thinned-skull cranial window. Vibrissa-evoked dilation of individual 
arteries and arterioles within the primary vibrissa cortex were tracked over four time 
periods: pre-occlusion, acute (2-3 days post-occlusion), subacute (7-9 days) and 
chronic (14-21 days). In the acute phase, dilatory responses were markedly 
attenuated compared to pre-occlusion (2.2 ± 0.5% mean dilation over baseline vs. 
11.2 ± 0.8%, p < 0.001). Dilatory responses during the subacute (7.8 ± 1.1%) and 
chronic (6.5 ± 1.1%) phases partially recovered but remained significantly attenuated 
in magnitude and time to dilation compared to pre-occlusion (p < 0.01). Critically, 
vascular dysfunction was observed well beyond the borders of the CMI, as infarcts 
with an average radius of 0.19 ± 0.05 mm generated deficits in dilation at distances 
exceeding 1 mm away from the vessel targeted for occlusion.  Analysis of dilations in 
a separate cohort of mice during the hyperacute time period (0-3 hours post-
occlusion), revealed that the dilatory deficit is first expressed in the immediate 
vicinity of the stroke and then propagates outward from the occlusion site. While 
unresponsive to sensory stimulation, vasodilation could be evoked by isoflurane 
inhalation, albeit attenuated in the subacute phase (156.7 ± 5.3% of pre-stroke levels 
vs. 134.6 ± 4.3% subacute, p = 0.02). Expression of c-Fos following an extended 
period of vibrissa stimulation was reduced in the peri-infarct tissue in the acute time 
period, with gradual recovery initiating distal to the stroke apparent in subacute and 
chronic mice.  This indicated that loss of sensory-evoked vasodilation is attributed to 
a combination of altered vascular mechanical properties and a deficit in neural 
connectivity and/or activity. Thus, CMI disrupt brain function well beyond the regions 
of overt tissue infarction and this effect, combined with their widespread distribution 
in the aged brain, may contribute to the pathogenesis of CMI in vascular dementia.  

 



iii 

 

Contents  
Abstract  ............................................................................................................................... ii 

Contents  ............................................................................................................................. iii 

List of Figures  .................................................................................................................... v 

List of Abbreviations  ........................................................................................................ vi 

Introduction  ........................................................................................................................ 1 

Vasculature of the Brain ........................................................................................................... 1 

Neurovascular Coupling ....................................................................................................... 2 

The Neurovascular Unit ........................................................................................................ 3 

2-Photon Imaging as a Tool to Study Neurovascular Coupling ..................................... 4 

Stroke .......................................................................................................................................... 5 

The Ischemic Cascade ......................................................................................................... 5 

Effects of Anesthetics on Stroke ......................................................................................... 8 

Cerebral Microinfarcts ........................................................................................................ 10 

Targeted Photothrombotic Occlusion ............................................................................... 11 

Methods  ............................................................................................................................ 12 

Subjects .................................................................................................................................... 12 

Study Design ............................................................................................................................ 12 

Surgical Procedure – Head Mount Implantation................................................................. 13 

Habituation to Head Fixation ................................................................................................. 14 

Surgical Procedure – PoRTS Window Surgery .................................................................. 15 

Imaging Setup .......................................................................................................................... 16 

Imaging/Stimulation Procedure ............................................................................................. 19 

Photothrombotic Stroke .......................................................................................................... 22 

Data Processing ...................................................................................................................... 23 

Immunohistochemistry............................................................................................................ 27 

c-Fos Immunohistochemistry ................................................................................................ 28 

Results  .............................................................................................................................. 30 

Sensory-Evoked Arteriole Dilatory Response in Awake Mice .......................................... 30 

Cerebral Microinfarcts were targeted to the Periphery of the Barrel Cortex .................. 32 



iv 

 

Changes in Dilatory Response Following Cerebral Microinfarct...................................... 34 

Correlations between Changes in Dilatory Response and Position Relative to CMI ... 38 

Genesis of a Deficit – Neurovascular Coupling in Hyper-Acute Stage of Cerebral 
Microinfarction ......................................................................................................................... 42 

Isoflurane and c-Fos – Tools to Probe the Mechanisms of the Loss of Dilatory 
Response ................................................................................................................................. 44 

Discussion  ........................................................................................................................ 50 

References  ........................................................................................................................ 58 

 

  



v 

 

List of Figures 
Figure 1.  Vasculature of the mouse cortex.  ......................................................................... 1 

Figure 2.  Timeline of experimental procedures  ............................................................... 12 

Figure 3.  Schematic of PoRTS window for imaging mo use cortex.  ........................... 16 

Figure 4.  Schematic of Imaging Setup.  .............................................................................. 18 

Figure 5.  Stimulation Paradigm and Example of Dila tion.  ............................................ 21 

Figure 6.  Schematic of Targeted Photothrombotic Oc clusion of an Arteriole.  ....... 23 

Figure 7.  Example of Full-Width Half-Maximum Measu rements of Dilating 
Arterioles  ..................................................................................................................................... 24 

Figure 8.  Vibrissa Stimulation Elicited Robust Dil ation in Arterioles within the 
Vibrissa Cortex.  ......................................................................................................................... 26 

Figure 9.  Average Responses of Arterioles and Venu les to Stimulation under 
Basal Conditions.  ...................................................................................................................... 31 

Figure 10.  Maximum Dilatory Responses of Individua l Arterioles to Stimulation 
under Basal Conditions.  .......................................................................................................... 32 

Figure 11.  Locations of Imaging Regions and Cerebr al Microinfarcts Within the 
Barrel Cortex  .............................................................................................................................. 33 

Figure 12.   Average Dilatory Response of Arterioles Before and Following 
Occlusion.  ................................................................................................................................... 34 

Figure 13.  Mean Latency of Dilation is Augmented i n the Acute and Subacute 
Time Periods.  ............................................................................................................................. 36 

Figure 14.  Loss of Dilatory Response in the Acute Time Phase effects both Small 
and Large Vessels.  ................................................................................................................... 37 

Figure 15.  Loss of dilatory response extended far beyond the CMI border during 
the acute time phase.  ............................................................................................................... 39 

Figure 16.  Both proximal and distal vessels experi enced increase in latency to 
dilation following stroke.  ........................................................................................................ 41 

Figure 17:  Neurovascular Coupling is Disrupted Pro ximal to Stroke in the 
Hyperacute phase.  .................................................................................................................... 43 

Figure 18.  Isoflurane is capable of inducing far l arger dilations than vibrissa 
stimulation.  ................................................................................................................................. 45 

Figure 19.  Dilations induced by isoflurane exposur e were significantly attenuated 
in the acute phase, but still greatly exceeded the dilatory response to vibrissa 
stimulation.  ................................................................................................................................. 46 

Figure 20.  Immunofluorescence staining of c-Fos re veals robust neuronal 
activation in the barrel cortex contralateral to vi brissa stimulation in a sham 
animal.  .......................................................................................................................................... 47 

Figure 21.   c-Fos activation in the barrel cortex contralateral to vibrissa 
stimulation is diminished in the acute phase follow ing CMI.  ........................................ 48 

Figure 22.  Expression of c-Fos is attenuated proxi mal to the CMI in the acute and 
subacute phases.  ...................................................................................................................... 49 



vi 

 

List of Abbreviations 
 

AIS:  Axon Initial Segment 

ATP:  Adenosine Triphosphate 

BBB:  Blood-Brain Barrier 

BOLD:  Blood-Oxygenation Level Dependent 

CMI:  Cerebral Microinfarct 

CSD:  Cortical Spreading Depression 

fMRI:  Functional Magnetic Resonance Imaging 

NVU:  Neurovascular Unit 

ROS:  Reactive Oxygen Species 

TPLSM:  Two-Photon Laser-Scanning Microscopy 

  



1 

 

Introduction 

Vasculature of the Brain 
 

The constant energy demands of brain function must be supplied by a 

reliable and dynamic cerebrovascular system (1). The cerebral cortex is supplied 

by the great cerebral arteries that emanate from the Circle of Willis and source a 

planar network of highly interconnected pial arterioles on the brain surface (2). 

Blood flow in this network is relatively insensitive to blockages (3, 4), and also 

permits the dynamic redistribution of blood toward regions of heightened 

electrical activity (5,6).   

 

Figure 1.  Vasculature of the mouse cortex.     

 (A) Vasculature of the dorsal surface of the of the whole mouse brain revealed by a fluorescein-
gelatin cast.  (B)  Schematic of the three-tiered topology of vasculature in the mouse cortex, 
containing highly interconnected surface pial networks, penetrating vessels which create 
bottlenecks in flow, and subsurface microvascular networks.  Adapted from Blinder et al. (7).(C) 
Illustration of penetrating vessels projecting radially from the pial surface into deep layers of the 
cortex Adapted from Shih et al. (8). 

These pial vessels are in turn connected to an underlying, three-

dimensional network of microvessels by penetrating arterioles that project radially 
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from the surface, as shown in Figure 1B , forming bottlenecks in flow to columns 

of cortical microvasculature (7). Blood is drained from the microvasculature back 

to the cortical surface through penetrating venules and then emptied into the 

central sinus.  

The physiological demands served by the blood supply of the brain are 

particularly significant because neurons are more sensitive to oxygen deprivation 

than other kinds of cells with lower rates of metabolism (9).  The brain is also at 

risk from circulating toxins, and is specifically protected in this respect by 

the blood-brain barrier.  In addition to having a high metabolic rate, neurons 

obtain virtually all of their nutrition via aerobic metabolism of glucose, making 

them even more reliant on persistent oxygenation (10).  When blood supply is 

compromised, deprivation of oxygen and glucose may cause transient or 

permanent damage to brain tissue.  Even a brief loss of blood supply can initiate 

cellular changes which lead to cell death, while a prolonged loss of blood flow 

leads more directly to death and degeneration of affected cells (9). 

 

Neurovascular Coupling 
 

Cerebral metabolism depends on a constant supply of both glucose and 

oxygen. A continuous supply of these two energy substrates is maintained by 

cerebral blood flow (CBF), which delivers glucose and oxygen to neural tissue 

through the complex web of blood vessels in the brain’s vascular system.  
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Accordingly, during neural activity, increases in oxygen and glucose consumption 

are followed by an increase in CBF (11). While the increase in CBF is 

comparable to the rise in glucose consumption rate, the rate of oxygen 

consumption is fractionally smaller in magnitude, resulting in an increase in the 

relative concentration of oxygen in blood and tissue (12). This oversupply of 

oxygen due to the mismatch between CBF and oxygen consumption is the basis 

of blood-oxygenation level dependent (BOLD) fMRI, which detects alterations in 

levels of deoxygenated hemoglobin and cerebral blood volume (13, 14). 

 

The Neurovascular Unit 
 

 Neurovascular coupling is accomplished through the activity of a group of 

cells, closely related to each other, called the neurovascular unit (NVU).  The 

NVU is composed of neurons, astrocytes, endothelial cells of the blood-brain 

barrier (BBB), myocytes, and pericytes (15).  These components exhibit a tightly 

linked anatomical and chemical relationship that detects neuronal metabolic 

needs and triggers the necessary vasodilatory or vasoconstrictive response 

needed to regulate nutrient distribution and meet such demands. The NVU has 

also been implicated in eliciting selective changes in BBB permeability, either 

through direct signaling from neurons or alternative pathways through pericytes 

and astrocytes which ensheathe the microvasculature (15, 16). 
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2-Photon Imaging as a Tool to Study Neurovascular C oupling 
 

Two-photon laser-scanning microscopy (TPLSM) is an imaging technique 

which combines the point-by-point rastering technique of confocal laser scanning 

microscopy with physical phenomena of two-photon absorption, which is the 

simultaneous absorption of two photons to excite a molecule from one state to a 

higher energy electronic state (17).  As a result of this phenomenon, the two 

excitation photons can provide the excitation of a photon with twice their own 

energy.  Many fluorescent markers used in in-vivo imaging require excitation light 

in the visible spectrum, which is scattered at relatively shallow depths in brain 

tissue.  Two-photon microscopy allows researchers to circumvent these issues 

by providing excitation for the same fluorophores from the infra-red spectrum by 

way of two-photon absorption, permitting greater depth of imaging with less 

scattering of excitation light (18).   

The depth of imaging allowed by two-photon microscopy, combined with 

the high spatial-acuity of laser scanning microscopy, make this imaging method 

one of the most amenable for imaging living tissue up to a very high depth.  Due 

to multiphoton absorption, the background signal is strongly suppressed, 

resulting in improved light detection efficiency, and reduced phototoxicity 

compared to confocal microcopy.  In vivo TPLSM is already an established 

method to visualize cerebrovascular topology and quantify blood flow at the level 

of single vessels in the rodent cortex, and is an excellent tool for probing 

neurovascular coupling at the microvascular level in the behaving animal (8). 
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Stroke 
 

A stroke is defined as the loss of brain function due to a disturbance in the 

blood supply to the brain (19).  This can arise either from ischemia, a lack of 

blood flow due to a clot or general hypoxia, or hemorrhage, a loss of blood flow 

due to rupture of a vessel.  The majority of strokes (87%) are ischemic strokes.  

Every year, about 800,000 people in the United States have a stroke (20).  While 

stroke is the fourth leading cause of death in America, killing nearly 130,000 

individuals each year (21), a large proportion of patients survive its devastating 

effects and require rehabilitation and long-term care to overcome disabilities.  As 

a result, stroke is a great burden to the economy, costing the United States an 

estimated $36.5 billion annually (22).   

 

The Ischemic Cascade 
 

The progression of stroke injury is very complex, involving various 

mechanisms of cell death including excitotoxicity, apoptosis, necrosis and 

inflammation.   Following the loss of blood supply, stroke begins with the 

disruption of metabolism and homeostasis in neurons and glia due to an inability 

to generate adequate levels of adenosine triphosphate (ATP) (23).  The loss of 

ATP-dependent ion channel activity results in a breakdown of ionic gradients 

across the plasma membrane, resulting in widespread depolarization of neurons 
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and glia and subsequent uncontrolled release of synaptic glutamate (24, 25).  

The loss of membrane potential also shuts down Na+-dependent glutamate 

transporters, preventing reuptake and further exacerbating extracellular 

glutamate accumulation (26).   

The rise in glutamate initiates a toxic secondary cascade known as 

excitotoxicity (27, 28).  The elevated levels of glutamate over-stimulate NMDA 

and AMPA-type neuronal glutamate receptors, leading to an influx and 

accumulation of Ca++ in the cytosol (29).  Intracellular Ca++ overload leads to 

mitochondrial dysfunction, compounding the issue of ATP depletion and 

triggering the apoptotic cascade. 

Cortical spreading depression (CSD) is an intense depolarization wave 

that slowly propagates through gray matter. CSD is characterized by a wave of 

hyperactivity followed by a wave of depression (30), and is associated with 

massive transmembrane ionic and water shifts coupled to a surge in extracellular 

K+ (31).   CSD has been found to coincide with tissue hypoxia (32), and 

incidences of spreading depression, sometimes termed “injury depolarizations”, 

have been detected in the human brain following ischemic stroke, subarachnoid 

hemorrhage, intracerebral hemorrhage, and traumatic brain injury (33).  In 

ischemic stroke, spreading depressions seem to originate at the junction 

between the ischemic core and the moderately ischemic penumbra, where 

synaptic activity has ceased, but some neuronal membrane potentials are 

preserved.  These depolarizations propagate along the infarct rim and often into 
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non-ischemic tissue, exerting metabolic and hemodynamic effects that can 

worsen the long-term outcome of ischemic tissue (34). 

In ischemic stroke, the reduction of CBF is most pronounced in the 

ischemic core, while it is less pronounced in the periphery (35).  Following focal 

and global ischemia, when perfusion is reestablished in the peri-infarct, there is a 

transient increase in flow followed by a period of reduced flow.  After ischemia, 

cerebral circulation experiences some degree of vasoparalysis (36).  It has long 

been known that, following ischemic stroke, the reactivity of cerebral circulation 

to administration of carbon dioxide and vascular autoregulation is altered and 

impaired in patients (37).  Studies that assess indices of neural activity in patients 

suggest that the reduction in neurovascular coupling may be secondary to a 

reduction in the neural activity driving the hemodynamic response (38).  It has 

also been found that the increase in glucose utilization typically evoked by 

vibrissa stimulation of rats is severely depressed one day following transient 

global ischemia (39), indicating that, in addition to a depressed CBF response, 

metabolic responses are attenuated following stroke.  Small cortical strokes have 

been found to produce a broad region of hypometabolism, termed diaschisis, 

outside of the putative ischemic core (40).  It is postulated that this is due to 

vascular steal (41), or the loss of the CBF to neighboring hypometabolic regions, 

and a deficit in neural activity resulting from the loss of afferents that previously 

emerged from the stroke core (42). 
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CSD may, to some extent, drive these effects, as it has been found to 

elicit a strong vasoconstrictive response in the peri-infarct tissue (43).  

Widespread vascular oxidative stress could also contribute to loss of 

neurovascular coupling.  Ischemia leads to an increase of reactive oxygen 

species (ROS), which can cause profound alterations in cerebrovascular 

regulation (44), while ROS scavengers ameliorate disturbances in CBF following 

ischemia-reperfusion (45). 

 

Effects of Anesthetics on Stroke  
 

Anesthesia alters key mechanisms of stroke injury and repair, and will 

therefore affect the trajectory of the disease. In the acute stage of ischemic 

injury, this can occur by suppression of neuronal activity or by engaging collateral 

blood flow sources. Common anesthetics, such as isoflurane, reduce the 

cerebral metabolic rate for oxygen consumption and likely the extent of 

excitotoxic neuronal toxicity (46). Ketamine, in particular, is an antagonist of the 

NMDA receptor and attenuates production of the potent vasomediator, nitric 

oxide, during stroke (47).  The frequency of CSD events has been shown to be 

attenuated or modulated by numerous anesthetics, including ketamine (48, 49), 

volatile anesthetics halothane, isoflurane and sevoflurane (50, 51), and urethane-

chloralose (52). Thus, many anesthetics mediate an overall protective effect in 

stroke by attenuating excitotoxic injury (53).  
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Anesthesia can also affect CBF, which may have opposing effects on 

stroke outcome. Pentobarbital and isoflurane, in particular, cause global cerebral 

vasodilation and a significant reduction in CBF that lead to a hypoperfusion (54).  

In the setting of a stroke, this could conceivably decrease perfusion in the stroke 

penumbra, exacerbating injury. Conversely, the dilation of cerebral arterioles can 

conceivably promote tissue survival by engaging collateral blood supply to the 

hypoxic tissue.  Another important consideration is that hemodynamic responses 

measured by BOLD fMRI are widely used to infer tissue recovery after stroke 

(55). Given the suppressive effects of anesthetics on arterial and neuronal 

reactivity, it is unclear when models using anesthesia fail to mimic the human 

condition (56, 57).  

The effects of anesthetics can extend beyond the acute phase of stroke 

when the infarct stabilizes and the peri-infarct zone begins to recover. 

Longitudinal in vivo imaging studies typically involve repeated periods of 

anesthesia that could affect repair/recovery processes. Anesthetics impact the 

activity of microglia directly by altering the expression of inflammatory mediators 

and also indirectly by reducing CSD, which promotes microglial activation (58).  

The effect varies with the type of anesthetic used, as isoflurane appears to 

promote cytokine expression (59, 60), while ketamine has an inhibitory effect 

(61).  Further, the activity of microglia is tightly linked to post-stroke repair 

process through release of matrix metalloproteinases, which are associated with 

the breakdown of tight junction proteins in acute stroke (62), but also appear to 
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be involved in remodeling of neuronal connectivity (63) and possibly nascent 

blood vessel formation (64). 

One limitation in current preclinical stroke studies is that the models are 

often invasive, necessitating deep and prolonged anesthesia. This precludes the 

visualization of early changes in stroke, and can dictate the extent and long-term 

trajectory of the injury.  To minimize the confounding influence of anesthetics in 

this study, mice were imaged and vessels were occluded in the awakened state, 

with minimal isoflurane exposure introduced briefly to allow for necessary 

injections. 

 

Cerebral Microinfarcts 
 

Cerebral microinfarcts (CMIs) are tiny lesions characterized by genuine 

tissue infarction, but on a scale that renders them unapparent in gross pathologic 

examination or conventional structural MRI, although there is evidence that in 

vivo detection of microinfarcts might soon be possible (65).  Though many 

studies have shown that asymptomatic microinfarcts and cerebrovascular 

disease are very common, especially with aging, these “silent” strokes are nearly 

twice as prevalent in cases of dementia as in the healthy, aged brain (66, 67).  

While the clinical relevance of CMIs has been controversial, there is a growing 

body of evidence that they impart a deleterious effect on cognitive performance.  

In a study where CMIs were introduced in the rat barrel cortex, it was found that 
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a single microscopic lesion, similar in size, location and geometry to a human 

microinfarct, could produce tissue damage and perceptual deficits which could be 

mitigated with administration of memantine, a glutamate receptor antagonist (68). 

 

Targeted Photothrombotic Occlusion 
 

Targeted photothrombotic occlusion is a method by which ischemic 

damage is induced within a targeted cortical area by means of photo-activation of 

a previously injected light-sensitive dye.  The dye Rose Bengal (4,5,6,7-

tetrachloro-2',4',5',7'-tetraiodofluorescein) is one such photo-sensitizing agent.  

When Rose Bengal dye is illuminated with a 530nm laser, singlet oxygen is 

produced.  In the intravascular environment, these free radicals damage 

components of endothelial cell membranes, leading to platelet aggregation and 

thrombi formation, eventually interrupting local blood flow (69).  While diffuse light 

exposure has been used to generate large, non-specific strokes, emerging 

methods have been introduced to produce much smaller strokes, which mimic 

the nature of a CMI (70, 71).  Using dichroic mirrors, a focused green laser may 

be introduced into the same optical pathways as the imaging laser used in a 

TPLSM system, allowing for photothrombosis to be targeted specifically to the 

lumen of an individual penetrating vessel (72).  Following occlusion, the injury 

can be left to evolve into a lesion mimicking CMI. 
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Methods 

Subjects 
 

For this study, male mice from the C57BL/6 line were selected for use. 

Mice selected for the study were between 3 to 7 months of age at the time of the 

initial surgery, with an average age of 4.7 ± 1.2 months.  The mean weight of the 

mice selected for the study was 27.2 ± 2.7 grams. 

 

Study Design 
 

Prior to the study, the timeline in Figure 2  was developed to schedule 

surgery, habituation, and imaging.  On day one, mice were implanted with a 

head-fixation flange imbedded in a skull cap.  However, at this time a chronic 

window was not created in the skull to mitigate the deterioration of imaging 

quality later in the experiment.   

 

Figure 2.  Timeline of experimental procedures  

The initial surgical procedure was followed by four days of habituation to 

head fixation to prepare the mice for awake imaging sessions.  On day four of 
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habituation, a PoRTS window was created over the left hemisphere of the 

mouse.  The following day, pre-occlusion imaging was initialized, after which a 

single CMI was induced using photothrombosis in the barrel cortex.  Post-

occlusion imaging was then carried out in three time phases: acute (2-3 days 

post-occlusion), subacute (7-9 days), and chronic (14-17 days).  Following the 

completion of chronic imaging, mice were sacrificed and perfused, and the tissue 

was labeled using immunohistochemistry techniques. 

 

Surgical Procedure – Head Mount Implantation 
 

Prior to the initiation of habituation, surgical procedures were performed to 

create a skull cap and implant a head-mount flange.  Mice were first anesthetized 

with 4% isoflurane in air in an enclosed container.  Once mice were in an 

anesthetized state as determined by the toe-pinch test, they were transferred to 

an apparatus under the surgical microscope with 1-2% isoflurane in air provided 

through a nose cone.  At this time, mice were given a 50µl dose of .03mg/ml 

analgesic Buprenex (buprenorphine).  The scalp of the mouse was sterilized with 

betadine followed by 30% ethanol.  The toe-pinch test was performed again to 

ensure adequate depth of anesthesia before making any incision.  Forceps were 

used to pinch and lift the scalp, which was removed with a single, clean incision 

using scissors.  If any bleeding occurred at this point, sterilized kimwipes were 

employed to stop the flow of blood and to clean up the surgical site.   
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Sharp forceps were then used to remove the peri-osteum from the surface 

of the skull, exposing the bone. The skull surface was scored over the right 

hemisphere using the sharp forceps to allow for stronger binding with glue and 

dental cement.  Additionally, the surface of the skull over the stereotaxic location 

of the vibrissa sensory cortex (3.5-4.0mm lateral from the midline and 1.2-2.0 

mm caudal to bregma) was marked with a sterilized pencil.  A wooden applicator 

was used to brush a thin layer of cyanoacrylate glue over the junction of the 

exposed skull and the edge of the incision, as well as over the top of pronounced 

sutures in the skull.  This step is necessary to lock fluids away from the surface 

of the skull, which is critical when later creating the PoRTS window.   

After allowing the cyanoacrylate glue to dry for 15 minutes, a custom 

titanium head mount flange was positioned over the right hemisphere of the skull, 

above the scored hash marks.  Parkell C&B Metabond self-curing dental cement 

was applied to the exposed skull, with larger amounts about the head mount 

flange to anchor it to the skull.  A thin layer was brushed over the demarcated 

vibrissa cortex, allowing the region to still be visually identifiable while protecting 

the skull from open exposure.  The mice were then removed from the surgical 

apparatus and placed in their home cage under a heat lamp for recovery. 

Habituation to Head Fixation 
 

Following recovery from the initial surgery, the mice were gradually 

introduced to the long-term head fixation necessary for awake imaging in this 
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study.  On each day, mice were placed into the imaging apparatus as detailed in 

Figure 2 .  Following brief isoflurane exposure, the mice were fixed to an 

anchored arm using the head mount flange and an adjustable cardboard tube 

was positioned snugly around the bodies of the mice to minimize movement.  

Mice that would later wear the pulse oximeter during imaging were conditioned 

with the MouseOx fixed to the left leg as well.  On day one, habituation was 

carried out for 15 minutes, followed by 30 minutes on day two, 1 hour on day 

three, and 2 hours on day four.  At the end of day four of habituation, mice that 

exhibited characteristics indicative of proper habituation were selected for PoRTS 

window surgery. 

 

Surgical Procedure – PoRTS Window Surgery 
 

Prior to the second surgical procedure, mice were anesthetized using the 

same techniques utilized before creating the skull cap and implanting the head-

mount flange.  Once mice were determined to be properly anesthetized using the 

tail pinch test, they were secured to the surgical apparatus using the head-mount 

flange.  A dental drill was used at 10,000 rpm to delicately remove the dental 

cement over the demarcated vibrissa cortex.  After removing the dental cement, 

exposing the underlying bone, the drill tip was replaced, as wear and tear 

resulting from drilling through the cement could be deleterious when drilling 

through bone.  The skull was gradually thinned, periodically clearing debris using 
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an air canister and applying cool ACSF to the skull surface to dissipate heat 

created through the friction of drilling.  The skull was determined to be 

adequately thinned when microvasculature became clearly visible with no 

aberrations following the application of ACSF, indicating a width of about 10-20 

µm.  The skull was then dried using kimwipes and the air canister.  As shown in 

Figure 3 , a thin layer of cyanoacrylate glue was applied to the thinned skull and 

a No. 0 coverslip was placed over the glue, resulting in a clear optical interface. 

 

Figure 3.  Schematic of PoRTS window for imaging mo use cortex.  

Schematic showing the cross section of a PoRTS window.  A thin layer of glue was applied to the 
thinned skull and a cover glass was place above (73).  

 

Imaging Setup 
 

Imaging was performed using a custom Sutter two-photon microscopy 

setup powered by a tunable Coherent Ti-Sapphire laser.  The freeware package 

MPScope 2.0 was used to control the laser scanning system (74, 75).  Images 

and movies collected using this program were stored as .MPD files, a custom file 
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type, which allows for images across multiple channels to be packaged with co-

synchronous signals if desired. 

Mice were fixed into an imaging apparatus using the head mount flange 

and were additionally restrained with an adjustable cardboard tube.  As shown 

below in Figure 4 , an ADXL accelerometer was fixed to the cardboard tube to 

capture any strong incidences of movement, which may produce imaging 

artifacts during the study.  An air puffer, supplied by a custom air-puffing system, 

was place 2cm in front of the right vibrissa of the mice.  An additional air puffer 

was angled at the base of the tail of the animal as a control for general sensory 

arousal. 
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Figure 4.  Schematic of Imaging Setup.   

A tunable Ti-Sapphire laser provides excitation in the infrared range (800nm excitation was used 

for this study).  Excitation light, which passes through the long-pass (700 nm cut-off) dichroic 

mirror, is focused, through the objective, to a very fine point which is rastered by scanning 

mirrors.  Emission light passes back through the same objective, but is reflected by the dichroic 

mirror due to a higher wave frequency (shorter wavelength).  Data was collected from the PMTs 

by an imaging computer, which was also used to drive the air-puff system.  The imaging 

computer was linked to an auxiliary computer, which collected data from an ADXL accelerometer 

mounted on the restraint tube, for error correction, and physiological data from the pulse 

oximeter. 

 

 



19 

 

Imaging/Stimulation Procedure 
 

At each time frame, imaging was performed in imaging sessions that did 

not exceed 4 hours over the course of one or more days.  Prior to fixation in the 

imaging apparatus, mice were anesthetized in an enclosed container with 4% 

isoflurane until a deep plane of anesthesia was reached as determined by the toe 

pinch test.  Once anesthetized, 0.05mL of 5.0% 2MDa FITC-dextran in PBS was 

introduced using a retro-orbital injection.  If a noticeable deterioration in imaging 

quality attributable to declining dye concentrations was noticed during imaging 

sessions, the mouse was anesthetized with a nose-cone and re-injected with 

FITC. 

Imaging of arteriole dilations was performed with a 20x Olympus objective 

with 1.0x digital zoom, a 512x400 pixel (312 x 244µm) imaging field, and a frame 

acquisition rate of 4.34 fps.  For imaging with FITC-dextran, the excitation laser 

was tuned to 800nm and emissions were collected with a PMT with a filter 

passing green wavelengths. 

Air puffers were supplied with 35 P.S.I. air and programmed to provide an 

8 Hz duty cycle of 20ms open, 105ms closed, for 10 seconds.  Areas of interest 

were determined by locating branching arterioles that exhibited a noticeable 

dilatory response to vibrissa stimulation.  Four to six regions of interest were 

located per animal during pre-occlusion imaging. 
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To determine the dilatory properties of arterioles in each region of interest, 

a randomized stimulation paradigm consisting of 20 x 2-minute trials was 

performed.  As shown in Figure 5A , each individual trial consisted of an initial 

baseline period of 30 seconds followed by 10 seconds of stimulation.  After 

stimulation, a 50 second recovery period was included to allow arteriole 

conditions to recover to baseline. For each trial, the stimulation type was semi-

randomized between vibrissa and tail stimulation so that 10 trials of each type 

occurred.  Each individual trial was recorded as an individual .MPD file.  

Following photothrombotic occlusion, the stimulation paradigm was carried 

out again in regions that were still imageable in the acute, subacute, and chronic 

time frames. 
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Figure 5.  Stimulation Paradigm and Example of Dila tion.   

(A)  Stimulation trials consisted of a 30 second pre-stimulation period, a 10 second stimulation 

period, and an 80 second post-stimulation period.  20 randomized trials, consisting of 10 vibrissa 

stimulations and 10 tail stimulations, were carried out to assess each region of interest.  An 

additional 2 minute video was taken without stimulation to assess the quiescent behavior of the 

arterioles.  (B)  Example of arterioles dilating during vibrissa stimulation with traces showing 

arterioles and venules below. 
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Photothrombotic Stroke 
 

 Following the completion of pre-occlusion imaging, the mice were briefly 

anesthetized with 3% isoflurane in air supplied through a nosecone.  Once a 

deep plane of anesthesia was reached, 0.025mL of 1.25% rose Bengal dye in 

PBS was injected retro-orbitally.  Immediately after injection, isoflurane was 

discontinued.  To aid in localization of the stroke to the barrel cortex, a 

penetrating arteriole previously observed to have a dilatory response to vibrissa 

stimulation was selected for targeted occlusion.  After targeting the chosen 

arteriole with the two-photon system, a 530nm green laser was introduced along 

the microscope’s light path with a moveable mirror, and focused through the 

objective to a point, 20µm in diameter, at the imaging plane, shown in Figure 6 . 

The power of the green laser at its focus was 1 mW. The targeted penetrating 

arteriole was exposed to the laser for 30-45 seconds, during which the laser 

induced photolytic activation of circulating rose Bengal dye, creating free 

radicals, which in turn irritated the vascular wall initiating the clotting cascade.  

After laser exposure, the two-photon system was used to image the 

targeted arteriole again to determine if occlusion was successful.  If the arteriole 

failed to occlude, the vessel was targeted for green laser exposure again.  Rose 

Bengal dye, which has a very short half-life, was re-injected, under anesthesia, if 

occlusion could not be achieved within 15 minutes.  Mice were again briefly 

imaged at 30-minutes and 60-minutes to monitor for de-occlusion of the vessel. 
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Figure 6.  Schematic of Targeted Photothrombotic Oc clusion of an Arteriole.   

Intravenous Rose Bengal was activated with a green laser to produce ROS, causing vascular wall 
irritation and thrombosis. 

 

Data Processing 
 

Prior to analysis, output .MPD files were converted to a .tiff format for 

compatibility with matlab processing techniques.  A custom matlab program was 

designed to handle bulk analysis of dilation data.  As demonstrated in Figure 7 , 

diameters of arterioles were determined by measuring the full-width half-

maximum of the vessels.  That is, the distance, when moving across the width of 

the vessel, from the first pixel that exceeds 50% of the intensity of the brightest 

pixel in the same cross-section, to the last such pixel. 

Using a custom matlab program, the diameters of any number of arterioles 

within the imaging region could be measured by determining the average full-

width half-maximum value for vessels within user-selected ROIs.  As an output, 



24 

 

this analysis program gave a data structure containing individual diameter traces, 

such as those in Figure 8 , for each vessel analyzed in each video. 

 

Figure 7.  Example of Full-Width Half-Maximum Measu rements of Dilating Arterioles 

(A)  Two-photon image of the pial network of surface vasculature, indicating two regions of 
interest (ROIs) positioned over surface arterioles.  (B)  Shading vessels in the image, with 
arterioles in red and venules in blue.  (C)  Full-width half-maximum  (FWHM)measurements over 
before, during, and after vibrissa stimulation in the ROIs indicated in A.  (D)  Lumen diameter of 
the vessels within the ROIs over the course of a stimulation trial, as measured by FWHM. 

 

A second custom program was utilized to compile data from these 

structures into average diameter traces for each vessel.  After selecting a 

particular vessel from a region and a stimulus type (vibrissa or tail), the program 

incorporates Labchart output data from the ADXL accelerometer to screen out 
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data traces that contain movement artifacts which may cause aberrations.  An 

average trace was then compiled from valid trials for the selected vessel.   

Several parameters were calculated from these average diameter traces 

for analysis in this study.  First, the average baseline diameter was calculated by 

taking the average diameter of the arteriole over at least 10 seconds during 

which spontaneous dilation does not occur during the 30 seconds preceding 

stimulation.  The maximum dilation diameter and mean dilation diameter were 

taken as the maximum and mean diameter of the arteriole during the 10 seconds 

of stimulation.  The maximum dilation percentage and the mean dilation 

percentage were calculated as the percent increase over the previously 

calculated baseline average for the two values.    

To assess the temporal coupling of stimulus to response, the latency to 

dilation was calculated for each trace as the amount of time, in seconds, that 

elapses from the initiation of stimulation to the time point at which the arteriole 

diameter exceeds two standard deviations above the baseline average. 

Calculation of these parameters was automated and incorporated as a 

secondary function of the custom program. 
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Figure 8.  Vibrissa Stimulation Elicited Robust Dil ation in Arterioles within the Vibrissa 
Cortex. 

Dilatory traces from a single vibrissa stimulation trial in two arterioles.  Accelerometers affixed 

to the restraint tube indicate no significant movement.  Multiple trials are averaged using a 

custom program, and the latency to dilation, mean dilation, and max dilation are calculated 

from the average traces. 

 

 

 



27 

 

Immunohistochemistry 
 

Following the completion of the chronic imaging session, the mice were 

injected with 0.1 mL of Euthasol and then trans-cardially perfused with 60mL 

PBS followed by 10mL 4% paraformaldehyde in PBS.  The brain was then 

extracted and bisected into hemispheres.  The cerebellum and striatum were 

delicately removed using forceps, and the remaining cortical hemispheres were 

flattened between two microscope slides separated by 1/16” and anchored 

together with two pairs of magnets placed at both ends of the slides.  The 

microscope slide was then placed in a 60ml conical tube, submerging the brain 

tissue in 4% paraformaldehyde (15mL were added to each conical).  The conical 

was then stored overnight at 4oC.  After 24 hours, the 4% paraformaldehyde 

solution was replaced by PBS, and the conical tube was stored at 4oC until tissue 

was used for histology. 

Prior to immunohistochemistry, flattened cortices of both hemispheres 

were removed from the microscope slides and sliced into 50µm sections using a 

vibratome.   For primary antibody staining, tissue slices were placed in vials 

containing 2mL of antibody buffer (10 % (v/v) goat serum (Vector Labs), 2 % (v/v) 

Triton X-100, and 0.2 % (w/v) sodium azide) with 1:750 mouse anti-neun 

antibody (Millipore; MAB339), and 1:5,000 guinea pig anti-VGlut2 antibody (R&D 

Systems; AF1042) The tissue was incubated in the primary antibody solution for 

24 hours on a nutating mixer.  This was followed by a 30-minute wash in PBS.  

Next, the tissue was placed into a secondary solution consisting of antibody 
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buffer and 1:1,000 red anti-guineau pig (Invitrogen; A11076) and 1:1,000 blue 

anti-mouse (Invitrogen; A21049), and incubated for 2 hours.  Next, another 30-

minute wash in PBS preceded the placement of the tissue onto microscope 

slides which was then allowed to dry.  Once dry, a coverslip was fixed to the slide 

using Fluoromount-G. 

 

c-Fos Immunohistochemistry 
 

The proto-oncogene c-Fos, which is robustly expressed in neurons 

following the firing of action potentials, was used as a tool to understand the 

extent of neural activity following induction of CMI.  As it is upregulated from 60 

to 90 minutes following neuronal activity, immunolabeling of c-Fos could reveal 

which neurons are responding to the vibrissa stimulation paradigm. 

Immunohistochemistry was applied to label c-Fos in three mice for each 

time frame in this study.  All mice were implanted with chronic thin-skull windows 

and habituated to fixation in the imaging apparatus as described previously.  

Vibrissa stimulation was utilized to locate dilating arterioles in the barrel cortex to 

target for occlusion.  Three control mice were given sham occlusions, with focal 

green laser exposure but no Rose Bengal injection.  Photothrombotic occlusion 

was induced in nine mice, three for each post-CMI time period.  Prior to 

perfusion, mice were exposed to an 8hz train of 35 PSI air puffs to the 

contralateral vibrissa pad for 20 minutes.  Mice were sacrificed and perfused as 
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previously described 75 minutes after stimulation.  Mice with sham strokes were 

perfused on the day of the sham stroke, while the mice with CMIs were sacrificed 

at 48 hours (acute), 7 days (subacute), and 14 days (chronic).   

Following perfusion, the brains were extracted and cortices of both 

hemispheres were flattened between microscope slides and submerged in 4% 

paraformaldehyde as previously detailed.  For immunohistochemistry 

fluorescence labeling, tissue was first placed for 24 hours in a primary antibody 

labeling solution consisting of 1:500 rabbit anti-c-Fos (Santa Cruz Biotech; sc-

52), 1:750 mouse anti-neun antibody (Millipore; MAB339), and 1:5,000 guinea 

pig anti-VGlut2 antibody (R&D Systems; AF1042) in antibody buffer.  After a 30 

minute wash, tissue was added to the secondary antibody labeling solution which 

consisted of 1:1,000 red anti-rabbit (Invitrogen; A11076), 1:1,000 green anti-gp 

(Invitrogen; A31268), and 1:1,000 blue anti-mouse (Invitrogen; A21049).  For 

labeling c-Fos, the color red was selected over green due to the chance that 

residual FITC in the tissue could lead to inaccuracies when counting cells 

containing c-Fos.   

This tissue was then mounted on slides using Fluoromount-G, and images 

were taken at 4x and 10x using a Leica fluorescence microscope.  The locations 

of barrels within the barrel cortex were established using the VGlut2 staining and 

these parameters were taken into account when using a cell-counting macro in 

ImageJ, ITCN (Image-Based Tool for Counting Nuclei) to determine density of c-

Fos activation in each barrel. 
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Results 
 

Sensory-Evoked Arteriole Dilatory Response in Awake  Mice 
 

To assess the nature of evoked dilations in the healthy animal, data 

gathered during the pre-occlusion imaging phase was pooled together.  A plot of 

the average dilatory response of arterioles and venules to the three stimulation 

conditions is shown below, in Figure 9 .  These traces were generated by 

compiling the average responses from all vessels imaged during the pre-

occlusion period throughout the entire study.  Vibrissa stimulation elicited a 

robust dilatory response, which was followed by an extended, steady-state 

dilation after the cessation of stimulation.   

In contrast, tail stimulation as a control for general arousal resulted in brief 

arteriole dilation, which returned to baseline before the termination of stimulation.  

The specificity of vibrissa-evoked dilation suggested that arterioles sampled were 

within the barrel field of the primary sensory cortex.  Although previous research 

has indicated venules exhibit a “bagpipe” capacitive effect following prolonged 

vibrissa stimulation, we found no evidence of venular dilation in this study under 

any stimulation conditions.   
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Figure 9.  Average Responses of Arterioles and Venu les to Stimulation under Basal 
Conditions.  

Average diameter traces were calculated by averaging the traces for vibrissa stimulation, tail 
stimulation, and no stimulation from all arterioles and venules in pre-stroke conditions.  Shading 
around the trace indicates standard error of the mean. 

 

 The average maximum dilatory response to vibrissa stimulation in 

arterioles resulted in a 23.6 ± 5.9% increase in diameter, while the average 

diameter during the course of stimulation was dilated 9.7 ± 3.4% over baseline 

values.  In contrast, tail stimulation yielded an average maximum dilatory 

response of 4.1 ± 1.3µm and an average mean dilation of 1.5 ± 0.6µm.  As has 

been found in previous studies(76), there was a negative correlation (r = -0.39, p 

< 0.01)  between baseline arteriole diameter and the degree to which arterioles 

dilate maximally. 
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Figure 10.  Maximum Dilatory Responses of Individua l Arterioles to Stimulation under 
Basal Conditions.   

There was no significant correlation between tail stimulation or no stimulation dilations and the 
baseline diameter.  There was a significant negative correlation between the baseline diameter 
and the maximum dilation over baseline (r = -0.4422, p = 0.01) 

 

 

Cerebral Microinfarcts were targeted to the Periphe ry of the Barrel 
Cortex 
 

Following chronic imaging, mice were perfused and the brain tissue was 

labeled with IHC to determine the nature and location of CMIs generated by the 

photothrombosis in this study, as shown in Figure 11D .  The average radius of 

the generated strokes was 192 ± 57.6 µm.  As indicated in Figure 11E , VGLUT2 

labeling of the barrel cortex revealed that strokes were concentrated around the 

peripheral barrel cortex.  The microinfarcts were strategically placed surrounding 
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the core barrels of the vibrissa field such that the gradient of their effect could be 

visualized over the imaging field. 

 

Figure 11.  Locations of Imaging Regions and Cerebr al Microinfarcts Within the Barrel 
Cortex 

(A)  The imaging window was situated over the left hemisphere vibrissa cortex, contralateral to 
stimulation.  (B)  4x 2-Photon vasculature map showing the site of occlusion and three regions of 
interest.  (C)  20x 2-Photon images of the regions of interest with yellow boxes indicating ROIs 
used for calculating vessel diameters.  (D)  VGLUT2 staining of the barrel cortex showing the 
location of a CMI.  The location of the ROIs was transposed to this image using fiducials in the 
histology.  (E)  Location of CMIs within the barrel cortex, with the general imaging region 
indicated in blue.  The CMI from D is indicated in orange. 
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Changes in Dilatory Response Following Cerebral Mic roinfarct 
 

To assess changes in dilatory response following CMI, the stimulus 

responses from all viable vessels (those that could be located and identified in all 

time periods following occlusion) were averaged to provide a mean trace for the 

characteristic dilatory responses exhibited by arterioles over time.   

 

Figure 12.   Average Dilatory Response of Arterioles Before and Following Occlusion.  

(A)  Average dilatory response of arterioles to the three stimulus condition presented.  (B)  Mean 
dilation over baseline was significantly attenuated in the acute phase, followed by significant 
recovery in the subacute and chronic phases.  (C)  Zoom-in of the first few seconds of stimulation 
reveals an increased latency to dilation in vessels during the acute and subacute time periods. 

 

Following CMI, in the acute time phase there were obvious changes in the 

dilatory response to all forms of stimulation.  Although there was still a small 

average dilatory response to vibrissa stimulation, the response is very brief and 
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greatly attenuated.  Also, there is no evidence of a steady state response in the 

acute time phase. Further, tail stimulation produced no noticeable dilation.   

When the same vessels were imaged again in the subacute time phase, a 

robust average dilation was restored in the vessels with a small steady-state 

response, albeit attenuated in magnitude compared to baseline.  This was also 

evident in the chronic time-phase, when a small response to tail stimulation also 

returned.  Taken together, this data suggests that there is a near-complete loss 

of dilatory response in the acute time phase, which partially recovers in the 

subacute time phase. 

To give statistical power to the observations made concerning the average 

dilatory traces, the data from this study was compiled using a second method.  

The average trace across all viable trials for each vessel in each time frame was 

generated using the custom program.  Baseline diameter, average dilation over 

baseline, maximum dilation over baseline, and latency to dilation were 

determined for each trace, and this data was compiled for each time frame for 

vessels from the same population of arterioles which could be visualized through 

all time frames.  Shown in Figure 13 , mean dilation over baseline during pre-

stroke imaging was 9.8%, which significantly dropped to 1.8% in the acute time 

phase, followed by a recovery in the subacute and chronic phases during which 

the mean dilation was 7.6% and 7.1% respectively.  Similarly, a significant loss of 

maximum dilatory capacity was also observed in the acute time phase, followed 

by significant recovery in the subacute and chronic time phases, as shown in 
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Figure 10 .   Additionally, there was a significant increase from pre-occlusion 

values in latency to dilation during the acute and subacute time periods.  This 

was followed by a significant recovery of latency to dilation during the chronic 

time period. 

 

Figure 13.  Mean Latency of Dilation is Augmented i n the Acute and Subacute Time 
Periods.   

Using a two-tailed t-test, the latency to dilation was compared between time periods.  As 
indicated in the graph, pre-occlusion values were significantly lower (p < 0.01) than those in the 
acute and subacute time periods.  Likewise, the mean latency in the chronic time period was 
significantly lower (p < 0.01) than in the acute and subacute time periods. 

 

In previous studies, an inverse correlation has been noted between 

maximum dilation over baseline and the baseline diameter of an arteriole (76)  

When maximum dilation over baseline was plotted against the baseline diameter, 

the same correlation was found in the pre-CMI time period of this study; however 

the correlation is completely abolished in acute time phase.  There is partial 
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recovery of this trend later in the study, as the correlation re-emerged in the 

subacute and chronic time phases, albeit with a wider spread of responses. 

 

 

Figure 14.  Loss of Dilatory Response in the Acute Time Phase effects both Small and 
Large Vessels. 

(A)  In the acute time phase, there was a positive correlation between baseline vessel diameter 
and the preserved dilatory response, however, the dilatory function of both small and large 
vessels was significantly attenuated in the acute time phase (B). 

To determine whether the magnitude of the mean dilatory response might 

exhibit the same negative correlation to baseline diameter, the mean change in 

dilation from baseline was plotted against the baseline lumen diameter.  In the 

pre-occlusion phase, there was a negative trend, but no significant correlation in 

contrast to what was observed with maximum dilation diameters, as shown in 

Figure 14A .   Interestingly, a strong, positive correlation emerged in the acute 

phase, indicating that larger vessels may be capable of preserving greater 
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dilatory capacity.  Although this trend was not preserved in the subacute and 

chronic phases, it points to the interesting conclusion that the effects of CMI may 

be more deleterious for neurovascular coupling in smaller vessels.  In the acute 

phase there were a number of vessels that responded to vibrissa stimulation with 

a net negative dilation, potentially due to vascular steal. 

To probe whether small vessels may have a different outcome than large 

vessels following CMI, the vessels were separated into two sub-populations, 

those less than and those greater than 25µm in baseline diameter.  Indicated in 

Figure 14B , there was a significant loss in mean dilatory response in both sets of 

vessels during the acute time-phase followed by significant recovery in the 

subacute and chronic phases, indicating that the dilatory response for both sets 

of arterioles was similarly impacted following CMI. 

 

Correlations between Changes in Dilatory Response a nd Position 
Relative to CMI 
 

Dilatory responses were measured in vessels that covered a wide range 

of distances from the sites of targeted photothrombotic occlusions.  As a strong 

loss of dilatory response was observed in the composite data from all vessels, 

varied locations of sampled vessels could elucidate whether this loss of dilatory 

response was a broad effect, or whether the bulk of changes in dilatory capacity 

took place in the immediate vicinity of the CMI.  Shown in Figure 15A , the 
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dilatory responses for vessels, normalized to the pre-occlusion responses from 

the same vessels, were plotted against the distance from the putative stroke 

border as determined by 4x two-photon maps and VGlut2 IHC.   

 

Figure 15.  Loss of dilatory response extended far beyond the CMI border during the acute 
time phase. 

(A)  While vessels far outside of the CMI border were impacted in the acute time phase, there 
was a correlation between distance from the border and retained dilatory capacity.  This trend 
was preserved through the subacute phase, indicating that distal vessels were impacted to a 
lesser extent and recovered quicker.  (B)  While both proximal and distal vessels saw significant 
decreases in dilatory capacity, there was significant recovery in distal vessels during the acute 
phase, while proximal vessels did not significantly recover until the chronic phase.  (C)  The 
region of deficit extended far beyond the stroke border in the acute time phase. 
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There was a significant positive correlation between the distance from the 

CMI border and the preserved dilatory capacity of arterioles during the acute and 

subacute time periods, indicating that vessels further from the border were more 

likely to preserve dilatory responses in those particular time frames.   

To analyze whether distal and proximal vessels were differentially affected 

by CMI, the vessels analyzed in this study were broken into two groups, 

proximal, which were vessels within 100µm of the CMI border, and distal 

arterioles, located greater than 100µm away.  The cut-off distance for this 

analysis was situated just outside of the overt CMI border, to account for a 

narrow ring of gliotic, non-normal tissue surrounding the CMI core.  Arterioles 

within this cut-off included those in the immediate peri-infarct as well as the few 

viable arterioles within the CMI core.  Both data sets saw a significant decrease 

in dilatory response; however, while distal arterioles exhibited a significant 

recovery beginning in the subacute time phase, proximal arterioles did not show 

significant recovery from acute dilatory responses until the chronic time phase.  

This indicates that both proximal and distal arterioles are similarly impacted by 

CMI in the acute time phase, but distal arterioles exhibit a quicker, more robust 

recovery in the subacute and chronic time phases.  Nonetheless, this indicates 

that the loss of dilatory response extends far beyond the borders of the CMI 

during the early days following occlusion. 

Change in latency, which was calculated as the change in time, in 

seconds, from latency to dilation for a given vessel during pre-occlusion imaging, 
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was also plotted against distance from the CMI border for all three post-stroke 

time phases in Figure 16A .   

 

 

Figure 16.  Both proximal and distal vessels experi enced increase in latency to dilation 
following stroke.  

(A)  There was a negative correlation between distance from CMI border and increase in latency 
to dilation during the acute and subacute time periods, indicating that vessels proximal to the 
stroke were slower to dilate.  (B)  Both proximal and distal vessels exhibited increased latency to 
dilation in the acute and subacute time periods. 
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With this data, a strong negative correlation between distance from stroke 

border and change in latency was found in the acute and subacute time phases, 

indicating that vessels closer to the core of the CMI exhibited a greater latency to 

dilation.  However, when latency data was broken into proximal and distal 

groups, both sets of data exhibited significant augmentation in latency to dilation 

in the acute and subacute time periods, followed by significant recovery in the 

chronic time period, indicating that CMIs are capable of broadly disrupting 

temporal neurovascular coupling. 

 

Genesis of a Deficit – Neurovascular Coupling in Hy per-Acute Stage 
of Cerebral Microinfarction 
 

To gain a better understanding of the means by which neurovascular 

deficits evolve from the initial occlusion to the broad effects measured at the 

acute phase, a separate, small cohort of mice were utilized to model the 

neurovascular hyper-acute (20 min. to 3 hrs. post-occlusion) time period 

following targeted photothrombotic occlusion of penetrating arterioles.  
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Figure 17:  Neurovascular Coupling is Disrupted Pro ximal to Stroke in the Hyperacute 
phase. 

A.  Mean dilation over baseline rapidly diminished in repeatedly measured arterioles in the first 
three hours following microvascular occlusion.  B.  This loss of dilatory capacity is reflected in the 
average traces for arteriole dilation.  C.  Following targeted occlusion, there was a significant 
correlation between proximity to the occluded vessel and loss of dilatory function.  This 
correlation became more pronounced over the course of hyperacute imaging. 

 

  As early as 20 minutes following the occlusion, dilatory deficits were found 

in many arterioles within 150µm of the occluded vessel.  One hour following 



44 

 

occlusion, the dilatory deficit extends to 300µm from the occluded penetrating 

arteriole. 

 

Isoflurane and c-Fos – Tools to Probe the Mechanism s of the Loss of 
Dilatory Response 
 

The widespread loss of dilatory response found in the acute time phase 

indicates that there is at least a temporary breakdown of neurovascular coupling.  

This could be attributable to a number of factors, as there are a number of 

components that drive neurovascular coupling in the neurovascular unit.  In this 

study, we chose to investigate the two candidates that are seemingly the most 

likely to be the source of this deficiency and the two principal components of the 

neurovascular unit, the sensory neurons which respond to stimuli, eventually 

driving vascular activity, and the vascular wall itself.  To probe for deficits in 

neuronal activity, c-Fos, a proto-oncogene upregulated following extensive 

neuronal activity, was utilized to quantify neurons responding to the stimulus 

paradigm used in this study (77).  Changes in vascular wall compliance were 

investigated using Isoflurane, a volatile anesthetic common in veterinary 

medicine, which is also a potent vasodilator (78).  
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Figure 18.  Isoflurane is capable of inducing far l arger dilations than vibrissa stimulation. 

Full-Width Half-Maximum measurements across the same arteriole reveal that isoflurane 
exposure induces dilations that exceed the dilatory response seen during vibrissa stimulation. 

Isoflurane was administered to mice following imaging sessions at a 

concentration of 3.0% in air for 3 minutes.  During this brief period of exposure, a 

movie was collected across all imaging regions to capture the extent of dilation 

during isoflurane exposure.  The average dilation over baseline during isoflurane 

exposure was much greater than the maximum dilations achievable with the 

vibrissa stimulation paradigm during all time periods, indicating the vascular wall 

was capable of dilating well beyond the attenuated dilations seen following CMI.   
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Although this indicates that vascular wall stiffening cannot be the sole source of 

the loss of dilatory response, a significant decrease in isoflurane-induced 

dilations over baseline was evident in the acute phase, pointing toward vascular 

wall compliance issues as a potential contributing factor.  

 

Figure 19.  Dilations induced by isoflurane exposur e were significantly attenuated in the 
acute phase, but still greatly exceeded the dilator y response to vibrissa stimulation. 

Isoflurane was capable of dilating arterioles well beyond the maximum dilatory responses to 
stimulation during all time periods in this study.  While there is a significant decrease in isoflurane 
induced dilation diameters in the acute time phase, these results indicate that it is unlikely that 
changes in vascular wall compliance are the only contributing factor to the loss of sensory-
induced dilatory response seen in the acute phase. 
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Figure 20.  Immunofluorescence staining of c-Fos re veals robust neuronal activation in the 
barrel cortex contralateral to vibrissa stimulation  in a sham animal. 

 In sham CMI animals, c-Fos was homogenously expressed at low levels 

throughout cortex ipsilateral to vibrissa stimulation, with a slight elevation in the 

primary vibrissa cortex.  In the contralateral cortex, however, c-Fos was robustly 

expressed in the barrel cortex. 

When mice were perfused during the acute time period following 

occlusion, the expression of c-Fos was reduced in a broad region of cortex 

extending up to 1mm outside of the stroke core, as shown in Figures 21 & 22 .   
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Figure 21.   c-Fos activation in the barrel cortex contralateral to vibrissa stimulation is 
diminished in the acute phase following CMI. 

Following CMI, the number of c-Fos+ cells in the barrel cortex is greatly reduced in the acute 
phase.  As the CMI progresses into the subacute and chronic time periods, more cells were c-
Fos+ in the peri-infarct cortex following prolonged vibrissa stimulation. 

In mice that were sacrificed during the subacute time period, c-Fos levels 

began to recover from the acute deficit, with the region of inactive neurons 

extending only 200-400µm outside of the putative stroke border, shown in Figure 

22.  By the chronic time period, the expression of c-Fos had recovered even 

further, as many neurons within the peri-infarct strongly expressing the proto-

oncogene following prolonged sensory stimulation.  This data points toward a 

chronic, robust recovery of neurovascular coupling in the peri-infarct cortex. 
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Figure 22.  Expression of c-Fos is attenuated proxi mal to the CMI in the acute and 
subacute phases. 

(A&B)  A 100µm x 500µm ROI was placed to sample cfos activity as a function of 
distance from CMI.   Another ROI was placed across the barrel cortex of a sham animal, 
covering the same barrels, to provide a control for basal stimulation expression.  (C) c-
Fos expression was reduced proximal to the CMI when compared to the control across 
the same barrel regions. 
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Discussion 
 

The impact of microvascular lesions, as often observed in the aging 

human brain, on neurovascular coupling is currently not well understood.  To 

probe this issue, we have utilized a mouse model of microinfarct pathology based 

on selective occlusion of individual penetrating arterioles and venules in the 

mouse barrel cortex.  Neurovascular coupling was first assessed longitudinally by 

two-photon imaging of arterioles during vibrissa stimulation using air puffs during 

four time-periods: pre-occlusion, acute (2-3 days post occlusion), subacute (7-9 

days post occlusion), and chronic (14-21 days post occlusion).  The mean 

dilation from baseline diameter was significantly attenuated during the initial 

acute imaging period.  Despite being relatively small in size (≈400µm in 

diameter), CMIs generated in this experiment were capable of eliciting a 

widespread and persistent dilatory deficit in the surrounding cortex, with deficits 

occurring in arterioles up to 1mm outside of the putative stroke boundary.     

The widespread impact of these targeted microvessel occlusions is likely 

attributable to the process of diaschisis, a term coined by van Monakow in 1914 

to describe neurophysiological changes that occur distant to a focal brain 

lesion(79).   These neurophysiological phenomena can be classified into two 

categories:  Focal diaschisis, and connectional diaschisis.  Focal diaschisis might 

occur during cortical strokes as the result of white matter tract degeneration in 

underlying subcortical tissue.  While the microinfarcts induced in this study are 

unlikely to cause any form of extensive subcortical damage, it should be noted 
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that diffusion MRI studies in clinical stroke patients revealed that subcortical 

disconnection extends well beyond the locus of tissue necrosis, affecting major 

white matter pathways (80).   

In the case of the targeted photothrombotic occlusions generated in this 

stroke model, it is more likely that expansive dilatory deficit is an example of 

connectional diaschisis, which encompasses changes in structural and functional 

connectivity between the lesion area and distal brain regions.  While the barrel 

cortex is functionally segregated into barrels directly associated with individual 

vibrissa, there is still a high level of interconnectivity between barrels.  Regular 

spiking pyramidal cells in layer 5 are tuned to respond to activity in surrounding 

barrels(81), while neurons in layer 2/3 also exhibit a high level of connectivity to 

surround barrels (82).  Disruption of this inter-barrel connectivity could 

conceivably be contributing to the loss of neurovascular coupling in the days 

following CMI.  A possible mechanism of this alteration in barrel-to-barrel 

connectivity may be remodeling the axon initial segment (AIS).  AIS length is 

acutely decreased in the peri-infarct cortex, particularly affecting neurons with 

distal axons projecting in the infarcted area(42).  The decrease in length occurs 

at the distal AIS, as axons essentially retract from the infarcted tissue, likely 

driving cortical reorganization.  One limitation of the photothrombotic stroke 

model utilized is the potential for non-focal activation of intravenous rose-Bengal 

dye during targeted green laser illumination.  Diffuse light below and adjacent to 

the site of occlusion could be causing low-level activation of rose Bengal dye, 
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generating free-radicals which could contribute to the ischemic damage observed 

well outside the infarcted tissue both in this study and in other studies utilizing 

photothrombotic stroke models.  In addition to connectional diaschisis, 

widespread BBB breakdown observed in cortex during the subacute and chronic 

time periods both contralateral and ipsilateral to focal stroke may contribute to 

the broad effects of diaschisis(83, 84).  

At the subacute imaging time frame, vessels exhibited significant, albeit 

incomplete, recovery from the dilatory deficit of the acute phase.  Proximal 

vessels (those within 100µm of the putative stroke border) did not exhibit 

significant recovery of dilatory capacity during this time frame, indicating that 

deficit is likely prolonged in arterioles closer to the site of infarction, which is also 

suggested by a strong positive correlation between the distance from the stroke 

and the relative level of preserved dilatory capacity in the subacute phase.  

Previous research has provided evidence of broad hyperexcitability during the 

subacute phase in brain regions both ipsilateral and contralateral to ischemic 

stroke(85), which may drive the functional recovery of mean dilatory capacity in 

arterioles distal to the microinfarct.  Electrophysiological paired-pulse studies in 

rat brain slices have shown extensive hyperexcitability in the contralateral 

hemisphere, as well as ipsilaterally as close as 1mm away from infarcted tissue.      

Hyperexcitability has also been found seven days post occlusion with 

optogenetic mapping utilizing ChR2-evoked voltage sensitive dye responses(86).  

It should also be noted that, in the same study, regions distal to the infarct 
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exhibited upscaling of the evoked response, while connectomics analysis 

indicated that neurons closely connected to the peri-infarct were damaged 

whereas areas with little peri-infarct connection escaped damage, provide 

rationale to the often heterogeneous recovery observed in the tissue surrounding 

a stroke.  While overt hyperexcitability was not detected in the form of an 

enhanced dilatory response, distal arterioles were more likely to preserve dilatory 

function in the acute phase, and exhibited significantly greater recovery in the 

subacute phase when compared to proximal arterioles.  At the chronic time 

period, arterioles proximal to the CMI exhibited significant, yet incomplete, 

recovery of dilatory capacity from the acute deficit, which in effect abolished the 

correlation between dilatory function and proximity of arterioles to the infarct.  

This may indicate the recovery of neurovascular coupling in the spared cortex by 

way of functional reorganization and synaptogenesis. 

The rapid, local deficit observed in the hyperacute experiment could be 

attributed to a number of mechanisms initiating in the early onset of stroke.  In a 

model of focal ischemia, brain regions that exhibited severe ischemia (<10% of 

original CBF maintained) underwent rapid loss of spine and dendritic structure in 

as little as 10 minutes(87).  The ensuing rapid spread of neurovascular 

decoupling is likely driven by secondary damage and proliferation of the stroke, 

initiated with the rapid release of ROS and pro-inflammatory mediators from 

apoptotic cells in the ischemic tissue(88).  These mediators activate microglia, 

which are endogenously held in check by tonic inhibitory signaling, 
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morphologically altering the cells from a ramified to an amoeboid morphology 

and releasing inflammatory cytokines and chemokines which can exacerbate or 

conversely help repair ischemic injury(62).  Specifically, the increased levels of 

cytokines and chemokines facilitate adhesion and trans-endothelial migration of 

circulation leukocytes(89).  These infiltrating leukocytes may release pro-

inflammatory mediators, including cytokines, chemokines, and ROS which 

contribute to the evolution of tissue damage(90) and drive the infiltration of 

various inflammatory cells, including neutrophils, t-cell subtypes, and additional 

monocytes and macrophages(91).  In addition to the biochemical impact of rolling 

leukocytes within the microvasculature, leukocyte adhesion might mechanically 

limit vascular perfusion of the infarcted tissue, as frequent flow stagnation of 

deep cortical capillaries has been observed due to leukocyte plugging in a mouse 

model of hypoperfusion(92). 

In addition to the deficits seen in dilatory capacity, targeted CMIs also 

appeared to impact neurovascular coupling by significantly prolonging the latency 

to dilation during vibrissa stimulation in both the acute and subacute time 

periods.  There was also a significant correlation between the proximity of 

arterioles to the CMI and the increase in latency to dilation, indicating that, in 

addition to causing broad dilatory deficits, CMIs have a stronger deleterious 

effect on temporal neurovascular coupling in arterioles proximal to the infarct.  

This adjustment in temporal neurovascular coupling may reflect the ongoing 

process of axonal rewiring during recovery from ischemic stroke, which is 



55 

 

facilitated by inhibition of growth inhibitory molecules in the peri-infarct for up to 1 

month following injury.  Axonal rewiring occurs in three phases following 

stroke(93).  In the early phase, from days 1 to 3, rhythmic and synchronized 

neuronal discharges, similar to those in the developing brain, induce axonal 

sprouting.  Starting at day 3, genes for growth cone lipid raft proteins GAP43, 

Cap23, and MARCKS as well as the transcription factor c-Jun are induced and 

persist through the duration of the sprouting process(94).  The increased latency 

to sensory induced dilation present in the acute phase, and persisting to the 

subacute phase, could be attributed to shifting functional connectivity.  Axons 

projecting into the region of infarction are pruned, while immature spines forming 

on surviving neurons in the peri-infarct have yet to establish strong functional 

connections, leaving a relatively disjointed system that is slow to respond to 

stimulus.  In the middle phase of the sprouting response, cell adhesion molecules 

help guide the sprouting response and form new connections.  The final stage of 

the sprouting process involves cytoskeletal reorganization genes SCG10 and 

SCLIP, which aide in the maturation of the sprouting process.  This final 

maintenance phase initiates 7-14 days post ischemia, and results in the 

formation of an anatomically distinct pattern of connections(93). 

To further investigate our findings, we utilized two assessments to 

ascertain whether the source of the deficits might be attributable to alteration in 

vascular mechanics, or in neuronal signaling.  Vascular alterations occurring in 

the early stages following stroke include the adoption of tortuous morphologies in 
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penetrating vessels(95), leukocyte rolling and adhesion(92), and swollen and 

vacuolated endothelial cells(83), all of which can impact CBF.  Acute isoflurane 

administration was performed before occlusion, and in the acute, subacute, and 

chronic phase to investigate whether endothelial cell alterations might 

mechanically inhibit vascular dilation.  Isoflurane induced dilations were 

significantly attenuated in the acute time phase, coinciding with the most 

significant dilatory deficits, however, there was recovery to baseline in the 

subacute and chronic phases.  Isoflurane induces vasodilation of cerebral 

vessels at least partially through the activation of ATP-sensitive K+ channels on 

the endothelial cells(78), a pathway also present in the neurovascular signaling 

unit(15).  A reduction of these receptors, or a deficit in endothelial cell reactivity 

to them, may contribute to the dilatory deficit observed in the peri-infarct following 

cerebral microinfarction.  In addition, it has been found that vascular smooth 

muscle F-actin is reduced following 1 hour of middle cerebral artery occlusion, 

which could be promoting vascular damage and limiting vascular wall 

compliance(96). 

Due to the complexity of neurovascular coupling, we used the proto-

oncogene c-Fos, which is upregulated following strong neuronal activation, as a 

simple probe to determine whether viable neurons in the peri-infarct were 

capable of responding to sensory stimuli.  c-Fos expression was greatly reduced 

in the acute mouse, with severe deficits extending up to 1mm from the ischemic 

stroke core.    While previous studies have indicated that endogenous c-Fos is 
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briefly upregulated following focal ischemia(97, 98), with peak values occurring at 

60 minutes post occlusion, the time point used for this study does not coincide 

with these findings, and no upregulation of c-Fos activity is indicated in our 

results.  Instead, widespread deficits that present acutely persist into the 

subacute time phase, indicating poor neuronal connectivity during a period of 

synaptogenesis and neuronal rewiring. 

The results of this study help to shed light on the microvascular 

environment and on alterations in neurovascular coupling at the level of 

individual vessels, and provide a microvascular correlate to previous BOLD fMRI 

findings.  The data in this study reveals that CMIs, though small in size, can 

impact neurovascular coupling in a broad region of cortex, elucidating a 

mechanism by which microinfarcts may cause cognitive impairment.  As CMIs 

have previously been associated with dementia in the elderly, these findings 

indicate that the neurovascular unit, in addition to being a crucial component in 

stroke therapy, may be a crucial target for therapeutic approaches to dementia in 

the future. 
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