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ALEXANDER CAMERON WANLESS SMITH. Signals from the 4th dimension:  
Role of extracellular matrix signaling in synaptic plasticity mediating addiction. 
(Under the direction of PETER W. KALIVAS). 
 
Chronic cocaine abuse causes maladaptive neuroadaptations that underlie 

vulnerability to relapse, even after protracted abstinence. A great deal of work 

has examined mechanisms of neuroplasticity by which these occur. However, the 

majority of experimentation has focused on intracellular signaling cascades, 

while the extracellular compartment has been largely ignored. In the past 

decade, work has emerged in the learning and memory literature that indicates 

that extracellular matrix remodeling and signaling is required for adaptive forms 

of neuroplasticity (e.g. learning and memory), although it has not been thoroughly 

examined in models of maladaptive neuroplasticity. Throughout this dissertation 

a drug self-administration, extinction and reinstatement paradigm is used. I first 

examine the role of the matrix metalloproteinases (MMPs) in the nucleus 

accumbens core (NAcore) in both the persistent synaptic potentiation that occurs 

following extinction of cocaine self-administration, and in the rapid, transient 

potentiation that is required for cue-induced reinstatement. By measuring both 

the expression and activity of MMPs, this work shows that relapse to multiple 

classes of drugs of abuse (cocaine, nicotine, and heroin) each are accompanied 

by an induction of MMP activity. Furthermore, this work goes on to show that 

inhibiting MMP activity also reverses or blocks synaptic potentiation. A second 

set of experiments examines nitric oxide (NO) signaling as a mechanism of MMP 

activation. These experiments used biochemical examination of neuronal nitric 

oxide synthase (nNOS) activity following extinction and reinstatement of cocaine 

seeking, and a small molecule inhibitor of nNOS to determine the effects of 
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nNOS activity on MMP activity and relapse behavior. Finally, by using NOS1-Cre 

transgenic mice this work shows that selectively chemogenetically stimulating a 

small population of interneurons that express nNOS drives reinstatement of drug 

seeking. This dissertation concludes that nNOS-expressing interneurons may 

comprise a ‘master-switch’ by MMPs are activated, synapses are potentiated, 

and strongly motivated behaviors are initiated. 
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CHAPTER 1: INTRODUCTION 
 

1.1 Brief Review of Glutamatergic Plasticity in Drug Addiction 

Drug abuse and addiction are ancient problems, with the earliest evidence 

dating back to a 5000 BC Sumerian civilization that used a symbol translated as 

“joy” for the poppy plant which opium is derived from (Alfred R. Lindesmith, 

*Addiction and Opiates.* p. 207).  By 2000 BC, alcohol use was widespread 

enough for an Egyptian priest to record the first teachings of prohibition (W.F. 

Crafts *et al*., *Intoxicating Drinks and Drugs*, p. 5). Now, 7000 years later, drug 

abuse and addiction still have large negative consequences for individuals, 

families, and society at large. Currently, over 22 million Americans over the age 

of 12 (8.5%) meet criteria for substance dependence based on the Diagnostic 

and Statistical Manual of Mental Disorders, 4th edition (DSM-IV) (1BB). 

Significant effort has gone towards determining the mechanisms of 

synaptic plasticity that underlie the transition from recreational drug use to 

dependence/addiction, including substantial research on drug-induced 

neuroadaptations in glutamatergic inputs to the nucleus accumbens (NAc) and 

the dysregulation of glutamate homeostasis (Kalivas, 2009; Russo et al., 2010a; 

Gipson et al., 2014). Glutamatergic projections from the prefrontal cortex (PFC) 

to NAc are involved in determining the extent to which a behavior will be 

promoted or inhibited. PFC to NAc circuitry is the primary contributor to long term 

compulsive cocaine seeking, while the PFC to VTA projection is required for the 

acute reinforcing effects of cocaine (Koob and Volkow, 2010). Cocaine addiction 

has been described as a pathology of reward-related memory in which memories 
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associated with drug use promote future drug 

seeking (Hyman et al., 2006). Following 

chronic cocaine self-administration and 

extinction, the balance between extrasynaptic 

and synaptic glutamate (glutamate 

homeostasis) is dysregulated in the NAc, and 

downregulation of extrasynaptic mGluR2/3 

stimulation increases glutamate release from 

PFC terminals in response to action potentials (Kalivas 2009). This 

downregulation of mGluR2/3, in combination with downregulation of glutamate 

transporter 1 (GLT-1) and impaired synaptic glutamate reuptake by astrocytes, 

leads to hyperactivation of corticostriatal circuitry in response to cocaine-

conditioned stimuli, and to glutamate overflow outside of the synaptic cleft 

(Kalivas, 2009). A key extrasynaptic receptor is mGluR5, which is a Gq-coupled 

receptor that increases intracellular free Ca2+ via the IP3 receptor, and activation 

of this receptor potentiates cue-induced reinstatement (Bespalov et al., 2005; 

Mitrano et al., 2008; Wang et al., 2013). Silencing the PFC via a combined 

infusion of the GABAb agonist baclofen and a GABAa agonist muscimol blocks 

cocaine-induced reinstatement and associated changes in extracellular 

glutamate (McFarland, 2003).  

While enduring, constitutive imbalances in glutamate homeostasis are 

induced by all addictive drugs (Kalivas, 2009), this dysregulation is manifested in 

different ways following chronic exposure to different drugs. For example, in the 

case of cocaine and nicotine, there is prolonged potentiation of glutamatergic 

Figure 1-1. Anatomy of 
corticostriatal projection. 
Adapted from McGill university. 
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synapses in the nucleus accumbens core (NAcore)(Kourrich et al., 2007; 

Moussawi, 2011; Gipson et al., 2013c), whereas these synapses are 

depotentiated following withdrawal from chronic heroin exposure (Shen et al., 

2011). A major glutamatergic afferent into the accumbens arises from the medial 

PFC. This projection can be partially parsed into two pathways, one from the 

prelimbic cortex (PL) terminating in the NAcore that promotes the initiation of 

drug seeking for all drugs tested (McLaughlin and See, 2003; LaLumiere and 

Kalivas, 2008; Rocha and Kalivas, 2010; Stefanik et al., 2013a; Willcocks and 

McNally, 2013), and a second from the infralimbic cortex (IL) with terminals in the 

nucleus accumbens shell (NAshell) that promotes extinction of drug seeking for 

cocaine or alcohol (Peters et al., 2008; Stefanik et al., 2013b; Gass et al., 2014), 

but not heroin (Millan et al., 2011; Peters et al., 2013; Willcocks and McNally, 

2013). 

Data have recently emerged indicating that reinstatement induced by 

drug-associated cues to all tested classes of addictive drug, including cocaine, 

heroin and nicotine, is accompanied by a rapid, transient synaptic potentiation (t-

SP) of glutamatergic synapses in the NAcore, characterized by enlargement of 

dendritic spine head diameter (dh) and increase in the AMPA:NMDA ratio (A:N; 

measure of changing AMPA receptor function) (Gipson et al., 2013a; Gipson et 

al., 2013c; Shen et al., 2014b). Because this is a shared component of 

reinstatement to multiple drugs, it is viewed as a particularly promising point of 

pharmacotherapeutic intervention for the prevention of relapse. 
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1.2. The tetrapartite synapse: extracellular matrix remodeling contributes to 

corticoaccumbens plasticity in drug addiction 

In the past decade it has been made clear that the matrix metalloproteinases 

(MMPs) are a family of extracellular proteases that strongly modulate synaptic 

plasticity (Ethell and Ethell, 2007). Hippocampal long-term potentiation is 

dependent on MMP activity and their cleavage of molecules that signal through 

integrin cell adhesion receptors (Huntley, 2012b). Physiologically, MMPs are 

required for a number of tasks that depend on synaptic plasticity, such as fear 

conditioning and spatial learning (Meighan et al., 2006; Nagy et al., 2007). 

Cocaine, nicotine, and heroin reinstatement are each characterized by the rapid 

induction of extracellular matrix-remodeling matrix-metalloproteinase (MMP) 

activity in the NAcore, and inhibiting MMP activity prevents reinstatement and the 

associated synaptic plasticity (Smith et al., 2014a). The emergence of data 

implicating extracellular matrix proteolysis in synaptic plasticity mediating 

addiction constitutes a paradigm shift away from the tripartite synapse, and 

towards a tetrapartite synapse, in which all four elements of synaptic architecture 

are considered in modeling the addicted synapse, including the presynaptic, 

postsynaptic, glial, and extracellular compartments (Figure 1). 

1.2.1 MMP Structure and Function 

MMPs are Zn2+-dependent endopeptidases that degrade extracellular 

matrix (ECM) as well as cell-surface molecules to promote cellular 

reorganization. These proteins were originally discovered for their role in tumor 

cell invasion (Himelstein et al., 1994), angiogenesis (Yu and Stamenkovic, 2000), 

and wound healing (Agren et al., 1994), and more recently their contributions to 
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synaptic and neuronal reorganization have been elucidated (Meighan et al., 

2006; Huntley, 2012b). Twenty-three distinct MMPs have been identified in the 

human genome, 16 of which are soluble proteins, and 7 transmembrane or GPI-

anchored proteins (Huntley, 2012b), and these multidomain proteins can be 

further divided into subgroups based on shared domains, inserts, and substrate 

recognition motifs. Soluble MMPs contain an N-terminal secretory signal peptide, 

whereas membrane-bound MMPs do not. All MMPs contain an autoinhibitory 

propeptide, and all have similar catalytic regions.  Most also contain a C-terminal 

hemopexin domain, which is attached to the catalytic domain via a flexible hinge 

linker. The specific structure of the hemopexin domain varies between MMPs, 

and confers substrate and protein binding specificity to each enzyme (Overall, 

2002). Hemopexin domains often dictate subcellular localization by binding to cell 

surface proteins or ECM molecules, and because of the flexible nature of the 

hinge region, the catalytic domain can move to process substrates freely while 

the hemopexin domain is tethered (Collier et al., 2001). The most studied MMPs 

in the brain are MMPs-2, -3 and -9 (Verslegers et al., 2013). MMP-2 and MMP-9 

are also referred to as Gelatinase A & B, respectively, so named for their ability 

to proteolytically process gelatin. Their unique ability to bind to gelatin is due to 

fibronectin type II (FNII) repeats within the enzymes’ catalytic domain. FNII 

repeats recognize and bind to ECM glycoproteins that contain Arg-Gly-Asp 

(RGD) domains (e.g. fibronectin, laminin, thrombospondin), which are the 

endogenous ligands for the integrin family of cell adhesion receptors (Verslegers 

et al., 2013). Thus, MMPs-2/9 are able to recognize and expose integrin-

signaling domains, giving them a crucial role in neuron-ECM adhesion. MMP-3 is 
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also called Stromelysin-1, and differs from the gelatinases in that it lacks FNII 

repeats, and contains a different C-terminal hemopexin domain (Sternlicht and 

Werb, 2001a). In addition to ECM molecules, MMPs proteolytically process a 

variety of growth factors, such as transforming growth factor beta (TGFß; (Yu 

and Stamenkovic, 2000) brain-derived neurotrophic factor (BDNF; (Mizoguchi et 

al., 2011b), cell surface glycoproteins (e.g. ß-dystroglycan; (Michaluk et al., 

2007), cell adhesion molecules/receptors (e.g. SynCAM2; (Bajor et al., 2012), 

and many other proteins positioned to regulate signaling between the intra- and 

extra-cellular space (Huntley, 2012b). 

Another major role for MMPs in the brain is in regulating the blood brain 

barrier (BBB), and these proteinases are sensitive to a variety of 

neuroinflammatory signals. Neuroinflammation describes the immune response 

of central nervous system tissue, normally isolated immunologically from the 

peripheral system by the BBB. The BBB is maintained through the collaboration 

of neural, glial, vascular and extracellular components and can be degraded by 

the aberrant action of MMPs, allowing compounds synthesized or arriving to the 

periphery to exert effects on CNS tissue (Kousik et al., 2012). Chronic exposure 

to drugs of abuse, particularly psychostimulant drugs, alters the integrity of the 

BBB, allowing for entry of viral and bacterial agents from the periphery that 

contribute to drug-induced neurotoxicity and neuroinflammation (Kousik et al., 

2012; Clark et al., 2013). The neuroinflammatory action of psychostimulants can 

occur through a variety of mechanisms including through the disruption of tight 

junction channels at the BBB interface, the activation of microglia and the 

resulting release of pro-inflammatory cytokines, and by the aberrant activation of 
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enzymes that regulate the remodeling of the extracellular matrix (Kousik et al., 

2012). Studies show that proinflammatory cytokines and their downstream 

signaling pathways potently upregulate MMP production in astrocytes and 

miocroglia (Gottschall and Deb, 1996; O'Shea et al., 2014). Specifically, 

neuron/glia co-culture studies show that pro-inflammatory cytokine release 

increases expression of the two main inducible MMPs, MMP-3 and MMP-9, 

further demonstrating the link between neuroinflammation and MMP activation 

(Candelario-Jalil et al., 2009). 

Neuroinflammation in response to drug exposure is a growing topic of 

addiction research because the pharmacological reversal of drug-induced 

neuroinflammation in animal models of addiction can inhibit drug seeking 

(Scofield and Kalivas, 2014). Among the most studied examples of addictive 

substances that impact the integrity of the BBB and invoke a neurotoxic and 

neuroinflammatory responses are methamphetamine, cocaine and 3,4-

methylenedioxy-N-methylamphetamine (MDMA). 

1.2.3 MMP Synthesis, Release and Activation  

1.2.3.1 Transcriptional regulation 

For MMPs to appropriately participate in the neuronal processes including 

cellular reorganization and remodeling in synaptic plasticity and memory, they 

must be appropriately expressed, localized and temporally activated (Sternlicht 

and Werb, 2001b). As such, the regulation of MMP expression and activity is 

particularly complex and involves several well-regulated mechanisms and 

signaling cascades (Dzwonek et al., 2004). At the transcriptional level, MMPs 

and related proteins are tightly regulated with the exception of MMP-2, MMP-14 



	   8	  

(MT1-MMP) and tissue inhibitor of metalloproteinases 2 (TIMP-2), which are less 

tightly restricted by transcriptional control and are co-regulated by the same 

transcription factors (Lohi et al., 2000). This is likely due to the fact that MMP-2 is 

more constitutively expressed than other MMPs. Moreover, the positive co-

regulation of pro-MMP-2, MT1-MMP, and TIMP-2 also reflects the role that these 

three factors play in forming a complex to activate pro-MMP-2 (discussed in 

detail below). Apart from MMP-2, MMPs are regulated at the transcriptional level 

by phorbol esters, integrin derived signals, extracellular matrix proteins and 

stress signals (Kheradmand et al., 1998; Sternlicht and Werb, 2001b). As 

discussed above, MMP expression is regulated by interferons, interleukins, and 

growth factors, which typically induce expression of c-fos and c-jun immediate 

early genes whose protein products dimerize to form AP-1 (Sternlicht and Werb, 

2001b) (See Figure 1).  Generally AP-1 serves as a critical positive regulator of 

MMP expression and the promoter regions of several MMP genes contain 

canonical AP-1 binding sites, (Gottschall and Deb, 1996; Sternlicht and Werb, 

2001b). In addition, AP-2, Sp1, Sp3 and NF-κB sites are found in several MMP 

promoters, speaking to the coordinated regulation of these species (Sternlicht 

and Werb, 2001b). As an example, MMP-9 is positively regulated by both AP-1 

and NF-κB at the transcriptional level (Huntley, 2012b), and post-transcriptionally 

nitric oxide (NO) levels regulate the stability of MMP-9 mRNA (Dzwonek et al., 

2004). Interestingly, a role for microRNAs (miRs) has been established for both 

regulating MMP-2/9 expression and in drug addiction. Micro-RNAs are small, 

non-coding RNAs that can each regulate the translation of many mRNAs. In the 
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dorsal striatum, miR-212 upregulates Raf1 activity and thus CREB signaling, 

which decreases the motivation to take cocaine (Hollander et al., 2010). While 

the regulation of miRs and MMPs in the brain has not been established, MMP-9 

mRNA has a potential miR-212 binding site according to a TargetScan screen 

(targetscan.org; version 6.2), while there was no identified binding site for miR-

212 on MMP-2 mRNA. MicroRNA regulation of MMP gene translation has been 

shown to be physiologically relevant in systems outside of the brain, most notably 

miR-29a regulation of MMP-2 is important in proteolysis during thoracic aortic 

aneurysm (Jones et al., 2011). 

 

Figure 1-2. MMP expression and secretion in neuronal and non-neuronal 
cells. Shown here is a schematic representation of MMP expression and 
secretion mechanisms in neurons (brown) and astrocytes (green). 1) In both 
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neurons (brown) and astroglia (green) MMP transcription is generally positively 
regulated by transcription factors NF-kB (blue) and AP-1 (orange/yellow). 2) After 
MMP mRNA is transcribed it can be transported to the endoplasmic reticulum 
(ER). 3) Alternatively, MMP mRNA can be translocated to dendritic spine heads 
where it is locally translated and secreted. 4) Once translocated from the nucleus 
(in neurons or in astrocytes), MMP mRNA is translated at the endoplasmic 
reticulum and packaged and released in a pro-form. 5) Once outside of the cell, 
pro-MMPs are activated in the extracellular space by proteolytic cleavage or by 
posttranslational modification. (Smith et al., 2015) 
 

1.2.3.2 Release and post-transcriptional regulation 

MMPs are expressed and secreted as inactive pro-enzymes, also known 

as zymogens. Enzymatic inactivation is maintained by the interaction of a pro-

domain cysteine residue with the catalytic Zn2+. When this interaction is broken, 

Zn2+ is able to fully coordinate with 3 cysteine residues in the active site, a 

process known as the “cysteine switch” (Loffek et al., 2011). Zymogens are 

processed into active MMPs through proteolytic cleavage or posttranslational 

modification, both of which occur through variety of mechanisms. This makes the 

steady state level of MMP expression at the mRNA level a relatively poor index 

of activity due to the large amount of regulation of pro-MMP proteins already 

present in the neural parenchyma (Huntley, 2012b). Beyond MMP-2, other 

zymogens can be cleaved by activated MMPs in the extracellular space or by 

serine proteases that cleave peptide bonds within the MMP pro-domain 

(Sternlicht and Werb, 2001b). These proteases include plasmin, tissue 

plasminogen activator and urokinase-type plasminogen activator, which are also 

important mediators of the transition from pro-MMP to an active MMP molecule 

(Candelario-Jalil et al., 2009). 
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In keeping with the activity dependent and inducible nature of MMP 

expression, evidence exists for the translocation of MMP-9 mRNA to the dendritic 

arbor with a preference for dendrites actively engaged in synaptic transmission 

(Dzwonek et al., 2004). Notably, MMP-9 mRNA contains specific sequence 

elements implicated in the translocation of other mRNAs, suggesting that this 

translocation plays an important role in rapidly inducible action of MMP-9 

(Dzwonek et al., 2004). Furthermore, studies show that dendritic MMP-9 

translation is activity dependent and contributes to the rapid increase in MMP-9 

activity seen with increased excitatory neurotransmission (Dziembowska et al., 

2012). 

1.2.3.3 Regulation through protein-protein interactions 

The activity of MMPs is regulated by a family of secreted proteins called 

the tissue inhibitors of metalloproteinases (TIMPs), which promote growth and 

act to regulate cell cycle in a variety of cell types (Mizoguchi et al., 2011a). 

TIMPs display substantial sequence complementarity to their MMP counterparts, 

and form reversible noncovalent bonds with MMPs to inactivate them (Sternlicht 

and Werb, 2001b). In biological systems, levels of TIMP expression are tuned to 

act in concert with levels of MMP expression and activation to precisely 

orchestrate the appropriate glycoprotein turnover rate (El Hajj et al., 2014). The 

TIMP family contains four members, TIMP1-4. Interestingly, members of the 

TIMP family differ in their ability to inhibit specific MMPs. Relatively little is known 

about TIMP-3 and TIMP-4. TIMP-3 is expressed at very low levels, but mRNA 

has been detected in cortex, cerebellum, olfactory bulb, and brain stem 
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(Dzwonek et al, 2004). TIMP-4 is expressed specifically by cerebellar purkinje 

neurons, and by neurons in specific brain stem regions (Dzwonek et al, 2004). 

TIMP-1 expression is found primarily in neurons (apart from Bergman glial 

cells), and to date has been anatomically localized in the cortex, hippocampus, 

cerebellum, substantia nigra and hypothalamus (Dzwonek et al., 2004). The 

apparent expression pattern of TIMP1 was restricted to neuronal cell bodies in 

these regions with the exception of the hippocampus where dendritic localization 

was also observed (Rivera et al., 1997). TIMP1 expression is sensitive to several 

stimuli and is induced by neuronal depolarization and in certain pathological 

conditions including electroconvusive seizures (ECS), where the expression of 

TIMP1 is upregulated in both the cortex and hippocampus (Newton et al., 2003). 

In addition, in a cell culture model using rat cardiac fibroblasts, exposure to 

alcohol for 48 hours induced expression of TIMP1 (El Hajj et al., 2014). However, 

in the serum of human heroin addicts, levels for TIMP1 were lower than control 

individuals, with ratios of serum levels of MMP-2/TIMP-1, MMP-9/TIMP-1 higher 

in the heroin group (Kovatsi et al., 2013).  

TIMP-2 has been the most studied of the TIMPs. Its expression is 

predominantly restricted to neurons and is abundant in brain, yet is anatomically 

restricted to the cortex, NAc and cerebellum (Dzwonek et al., 2004). Unlike 

TIMP-1, TIMP-2 is not upregulated by neuronal activity or in pathological 

conditions (Dzwonek et al., 2004). However, methamphetamine exposure 

upregulates TIMP2 in the frontal cortex and nucleus accumbens (Mizoguchi et 

al., 2011a). Interestingly, when the upregulation of TIMP-2 is thwarted with 

antisense RNA inhibition, methamphetamine locomotor sensitization is increased 
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(Mizoguchi et al., 2011a). As discussed above for TIMP-1, heroin exposure also 

increases the MMP-2/TIMP-2 ratio in serum (Kovatsi et al., 2013) and in a cell 

culture model of human gingival fibroblasts, exposure to nicotine exposure 

redistributes TIMP2 to the cell surface (Zhou et al., 2007). In a series of 

experiments using cultured Kupffer cells (stellate macrophages isolated from the 

liver) from ethanol fed rats, TIMP-2 expression was elevated when compared to 

cultures made from control rats (Aziz-Seible et al., 2011). In a recent report we 

show that MMP-9 and TIMP-2 protein levels are increased in the NAcore, 

following cocaine-primed reinstatement of cocaine seeking (Smith et al., 2014a). 

However, the induction of TIMP-2 protein levels did not inhibit the increased 

activity of MMPs observed following cocaine-primed reinstatement (Smith et al., 

2014a). 

Paradoxically, apart from inhibiting the action of MMPs, TIMP proteins 

also form complexes with MMPs and can facilitate their activation. For example, 

TIMP-2 interacts with the membrane bound MT1-MMP to facilitate the formation 

of active MMP-2 from proMMP-2 (Shofuda et al., 1998), while MT2-MMP can 

activate pro-MMP-2 in a TIMP-2-independent manner (Morrison and Overall, 

2006). In either a TIMP-2 dependent or independent activation, MMP-2 activated 

in this way activates MMP-9. In addition, TIMP-1 interacts with pro-MMP-9 and 

MMP-3. In this complex of proteins, residues of the C-terminal domain of pro-

MMP-9 and TIMP-1 physically interact. This tertiary complex can be modified to 

release pro-MMP-9, leaving TIMP-1 and MMP-3 bound (Dzwonek et al., 2004). 

1.2.4 MMP contributions to reward and addiction 
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Addiction can be described as a pathological form of learning, wherein 

drug associated cues and/or contexts become strong conditioned stimuli that 

promote a drug seeking response, even after protracted abstinence or extinction 

training (Hyman et al., 2006). A role for MMPs in plasticity accompanying 

learning and memory was posited in 2003, when Wright and colleagues found 

that ethanol decreased performance in a Morris water maze, and also impaired 

MMP-9 activity in the hippocampus (Wright et al., 2003). It has since been 

established that MMP-9 is activated by and required for the maintenance phase 

of long-term potentiation (LTP; (Nagy et al., 2006), and application of auto-active 

MMP-9 onto a slice is able to drive enlargement of dendritic spines and 

potentiate excitatory field potentials, even in the absence of LTP-inducing high 

frequency stimulation (Wang et al., 2008a). Given their role in LTP, it is not 

surprising that MMPs are involved in many forms of learning and memory, 

including spatial memory (Meighan et al., 2006), fear conditioning (Brown et al., 

2009), avoidance learning (Nagy et al., 2007), and memory related to contextual 

cues (Brown et al., 2007). 

Human post-mortem data indicate that MMPs may have clinical relevance 

in addiction. A functional polymorphism in the MMP-9 gene is associated with 

higher risk for alcoholism, and MMP-9 is elevated in the serum of alcohol 

abusers (Sillanaukee et al., 2002; Samochowiec et al., 2010), cocaine abusers 

had decreased MMP-9 activity in the hippocampus measured by gel zymography 

(Mash et al., 2007), and heroin users have significantly higher circulating MMP-2 

and MMP-9 than do non-drug-using controls (Kovatsi et al., 2013). While these 
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clinical data are interesting, most knowledge about MMPs in reward and 

addiction comes from animal models. 

1.2.4.1 Cocaine 

Early work showed that intracerebroventricular (i.c.v.) infusion of a broad-

spectrum MMP inhibitor (FN-439) blocked acquisition of cocaine conditioned 

place preference (CPP) when infused prior to daily conditioning sessions, and 

also blocked cocaine-primed reinstatement when infused immediately prior to 

this session (Brown et al., 2007). MMP-9, but not MMP-2 activity was increased 

in the medial PFC following reinstatement of CPP (Brown et al., 2008). The work 

described in chapters 2 and 3 below represents the most thorough examination 

of the role of metalloproteinases in synaptic plasticity underlying the vulnerability 

to relapse to cocaine seeking. 

While largely untested, there are many putative mechanisms by which 

MMP activity may translate into to the transient synaptic potentiation associated 

with reinstated cocaine seeking (measured as increased AMPA:NMDA ratio and 

dendritic spine head diameter). The integrin family of cell adhesion receptors is 

particularly interesting in this regard. In a self-administration paradigm, 1 day 

following the last of 10 daily 2-hour sessions, the ß3-integrin subunit is 

downregulated, with no change in the ß1 subunit. Following 3 weeks of extinction 

training, the ß3 subunit is upregulated by 500%, again with no change in the ß1 

subunit (Wiggins et al., 2011b). Injecting a synthetic RGD peptide daily, prior to 

self-admin sessions prevented the enduring ß3 subunit upregulation, and also 

attenuated cocaine primed reinstatement (Wiggins et al., 2011b). In addition to 

cleaving matrix glycoproteins to expose RGD domains that signal through a5ß3 
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and a5ß1 integrin receptors (Sternlicht and Werb, 2001a), MMPs are able to 

cause integrins to shed subunits that themselves contain RGD domains. For 

example MMP-2 activity may induce cell motility through proteolytic shedding of 

the ß1 subunit (Kryczka et al., 2012). Integrins signal primarily through integrin-

linked kinase (ILK), and ILK can directly phosphorylate cofilin in order to 

stimulate actin polymerization and dendritic spine head growth (Kim et al., 2008). 

ILK also phosphorylates Ser845 of GluA1 AMPA subunits, stimulating insertion of 

the receptor into the synapse, which may increase AMPA:NMDA ratio (Chen et 

al., 2010). Behaviorally, inhibiting ILK attenuates locomotor sensitization to 

cocaine, as well as the increased AMPA receptor insertion that accompanies 

sensitization (Chen et al., 2008), but it has not yet been tested whether inhibiting 
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ILK during extinction training following self-administration can reduce 

AMPA:NMDA ratio. See figure 2 for a schematic outlining MMP signaling within 

the extracellular matrix. 

 

Figure 1-3: Overview of signaling in the extracellular matrix. 1) MMPs-2 and 
-9 signal within the ECM by proteolytically processing RGD-containing 
glycoproteins such as fibronectin. The brown rectangles shown here represent 
fibronectin, with an enlarged fibronectin molecule shown at the bottom right 
corner with labeled fibronectin type-1, type-2 and type-3 domains. MMPs-2 and -
9 recognize FN-II repeats, allowing them to bind to and cleave fibronectin in 
order to expose RGD domains. 2) Putative mechanisms by which addictive drug-
induced MMP activity alters synaptic strength include signaling through integrin-
linked kinase (ILK). Stimulation of ILK then promotes 3) phosphorylation of GluA1 
S845 to increase AMPA receptor insertion, 4) phosphorylation of cofilin which 
stimulates actin polymerization and 5) stimulates NMDA receptor lateral diffusion 
into the synapse. 6) In addition to fibronectin, MMPs can also proteolytically 
process chondroitin sulfate proteoglycans, acting to liberate growth factors such 
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as BDNF, TGFb, NGF, and TNFa that may also act to influence synaptic 
plasticity. (Smith et al., 2015)  
 
1.2.4.2 Methamphetamine 
 

Repeated methamphetamine (METH; 2 mg/kg) exposure induces MMP-2 

and MMP-9 activity in the NAcore within 2h of the last injection, and MMP-2 or 

MMP-9 KO mice show decreased dopamine release, and impaired behavioral 

sensitization in response to a METH challenge injection. Furthermore, addition of 

recombinant MMP-2 potentiated METH-induced dopamine release (Mizoguchi, 

2007). Acutely, a large METH dose (40 mg/kg) induces MMP-9 activity within 6 

hours, and this leads to proteolytic shedding of the ectodomain of intracellular 

adhesion molecule 5 (ICAM5), producing a soluble fragment that can signal 

through ß1-integrin subunits to cause cofilin phosphorylation (Conant et al., 

2011). Soluble ICAM5 ectodomains have also been shown to increase frequency 

of mEPSCs and GluA1 Ser845 phosphorylation and surface expression, without 

affecting expression of GluA2 (Lonskaya et al., 2013). 

Data from human imaging studies and animal models of addiction clearly 

demonstrate METH is potently neurotoxic (Panenka et al., 2013). Specifically, 

METH exposure disrupts the BBB by causing alterations in tight junction proteins 

(Ramirez et al., 2009) and also enhances release of pro-inflammatory cytokines 

including interleukin 6 and 8 (Shah et al., 2012), which may activate MMP-9 and 

cause aberrant degradation of the BBB (Yao et al, 2006). The importance of the 

neuroinflammatory response to METH exposure in the treatment of addiction has 

been underscored by the fact that in the laboratory setting, the systemic 

administration of glial modulator drugs that inhibit the release of pro-inflammatory 
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factors has been shown to also inhibit METH seeking in several animal models of 

addiction (Beardsley et al., 2010; Snider et al., 2012; Snider et al., 2013). 

Furthermore, METH exposure increased the expression of MMP-1 and MMP-9, 

which can act to degrade tight junction proteins producing structural changes to 

the basement BBB membrane that contribute to the neuroinflammatory response 

(Conant et al., 2004). In addition, studies show that METH exposure decreases 

expression of MMP-9 substrate laminin, indicating that MMPs may degrade the 

BBB by attacking the basal lamina (O'Shea et al., 2014). 

1.2.4.3 Opiates 

MMP-9 expression and activity are increased by acute morphine 

treatment, and MMP-9 is required for the development of morphine tolerance 

(Nakamoto et al., 2012). In the spinal cord, MMP-9 inhibition blocks morphine-

induced phosphorylation of NMDA receptors, ERK1/2, and cAMP response 

element binding proteins, and behavioral signs of morphine withdrawal (Liu et al., 

2010). Following extinction of heroin self-administration, two constituents of 

perineuronal nets (PNNs), tenascin R (TNR) and brevican (bcan) were 

downregulated in both the mPFC and accumbens, indicating increased 

proteolytic degradation by MMPs. Furthermore, i.c.v. infusion of a broad 

spectrum MMP inhibitor restored PNN composition, and attenuated cue-induced 

heroin reinstatement (Van Den Oever, 2010). Interestingly, we did not find an 

increase in MMP-2 or MMP-9 activity using in vivo zymography following 

extinction of heroin self-administration, but there was an induction of activity 

following 15 minutes of cue-induced reinstatement (Smith et al., 2014a). These 

data indicate that a third protease, possibly MMP-3, is responsible for regulating 
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the composition of perineuronal nets (PNNs), which are exclusively localized 

around GABAergic fast-spiking interneurons (FSIs). PNNs are hypothesized to 

be selectively localized around these interneurons because their largely anionic 

composition is protective against oxidative stress which results from the relatively 

higher metabolic requirements of fast spiking interneurons (Cabungcal et al., 

2013). 

1.2.4.4 Nicotine 

Very little about the role of MMPs in nicotine addiction has been 

established. MMP activity in the accumbens core following nicotine exposure 

parallels cocaine: following extinction training there is a constitutive induction of 

gelatinolytic fluorescence, and following reinstatement there is a further induction 

of activity (Smith et al., 2014a). This is the only observation regarding MMPs in 

the nucleus accumbens following nicotine exposure; another laboratory has 

examined these enzymes in the hippocampus and mPFC following nicotine CPP. 

Natarajan and colleagues (2013) induced conditioned place preference with 

nicotine injections, and measured MMP-2, -3, and -9 expression following each 

of 5 days of acquisition of CPP, and following re-exposure to the drug-paired 

context after 5 days of abstinence. Inhibition of MMP activity via daily i.c.v. FN-

439 infusion prior to conditioning blocked the acquisition of place preference. 

Following 5 days of conditioning, both MMP-2 and MMP-9 were both significantly 

increased in the hippocampus, but not in the mPFC, while MMP-3 remained 

unchanged. Following 5 days of abstinence from nicotine in the home cage, 

when re-exposed to the CPP apparatus there was no change in MMP-2 or MMP-

9 expression, but MMP-3 expression was increased in both nicotine and saline 
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treated rats. This indicates a broad role for MMP-3 in reactivation of contextual 

memories, but does not imply a drug-specific effect (Natarajan et al., 2013). 

1.2.4.5 Alcohol 

Acute ethanol intoxication decreases MMP-9 activity in the hippocampus, 

and impairs spatial memory formation without interfering with MMP-2 activity 

(Wright et al., 2003). In the chronic intermittent ethanol vapor model in which rats 

are exposed to ethanol vapor for 14 hours per day for 4 weeks (with a target daily 

BAC of 200mg/dL), animals undergo repeated cycles of intoxication and 

withdrawal. Following 4 weeks of vapor exposure, rats allowed to self-administer 

ethanol during acute (6h) withdrawal display an escalation of self-administration 

that is indicative of a dependence-like behavioral phenotype (Walker, 2012). 

Chronic i.c.v. infusion of broad spectrum MMP inhibitor FN-439 during these 4 

weeks blocks escalation of ethanol intake (Smith et al., 2011). Interestingly, 

acute FN-439 infusion only prior to post-vapor self-administration sessions also 

blocks this escalation, although once a rat experienced one session of post-

vapor self-administration without the presence of FN-439, drinking escalated 

during the next session. Furthermore, in rats that received aCSF rather than FN-

439 and escalated immediately following vapor exposure, acute FN-439 was not 

thereafter effective. This indicates that MMPs contribute to the negative 

reinforcement learning that occurs from ethanol consumption during acute 

withdrawal (Smith et al., 2011). Negative reinforcement refers to reinforcement 

that occurs when a response leads to the removal of a negative stimulus. This 

data was interpreted to enhance the hypothesis that this negative reinforcement 

is a learned response that requires the animal to recognize that alcohol 
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consumption during acute withdrawal will ameliorate withdrawal-associated 

negative affect, and that this learning is MMP-dependent (Smith et al., 2011; 

(Walker, 2012). 

1.3 Contributions of neuronal nitric oxide synthase to synaptic plasticity, 

drug addiction and metalloproteinase activity. 

The role of nitric oxide (NO) as an intercellular messenger in the brain was 

discovered in 1988, when NO was referred to as ‘Endothelium-derived relaxing 

factor’ (Garthwaite et al., 1988). NO was identified as a candidate retrograde 

neurotransmitter in 1991 (Schuman and Madison, 1991). The NO receptor, 

soluble guanylate cyclase (sGC), is expressed predominantly presynaptically, 

although it can also be detected in complex with PSD-95, suggesting a 

postsynaptic localization as well (Russwurm et al., 2001; Garthwaite, 2010). 

Soluble guanylate cyclase activity promotes cGMP formation and PKG activity. 

However, the reactive nitrogen species properties of NO also confer its ability to 

act as mediator of S-nitrosylation, an important post-translational modification for 

many proteins. A positive influence of NO has been shown for release of at least 

glutamate, GABA, dopamine, and norepinephrine (Lawrence and Jarrott, 1993; 

Montague et al., 1994; Li et al., 2002; West et al., 2002). In addition to the 

positive effects of the sGC/cGMP/PKG signaling pathway on neurotransmitter 

release, there are a number of targets of S-nitrosylation that also influence 

neurotransmitter release. For example, S-nitrosylation of syntaxin facilitates a 

conformational change that allows syntaxin to associate with two of its binding 

partners, vesicle-associated membrane protein (VAMP, a V-SNARE), and 

SNAP25, which allows vesicular docking at the presynaptic membrane (Palmer 
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et al., 2008). Furthermore, SNAP2 5 can be S-nitrosylated to increase its affinity 

for V-SNARE binding (Di Stasi et al., 2002). 

NO is synthesized by nitric oxide synthase (NOS), There are 3 isoforms of 

NOS: the NOS1 gene codes neuronal NOS (nNOS), which is expressed in a 

subpopulation of γ-aminobutyric acid-releasing (GABAergic) interneurons known 

as nitrergic interneurons (Tepper et al., 2010), NOS2 is inducible NOS (iNOS), 

which is expressed in glia and other cell types, and is under cytokine control 

(Saha and Pahan, 2006), and  NOS3, endothelial NOS (eNOS) is expressed by 

endothelial cells in blood vessels and other tissues. S-Nitrosylation has been 

shown to be important in regulating MMP activity (Gu et al., 2002), and 

specifically MMP-9 (Gu et al., 2002; Manabe et al., 2005a; Ridnour et al., 2007). 

Studies support a role for NO in modulating synaptic plasticity related to cocaine 

exposure, since NOS1 knock out mice display impaired cocaine sensitization 

(Itzhak et al., 1998b; Balda et al., 2009), reward (Balda et al., 2006) and cue- and 

context-induced CPP (Balda et al., 2006; Itzhak, 2008; Itzhak et al., 2010). 

Furthermore, repeated cocaine administration increases NO release in the dorsal 

striatum (Lee et al., 2010) and pharmacological inhibition of nNOS attenuates 

cocaine-mediated elevations of PFC neuronal excitability (Nasif et al., 2011).  

Activity of the nNOS enzyme is negatively regulated by phosphorylation at 

Serine 847 (Ser847), and dephosphorylation at this residue occurs following 

NMDA receptor activation (Rameau et al., 2003b, 2004). Interestingly, nNOS 

physically interacts with the NMDA receptor subunit GluN2B through a PDZ 

domain interaction with postsynaptic density-95 (Cui et al., 2007), which localizes 
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nNOS in close proximity to elevations in internal calcium produced by activation 

of GluN2B-containing NMDA receptors. Once dephosphorylated at Ser847, 

affinity for Calmodulin (CaM) is elevated and NO production increases 50-60% 

(Hayashi et al., 1999) illustrating the importance of Ca2+-mediated signaling in 

nNOS activation and production of NO. Studies show that cocaine-mediated 

increases in NO release in the dorsal striatum are attenuated by D1, NMDA and 

group I metabotropic glutamate receptor antagonists (Lee et al., 2010; Lee et al., 

2011) indicating regulation of NO production by both dopaminergic and 

glutamatergic mechanisms (Park and West, 2009). 

1.4 Statement of the problem 
 

Cocaine addiction has long been described as the ‘holy grail’ of addiction 

research. This is because there are no current drugs approved by the FDA for 

the treatment of cocaine addiction. While no treatment for any addiction is 100% 

effective, there are at least prescribable and marginally effective treatments for 

alcoholism (e.g. disulfiram, topiramate), opiate addiction (e.g. buprenorphine, 

methadone), and nicotine addiction (e.g. varenicline), but no such treatment has 

been developed for psychostimulant addiction (Wallace, 1952; Kramer, 1970; 

Coe et al., 2005; Collins and McAllister, 2007; Kalivas and Volkow, 2011) 

As previously described in the introduction, chronic cocaine exposure 

induces maladaptive neuroplasticity within the NAcore, and reversing these 

changes is seen as a favorable pharmacotherapeutic target for controlling 

relapse (Kalivas and Volkow, 2011). While a great deal of research has been 

dedicated to elucidating intracellular signaling cascades that lead to synaptic 
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potentiation of glutamatergic inputs onto accumbens spiny projection neurons 

(Kourrich et al., 2007; Conrad et al., 2008), the work described in herein is the 

first thorough examination of the contribution of NAcore extracellular matrix 

remodeling to synaptic plasticity underlying cocaine relapse. It was hypothesized 

that extracellular remodeling by matrix metalloproteinases contributes to both 

persistent and transient synaptic potentiations that underlie cue-induced 

reinstatement of cocaine seeking. 

Furthermore, the standing model of neuroplasticity takes into account 

three components of each synapse: the presynaptic terminal, the postsynaptic 

neuron, and an astroglial cell that stabilizes the two neurons. Together, these 

three components form the tripartite synapse (Araque et al., 1999). Although the 

tripartite synapse is a beautiful representation of simple synapses, the problem is 

that it is just that: an oversimplification of a complex biological system. While the 

contribution of extracellular matrix remodeling clearly establishes a fourth 

component of synapses, an additional critical consideration is that intercellular 

non-synaptic communication that occurs via the gaseous transmitter nitric oxide 

is also a critical player contributing to synaptic plasticity within glutamatergic 

synapses. Nitric oxide is produced only by a small population of GABAergic 

interneurons within the accumbens, termed nitrergic interneurons. Previous work 

has demonstrated that cocaine affects nitric oxide production and that this drives 

AMPA receptors into postsynaptic densities (Lee et al., 2010; Selvakumar et al., 

2014), and also that MMPs are activated by S-nitrosylation of a cysteine residue 

within their pro-domain (Gu et al., 2002). Thus, by integrating nitrergic signaling 



	   26	  

into the tetrapartite synapse, I hypothesized that nNOS-expressing interneurons 

are critical mediators of cocaine-induced synaptic potentiation of corticostriatal 

circuits. 

 In summary, the work described herein attempts to accomplish the 

following goals to further our knowledge of synaptic plasticity underlying relapse 

to cocaine seeking: 

1. Determine whether extracellular matrix remodeling by matrix 
metalloproteinases contributes to cue-induced reinstatement of 
cocaine seeking, and the underlying neurobiological properties of 
this behavior. 

2. Determine whether repeated cocaine self-administration affects 
nitric oxide signaling within the nucleus accumbens core. 

3. Establish a role for nitric oxide signaling in the activation of MMPs 
and cue-induced reinstatement. 

James Watson wrote: "the brain is the most complex thing we have yet 

discovered in our universe. It contains hundreds of billions of cells interlinked 

through trillions of connections. The brain boggles the mind." But what is truly 

amazing about the brain is that while the same neurons you are born with are the 

ones you die with, your brain is not really the same brain at all. The ability of the 

brain to undergo constant change is the truly mind-boggling part, and it is 

incredibly exciting that the modern era of science has helped us to understand 

how these processes work and to target them for treatment when the brain’s 

wonderful ability to change turns pathological. The work presented in this 

dissertation attempts to aid in this understanding by examining specific 

mechanisms in which maladaptive neuroplasticity occurs to create drug 

addiction. 
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CHAPTER 2: SYNAPTIC PLASTICITY 

MEDIATING COCAINE RELAPSE REQUIRES 

MATRIX METALLOPROTEINASES 

Abstract 
 
Relapse to using addictive drugs arises from pathological remodeling of 

excitatory synapses in the nucleus accumbens that impairs control over drug 

seeking behaviors. Matrix metalloproteinases (MMPs) are proteolytic enzymes 

responsible for degrading the extracellular matrix and thereby facilitating synaptic 

reorganization. Using a rat model of relapse, we found that cue-induced 

reinstatement of cocaine, nicotine or heroin seeking elicited a rapid, transient 

increase in MMP activity in the nucleus accumbens core. Also, rats withdrawn 

and extinguished from cocaine and nicotine, but not heroin self-administration 

had an enduring and stable increase in MMP activity. We discovered that MMP-2 

mediated the stabilization of cocaine-induced synaptic potentiation after 

withdrawal, MMP-9 mediated the transient cue-induced synaptic potentiation, 

and the activity of both MMPs was necessary for conditioned cues to reinstate 

cocaine-seeking behavior. These data reveal that MMP activity is necessary for 

the synaptic reorganization that mediates relapse to cocaine, heroin and nicotine. 
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2.1 INTRODUCTION 

Vulnerability to relapse is a defining characteristic of drug addiction, and 

controlling relapse is a primary therapeutic goal in treating addiction (Vocci and 

Ling, 2005).  The difficulty addicts experience in controlling drug use has inspired 

research showing drug-induced impairments in cortical regulation of the striatal 

circuitry mediating motivation and habit formation (Kalivas and Volkow, 2005; 

Luscher and Malenka, 2011). Cocaine, nicotine or heroin abuse cause long-

lasting changes at cortical glutamatergic synapses in the nucleus accumbens 

core (NAcore) that are necessary for relapse to occur (Robinson, 2004; 

Moussawi, 2011; Shen et al., 2011; Gipson et al., 2013c). Cocaine and nicotine 

induce enduring potentiation of glutamatergic synapses in NAcore, whereas 

heroin withdrawal produces enduring synaptic depression(Conrad et al., 2008; 

Russo et al., 2010b; Gipson et al., 2013c). While the adaptations in enduring 

synaptic plasticity differ between classes of addictive drug, a biomarker of 

relapse shared by all 3 drugs is rapid, transient potentiation of glutamatergic 

synapses in the NAcore that is induced in parallel with the reinstatement of drug-

seeking (Anderson et al., 2008; Shen et al., 2011; Gipson et al., 2013a; Gipson 

et al., 2013c; Shen et al., 2014b). Although synaptic potentiation at glutamatergic 

synapses in NAcore is required for reinstating drug-seeking behavior, it is not 

understood how the long-lasting potentiation after withdrawal from cocaine or 

nicotine is stabilized, or how transient synaptic potentiation is initiated by cues 

associated with any of the 3 drugs. 



	   29	  

Synaptic remodeling during brain development or after injury depends on the 

extracellular matrix (ECM), which is a proteinacious network ensheathing 

synapses that is degraded by a family of Zn2+-dependent endopeptidases called 

matrix metalloproteinases (MMPs) (Huntley, 2012a). MMP-2 and -9 make up the 

gelatinase subfamily (Sternlicht and Werb, 2001a). Previous literature suggests 

that the gelatinase degradation of the ECM regulates synaptic structure and 

physiology by proteolytically activating growth factors (Mizoguchi et al., 2011b; 

Saygili et al., 2011), and processing ECM glycoproteins to expose Arginine-

Glycine-Aspartic acid (RGD) domains that bind to integrins to promote AMPA 

glutamate receptor trafficking and actin polymerization (Cingolani et al., 2008; 

Huntley, 2012a).  Inhibiting MMP-9 prior to high frequency electrical stimulation 

interferes with maintenance of hippocampal long-term potentiation, and 

incubating hippocampal slices in auto-active recombinant MMP-9 produces 

integrin-dependent long-term potentiation of evoked field potentials and enlarged 

spine head diameter, even in the absence of high frequency stimulation (Wang et 

al., 2008a). Using a relapse model of self-administration and reinstatement in 

rats, we hypothesized that cocaine, heroin, and nicotine alter MMP-2 and/or -9 

activity, and that these enzymes are required for the transient synaptic plasticity 

mediating cue-induced reinstatement of drug seeking. 

2.2 Methods 

Animal Housing and Surgery. Male Sprague Dawley Rats (250g; Charles River) 

were individually housed with a 12:12 hour dark/light cycle. All experimentation 

occurred during the dark phase. Animals were allowed to acclimate to the 
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vivarium environment for 4 days prior to surgery. Rats were anesthetized with a 

combination of ketamine HCl and xylazine, and received ketorolac for analgesia. 

All rats received intrajugular catheters, and rats for microinjection experiments 

received intracranial catheters targeted 2mm above NAcore (+1.8 A/P, +2.1 M/L, 

-5.5 D/V) according coordinates from Paxinos and Watson, 2005. All rats were 

provided food and water ad libitum until 1 day prior to beginning behavioral 

training, at which points rats were food restricted to 25g of rat chow per day. All 

methods used herein comply with the NIH Guide for the Care and Use of Animals 

and were approved by the Institutional Animal Care and Use Committee at the 

Medical University of South Carolina. 

 

Cocaine Self-Administration and Reinstatement. After 5 days of recovery 

following surgery, rats underwent one overnight (12 hour) food training session. 

The next day, animals began daily 2-hour cocaine self-administration (SA) 

sessions. During SA, cocaine was delivered on an FR1 schedule with a 20s 

timeout following each infusion. Active lever presses that resulted in cocaine 

infusion simultaneously resulted in presentation of a light and tone stimulus, 

which serve as cocaine-conditioned cues. An inactive lever was also provided to 

control for non-motivated responding. Following 10 SA sessions (≥ 10 

infusions/day), rats began extinction training, during which all programmed 

consequences were removed from lever pressing. Extinction training lasted at 

least 10 days, or until two consecutive days ≤ 25 active lever presses. 

Reinstatement was induced by presentation of light/tone cues following an active 

lever press. Microinjections of an MMP inhibitor or vehicle were given 15 minutes 
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prior to beginning reinstatement in most cases, or 15 minutes prior to gel infusion 

for zymography experiments. For behavioral experiments (Fig.1), a within-

subjects crossover design was used; In this paradigm, each rat received each 

condition (MMP-2i, MMP-9i, or Vehicle) according to a latin square design. Rats 

were required to meet extinction criteria prior to each reinstatement test. These 

sessions lasted 120 minutes.  For zymography, spine morphology, and 

AMPA:NMDA ratio (A:N) experiments reinstatement sessions were 15 minutes 

long, at which point rats were sacrificed for further measurements. 

 

In Vivo Zymography. Because MMPs are secreted in inactive pro-forms and 

catalytically activated within the ECM, activity assays are preferable to 

immunoblotting for protein content. We used an in vivo zymography assay to 

directly measure MMP activity. Dye-quenched gelatin is an MMP-2/9 substrate 

which has been intramolecularly quenched with FITC fluorophores such that it 

cannot fluoresce until proteolytically processed by MMP-2 or MMP-9 (Bozdagi et 

al., 2007). The amount of fluorescence produced forms a linear relationship with 

incubation time and MMP activity. Dye-quenched FITC-Gelatin (Molecular 

Probes, Eugene, OR) was reconstituted in PBS at 1 mg/ml pH 7.2-7.4. 3.0µl of 

gel (1.5µl/side) was infused and allowed to incubate for 15 minutes prior to 

perfusion. Rats were perfused with 4% paraformaldehyde (PFA) and brains were 

placed in 4% PFA for 90 minutes for additional fixation. Brains were mounted on 

a vibratome and sliced into 50µm sections through the NAc. Sections were 

mounted and coverslipped. Imaging took place on a Leica LSM510 confocal 

microscope. Fluorescence was excited with a 488nm Argon laser, and emissions 
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were filtered to 515-535nm. Images were taken through a 10x objective with a 

0.3 numerical aperture. Only slices in which the injection site and anterior 

commissure could be visualized in the same frame were imaged. ImageJ (NIH) 

was used to quantify images. The injection tract was masked out to control for 

wound-healing related induction of MMP activity, and an integrated density of 

fluorescence was measured. 

 

Western Blotting. Rats were rapidly decapitated at t=0 or t=15. The NAc was 

dissected and homogenized in RIPA lysis buffer containing 1.0% SDS and 

protease/phosphatase inhibitors. Homogenate was centrifuged at 4°C for 5 

minutes at 10,000 x g. Supernatant was collected and protein concentration was 

determined via a biconchinic acid assay (Thermo Scientific). 30µg protein was 

added to each lane of 10% Bis-Tris gels (Bio-Rad), and transferred to 

nitrocellulose membranes via the Invitrogen iBlot transfer system. Primary 

antibodies were used for MMP-2 (1:1500, Abcam), MMP-9 (1:500, Millipore), and 

TIMP2 (1:1000, Abcam) and HRP-conjugated goat anti-rabbit secondary was 

used at 1:10,000. GAPDH was used as a loading control for MMPs-2 and -9, and 

Calnexin was used for TIMP-2. A Kodak Image Station was used to visualize and 

quantify protein expression. 

 

Quantification of dendritic spine head morphology. Spine morphology was 

performed as described in detail elsewhere (Shen et al., 2008). Briefly, brains 

were sliced into 200µm sections through the NAc, and a Helios gene gun (Bio-

Rad) was used to label sections with DiI-coated tungsten particles. Imaging 
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occurred on a Zeiss LSM510 confocal microscope. DiI was excited using a 

Helium/Neon 543nm laser. Dendrites chosen for imaging were between 75-200 

µm from the soma and after the first branch point. Images of dendrites were 

taken through a 63x oil immersion objective (Plan-Apochromat, Zeiss; NA = 1.4, 

WD = 90 µm) at 0.1µm intervals along the z-axis. Images were deconvoluted via 

Autoquant prior to analysis (Media Cybernetics, Bethesda, MD), and then a 3-D 

perspective was rendered by the Surpass module of Imaris software package 

(Bitplane; Saint Paul, MN). The smallest quantifiable diameter spine head was 

0.143µm. 

 

Slice preparation for electrophysiology. Rats were anesthetized with ketamine 

HCl (1 mg/kg Ketaset, Fort Dodge Animal Health, Iowa) and decapitated. The 

brain was removed from the skull and 220µm thick coronal NAc sections were 

obtained using a vibratome (VT1200S Leica vibratome; Leica Microsystems, 

Wetzlar, Germany). Slices were immediately placed into a vial containing artificial 

cerebrospinal fluid (aCSF) and a mixture of 5 mM kynurenic acid and 50 µM D-(-

)-2-Amino-5-phosphonopentanoic acid (D-AP5). Slices were incubated at 32°C 

for 30-40 minutes and then stored at room temperature. 

 

In vitro whole cell recording. All recordings were collected at 32˚C (controlled by 

TC-344B, Warner Instrument Corporation, Hamden, Connecticut) in the 

dorsomedial NAcore. Inhibitory synaptic transmission was blocked with picrotoxin 

(50 µM). Multiclamp 700B (Axon Instruments, Union City, CA) was used to record 

excitatory postsynaptic currents (EPSCs) in whole cell patch-clamp configuration. 
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Glass microelectrodes (1-2 MΩ) were filled with cesium-based internal solution 

(in mM: 124 cesium methanesulfonate, 10 HEPES potassium, 1 EGTA, 1 MgCl2, 

10 NaCl, 2.0 MgATP, and 0.3 NaGTP, 1 QX-314, pH 7.2-7.3, 275 mOsm). Data 

were acquired at 10 kHz, and filtered at 2 kHz using AxoGraph X software 

(AxoGraph Scientific, Sydney, Australia). To evoke EPSCs a bipolar stimulating 

electrode (FHC, Bowdoin, Maine) was placed ~300 µm dorsomedial to the 

recorded cell to maximize chances of stimulating prelimbic afferents. The 

stimulation intensity chosen evoked ~50% of maximal EPSC. Recordings were 

collected every 20 sec. Series resistance (Rs) measured with a 2 mV 

depolarizing step (10 ms) given with each stimulus and holding current were 

always monitored online. Recordings with unstable Rs, or when Rs exceeded 10 

MΩ were aborted. 

 

Measuring the AMPA/NMDA ratio. Recordings started no earlier than 10 min 

after the cell membrane was ruptured, to allow diffusion of the internal solution 

into the cell. AMPA currents were first measured at -80 mV to ensure stability of 

response. The membrane potential was then gradually increased to +40 mV. 

Recording of currents resumed 5 min after reaching +40 mV to allow stabilization 

of cell parameters. Currents composed of both AMPA and NMDA components 

were then obtained. Then D-AP5 was bath-applied (50 µM) to block NMDA 

currents and recording of AMPA currents at +40 mV was started after 2 min. 

NMDA currents were obtained by subtracting the AMPA currents from the total 

current at +40 mV. 
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Statistical Analysis All statistics were done using GraphPad Prism Version 6. 120 

minute reinstatement sessions for behavior analysis were analyzed using One-

Way ANOVAs with Bonferroni post-hoc tests. Zymography measurements were 

analyzed using either paired or unpaired t-tests, depending on which was 

appropriate for the experiment. A:N data were analyzed using t-tests with 

Bonferroni’s correction for planned comparisons. Dh measurements were 

analyzed using a Two-Way ANOVA with time point and inhibitor dose as factors. 

 
2.3 RESULTS 
 

Cocaine, heroin, and nicotine reinstatement induced MMP activity within 

the NAcore.   In order to quantify MMP-2 and MMP-9 proteolytic activity within 

the NAcore, we microinjected a FITC-quenched gelatin peptide that fluoresces 

following cleavage by MMP-2 or MMP-9 (Bozdagi et al., 2007) in a linear manner 

over 60 min after administration (Figure 2-7). Rats were trained to self-administer 

cocaine, heroin, or nicotine for 10 days during which drug infusion was paired 

with a light/tone compound conditioning stimulus. Lever pressing was then 

extinguished over the next 10 days during drug withdrawal (Figure 1a). This self-

administration protocol resulted in rats achieving stable levels of active lever 

pressing for all three drugs that was significantly greater than inactive lever 

pressing, and the extinction protocol reduced active lever pressing to a criterion 

of <25% of the active lever pressing during self-administration (Figure 2-8). FITC-

gelatin was bilaterally microinjected into NAcore, and 15 minutes later animals 

were sacrificed just prior to initiating cue-induced reinstatement of cocaine-, 

heroin- or nicotine-seeking, or after 15, 45, or 120 min of reinstatement (Figure 
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1b). MMP-2/9 activity was also quantified following reinstatement initiated by a 

noncontingent cocaine injection (10mg/kg, ip). Gelatinase activity was increased 

in NAcore ~2.5-fold in cocaine-extinguished compared with yoked-saline rats, 

and 15 min of cue-induced reinstatement of cocaine seeking caused a further ~2-

fold increase (Figure 1b-e). The cue-induced increase in MMP-2/9 activity was 

transient and returned to pre-reinstatement levels by 120 min after initiating the 

reinstatement session (Figure 1b). Nicotine affected MMP-2/9 activity similarly to 

cocaine, but with a smaller magnitude increase. Following extinction of nicotine 

self-administration, MMP-2/9 activity was increased by ~60% compared with 

yoked saline animals, and after 15 minutes of cue-induced reinstatement, activity 

was increased an additional ~50%. In contrast with cocaine or nicotine, heroin-

trained subjects did not show increased gelatinolytic fluorescence following 

extinction, but akin to the other two addictive drugs, cue-induced reinstatement of 

heroin seeking caused a ~2.6-fold induction of MMP-2/9 activity. Reinstatement 

induced by a noncontingent cocaine injection also increased MMP2/9 activity.  

However, the increase was delayed and appeared at 45 minutes after 

administering a cocaine priming (Figure 1b). In fact, at 15 min after administering 

noncontingent cocaine to initiate a reinstatement session MMP2/9 activity was 

actually reduced compared to levels measures in cocaine-extinguished animals.  

This delayed increase in MMP-2/9 activity during cocaine-induced reinstatement 

parallels the pattern of reinstated active lever pressing that is minimal during the 

first 15 minutes after cocaine-primed reinstatement, and is significantly increased 

by 45 minutes after cocaine administration (Shen et al., 2014a).  Similarly, the 

rise in MMP2/9 activity after 15 min of cued reinstatement for all three drugs 
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parallels a rapid increase in active lever pressing (Gipson et al., 2013a; Gipson et 

al., 2013c).  

 

Gelatinolytic fluorescence in NAcore was organized around cell soma, and could 

often be seen outlining primary dendrites (Figure 1i,g).  Moreover, somatic 

fluorescence always co-labeled with the neuronal marker NeuN (Figure 1h).  To 

evaluate whether other regions of the striatal complex showed similar increases 

in MMP-2/9 activity, we microinjected FITC-gelatin into the dorsal striatum and 

the nucleus accumbens shell (NAshell) of yoked saline controls or rats 

extinguished from cocaine self-administration that were reinstated for 15 min by 

conditioned cues.  Increases in fluorescence were not measured in either region 

following 15 min of cue-induced reinstatement of cocaine seeking compared with 

yoked saline rats (Figure 2-9). 
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Figure	  2-‐1:	  Cocaine,	  nicotine,	  and	  heroin	  reinstatement	  induced	  MMP	  activity	  
in	   the	   NAcore.	   	   a)	   Outline	   of	   the	   rat	   self-‐administration-‐extinction-‐reinstatement	  
protocol.	  b)	  Gelatinase	  activity	  was	   increased	   following	  extinction	   from	  cocaine	   self-‐
administration,	   and	   further	   increased	   15	   minutes	   following	   cue-‐induced	  
reinstatement,	  and	  returned	  to	  baseline	  by	  120	  min;	  one-‐way	  ANOVA	  F(3,17)	  =	  17.80,	  p	  <	  
0.0001.	   Nicotine	   self-‐administration	   and	   extinction	   resulted	   in	   a	   similar	   pattern	   of	  
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changes	  as	  cocaine,	  albeit	  with	  smaller	  magnitude,	  one-‐way	  ANOVA	  F(2,13)	  =	  19.70,	  p	  =	  
0.0001.	   Heroin	   did	   not	   induce	   MMP	   activity	   following	   extinction,	   but	   cue-‐induced	  
reinstatement	  produced	  a	  2.6	  fold	  induction	  in	  MMP	  activity,	  one-‐way	  ANOVA	  F(2,11)	  =	  
25.19,	   p	   <	   0.0001.	   Reinstatement	   induced	   by	   a	   10mg/kg	   cocaine	   priming	   injection	  
showed	  a	  rapid	  decrease	  in	  MMP	  activity,	  followed	  by	  a	  delayed	  increase	  following	  45	  
minutes	   of	   reinstatement,	   one-‐way	   ANOVA	   F(3,14)	   =	   23.42,	   p	   <	   0.0001.	   N	   in	   bars	  
indicates	   number	   of	   animals,	   and	   each	   animal	   constitutes	   the	   average	   of	   4	   slices	   in	  
which	   the	   injection	   site	   could	   be	   clearly	   imaged	   in	   the	   same	   frame	   as	   the	   anterior	  
commissure	   (AC).	   	   *	   p	   <	   0.05	   compared	   to	   yoked-‐saline	   using	   a	   Bonferonni	   test	   for	  
multiple	  comparisons;	  	  +	  p	  <	  0.05	  compared	  to	  extinguished.	  c,d,e)	  Representative	  10x	  
magnification	   micrographs	   of	   FITC-‐gelatin	   fluorescence	   in	   yoked-‐saline,	   cocaine	  
extinguished	   and	   cue-‐reinstated	   NAcore.	   Dashed	   lines	   show	   areas	   masked-‐out	   from	  
quantification	   and	   included	   nonspecific	   fluorescence	   associated	  with	   damage	   at	   the	  
injection	   site	   and	   the	   AC.	   Scale	   bar=	   500	   µm.	   f,g)	   Example	   63x	   magnification	  
micrograph	   in	   yoke-‐saline	   and	   cue-‐reinstated	   cocaine	   animals	   showing	   some	  
fluorescence	  around	  primary	  dendrites.	   	  Scale	  bar	  =	  20	  µm.	  Shows	  double	  labeling	  of	  
fluorescent	  puncta	  with	  the	  neuronal	  marker	  NeuN.	  Scale	  bar=	  100	  µm.	  N	  inside	  bar	  is	  
number	   of	   animals,	   5	   slices	  were	   averaged	  per	   animal,	   and	  data	  was	  normalized	   to	  
yoked-‐saline	  mean.	  All	  experiments	  were	  conducted	  by	  myself,	  except	  for	  the	  nicotine	  
experiment,	   in	  which	  I	  did	  the	  surgeries,	  Cassie	  Gipson	  ran	  the	  animals,	  and	  I	  did	  the	  
microinjections,	  perfusions,	  imaging,	  and	  analysis.	  
 

MMP-2 activity was constitutively up-regulated following extinction, and 

MMP-9 activity was transiently induced by reinstating cocaine seeking.   

Since the reinstatement of cocaine seeking produced the largest induction of 

MMP activity, we used cocaine-trained rats to investigate the possibility that 

MMP-2 and MMP-9 may have selective effects on drug-induced synaptic 

plasticity. Since FITC-quenching is relieved by proteolytic activity of either MMP-

2 or MMP-9, we used selective pharmacological inhibitors of MMP-2 (1.0 

nmol/side) and MMP-9 (0.1 nmol/side) to determine which MMP was mediating 

the increased fluorescence following cocaine extinction and reinstatement (Levin, 

2001).  The enduring basal increase in fluorescence in cocaine extinguished 

compared to yoked-saline subjects was abolished by intra-NAcore microinjection 
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of MMP-2, but not MMP-9 inhibitor (Figure 2a).  Conversely, the increase in 

fluorescence induced by 15 min of cued reinstatement was reduced by the MMP-

9, but not MMP-2 inhibitor (Figure 2b). The increase in fluorescence at 45 min 

following reinstatement elicited by a cocaine priming injection was also reduced 

by an MMP-9 inhibitor (Figure 2c). This pattern of gelatinase expression is 

consistent with previous work showing that the brain constitutively expresses 

MMP-2 activity, while MMP-9 is transiently induced by external stimuli 

(Verslegers et al., 2013).  Also, the differential effect of MMP-2 and MMP-9 

blockade on extinguished versus reinstated MMP activity supports the selectivity 

of the individual inhibitors (Levin, 2001).  
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Figure	  2-‐2.	  MMP-‐2	  was	  constitutively	  induced	  following	  extinction	  of	  cocaine	  
self-‐administration,	   and	   MMP-‐9	   was	   transiently	   induced	   by	   cues	   associated	  
with	  cocaine.	  Animals	  received	  unilateral	  vehicle	  injection	  and	  contralateral	  injection	  
of	  either	  MMP-‐2	  or	  MMP-‐9	  inhibitor.	  Opposite	  hemispheres	  were	  paired	  and	  data	  were	  
analyzed	  via	  paired	  Student’s	  t-‐test.	  a)	  MMP-‐2	  inhibitor	  (MMP-‐2i;	  1	  nmol)	  decreased	  
gelatinase	   activity	   following	   extinction	   compared	   to	   vehicle	   injection	   into	   the	  
contralateral	   NAcore,	   t(3)	   =	   3.72,	   p	   =	   0.034,	   while	   MMP-‐9i	   (0.1	   nmol)	   was	   without	  
effect.	  Yoked	  saline	  data	  shown	  for	  comparison	  are	  from	  panel	  1c.	  	  b)	  MMP-‐9i,	  but	  not	  
MMP-‐2i,	  reduced	  gelatinase	  activity	  15	  minutes	  following	  cue-‐induced	  reinstatement.	  
t(3)	  =	   3.47,	   p	  =	  0.040.	   	  c)	  MMP-‐9	   inhibition	   reduced	   fluorescence	   induced	  45	  minutes	  
after	   a	   cocaine-‐priming	   injection	   t(3)	   =	   3.77,	   p	   =	   0.037.	   	   For	   all	   representative	  
fluorescent	  micrographs	  injection	  damage	  (encompassed	  by	  dashed	  line)	  and	  AC	  were	  
masked	  out	   for	  quantifying	   fluorescence.	   	   Scale	  bar=	  500µm.	   	   *	   p	  <	  0.05,	   comparing	  
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vehicle	  with	  inhibitor	  used	  a	  paired	  Student’s	  t-‐test.	  N	  inside	  bar	  is	  number	  of	  animals,	  
5	  slices	  were	  averaged	  per	  animal,	  and	  data	  was	  normalized	  to	  the	  yoked-‐saline	  mean.	  
All	  experiments	  were	  conducted	  myself.	  
	  
Role of increased MMP-2 or MMP-9 synthesis in mediating increased 

proteolytic activity.   We next determined if the increases in MMP-2 or MMP-9 

proteolytic activity in NAcore were associated with changes in protein content.  

Neither the enduring increase in MMP-2, nor the transient increase in MMP-9 

activity after 15 min of cued reinstatement of cocaine seeking was accompanied 

by a change in whole cell MMP-2 or MMP-9 protein (Figure 3a) or mRNA (Figure 

2-10) content in the NAcore.  Similarly there was no change in the TIMP-2 

content, an endogenous protein that binds to and negatively regulates MMP-2 

activity (Brew et al., 2000). Since the MMP-2 and MMP-9 antibodies recognize 

both the active and inactive proMMP-2/9 proteins, the increase in MMP-2 and 

MMP-9 activity shown in figure 1 likely results from protein activation rather than 

increased protein synthesis (Huntley, 2012a). 
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Figure	   2-‐3:	   Cue-‐induced	   activation	   of	   MMP-‐2/9	   does	   not	   involve	   changes	   in	  
protein	  expression,	  but	  cocaine-‐induced	  activation	  does.	  NAcore	  was	  harvested	  
from	   yoked	   saline	   controls	   (YS),	   rats	   extinguished	   from	   cocaine	   (Ext),	   or	   rats	  
reinstated	  for	  15	  min	  by	  conditioned	  cues	  or	  for	  15	  min	  and	  45	  min	  by	  a	  noncontingent	  
cocaine	   injection	   (Rein;	   10	  mg/kg,	   ip).	   	  a)	   Cue-‐induced	   reinstatement	   did	   not	   alter	  
NAcore	   protein	   levels	   of	   MMP-‐2,	   MMP-‐9	   or	   TIMP-‐2.	   	   b)	   Fifteen	   min	   after	   cocaine-‐
induced	  reinstatement	  the	  level	  of	  MMP-‐2	  and	  MMP-‐9	  were	  not	  altered,	  but	  the	  level	  of	  
TIMP-‐2	  was	  elevated	  in	  cocaine-‐reinstated	  animals	  compared	  to	  cocaine	  extinguished	  
subjects;	   one-‐way	   ANOVA	   F(2,20)	   =	   3.756,	   	   p	   =	   0.0412.	   	   c)	   After	   45	   min	   of	   cocaine-‐
induced	   reinstatement,	   the	   levels	   of	  MMP-‐9	   and	   TIMP-‐2	  were	   elevated;	  MMP-‐9	   one-‐
way	   ANOVA	   F(2,19)	  =	   10.35,	   p	   =	   0.0009;	   TIMP-‐2	   one-‐way	   ANOVA	   F(2,19)	  =	   4.306,	   	   p	   =	  
.0287.	   	   *	   p	   <	   0.05,	   comparing	   yoked	   saline	   with	   reinstated	   protein	   levels	   using	   a	  
Newman-‐Kuels	  post	  hoc.	   	  +	  p	  <	  0.05,	  comparing	  extinguished	  with	  reinstated	  protein	  
levels.	  All	  experiments	  were	  conducted	  myself.	  
	  
Although cue-induced increases in MMP activity were not associated with 

changes in protein expression, MMP-9 levels in NAcore were increased in 

parallel with elevated MMP-9 activity at 45 min after a cocaine priming injection 

(Figure 3c).  While MMP-9 content was altered at 15 min after a cocaine 

injection, the level of TIMP-2 was increased compared with cocaine-extinguished 

rats at 15 min (Figure 3b), and elevated compared with both extinguished and 

yoked saline animals at 45 min after a cocaine priming injection (Figure 3c). 
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These protein data are consistent with the reduced MMP-2 activity found at 15 

min following noncontingent cocaine priming injection in figure 1b resulting in part 

from elevated TIMP-2, and the increase in MMP-9 activity at 45 min after cocaine 

in figure 2c arising in part from increased MMP-9 expression.  Moreover, the 

increase in MMP-9 protein at 45 min after a noncontingent cocaine injection is 

consistent with a previous study showing elevated MMP-9 in the prefrontal cortex 

one hour after reinstating conditioned place preference with an acute cocaine 

injection(Brown et al., 2008).  

Gelatinase inhibition decreased reinstatement-associated transient 

synaptic potentiation in the NAcore.  Withdrawal from cocaine self-

administration is associated with long-term synaptic potentiation in NAcore 

excitatory synapses (Robinson and Kolb, 2004; Moussawi et al., 2009; Wolf and 

Ferrario, 2011), and after 15 min of cue-induced reinstatement, NAcore synapses 

undergo further, transient potentiation (Anderson et al., 2008; Gipson et al., 

2013a).  Studies examining the effect of cocaine use on synaptic plasticity have 

employed morphological measurements of spine density and head diameter (dh), 

and electrophysiological measures of synaptic strength (assessed as the ratio of 

AMPA to NMDA currents; A/N). We used whole-cell patch clamp of medium 

spiny neurons (MSN) in the NAcore to determine if the enduring and 

reinstatement-induced increases in A/N depended on MMP-2 or MMP-9 activity 

(Figure 2-4a). Following vehicle microinjection into the NAcore, A/N in cocaine-

extinguished animals was elevated compared to yoked-saline rats, and was 

further elevated 15 min after initiating cue-induced reinstatement (Figure 2-4b).  



	   45	  

The enduring increase in A/N in cocaine-extinguished rats was restored to 

yoked-saline levels by the MMP-2, but not MMP-9 inhibitor.  Either the MMP-2 or 

MMP-9 inhibitor reduced the elevated A/N initiated by 15 min of cue-induced 

reinstatement to levels equivalent to those measured after cocaine extinction.  

Neither inhibitor significantly affected A/N in yoked-saline subjects (Figure 2-

11a).  There was also no affect of the MMP inhibitors on spontaneous excitatory 

postsynaptic current (sEPSC) frequency or amplitude in any of the three 

treatment groups (Figure 2-11d,e). These data demonstrate that the enduring 

increase in A/N measured in cocaine extinguished animals required MMP-2 

activity, while the transient elevation in A/N produced during cued reinstatement 

necessitated both MMP-2 and -9 activity. 

	  

Figure	   2-‐4.	   Gelatinase	   inhibition	   reduced	   the	   AMPA:NMDA	   ratio	   (A/N)	  
following	   extinction	   from	   cocaine	   self-‐administration	   and	   reinstatement.	   a)	  
A/N	   that	   was	   elevated	   by	   cocaine	   extinction	   was	   reduced	   by	   MMP-‐2i,	   while	   the	  
transient	   increase	   in	   A/N	   during	   reinstatement	   was	   reduced	   by	   either	   MMP-‐2i	   or	  
MMP-‐9i,	   one-‐way	  ANOVA	  F(6,57)	   =	   13.08,	   p	   <	   0.0001.	   *	   p	   <	   0.05,	   compared	   to	   yoked-‐
saline	   vehicle,	   using	   a	   post-‐hoc	   Newman-‐Keuls	   test.	   +	   p	   <	   0.05	   compared	   to	  
extinguished	  vehicle.	  #	  p	  <	  0.05,	  compared	  to	  reinstated	  vehicle.	  N	  inside	  bar	  is	  number	  
of	  cells	  recorded.	  b)	  Representative	  EPSCs	  of	  patched	  medium	  spiny	  neurons	  (MSNs)	  in	  
the	  NAcore	  show	  elevated	  AMPA	  currents	  following	  extinction	  and	  reinstatement,	  and	  
normalization	  by	  MMP-‐2	  and/or	  MMP-‐9	   inhibition.	  Red	   line	   indicates	  AMPA	  current,	  
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blue	  line	  indicates	  NMDA	  current.	  Non-‐truncated	  NMDA	  currents	  are	  shown	  in	  figure	  
2-‐11.	  All	  electrophysiology	  was	  conducted	  by	  Yonatan	  Kupchik.	  
 
Next, we diolistically labeled MSNs with lipophilic DiI followed by 3-dimensional 

reconstruction of high-density confocal images to determine if the changes in 

spine morphology produced after extinction from cocaine self-administration or 

after cue-induced reinstatement depended on MMP-2 and MMP-9 activity (see 

Figure 2-12 for representative DiI filled neurons). Following vehicle injection into 

the NAcore, there was an increase in dh after extinction from cocaine self-

administration compared to yoked-saline, and a further increase 15 min after 

cue-induced reinstatement of cocaine seeking (Figure 2-5a).  Akin to effects on 

elevated A/N in figure 2-4a, the long-lasting increase on dh in extinguished 

animals depended on MMP-2 activity, and the increase produced by 15 minutes 

of cued reinstatement depended on both MMP-2 and MMP-9 activity (Figure 2-

5a).  However, in contrast with the measurement of A/N in extinguished subjects, 

the MMP-2 inhibitor reduced dh below levels in yoked-saline animals (Figure 2-

5a).  The changes in mean dh were also reflected in cumulative frequency plots 

where a leftward shift relative to yoked saline is produced by smaller dh, and a 

shift to the right by larger dh (Figure 2-5e,f). Thus, in extinguished rats the vehicle 

treated subjects frequency curve was shifted to the right relative to yoked saline. 

MMP-9 inhibition also shifted the dh frequency curve to the right, while MMP-2 

inhibition shifted the dh to the left of yoked-saline animals (Figure 2-5e,f).  Also 

consistent with the analysis of mean dh in figure 5a, inhibiting either MMP-2 or 

MMP-9 in reinstated rats shifted the frequency plot to the left compared to the 

vehicle group and were equivalent to yoked-saline rats (Figure 2-5e,f). 
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Spine density did not fully parallel changes in dh. Spine density was elevated in 

cocaine-extinguished compared to yoked-saline rats, but no further elevation was 

produced by cued reinstatement (Figure 2-5b).  While MMP-2 inhibition reduced 

both the extinguished and reinstated increase in spine density to control levels, 

MMP-9 inhibition was without effect under either condition.  The lack of effect by 

inhibiting MMP-9 and the reduced density after MMP-2 inhibition is also reflected 

in spine density cumulative frequency plots (Figure 2-12c).  Combined with the 

measure of dh, these data indicate that reinstatement is associated with 

transiently increasing the size (dh) of existing spines, not creating new spines, 

and that MMP-2 activity supports the enduring increase in the number of spines 

in extinguished animals that are enlarged by MMP-9 activity during cued 

reinstatement. Neither MMP inhibitor affected dh or spine density in yoked-saline 

animals (Figure 2-13b,c).  
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Figure	   2-‐5.	   Gelatinase	   inhibition	   affects	   dendritic	   spine	   head	   diameter	   (dh)	  
similarly	   to	  A/N.	   a)	  The	  enduring	  elevation	  of	  dh	  by	  cocaine	  extinction	  was	  reduced	  
by	  intra-‐NAcore	  microinjection	  of	  an	  MMP-‐2i,	  while	  the	  transient	  increase	  in	  dh	  during	  
reinstatement	   was	   reduced	   by	   microinjection	   of	   either	   an	   MMP-‐2i	   or	   -‐9i,	   one-‐way	  
ANOVA	   F(8,	   27)	   =	   11.68,	   p	   <	   0.0001.	   b)	   The	   increase	   in	   spine	   density	   produced	   in	  
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extinguished	  animals	  was	  blocked	  by	  MMP-‐2i,	   not	  MMP-‐9i,	   one-‐way	  ANOVA	  F(8,	  27)	   =	  
13.47,	   p	   <	   0.0001.	   c)	  MMP-‐9i,	   but	   not	   MMP-‐2i	   blocked	   behavioral	   manifestation	   of	  
reinstatement	  over	  15	  minutes	  d)	  Representative	  micrographs	  of	  quantified	  dendritic	  
segments	   in	   each	   group.	   	   e,f)	   Frequency	   plots	   of	   dh	   revealed	   the	   same	   pattern	   of	  
change	  by	  MMP-‐2	  and	  MMP-‐9	  inhibition	  as	  the	  mean	  analysis.*	  p	  <	  0.05,	  compared	  to	  
yoked	  saline	  vehicle,	  using	  Bonferonni	  planned	  comparison	  post-‐hoc	  test	  (panels	  A	  and	  
B).	   +	  p	  <	  0.05	   compared	   to	   extinguished	   vehicle,	  #	  p	  <	  0.05,	   compared	   to	   reinstated	  
vehicle.	   N	   inside	   bar	   is	   number	   of	   animals.	   These	   experiments	   were	   performed	   in	  
collaboration	  with	  Cassie	  Gipson	  and	  Michael	  Scofield.	  I	  personally	  ran	  all	  animals	  and	  
performed	   the	   initial	   diolistic	   labeling.	   Drs	   Gipson	   and	   Scofield	   helped	   with	   the	  
imaging	  and	  analysis.	  

	  
	  

MMP-2 and -9 activity were both required for cue-induced reinstatement 

behavior.   The data in figures 1 and 2 show that extinction from cocaine self-

administration elevated MMP-2 activity, and that cue-induced reinstatement 

produced a further transient increase in MMP-9 activity. Figures 3 and 4 show 

that acute inhibition of MMP-2 reversed persistent synaptic potentiation produced 

by cocaine self-administration, while inhibition of either MMP-2 or MMP-9 

blocked the transient potentiation initiated by cocaine-associated cues.  Given 

the strong association previously reported between reinstated behavior and 

synaptic potentiation in accumbens MSNs (Gipson et al., 2013a), and the 

dependence of synaptic potentiation on MMP-2 and MMP-9 activity in figures 3 

and 4, we hypothesized that inhibitors of MMP-2 and MMP-9 would attenuate 

cue-induced reinstatement. Indeed, for the A/N and spine morphology 

measurements in figures 3 and 4 where reinstatement was only quantified for 15 

min before the animals were sacrificed, both MMP-2 and MMP-9 inhibitors 

partially or completely reduced reinstated cocaine seeking compared with vehicle 

mincroinjection into the NAcore.  To fully evaluate the involvement of MMP-2 and 

MMP-9 in cue-induced reinstatement, we used a counterbalanced within-subjects 
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crossover design, and infused 2.5% DMSO vehicle, MMP-2 inhibitor, or MMP-9 

inhibitor into the NAcore 15 minutes before initiating a 120 min reinstatement 

session. Rats microinjected with vehicle showed stable reinstated active lever 

presses over the three trials (Figure 2-16). Inhibition of either MMP-2 or MMP-9 

caused a dose-dependent reduction in cue-induced reinstatement compared to 

vehicle control injections (Figure 6b,c).  MMP-9 inhibition also dose-dependently 

reduced cocaine-primed reinstatement (Figure 6d). In contrast, neither drug 

significantly reduced the reinstatement of lever pressing for sucrose pellets 

(Figure 6f).  A lack of effect by MMP inhibition on reinstated sucrose seeking is 

consistent with the lack of synaptic potentiation in the NAcore during cue-induced 

sucrose reinstatement (Gipson et al., 2013a), and supports the specificity of 

MMP inhibition for drug-associated synaptic adaptations and reinstated drug 

seeking. 
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Figure	   2-‐6.	   Administration	   of	   either	   MMP-‐2i	   or	   MMP-‐9i	   into	   the	   NAcore	  
produced	   a	   dose-‐dependent	   decrease	   cue-‐induced	   reinstatement.	   a)	   Active	  
lever	   pressing	   during	   daily	   cocaine	   self-‐administration	   and	   extinction	   sessions.	   b,c)	  
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Bilateral	   microinjection	   of	   MMP-‐2i	   or	   MMP-‐9i	   into	   the	   NAcore	   dose-‐dependently	  
decreased	   active	   lever	   pressing	   in	   response	   to	   cocaine-‐conditioned	   cues	   over	   a	   two-‐
hour	   reinstatement	   session.	   Two-‐Way	   ANOVA	   revealed	   a	   main	   effect	   for	   dose	   of	  
inhibitor	  selectively	  on	  active	  lever	  pressing,	  treatment	  dose	  F(7,172)	  =	  11.61,	  p	  <	  .0001,	  
active	  vs	  inactive	  lever	  F	  (1,	  172)	  =	  140.0,	  p	  <	  .0001,	  interaction	  F(7,	  172)	  =	  8.023,	  p	  <	  .0001.	  	  	  
Bonferonni’s	   post-‐hoc	   test	   revealed	   significant	   attenuation	   of	   active	   lever	   pressing	  
following	  .1	  nmol	  of	  MMP-‐9	  inhibitor	  and	  following	  1	  nmol	  MMP-‐2	  inhibitor.	  No	  dose	  
of	  either	  inhibitor	  had	  any	  effect	  on	  active	  lever	  pressing.	  d)	  Bilateral	  microinjection	  of	  
MMP-‐9i	   dose-‐dependently	   decreased	   active	   lever	   pressing	   in	   response	   to	   a	   cocaine	  
priming	  injection	  over	  a	  two-‐hour	  reinstatement	  session.	  	  Two-‐Way	  ANOVA	  dose	  F(4,	  97)	  
=	  11.28,	  p	  <	  .0001,	  lever	  F(1,	  97)	  =	  71.14,	  p	  <	  .0001,	  interaction	  F(4,	  97)	  =	  11.28,	  p	  <	  .0001.	  
e)	   Daily	   active	   lever	   pressing	   during	   sucrose	   self-‐administration	   and	   extinction	  
training.	   f)	   Intra-‐NAcore	   microinjection	   of	   either	   MMP-‐2i	   (1	   nmol/side)	   or	   MMP-‐9i	  
(0.1	   nmol/side)	   failed	   to	   reduce	   cue-‐induced	   reinstatement	   of	   sucrose	   seeking.	  
Kruskal-‐Wallis(4,30)	  =	   10.61,	   p	   =	   0.014.	   	   *	   p<	   0.05	   compared	   to	   extinction,	   +	   p	   <	   .05	  
compared	   to	   vehicle,	   #	   p	   <	   .05	   compared	   to	   paired	   inactive	   responding,	   using	  
Bonferonni’s	   post	   hoc	   test.	   N	   inside	   bar	   is	   number	   of	   animals.	   All	   experiments	  were	  
conducted	  myself.	  
 
 
2.4 DISCUSSION 
 

Our data show that the rapid, transient induction of gelatinase activity in NAcore 

is a biomarker for cue-induced reinstatement that is shared between three 

distinct chemical classes of addictive drug, including cocaine, heroin, and 

nicotine.  We also found that reinstatement induced by a noncontingent cocaine 

injection resulted in a similar, albeit delayed gelatinase activation.  Furthermore, 

the increase in gelatinase activity by either cue or acute cocaine depended on 

activating MMP-9.  In contrast with transiently increased gelatinase activity being 

a consistent biomarker for reinstated drug seeking, animals extinguished from 

cocaine and nicotine self-administration show increased gelatinase activity in 

NAcore, but there was no activation in heroin-extinguished subjects. This 

distinction between heroin, cocaine and nicotine is paralleled by other measures 

of synaptic plasticity at excitatory synapses in NAcore where cocaine and 
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nicotine extinguished rats show increases in both AMPA/NMDA and dh or spine 

density (Gipson et al., 2013a; Gipson et al., 2013b), and heroin extinguished rats 

show either no change or reductions (Shen et al., 2011).  When a neurobiological 

trait is shared between different classes of addictive drug it would seem to 

increase the likelihood that this trait contributes to one or more of the shared 

behaviors used to identify addiction, such as the vulnerability to relapse.  Thus, 

the fact that the transient synaptic potentiation and gelatinase activation 

produced during a reinstated behavior that is designed to model relapse was 

shared between cocaine, heroin and nicotine supports a role for this type of 

transient synaptic plasticity in relapse.  Conversely, the lack of consistency 

between addictive drugs at inducing enduring synaptic potentiation and 

gelatinase activity argues that these adaptations are drug specific and therefore 

less likely to contribute to the behaviors characterizing addiction that are shared 

between addictive drugs.  

 

While the transient increase in MMP activity induced by cocaine associated cues 

was prevented by microinjecting a MMP-9 inhibitor into the NAcore, the enduring 

synaptic potentiation in NAcore following extinction from cocaine self-

administration was reversed by intra-NAcore microinjection of an MMP-2 

inhibitor. A necessary role for MMP-9 activity in synaptic plasticity is consistent 

with studies showing that both electrically and chemically induced synaptic 

potentiation in the hippocampus requires MMP-9 activity (Wang et al., 2008b; 

Szepesi et al., 2013).  In contrast, to our knowledge this is the first report of 
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MMP-2 involvement in synaptic potentiation.  Although the transient, 

reinstatement-associated increase in MMP activity was MMP-9 dependent, we 

found the enduring rise in MMP-2 activity was also necessary for cue-induced 

behavioral reinstatement and the associated increases in A/N and dh.  

Interestingly, while transient MMP-9 dependent synaptic potentiation involved 

increases in A/N and dh, there was not a parallel increase in spine density.  

However, the enduring increase in spine density in extinguished rats was MMP-2 

dependent.  One interpretation of this dissociation between dh and spine density 

is that the enduring increased density of spines can be readily and transiently 

potentiated during reinstatement by increased MMP-9 activity.  Thus, changes in 

spine density reflect a more permanent alteration in steady state synaptic 

connectivity.  

Consistent with our data showing involvement of MMPs in addiction, clinical 

studies reveal that MMP-9 gene expression is altered in the brain of cocaine 

addicts (Mash et al., 2007), the serum of heroin addicts (Kovatsi et al., 2013), 

and that an MMP-9 gene polymorphism is associated with alcohol dependence 

(Samochowiec et al., 2010).  In animal models, intra-ventricular injection of a 

nonselective MMP inhibitor reduces reinstated cocaine conditioned place 

preference, heroin seeking, and ethanol consumption by dependent rats (Brown 

et al., 2007; Van Den Oever, 2010; Smith et al., 2011). Supporting a general 

involvement of MMPs in addiction pathology, we showed that nicotine and heroin 

reinstatement was also associated with increased MMP activity in NAcore. 
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We did not investigate the specific signaling mechanism(s) whereby constitutively 

increasing MMP-2, or the transient cue-induced elevation of MMP-9 mediates 

either synaptic potentiation or reinstated cocaine seeking.  There exist a number 

of known MMP-2 and MMP-9 protein substrates in the ECM that have been 

shown to play a role in animal models of addiction, and are possible candidate 

MMP signaling substrates.  For example, MMP-2 and/or MMP-9 catabolically 

activate secreted brain-derived growth hormone (BDNF)(Mizoguchi et al., 

2011b), and BDNF in the nucleus accumbens is both increased following cocaine 

self-administration and promotes reinstated cocaine seeking (Graham et al., 

2007).  Moreover BDNF is well characterized to induce synaptic potentiation in 

many brain regions (Bramham, 2008).  Another example is the activation of 

thrombospondin by MMP-2 and -9.  The thrombospondin receptor, the α2δ1 

auxiliary subunit of voltage-gated calcium channels (Bauer et al., 2010), is 

upregulated in the nucleus accumbens following withdrawal from self-

administered cocaine (Reissner et al., 2011), and thrombospondin binding to 

α2δ1 induces synaptogenesis (Eroglu et al., 2009).  Finally, MMP-2 and -9 

processing of ECM proteins such as laminin, fibronectin or thrombospondin 

reveals an RGD motif that binds to integrins (Ethell and Ethell, 2007).  Binding of 

integrins promotes the activity of NMDA receptors, insertion of AMPA receptors 

into the synapse, and actin elongation, a necessary step in spine extrusion and 

expansion (Cingolani et al., 2008; Michaluk, 2009; Chen et al., 2010).  Moreover, 

the beta-3 subunit of integrin is up-regulated in the accumbens following 

extinction from cocaine self-administration, and providing exogenous RGD to 
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prevent ECM proteins from binding integrins inhibits cocaine-induced 

reinstatement (Wiggins et al., 2011a).  Clearly, there are a number of viable 

avenues to explore in future studies to understand how the constitutive and cue-

induced increases in MMP activity mediate enduring and transient LTP in MSNs 

that underlies reinstated cocaine seeking. 

 

While our data strongly implicate MMP-2, and especially MMP-9 in both 

behavioral reinstatement and reinstatement-associated synaptic plasticity in the 

NAcore, there were interesting deviations from literature-based expectations.  

For example, TIMP-2 was increased at both 15 and 45 min noncontigent injection 

of cocaine (Smith et al., 2014b).  The elevation of TIMP-2 at 15 min is consistent 

with the reduction in MMP activity we observed after 15 min of cocaine-induced 

reinstatement and the established role of TIMP-2 to inhibit MMP-2 activity(Brew 

et al., 2000).  However, the increase at 45 min of cocaine-induced reinstatement 

was not expected since MMP-9 activity was increased and TIMP-2 also inhibits 

MMP-9 in some studies; although it forms a preferential complex with MMP-2 

(Lambert et al., 2004).  Also, we did not identify the mechanism by which MMP-2 

and MMP-9 are constitutively and transiently elevated, respectively.  A number of 

possibilities can be pursued in future studies.  For example, nitrosylation of either 

protein is known to promote the active over inactive conformation of the 

protein(Manabe et al., 2005b), and nitric oxide is elevated after withdrawal from 

chronic cocaine and methamphetamine administration (Lee et al., 2010).  Also, 

previous studies have strongly implicated spillover of synaptic glutamate in the 

NAcore as a necessary mediator of reinstated cocaine seeking(Kalivas, 2009), 
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and increasing intracellular calcium levels by stimulating either NMDA receptors 

or mGluR5 would be expected to promote MMP-2/9 (Lee et al., 2011). 

 

In summary, we have identified a specific and necessary role for MMP-2 and 

MMP-9 activity in the enduring vulnerability to relapse that depends on MMP 

induction of both constitutive and transient excitatory synaptic potentiation in the 

NAcore.  Moreover, the transient increase in MMP-9 was observed across 

multiple classes of addictive drug, including cocaine, heroin and nicotine.  Taken 

together, these data open study of the extracellular matrix signaling domain as a 

potential research theme for understanding and treating substance abuse 

disorders. 
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Supplemental figures for Chapter 2: Synaptic 
plasticity mediating cocaine relapse requires 
matrix metalloproteinases:	    
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Figure 2-7. Control FITC-gelatin substrate experiments show linearity of 
fluorescence over time after injection. The catabolism of the FITC-gelatin 
substrate shows linear increases in gelatinolytic fluorescence over 15 - 60 
minutes incubation in vivo.  Injections were made into the dorsal hippocampus 
due to relatively higher constitutive MMP activity compared with the NAcore or 
striatum.  N= 3 at each time point. I conducted all aspects of this experiment.
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Figure 2-8. Lever pressing during self-administration and extinction of 
cocaine, nicotine and heroin.	  a) Active and inactive lever pressing data for 
animals that were used for in vitro measurements of zymography, Western 
blotting, electrophysiology or dendrite morphology in figures 1 and 2.  b) Training 
data for rats used in cocaine studies in figure 2e,f.   c) Training data for rats used 
in sucrose studies in figure 2g.	  I	  conducted	  all	  aspects	  of	  this	  experiment,	  except	  
for	  nicotine	  self-‐administration	  and	  extinction,	  which	  were	  performed	  by	  Dr.	  
Cassandra	  Gipson.
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Figure 2-9. Lack of increased MMP-2 and MMP-9 activity in the dorsal 
striatum or accumbens shell following cue-induced reinstatement of 
cocaine seeking. There was no change in gelatinolytic fluorescence in either 
the dorsal striatum or the nucleus accumbens shell between yoked-saline 
controls and animals that underwent 15 minutes of cue-induced reinstatement. 
This indicates anatomical specificity for MMP-dependent plasticity within within 
the striatum is largely confined to the NAcore.  Dashed lines on the micrographs 
encompass the injection site that was masked-out for quantification.   Unpaired 
Student’s t-test revealed no significant effect of reinstatement on fluorescence, 
dorsal striatum t(4) = 1.411, p > 0.05, NAshell t(4) = 0.2112, p > 0.05. I 
conducted all aspects of this experiment. 
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Figure 2-10. There were no changes in protein concentration of MMP-2 or 
mRNA of each MMP-2, MMP-9, or TIMP-2	  a) MMP-2 protein was quantified in 
NAcore tissue obtained from yoked saline, cocaine extinguished and after 15 min 
of cued reinstatement in cocaine-trained rats.  There was no difference between 
treatment groups using a one-way ANOVA.  b) mRNA content quantified by 
PCR. Paired Student’s t-tests did not reveal any significant differences between 
groups. MMP-2 t(10)  = 0.6321, p > .05, MMP-9 t(10) = 0.934, p > .05, TIMP-2 
t(10) = 0.814m p > .05. S = Yoked Saline, R = Reinstated. I conducted all 
aspects of this experiment. 
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Figure 2-11. MMP inhibition did not have an effect on NMDA decay time or 
sEPSCs. a) Representative traces showing full length AMPA and NMDA current 
recordings.  b) No effect of MMP inhibition on NMDA decay time. One-way 
ANOVA F(8,67) = 0.83, p > .05. c) MMP inhibition did not alter sEPSCs 
amplitude in any condition.  One-way ANOVA F(8,67) = 1.34, p > .05.  d) MMP 
inhibition did not alter sEPSCs frequency in any condition. One-way ANOVA 
F(8,67) = 0.88, p > .05.  N is shown in bars as number of neurons recorded 
(panels a, d, e) or animals quantified (panels b, c) with each animal being the 
average of 6-12 neurons. I trained the animals on self-administration, extinction, 
and reinstatement, and Dr. Yonatan Kupchik performed the electrophysiological 
recordings.

 



	   64	  

	  

 
	  

  
Figure 2-12 Representative images and dendritic spine density frequency 
plot a,b) For dendritic spine analysis, images of entire neurons were taken at 
1 µm resolution, and then 45-55 µm segments located between 75-200 µm 
from the soma and after the first branch point were imaged at 0.1 µm resolution 
for 3-dimensional reconstruction and morphological analysis. The yellow 
rectangle indicates the location of the dendritic segment that was imaged from 
these neurons. c) Representative micrographs of quantified dendritic segments 
from each group.    d) Shows cumulative frequency distribution for dendritic spine 
density. There was a noticeable shift to the right in extinguished cocaine treated 
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animals relative to yoked saline indicating greater spine density in cocaine-
extinguished rats (see statistical analysis of mean values in figure 5).   While 
MMP-2 inhibition reversed this effect in cocaine-extinguished subjects, MMP-9 
inhibition was ineffective.  Reinstatement did not alter the distribution relative to 
extinguished vehicle treatment, and MMP-2, but not MMP-9 inhibition returned 
the reinstated cocaine distribution to yoked saline distribution. Drs.	  Cassandra	  
Gipson	  and	  Michael	  Scofield	  assisted	  in	  the	  imaging	  and	  analysis	  of	  these	  data.	  

 
	  

	  
Figure 2-13. MMP inhibition did not affect synaptic strength in yoked 
saline animals. a) Shows A/N following vehicle, MMP-2 or MMP-9 
inhibition in yoked-saline controls. One-way ANOVA revealed F(2,19)= 
3.41, p > .05.  b) Neither MMP-2 nor MMP-9 inhibition affected spine 
head diameter in yoked-saline controls. One-way ANOVA revealed F(2,9)  
= 1.01, p > .05. c) Neither MMP-2 nor MMP-9 inhibition affected spine 
density in yoked-saline controls. One-way ANOVA F(2,9) = 0.12, p < .05. 
Dr. Yonatan kupchik assisted with electrophysiological recordings, and Drs. 
Cassandra Gipson and Michael Scofield assisted with spine analysis.
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Appendix 2-14. Histological verification of microinjection sites for animals 
microinjected with vehicle or MMP inhibitors prior to reinstatement. Rats 
with injection cannula outside of the NAcore were excluded from behavioral 
analysis. I performed all aspects of this experiment.
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Figure 2-15. Full-length western blots corresponding to truncated blots 
shown in Figure 1h. ERY pattern repeated across the gel.   
E- extinguished, R- reinstated, Y- yoked saline. I performed all aspects of this 
experiment.
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Appendix 2-16.	   Lever pressing following vehicle microinjection in dose-
response analysis in Figure 2 was stable across three reinstatement trials.	  
The experiments in figures 3-2e-f were conducted as a within-subject crossover 
design consisting of 3 reinstatement trials per animal (unless a microinjection 
cannula became clogged, in which case only 2 trials were conducted.   These 
data show the response to vehicle when it was randomly given in the first, 
second or third trial, and that there is no difference in vehicle reinstatement 
across 3 trials.  The data argue against the possibility that the data if figure 6 
were influenced by the order of drug injection across trials. One- Way ANOVA 
revealed F(2, 22) = 0.02, p > .05. I performed all aspects of this experiment.	  
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Chapter 3: nNOS-expressing interneurons in 
the nucleus accumbens core drive 
reinstatement of cocaine seeking 
 

Abstract 

Chronic cocaine use results in a synaptic potentiation of glutamatergic synapses 

in the nucleus accumbens core (NAcore) that underlies vulnerability to relapse 

following extinction. Matrix metalloproteinases (MMPs) are extracellular matrix 

remodeling enzymes that promote synaptic plasticity, and inhibition of MMPs 

results in reversal of cocaine-induced potentiation of synapses in the NAcore. 

One mechanism by which MMPs are activated is through S-Nitrosylation via nitric 

oxide (NO), which is produced by a small population of GABAergic interneurons 

in the NAcore. We utilized a cocaine self-administration reinstatement paradigm, 

and evaluated the role of nitrergic signaling in relapse-associated MMP activity, 

synaptic potentiation, and behavior. Inhibition of neuronal nitric oxide synthase 

(nNOS) blocked reinstatement behavior and the associated increase in MMP 

activity. Finally, NOS1-Cre transgenic mice were used to chemogenetically target 

a Gq-DREADD to nNOS-expressing interneurons, and we show that selectively 

activating these receptors is able to drive both MMP activity an reinstatement 

behavior. This indicates that this small (~1%) population of interneurons within 

the NAcore may be a master switch by which synaptic potentiation and relapse 

behavior are initiated. 
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3.1 Introduction 
 

Drug addiction is a chronic relapsing disorder characterized by a loss of control 

over intake, even after protracted abstinence (Kalivas, 2005). The nucleus 

accumbens core (NAcore) serves as a gateway between limbic and motor 

information, and its afferents from the prefrontal cortex are involved in initiating 

goal directed behaviors (Kalivas, 2009). Glutamatergic plasticity within the 

corticostriatal projection originating in the prelimbic cortex and terminating in the 

NAcore underlies the vulnerability to reinstatement. Decreased basal 

extrasynaptic glutamate provides less tone on mGluR2/3 receptors on 

presynaptic terminals, and primes this system for an activity-dependent spillover 

of synaptic glutamate in response to cocaine-conditioned cues (Kalivas 2009). 

This large presynaptic release of glutamate is accompanied by decreased 

function of glial glutamate reuptake through GLT-1, and leads to overflow of 

glutamate outside of the synapse (Reissner et al., 2015). There are numerous 

potential extrasynaptic targets for glutamate, and of these both mGluR5 and 

GluN2B receptors are particularly attractive candidates in controlling vulnerability 

to relapse (Bespalov et al., 2005; Mitrano et al., 2008; Shen et al., 2011; Wang et 

al., 2013) Postsynaptic neurons in the NAcore exist in a persistently potentiated 

state, and undergo a further rapid, transient synaptic potentiation following cue-

induced reinstatement (Gipson et al., 2013; Smith et al., 2014).  

Recent findings from our lab have established a role for matrix 

metalloproteinases (MMPs)-2 and -9 in mediating both these persistent and 

transient synaptic potentiations (Figures 2-4, 2-5; Smith et al., 2014). Specifically, 
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constitutively upregulated MMP-2 activity is responsible for driving persistent 

synaptic potentiation following extinction, and cue-induced reinstatement 

produces a transient induction of MMP-9 activity that drives transient synaptic 

potentiation (Figures 2-1, 2-2). MMPs-2 and -9 can each be activated through S-

nitrosylation of a cysteine residue within their pro-domain via nitric oxide. 

Furthermore, we have recently shown that the selective mGluR5 agonist (RS)-2-

Chloro-5-hydroxyphenylglycine (CHPG) is capable of robustly initiating 

reinstatement of cocaine seeking and transient synaptic potentiation even in the 

absence of cues (Cassandra Gipson & Peter Kalivas, April 15, 2015). CHPG 

stimulates mGluR5 receptors that in turn cause the release of Ca2+ from internal 

stores, however, the mechanism by which CHPG elicits reinstatement or affects 

cells has not been studied. 

The primary neural components of the NAcore are medium spiny neurons 

(MSNs), which are projection neurons that make up approximately 95% of the 

neurons in the NAcore (Tepper et al., 2010). The remaining 5% of neurons are 

interneurons, of which there are 3 main types: 1) cholinergic interneurons that 

are also called tonically active interneurons or giant interneurons, 2) fast-spiking 

GABAergic low-threshold spike interneurons that are also characterized by their 

high expression of Parvalbumin, and 3) GABAergic interneurons that co-express 

neuronal nitric oxide synthase (nNOS), somatostatin, and neuropeptide Y (NPY) 

(Tepper et al., 2010). nNOS is an enzyme that synthesized nitric oxide (NO) from 

the substrate L-arginine, and is physically coupled to NMDA receptors via a PDZ 

interaction with PSD95 (Cui et al., 2007). nNOS is Ca2+-sensitive, due to its 
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dependence on Calmodulin (CaM) binding for activity to occur (Rameau et al., 

2003a). NO is a freely diffusible gaseous neurotransmitter, that canonically 

signals through the sGC/cGMP/PKG pathway (Haley et al., 1992; Gabach et al., 

2013), but can also react with thiol groups of cysteine or methionine residues to 

S-Nitrosylate a large number of proteins, such as MMPs. Very little is known 

about the effects of cocaine on NO signaling. In the dorsal striatum, NO efflux is 

increased following 7 days of experimenter-administered cocaine and 7 days of 

withdrawal (Lee et al., 2010). In the nucleus accumbens shell, cocaine 

sensitization requires the S-nitrosylation of Stargazin, and AMPA trafficking 

protein that regulates surface expression of GluA1 AMPA subunits (Selvakumar 

et al., 2014). In the current experiments, we test the hypothesis that Ca2+ 

signaling within nNOS-expressing interneurons induces NO efflux, S-nitrosylation 

of MMPs, synaptic potentiation, and reinstatement of cocaine seeking. Our 

results show that inhibition of nNOS is capable of attenuating both cue- and 

CHPG-induced reinstatement in rats. By utilizing NOS1-Cre transgenic mice, we 

selectively chemogenetically target nNOS-expressing interneurons, and show 

that stimulation of this cell population is able to drive not only MMP activity and 

transient synaptic potentiation, but can cause reinstatement of cocaine seeking 

even in the absence of cocaine-conditioned cues. 
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Figure	  3-‐1.	  Proposed	  model	  of	  glutamatergic	  spillover	  leading	  to	  nitric	  
oxide	   production.	   Cocaine	   conditioned	   cues	   stimulate	   a	   large	   glutamate	   from	  
cortical	   afferents	   in	   the	   NAcore.	   While	   this	   glutamate	   is	   targeted	   for	   a	   dendritic	  
spine	   on	   a	  medium	   spiny	   neuron,	   dysregulation	   of	   glutamate	   homeostasis	   allows	  
glutamate	   to	   spill	   out	   of	   the	   synapse	   and	   affect	   nearby	   nNOS-‐expressing	  
interneurons.	  Once	  nNOS	  is	  created,	  it	  is	  able	  to	  freely	  diffuse	  and	  affect	  physiology	  
in	  each	  the	  presynaptic	  terminal,	  the	  medium	  spiny	  neuron,	  and	  in	  the	  extracellular	  
space.	  

 
3.2 Methods 

Animal Housing and Surgery. Both rats and mice were used. Male Sprague-

Dawley Rats (250g; Charles River) and NOS1-Cre transgenic mice (Jackson 

Labs #017526 B6.129-Nos1tm1(cre_Mgmj/J) were individually housed with a 12:12 

hour dark/light cycle. All experiments occurred during the dark phase, and 

animals were allowed to acclimate to the vivarium environment for 4 days prior to 

surgery. Rats were anesthetized with a combination of ketamine HCl and 

xylazine, and received ketorolac for analgesia. All rats received intrajugular 
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catheters, and rats for microinjection experiments received intracranial cannula 

targeted 2 mm above the NAcore for rats, 1 mm above the NAcore for mice (rats 

+1.8 A/P, +2.1 M/L, -5.5 D/V; mice +1.5 A/P, +1.3 M/L, -3.6 D/V) (Paxinos and 

Watson, 2007). Animals were food restricted to 25g of rat chow per day. All 

methods used comply with the NIH Guide for the Care and Use of Animals and 

were approved by the Institutional Animal Care and Use Committee at the 

Medical University of South Carolina. 

 

Drugs Used. Drugs used include N-Propyl L-Arginine hydrochloride (NPLA; 

Tocris; nNOS Ki = 57 nM. 3158-fold selectivity over iNOS, 149-fold specificity 

over eNOS). (RS)-2-Chloro-5-hydroxyphenylglycine (CHPG; Tocris). Clozapine 

N-Oxide (CNO), the synthetic ligand for DREADD receptors. 

 

Drug Self-Administration and Reinstatement. After 5 days of recovery from 

surgery, rats underwent one overnight (12 hour) food training session. The next 

day, animals began daily 2-hour self-administration (SA) sessions. During SA, 

cocaine was delivered using an FR1 schedule with a 20 s timeout following each 

infusion. Active lever presses that resulted in cocaine infusion simultaneously 

resulted in presentation of a compound light (above the active lever) and tone 

(2900 Hz) conditioning stimulus. An inactive lever was also provided to control for 

non-motivated responding. Following 10 SA sessions at ≥10 infusions/day, rats 

began extinction training, during which all programmed consequences were 

removed from lever pressing. Extinction training lasted at least 10 days, or until 
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two consecutive days ≤ 25 active lever presses. Reinstatement was induced by 

presentation of light/tone cues following an active lever press. Microinjections of 

NPLA, CHPG (10µg), CNO (1µg), or vehicle, or systemic injections of CNO 

(3mg/kg) or vehicle were given 15 minutes prior to beginning reinstatement in 

most cases, or 15 minutes prior to gel infusion for zymography experiments. For 

behavioral experiments, a within-subjects crossover design was used. In this 

paradigm, each rat received each condition according to a Latin square design. 

Rats were required to meet extinction criteria prior to each reinstatement test. 

Reinstatement sessions lasted 120 minutes in the behavioral experiment, and for 

zymography experiments reinstatement sessions were 15 minutes long, at which 

point rats were anesthetized with 100mg pentobarbital, then transcardially 

perfused with 4% paraformaldehyde for further measurements. For western 

blotting experiments, rats underwent 15 minute reinstatement sessions and then 

were sacrificed via rapid decapitation. 

 

In Vivo Zymography. Because MMPs are secreted in inactive pro-forms and 

catalytically activated within the ECM, activity assays are preferable to 

immunoblotting for protein content for assessing changes in MMP function (Kupai 

et al., 2010). We used an in vivo zymography assay to directly measure MMP 

activity.  Dye-quenched gelatin is an MMP-2/9 substrate containing intra-

molecularly quenched FITC fluorophores that cannot fluoresce until 

proteolytically processed by MMP-2 or MMP-9 (Bozdagi et al., 2007). The 

amount of fluorescence produced forms a linear relationship with incubation time 

and MMP activity Figure 2-7).  Dye-quenched FITC-Gelatin (Molecular Probes, 
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Eugene, OR) was reconstituted in PBS at 1 mg/ml pH 7.2-7.4. 3.0µl of gel 

(1.5µl/side) was microinjected 15 minutes prior administering an overdose of 

pentobarbital (100 mg/kg, ip) and beginning transcardial perfusion of 4% 

paraformaldehyde (PFA).  Brains were removed, placed in 4% PFA for 90 

minutes for additional fixation, a vibratome was used to obtain 50 µm sections 

through the NAc. Sections were mounted and coverslipped. Fluorescence was 

excited with a 488nm Argon laser, emissions filtered to 515-535nm, and images 

obtained through a 10x objective with a 0.3 numerical aperture (Leica confocal 

microscope). Only slices in which the injection site and anterior commissure 

could be visualized in the same frame were imaged. ImageJ (NIH) was used to 

quantify images. All quantified images contained the anterior commissure, which 

was masked to prevent being quantified, but provided a landmark for the NAcore.  

MMP activity is induced as part of the acute inflammatory response to tissue 

damage from the microinjector, and thus the microinjector tract was readily 

visible in all quantified sections due to equivalent high fluorescence in all 

treatment groups (Figure 1). This tract was also masked to eliminate quantifying 

any MMP activity caused by microinjection-induced acute damage.  

Fluorescence was quantified bilaterally as integrated density from four sections 

per rat, and the integrated densities were averaged within each rat and 

normalized to yoked-saline control values. 

 

Western Blotting. Rats were rapidly decapitated after extinction of cocaine self-

administration or yoked-saline, or following 15 or 45 minutes following cued or 
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cocaine-primed reinstatement. The NAcore was dissected and homogenized in 

RIPA lysis buffer containing 1.0% SDS and protease/phosphatase inhibitors. 

Homogenate was centrifuged at 4°C for 5 minutes at 10,000 x g. Supernatant 

was collected and protein concentration was determined via a biconchinic acid 

assay (Thermo Scientific). 30µg protein was added to each lane of 10% Bis-Tris 

gels (Bio-Rad), and transferred to nitrocellulose membranes via the Invitrogen 

iBlot transfer system. Primary antibodies were used for nNOS (1:1000, Millipore 

#AB5380), phospho-Ser847 nNOS (1:1000, Abcam #16650) and HRP-

conjugated Goat anti-Rabbit secondary antibody was used at 1:10,000. GAPDH 

was used as a loading control. A Kodak Image Station was used to visualize and 

quantify protein expression. 

 

Immunoprecipitation. Protein-A dynabeads were washed in cold PBS, and MMP-

2 (Millipore #19015) or MMP-9 antibody (Millipore #19016) were added at 1:1000 

dilution and allowed to incubate for 1h at RT. Beads were washed 3 times for 5 

minutes each in cold PBS containing 0.2% Triton-X100 (PBST). Protein A was 

crosslinked to antibodies with 5mM bis(sulfosuccinimidyl)suberate (BS3) for 30 

minutes, and the crosslinking reaction was quenched via 1M Tris-HCl for 15 

minutes. NAcore samples were prepared as whole-cell lysates in RIPA buffer 

with protease and phosphatase inhibitors. 45µg of protein was added for 

detection of MMP-2, or 100µg of protein for MMP-9 in 200µl RIPA buffer 

containing protease and phosphatase inhibitors. Beads were washed 3 minutes 

for 5 minutes each in cold PBST.  Elution occurred via 50mM Glycine at pH 2.8, 
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and samples were heated to 50oC for 10 minutes. Western blotting was 

performed above, and membranes were probed with an antibody against S-

nitrosocysteine (Sigma Aldrich #N5411). Membranes were then stripped via 

RestorePLUS western stripping buffer (Life Technologies #46428) for 10 minutes 

at 37oC, and re-probed using the same antibody that was used for the 

immunprecipitation. SNO-cysteine content was normalized to total protein for 

quantification. 

 

Statistics: All statistics were performed using GraphPad Prism version 7. Two-

hour reinstatement sessions were analyzed using a repeated measures One-

Way ANOVA. Zymography data were analyzed using paired t-tests, with opposite 

hemispheres forming pairs.  

 

3.3 RESULTS 

nNOS inhibition attenuates both cue-induced and CHPG-induced 

reinstatement 

The role of nNOS and nitrergic signaling in hippocampal LTP was established 

over two decades ago (Haley et al., 1992), however, its role in synaptic plasticity 

contributing to cocaine reinstatement has never been thoroughly evaluated. We 

hypothesized that nNOS production of NO and nitrergic signaling are important 

for reinstatement of cocaine seeking and the associated induction of MMP 

activity. To test this hypothesis, we utilized the pharmacological nNOS inhibitor 

N-propyl-L-arginine (NPLA) to measure the effects of nNOS inhibition on cue-
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induced reinstatement and the associated induction of MMP activity in rats. We 

used a counterbalanced within-subjects crossover design and infused 1nmol 

NPLA or aCSF vehicle 15 minutes prior to a reinstatement session. We found 

that NPLA significantly attenuated cue-induced reinstatement (Figure 3-2a). We 

then sought to examine whether CHPG may be acting through an nNOS-

dependent mechanism to elicit reinstatement. Again using a counterbalanced 

within-subjects design, we infused 10µg CHPG in a cocktail with 0.001, 0.1, or 

1.0 nmol NPLA, and found that nNOS inhibition is capable of blocking CHPG-

induced reinstatement in a dose-dependent manner (Figure 3-2B). 

	  

Figure 3-2. nNOS inhibition via NPLA inhibits both cue-induced and CHPG-
induced reinstatement behavior. A) Intra-NAcore microinjection of 1 nmol 
NPLA significantly reduced reinstatement compared to vehicle. One-Way 

ANOVA revealed a significant difference between groups  (F(3, 50) = 19.83, p < 
.0001). Bonferonni’s post-hoc test revealed a significant difference between 
extinction and vehicle (p < .0001), and between vehicle and 0.1 nmol NPLA (p = 
.0338), and between vehicle and 1 nmol NPLA (p = .0018) but not between 
extinction and NPLA. B) NPLA reduced CHPG-induced reinstatement in a dose-
dependent manner. One-Way ANOVA revealed F(5, 53) = 14.67, p < .0001. 
Bonferonni’s post-host test revealed that all three doses of NPLA significantly 
reduced active lever pressing, and only the smallest (.01) dose significantly 
reinstated compared to extinction. The cue-induced reinstatement was 
conducted by myself. Contributions to the CHPG experiment are as follows: I did 
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the surgeries with help from Michael Scofield, the NARC ran the animals, Cassie 
Gipson did the microinjections prior to reinstatement, and I analyzed the data. 

 

nNOS inhibition also attenuates both persistent and transient 

inductions of MMP activity 

We previously reported that MMP-2 is constitutively upregulated following 

extinction, and MMP-9 is transiently induced following cue-induced 

reinstatement, but had not explored how these inductions occur. A between-

subject design was used to perform in vivo zymography to measure MMP activity 

24 hours following extinction or 15 minutes after initiation of cue-induced 

reinstatement. NPLA was able to reduce MMP activity following extinction and 

both forms of reinstatement (Figure 3-3). This indicates for the first time that 

nNOS activity following cocaine self-administration contributes to MMP-mediated 

synaptic plasticity driving reinstatement. 
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Figure 3-3. nNOS inhibition attenuates MMP activity both following 
extinction and reinstatement. Each animal received unilateral vehicle and 
contralateral NPLA infusion intra-NAcore, and 100µm sections were analyzed for 
gelatinolytic fluorescence. Opposite hemispheres formed pairs. Extinction paired 
t-test t(3) = 3.616, p = .0363. Reinstated paired t-test t(3) = 5.085, p = .0147. All 
experiments were conducted myself. 

 

nNOS activity and MMP nitrosylation are increased following cocaine 

exposure 

nNOS is partially regulated by phosphorylation of serine 847, which 

decreases its affinity for CaM and activity. We found that following both extinction 

and cue-induced reinstatement, Ser847 is significantly dephosphorylated, 

indicating increased enzymatic activity and NO production (Figure 3-4A) 

(Rameau 2007. Antibodies specific for S-nitrosylated forms of MMPs are not 
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commercially available. Thus, in order to determine whether this increase in NO 

efflux was directly consequential for S-nitrosylation of MMPs, we 

immunoprecipitated either MMP-2 or MMP-9, and probed for S-nitroso-cysteine. 

We found that MMP-2 S-nitrosylation is significantly increased following 

reinstatement, with a trend (p = .07) towards an increase following extinction 

(Figure 3-4B). No change was detected in S-nitrosylation of MMP-9. Limitations 

of this strategy include the inability to distinguish critical nitrosylated cysteines 

from irrelevant ones. 

	  

Figure 3-4. Biochemical data indicates increased NO production and 
increased MMP-2 S-nitrosylation. A) One-Way ANOVA shows that nNOS 
serine 847 is significantly dephosphorylated following extinction and 
reinstatement of cocaine seeking (F(2, 20) = 16.50, p < .0001). Bonferroni’s post-
hoc confirmed that both of these are significantly decreased compared to saline, 
with no difference between extinction and reinstatement. B) One-Way ANOVA 
shows an increase in MMP-2 S-nitrosylation following reinstatement. (F(2, 18) = 
4.694, p = .0229). Bonferroni’s post-hoc confirmed that reinstatement is 
significantly increased compared to yoked-saline controls (p = .0229), while 
extinction exhibited a trend that did not reach significance. Western blot 
experiments were conducted myself, immunoprecipitation was done with the aid 
of Michael Scofield. 
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NOS1-Cre transgenic mice allow selective chemogenetic targeting of 

nNOS+ interneurons 

Discovering a necessary role for nNOS in cue- and CHPG induced 

reinstatement then led us to question whether nNOS activity is sufficient to drive 

MMP activity and reinstatement behavior. In order to target these cells 

specifically, we used NOS1-Cre transgenic mice (Jackson Labs), and Cre-

dependent AAV2-hSyn-DIO-hM3D(Gq), a Gq-coupled DREADD virus to 

selectively express these designer receptors in nNOS-expressing interneurons. 

We first used immunohistochemistry to validate that the mCherry tag on the 

receptor specifically colocalized with immunolabeled nNOS interneurons (Figure 

3-5). 

 
 

 

Figure 3-5. Gq-DREADD Virus is selectively transduced into nNOS-
expressing interneurons in NOS1-Cre mice. A) Immunohistochemistry for 
nNOS. B) mCherry tag expressed by AAV2-hSyn-DIO-HM3Dq-mCherry. C) 
Merge of the two channels showing colocalization and selective expression. 
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Gq-DREADD stimulation of nNOS expressing interneurons induces 

MMP activity throughout the accumbens 

 We used our in vivo microelectrode biosensor to confirm that stimulation of 

Gq-DREADD with clozapine N-oxide (CNO) increases efflux of NO (Figure 3-6). 

We hypothesized that increased NO efflux would lead to increased MMP activity, 

and performed in vivo zymography experiments in which one hemisphere of 

drug-naïve mice received CNO treatment, the contralateral hemisphere received 

vehicle treatment in a counterbalanced manner, and opposite hemispheres were 

compared using a paired t-test. Results showed that stimulating Gq-coupled 

receptors selectively in nNOS-containing neurons induced MMP activity 

throughout the NAcore. This indicated that nNOS-expressing interneurons 

(approximately 1% of neurons in the accumbens) are capable of globally 

modifying synaptic strength and plasticity throughout the accumbens. 

Importantly, it was possible that stimulating this cell population induces MMP 

activity in a manner independent of their nitrergic properties, and so we then 

infused either a cocktail of CNO and NPLA, or a cocktail of CNO and vehicle 

prior to performing zymography, and determined that this effect was entirely 

nNOS-dependent (Figure 3-6). 
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Figure 3-6. Gq stimulation of MMP activity. CNO significantly elevated 
gelatinolytic fluorescence compared to vehicle treated hemispheres in naïve 
NOS1-Cre mice. Paired t-test t(4) = 3.019, p = .0392. This effect was nNOS-
dependent, since NPLA significantly reduced CNO-induced fluorescence, paired 
t-test t(4) = 2.968, p = .0412. Michael Scofield helped with surgeries, I performed 
injections and completed the zymography protocol. 

 

nNOS interneurons drive reinstatement of cocaine seeking in the 

absence of cues 

 Finally, we hypothesized that Gq-stimulation of nNOS-expressing 

interneurons would potentiate cue-induced reinstatement. Using a within-subjects 

counterbalanced crossover design, we injected either 3 mg/kg CNO (i.p.) or 0.5% 

DMSO vehicle into mice that have undergone cocaine self-administration and 
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extinction to criteria. Gq-stimulation not only potentiated cue-induced 

reinstatement 3-fold (Figure 3-7A), but was also capable of inducing 

reinstatement on its own in the absence of cues, in a similar manner to CHPG 

(Figure 3-7B). 

	  

Figure 3-7. Gq-DREADD stimulation drives reinstatement. A) Shows cue-
induced reinstatement data, One-Way ANOVA revealed a significant difference 
between groups (F(3,6) = 17.51), p = .0104. Bonferonni’s post-hoc test revealed 
a significant difference between vehicle and CNO p = .0392. B) Shows extinction 
data, One-Way ANOVA revealed that CNO treatment significantly drives 
reinstatement, F(3, 6) = 23.40, p = .0105. Contributions for these experiments 
are as follows: I conducted the surgeries, Jasper Heinsbroek ran the self-
administration and reinstatement, and I analyzed the data. 

 

3.4 DISCUSSION 

In the present study we examine the hypothesis that nitrergic signaling 

contributes to reinstatement of cocaine seeking via activation of MMPs. We 

showed previously that glutamatergic synapses in the NAcore are persistently 

potentiated following extinction of cocaine self-administration, and that this was 

reversed by inhibition of MMP-2 (Figures 2-4, 2-5). Furthermore, cue-induced 

reinstatement is associated with a rapid, transient potentiation of these synapses, 

measured by both dendritic spine head diameter and AMPA/NMDA ratio, and 
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that this potentiation is dependent on MMP-9 activity (Figures 2-4, 2-5). We 

hypothesized that nitrergic signaling is critical for activating MMPs and driving 

synaptic potentiation that led to reinstatement. Our data show that inhibition of 

nitric oxide production via nNOS attenuates cue-induced reinstatement, and also 

attenuates the induction of both MMP-2 and MMP-9 that persists following 

extinction and coincide transiently with reinstatement, respectively. Additionally, 

data included here show that intra-NAcore infusion of the mGluR5 agonist CHPG 

robustly induces reinstatement (Figure 3-2), and that this effect is completely 

dependent on nNOS activity. Biochemical data indicated a persistent stimulatory 

dephosphorylation of nNOS Ser847 following extinction of cocaine self-

administration (Figure 3-4), indicating a persistent increase in NO release. This 

signal was also detected as an increase in S-Nitrosylation of MMP-2 (Figure 3-4), 

but could not be detected on MMP-9. 

 Because nNOS is expressed only in a small population of GABAergic 

interneurons that comprise approximately 1% of striatal neurons, we then 

examined the potential for these cells to modulate reinstatement themselves. 

Previously, most work in the NAcore has examined medium spiny neurons, the 

major projection neurons of the striatum, and their afferent and efferent 

connections. By using NOS1-Cre transgenic mice, we were able to selectively 

target Gq-coupled DREADD receptors to this small cell population. By inducing 

Ca2+ release from internal stores with the DREADD agonist CNO, we were able 

to induce MMP activity throughout the NAcore (Figure 3-6), and drive 

reinstatement behavior even in the absence of conditioned cues (Figure 3-7). 
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This indicates that this small population of nitrergic neurons may comprise a 

‘master-switch’ for triggering the synaptic potentiation onto MSNs that underlies 

the vulnerability to reinstatement. 

 These findings are consistent with previous reports of NO-dependent 

plasticity contributing to drug addiction. In a conditioned place preference 

paradigm, systemic treatment with an nNOS inhibitor prior to daily conditioning 

sessions abolished acquisition of CPP (Itzhak et al., 1998a), and nNOS inhibition 

immediately following a reinstatement session impaired the subsequent 

reinstatement session, indicating that NO is important for memory 

reconsolidation (Itzhak, 2008). In the dorsal striatum, NO efflux is persistently 

increased following 7 days of systemic cocaine injection and 7 days of withdrawal 

(Lee et al., 2010), a finding that parallels what our biochemical data indicate 

occurs in the accumbens core. Most recently, Selvakumar et al (2014) showed 

that S-nitrosylation of the AMPA trafficking protein Stargazin in the accumbens 

shell was required for cocaine sensitization and insertion of GluA1 AMPA 

receptors. In addition to regulating AMPA trafficking, NO also S-nitrosylates 

AMPA receptors directly at cysteine 875, which in turn stimulates 

phosphorylation of serine 831 to increase single-channel conductance and 

endocytosis (Selvakumar et al., 2013). 

 Nitrergic signaling is particularly well positioned to modulate synaptic 

plasticity on large networks of cells because of its ability to participate in volume 

transmission, and because of the reactive nitrogen species properties of NO. 

Volume transmission describes transmission that occurs outside of the synaptic 
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cleft, so called because the molecule diffuses through the volume of extracellular 

space (Sykova, 2004). NO is a gaseous molecule that, while it does not fit many 

formal definitions for neurotransmitters, was originally characterized as a 

retrograde neurotransmitter, but is now simply recognized as an intercellular 

transmitter (Schuman and Madison, 1991). Once synthesized by nNOS, NO 

freely diffuses away from its point of origin, and is unhindered by lipid bilayer cell 

membranes. Diffusion will continue until NO reacts with an encountered molecule 

via S-nitrosylation or another nitrosative/oxidative mechanism, until it becomes 

oxidized into the free radical peroxynitrite, or until it reacts with other NO 

molecules to reduce to a much more stable nitrate/nitrite species. Volume 

transmission is dependent on the amount of tortuosity, or hindrance to diffusion, 

of a compartment such as the extracellular space. Within the extracellular space, 

the major contributors to tortuosity are glycoproteins such as fibronectin, laminin, 

and collagen (Sykova, 2004). These glycoproteins are the primary component of 

the extracellular matrix, and have long been recognized as important substrates 

for MMPs. Thus, increased glycoprotein degradation following S-nitrosylation of 

MMPs by NO may represent a feed-forward mechanism by which these 

interneurons reduce the tortuosity of the brain region, in turn promoting S-

nitrosylation of further synaptic contents such as Stargazin or AMPA receptors. 

 Dysregulation of glutamate homeostasis following chronic cocaine 

experience causes a massive release of glutamate in response to cocaine-

conditioned cues, and combined with decreased glial glutamate reuptake, this 

release is hypothesized to induce glutamate spillover out of the synaptic cleft 
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(Kalivas, 2009; Reissner et al., 2015). Once outside of the synaptic cleft, 

glutamate is able to act on extrasynaptic receptors such as mGluR5, which 

stimulates synaptic potentiation, and in turn, reinstatement (Wang et al., 2013). 

While most reports posit that glutamate spillover exerts an effect through 

stimulation of mGluR5 directly on MSNs, the current data indicate that glutamate 

spillover onto nearby nNOS-expressing interneurons may be the most important 

player. Glutamate spillover is also confined by the properties of tortuosity and 

anisotropy in a similar manner as NO (Sykova, 2004). Thus, constitutively 

increased NO/MMP activity may facilitate glutamate spillover by degrading the 

extracellular matrix and thus decreasing the tortuosity of the extracellular space. 

While CHPG and Gq-DREADD stimulation of nNOS were both able to induce 

MMP activity, the current studies did not address whether afferent glutamatergic 

projections were synapsing directly onto nNOS-expressing interneurons, or 

whether glutamate spillover from synapses onto MSNs was stimulating these 

cells. Experiments to directly test these two hypotheses are important future 

directions. Furthermore, an important future direction will be to examine the 

mechanism by which MMP-9 is activated, because data here indicate that it is 

not through S-nitrosylation. MMP-9 can be activated by multiple proteases, the 

most studied of which is tissue plasminogen activator (tPA), as well as MMP-2. 

 In conclusion, activity of nNOS-expressing interneurons is both necessary 

and sufficient for reinstatement of cocaine seeking. Furthermore, manipulating 

nNOS activity bidirectionally is also able to modulate MMP activity that has 

previously been shown to be required for drug-induced synaptic plasticity. These 
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data indicate that approximately 1% of neurons in the accumbens core may 

constitute a master-switch for region-wide synaptic potentiation which underlies 

the vulnerability to relapse. 
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Chapter 4: Summary, conclusions, and 
future directions 
 

The study of synaptic architecture has been a popular focus in 

neuroscience for decades. The most accepted current model is the tripartite 

synapse, in which a presynaptic neuron synapses onto a postsynaptic neuron, 

and this connection is stabilized by astrocytic endfeet. This dissertation offers 

data suggesting a fourth component of the synapse: the extracellular matrix. 

Historically, even the existence of the extracellular matrix (ECM) within the brain 

was once a controversial topic. Here, I show that matrix metalloproteinases 

(MMPs), the primary regulators of the ECM, are important modulators of synaptic 

plasticity contributing to drug addiction. Specifically, upregulated MMP-2 activity 

following extinction of cocaine self-administration drives a persistent synaptic 

potentiation compared to yoked-saline controls, and MMP-9 drives a rapid, 

transient synaptic potentiation upon the initiation of cue-induced reinstatement. 

Furthermore, there is evidence of volume transmission that is not synaptic, but 

rather intercellular transmission between neighboring cells, even of different 

neuronal types. I highlight two forms of volume transmission: 1) nitric oxide (NO) 

signaling, which is based on free diffusion of the gaseous molecule through the 

cell membranes and the extracellular space, and 2) glutamate spillover, which is 

dependent on the quantity of glutamate exocytosis, and the ability of glutamate to 

diffuse through the extrasynaptic space without reuptake. Both of these, and all 

other types of volume transmission are dependent on tortuous barriers to 
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diffusion. The term ‘volume transmission’ describes any type of transmission that 

does not rely on synaptic transmission, but relies on diffusion through the volume 

of the extrasynaptic space. Tortuosity is defined as “hindrance to diffusion”, and 

describes how easily a molecule can diffuse through the extracellular space 

(ECS). Two primary contributors to tortuosity in the ECS are the polyelectrolyte 

ECM molecules such as fibronectin that are degraded by MMPs, and the 

ensheathment of synapses by glial endfeet. Thus, increased MMP activity and 

decreased tortuosity allows more permissive diffusion parameters. My data show 

that mGluR5 stimulation of nNOS-expressing interneurons results in increased 

NO production and MMP activity. I propose a feed-forward system in which 

glutamate spillover increases NO production, leading to an increase in MMP 

activity, which in turn decreases ECS tortuosity via cleavage of ECM molecules, 

which allows for more glutamate overflow. There are a number of future 

experiments that could further elucidate glutamate/NO interactions. 

 

4.1 Does glutamate spillover contribute to nitric oxide production? 

 In order to test whether corticostriatal glutamate overflow contributes to 

increased NO production, I would use an electrochemical biosensor method 

similar to that described in chapter 3, but with the addition of a stimulating 

electrode placed in the prelimbic cortex. I hypothesize that stimulating 

corticostriatal efferents in a drug-naïve animal will evoke NO release, and that 

this will be potentiated by TBOA. Furthermore, this glutamate-evoked NO release 

will be potentiated in animals with a history of cocaine self-administration and 
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extinction, and this effect would be rescued by a chronic ceftriaxone treatment 

that has been shown to normalize GLT-1 expression and glutamate reuptake 

(Knackstedt et al., 2010). 

 

 

4.2 Is nitric oxide production and MMP activity permissive for glutamate 

spillover? 

If MMP activity does indeed decrease tortuosity of the ECS in response to 

drug-induced nitric oxide, MMP inhibitors should decrease the ability of glutamate 

to spill out of the synapse. A method for measuring glutamate spillover has been 

established in our lab (Shen et al., 2014b). Thus, I propose to use inhibitors 

against MMP-9 and nNOS prior to measuring spillover. I hypothesize that MMP-9 

inhibition will have a greater and more rapid effect than nNOS inhibition, due to 

the direct effect of MMP-9 activity on ECM composition and tortuosity. I further 

hypothesize that injection of Chondroitinase-ABC, a commercially available 

enzyme that destroys chondroitin sulfate proteoglycans, would increase synaptic 

glutamate spillover. 

Interestingly, I would hypothesize that inhibition of glutamate spillover 

would facilitate increased synaptic signaling, which would contradict previous 

data showing a decrease of AMPA:NMDA ratio following MMP inhibition. An 

alternative explanation for this is that a decrease in extrasynaptic NMDA receptor 

stimulation following MMP inhibition results in an increased AMPA:NMDA ratio. It 

is also possible that increased glutamate spillover also results in stimulation of 
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extrasynaptic AMPA receptors that augments AMPA current moreso than NMDA 

current, leading to an increased ratio. 

 

4.3 Do MMPs contribute to the retraction of astrocytic end feet following 

cocaine self-administration and extinction? 

The contacts between astrocytic endfeet and synapses or neurons are 

very dynamic. In some normal physiological processes, like sleep, the interstial 

space swells by as much as 60%, indicating a retraction of astrocytic processes 

(Xie et al., 2013). Unpublished preliminary data from our lab shows a decrease in 

colocalization between astrocytic membranes and synapsin-expressing 

presynaptic terminals, indicating decreased contact of synapses by astrocytes 

and thus decreased tortuosity. I hypothesize that MMP cleavage of neuron-glia 

adhesion molecules is required for this retraction, and that acute inhibition of 

MMP-2 or MMP-9 would restore synaptic contacts between these cells. 

Furthermore, I hypothesize that prolonged inhibition of MMP-2/9 would result in a 

restoration of GLT-1 expression following chronic cocaine. 

 

4.4 Is MMP activity permissive for synaptic penetration by NO and S-

nitrosylation of synaptic proteins? 

 If MMP activity and subsequent degradation of ECM surrounding 

corticostriatal synapses increases diffusibility of NO through the ECS, I 

hypothesize that inhibiting constitutively increased MMP-2 activity following 
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extinction will decrease S-nitrosylation of syntaxin-1 presynaptically, and 

Stargazin postsynaptically. 

 

 In conclusion, the work presented here contributes novel information to a 

rapidly advancing field by examining the extracellular matrix in the nucleus 

accumbens core as an important signaling domain in synaptic plasticity 

underlying drug addiction. Furthermore, I go on to identify a cell population which 

previously has not been studied in this brain area, and discover that this small 

cell population is able to bidirectionally modulate reinstatement behavior, 

indicating that it may constitute a ‘master-switch’ to control addictive behaviors. 
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