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ABSTRACT 

Post-transcriptional gene regulation plays an important role in controlling 

gene expression patterns in mammalian cells. CUG-binding and Embryonic Lethal 

vision-type RNA-binding protein 3 (ETR)-like Factor (CELF1), also known as 

CUGBP1, is a RNA-binding protein involved in post-transcriptional gene regulation 

through nuclear (alternative splicing) and cytoplasmic (mRNA turnover and 

translation) mRNA processing events. Primarily, CELF1 is known for its contribution 

to the development of myotonic dystrophy (DM1). But, published observations from 

our laboratory and others determined that CELF1 is overexpressed in head and 

neck squamous cell carcinoma (HNSCC) as well as multiple other cancers. 

Unpublished proteomic pulsed-stable isotope labeling by amino acids in cell culture 

(pSILAC) from our laboratory, has identified approximately putative 1350 CELF1 

target proteins were controlled at the mRNA translation level in UM74B oral cancer 

cells. The pSILAC data and subsequent ribosome profiling validation experiments 

revealed that the protein expression of MARCKS (Myrisoylated alanine-rich kinase C 

substrate) is significantly reduced upon CELF1 knockdown in comparison to control 

oral cancer cells. MARCKS is known to play an important role in cell shape, cell 

motility, secretion, transmembrane transport, and regulation of the cell cycle in 

cancer cells. We have determined that MARKCS protein is overexpressed in 

HNSCC cell lines compared to primary normal oral keratinocytes. Moreover, CELF1 

directly controls the expression of MARCKS, but its mRNA levels remain unchanged 

in oral cancer cells. CELF1 ribonucleoprotien immunoprecipitation (RNP-IP) 

experiments determined that MARCKS mRNA is directly associated with CELF1. 
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The cell migratory role of MARCKS was evaluated by a scratch wound healing 

assay and transwell migration assay. Depletion of CELF1 and MARCKS 

independently resulted in reduction of cell migration. Moreover, overexpression of 

CELF1 in normal non-malignant human oral keratinocyte cells resulted in 

overexpression of MARCKS and enhanced cell migration. Finally, shRNA-mediated 

reduction of CELF1 in association with exogenously expressed MARCKS in oral 

cancer cells, we were able to rescue the CELF1-mediated cell migration phenotype. 

In conclusion, our results demonstrate that CELF1 controls cell migration through 

regulating MARCKS protein translation in oral cancer cells.  
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Overview of HNSCC  

Head and neck squamous cell carcinoma (HNSCC) represents a wide- 

variety of tumors that arise from base of the skull to the clavicles (1). HNSCC 

anatomic sites include: orbits, nasopharynx, oral cavity, oropharynx, hypopharynx, 

sinuses and larynx (1). HNSCC is considered to be the 6th most common cancer 

worldwide, with 400,000 or more new cases registered annually and of those cases, 

only 40-50% will survive within next 5 years (2). In the United States alone more 

than 42,000 cases and 8,300 deaths were predicted for this disease in 2014 (3).  

Factors such as tobacco carcinogens along with alcohol consumption have shown to 

be a major risk factor for HNSCC in Western countries (4). In the past few decades, 

up-rise of sexually transmitted infection, human papillomaviruses (HPV), among 

young people has emerged as a major risk factor (5, 6) for oral carcinogenesis. But 

recent advances in early diagnosis through three-dimensional imaging, such as 

computed tomography (CT scans) and magnetic resonance imaging (MRI) have 

allowed for better staging, and treatment planning for HNSCC patients (1).  

Although, there have been many advances in HNSCC treatment, the overall 

survival rate of HNSCC patients only improved marginally over the past 30 years (2).  

Currently, nonselective treatments such as: surgery, radiation, and chemotherapy 

are being implemented for HNSCC patients (2). These nonselective treatments have 

high systemic toxicities and associated morbidity and mortality (2). Thus, 

understanding the molecular mechanisms and underlying cause of HNSCC will aid 

in the development of more selective and effective cancer treatment options for 

HNSCC patients.  
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Post-transcriptional control of gene expression 

The central dogma of the cell states that DNA is transcribed into RNA, which 

is subsequently translated into protein (7). The complexity of the human proteome is 

derived from the control of post-transcriptional gene regulation. Disruption of post-

transcriptional gene regulation often leads to cancer predisposition (8-10), viral 

infections (11-13) and neuromuscular disorders (14, 15). Post-transcriptional control 

of gene expression involves several steps, including mRNA processing, transport, 

stability and translation. The mRNA stability or turnover is either deadenylation-

dependent or independent in mammalian cells (16) and these complex regulatory 

pathways control more than 50% of gene expression patterns. However, in general, 

the deadenylation-dependent mRNA decay process dominates the mRNA 

degradation process due to fact that most of the poly-A tail containing mRNAs 

undergo nuclear export and cytoplasmic mRNA translation and turnover (16).  

 Messenger RNA turnover rates determine the life span of an mRNA molecule. 

Messenger RNAs with fast turnover rates are considered short-lived mRNAs, 

conversely, long-lived mRNAs have slower turnover rates (17). Thus, in the context 

of changing environmental cues, these different mRNA turnover rates contribute to 

cellular gene expression. For example, vascular endothelial cells produce few or no 

growth factors, ILs (interleukins), or adhesion molecules, but with treatment of IL-1, 

gro-α mRNA is specifically stabilized (18). On the contrary, glucocorticoids, like 

estrogen have been shown to destabilize IL-1β (19), interferon (20) and collagen 

(21) mRNAs. Finally, regulation of mRNA half-life can occur through association of 

protein trans-acting factors and nucleotide cis-elements (22). The cis-elements such 
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as TG-rich motifs (TTCTG and TGTT) are located in the 3ʹ′ UTR and can promote 

mRNA decay and/or stability with the help of trans-acting factors such as RNA-

binding proteins (RBPs) and noncoding RNAs (22, 23). High-throughput analysis 

messenger ribonucleoproteins (mRNPs) from mammalian cells showed that RBPs 

associated with unique subset of mRNAs to coordinately regulate their localization, 

translation and/or degradation (22, 24-27).  

 Deadenylation-dependent mRNA decay is the major pathway in mammalian 

cells. Most mammalian mRNAs are polyadenylated in the nucleus undergoes 

nuclear mRNA processing, transport into the cytoplasm, and subjected to translation 

and turnover. In the deadenylation-dependent mRNA decay pathway, one or a 

combination of deadenylases (Pan2-Pan3, Ccr4-Not and poly(A)-specific 

exoribonuclease (PARN)) removes the poly(A) tail located in the 3ʹ′ UTR of mRNAs 

(28, 29). Following deadenylation, exonucleases proceed with mRNA degradation in 

a 5ʹ′-3ʹ′ or 3ʹ′-5ʹ′ direction. Another pathway that controls mRNA decay, is the non-

sense mediated decay pathway (NMD). NMD is a mRNA surveillance pathway that 

targets mRNAs with premature stop codons (16). Messenger RNA surveillance is 

the process of ensuring the destruction of mRNA that would otherwise produce 

nonfunctional protein due to either mutations in a gene, errors in pre-mRNA splicing 

that retain introns or nonproductive chromosomal rearrangements (30). An additional 

mRNA decay pathway that has been identified is called nonstop mRNA decay 

(NSD). This pathway has been proposed recently and illustrated that the translation 

of mRNAs that lacks the stop codon allows ribosomes to translate to the end of the 

3ʹ′ UTR, leading to mRNA degradation (31).  
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GRE-Mediated mRNA Decay 

 During the investigation of T cell activation, a genome-wide database of 

mRNA half-lives has been established (32). The database contains many transcripts 

that possess both AU-rich elements (AREs) and GU-rich elements (GREs), and their 

half-lives under the activation of T cells. This observation led researchers to identify 

a canonical sequence in the form of UGUUUGUUUGU; which associates with the 

cytoplasmic protein CUGBP1 and Etr3 like Factor 1 (CELF1) (33). Further 

investigation uncovered a recruitment of PARN by CELF1 for decay of GRE 

containing mRNA (34). This mRNA decay mechanism is consistent with the 

observations made in vitro that show CELF1 association with mRNA correlates with 

enhanced deadenylation in both HeLa cells (35) and Xenopus (36).  

CUG-binding and Embryonic Lethal abnormal vision-type RNA-binding protein 

3 (ETR-3)-like Factor (CELF) 

 The CELF proteins are a family of RNA binding proteins that are known to 

play an important role in post-transcriptional gene regulation (37, 38). In humans and 

mice, there have been six members identified in the CELF family: CELF1-6, and 

CELF1 and CELF2 proteins are expressed ubiquitously and play important role in 

embryogenesis (39-43), CELF3-6 are expressed in adult tissues and mostly found in 

the nervous system (44, 45). CELF1 is well-studied protein in myotonic dystrophy, 

but its cancer biological role has not been described before. Hence, I plan to study in 

this thesis to decipher CELF1’s cancer biological role in oral cancer cells.  

 CELF1 was first shown to be involved in alternative splicing of the mRNAs in 

the nucleus (46-48), and further studies revealed that CELF1 localized in the 
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cytoplasm (49), indicating that CELF1 could be involved in pre-mRNA splicing, 

turnover or translation. CELF1 was first identified as EDEN-BP (Embryonic 

Deadenylation Element-Binding Protein) in the Xenopus Laevis (36). EDEN-BP is a 

homolog of CELF1 and determined to cause a rapid decay of mRNAs. But, later it 

was determined that mRNAs that are being degraded by EDEN-BP occurred 

through binding to U/G rich sequences in 3ʹ′ UTR. The binding triggered 

deadenylation and translational repression of mRNA by recruitment of poly(A) 

ribonuclease (35).  

In Xenopus, CELF1 was identified as a translational repressor by binding to a 

specific motif in the 3ʹ′ UTR of its targets mRNAs. These motifs were termed the 

“Embryonic Deadenylation Element” (EDEN) motifs. The binding triggers rapid 

deadenylation and therefore, the translation is inhibited and leads to degradation of 

the bound mRNA. Furthermore, human and Xenopus CELF1 have very high degree 

of sequence conservation and exactly 88% of the sequences are identical and the 

conserved. Due to similarities between these two proteins, they can compensate for 

one another and CELF1 was considered as a deadenylation factor (50). Based on 

the sequence similarities EDEN and CELF1 presumed to recognize similar subsets 

of mRNA targets (51). Overexpression of CELF1 causes muscular disease DM1 by 

imperfectly targeting its mRNAs leading to those encoding proteins misregultion in 

muscular functions (52-55).  

Structure of CELF proteins 

CELF proteins contain highly conserved RNA-Recognition Motifs (RRM), of 

which, two RRMs are located at the N-terminus and third RRM located at the C-
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terminus, separated by the divergent linker domain. Furthermore, the RRMs have 

RNA binding activity and it is proposed that the divergent domain is an important site 

for functional regulation. This highly conserved family of proteins regulates the 

developmental processes and gene expression at post-transcriptional levels in 

Gallus, Zebrafish, Drosophila and C. elegans (36, 37, 56-59).  

Protein domains of CELF1  

The human CELF1 protein has the basic arrangement of three RRMs like 

other CELF family of proteins. The CELF1 is a 486 amino acid protein with a total 

mass of 52.1kDa. The RRMs are very important for CELF1 binding to its target 

mRNAs. There are multiple reports indicated that CELF1 targets mRNAs through 

AU-rich or GU-rich sequences (60, 61). Nuclear magnetic resonance spectroscopy 

(NMR) studies revealed that both the RRM1 and the RRM2 domains of CELF1 bind 

to 12-nucleotide targeted RNAs containing two UUGUU motifs. Moreover, binding of 

both RRM-1 and -2 domains have higher affinity compared to the binding of 

individual domains separately, suggesting a cooperative binding between these 

RRMs (62, 63). Further crystallographic studies showed that both RRM-1 and RRM-

2 binds to GRE-RNAs, and RRM-1 is essential for crystal-packing interactions (64). 

Utilizing an NMR approach, RRM-3 has also been shown to bind specifically to UGU 

trinucleotide segment of bound (UG)3 RNA. The recognition is through stacking and 

hydrogen bonding interactions within a pocket formed by the beta-sheet and the 

conserved N-terminal of RRM3 (60). 

 NMR studies along with yeast three-hybrid system, deletion and mutation 

analysis have been essential in understanding the interaction of various CELF1 
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domains with its target RNA. In an yeast three-hybrid system, deletion/mutation of 

RRM-1 or RRM-2 did not affect CELF1 binding to GU-rich RNAs, whereas RRM-3 

has the ability to recognize GU-repeats more strongly than RRM-1 or RRM-2 (65).  

Additionally, combination of CELF1’s divergent domain and RRM-3 known to poorly 

recognize the G/C-rich sequence of Cyclin D1 in the 5ʹ′ UTR (66).  

Mechanism of CELF1 binding to Target mRNAs 

CELF1’s sequence recognition 

Isolation and characterization of CELF1 and CELF2 demonstrated that they 

are novel heterogeneous nuclear ribonucleoproteins (hnRNPs). CELF1 has been 

shown to interact with two distinct types of RNA sequences: UG rich elements (67) 

and CUG repeats (68). An in vitro study by Timchenko et.al, showed that binding of 

CELF1 to the 3ʹ′ UTR of mytonic protein kinase mRNA occurred due to the presence 

of (CUG)8 sequences (52, 54). Further SELEX (systemic evolution of ligands 

exponential enrichment) (69), SPR (surface plasmon resonance) (65) and yeast 

three-hybrid systems (67) revealed that CELF1 preferentially binds to GU-rich 

sequences (33, 70). These observations were confirmed in C2C12 cells utilizing 

RNA immunoprecipitation (RNA-IP) followed by microarray (RIP-Chip) analysis (71).  

In Xenopus, EDEN-BP orthologs of CELF1 appears to also bind to GU-rich 

mRNA sequences, which contain the sequence (UGUA)12 and function as a 

deadenylation signal in embryos after fertilization and deletion of EDEN-BP totally 

abolished EDEN mediated deadenylation activity (36, 50). In Drosophila, the CELF1 

ortholog is Bru-3 and in Xenopus, the CELF1 ortholog is EDEN-BP; in both 

organisms CELF1 specifically bind to the sequence of (UG)15 repeats (37). In 
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Zebrafish, a protein called Brul, which is 81% identical to EDEN-BP, preferentially 

binds to GU-rich mRNAs (48). Furthermore, in C. elegans the protein ETR-1 (ELAV- 

type RNA Binding Protein 1) is also a homolog of human CELF1. The reduction of 

ETR-1 caused failure of embryos to elongate and subsequent paralysis caused 

embryonic lethality (57). Interestingly, not only GU-rich sequences are required, but 

adjacent sequence elements are also important for assembly of CELF1 protein on 

RNA by allowing optimal secondary structure to facilitate the formation of RNA-

binding protein complexes (72, 73). Findings in Xenopus and C. elegans models 

suggest that CELF1 homologs are critical for muscle development. Dysregulation of 

CELF1 is involved in the pathogenesis of the human neuromuscular disease, 

myotonic dystrophy type 1 (DM1) (74). CELF1 has also been shown to be a mRNA 

decay regulator in muscle tissue through GRE element recognition, therefore, 

dysregulated CELF1 mediated mRNA decay may be involved in pathogenesis of 

DM1 (74). In addition to conservation of biomedical mechanisms of CELF1-GRE 

regulation, these results also suggest that CELF1-GRE mediated regulation is 

preserved over evolution at the organismal level and regulate specific aspects of 

developmental programs. 

Dimerization of CELF1 

In Xenopus, EDEN-BP (homolog of CELF1) has been reported to undergo 

dimerization in a yeast two-hybrid assay, and the dimerization may have a role in 

RNA recognition (75, 76). However, no human CELF1 dimerization has been 

reported in the literature. The yeast two-hybrid observation does raise the question 

of whether dimerization is due to the formation of a true dimer or whether two CELF1 



10	  
	  

proteins dimerize as a result of binding to one RNA molecule, but this observation 

needs further investigation.   

Phosphorylated CELF1 and RNA metabolism  

 CELF1 was considered as a phosphoprotein, and protein kinase C (PKC) can 

stabilize CELF1 by hyper-phosphorylating the protein in DM1 cells (49). 

Furthermore, it has been shown that hyper-phosphorylated CELF1 is unable to 

degrade TNF-α in DM1, suggesting that phosphorylation may interfere with CELF1 

mRNA binding and decay (77).  The support for a pathogenic role of CELF1 hyper-

phosphorylation comes from a DM1 transgenic mouse model (78). Interestingly, 

mice treated with the specific inhibitor of the PKC resulted in cardiac abnormalities 

associated with the disease phenotype. 

The CELF1 protein is also predicted to have phosphorylation sites for several 

phosphatases (79). Therefore, the phosphorylation of CELF1 has been suggested to 

play an important role in regulating its RNA binding preference, and interaction with 

other proteins (80-82). Phosphorylation has been shown to occur at Ser28 and 

Ser302; and demonstrated that phosphorylation affects the RNA binding of CELF1 

(80). Akt kinase has been shown to phosphorylate CELF1 at the Ser28 residue and 

this specific residue has been shown to affect translation during differentiation of 

normal muscle myoblasts. Additionally, it has also been proposed that 

phosphorylation of CELF1 at Ser28 serves as a switch between binding to U/G- rich 

and C/G-rich sequences. For example, non-phosphorylated form of CELF1 binds to 

U/G- rich sequences but upon phosphorylation, CELF1 binds to C/G-rich sequences. 

Another example, CELF1 binds to the cyclin D1 mRNA upon the phosphomimetic 
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mutation S28D (66). Finally, phosphorylation of CELF1 at Ser302 alters its RNA-

binding activity. For example, cyclin D3-Cdk4/6 complex phosphorylates CELF1 at 

Ser302, and effects the binding specificity of CELF1 to its targeted RNA (83). All 

together, these observations indicate that CELF1 functions in many aspects and in 

multiple disease states through phosphorylation.  

CELF1 play a role in pre-mRNA splicing  

Diversity within RNA transcripts and protein can be generated through pre-

mRNA alternative splicing; and it has been determined that 90% of human genes 

produce alternatively spliced transcripts (84, 85). Alignment of the genomic regions 

adjacent to mammalian intron-exon splice sites, identified TG –rich motifs (TTCTG 

and TGTT) as conserved cis-elements that are associated with alternative splicing 

(86, 87). These identified C/UG-rich templates served as binding sites for CELF 

proteins, which can either activate or suppress the splicing of pre-mRNA targets 

depending upon the genomic environment (88).  

In DM1, aberrant gain of CELF1 function and simultaneous loss of the 

splicing factor MBNL1 has been shown (89). Moreover, CELF1 and MBNL1 have 

opposite effects on exon/intron inclusion upon binding to specific sequences. The 

opposite effect is due to mis-splicing of various crucial genes (74). For example, 

minigene reporter system that contain alternative splice sites for CELF1 to identify 

pre-mRNA targets, these targets includes but not limited to cardiac troponin T (55), 

insulin receptor (90), and chloride channel 1 (46, 91). This system has shown that 

either loss or gain of these regulatory proteins occurs through pre-mRNA splicing 

events. Further studies have used cultured cells with transiently transfected 
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minigenes and results have identified a number of alternative gene regions that are 

regulated by CELF1 and other RBPs (46, 55, 60, 90-99).  

 An additional role of CELF1 mediated alternative splicing has emerged from 

early developmental studies that used transgenic CELF1 deficient mice which 

showed altered regulation of fetal to adult splicing pattern of several skeletal muscle 

transcripts (91, 100). In order to determine the global role of CELF1 in fetal-to-adult 

transition, mouse models have been used (89). In particular, splicing microarrays 

were utilized and demonstrated that half of the transcripts that underwent fetal-to-

adult alternative splicing transitions occurred in the heart tissue due to 

overexpression of CELF1, which resulted in alternative splicing pattern of transcripts 

(89). Furthermore, in order to study CELF1-specific alternative splicing, a 

development of dominant negative and tissue specific transgenic mice was ideal for 

in vivo (92, 95, 100, 101). For example, under the control of a cardiac muscle-

specific promoter expressing dominant negative CELF1 (DNΔCELF1) showed 

development of dilated cardiomyopathy and cardiac dysfunction over time (92).  

CELF1 as an mRNA Translation Regulator 

 Protein translation is an important part of post-transcriptional control of gene 

expression that is regulated and adapted to various environmental and 

developmental changes. CELF1 at some extend activates (102) and inhibits (83, 

103) the translation of various mRNAs that are involved in multiple developmental 

stages. Some homologs of CELF1 have also been shown to regulate translation. For 

example, in the Drosophila oocyte, when Bruno, a homolog of CELF1, binds to 

Bruno response elements (BREs) within the 3ʹ′ UTR of oskar mRNA, protein 
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translation was inhibited. Additionally, Bru-3 (another CELF1 ortholog) bound to the 

3ʹ′ UTR GU-rich sequence of gurken, cyclin A and oskar mRNA also lead to inhibition 

of translation (56). The proposed translation inhibition mechanism of Bru-3 is 

mediated through formation of Bru-3/eIFA4E/5ʹ′-cap complex at various stages of 

embryo development (104).  

 In mammalian cells, CELF1 has also been identified as a translational 

regulator of selective mRNAs. For example, CELF1 has been demonstrated to 

promote the translation of alternative isoforms of the transcription factor 

CCAAT/enhancer-binding protein (CEBPβ) (68, 105, 106). This regulation was first 

described in a rat model of partial hepatectomy. In this model, partial hepatecomy 

caused CELF1 phosphorylation, which led to formation of a CELF1 and eIF2 

(eukaryotic initiation factor 2) complex. This complex initiated translation of the liver 

enriched inhibitor protein (LIP), an isoform of CCAAT/enhancer-binding protein (82). 

The confirmation of this experiment was demonstrated in liver cells. Additionally, it 

was shown that CELF1 goes through hyper-phosphorylation during normal aging via 

the GSK3beta-cyclin D3-cdk4 kinase pathway (107). In an age-associated model, 

just like the partial hepatectomy model, the cdk4-mediated hyper-phosphorylation of 

CELF1 also induced the CELF1-eIF2 complex formation (80). In addition, in a rat 

aging model, phosphorylation of CELF1 caused its interaction with a GC-rich 

sequence in the 5ʹ′ UTR of p21 mRNA inhibiting its translation and senescence in 

fibroblasts (108). In myocytes, stabilized p21 mRNA was observed in stress 

granules. However, only in late senescence did p21 localize in stress granules which 

interfere with its translation (109). Furthermore, under normal muscle cell 
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differentiation, CELF1 increased the translation of p21 (110), and Mef2a29 (111) via 

direct interaction with (GC)n repeats in the 5ʹ′ UTR. Additionally, binding of CELF1 to 

the 3ʹ′ UTR of the serine hydroxymethyltransferase (SHMT) mRNA (112, 113) and 

cyclin dependent kinase inhibitor p27 (kip1) (114), found to regulate translation 

activation of an internal ribosome entry site (IRES). These studies suggested 

CELF1’s role in IRES mediated initiation of mRNA translation. Fox J. et.al, have 

shown that IRES translation occurs through the formation of CELF1/hnRNPH 

complex, which promotes circularization of RNA transcripts by interaction of 5ʹ′/3ʹ′ 

ends (112).  

Taken together, these data suggest that CELF1 mediates translational 

regulation through G- and C-rich motifs and other various motifs in the 5ʹ′ UTR, 

whereas CELF1 mediated splicing and degradation affects occur through G- and U-

rich motifs in introns and the 3ʹ′ UTR. However, a global analysis of CELF1-mediated 

translational regulation remains to be determined. Thus, our interest remains to 

investigate CELF1 mediated translation in oral cancer cells. 

Myristoylated Alanine-Rich C-Kinase Substrate (MARCKS) 

In 1982, MARCKS was first identified as an 80kDa protein (115) and that is 

expressed in neural and central nervous system (CNS) tissues (116, 117), skeletal 

muscle (118), connective tissue (119) and leukocytes (120-123). MARCKS has been 

characterized and shown to be present in mammalians and non-mammalian 

species. The MARCKS protein only varies slightly among various species due to the 

conserved domains (116, 124-126). The MARCKS gene itself contains three-

conserved domains such as, mristoylated amino-terminal domain, MARCKS 
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homology domain 2 (MH2) and phospho-site domain (PSD). The PSD site serves as 

the phosphorylation site for PKC (127, 128) and the MH2 domain contains an intron-

splice site, but no known function has been demonstrated (127). 

 In resting cells, MARCKS is anchored to cellular membranes by its 

myristoylation motif and electrostatic interaction between the amino acids of the PSD 

and the acidic phospholipid bilayer, which is enriched in phosphatidylserine and PIP2 

(129, 130). MARCKS has been shown to be myristoylated post-transcriptionally, and 

an addition of myristoyl moiety (C14 saturated fatty acid) to the amino-terminal 

glycine residue. The myristoyl moiety allows MARCKS to insert itself hydrophobically 

into the phospholipid bilayer of the plasma membrane (118, 127, 130-135).  A 

combination of myristoylation and electrostatic interaction helps MARCKS anchor 

itself to cellular membranes and does so in an independent manner (132, 133, 136, 

137).  Furthermore, upon MARCKS phosphorylation, negative charges get 

incorporated into the PSD, resulting in the weakening of the electrostatic interactions 

between MARCKS and the phospholipid bilayer. This weakening causes MARCKS 

to completely dissociate from cellular membranes resulting in cytosolic localization 

(118, 132, 133, 135). This mechanism has been termed the “myristoyl-electrostatic 

switch” mechanism (136) and has been presumed to play a role in cell migration. 

Function of phosphorylated MARCKS  

 Initially, MARCKS was described as a substrate of PKC, which can 

phosphorylate MARCKS, either directly or indirectly. It has been shown in a rat 

model that that PKS and the PKC-related kinase 1 (PPK1) can phosphorylate 

Ser152, Ser156, and Ser163 of MARKCS within PSD. Additionally, G protein 
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coupled receptor signaling (GPCRs) and receptor tyrosine kinase (RTK) can activate 

PKC; in turn PLC cleaves PIP2 into inositol 1,4,5-triphosphate (IP3) and diacyl 

glycerol (DAG). DAG is stationed in the plasma membrane and IP3 opens calcium 

channels in the endoplasmic reticulum (138). Opening of calcium channels 

increases intracellular calcium concentrations. Interestingly, calcium is known to 

activate many isoforms of PKC. For example, conventional PKCs (α, βI, βII, γ) 

isoforms require DAG and Ca2+; novel PKCs (δ, ε, θ, η) isoforms only require DAG; 

and atypical PKCs (ζ, ι, λ), do not require DAG or Ca2+ (138). Phosphorylation of 

MARCKS has been shown to occur by both novel PKCs (ε, δ, θ) and classical PKCs 

(α, βII) (118, 139-141). Furthermore, MARCKS phosphorylation through PKC causes 

MARCKS to localize from cellular membranes to cytosol (142). Using a rat model, 

residue Ser152 of MARCKS shown to be phosphorylated through PKC activation 

and PKC has been shown to control the regulation of MARCKS ability to bind 

phosphatidylserine on the plasma membrane (143).  

In contrast, it has been shown that upon inhibition of the Rho-associated 

kinase (ROCK) signaling pathway and treatment of LPA leads to human MARCKS 

phosphorylation at Ser159 (Ser152 in mice), thus depicting an example of MARCKS 

indirect phosphorylation by PKC, as ROCK activates PKC (144-148). In parotid cells, 

activation of protein kinase A (PKA), a serine/threonine kinase, by adenylyl cyclase 

and cyclic AMP (cAMP) resulted in activation of PKCδ and released amylase (149). 

This indicated that MARCKS could potentially be phosphorylated and that the cAMP 

dependent/PKA pathway could indirectly regulate MARCKS function.  
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 Other than PKC activation, MARCKS also be phosphorylated by Protein 

Kinase G (PKG) through activation of cyclic GMP (cGMP) (150) in NIH-3T3 

fibroblasts. However, total reduction of MARCKS has also been observed in these 

cells, perhaps indicating that the PKG pathway is involved in its degradation (151). 

Additionally, in mouse, the p42 mitogen activated protein kinase (MAPK) has been 

shown to phosphorylate MARCKS on Ser113, a residue is present outside of the 

PSD (152).  

MARCKS phosphorylation also leads to its localization from the plasma 

membrane to cytosol (122, 128, 136, 153) or lysosome (154). Cytosolic 

phosphorylated MARCKS is dephosphorylated by protein phosphatase 1 (PP1), 

protein phosphatase 2A (PP2A) or calcineurin (calcium-bound protein) (155-159). 

Upon de-phosphorylation, MARCKS has been shown to bind to calmodulin, get 

cross-linked by filamentous actin (F-actin), or re-associate with cellular membranes, 

hence, validating MARCKS proposed role in cell migration.  

MARCKS role in reorganization of the actin cytoskeleton: 

 Many studies have determined that MARCKS is capable of binding to actin 

but the underlying mechanism is unclear. A general accepted hypothesis of 

MARCKS is that the PSD has two actin-binding motifs on the N-terminus and C-

terminus that are responsible for F-actin cross-linking. In addition, phosphorylation of 

MARCKS leads to conformational change within the PSD, which blocks one of the 

two acting binding domains. However, dephosphorylation of MARCKS also results in 

a conformational change that reveals both actin-binding sites for F-actin cross-

linking (160-162). 
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MARCKS has the ability to cross-link F-actin is promoted by both 

myristoylation and cleavage of MARCKS (163), as well as MARCKS phosphorylation 

at Ser25 (164). Furthermore, the PSD of MARCKS is able to bundle F-actin filaments 

and does so by binding to negatively charged residues of F-actin filaments, thus 

eliminating the electrostatic repulsion between F-actin filaments (165). Additionally, 

the MARCKS PSD is able to polymerize globular actin (G-actin) to F-actin. This 

mechanism is dependent upon the pentalysine sequence on the N-terminus of the 

PSD. Upon being phosphorylated by PKC or calmodulin binding, the ability of 

MARCKS to polymerize G-actin is inhibited (166). 

 A generally accepted hypothesis of MARCKS is that it helps in the movement 

of F-actin around the cell and helps other cytoskeletal proteins interact with F-actin 

as well. It has been established that myoblast alpha-5 integrin mediated focal 

adhesion needs functional MARCKS (140), and that MARCKS and F-actin are 

colocalized in blebs, lamellae of fibroblasts and membrane ruffles (167). Additional 

studies have shown colocalization of MARCKS with cytoskeletal proteins such as α3-

integrins and tetraspanins, proteins that form membrane complexes with integrins 

and participate in integrin-mediated cellular migration (168, 169).  

 Furthermore, an additional mechanistic hypothesis of MARCKS regulation of 

actin cytoskeleton has been demonstrated by sequestration of PIP2. It has been 

demonstrated that the continuous presence of PIP2 in the plasma membrane 

regulates actin dynamics. Wiskott-Aldrich syndrome protein (WASP) and ERM 

(ezrin, radixin, and moesin) proteins are actin-binding proteins that are activated by 

PIP2. Increased concentrations and decreased concentrations of PIP2 are the 
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signals for anchoring and releasing of the actin cytoskeleton from membranes (166, 

170, 171). Additionally, the MARCKS PSD binds to the plasma membrane 

phospholipids phoshatidylserine and PIP2 through electrostatic interactions (129, 

134, 172, 173). The unphosphorylated PSD of MARCKS binds to PIP2 and inhibits 

PLC mediated hydrolysis of PIP2 (174). On the plasma membrane, MARCKS 

clusters PIP2 molecules and PKC and Calmodulin mediated (CaM) displacement of 

MARCKS from the plasma membrane releases the sequestrations of PIP2, resulting 

in the hydrolysis of PIP2 by PLC (166, 174, 175). Taken together, these results 

demonstrate that sequestration of PIP2 is one of the mechanisms whereby MARCKS 

regulates actin dynamics.  

MARCKS participates in cell migration: 

 MARCKS role in cell migration should not be a surprise given that it regulates 

the actin cytoskeleton. MARCKS is required in the migration of fibroblasts (167), 

myoblasts (156), human embryonic kidney cells (176), human hepatic stellate cells 

(177) and vascular smooth muscle cells (178). The first step during cell migration is 

the cells ability to adhere to the extracellular matrix; and the role in MARCKS in 

regulation of cell adhesion and migration has been established (121, 140, 167, 169, 

179). Mutated MARCKS, where the myristoyl moiety is replaced by a palmitoyl 

moiety, interferes with the “MARCKS myristoyl-electrostatic switch mechanism”. This 

results in retraction of fibroblasts spreading on a fibronectin substrate. The 

palmitoylated MARCKS construct also interfered with early stages of cell spreading; 

this observation was confirmed by a round morphology with multiple membrane 

blebs. Additionally, fibroblasts expressing palmitoylated MARCKS exhibited 
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decreased numbers of membrane ruffles and lamellae at the leading edge of the 

cell. Thus, results from this study suggested that the defect was due to the inability 

of the cell to adhere to a fibronectin substrate (167).  

A role for MARCKS in cell migration has been elucidated in myoblast cells. 

Myoblasts express either wild type or non-myristoylated MARCKS and were capable 

of spreading on fibronectin, but myoblasts expressing MARCKS PSD null mutants 

were unable to spread on fibronectin. This observation suggested that the 

combination of phosphorylation and bi-lateral translocation of MARCKS was 

required for cell migration. 

An additional mechanism of MARCKS dependent cell migration occurs 

through stimulation of platelet derived growth factor (PDGF-BB). After stimulation 

with PDGF-BB, MARCKS shown to translocates from membrane to cytosol in Swiss 

3T3 fibroblasts (180). Further, upon PDGF-BB stimulation in hepatic stellate cells 

PKCε phosphorylated MARCKS. Additionally, MARCKS has been shown to 

associate with the PDGF-BB receptor but not focal adhesion kinase either in non-

stimulated and stimulated hepatic stellate cells. However, the non-stimulated hepatic 

stellate cells showed greater association of MARCKS with PDGF-BB receptor. 

Overexpression of MARCKS in hepatic stellate cells resulted in decreased PDGF-

BB mediated chemotaxis, whereas silencing of MARCKS using siRNA increased 

PDGF-BB mediated chemotaxis (160). These data support the concept that bi-lateral 

translocation of MARCKS is needed for the regulation of cell migration. Additionally, 

data also suggests that in migratory cells MARCKS is involved in stabilizing the actin 
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cytoskeletal structure.  However, MARCKS needs to be phosphorylated within PSD 

in order to promote cell migration and reorganize the actin cytoskeleton.  

 Contrary to the above mentioned observations, overexpression of MARCKS 

in cholangiocarcinoma cells (181) increased metastasis and decreased the host 

survival. Endogenous MARCKS overexpression and siRNA against MARCKS 

increased cell attachment and reduced cell attachment, respectively. Furthermore, in 

an experiment where cholangiocarcinoma cells were transfected with siRNA control 

and siRNA against MARCKS followed by treated of PKC inhibitor and TPA 

(translational inducer). The results showed inhibition of cell migration compared to 

pretreatment with TPA alone. This experiment suggested that MARCKS is need for 

migration and metastasis of cholangiocarcinoma cells in a PKC phosphorylation 

dependent manner (182).  

 As CELF1 is well-known for its post-transcriptional role in various cancer 

cells, we are particularly interested in how CELF1 controls mRNA translation in oral 

cancer cells. First, we have adapted a pSILAC technique to understand the 

proteome-wide translational effect of CELF1. From our preliminary data, we have 

identified a novel target, MARCKS. Second, MARCKS involvement in cell migration 

lead us to the following hypothesis that overexpression of CELF1 controls cell 

motility in oral cancer cells through controlling the expression of MARCKS. To 

support our hypothesis, we have designed the following specific aims: 1) we will 

determine whether CELF1 regulates MARCKS translation in oral cancer cells and 2) 

we will determine the biological role of MARCKS in oral cancer cells. 
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Cell Culture 

Cell cultures were maintained in humidified atmosphere with 5% CO2 at 37°C. 

The human oral cancer cell lines (HOK, UM74B, UM11A, UM11B, UM22A and 

UM22B) were maintained in Dulbecco’s modified Eagle medium (DMEM-Hyclone, 

Logan, UT) containing 10% fetal bovine serum (FBS) (Seradigm, Randor, PA) with 

100 U/ml penicillin and 100 µg/ml streptomycin (Hyclone, Logan, UT). Normal 

human oral keratinocyte cells (HOKs) (ScienCell, Carlsbad, CA) and non-malignant 

immortalized oral keratinocytes (OHKC/OKF6-TERT) were grown in keratinocyte 

serum-free medium supplemented with Bovine pituitary extract (BPE) and epidermal 

growth factor (EGF) (Gibco, Grand Island, NY).  

Preparation of shRNA lentivirus particles 

 Cells were plated and after 6-8 hrs of incubation, shcontrol and shRNA 

directed against CELF1 were transduced at 50 MOI (multiplicity of infection) (viral 

particles were prepared by Dr. Reniqua House) in DMEM medium with 1 µg/mL 

polybrene final concentration. After 16-18hrs of incubation, the medium was 

replaced with fresh media. Cell were further incubated for 96-120 hrs and collected 

for further analysis.  

Pulsed stable isotope labeling of amino acids in cell culture (pSILAC) 

  Twenty-four hours after transfection of UM74B cells with siRNA, the medium 

was changed to DMEM containing L-Lysine-2HCl and L-Arginine-HCl (light amino 

acids) for 48 hours (Pierce-DMEM SILAC quantitation kit). After 48 hours in the 

presence of light amino acids the medium on siControl treated cells was changed to 

DMEM containing L-Lysine-2HCl, 4,4,5,5-D4 (medium amino acids) and the medium 
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on siCELF1 treated cells was changed to DMEM containing L-Lysine-2HCl, 13C6, 

15N2 (heavy amino acids) for 24 hours.  Cells were lysed in 9 M Urea and 20 mM 

HEPES, pH 8.0 and rocked for 4hours at 4ºC. Lysates were combined at a 1:1 ratio 

(200µg of each sample) and send for mass spectrometry analysis (Unpublished 

observation from House et al) (183).                                                        

LC MS/MS Analysis—Orbitrap Elite w/ETD 

Peptides were separated with a linear gradient of 5–50% buffer B (95% ACN 

and 0.2% formic acid) at a flow rate of 200nL/min on a C18-reversed phase column 

(75 mm ID _15 cm) packed in-house with Waters YMC-ODS C18-AQ 5 mm resin in 

buffer A (0.2% formic acid/95% water/5% Acetonitrile). A Dionex U3000 nano-LC 

chromatography system (Thermo Scientific) was on-line coupled to the Orbitrap Elite 

instrument (Thermo Scientific) via a Nanospray Flex Ion Source (Thermo Scientific). 

MS data were acquired in a data-dependent strategy selecting the fragmentation 

events based on the precursor abundance in the survey scan (400–1700 Th). The 

resolution of the survey scan was 60,000 at m/z 400 Th with a target value of 1e6 

ions and 1 microscan. Low resolution CID MS/MS spectra were acquired with a 

target value of 5000 ions in normal CID scan mode. MS/MS acquisition in the linear 

ion trap was partially carried out in parallel to the survey scan in the Orbitrap 

analyzer by using the preview mode (first 192 ms of the MS transient). The 

maximum injection time for MS/MS was 100 ms. Dynamic exclusion was 120 s and 

early expiration was enabled. The isolation window for MS/MS fragmentation was 

set to 2 Th. 

Database Search and Quantitation 
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The three triple pSILAC experiments were searched and quantitated together 

as 3 experiments using Maxquant v 1.4.1.2. The Human IPI v3.72 database was 

used. Static modification of carbomidomethyl on cysteines and variable 

modifications of methionine oxidation were included. All protein identifications were 

determined with a 1% FDR as determined by Maxquant.  

Polysome gradient analysis 

Cells were lysed in hypotonic lysis buffer (100 nM Tris-Cl pH 7.4, 5 mM 

MgCl2, 1% Triton X-100, 0.5% deoxycholate, 2 mM DTT, prepared in DEPC-treated 

water) and equivalent amount of protein were overlayed onto a sucrose gradient (10- 

50% (w/v) (increment of 10%), 100 nM KCl, 5 mM MgCl2, 2 mM DTT, 20 mM 

HEPES-KOH pH 7.4, prepared in DEPC-treated water). Gradients were centrifuged 

at 35,000 rpm for 3 hours at 4°C in an ultracentrifuge using Ti-40 rotor. Twenty to 

twenty-five 600uL fractions were collected and RNA was extracted using TRIzol® 

reagent (Ambion, Grand Island, NY) according to the manufacturer’s protocol. 

Extracted RNA was run on a 0.8% agarose gel (10 mL of 10x MOPS, 62 mL of 

DEPC treated water and add 18 mL of 37% formaldehyde once the agarose is 

dissolved in the solution) (Sigma, St. Louis, MO). Afterwards, based on separation of 

tRNA, 40S, 60S, 80S, and multiple polysome (18S and 28S ribosome subunits), 

fractions were combined and run on a 1% agrose gel. Complementary DNA was 

synthesized for combined fractions, using Tetro cDNA Synthesis kit oligo dT primers 

(BIOline, Taunton, MA).  Semi quantitative RT-PCR was run for the top 18 genes 

associated with CELF1 (Table 1). Polysome fractionation analysis was standardized 
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with help of Dr. Phil Howe’s laboratory in the Department of Biochemistry and 

Molecular Biology. 

Semi quantitative RT-PCR reaction of RNA isolated from polysome fractions 

Total RNA was isolated from cells using Trizol according to manufacturer’s 

protocol (Ambion, Grand Island, NY). Reverse transcription was performed using the 

Tetro cDNA Synthesis kit (BIOline, Taunton, MA). Quantitative PCR was performed 

using the Eppendorf vepo-protect instrument and cycle conditions were set as 

follow: 1st step: Initial 95° of denaturation for 10min, 2nd step: additional 5min of 

denaturation at 95°, 3rd step: annealing of primers at 64° for 30 seconds, 4th step: 

primer extension at 72° for 30sec and steps 2-4 repeats for 30 times). Briefly, 

reactions were prepared using 10 ul of total RNA from each pooled fraction, MY Taq 

mix (Bioline, Taunton, MA) and human-specific primers for MARCKS (IDT 

Technology, Coralville, IA) (Sense: 5ʹ′- CCC ACA GAT CCC ATC TCA AAT C-3ʹ′, 

anti-sense: 5ʹ′-GAG AAA CAA GGC AGA GGA AGA A -3ʹ′). All samples were run in 

triplicate and normalized to GAPDH (Sigma, St. Louis, MO) (Sense: 5ʹ′-GGT GGT 

CTC CTC TGA CTT CAA CA-3ʹ′, anti-sense: 5ʹ′-GTT GCT GTA GCC AAA TTC GTT 

GT-3ʹ′). Briefly, 1µL of cDNA, 4µL primer (1µM final concentration), 5µl DEPC treated 

water and 10µl of 2X MyTaq mix for 20ul final reaction.  

siRNA transfection (MARCKS) 

 Cells were plated at twenty percent confluency. After incubating for 6-8 hours, 

either siControl (20nM; GTTCAATTGTCTACGCTA) or on-TARGETplus SMARTpool 

siRNA-targeting MARCKS (20nM; GAG AAG GCG GUG AGG CUG A, GAA GGU 

AAA CGG CGA CGC U, CAU AGG AACU UUU CACU UA and AAA UUG AAG 
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UGG UGC AUA A) (Dharmacon RNAi Technologies) was transfected (17 hrs) using 

HiPerfect as the transfection reagent (Qiagen, Valencia, CA), following the 

manufacturer’s protocol.  

Western Blot analysis 

Cells were lysed on ice by vortexing 4–5 times in RIPA buffer [2 mM TRIS-

HCl, 30 mM NaCl, 1 mM EDTA, 1 mM DTT, 1 mM PMSF, complete protease 

inhibitor cocktail (Boston Scientific, Marlborough, MA), 1% NP-40, pH 7.6] at 5 min 

intervals, followed by centrifugation at 12,000 × g for 30 min at 4°C. Supernatants 

were mixed with an equal volume of 2X Laemmli’s buffer and heated for 5 min at 

95°C. Total protein concentration was estimated using a Bradford assay. Forty to 

fifty micrograms of total protein was resolved on 10% SDS-PAGE gels for 1 hour at 

110 volts and transferred onto a PVDF membrane (EMDmillipore, Billerica, MA) for 

45 minutes at 15 volts using a semidry transfer system. Membranes were pre-

incubated for 1 hr with 5% skim milk (block) prior to incubation with primary antibody 

against the target protein overnight at 4°C. After overnight incubation, the membrane 

was washed three times with tris-buffered saline containing 0.1% Tween 20 (TBST) 

and incubated with 1% skim milk containing 1:5,000 diluted HRP-conjugated 

secondary antibodies for 1 hr at room temperature. After additional washing with 

TBST, immune complexes were visualized using the ECL system (Pierce). Blots 

were re-probed with anti-β-actin antibody as described above. Western blot analyses 

were performed by using antibodies specific to CELF1 (1:1000) (EMDmillipore, 

Billerica, MA), MARCKS (Cell Signaling, Danvers, MA) (1:1000) and β-actin (Sigma, 

St. Louis, MO) (1:5000).  
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RNA extraction and Quantitative Real-time PCR (qRT-PCR)  

Total RNA was prepared from HNSCC cell lines using the RNeasy mini kit 

(Qiagen, Valencia, CA)). qRT-PCR for all mRNA targets were performed using an 

Applied Biosystems StepOne Plus system with the iScript cDNA synthesis kit 

(BioRad).  Briefly, one microgram of total RNA was used for cDNA synthesis. cDNA, 

was diluted 1:5 for qPCR. Quantative PCR reaction was as follows: 1µL of cDNA 

(from 1:5 diluted stock), 1µL of primer (5uM stock primers) and 5µL of 2X Syber 

green dye (Final concentraiton of 1X) (Qiagen, Valencia, CA). CELF1 primers 

sequecne as follow: sense: 5ʹ′-CCA GAC AAC CAG ATC TTG ATG CT-3ʹ′, anti-

sense: 5ʹ′-AGG TTT CAT CTG TAT AGG GTG ATG-3ʹ′. MARCKS and GAPDH 

sequences are identical to sequences that are mentioned in the semi quantitative 

RT-PCR reaction section. 

Ribonucleoprotein immunoprecipitation (RNP- IP)  

CELF1 antibody (EMDmillipore) (4 µg /1mg cell extract) was coated onto 50-

60 µL protein G agarose beads per 1 mg of whole cell extract in a total of 1mL NT2 

buffer  (50 mM Tris-Cl pH 7.4, 150 mM NaCl, and 0.5% NP-40). UM74B cell pellets 

were resuspened in polysome lysis buffer (100mM HEPES pH7, 1 M KCl, 50 mM 

MgCl2, 0.25 M EDTA, and 5% NP-40) and placed in -80°C overnight. Antibody-bead 

complexes were allowed to form overnight at 4°C on a rotating device. Next day, 

lysates were cleared by centrifugation at 14,000 rpm for 10 min. Antibody coated 

beads were washed 4-6 times with NT2 buffer. For each IP, the antibody coated 

beads were resuspended in 850 µL NET2 buffer (850 µL NT2, 10 µL 0.1 M DTT, 30 

µL 0.5 M EDTA, 2.5 µl RNase OUT, and 5 µL SuperaseIN) and 100 µL RNP lysate 
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was added, centrifuged briefly, and a 100µl aliquot was removed for input purpose. 

The RNP lysate-bead complexes were rotated overnight at 4°C. On day three, the IP 

material was centrifuged at 3000g for 3 min and the beads were washed with NT2 

buffer 4-6 times. To dissociate the RNP complex from the antibody coated beads, 

the beads were resuspended in 100µl of NET2 and 100µl of 2X proteinase K buffer 

(20 mM Tris-Cl pH 7.5, 20 mM EDTA, 100 mM NaCl, 2% SDS, stored at room 

temperature), after which 3µl of proteinase K (Sigma, St. Louis, MO) was added and 

the solution was incubated at 55°C for 30min with occasional mixing. Afterwards, the 

supernatant was transferred into new tubes. Finally, RNA was isolated using Trizol 

(Life Technologies, Carlsbad, CA). 

Overexpression of GFP-tagged MARCKS  

 The GFP-tagged MARCKS plasmid was purchased from OriGene (OriGene, 

Rockville, MD). UM74B cells (1x105) were seeded in a 24-well dish and transfected 

with 0.25 µg of MARCKS-GFP tag or GFP empty vector using 0.5-1uL of 

liptofactamine 2000 (Life Technologies, Carlsbad, CA).  

Wound healing assay (scratch assay) 

OHKC, OHKC CELF1 Flag tag (stable cell lines), UM74B MARCKS-GFP 

expressing cells were seeded in a 6-well plate. Wounds were created on cell 

monolayers using a 10µL pipette tip. At 0hr and 24hrs, images were captured using 

Nikon Eclipse TS100 with NIS-Element Br3.2 software (Melville, NY). Wound closure 

was quantified using ImageJ software.  

Transwell migration assay 
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 Fifty thousand cells of shRNA control plus GFP, depleted CELF1 plus GFP 

and depleted CELF1 with plus MARCKS-GFP were resuspended in 5 µL of serum- 

free medium containing 100 U/mL penicillin and 100 µg/mL streptomycin and plated 

into the upper well of a 24-well transwell (Corning). Transwells were placed into a 

24-well plate containing complete medium. Cells were allowed to migrate for 24 hrs. 

Cells were stained with Hoechst 33442 for 30 minutes and the transwell membranes 

were mounted on to slides. Migrated cells were counted in 4 random fields of view at 

10x magnification using a fluorescent microscope. Percent migrated cells were 

calculated by ImageJ software.  

Statistical Analysis 

All the experiments were conducted in triplicate analysis with mean and 

standard deviation was calculated. A student t-test was performed for most of the 

studies, with two-tailed distribution and a two-sample unequal variance. A p-value of 

< 0.05, indicating significant change, denoted by asterisk (*).  
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Chapter 3 

CELF1 controls proteome-wide gene expression patterns 
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Introduction: 

 RNA-binding proteins are known to be involved in the regulation of gene 

expression at post-transcriptional levels, but they do not act alone, instead they 

function as a ribonucleoprotein complex with RBPs and mRNAs. CELF1 

coordinately control the expression of multiple target genes at the posttranscriptional 

level. CELF1 was formerly demonstrated as an multifunctional protein that regulates 

many post-transcriptional processes including alternative splicing, mRNA 

deadenylation, decay and some extend translation (184). Several reports indicated 

that CELF1 play a key role in mRNA turnover, but its role in global mRNA translation 

remains largely unidentified.  

Previous work from our laboratory reported that overexpression of CELF1 in 

head and neck tumor tissues compared to normal adjacent tissue samples (185), 

suggesting that overexpressed CELF1 play a role in oral cancer progression.  In 

addition, unpublished observations from our laboratory indicate that CELF1 is 

capable of controlling the splicing and turnover of approximately 1500 mRNAs and 

translation of over 1350 mRNAs. Since there are no studies showing CELF1’s role in 

global mRNA translation in cancer model, we were particularly interested in 

understanding CELF1’s role in mRNA translation in OSCC cells. To identify the 

CELF1-mediated global mRNA translation control, we have adapted a novel 

proteomics approach called the pulsed stable isotope labeling of amino acids in cell 

culture (pSILAC) using oral cancer cells (Schematic 1). pSILAC is a technique based 

on mass spectrometry that detects difference in protein abundance among different 

conditioned samples using non-radioactive isotopic labeling (186). Using pSILAC we 
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have identified approximately 1350 genes that were controlled by CELF1.  Further 

analysis of the pSILAC data revealed a novel gene; myristoylated alanine-rich C-

kinase substrate (MARCKS) which was significantly affected by the absence of 

CELF1.Hence, we wish to determine how CELF1 controls MARCKS at the post-

transcriptional level in OSCC cells.  
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Results:  

Specific Aim #1: To determine whether CELF1 controls MARCKS translation in 

oral cancer cells. 

Task 1: Determine the mRNA and protein expressions of CELF1 and MARCKS in  

multiple OSCC cells (UM74B, UM11A, UM11B, UM22A & UM22B) by qRT-

PCR and Western blotting analysis.  

Task 2: Determine if CELF1 expression proportionately correlates with MARCKS 

expression through Western blot analysis in UM74B and UM22B cells.  

Task 3: Verification of the pSILAC data using polysome gradient analysis and semi- 

quantitative PCR followed by agarose gel analysis.  

Task 4:  Establish if CELF1 specifically controls MARCKS expression at the mRNA  

translational level, by measuring MARCKS mRNA in CELF1 depleted cells. 

Task 5: Determine the association between CELF1 and MARCKS mRNA through  

RNA- immunoprecipitation (RNA-IP) assay.  
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First, unpublished results from our laboratory revealed that CELF1 controls 

the translation of several target mRNAs in oral cancer cells. Second, we have used 

the following criteria to select a subset of proteins from our pSILAC experiment for 

further evaluation; 1) top altered proteins identified based on statistical analysis, 2) 

mRNAs that contain GRE’s at their 5ʹ′ or 3ʹ′ UTRs, and 3) top proteins that are 

involved in cancer cell biological processes. Figure 1 demonstrates that upon 

depletion of CELF1 in UM74B cells, only 56 proteins were up-regulated, but 1294 

proteins were down-regulated in comparison to control cells, suggesting that CELF1 

is a global translation regulator in OSCC cells. Third, enrichment analysis of pSILAC 

data indicate that diverse sets of genes are controlled by CELF1, and their coding 

proteins are involved in biological functions such as mRNA surveillance, RNA 

binding and translation (Figure 2). Based on the pSILAC proteome-wide analysis, we 

have identified top18 proteins coding mRNAs contains canonical GRE’s at their 

UTRs (Table 1). Using Kyoto encyclopedia of genes and genomes (KEGG) pathway 

for biological function, UCSC genome browser database for GRE sequence search, 

and polysome fractionation gradient analysis for mRNA translation, we have 

identified MARCKS as a target of CELF1 in oral cancer cells (Table 1 and Figure 8). 

Thus, the specific aim-1 of this thesis is planned to test whether CELF1 regulates 

MARCKS mRNA translation in oral cancer cells. Therefore, to determine the 

expression level of CELF1 and MARCKS in oral cancer cells, first, we have tested 

the protein levels of MARCKS and CELF1 in oral cancer cells in comparison with 

primary normal human oral keratinocytes (HOK). Our Western blot analysis revealed 

that the protein expression-fold change of MARCKS and CELF1 are greater than 2 
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fold in UM74B, UM11A, UM11B, UM22A, and UM22B oral cancer cells compare to 

HOK cells (Figure 3). Interestingly, most of the oral cancer cells did not exhibit 

significant differences in CELF1 and MARCKS mRNA expression compared to HOK 

cells (Figure 4), exceptions are UM11B and UM22A cell lines. Altogether the results 

obtained from Figures 3 and 4 indicated that MARCKS protein expression was 

relatively higher compared to its mRNA levels in OSCC cells. Which allows us to 

conclude that MARCKS may be regulated at the post-transcriptional level, in 

particular at the mRNA translation step in oral cancer cells.  

Next, we sought out to validate our pSILAC data using the Western blotting 

technique. First, CELF1 was depleted in UM74B and UM22B cell lines using shRNA 

directed against CELF1 with appropriate shRNA control lentiviral particles. Ninety-six 

hours of post-viral infection, cells were collected and proteins were extracted for 

Western blot analyses. The data obtained from this study indicated that both UM74B 

and UM22B cells exhibited reduced MARCKS expression in CELF1 depleted cells 

compared to control shRNA treated cells (Figure 5). We observed 80% depletion of 

CELF1 reduced MARCKS expression by 48% in UM74B cells (Figure 5) and a 60% 

reduction in CELF1 in UM22B cells resulted in a 58% decrease in MARCKS 

expression (Figure 6). Thus, the data obtained from these studies demonstrated that 

reduction of CELF1 reduced the expression of MARCKS at the protein level in oral 

cancer cells.  

To further confirm the data obtained from pSILAC and Western blot analysis 

of MARCKS, we have utilized polysome fraction gradient analysis to understand 

CELF1’s role in mRNA translation of MARCKS. First, we treated the UM74B cells 
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with either control shRNA or shRNA against CELF1 to knockdown CELF1. Next, we 

have extracted the protein lysates for polysome gradient analysis. The fractions 

obtained from polysome gradient were subjected to RNA extraction to test the 

relative expression levels of different RNA species. As expected, we have observed 

a separation of tRNA (free flowing RNA), 40S (ribosomal subunit), 60S (ribosomal 

subunit), 80S/monosome subunits (complex of 40S and 60S ribosomal subunits) 

and multiple polysomes in shRNA control and shRNA CELF1-treated cell polysome 

fractions (Figure 7, top panel). The bottom panel in Figure 7 illustrates the 

schematics of the polysome gradient profiles. Next, we used semi-quantitative PCR 

analysis of combined polysome fractions to estimate the mRNAs undergoing active 

translation in oral cancer cells. The RNA extracted from polysome fractions were 

subjected to estimate MARCKS mRNA by using gene specific primers.  The cDNA 

was prepared from total RNA and subjected to semi-quantitative PCR for measuring 

MARCKS mRNA level. The PCR products were separated by using agarose gel and 

the relative expression of MARCKS mRNA was measured. The results obtained 

from this experiment indicated that there is reduction of MARCKS mRNA in active 

translation fractions of shRNA CELF1 treated samples in comparison to active 

translation fractions in cells treated with shRNA control (Figure 8). Thus, the data 

obtained from this section of the study indicated that CELF1 directly controls the 

expression of MARCKS at the mRNA translation level.  

Next, to test whether CELF1 is controlling MARCKS translation through its 

mRNA levels, we measured the relative expression level of MARCKS mRNA in 

CELF1 depleted UM74B and UM22B cell lines. Both cell lines were treated with 
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either shRNA control or shRNA against CELF1 viral particles and 96 hours post-

transduction the lysates were prepared for RNA extraction and analyzed by qRT-

PCR. The results indicated that reduction of CELF1 in UM74B and UM22B cells did 

not significantly alter MARCKS mRNA levels compared to shRNA control cells 

(Figure 9 and 10). This observation clearly demonstrated that CELF1 controls 

MARCKS protein expression at the mRNA translation level but not at the expression 

of mRNA. Finally, to determine if CELF1 directly bound to MARCKS mRNA and 

control its translation, we performed RNP-IP assays using an anti-CELF1 antibody 

and an IgG control. We have observed a 3.8 fold enrichment of MARCKS mRNA in 

CELF1 immunolysates (Figure 11) compared with IgG control beads. These data 

suggest that CELF1 directly binds MARCKS mRNA and promotes its translation in 

oral cancer cells.  

In specific aim-1, we have now established that overexpression of CELF1 

appears to regulates MARCKS expression in various oral cancer cell lines. 

Specifically, depletion of CELF1 in oral cancer cells reduced MARCKS protein 

expression, but did not changing the level of mRNA. Furthermore, RNP-IP assays 

revealed that CELF1 directly associated with MARCKS mRNA. In summary, taking 

all of these data in specific aim-1, we have now demonstrated that CELF1 controls 

MARCKS mRNA translation in oral cancer cells.  
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Table 1: Top genes showing significant differences in expression patterns by 

pSILAC analysis. These genes were selected based on their GRE motif in their 3' 

UTR.  

Proteins)) GRE)Clusters)

Up)Regulated) Fold)Change) Cluster) 3!)UTR)GRE)

EPS8% 2.27% Cluster%4% TTGTTTGTTTGTA%

COL5A3% 2.86% 9%

PTPN11% 1.59% 9%

SPEN% 1.96% Cluster%3% TTTTGTTTGTTTG%

Down)Regulated))

SNRPD3% 94.53% 9% 9%

SUMF2% 94.42% 9% 9%

LUZP1% 94.36% 9% 9%

SFRS2% 93.88% 9% 9%

AKR1D1% 93.53% Cluster%5% TGGTGTTTGTTTC%

NCAPG% 93.40% Cluster%5% TTCTGTTTGTTGG%

ATF7IP% 92.92% Cluster%5% GGGTGTTTGTGTG%

ERCC5% 92.89% Cluster%5% TTGTGTTTGATGG%

ADNP% 92.73% Cluster%5% TTTTGTTTGTTTT%

EPS15% 92.65% Cluster%5% TTATGTTTGTTGT%

COPZ1% 92.65% Cluster%5% TTCTGTTTGTGGT%

STK10% 92.65% Cluster%5% TTGTGTTTGTTGT%

MARCKS% 92.64% Cluster%4% GTTTGTTTGTTGG%

CREBBP% 92.52% Cluster%5% TTTTGTTTGGGG%
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Schematic 1: Illustration of pulsed stable isotope labeling of amino acids in 

cell culture (pSILAC) using UM74B oral cancer cells.  
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Figure 1: Histogram of log2 fold change versus expression of proteins altered in 

the absence of CELF1 in UM74B oral cancer cells. In absence of CELF1, 

reduced global mRNA translation has been observed.    
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Figure 2: Enrichment analysis of CELF1 regulated proteins using cluego and 

cluepedia (cytoscape). The enrichment analysis of pSILAC has identified CELF1’s 

role in various cell processes, including mRNA surveillance, cytoskeleton 

reorganization, mRNA 3’ end processing and translation. The three triple pSILAC 

experiments were searched and quantitated together as 3 experiments using 

Maxquant. 
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Figure 3: Western blot analysis of MARCKS and CELF1 in oral cancer cell 

lines in comparison to normal human oral keratinocytes. Beta-actin serves 

as a loading control. Double band of CELF1 reflects possible post-

translational modification. N=2, *p<0.05. 
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Figure 4: Relative quantity of mRNAs measured with qRT-PCR in oral cancer cells. 

CELF1 mRNA expression was significantly altered in UM11B and UM22A; 

additionally, MARCKS mRNA expression was also significantly altered in UM74B in 

comparison to HOK cells.  N=3, MARCKS: *p<0.027 (UM74B); CELF1; CELF1: 

*p<0.005 (UM11B), *p<0.014 (UM22A). 
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Figure 5: Reduction of CELF1 in UM74B cells influences MARKCS protein 

expression. Western blot analysis of CELF1 and MARCKS in oral cancer 

cells, and beta-actin serves as a loading control. Bottom graph depicts 

quantitative values of representative Western blots expression levels of 

CELF1 and MARCKS.  N=3, *p<0.001 CELF1, *p< 0.011 MARCKS. 

 



46	  
	  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Reduction of CELF1 in UM22B cells influences MARKCS protein 

expression. Western blot analysis of CELF1 and MARCKS in oral cancer cells, 

and beta-actin serves as a loading control. Bottom graph depicts quantitative 

values of representative Western blots expression levels of CELF1 and 

MARCKSN=3, *p<0.018 CELF1, *p<0.001. 
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Figure 7, top: Polysome gradient fractionation analysis of CELF1 depleted cells. The 

standardization of polysome fractionation analysis have shown separation of free flowing 

RNA, 40S ribosome subunits, 60S ribosomes subunits, 80S subunits (non-active translation) 

and polysome (active translation). N=2. 

Figure 7, bottom: Schematic of polysome fractionation profile analysis.  
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Figure 8: Semi-quantitative PCR analysis of CELF1 depleted UM74B polysome 

fractionations. The control samples shows lesser amount of MARCKS mRNA present 

in the non-active translation (free flowing tRNA, 40S, 60S and 80S fractions) in 

comparison to active translation (polyosme fractions). In the depleted samples, more 

MARCKS mRNA present in the non-active translation fractions compared to active 

translation fractions. (N=2). 
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Figure 9: Depletion of CELF1 did not alter MARCKS mRNA in UM74B cells.  

qRT-PCR analysis of CELF1 and MARCKS in the absence of CELF1 oral 

cancer cells.  Depletion of CELF1 does not alter MARCKS mRNA in UM74B. 

N=3, *p<0.004 CELF1, *p>0.528 MARCKS; n.s.= non-significant. 
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Figure 10: Knockdown of CELF1 did not alter the expression of MARCKS mRNA 

in UM22B cells. qRT-PCR analysis of CELF1 and MARCKS in the absence of 

CELF1 oral cancer cells.  Depletion of CELF1 does not alter MARCKS mRNA in 

UM22B. N=3, *p<0.029 CELF1, p> 0.684 MARCKS; n.s.= non-significant. 
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Figure 11: CELF1 associated with MARCKS mRNA identified by RNA-IP. The 

UM74B cell lysate was immunoprecipitated with IgG or anti-CELF1 antibody. 

The RNAs isolated from the total lysate and the immunoprecipitates (IP) were 

then anlauyzed by qRT-PCR. The qRT-PCR showed 3.8 fold enrichment in the 

Anti-CELF1 antibody in comparison to IgG control antibody. N=3, *p<0.05. 
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Discussion: 

 Gene expression is a tightly regulated and adaptive process that 

encompasses co- and post–transcriptional modifications and ultimately determines 

the fate of the mRNA. The mRNA translation is a key post-transcriptional regulatory 

process in eukaryotes, and deciphering CELF1-mediated protein translation 

provides an opportunity to dissect this pathway in cancer cells. Interestingly, at 

different stages of development, CELF1 can activate the translation of various 

mRNAs (102). For example, in Drosophila CELF1 protein called Bru forms a 

complex with protein CUP and the 5ʹ′ cap binding initiation factor, eIF4E, and initiates 

circularization of mRNA and inhibit its translation (104). In addition, interaction of 

CELF1 with hnRNP H at the two ends of the SHMT (folate-dependent enzyme) 

transcripts also aid in circularization and facilitate translation from an internal 

ribosome entry site (IRES) by increasing ribosome recycling (112, 113). Altogether, 

these studies support CELF1 as a regulator of mRNA translation in different cell 

systems. 

From our pSILAC analysis we have identified MARCKS as a target of CELF1 

protein at the mRNA translational level. Notably, CELF1 and MARCKS are 

overexpressed in oral cancer cells compared to normal oral keratinocytes (Figure 3), 

which demonstrate the importance in the coexistence of these proteins in oral 

cancer cells. Surprisingly, we did not see significant changes in the level of mRNA 

(Figure 4) encoding MARCKS in the absence of CELF1, indicate that MARCKS 

protein expression levels are post-transcriptionally regulated at the translation level. 
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Thus, CELF1’s role in mRNA translation has been established, and the target 

MARCKS has been identified in oral cancer cells.  

 Specific deletion of CELF1 followed by measurement of MARCKS protein 

expression in UM74B and UM22B cell lines using Western blot analysis clearly 

established a relationship between CELF1 and MARCKS (Figure 5 and 6). In both of 

the cell lines, we have observed that deletion of CELF1 protein leads to significant 

reduction of MARCKS protein levels. In contrast to this observation, recent reports 

have indicated that CELF1 along with another RBP, HuR (Hu Antigen-R) are shown 

to regulate translation of occluin mRNA by binding at its 3ʹ′ UTR (187). 

Overexpression of CELF1 decreased the HuR binding to occluin mRNA and 

repressed its translation, whereas HuR overexpression inhibited CELF1 association 

with occluin mRNA and promoted its translation (187). These data suggests that 

RBPs copete with each other for binding and involved in the regulation of mRNA 

translation depending on the transcript. We assume that CELF1 possibly associates 

with the 3ʹ′ and/or 5ʹ′ UTR of MARCKS and controls its translation. Utilizing the UCSC 

genome browser database query, we were able to observe that the 3ʹ′ UTR of 

MARCKS contains the canonical GRE sequence UGUUUGUUUGU and the 5ʹ′ UTR 

contain several GU and U stretches, where CELF1 thought to bind and regulate its 

protein expression levels. Moreover, our RNP-IP analysis clearly demonstrated that 

CELF1 is strongly associated with MARCKS mRNA. As CELF1 was shown to bind 

to mRNAs containing UGU triplets (188), we have observed several triplets of UGU 

at the MARCKS 3ʹ′ UTR. In addition, CELF1 enhanced the translation of cyclin A2 

through binding consensus sequences in its 3ʹ′ UTR, indicating that CELF1 also 
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targets the 3ʹ′ UTR of mRNAs to regulate its translation (102). Collectively, other 

reports mentioned above and our data suggests that CELF1 interact with MARCKS 

and controls its translation in oral cancer cells. Currently, to delineate the exact 

mechanism of CELF1 binding with MARCKS mRNA, we are investigating the 

MARCKS 3ʹ′ UTR association with CELF1 using the 3ʹ′ UTR reporter assays.  

 In order to strengthen the pSILAC data, we have adapted polysome 

fractionation analysis. The separation of tRNA (free flowing RNA), 40S (ribosomal 

subunit), 60S (ribosomal subunit), 80S/monosome subunits (complex of 40S and 

60S ribosomal subunits) and multiple polysomes in shRNA control and shRNA 

CELF1 depleted cells were achieved (Figure 7, top panel). The separation of tRNA, 

40S and 60S ribosome, 80S ribosome and multiple polysome fractions are important 

to determine the active vs. non-active translation of particular mRNA, with inactive 

translated mRNAs predominately found in the free flowing RNA, 40S, 60S and 80S 

and actively translated mRNAs found in multiple polysome fractions. The fractions 

were subjected to semi-quantitative PCR analysis and showed significant reduction 

of MARCKS mRNA in polysome fractions, of cells treated with shCELF1 compared 

to cells treated with shcontrol (Figure 8). The reduction of MARCKS mRNA in 

polysome fractions demonstrated that it was not undergoing active translation in the 

absence of CELF1. It has been shown that a model for the IRES-mediated 

translation of SHMT1 (serine hydroxymethyltransferase 1), whereby the 

circularization of the mRNA typically provided by the eukaryotic initiation factor (eIF) 

4G/PABP/poly(A) tail interaction is achieved through the hnRNP H2/CELF1-

mediated interaction of the 5ʹ′ and 3ʹ′ UTR of the SHMT1 transcripts (112). Our 
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observations indicate that CELF1 might interact with either the 3ʹ′ or 5ʹ′ UTR of 

MARCKS and possibly forms a circularization with mRNA and regulate its 

translation.  

 As CELF1- is controlling the expression of MARCKS, the changes in 

MARCKS mRNA turnover needs to be addressed. Interestingly, in the absence of 

CELF1 both UM74B and UM22B cells did not exhibit significant changes in the 

expression of MARCKS mRNA (Figure 10 and 11), instead it exhibits reduced 

MARCKS protein level, demonstrated that the CELF1 solely act on the mRNA 

translational level and promoted the expression of MARCKS. Under certain 

circumstances, the absence of one RBP might recruit additional RBPs to associate 

with target mRNAs. For example, a recent report indicated that CELF1 could bind to 

the 3ʹ′ UTR of Myc mRNA repressing its translation without affecting total Myc mRNA 

levels. Interestingly, HuR interacted with the same Myc 3ʹ′ UTR element, and 

increasing the level of HuR, decreased CELF1 binding to Myc mRNA (189).  It has 

been shown that the 3ʹ′ UTR of MARCKS contains canonical AU-rich sequences 

(190), which are known to interact with HuR, but this observation needs further 

investigation. Thus, RBPs can interplay between each other to bind with mRNAs and 

regulate its translation in mammalian cells.  
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Chapter 4 

CELF1 Regulates Cell Migration through MARCKS expression 
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Introduction: 

 Cell migration is an important for physiological processes that depend on 

regulated movement of cells, including immune responses, embryonic development 

and tissue maintenance and repair. In addition, alteration in cell motility plays a role 

in driving disease states such as; vascular disease, chronic inflammation and tumor 

metastasis (191). Tremendous efforts have been made to understand these aberrant 

changes in diseases. These efforts uncovered the current concept of cell migration, 

which is a cycle of several tightly regulated steps (191, 192). For example, 

directional movement of the cell is initiated by polarization of cells to migratory cues 

(191). Cell polarization, allows for the segregation of machinery that regulates the 

multiple states of migratory cycle (191). A migratory cycle consists of (1) the cell 

extending an actin cytoskeletal-rich protrusion that occurs in the leading edge of the 

cell toward the migratory cue, (2) the leading edge attaches to the extracellular 

matrix (ECM) through-integrin mediated adhesion complexes, (3) the actin-myosin 

cytoskeleton generates force to move the bulk of the cell forward and lastly, the 

adhesive contacts at the rear of the cell are disassembled to complete the cycle 

(191). Thus, any irregularity in the cycle mentioned above can lead to altered cell 

motility and potentially promote diseases. 

 Interestingly, CELF1s role in cell migration has not been addressed so far. 

However, based on our pSILAC proteomic analysis and gene ontology, we were 

able to identify CELF1-targetted genes that are involved in cell migration and 

motility. Therefore, for specific aim-2 of this study, we will examine how CELF1 

controls MARCKS to regulate cell migration in oral cancer cells.  
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Results: 

Specific Aim 2: Determine the biological role of MARCKS in oral cancer cells. 

Task 1:  Determine if CELF1 modulates cell migration in UM74B cells by using a  

wound scratch healing assay. 

Task 2: Confirm whether overexpression of CELF1 promotes the expression of  

MARCKS in non-malignant human oral keratinocytes and enhances cell 

motility. 

Task 3: Understand if MARCKS directly controls cell motility in UM74B cells using a  

cell migration assay. 

Task 4: Establish if ectopic expression of MARCKS in CELF1 depleted UM74B  

cells rescues the cell migration phenotype.     
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Although pSILAC and gene ontology analysis suggest that CELF1 could play 

a role in cell-cell communication and regulate extra cellular matrix proteins in oral 

cancer cells (Figure 2), its cell migratory functions were never tested in a cancer cell 

model. To address whether depletion of CELF1 in UM74B cells modulate cell 

motility, we employed two separate methods to quantify cell migration: a wound 

healing assay and a transwell migration assay.  First, to measure the cell migration 

in UM74B cells, we created a scratch 72 hours post-transduction shRNA control and 

shRNA against CELF1, a wound was created as described in materials and 

methods. Next, the percent migration was calculated by measuring wound closure at 

0 and 24-hours post wounding for control and CELF1 depleted cells. Compared to 

control shRNA treated cells, we have observed a 56% reduction in wound closure in 

the CELF1 knockdown cells (Figure 12), suggesting that CELF1 promotes cell 

migration in oral cancer cells.  

To further confirm CELF1’s role as a cell migratory protein, we tested its 

function by overexpressing CELF1 in non-malignant oral keratinocytes (OHKC), 

which express low levels of CELF1 and measured cell migration. By using wound 

scratch assay, we have observed OHKC CELF1 overexpressing cells to exhibits 

49% enhancement in cell migration compared to control OHKC (Figure 13).  This 

observation indicated that CELF1 enhanced cell migration, possibly through its 

associated gene network.  

Next, to test whether overexpression of CELF1 in OHKC cells promotes 

MARCKS protein expression, we have used Western blot analysis. CELF1 

overexpressing OHKC cells exhibited a 2.7 fold increase in MARCKS protein 
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compared to control vector-expressing cells  (Figure 14, left panel). This observation 

clearly indicated that overexpression of CELF1 promoted MARCKS expression in 

these cells. To further confirm overexpression of CELF1 directly promotes the 

translation of MARCKS, we quantified MARCKS mRNA levels using qRT-PCR in 

OHKC and OHKC CELF1 overexpressing cells. As expected, we did not observe a 

significant difference in MARCKS mRNA level in OHKC cells relative to OHKC-

CELF1 cells (Figure 14, right panel). Altogether, these two key experimental results 

confirmed that overexpression of CELF1 promotes MARCKS expression at the 

mRNA translational level, but not at the mRNA turnover level.  

Although depletion of CELF1 reduces cell migration in UM74B cells, the 

question remains, whether CELF1 or MARCKS alone or in combination to control 

the function of cell migration. To confirm if MARCKS independently controls cell 

migration in oral cancer cells, we have reduced MARCKS expression in UM74B cells 

using siRNA against MARCKS mRNA (Figure 15, top left panel) and measured cell 

migration using the wound healing assay. As expected, compared to control siRNA 

transfected cells, we observed a 40% decrease in wound closure in MARCKS siRNA 

treated cells (Figure 15, bottom panel), suggesting that MARCKS directly controls 

cell motility in oral cancer cells.  

In addition, to determine if CELF1 controls cell migration through MARCKS, 

we ectopically expressed GFP-tagged MARCKS in CELF1 depleted cells and tested 

whether expression of MARCKS alone enhances or rescues cell migration in oral 

cancer cells. The ectopic expression of MARCKS in CELF1 depleted cells was 

tested by Western blot and is shown in Figure 16, bottom left. Due to severe cell 
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death after CELF1 depletion combined with MARCKS overexpression, we were 

unable to perform wound scratch assay. Consequently, we have utilized a transwell 

migration assay to measure cell motility (Figure 16). As expected in CELF1 depleted 

cells, cell migration was reduced in comparison to shRNA control treated cells; 

whereas cells overexpressing GFP-MARCKS in the absence of CELF1 did not 

exhibits a significant change in migration compared to shRNA control treated cells. 

Thus, the data indicate that CELF1 phenotype was rescued. In another word the cell 

migration phenotype was rescued. In conclusion, the results obtained from specific 

aim-2 positively demonstrated that CELF1 controls cell migration through MARCKS 

protein, which was confirmed by gain- and/or loss-of-function studies of CELF1 and 

MARCKS in oral cancer cells.  
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Figure12: CELF1 influences cell migration in UM74B cells. Reduction of 

CELF1 reduces cell migration by 54%. Monolayer cells were wounded and 

photographs were taken immediately after wound induction and 24 hours 

later. The scratch creation was performed as described in materials and 

methods. Additionally, the quantification of wound closer was measured 

using ImageJ software, the protocol is descried in methods and materials 

sections. N=4, *p<0.002. 
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Figure 13: Overexpression of CELF1 in non-malignant human oral 

keratinocytes (OHKC-CELF1). Overexpression of CELF1 in OHKC enhances 

cell migration by 49% in compared to OHKC. Monolayer cells were wounded 

and photographs were taken immediately after wound induction and 24 hours 

post wound creation. The scratch creation and quantification of wound closer 

protocols are described in methods and materials. Additionally, the 

quantification was measured by ImageJ software. N=3, *p<0.038. 
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Figure 14, left:  Overexpression of CELF1 in OHKC CELF1 Flag tag leads to upregulation of 

MARCKS protein expression. The Western blot of total protein was extracted from OHKC cells 

and OHKC CELF1-Flag tag cells. The CELF1 is overexpressed in the OHKC CELF-Flag tag 

cell line in comparison to OHKC. Additionally, the western blot also shows overexpression of 

MARCKS in OHKC CELF1-Flag tag cells in comparison to OHKC cells.   

Figure 14, right: MARCKS mRNA levels remain unchanged in CELF1 overexpressing OHKC 

compared to normal OHKC. N=3, p> 0.895; n.s.= non-significant.  
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Figure 15: MARCKS influences OSCC cell migration in a scratch wound healing 

assay. Treatment of siRNA against MARCKS reduces cell migration by 40% in 

UM74B. Monolayer of cells were wounded and photographs were taken 

immediately after wound induction and 24 hours post wound creation. The scratch 

creation and quantification of wound closer protocols are described in methods and 

materials. Additionally, the quantification of scratch wound healing assay was 

measured by ImageJ software. N=3, *p<0.0005. 
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Figure 16, top panel: Transwell migration assay of MARCKS overexpression in CELF1 

depleted UM74B cells. 

Figure 16, bottom left panel: Confirmation of overexpression of MARCKS in CELF1 depleted 

UM74B cells. 

Figure 16, bottom right panel: Migration through transwell in UM74B. Migration was 

performed as described in methods and materials. The  N=3; shControl-GFP/ shCELF 1- GFP, 

*p<0.002; shCELF1-GFP/ shCELF-MARCKS, *p<0.025; shContro-GFP;shCELF1-MARCKS; 

p>.050, n.s.= non-significant. 
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Discussion: 

 RNA-binding proteins regulate gene expression in mammalian cells mostly at a 

global level through coordinated gene network and control over several cell 

biological processes. For example, systems-level mRNA:protein (mRNP)  biology 

has begun to emerge from quantitative genomic, proteomic, and microscopy-based 

investigations (193). These approaches have yielded information about mRNA and 

protein state, protein-protein, protein-nucleic acid interactions, protein localization, 

and dynamics of mRNP systems and processes. Although large-scale proteomic 

studies have generally focused on whole proteome interactions rather than those of 

mRNP systems in particular, our approach in this thesis primarily focuses on 

proteomic and functional investigation of CELF1 in gene expression and cell 

migration in oral cancer cells.   

 Interestingly, published network analysis of CELF1 and its associated targets in 

cervical cancer cells (HeLa) showed genes that are specifically involved in cell 

migration (194). However, biological studies associated with this observation is 

reported. Based on our pSILAC analysis, we have identified several proteins 

targeted by CELF1 implicated for their role in cell migration and motility. Based on 

our identification of key proteins involved in cell migration, MARCKS becomes a 

prominent protein shown to be associated with cell migration in a variety of cell 

systems (177). Thus, CELF1 associated proteome network analysis followed by 

target validation for functional studies of MARCKS suggest that the systems 

approach on understanding biological function of CELF1 can be very successful.    
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 The results obtained in specific aim-2, for example, depletion of CELF1 

reduces cell migration (Figure 12) and overexpression of CELF1 in non-malignant 

cells enhances cell migration (Figure 13), clearly demonstrate that CELF1 is a 

critical regulator of cell motility. RBPs are well-known for controlling cell migration in 

variety of other systems, for example, HuR has been shown in HeLa cells to stabilize 

the β-actin mRNA by associating with a uridine-rich element within its 3ʹ′ UTR and 

controlling cell adhesion, invasion and migration (195). Thus, our data in-line with 

the above mentioned report and suggest that CELF1’s control of MARCKS could be 

part of the regulatory mechanisms responsible for cell migration in oral cancer cells.  

 MARCKS is a well-known protein factor involved in cell migration that is 

regulated by several different cellular pathways, such as epigenetic modifications, 

transcription and signaling pathways. It is very interesting to add an additional layer 

of regulation for MARCKS through mRNA translation machinery, which controls its 

expression in cancer cells. Based on the findings in this thesis, we are first to report 

that MARCKS is controlled at the mRNA translational level in cancer cells.  

It is interesting to note that we have previously reported that depletion of 

CELF1 in UM74B cells leads to reduction of cell growth and increased apoptosis 

(185). But, specific deletion of CELF1 in OHKC did not alter cell growth or apoptosis 

(57) suggesting that CELF1 function are cancer cell-specific and in cancer cells the 

function of CELF1 is different than normal cells. But overexpression of CELF1 in 

OHKC cells promotes cancer like phenotype. Based on the data obtained from our 

study (Figure 14), we were able to establish that overexpression of CELF1 in non-

malignant cells promotes the expression of MARCKS and subsequently enhances 
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cell motility. Thus, CELF1 and its associated gene network are important regulators 

of cell migration in oral cancer cells.  

It is widely accepted that signal transduction pathways affect cancer cell 

motility through phosphorylation of targeted proteins. For example, PDGF-BB is a 

known mitogen and chemoattractant for fibroblasts that signals through tyrosine 

kinases and the PDGF-BB receptor (PDGFR-BB). PDGF-BB signaling results in 

increased intracellular Ca2+ concentrations and subsequent activation of protein 

kinase C (PKCε), which phosphorylates MARCKS (196, 197). The resulting 

phosphorylated MARCKS is unable to bind with actin filaments and cell migration is 

induced. Thus, kinase activation plays a critical role in MARCKS cell migratory 

activity. Surprisingly, CELF1 was shown to be phosphorylated upon activation of 

PKC (79), which could impact the binding and promotion of MARCKS expression in 

oral cancer cells. Both CELF1 and MARCKS proteins were overexpressed in oral 

cancer cells (Figure 3), and possibly phosphorylated by PKC, but this proposed 

model requires further investigation. It would it interesting to see if activation and 

inactivation of PKC can increase and decrease cell migration through 

phosphorylation of CELF1 and MARCKS, respectively.  
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Summary: 

 Post-transcriptional regulation of gene expression plays an important role in 

disease progression. RNA binding proteins with the help of other accessory proteins 

and mRNAs are capable of regulating multiple steps within the post-transcriptional 

regulatory process. CELF1, a member of CELF family RBPs is known to regulate 

pre-mRNA splicing, mRNA degradation, and mRNA translation (61, 184). CELF1’s 

role in cancer has emerged within the last five years; however, its precise cancer 

biological function has not been established.  Here, we have utilized a global 

proteome-wide analysis and identified the protein MARCKS as a target of CELF1. 

We have also established that cell migration is controlled by CELF1 through 

translational regulation of MARCKS in oral cancer cells.   

Our proteome-wide analysis revealed that approximately 1350 proteins are 

translationally controlled by CELF1. The biological enrichment of these proteins 

discovered a vast variety of genes that are controlled by CELF1 including RNA 

transport, mRNA 3ʹ′ end processing, translation initiation, and cytoskeleton 

remodeling. Moreover, based on statistical analysis of top altered proteins in the 

absence of CELF1, we were able to identify the top 18 genes that were associated 

with CELF1 (Table. 1). Continued analysis of identified genes through KEGG 

pathway, USCS genome browser database and multiple rounds of polysome 

fractionation gradient analysis, we found that MARCKS was a target of CELF1. 

Given the significance of MARCKS role in cell migration, we have identified that 

overexpression of CELF1 controls cell motility in oral cancer cells through regulation 

and expression of the cytoskeleton associated protein MARCKS.  
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Future Directions: 

  In this thesis, we have demonstrated that CELF1 and MARCKS are 

overexpressed in multiple oral cancer cells. Furthermore, we have observed upon 

depletion of CELF1, protein expression of MARCKS is significantly reduced. Using 

RNA-IP we were able to establish CELF1 is directly associated with MARCKS 

mRNA and controls its translation. However, we have not demonstrated the exact 

molecular mechanism of how CELF1 binds to MARCKS mRNA. However, we have 

observed that the MARCKS 3ʹ′ UTR contains canonical GRE sequences, where 

CELF1 can bind and potentially regulate its translation. At the same time, we cannot 

disregard the 5ʹ′ UTR of MARCKS, which contains GU stretches that can also be 

controlled by CELF1. Therefore, future experiments are needed to determine how 

CELF1 control MARCKS translation through association with 5ʹ′ or 3ʹ′ UTRs. To 

address this, we plan to use a luciferase reporters constructs with MARCKS 3ʹ′ or 5ʹ′ 

UTRs to test the expression level of these constructs by the gain- and loss-of-

function of CELF1. This experiment will provide additional confirmation of CELF1’s 

control over MARCKS expression in oral cancer cells and may be suitable for other 

cell systems.   

Conclusion: 

 Overall, the work presented in this thesis has further strengthened our 

understanding of CELF1 function at the post-transcriptional gene regulation level 

and establishes the molecular mechanism of mRNA translation of MARCKS. We 

were able to provide evidence to support MARCKS as a target of CELF1-regulated 

post-transcriptional regulation. Furthermore, in specific aim-2, we were able to 
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demonstrate that CELF1 controls cell migration through MARCKS in oral cancer 

cells. Interestingly, reduction of CELF1 in oral cancer cells down-regulates protein 

synthesis of MARCKS, but not the MARCKS mRNA, further validating that CELF1 is 

controlling MARCKS at the mRNA translational level. Finally, gain-and loss-of-

function of CELF1 and MARCKS in oral cancer cells demonstrated that both proteins 

play a key role in cell migration. The down-regulation of CELF1 resulted in 

decreased MARCKS gene expression, which in turn resulted in decreased cell 

motility of oral cancer cells. Thus, based on all of the data presented in this thesis, 

we conclude that CELF1 mediated cell migration occurs through the post-

transcriptional regulation of MARCKS protein. 
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