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Abstract 

 

In disease mapping where predictor effects are to be modeled, it is often the case that sets of predictors are 

fixed and the aim is to choose between fixed model sets. In this dissertation, I focus on this dimension 

reduction objective by applying the Poisson data model commonly used for disease mapping of small area 

health data. I begin with a software comparison of the recently developed R package INLA (Integrated 

Nested Laplace Approximation) to the MCMC approach by way of the BRugs package in R, which calls 

OpenBUGS. This software comparison leads to choosing the appropriate platform for carrying out the 

second portion of this work: a methodology comparison of my proposed non-spatial and spatial approaches 

of Bayesian model selection to Bayesian Model Averaging.  Following that, for the third and final aim, I 

extend my Bayesian model selection methodologies to the spatio-temporal setting and evaluate the benefit 

and usefulness of four different modeling approaches. These explorations demonstrate the importance of 

altering the defaults in INLA and the flexibility of the BUGS software. Additionally, they offer a novel way 

of determining appropriate linear predictors in the context of non-spatial, spatial, and spatio-temporal small 

area health data in disease mapping.
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1. Introduction 

Bayesian methods in Biostatistics have become more conventional in recent years due to advances in 

computing technology and software availability; this, in conjunction with the development and adoption of 

the Markov chain Monte Carlo (MCMC) method, has truly broadened the uses of this paradigm. The 

importance of MCMC methods were first noted in review articles for medical applications as early as 

1993.1 The software package Bayesian inference Using Gibbs Sampling (BUGS), explicitly OpenBUGS 

and WinBUGS, implements these methods in a way that has led to considerable wide spread use.2, 3  

 

The topic of disease mapping exists within the Bayesian paradigm. This subject capitalizes on the 

importance of geographical location in predicting disease outcomes. While this is not a new notion, 

technological improvements, such as geographical information system (GIS), coupled with the 

development of the conditional autoregressive (CAR)4 model have greatly improved the capabilities of this 

area of research. 

 

In the application of disease mapping, it is often of interest to determine the best set of predictors associated 

with a particular disease outcome. Here, I propose a method for doing so using model selection. These 

model selection procedures can be applied in non-spatial, spatial, or spatio-temporal framework to allow 

for maximum flexibility, and is characterized by the notion that there is a predefined set of potentially 

important linear predictors. From the model selection process, I calculate model weights or probabilities 

that aid in determining the most appropriate linear predictor for the given area whether it be a non-spatial, 

spatial, or spatio-temporal unit. The general aims are as follows: 

1. To compare INLA5 and OpenBUGS in the disease mapping framework. 

2. To develop non-spatial and spatial model selection methods. 

3. To extend in the model selection methods into the spatio-temporal setting. 

Aim 1 considers two prominent software packages available for disease mapping in Bayesian inference: 

INLA and OpenBUGS. In this examination, a range typical of model scenarios are examined for their fit in 
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each software package. Initially the priors are based on the default settings available in INLA, then altered 

priors are fit to determine the scenario that achieves nearly identical results in the two packages. 

Ultimately, I determine that INLA can reproduce results found in OpenBUGS when the default settings are 

altered, but I elected to continue using the BUGS software in this project as it offers more flexible 

modeling options for exploring the model selection techniques.  

 

Aim 2 focuses on developing both the non-spatial and spatial model selection methodologies. These 

methods provide a way to establish the best of a pre-defined set of linear predictors, and when looking at 

the spatial method, separate linear predictors could be chosen for different counties of interest. In addition 

to developing the model selection methods, Bayesian Model Averaging (BMA) is also performed on the 

linear predictors of interest. This allows for a comparison between my Bayesian model selection (BMS) 

and the BMA methods. Both BMS and BMA procedures are performed in OpenBUGS as a result of the 

findings in Aim 1. Additionally, a real data example using colon cancer incidence in the state of Georgia, 

USA is performed with these techniques. Based on this exploration of model selection techniques, I 

determine that BMS is the better option over BMA, but using them in conjunction can lead to even more 

information about the linear predictors of interest.  

 

Aim 3 extends Aim 2 into space-time to allow for a spatio-temporal model selection approach to BMS 

within the disease mapping frame work. In this extension, demographic data from the state of Georgia, 

USA is used to create the simulated outcomes that vary by the predictors included, the fixed parameter 

estimates, and the random effects involved. Four different spatio-temporal fitted model scenarios are 

explored and examined for how they apply to a range of different simulated model scenarios. In the end, I 

believe that a special case of the model selection methods, a mixture model, is the paramount choice for the 

most simulated data scenarios.   
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2. Aim 1: Comparing INLA and OpenBUGS 

2.1. Introduction 

In Bayesian modeling there are many challenges in conventional use of posterior sampling via MCMC for 

inference.6 One challenge is the need to evaluate convergence of posterior samples, which often requires 

extensive simulation and can be very time consuming. Software for implementing MCMC is now widely 

used and the packages WinBUGS, OpenBUGS, as well as certain SAS procedures and select R7 packages 

such as MCMCpack,8 can provide access to these methods. 

 

An Integrated Nested Laplace Approximation5, 9-13 has been implemented as an R package (INLA) targeted 

at performing Bayesian analyses without having to use posterior sampling methods. Unlike MCMC 

algorithms, which rely on Monte Carlo integration, the INLA package performs Bayesian analyses via 

numerical integration, and so does not require extensive iterative computation. In most cases, Bayesian 

estimation using the INLA methodology takes much less time as compared to estimation using MCMC. 

However, there have been few, if any, attempts at comparison of these packages’ performance capabilities 

with respect to spatial models in a disease mapping context. In this study, I compare how INLA performs in 

different modeling situations to OpenBUGS3 via the BRugs package in R.13 

 

Here, I am particularly interested in comparing these packages for conventional Poisson data models when 

spatial structures are present in the covariates as well as through uncorrelated and correlated spatial random 

effects. I have designed models that express these attributes in different ways and apply them to mimic 

their use for disease mapping. These models are all commonly implemented for Bayesian analysis. I am 

also interested in exploring the different options available in INLA to optimize estimation as well as 

goodness of fit (GoF) for these particular models to determine if INLA can perform in an equivalent 

fashion to OpenBUGS. For the analyses, I used the following versions of software and packages: R version 

3.0.3, OpenBUGS version 3.2.3 rev 1012 (using default sampler settings), INLA version 0.0.1403203700, 
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and BRugs version 0.8.3. I am aware that there are now more recent versions of these programs, but, as of 

August 2014, I was able to reproduce these results in the latest versions as well. 

 

This chapter is developed as follows. First, I discuss the development of my simulated data set and the 

different models used for comparison. Next, I describe the methods used for comparing the performance of 

R-INLA and OpenBUGS. Following that, I display results, and finally, I discuss the benefits of one 

package versus the other under different scenarios. 

2.2.  Methods 

2.2.1. Simulated Data and Models 

In this study, focus is on the use of INLA versus MCMC in a disease mapping context.  Performance of the 

two methods is compared for the commonly used convolution model with spatially-varying and non-

spatially-varying predictor variables. To evaluate the performance of these alternative approaches, I 

simulate data to establish realistic ground truth for disease risk variation. A common model for small area 

counts of disease is the Poisson data model. Specifically, I define a count outcome as iy  in the 
thi  small 

area. I assume a map of m small areas. In addition, I assume an expected count ( ie ) is available in each 

small area. Thus, my outcome has the distribution:  

~ ( )i i

i i i

y Pois

e



 
 

In my simulations, I fix the expected rate for the area, and hence focus on the estimation of relative risk. To 

complete the parameterization, I assume a relative risk ( ) which is parameterized with a range of different 

risk models. 

 

To satisfy this I chose the county map of the state of Georgia USA, which has 159 areas (counties). Hence, 

(1,...159)i   for this county set. I fix ie at one for all models; while this is a simplifying assumption, it 

i



5 

 

allows me to reduce the amount of variability present in the simulations. Furthermore, the assumption 

represents data associated with a fairly sparse disease presence. 

 

I examined six basic models for risk (S1 up to S6) which have different combinations of covariates and 

random effects as might be found in common applications. First, I generated four predictors with different 

spatial patterns. The four chosen were median age ( 1x ), median education ( 2x ), median income ( 3x ), and a 

binary predictor representing presence/absence of a major medical center in a county ( 4x ). These variables 

are county-level measures for the 159 counties in the state of Georgia. I chose these variables because it is 

important to represent a range of different spatial structures and types of predictors. Furthermore, observed 

predictors/covariates could have spatial correlation and so I included this in the definition of two of the 

predictors (median age and major medical center). Table 1 displays the predictors generated via simulation 

and their parameterization where the Gaussian parameters are the mean and variance. Also, note that the 

spatial predictors have a covariance structure applied, and this is explained in detail later. 

 

Table 1: Description of predictor variables and their simulation. 

Variable Spatial Distribution (marginal) 

Median Age (years) Yes  1 ~ 40,4x Norm  

Median Education (years) No  2 ~ 13,4x Norm  

Median Income (thousands) No  3 ~ 45,1x Norm  

Major Medical Center (Yes/No) Yes 

 ~ 0,25Norm  

 logit p   

 4 ~x Bern p  

 

These distributions lead to measures that reflect typical values for these variables. For example, the median 

age for a county in the U.S. is roughly 40, and the values do not vary much from one county to the next. 

Similar explanations can be applied to both the median education and median income variables. For the 

major medical center variable, this indicated marginal distribution leads to roughly half of the counties 

answering ‘yes’ to having a major medical center. These variables have been selected as placeholders, and 
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should be thought of as representing any of the typical variables one might utilize in building disease 

mapping models.  

 

The spatially-structured covariates were generated using the RandomFields package in R.14 The 

simulation uses the county centroid as a location to create a Gaussian Random Field (GRF), which is 

defined via a covariance structure. I assume a Gaussian covariance structure, and this assumption leads to a 

stationary and isotropic process.15 I specify this structure by using the RMgauss() command. I assume a 

power exponential covariance model of the form: 

 
2rC r e   

where r  is the Euclidean distance between two centroids and the covariance parameter ( ) is set as 1  . 

Following the selection of the covariance structure, I must also set the mean of the GRF to create the same 

marginal distributions as described in Table 1 using the RMtrend() command. Finally, to simulate the 

GRF, I use the RFsimulate() command to create a GRF and assign a value to the spatial covariate. 

There is only a slight extension that must be applied when the spatial covariate is binary such as 4x . To 

create this variable, I use a GRF to simulate   mentioned in Table 1, rather than the covariate itself. From 

there, I simulate from a Bernoulli distribution to give the binary indicators for each county using expit( )

for the probabilities.  

 

The distribution of all covariates, 1 4,...,x x , on the Georgia county base map is illustrated in Figure 1. Notice 

that the median age and major medical center covariates appropriately appear to have spatially dependent 

distributions. Though I have defined the mean and covariance structure of these GRFs, the distribution can 

still take on many forms, and these variables reflect only one realization of the distribution.  
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Figure 1: Display of the spatial distribution of simulated covariates per county. 

Furthermore, picking these two variables ( 1 4 and x x ) to have the spatial structure also leads to at least one 

variable with spatial structure included in all of the first 5 models that I simulated which are shown in Table 

2. Note that iv  follows an intrinsic CAR model with precision v . M6 is simply a convolution model that 

allows me to explore how the spatial covariates may be affecting the spatial random effects, u and v . For 

these simulations, I fix the covariates as one realization from the distributions described in Table 1 above 

and generate the outcomes using a fixed set of parameters ( 01,  0.1,  ie   1 0.1,  2 0.05,  

3 0.05,   4  0.5,  1u   and 1v  ). While the magnitude of the  ’s are quite small, this guarantees 

that the outcome variable has sparse disease patterning. I also use only one realization of the uncorrelated 

and correlated random effects described in Table 2 below. Then,  log i is calculated based on the fixed 

parameters and realizations. Finally, I generate the outcome as a Poisson variate with mean i  since ie  is 

fixed at one. The simulated data sets consist of sets of counts:   * ,  1, ,200ijy j   where j denotes the thj  

simulated data set.  
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Table 2: Description of simulated model contents. 

Model Log relative risk 

M1   1 2log 1 0.1 0.05i i ix x     

M2   1 2log 1 0.1 0.05i i i ix x u      

 ~ 0,1iu Norm  

M3   1 2  log 1 0.1 0.05i i i i ix x u v       

 ~ 0,1iu Norm ,  ~ ,  1i v vv CAR     

M4   1 2 3 4log 1 0.1 0.05 0.05 0.5i i i i ix x x x       

M5   1 2 3 4log 1 0.1 0.05 0.05 0.5i i i i i i ix x x x u v         

   ~ 0,1 ,  ~ ,  1i i v vu Norm v CAR     

M6  log 1i i iu v     

   ~ 0,1 ,  ~ ,  1i i v vu Norm v CAR     

 

For the uncorrelated and correlated spatial effects, u and v , mentioned in Table 2, I fix both precisions,   u

and   v , to be one during the simulation process. Their equality guarantees that one of the spatial effects will 

not dominate the model and lead to identifiability issues.16 The uncorrelated spatial effect is distributed

 0,1N , this is specified as such for simplicity as well as easy identification in the model fitting process. 

The correlated spatial random effect in these models is generated using the R package BRugs13 such that 

they have an Improper CAR4 structure as follows: 

~

1 1
~ ,  i l

i li i v

v N v
n n

 
 
 
  

where i l , in is the number of neighbors for county i , and ~i l indicates that the two counties i and l are 

neighbors.4 This set of neighbors simply includes the immediate neighborhood. Including these types of 

effects in spatial disease mapping models is very common as there is typically an uncorrelated random 

noise that varies from county to county as well as a correlated random structure that induces correlation 

based on neighborhoods. 
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Additional Simulation Variants 

In the analysis described above, I mean centered the predictors to help in model GoF. Another 

standardization technique for these types of analysis involves mean centering then dividing by the standard 

deviation per predictor. I created such a data set using the M5 model (full predictor set with convolution 

random effects) to assess the effect of this standardization. 

 

In addition, I also examined the effect of varying the precision of random effects to assess performance of 

model fit. Now, the true correlated spatial effect has a precision of 0.5. The uncorrelated spatial effect still 

has a precision of one, but I simulate a new realization of the variable. Because the precisions are no longer 

equal, this could lead to the masking, or domination effect eluded to earlier.16 Following the simulations of 

the new spatial effects, I created new Poisson outcomes with the same six models, aside from the spatial 

random effects, indicated in Table 2. These data sets are considered the variant data sets. 

2.2.2. Fitted Models 

The fitted models F1–F6 are described in Table 3. Note that iv  is an intrinsic CAR model with precision v

. These models are based on the default prior distributions for INLA and vary by the number of covariates 

considered as well as the spatial random effects included to give a wide range of models as reflected in the 

simulation data section above. As part of examining the ability of INLA and OpenBUGS to recover true 

risk, I considered a variety of prior specifications. I changed the Gamma prior distributions on the 

precisions, u and v , to the following:  2,1Gam ,  1,1Gam , and  1,0.5Gam . Of these options,

 1,0.5Gam  offers the best alternative to the default prior distribution,  1,5 05Gam e , as it is the most 

non-informative of the prior distributions explored. Since  1,5 05Gam e is the default non-informative 

prior distribution for precisions in INLA, I assumed this as default for my comparable OpenBUGS models. 

I would as like to note that when the outcome is Gaussian distributed, the default setting for INLA are a 

reasonable choice, and this is likely why it is set as such. 
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Table 3: Fitted model description. 

Model Description 

F1   0 1 1 2 2log i i ia a x a x     

0 )~ ( ,ja Norm  where  is fixed 

F2   0 1 1 2 2log i i i ia a x a x u      

0 )~ ( ,ja Norm  ,  where  is fixed 

   ~ 0, ,  ~ 1,5 05i u uu Norm Gam e    

F3   0 1 1 2 2log i i i i ia a x a x u v       

0 )~ ( ,ja Norm  ,  where  is fixed 

   ~ 0, ,  ~ 1,5 05i u uu Norm Gam e    

   ~ ,  ~ 1,5 05i v vv CAR Gam e    

F4   0 1 1 2 2 3 3 4 41log i i i ia a x a x a x a x       

0 )~ ( ,ja Norm  , where  is fixed 

F5   0 1 1 2 2 3 3 4 41log i i i i i ia a x a x a x a x u v        0 )~ ( ,ja Norm  , 

where  is fixed 

   ~ 0, ,  ~ 1,5 05i u uu Norm Gam e    

   ~ ,  ~ 1,5 05i v vv CAR Gam e    

F6   0log i i ia u v     

0 )~ ( ,ja Norm  , where  is fixed 

   ~ 0, ,  ~ 1,5 05i u uu Norm Gam e    

   ~ ,  ~ 1,5 05i v vv CAR Gam e    

 

To attempt recovering the ground truth indicated in the simulation data section, I build these models in both 

INLA and WinBUGS to assess the two packages’ recovery abilities. These abilities are assessed as 

described in the comparison techniques section. Also, note that I mean center the fitted continuous 

predictors to aid in model fit. 

 

In this study, I do not consider model misspecification; I simply use the appropriate fitted model applied to 

the corresponding simulated data. From here on, I will refer to these results with respect to the fitted model 

and simulated data that are being used. For example, M1 simulated data with F1 fitted model will be 

referred to as M1F1. 
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Fitting Models to Simulation Variants 

I also fit the models to these variants using the  1,0.5Gam prior distribution in a similar fashion to that 

described previously in this section to determine how this data set characteristic affect the model fits. These 

models will be referred to as, for example, M5F5S and M5F5V respectfully. S denotes standardization and 

V denotes spatial precision variant. 

2.2.3. Comparison Techniques 

For this study, I build equivalent models in INLA and OpenBUGS based on the prior distributions 

indicated in Table 2 and fit them to the 200 data sets all simulated in the same manner. For the OpenBUGS 

model, this is accomplished using the BRugs package in R.  

 

Comparisons of the models on the two different packages is accomplished by calculating the mean squared 

error (MSE) of the parameter estimates, fitted y values, and the relative risk ( ) as well as mean squared 

predictive error (MSPE), the number of effective parameters ( pD ), mean deviance (  D  ) and deviance 

information criterion (DIC) for each model.17 

 

I compute MSE for the parameter estimates, outcome measures, and relative risk as well as MSPE as 

follows:  

 
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where
j , *

i , and *

iy  are the true fixed and simulated values respectively such that the * indicates 

simulated values. Furthermore, J  is the number of covariates considered in each specific model, and n  is 

the number of counties.   ( )MSE   uses the posterior values of the parameter estimates since sampling is not 

available in INLA. These measurements are all averaged over the 200 simulated data sets. To access ŷ  in 

OpenBUGS, I must collect the posterior values of i  from the samples; I use this same value for i since 

they are equivalent because the expected rate, ie , is set at one. To access
,i predy  I simply set up code such 

that it is distributed Poisson with mean   i . Note that 
predy  is initialized rather than data-read to generate 

predictive values. An example of my OpenBUGS model code is located in the Appendix section A.1.1. To 

calculate the MSPE  in INLA, I must create copies of all of the model components, append these copies to 

the original vectors, add in an additional “iid” random effect, and create an empty vector, rather than a 

copy, to append to the outcome variable. Now, the vector that typically only contains ˆ
iy  will have length 

2n  where the second half is the predicted y values to use as 
,i predy  in the  MSPE calculation. An example 

using M3F3 can be found in Appendix section A.1.1. 

 

Computations for the    , D pD , and DIC  are built into and easily attainable in both packages. They are 

calculated as follows: 

    

   

    
 

1*

,

2 log | ,

,and

i

i

OpenBUGS

INLA

D p y

pD D D

pD n tr Q Q

DIC D pD

 

 

 





 

 

 

 



 

respectfully. The first two formulas show the definitions of deviance in OpenBUGS and INLA respectively. 

To calculate  D   from  D   produced in OpenBUGS, I simply average this value over a sample from 

the converged Markov chain.18 Using   D  from INLA to calculate  D   requires a two-step process that 

initially computes the conditional mean using univariate numerical integration for each (1,...159)i  .5 
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Next,   is integrated out of the expression with respect to    |p y . Furthermore, the deviance for INLA is 

calculated at the posterior mean (or mode in the case of hyperparameters) of the latent field rather than the 

posterior mean of all parameters as seen in OpenBUGS.
OpenBUGSpD  is the classical definition of pD , and 

 D   is calculated as the deviance computed at the posterior mean estimates. For   INLApD , n  is the number 

of observations,  Q   is the prior precision matrix, and  *Q   is posterior covariance matrix of the 

Gaussian approximation.5 I average these estimates over the 200 simulated data sets to gain an overall 

assessment of performance. 

 

For all of these measures of GoF, lower values indicate a superior model. However, valid comparisons can 

only be made within models as the likelihoods change when the outcome being modeled changes. 

Furthermore, a lower value in one software package does not necessarily mean that it fits better than the 

other package. Another measure of GoF that I could consider is WAIC which includes a smaller penalty for 

number of parameters, but I decided to limit my options to those described above.19  

2.3.  Results 

In order to have comparable results, I must run the OpenBUGS models to convergence. While I am not able 

to confirm convergence for all 200 data sets easily, I do check a representative percentage of the data sets 

by way of the Brooks-Gelman-Rubin (BGR) diagnostic plots available in OpenBUGS. All plots indicate 

that I achieve convergence for these 6 models, and I always extend the model runs for 2500 iterations per 

chain beyond the convergence point in these test data sets.  
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Table 4: Parameter estimates associated with both statistical software packages, based on the default 

precision prior distribution. 

Model 
0  1  2  3  4  u  v  

M1F1 OpenBUGS 
0.081 

(0.08) 

0.097 

(0.03)* 

-0.055 

(0.15) 
--- --- --- --- 

M1F1 INLA(SL) 
0.085 

(0.08) 

0.097 

(0.03)* 

-0.056 

(0.16) 
--- --- --- --- 

M1F1 INLA(FL) 
0.082 

(0.08) 

0.097 

(0.03)* 

-0.055 

(0.16) 
--- --- --- --- 

M2F2 OpenBUGS 
0.128 

(0.12) 

0.163 

(0.03)* 

-0.052 

(0.23) 
--- --- 

0.955 

(0.20) 
--- 

M2F2 INLA(SL) 
0.152 

(0.12) 

0.164 

(0.04)* 

-0.054 

(0.22) 
--- --- 

18654 

(18573) 
--- 

M2F2 INLA(FL) 
0.148 

(0.12) 

0.164 

(0.04)* 

-0.054 

(0.22) 
--- --- 

18654 

(18573) 
--- 

M3F3 OpenBUGS 
0.122 

(0.12) 

0.166 

(0.04)* 

-0.018 

(0.23) 
--- --- 

0.938 

(0.19) 

209.47 

(177) 

M3F3 INLA(SL) 
0.145 

(0.12) 

0.165 

(0.04)* 

-0.018 

(0.23) 
--- --- 

12490 

(12472) 

18768 

(18541) 

M3F3 INLA(FL) 
0.141 

(0.12) 

0.166 

(0.04)* 

-0.018 

(0.23) 
--- --- 

12490 

(12472) 

18768 

(18541) 

M4F4 OpenBUGS 
-0.123 

(0.10) 

0.101 

(0.02)* 

-0.040 

(0.15) 

-0.054 

(0.07) 

0.481 

(0.14)* 
--- --- 

M4F4 INLA(SL) 
-0.122 

(0.11) 

0.101 

(0.02)* 

-0.041 

(0.16) 

-0.054 

(0.07) 

0.486 

(0.14)* 
--- --- 

M4F4 INLA(FL) 
-0.127 

(0.11) 

0.101 

(0.02)* 

-0.040 

(0.16) 

-0.054 

(0.07) 

0.487 

(0.14)* 
--- --- 

M5F5 OpenBUGS 
0.016 

(0.14) 

0.160 

(0.04)* 

-0.05 

(0.21) 

-0.100 

(0.10) 

0.237 

(0.21) 

0.940 

(0.20) 

189.57 

(165) 

M5F5 INLA(SL) 
0.020 

(0.15) 

0.161 

(0.04)* 

-0.061 

(0.23) 

-0.105 

(0.11) 

0.279 

(0.21) 

18345 

(18245) 

18446 

(18385) 

M5F5 INLA(FL) 
0.014 

(0.12) 

0.161 

(0.04)* 

-0.061 

(0.23) 

-0.105 

(0.11) 

0.279 

(0.21) 

18345 

(18245) 

18446 

(18385) 

M6F6 OpenBUGS 
0.149 

(0.12) 
--- --- --- --- 

0.955 

(0.20) 

202.77 

(172) 

M6F6 INLA(SL) 
0.172 

(0.12) 
--- --- --- --- 

17989 

(17800) 

18712 

(18558) 

M6F6 INLA(FL) 
0.169 

(0.12) 
--- --- --- --- 

17989 

(17800) 

18712 

(18558) 

Truth 0.1 0.1 -0.05 -0.05 0.5 1 1 

The notation is as follows: mean of means, (mean of standard deviations), and * indicates a well estimated 

variable. 

 

 

Table 4 shows the parameter estimates and their significances associated with each model as well as the 

truth. Compared to the truth, most models do well with recovery for the fixed effects, with default precision 

prior distribution. The estimates associated with the spatial variables, 1x  and 4 x , are well estimated much 
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of the time while this is not true for the non-spatial ones. This could be due to the fact that the true values 

of these parameters have larger magnitudes. These issues are common across both OpenBUGS and R-

INLA. As far as u  and v  are concerned, the estimates show that INLA is far overestimating the true 

values of the precision parameters; OpenBUGS is also overestimating v  but not nearly as much as INLA. 

The INLA Laplace models (INLA(FL)) indicate that I specified for INLA to use the full Laplace strategy 

rather than the default simplified Laplace strategy (INLA(SL)) 20. With this specification, I see that there 

are not many differences with respect to the fixed effect estimates. It is interesting that the standard 

deviations associated with INLA(SL) and INLA(FL) are the same in nearly all situations when rounded to 

the hundredth decimal place. I also note that the estimates for 
1

  change by a fair margin when comparing 

M1F1 to M3F3 or M4F4 to M5F5. Similarly, the estimates for 
4

  change when comparing M4F4 to 

M5F5. As both 
1

  and 
4

  are spatial covariates, this may indicate influence from the spatial random 

effect estimates. 

 

Supplemental Table 1 in Appendix Section A.1.2. shows the GoF measures associated with each model and 

software package. Some of these estimates appear to be exactly the same after rounding, but in actuality 

they are different numbers.  Here, I see some differences among models both within and across platforms. 

For the models without random effects (M1F1 and M4F4), the pD  values are very close, and INLA (FL) 

produces significantly lower values than INLA (SL). The MSPE  and  MSE M  estimates produced by 

both packages are nearly identical, but when the Laplace strategy is applied in INLA, higher estimates for 

the spatial models (M2F2, M3F3, M5F5, and M6F6) are recorded. This table also includes results for the 

models using the alternative precision prior distributions. When I adjust the precision prior distributions for 

OpenBUGS, I begin to see significant differences in the pD  and thus the DIC  produced for the 

convolution models (M3F3, M5F5, and M6F6). Note that when running OpenBUGS for the altered prior 

distributions, there are a few (no more than 3 per model) data sets that lead to negative pD values in M3F3, 

M5F5, and M6F6. I remove these results from the mean calculations. 
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Table 5 illustrates how the precision parameters change after alterations to the default settings. In addition 

to changing the default prior distributions, the inla.hyperpar() command is also explored to try and 

attain better estimates of the hyperparameters involved with estimating the random components of the 

models. While this function only affects the hyperparameter estimates, all others remain the same. It is 

obvious that these estimates are different from the original estimates located in the first row, but they still 

do not reflect the true values. In fact, they are further away from the truth by making the effects more 

precise.21  

 

Table 5: Altered INLA precision estimates compared to the original estimates as well as the truth. 

Model Parameter M2F2 M3F3 M5F5 M6F6 
True 

value 

INLA  

Gam(1,5e-05) 

 u  
18656 

(18577) 

12491 

(12475) 

18485 

(18381) 

17990 

(17804) 
1 

 v  --- 
18770 

(18546) 

18570 

(18440) 

18714 

(18563) 
1 

INLA 

Ga(1,5e-05) 
inla.hyperpar() 

 u  
22376 

(15350) 

15037 

(10514) 

21962 

(15924) 

21886 

(15046) 
1 

 v  --- 
21938 

(16641) 

21920 

(15989) 

22525 

(15636) 
1 

INLA 

Gam(1,0.5) 

 u  
0.98 

(0.20) 

1.03 

(0.23) 

1.07 

(0.25) 

1.06 

(0.24) 
1 

 v  --- 
3.92  

(2.44) 

3.42 

(2.22) 

3.94 

(2.43) 
1 

OpenBUGS 

Gam(1,0.5) 

 u  
0.94 

(0.19) 

1.00 

(0.23) 

1.03 

(0.25) 

3.34 

(2.08) 
1 

 v  --- 
1.04 

(0.26) 

3.79 

(2.24) 

3.76 

(2.25) 
1 

OpenBUGS 

Gam(1,5e-05) 

 u  
0.96  

(0.20) 

0.94  

(0.19) 

0.94  

(0.20) 

0.96  

(0.20) 
1 

 v  --- 
209.47 

(177) 

189.57 

(165) 

202.77 

(172) 
1 

 

The next set of precision estimates relate to the models where I specified    1,0.5Gam  as the prior 

distribution. Results for the  2,1Gam  and  1,1Gam priors are located in Supplemental Table 2 Appendix 

section A.1.2. Changing these prior distributions greatly alters the results with respect to the precision 

estimates while the fixed and GoF estimates for these models remain nearly identical. In fact, the standard 

deviations of the estimates remain very close to the originals. It is obvious that R-INLA improves 
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drastically with respect to the precision estimates related to both effects, correlated and uncorrelated. While 

OpenBUGS produces more precise estimates under the default settings, changing the prior distributions 

continues to improve the accuracy of those estimates in this package as well. I see now that the estimates 

produced in INLA reflect those produced in OpenBUGS very closely. This is true for all of the alternative 

prior options explored. Again, the  1,1Gam  prior seems to perform the best as it produces estimates that 

are the closest to the truth in all cases and for both packages. Unlike the GoF measures, though, the 

differences seen here are not significant within the alternative prior distributions.  

 

The last alteration I attempt involves scaling the models based on the Scaling IMGRF models tutorial on 

the INLA website, and these results can also be found in Supplemental Table 2 Appendix section A.1.2.22 I 

make this alteration using the    1,5 05  Gam e and  1,0.5Gam  prior distributions only. This tutorial 

suggests implementing the following global command: inla.setOption(scale.model.default 

= TRUE) to scale the global variance of the model such that  2  1GV x  , then the reference variance,

 2  ref x , is used to scale the hyperprior as follows: 
 2

ref x




. Based on the results below, I can see that this 

modification does not always ensure that the precisions are closer to the truth.23 

 

Figure 2 shows how the models in OpenBUGS and INLA recover the uncorrelated and correlated spatial 

effects respectively using M5F5. The other model estimate maps can be found in Supplemental Figures 2-5 

Appendix A.1.2. The values displayed are averaged over the 200 data sets; furthermore, the ‘truth’ is only 

one realization of the random effect, but this is what I used to simulate the outcomes. Note that all of these 

maps have been scaled in the same way as the plot displaying the true effect to gain a better comparison 

and understanding of the relationship being displayed, and this is why the INLA plots appear to have no 

variation. OpenBUGS seems to be recovering both effects better than INLA under the default settings, but 

neither set of models are preforming as well as I would like with respect to the correlated random effect,  
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v . The INLA estimates seem to be much closer to zero than they should be, and this is supported by the 

larger precision estimates shown in Tables 3 and 5 above. Also, the discrepancies among the correlated 

effects may be reflecting the spatial nature of some of the covariates. Furthermore, others have noted 

correlated spatial effects behaving too smoothly in certain cases.  

 

 

Figure 2: The true and mean estimated spatial effects as calculated in INLA and OpenBUGS under default 

and alternative priors using M5F5. 
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The maps notated with ‘Alt Prior’ display the uncorrelated and correlated effects produced in INLA and 

OpenBUGS when the prior distributions for u  and  v are changed from    1,5 05Gam e , the default, to

   1,0.5Gam . This prior alteration results in a much better reproduction of the spatial random effects, as 

reflected in the precision estimates displayed in Table 5. The uncorrelated effects are very similar for both 

INLA and OpenBUGS, and they also reflect the truth much better than before with the default prior 

distributions. As far as the correlated effects are concerned, I see that the estimations for these effects are 

almost identical when looking at the results produced in OpenBUGS and INLA, but they still do not reflect 

the truth as well as I may like. As mentioned before, though, these effects do reflect the smoothness 

expected among correlated effects as well as the spatial structures present in some of the covariates. These 

figures also reflect the results produced for the other alternative precision prior distributions, as they are 

alike. Finally, Supplemental Figure 6 Appendix A.1.2. is the sum of the correlated and uncorrelated random 

effects seen in Supplemental Figures 4 and 5. This figure looks much alike Supplemental Figure 4 as the 

magnitude of the uncorrelated effect is larger than that of the correlated one. This may be one of the factors 

inhibiting my ability to appropriately recover the correlated random effect. 

 

Simulation Variants 

The results in Supplemental Table 3 Appendix A.1.2 show the fit of M5F5S when the covariates are 

standardized rather than only mean centered. These results show that standardization leads to a well 

estimated 4 , but also some larger standard deviations with respect to OpenBUGS for 2   and 3 . Note 

that 1  for INLA(FL) is very close to being well estimated. The precision estimates for OpenBUGS 

continue to be slightly closer to the truth though this is not statistically significant.  

 

Supplemental Table 4 Appendix A.1.2. shows the GoF measures for the standardized models, and these 

results show similar patterns. I cannot truly compare the deviance and DIC  measures presented here to the 

previous results since the outcomes are different, but I can look at the patterns among the other measures. I 
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continue to see a separation with respect to the MSPE  while the different MSE  estimates are nearly 

identical. Supplemental Figure 7 Appendix A.1.2 illustrates the maps of the uncorrelated and correlated 

effects produced for the standardized model, M5F5S. These maps look comparable to what I saw 

previously for M5F5, and I still see much likeness when comparing the INLA results to the OpenBUGS 

results. 

 

The results in Supplemental Table 5 Appendix A.1.2. show the re-fit of the models with a  1,0.5Gam  

prior on the precisions of the spatial random effects with the validation data set, which offers a different 

distribution for the correlated random effect, and a different realization of the uncorrelated random effect. 

For the INLA models, I continued to use the Laplace strategy for a better fit. Based on these results, I am 

still seeing changes in the estimates for 1
  when comparing models M1F1V and M3F3V; this time I 

actually see this estimate fail to be well estimated in M3F3V while it is well estimated in M1F1V. I also see 

this occur for 1
  when comparing M4F4V to M5F5V. For 4

  in M4F4V and M5F5V, the estimates are 

different, but they are not well estimated in either model. Also, the standard deviations are larger. With 

respect to the precision estimates, I still see an overestimation of the correlated effect, v , while the 

uncorrelated effect, u , is recovered fairly well. Even though the truth for v  is smaller in this validation 

study compared to the first simulated data set, some of the estimates seen in the table below are actually 

higher in this situation. 

  

Supplemental Table 6 Appendix A.1.2 shows the GoF estimates for the models using the validation data 

set. I see OpenBUGS producing at least slightly lower  MSE M  and MSPE  values than INLA(FL). For 

 MSE  , the relationship is alike the models with the original data in that OpenBUGS consistently 

produces slightly lower estimates when spatial random effect are considered. The mean deviance is very 
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similar for all models and packages. Note that there were also some negative pD  values for M5F5V and 

M6F6V in OpenBUGS; these were removed in the same way as before. 

 

Supplemental Figures 8 and 9 in Appendix A.1.2. demonstrate how well the models recover the true 

uncorrelated and correlated spatial random effects when applied to the validation data set. Here I see an 

analogous situation to the first set of simulated data in that the uncorrelated effect is recovered very well 

while the correlated is not recovered quite as well as I would like it to be. I also notice, again, that the 

correlated effect is smoother than the true correlated effect. Furthermore, the INLA(FL) results are very 

similar to the OpenBUGS results just as I noted. One difference is that there is not as much of a change in 

the estimation when it comes to comparing M6F6V with the others that include covariates. This may be 

because the true correlated spatial effect is distributed more similarly to the spatial covariates. Following 

that, Supplemental Figure 10 Appendix A.1.2. shows the sum of the correlated and uncorrelated random 

effects, and as seen before, this looks well estimated because the correlated effect is of a much smaller 

magnitude compared to the uncorrelated effect. Because of this, it also looks analogous to Supplemental 

Figure 8. 

2.4. Discussion 

The results above show some substantial differences in the performances of INLA and OpenBUGS. For the 

default settings, I see that many of the fixed effect parameter estimates are alike for the two software 

packages, but the differences become more evident when looking at the GoF measures and spatial random 

effect estimates. OpenBUGS seems to outperform INLA when spatial random effects are included in the 

model. This is shown in the  MSE M  and MSPE  when spatial random effects are added to the models as 

well as the individual plots of the produced estimated spatial effects which is to be expected based on the 

precision estimates. Furthermore, I note improvements to the INLA(FL) models when I specify the full 

Laplace strategy and even more still altering the default precision prior settings. 
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INLA does have an advantage over OpenBUGS in computation time. The computing time for these 200 

simulations is no more than a couple of hours for INLA while it takes OpenBUGS several days. Obviously, 

these times fluctuate depending on the computer specifications, what other processes are actively running 

on the system in use, and, in the case of OpenBUGS, the number of parameters that are being collected. If I 

did not need to recover ,  ,  predu v y  or   , the computation time could be much shorter, but even taking that 

into account, OpenBUGS will never be as fast as INLA. Note that I run all simulations on the same server, 

so these arguments are appropriate. This indicates that, especially for simpler models, if computation time 

is an issue, then INLA may be the better option. Additionally, R-INLA is noted for being able to apply 

non-discrete spatial effects.24  

 

A shortcoming for INLA involves the ability to use hyperparameters as flexibly as in OpenBUGS. For 

example, I was unable to implement prior distributions for the standard deviations in INLA, while this can 

be done easily in OpenBUGS. Placing prior distributions on the standard deviations rather than fixing them 

or placing them on the precisions can lead to better model fits in some situations. Furthermore, there is not 

an easy way to place hyperprior distributions on the precisions of the fixed effects. 

 

There are many options in INLA for improving the models. Initially, I explore specifying the use of a full 

Laplace approximation strategy in INLA, but this does not lead to different parameter estimates and takes a 

longer time to complete for the 200 data sets and 6 models. Specifying the full Laplace strategy did, 

however, lead to different GoF measures that were closer to those produced with OpenBUGS. Furthermore, 

the simplified Laplace strategy is not sufficient for computing predictive measures.21 There is one other 

strategy that can be implemented, the Gaussian, and it is the most efficient but least accurate.20 Following 

that, I explore using the inla.hyperpar() option to no avail. This option is supposed to improve the 

hyperparameter estimates, but, as displayed in Table 5, these results actually brought the estimates further 

from the truth. This function is defined as a way to retrieve more precise estimates of the 

hyperparameters,25 and this is how it behaves in this simulation study. I also consider changing the default 
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prior distributions with respect to the precision parameters for both the INLA(FL) and OpenBUGS models, 

and the results are much improved. Both the uncorrelated and correlated random effect estimates are much 

closer to the truth. There also appears to be less separation between the estimates produced in OpenBUGS 

verses those produced in INLA(FL). Of the options attempted for these altered prior distributions, the 

 1,1Gam  prior preformed the best, but it is also the most informative. The  1,0.5Gam  option is a good 

choice as it is still fairly non-informative. Furthermore, it still shows substantial improvements over the 

default settings. Finally, implementing the model scaling feature did not aid in the models gaining estimates 

closer to the truth, which is what I am aiming for. It seems as though this feature is mostly for assisting in 

model interpretability and comparability. 

 

When I apply the models to the validation data sets I see very similar patterns to those present in the first 

simulation data sets, but there were also some differences. Fewer of the covariates were well estimated in 

the validation data set. Also, the correlated random effect estimates did not vary as much from model to 

model as in the first data sets, but they were still not as close to the truth as I would like for them to be. This 

could be due to the fact that the true correlated spatial effect is slightly closer in its distribution to the 

spatially structured covariates. Furthermore, the uncorrelated effect estimates do not seem to be recovered 

quite as well. These differences may be due to the masking effects from either the spatially structured 

covariates or the unequal true precision values. I see similarities with the patterns present in the GoF 

measures though these values cannot be compared directly because the model ingredients are not the same. 

 

During this study, I uncovered many interesting properties associated with both packages for these types of 

spatial disease mapping models. One relates to having a mixture of spatially structured covariates as well as 

spatial random effects. There appears to be a type of masking that occurs when both are present in the 

model. This is seen in two ways. First, by looking at the parameter estimates presented in Table 3; here, I 

notice that the estimates for 1
  change from M1F1 to M3F3. A comparable change occurs for 4

  when 

considering M4F4 verses M5F5. In the second case, 4
  changes from being well estimated to no longer 
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being well estimated. Second, the masking effect is seen by comparing the correlated spatial effect 

estimates associated with M6F6 to all other models. Since M6F6 does not have any covariates, spatial or 

otherwise, I can see that the covariates may be playing a role in changing the estimates produced. Note that 

this was not as evident in the validation study, especially with respect to the plots of the correlated spatial 

random effect estimates.  

 

Another interesting property of these models is that, in general, the correlated spatial effect tends to be 

overestimated and well as overly smooth which is evident in the figures produced above. I also do not see 

the non-spatial covariates being well estimated in any of the models. This could be due to the fact that the 

magnitudes of the true estimates are smaller than the others. Furthermore, when considering the validation 

data set, I see that the models have a more difficult time recovering the true effects, and this may be due to 

the occurrence of a masking effect from the unequal true precisions.16 

2.5.  Conclusion 

Ultimately, INLA, in its default state, does not perform as well as OpenBUGS with respect to the precision 

parameter estimates for the spatial random effects, but it is much more computationally efficient. Through 

this simulation study, I learned that by specifying the full Laplace strategy, I result in better fitting models 

that are equivalent to OpenBUGS. Furthermore, altering the precision prior distributions for correlated and 

uncorrelated random effects brings these estimates much closer to the truth as well as to the values 

produced by OpenBUGS when the same prior distributions are used. Thus, for Poisson modeling in disease 

mapping, it is of utmost importance to adjust the default settings when using INLA as an alternative for 

Bayesian Analysis, especially when spatial random effects are included in the models. 

  



25 

 

3. Aim 2: Spatial Model Selection 

3.1. Introduction 

There are many instances in the disease mapping frame work where one may wish to select between two or 

more linear predictors, or models, of interest. In certain situations, the model selection process may be 

more applicable than simply using variable selection; for example, if there are prior beliefs that these 

particular linear predictors could be informative.  

 

In this chapter, I discuss a way to implement BMS in comparison to BMA18, 26, 27 using the BUGS software 

byway of BRugs and R2WinBUGS.3, 13, 28 Both of these methods are considered to be model selection 

techniques and can be used in lieu of variable selection as they alleviate some of the issues related to 

variable selection (e.g. co-linearity).29-34 Here, if two or more predictors are known to be collinear, I suggest 

that they be included in the different linear predictors that the method is selecting between. The structure of 

my proposed BMS procedure is similar to BMA, and thus, this commonly used method makes for a 

respectable comparison.  

 

There are several useful variable selection procedures available in the Bayesian paradigm,35, 36 but I believe 

that model selection is the better alternative, especially when there are particular linear predictors of 

interest. Similar comparisons between BMA and variable selection has been performed in the past. 

Viallefont’s simulation study first shows that variable selection methods often produce too many variables 

selected as ‘significant.’ Then, they determined that BMA produces easy to interpret, precise results 

displaying the posterior probability that a variable is a risk factor. They also caution users about 

interpreting the averaged posterior parameters as each of the alternative linear predictors has been adjusted 

for different confounders.37  

 

Spatial model selection, which allows different linear predictors to be selected for each spatial unit, is the 

main focus of this chapter. The data is partitioned into different spatial areas to determine how well the 
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model selection procedure recovers the truth when spatial structure is present in the data. I make a 

comparison of BMS to BMA and additionally, calculate GoF measures for each of the partitioned areas. 

  

This chapter is developed as follows. First, I describe the methods associated with the BMS and BMA 

processes. Next, I discuss the development of my simulated data set and the different models used for 

exploring this methodology. Finally, I discuss the benefits of using the model selection method under 

different scenarios in the disease mapping context.  

3.2. Methods 

This chapter focusses on the context of disease mapping in m predefined small areas. I make the 

conventional assumption that an aggregate count of disease ( i
y  )  is observed in the  thi  small area and 

that these outcome counts are conditionally independent Poisson distributed outcomes, i.e.  

| ~ ( )
i i i

y Pois  . This is a commonly assumed model for small area counts in disease mapping.17 In what 

follows I examine two types of model formulation: complete and partial models. For the complete models, 

it is assumed that the linear predictor applies to the whole study region, in the sense that the underlying 

model is the same for all areas. In the partial models, it is assumed that the underlying linear predictor is 

different for different partitions of the set of spatial units. 

3.2.1 Bayesian Model Selection 

To evaluate a number of alternative linear predictor models, I can adopt a method which fits a variety of 

models, and the selection of weights allows each model to be evaluated for its appropriateness. In general, 

for 1,....,d D  complete models, the following structure applies: 

 ~|i iiy Poi   

i i ie   

 log
i d id

d

w   

   logit ~ 0,  d dp Norm   
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 ~
d d

w Bern p  

where id  is my th
d  model’s suggested linear predictor complimented with a possible random effects. In 

general, I write id  as , 1  , 2

T

i i d i d JJx u v   ψ  with 
T

ix , the vector of J  possible covariates,  

1, , 2j J   , 
i

u  the uncorrelated heterogeneous (UH) term, 
i

v  the correlated heterogeneous (CH) term, 

and 
dj

  an indicator for if the 
thj  predictor or random effect is to be included in the linear predictor of the 

thd  model. Model priors here as well as in the following models are such that:   ~  0,1dj Norm , 

  ~  0,i uu Norm  ,   ~  1,0.5u Gam , and  1/2  ~  0,5d Unif 
. Hence, for a variable not included in the thd  

model, dj  would be zero, otherwise it would be one. Further, dw  is a model selection indicator, equal to 

one if the thd  model is selected and zero otherwise. The model selection probability is given by the 

probabilities
d

p . For the partial models, the following structure applies: 

 ~i iy Poi   

i i ie   

 log i id id

d

w   

   
~

1 1
logit ~  logit ,  id id l

i li i id

p Norm p
n n

 
 
 
  

 ~id idw Bern p  

in which the model selection indicator is spatially structured. In the equations, i l , i
n  is the number of 

neighbors for county i , and ~i l  indicates that the two counties i  and l  are neighbors. This is an intrinsic 

CAR model, which adds the desired spatial structure to the model selection process and a new level of 

complexity in comparison to the complete models. 
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3.2.2 Bayesian model averaging 

Bayesian model averaging is similar to the BMS technique described in the previous section.38 This method 

averages over the D  possible models, 1
, ,

D
M M  to find the posterior distribution of   as follows: 

      1 1 1

1

| ,..., | ,..., , | ,...,
D

m m d d m

d

P y y P y y M P M y y 


  

where  1| ,...,d mP M y y  is the model probability for model d,  and  1| ,..., ,m dP y y M  is determined by 

marginalizing the posterior of the model parameters. The posterior probability for selection model dM  is 

given by:27, 37, 38  

1 1,..., ,...,( | ) ( | ) ( ) /d m m d dy y y yP M P M P M C  

1

1

,...,where ( | ) ( )
D

l l

l

mC P M P My y


  

1 1,..., ,.and ( | ) ( | , ) (. | ).,d d d d d dm my y y yP M P M P M d     

Alternatively, I can estimate the model probabilities  1| , ,d mP M y y  using the deviance information 

criteria (DIC). The model probabilities can be approximated by:39 

1 1( | ,..., )
d

k

DIC

DIC d m DIC

k

e
p M y y

e







 

2 1
( | ),...,

id

ik

DIC

i

DIC d DIC

k i

m

e
p M

e
y y







 
 

In these expressions, d
DIC  is the DIC  associated with the th

d  alternative linear predictor. Note that in the 

first expression the DICs  are calculated overall (over all areas), whereas in the second expression, the 

DICs  are calculated locally (per region). I calculate this measure by collecting the deviance for each of the 

alternative linear predictors using the Poisson likelihood as follows: 
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         2 2 log log !i i i i i i i i i iD l y e e y          

Next, 
i

D  is computed from the sampler and supplied to the following function to calculate the local DIC  

for county i : 
i i i

DIC D pD   where ( )
i i i

pD D D    and i  is the posterior mean of 
i

 . Finally, the model 

DIC  is simply the sum of the local DICs .  

 

To use the BMA framework with the partial models, I apply the same type of spatial structure seen with 

BMS on the model probabilities by way of the CAR model. Then, I simply use the local DIC  to calculate 

the alternative model probabilities measure for each of the m  areas. 

3.3. Simulated Data and Fitted Models 

In this and the following sections, models will be referred to by the contents of both the simulated data and 

the fitted model applied. Table 6 is a list of notations for describing models, and Supplemental Table 1 in 

Appendix A.2. is a list of all simulated data models explicitly defined. 

Table 6: Notation for describing model contents. 

Notation Definition 

E1  Model with 1
ij

e    

E2 Model with  ~ 1,1
ij

e Gam   

C Complete model 

P Partial model  

SX Simulated data model ‘X’ 

FX Fitted model ‘X’ 

RE Model with an uncorrelated random effect included 

CV Model with a convolution component included 

 

3.3.1. Simulated Data 

To evaluate the performance of these alternative approaches, I simulate data to establish realistic ground 

truth for disease risk variation. To match the methods described above, I define a count outcome as i
y  in 

the thi  small area. I assume a map of m  small areas. In addition, I assume that the expected count ( i
e ) is 
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available in each small area. Thus, my outcome follows a Poisson distribution with expectation i
  in 

county i . 

 

In the simulations, I fix the expected rate for the areas in order to focus on the estimation of relative risk  

i
 . To complete the parameterization, I assume a relative risk which is parameterized with a range of 

different risk models. I examined nine basic models for risk (S1 up to S9) which have different 

combinations of covariates and random effects as might be found in common applications. First, I 

generated four predictors with different spatial patterns. The four chosen variables were median age ( 1x ), 

median education ( 2x ), median income ( 3x ), and a binary predictor representing presence/absence of a 

major medical center in a county ( 4x ). These variables are the same county-level measures for the 159 

counties in the state of Georgia used in Chapter 2. 

 

For the simulations, I fix the covariates as one realization from the distributions described in Table 6 and 

generate the outcomes using a fixed set of parameters unique to each of the 9 models. The  ’s, seen in 

Table 7 are quite small, particularly for the first six models, and this guarantees that the outcome variable 

maintains a fairly small value to continue representing a sparse disease. Note that S7, S8, and S9 are alike 

S2, S4, and S6 respectively with the exception of higher magnitudes associated with the fixed parameter 

estimates. Further, note that models S4 and S8 do not pick any of the variable that have a spatial structure. 

In the next step,  log
i
  is calculated based on the fixed parameters and realizations. Finally, I generate 

the outcome as a Poisson distributed variable with mean i i
e . The simulated data sets consist of sets of 

counts:   *
, k 1, ,300

ij
y    where k  denotes the 

thk  simulated data set. Note that I simulated two batches 

of the covariates with 150 data sets per batch and still allow for Poisson variation between the 300 simulate 

data sets. This reduces the amount of variation in the simulation study which allows the main focus to be on 

the different model selection techniques. 
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Table 7: Model coefficients for the simulated data. 

Model 
1x  2x  3x  4x  

S1 0.1 0.1 0.1 0.1 

S2 0.1 -0.1 0.1 -0.1 

S3 0.1 0.0 0.2 0.1 

S4 0.0 -0.1 0.1 0.0 

S5 -0.1 0.2 0.0 0.0 

S6 0.0 0.0 0.0 0.1 

S7 0.2 -0.2 0.2 -0.3 

S8 0.0 -0.3 0.3 0.0 

S9 0.0 0.0 0.0 0.3 

 

 

Figure 3: Display of the partitioned regions for the partial models. 

In addition to the 9 model variants described in Table 7, I have also considered a variant that allows me to 

limit the regions of the state that certain predictors have an effect. This will allow me to study spatially-

varying model selection or spatially-varying model averaging. The state is partitioned into three regions, 

A1, A2, and A3, each containing 53 counties as illustrated in Figure 3. Next, I will consider partial models, 

notated as ‘P,’ for each of the 9 models described in Table 7. These scenarios are described in Table 8. 

 

Finally, I also explored the case that there is some unmeasured confounding in the data. This was 

accomplished by including a UH term and a CH term defined as  ~ 0,0.01
i

u Norm  and 
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~

1 1
~ ,  

i l

i li i v

v N v
n n

 
 
 
 respectively. The fixed precision values for these components are the same 

 1 / 0.01  
v
   so that one term does not dominate the other and lead to identifiability issues.40 Two 

additional simulated model scenarios result from inclusion of these random effects; the first assumes that 

there is simply random error present in the data, thus only the UH term is involved. This model is denoted 

as RE. The second model is a convolution model, denoted CV, and includes both the UH and CH terms; 

this model assumes that there is random error as well as error with a spatial structure. For simplicity, I only 

looked at this application for the first simulated model scenario (S1).  

 

Table 8: Scenarios for partial models. 

Notation Meaning 

PS1 M1 with x1 and x2 missing from A1 

PS2 M2 with x3 and x4 missing from A2 

PS3 M3 with x1 and x4 missing from A2 and A3 

PS4 M4 with x2 missing from A1 

PS5 M5 with x2 missing from A1 

PS6 M6 with x4 missing from A2 

PS7 M7 with x1 and x2 missing from A1 

PS8 M8 with x2 missing from A1 

PS9 M9 with x4 missing from A2 

 

3.3.2. Fitted Models 

In Table 9, I illustrate the 3 linear predictors fitted using both the model selection and BMA techniques 

described above. These options are appropriate for the models listed in Table 7 such that S1 up to S9 is 

associated with F1 up to F9. For the complete models, the suffix ‘Alt1’ represents the true model for all 

counties. For the partial models, the suffixes ‘Alt1’ or ‘Alt2’ represent true models for some counties 

depending on the descriptions in Table 8. ‘Alt3’ is never a true model. The different alternatives offer some 

models that include random noise to determine if that has an effect on which model is selected. When the 

‘RE’ and ‘CV’ simulated models are being fitted, all linear predictor alternatives include the appropriate 

random effects. 
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Table 9: Model Alternatives. 

Model 
1x  2x  3x  4x  Rand. 

Noise 

F1Alt1 Yes Yes Yes Yes No 

F1Alt2 No No Yes Yes No 

F1Alt3 Yes No No No No 

F2Alt1 Yes Yes Yes Yes No 

F2Alt2 Yes Yes No No No 

F2Alt3 No No No Yes Yes 

F3Alt1 Yes No Yes Yes No 

F3Alt2 No No Yes No No 

F3Alt3 No No Yes No Yes 

F4Alt1 No Yes Yes No No 

F4Alt2 No No Yes No No 

F4Alt3 No No Yes Yes Yes 

F5Alt1 Yes Yes No No No 

F5Alt2 Yes No  No No No 

F5Alt3 No Yes Yes No No 

F6Alt1 No No No Yes No 

F6Alt2 No No No No No 

F6Alt3 No Yes Yes No No 

F7Alt1 Yes Yes Yes Yes No 

F7Alt2 No No Yes Yes No 

F7Alt3 Yes No No No No 

F8Alt1 No Yes Yes No No 

F8Alt2 No No Yes No No 

F8Alt3 No No Yes Yes Yes 

F9Alt1 No No No Yes No 

F9Alt2 No No No No No 

F9Alt3 No Yes Yes No No 

 

3.4. Results 

The results below are in relation to the implementation of the methods described above. First I present the 

BMS results for the complete and the partial models followed by the BMA results for the complete and 

partial models. Finally, I present a real data example of implementing these methods.  

 

Note that I also collected the parameter estimates, produced for each of the alternative models, during each 

implementation. None of these estimates are well estimated as seen in Supplemental Table 2 in Appendix 

A.2., but obtaining these estimates is not the goal of the model selection process. I suggest that one should 

refit with the selected model to obtain appropriate parameter estimates. 
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3.4.1. Complete Models 

All results in this section are associated with the complete models described in Table 7 above. The models 

do not allow for variation from one county to the next, and the first linear predictor alternative is the true 

linear predictor, thus, model weight 
1

p  should be the highest. 

 

Figure 4 presents some the results for model scenarios S1-S6 fitted with corresponding model F1-F6 under 

the scenario of a constant expected rate (E1) and varying expected rates (E2). The figure illustrates the 

distribution of the model weights for the BMS procedure. These figures suggest that most models correctly 

select the linear predictor associated with
1

 p . When the evidentiary support for a particular model increases, 

as is the case in scenarios S7F7-S9F9, this becomes even more evident. The model selection probabilities 

decrease from the first to the second and third model, showing a better distinction between the models. 

Only in the scenario S6F6 and S4F4, an incorrect model is selected. Note, however, that the evidence in 

these scenarios for the underlying model is small.  

 

The model probabilities corresponding to scenarios E1 and E2 are similar.  In most settings, it is observed 

that the model probability of the correct model decreases when comparing scenario E1 to E2. This indicates 

that model selection is more difficult when the variation in the data increases. But, differences between the 

model probabilities are only small, and conclusions about the selected model hardly change. The main 

difference I observed when comparing models in this way is that the E2 models produce lower DICs. This 

fact does not necessarily indicate that the E2 models fit better than the E1 models as the models have 

different likelihoods. These GoF measures are displayed in Supplemental Table 4.  
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Figure 4: Models weights associated with the complete models using BMS. 
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Figure 5: Model probabilities associated with the complete models using BMA. 
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Figure 5 displays the model probabilities associated with the complete models using the BMA technique. A 

completely different picture as compared to BMS is observed. These plots suggest that there is not a 

consistent pattern in the way that the different models perform as far as selecting linear predictors. 

Typically, 1p  still obtains the highest probability value, but there are several mismatches (7 of the 18 

models, 38.9%). As with the BMS models, the E1 and E2 estimates continue to be nearly identical for the 

model probabilities while they differ when considering GoF measures. These GoF measures are displayed 

in Supplemental Table 6. 

3.4.2. Partial Models 

All results in this section are associated with the partial models described in Table 8. These models allow 

for variation in the linear predictors applied in different areas on the county map. Furthermore, for all 

models the first or second alternatives are true for certain areas of the county map, thus model weights 1p  

or 2p  should be the highest in their appropriate areas. Here, I display only a sample of the models fitted. 

The resulting county maps for the full range of models fit with the BMS and BMA methodology can be 

seen in Supplemental Figures 1 and 2 in Appendix A.2. respectively. 

 

The first set of maps shown in Figure 6 are associated with the E1PS4F4 and E1PS8F8 scenarios using 

BMS. These models in particular illustrate the relationship I hope to see in the partial models. S4F4 does 

well to estimate 1p , but is not as accurate with 2p . In comparison, S8F8 improves the estimations of both  

1p  and 2p , in that it attains higher values in the appropriate regions of the county map. In both cases, 

though, I continue to see a residual present in 3p . This indicates that the model can only select the correct 

underlying model if the parameter effect is strong enough. 
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Figure 6: Model weights associated with E1PS4F4/S8F8 for BMS. 

 

The second set of maps involving S6F6 and S9F9 displayed in Figure 7 are not as convincing, and we 

believe this is largely due to the fact that the true regions associated with 
1

p  are strictly separated to the 

extreme North and South of the map. There is still evidence of an improvement when moving from S6F6 to 

S9F9 since the regions are becoming slightly more defined as far as the maps are concerned. It may be the 

case that we need even more evidentiary support when the areas are separated in this manner. 
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Figure 7: Model weights associated with E1PS6F6/S9F9 for BMS. 

 

Table 10 displays the GoF measures associated with the BMS technique applied to the partial models. I 

continue to see smaller DIC estimates associated with the E2 models while the MSE and MSPE values are 

often larger. Larger MSE and MSPE estimates for E2 models are appropriate in the sense that there is more 

variance present in these models, thus estimation should be more difficult. Furthermore, MSE and MSPE 

values are nearly identical for the majority of models. In some cases, though, these estimates are quite 

extreme, such as for scenarios E2PS8F8 and E2PS9F9. Scenario E2PS4F4 demonstrates that outlier values 

in MSE are not necessarily reflected in the MSPE. Additionally, the estimates associated with A1 are 

typically smaller than A2 or A3. I believe this is due to the fact that this region has smaller, closer together 

counties. Finally, the results for the E1PS1F1RE and E1PS1F1CV model indicate that it performs very 

well; in fact, the most of the MSE and MSPE values are smaller than those produced with E1PS1F1. 
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Table 10: BMS GoF measures for partial models. 

Model D  DIC   
 

2

Var D
 

 

1A
MSE  

 

2A
MSE  

 

3A
MSE  

 
1A

MSPE  

 

2A
MSPE

 

 

3A
MSPE

 

E1PS1F1 574.08 652.70 78.62 1.33 1.76 1.45 1.38 1.78 1.49 

E2PS1F1 489.81 560.66 70.85 1.38 1.51 1.45 1.44 1.57 1.51 

E1PS2F2 562.72 644.58 81.86 1.10 1.37 1.19 1.18 1.44 1.26 

E2PS2F2 481.59 551.13 69.54 1.36 1.46 1.44 1.42 1.53 1.51 

E1PS3F3 561.03 644.91 83.87 1.17 1.23 1.17 1.25 1.30 1.24 

E2PS3F3 478.93 549.57 70.64 1.44 1.45 1.44 1.50 1.51 1.50 

E1PS4F4 561.33 641.73 80.39 1.25 1.32 1.26 1.32 1.40 1.32 

E2PS4F4 480.43 548.68 68.25 6.93 5.76 7.08 1.30 1.26 1.41 

E1PS5F5 564.12 639.13 75.01 1.35 1.52 1.43 1.39 1.59 1.48 

E2PS5F5 481.46 540.73 59.27 1.55 1.65 2.12 1.60 1.69 2.16 

E1PS6F6 567.53 646.31 78.78 1.22 1.30 1.21 1.27 1.37 1.25 

E2PS6F6 487.98 550.77 62.79 1.26 1.24 1.48 1.33 1.29 1.55 

E1PS7F7 546.88 623.93 77.04 1.04 1.65 0.92 1.12 1.73 0.99 

E2PS7F7 467.59 526.52 58.92 1.03 1.80 1.15 1.08 1.85 1.20 

E1PS8F8 561.90 642.71 80.81 1.25 1.20 1.19 1.33 1.27 1.26 

E2PS8F8 476.94 544.74 67.80 1.13 5.18 3.56 1.17 5.35 3.56 

E1PS9F9 591.67 676.12 84.45 1.23 1.36 1.53 1.31 1.43 1.61 

E2PS9F9 498.65 568.11 69.45 1.73 5.46 3.93 1.73 5.46 3.93 

E1PS1F1RE 579.21 678.05 98.84 1.04 1.29 1.16 1.10 1.35 1.23 

E1PS1F1CV 573.74 662.31 88.57 1.22 2.01 1.31 1.29 2.14 1.37 

 

The sets of maps included in Figure 8 are associated with E1PS4F4 and E1PS8F8 when fitted using the 

BMA technique. These maps are for comparison to the BMS fitted maps shown in Figure 6. In comparison, 

I see that both fits of these models fail to be as accurate as those attained using the BMS technique. There 

are improvements to be noted when moving from S4 to S8 as it seems that the model probabilities are 

becoming slightly closer to the truth, but there is still some misrepresentation present in the estimation of 

3
p  since I do not expect Alt3 to be selected for any counties. Furthermore, the maps produced using the 

model probabilities calculated via local DIC do not produce reasonable results. 
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Figure 8: Model probabilities associated with E1PS4F4/S8F8 for BMA. 

As before, the next set of maps displayed in Figure 9 illustrate the fits associated with E1S6F6 and E1S9F9 

when using the BMA technique. Here, I see no improvement when comparing S6 to S9, and none of the 

maps tend to suggest a certain region relating to one linear predictor versus another. The BMS technique 

continues to handle this situation better than BMA. Additionally, the DIC probability maps still fail to 

supply reasonable results. 
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Figure 9: Model probabilities associated with E1PS6F6/S9F9 for BMA. 

Figure 10 illustrates a comparison of both model selection methods’ abilities to accurately recover the truth. 

This comparison is accomplished by associating the probability from a specific county that should be 

selected to the mean probability of all counties that should not be selected for that particular model; this is 

described with the following formulation: 

 
1

A

C
ki

n

p A ki kAi

M

A

I p p

n








 

where M  are the probabilities displayed in Figure 9, I  is an indicator function that is 1 when the 

enclosed logical function is true and zero otherwise, 1,2k   for the model probabilities 1p and 2p , A  is 

the area for which kp  should be highest, CA  is area A  compliment, CkA
p  is the mean of the model 
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probabilities in area CA , and An  is the number of counties in area A  thus 1, , Ai n  . So, for example, 

with 
1

p from PS1F1, a county in A2 or A3 should have a higher model probability estimate than the mean 

of model probabilities calculated for the counties in A1. In these plots, I see BMS preforming the same or 

better than BMA for 21 out of the possible 36 model combinations. 

 

Figure 10: Representation of the models’ ability to recover the truth.  
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Table 11 displays the GoF measures for the partial models using the BMA technique. The MSPE measures 

can be viewed in Supplemental Table 7. One of these properties is that, in general, the E2 models produce 

smaller DIC values but higher MSE and MSPE values for the majority of models. The difference between 

the MSE and MSPE values when comparing E1 and E2 for the BMA case is much larger than what I saw 

when using BMS.  This again indicated that model selection is more difficult when there is more variation 

in the data. Another of these properties involves lower MSE and MSPE values for area A1; additionally, 

this is typically reflected in the local DIC measure for A1 as well. One new comparison that I can make 

with the BMA results is the local DIC measure to the BUGS calculated DIC measure, and these are 

different for every model. Additionally, the local DIC measure is always higher than the other DIC measure 

for the E1 models while this is not typically the case for the E2 models. I believe that all of these properties 

combined suggest that they perform better when there is no variation in the expected rates. Finally, when 

comparing E1PS1F1RE and E1PS1F1CV to E1PS1F1 for the BMA models, I see that the results are still 

good but not better as I saw with the BMs technique, except for the local DIC measurements. 

3.4.3. Misspecified Models 

In my research, I also misspecified models such that I fit the complete simulated data sets with the partial 

method and vice versa. In particular, I did this with model E1CS1 and E1PS1 because they performed well 

initially in both the BMS and BMA methodology. These appropriately specified results can be seen in 

Supplemental Tables 2 and 4 for the complete models as well as Supplemental Figures 1 and 2 for partial 

models. 

 

The results from fitting partial simulated data (E1PS1) using the appropriate complete model (CF1) are in  

Table 12. They show the BMS method choosing the linear predictor associated with 
1

p  while BMA 

selected the linear predictor associated with 
3

p . The true linear predictors here could be 
1

p  or 
2

p  

depending on the county. I suspect that the BMA method incorrectly selects 
3

p  because the first two linear 

predictors are alternating as the true model for the different counties. For example, if 
3

0.4p   for all 
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counties while 
1

p  and 
2

p  alternate between the values 0.1 and 0.5 depending on the county of interest, I 

could get similar results. The GoF measures are quite different for these two methods, but this is similar to 

the previous results in Section 3.4.1.  

 

Table 12: Model weights, probabilities, and GoF measures for the misspecified models. 

  1p   2p   3p  D  DIC  
 
2

Var D
 

E1PS1CF1 BMS 0.551 0.333 0.470 609.15 614.43 5.27 

E1PS1CF1 BMA 0.283 0.283 0.419 2315.38 2483.11 167.73 

E1CS1PF1 BMS 0.498* 0.500* 0.497* 575.54 674.23 98.69 

E1CS1PF1 BMA 0.256* 0.248* 0.253* 2437.01 2459.70 22.70 

*These values are means of the weights and probabilities that are actually varying across counties. 

 

When fitting the complete simulated data (E1CS1) to the appropriate partial fitted model (PF1), I expect to 

see the linear predictor associated with 
1

p  selected for all counties, and the county maps for this 

misspecification are displayed in Figure 11. Both methods’ results still show some variability among the 

different counties, but the BMA method clearly selects the linear predictor associated with 
2

p  for the 

northern counties. The GoF measures as well as mean probabilities and weights are shown in Table 12. 

.
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Figure 11: Model weights and probabilities associated with the misspecified models fit with E1CMSPF1. 

3.5. Colon Cancer Data Example 

3.5.1. Introduction 

Colon cancer (ICD-9-CM code: 153), accompanied by rectum cancer (ICD-9-CM code: 154.1), is ranked 

as the third most common tumor type in the United States, with colon cancer being the more frequent of the 

two. Routine screening for this cancer, particularly after the age of 50, is encouraged since a good 

prognosis typically accompanies an early diagnosis. Important risk factors of colon cancer include: 

nutritional inclinations, age, smoking status, inflammatory bowel diseases, previous incidence of malignant 

disease, and some genetic traits.41-43 Research examining the geography of some of these risk factors 

suggests that there may be an underlying spatial structure to the incidence of colon cancer.44, 45 

 

The data of interest in this study is the 2003 colon cancer incidence for the 159 counties in the state of 

Georgia, USA. The Area Health Resource Files (AHRF)46 data set provides ecological predictors useful for 

explaining the variation in this outcome. The chosen predictors are as follows: median household income 

(in thousands of dollars), percent persons below poverty level (PPBPL), unemployment rate of those aged 

16 or greater (UER), and percent African American (AA) population. Other studies indicate that poverty 

and race are associated with colon cancer incidence.41, 47 Of the chosen variables, there is evidence to 
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suggest that median income and PPBPL may be correlated (section 3.5.2). This same evidence could also 

be an indicator of the underlying spatial effect that I believe may play a role in colon cancer incidence. The 

age cut off associated with the unemployment variable may be criticized since much of the younger 

population in this age range may not hold steady jobs as they are full time students. In the individual level 

data used to create this county level variable, ‘student’ is an option as an employment status. 

3.5.2. Data and Linear Predictor Alternatives 

The colon cancer data comes from the online analytical statistical information system (Oasis) of the 

Georgia Department of Public Health. For the 1332 diagnosed colon cancers across the state in the year 

2003, there was approximately a mean incidence of 8.38 cases per county where the minimum county level 

value was zero and the maximum value was 102. In these data, there are no missing values at the county 

level. 

 

 

Figure 12: Geographical distribution of predictors from the AHRF data set. 
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The geographical distributions of the chosen predictors are displayed in Figure 12 and suggests some 

spatial clustering. An additional indicator of the underlying spatial structure is made evident by the pattern 

of standardized incidence ratios (SIR) displayed in Figure 13. The SIR is calculated as the ratio of the 

observed colon cancer incidences to the expected rates for each of the 159 counties and can be useful as a 

first step in data analysis.48 Qualitatively, for these data, there does appear some spatial structure. 

 

 
Figure 13: Map of the Standardized Incidence Ratio for the 2003 colon cancer data. 

 

Based on the chosen predictors (median income in thousands - 1x , PPBPL - 2x , UER - 3x , and percent 

AA population - 4x ), I have employed three possible linear predictors for use with both the BMS and BMA 

methods. Table 13 displays these alternative predictor options. The first linear predictor (Alt1) includes all 

of the covariates. The second (Alt2) includes only income and percent AA population. The third and final 

linear predictor (Alt3) includes PPBPL and percent AA population.  Note that all of my possible linear 

predictors contain an uncorrelated random effect to aid in accounting for any uncontrolled for parameters or 

extra noise present in the data, and they differ by the predictors included. Additionally, for all of these 

linear predictor alternatives, the prior distributions are such that: 

 ~ 0,id uu Norm  ,    ~ 1,0.5u Gam , and  ~ 0,1jd Norm  

where 1, ,159i   , 1, ,d D   such that D  is the number of linear predictors to be selected between, 

and 0, ,j J   such that J  is the number of predictors for the 
thd  model.  
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Table 13: Alternative linear predictor contents. 

Model Contents 

Alt1 0 1 1 2 2 3 3 4 4 ix x x x u          

Alt2 0 1 1 4 4 ix x u      

Alt3 0 2 2 4 4 ix x u      

 

I alternate income and PPBPL in the second two linear predictors because there is evidence to suggest that 

they may be correlated. This is not an uncommon assumption as, typically, when income is higher, poverty 

is lower, as shown in Table 14. This table illustrates, through individual Poisson model fits, that median 

income and PPBPL are collinear with respect to the incidence of colon cancer outcome because PPBPL 

becomes well estimated when median income is removed from the model. I also note some changes in 

percent AA population when PPBPL is used in place of median income. These individual model fits were 

performed using Bayesian approximation techniques by way of the R package INLA.5, 24  

 

Table 14: Individual fits of possible linear predictors. Posterior mean and standard deviations are displayed. 

 

Alt1 

Mean (SD) 

Alt2 

Mean (SD) 

Alt 3 

Mean (SD) 

Intercept 1.49 (0.08)* 1.49 (0.08)* 1.48 (0.09)* 

Median income ( 1)x  

(in thousands) 
0.69 (0.19)* 0.65 (0.09)* --- 

PPBPL  2x  0.10 (0.23) --- -0.69 (0.11)* 

UER  3x  -0.14 (0.10) --- --- 

% AA population  4  x  0.28 (0.13)* 0.26 (0.09)* 0.41 (0.12)* 

*Indicates that a predictor is well estimated or ‘significant’ and SD stands for standard deviation 

 

In addition to collinearity, the changes seen in the parameter estimates could also indicate that some of 

these predictors may be more important in certain regions of the county map. This indication will be further 

explored with the application of the BMS and BMA techniques. The covariates were standardized prior to 

fitting the models.  
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3.5.3. Results 

The results below illustrate the application of BMS and BMA as described above. Following the 

application of the model selection techniques, I re-fit the selected linear predictors to the appropriate 

counties. 

Figure 14: County-specific model selection probabilities corresponding to Alt1, Alt2 and Alt3, based on the 

BMS procedure. 

 

The results from fitting these models with the real data using the BMS method are displayed in Figure 14 

and suggest that it may be beneficial to use the second alternative linear predictor option in the Northern 

and Western counties of the state as the weights produced for those counties are fairly large. By the same 

guidelines, the third alternative linear predictor option may be optimal for the Southern and Western 

counties. Given the fact that there is some overlap in these results, this indicates that either predictor could 

be appropriate for these counties. Thus, there is not a clear best alternative linear predictor for those 

counties. From these results, I also see that it is beneficial to place correlated covariates in separate linear 

predictors and allow the BMS process to determine which is most appropriate across the county map. 

Additionally, I note that the distribution of the county weights across the county map for 1p  and 2p  are 

very similar to each other as were the parameter estimates, 
1j  and 

2j , associated with the initial 

individual model fits shown in Table 12, Section 3.2.1. This indicates that median income may have a more 
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palpable relationship with colon cancer incidence compared to PPBPL. Furthermore, these results do 

suggest that there is a spatial relationship between these predictors and colon cancer incidence.  

 

This application of the BMA method produced different results from those obtained using the BMS 

method. I use the 0.3 cut off to determine model significance in this instance because in a situation where 

there is no most appropriate model, the model probabilities would equal 0.3. This value is determined by 

summing across the three county weights produced by simulation, dividing by 3, and taking the mean of the 

summed values across all counties. Thus, the BMA model probability results shown in Figure 15 suggest 

that the second alternative linear predictor option should be used for the Northern counties while the third 

linear predictor option seems appropriate for the majority of the county map, particularly the Southern and 

Western counties. Additionally, the first alternative linear predictor appears important in some of the 

central counties. Again, I see that there is some overlap in the appropriate linear predictors, but in the case 

of BMA, the differences are trivial for the majority of counties. This suggests that the BMA method 

designates all of the linear predictors as interchangeable across the county map. I also continue to see some 

similarities between the distributions produced for 1p  and 2p . These similarities are not as distinct as they 

were in the BMS method results, however. Additionally, the results below do still suggest that there is a 

spatial relationship present for colon cancer incidence. 

Figure 15: County probabilities based on the BMA procedure. 
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Table 15 illustrates individual model re-fits for the appropriate counties with the selected linear predictors 

based on both the BMS and BMA results. From the results, first I chose to fit the 53 most Northern 

counties with the second linear predictor and the remaining Southern counties with the third alternative 

linear predictor. In comparison to the initial individual model fits in Table 12 in Section 3.2.1, in Table 13 I 

observe increases in the magnitudes of the parameter estimates for Alt2 while Alt3 stays roughly the same.  

 

Next, I consider applying the linear predictors based exactly on the BMS results. Here, if BMS produced a 

weight greater than 0.5, that county was included in the model re-fit for the associated alternative linear 

predictor. This is not a strict cutoff for the BMS method, it is simply what seemed appropriate for these 

data as this is the value that all weight would acquire if there were no true model. This value is determined 

in the same way as the BMA 0.3 cutoff value described above. The appropriate counties selected for Alt2 

are considered to be in area A2 while the area for the counties selected with Alt3 is named A3. Based on 

these definitions and in comparison to the initial model fits (Table 14), the estimates associated with Alt2 

and Alt3 decrease in magnitude as well as value. Here, for both linear predictors, the parameter estimates 

associated with percent AA population are no longer well estimated.  

 

Table 15: Selected linear predictor re-fits. 

Counties included 

(number) 

North 

(53) 

Mean (SD) 

South 

(106) 

Mean (SD) 

A2 

(50) 

Mean (SD) 

A3 

(48) 

Mean (SD) 

Linear Predictor Alt2 Alt3 Alt2 Alt3 

Intercept 1.50 (0.15)* 1.49 (0.10)* 1.62 (0.13)* 1.55 (0.15)* 

Median Income 

(in thousands) 
0.87 (0.17)* --- 0.66 (0.17)* --- 

PPBPL --- -0.63 (0.13)* --- -0.37 (0.21)* 

% AA population  0.28 (0.15)* 0.36 (0.14)* 0.02 (0.14) -0.06 (0.21) 

*Indicates that a predictor is well estimated or ‘significant,’ SD stands for standard deviation, and the 

definitions of A2 and A3 are as follows: The appropriate counties selected for Alt2 are considered to be in 

area A2 while the area for the counties selected with Alt3 is named A3. 
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3.5.4. Discussion 

The results above present evidence suggesting that there is a spatial structure in the distribution of colon 

cancer incidence. These results also show that the model selection techniques are useful in determination of 

the appropriate linear predictors for different areas of the county map. Additionally, there are many reasons 

why some of the selected linear predictors may not perform as well as expected. These include: 1) the 

larger size and more separation among the Southern counties; 2) the limited number of counties selected 

when restricting the included counties to those with a weight of 0.5 or more; and 3) the strength of 

association in the data: in general, these predictors may not have a very strong relationship with colon 

cancer incidence. Thus, they are difficult to first select and then fit to produce well estimated parameter 

estimates. 

 

Based on the results above, both techniques suggest that median income and percent AA population are 

useful in predicting colon cancer incidence in the Northern counties of Georgia. Alternatively, these results 

also suggest that PPBPL and percent AA population are useful in predicting incidence of colon cancer in 

the Southern counties of the state of Georgia. After applying the appropriate transformations defined in 

Section 2.2.1, the explicit interpretations of the parameter estimates from the individual model re-fits are as 

follows. For the Northern counties, every $1000 increase in median income indicates that 1.09 times as 

many incidences of colon cancer occur, and each 1% increase in AA population indicates that 1.02 times as 

many incidences of colon cancer occur. For the Southern counties, every one unit increase in PPBPL 

indicates 0.87 times as many incidences of colon cancer occur, and every one percent increase in percent 

AA population indicates that 1.02 times as many incidences of colon cancer occur. These estimates are not 

very large in magnitude because they are incremental, continuous increases per unit of the parameter of 

interest; they are also displayed in Table 16. 
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Table 16: Transformed mean parameter estimates for linear predictor re-fits. 

Counties included 

(number) 

North 

(53) 

South 

(106) 

Predictor  

Standard Deviation 

Linear Predictor Alt2 Alt3 --- 

Median Income 

(in thousands) 
 exp 0.87 / 9.75 1.09  --- 9.75 

PPBPL ---  exp 0.63/ 4.58 0.87   4.58 

% AA population   exp 0.28 /17.47 1.02   exp 0.36 /17.47 1.02  17.47 

 

For BMS, I receive very clear indications that the linear predictors which include either PPBPL or median 

income are preferred over the linear predictor that includes both. I also see that these two linear predictors 

are clustered in specific areas, with some overlap, of the county map. Once I look into re-fitting the selected 

models, I see that the second linear predictor seems to have a slightly stronger relationship with colon 

cancer incidence than the third in their appropriately selected counties. Furthermore, A1 and A2 produce 

even less substantial results. These losses in substantiality may be due to the limited number of counties 

selected or the smaller size and closer proximity to each other involved with the counties in the Northern 

part of the state, or both. 

 

Some of my simulation studies shown in Section 3.3.4 have suggested that the BMA technique does not 

perform as well in detecting smaller levels of association in the data. The results here also suggest that this 

may be an issue for these data. My predictors are not among the most important risk factors mentioned 

previously, thus they are not considered of high association with incidence of colon cancer. BMA does not 

appear to choose one linear predictor clearly over the other, though it does seem to have a slight preference 

of the second two alternatives in comparison to the first. In general, BMA will not produce probabilities of 

the same magnitude as the weights produced by BMS because they are scaled such that they add to 1. This 

leads to slightly more interpretable results produced with BMA. Regarding measures of GoF measures, 

because in BMA each of the linear predictors are fit individually then averaged to create the averaged 

posterior, this method offers the ability to examine how well each of the alternative linear predictors 

perform, while BMS does not.  
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Both BMS and BMA techniques illustrate the importance of keeping collinear variables in separate 

alternative linear predictors. In both sets of results, I see that the first alternative linear predictor, which 

contains two collinear predictors, is somewhat under-stimulated in comparison to the other two alternatives. 

This is most distinguished in the BMS results. Additionally, the results given here indicate the importance 

of using these spatial models for incidence of colon cancer. I received meaningful, important results when 

performing the initial individual, non-spatial model fits, but I gain even more information by allowing the 

model selection techniques to determine the appropriate linear predictor for each individual county. 

Furthermore, the model re-fits illustrate how these techniques perform better when the regions of interest 

are smaller and closer together. This issue has been noted in my simulation studies as well. Both model 

selection techniques suggested that Alt2 was a good choice for the Northern counties, and when I re-fit that 

linear predictor for only those Northern counties, I saw the parameter estimates become even more 

substantial. For the A1 and A2 counties, however, this was not as clear even though I still gain some 

meaningful results for these counties.  

3.5.5. Conclusion 

Based on this exploration of the spatial structure of colon cancer incidence, my findings that there is much 

information to gain by employing spatial model selection techniques to determine the appropriate linear 

predictor that best explains the variation in the data. Through the application of these techniques, I 

determined the important predictors for the different areas of the county map, and these indicate that 

median income and percent AA population are important predictors of colon cancer incidence in the 

Northern counties of the state while PPBPL and percent AA population are important for the Southern 

counties of the state. By employing these two methods in combination, I was able to detect some interesting 

and important aspects of these data. 

3.6. Discussion 

Based on the simulation results and from a qualitative assessment, I believe that the BMS technique 

outperforms BMA in terms of selecting the appropriate linear predictors. The results for the BMS method 
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are also more consistent when comparing different scenarios such as E1 versus E2, and S1F1-S9F9 to their 

appropriate counterparts. Furthermore, I discovered that the BMS technique is more robust to misspecified 

models. For both techniques, the complete models tend to recover the truth more efficiently and accurately 

than the partial models, but this is to be expected as these models are not as complex.  

 

I also see significant improvements in recovering the appropriate estimates when comparing the models 

whose data sets have true parameter estimates with larger magnitudes, meaning there is more evidentiary 

support in the data. This is evident in complete, partial, E1, and E2 models as well as both BMS and BMA 

techniques. As far as GoF measures are concerned, DICs cannot be compared across models due to 

different outcome variables, and thus different likelihoods. The MSE and MSPE estimates suggest that, for 

the most part, the E1 models fit better than the E2 models. I also note that the A1 region often offers the 

lowest MSE and MSPE measures. I believe that this occurs because the counties in the A1 region are 

smaller and closer together than the others. Additionally, more often than not, S7F7-S9F9 models produce 

lower MSE and MSPE values. This suggests that the techniques perform better when there is more support 

in the data. 

 

There are several obstacles that can be encountered when preforming both model selection methods. The 

first of these involves the strength of association present in the data. If there is not enough evidence in the 

data, I have seen that both BMS and BMA fail to perform well.  

 

Another issue involves extra noise in the data. As in many statistical applications, extra variation in the data 

can lead to difficulties in estimation; BMS and BMA are not immune to this issue. By the same token, 

including an uncorrelated random effect in one of the alternative linear predictors when it is not truly 

needed can also result in an improper selection of a linear predictor. In many cases, though, there is random 

noise present in data, and including that random effect can be helpful. This is why random effects were 

included in all linear predictor alternatives for my real data example. Furthermore, I did include two 

scenarios in my simulation study (E1PS1F1RE and E1PS1F1CV) that introduced this extra noise and fit the 
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models such that it was reflected in the true and alternative linear predictors. In this situation, the results 

suggest that both methods seem to perform comparably when extra variation was imposed upon the data. 

Here, the BMS method actually produced slightly smaller MSE and MSPE values than those produced with 

E1PS1F1. 

 

One shortcoming of both of these methods is that they must be performed in sequence with an additional 

model fit to determine the parameter estimates associated with the selected linear predictor or predictors in 

the case that one predictor is more appropriate in a certain region of the state. This is a shortcoming that 

adds to the complexity of the model fitting process, but it is worth pursuing to obtain the most appropriate 

results. 

3.7. Conclusion 

From this comparison between my proposed BMS and BMA, I conclude that the BMS application 

qualitatively produces more accurate as well as more precise results than those produced by BMA in terms 

of selecting the appropriate linear predictors across maps. There still may be some instances, though, where 

BMA is the preferred method because one is able to calculate the local DICs in that situation.  
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4. Aim 3: Spatio-temporal Model Selection 

4.1. Introduction 

It has long been established that model selection methods are useful in determining the most appropriate 

linear predictor for a set of data. Model selection techniques are often used in lieu of variable selection as 

they alleviate some of the issues related to variable selection (e.g. co-linearity, an excess of parameters).29, 

32, 34, 49-51 The results presented in Chapter 3 have shown that model selection methods can be helpful for 

spatial data. However, researchers often have access to data across time as well as space. These model 

selection methods allow for different models to be employed at each temporal unit, spatial unit, or both, 

depending on how the model is specified.52, 53  

 

One challenge indicated by previous studies  involving spatio-temporal variable selection, includes having 

more parameters than the possible number of MCMC iterations.54 My model selection methods minimize 

this issue as it is not necessary to apply a parameter to each individual predictor when determining its 

inclusion probability. Rather, the inclusion probability is applied to the linear predictors to determine their 

appropriateness as a whole.  

 

A common problem with large scale MCMC simulation is computation time. Computationally fast spatio-

temporal analyses can be performed using approximate Bayesian inference via the R package INLA,5, 7, 10, 

20, 21, 24, 55, however this package does not offer the degree of flexibility required for my model selection 

methods, as discussed in Chapter 2. Alternatively, to improve the computation time in this instance, the R 

package snowfall, which allows for parallelizing code, has been implemented.56 

 

The aim of this chapter revolves around a spatio-temporal extension to my previously developed model 

selection methods from Chapter 3 via the BUGS software BRugs which calls OpenBUGS from the 

statistical software program, R.13, 28 Here, I attempt fitting my model selection methods to ten different 

simulated model scenarios and assess them for GoF. I also apply one additional fitted non-model selection 
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method to determine how well I am able to recover the simulated random effects. I also include a special 

case of the model selection methods described as a mixture model. My objective is to determine which 

fitted model selection option performs best depending on the type of data applied to the model using a 

variety of simulated data sets.  

 

This chapter is developed as follows. I first describe the different simulated data models. Next, I define the 

specific types of space-time fitted models I wish to explore as well as my methods for comparing those 

models. Finally, I present, discuss, and draw conclusions relating to the results. 

4.2. Methods 

This chapter focuses on the context of disease mapping in m predefined small areas. For all models defined 

below, both simulated and fitted, I conventionally assume that the outcome, an aggregated count of disease 

(
ijy ), is observed in the 

thi  small area at time  j and that these counts are conditionally independent 

Poisson distributed outcomes. In addition, I assume that the expected count (
ije ) is available in each small 

area at each time. This is a commonly assumed model for small area counts in disease mapping,17 and is 

defined as follows: 

| ~ ( )ij ij ijy Pois   

ij ij ije   

 log
T

ij ij ij
X R    

where the mean of the Poisson model, 
ij , is defined as the expected rate of disease times the risk. Further, 

T

ijX  is the thij  element of the design matrix,  is the vector of parameter estimates, and 
ij

R  is a linear 

combination of different types of random effects which are described in more detail in Section 4.2.1 and 

Table 14. This is a basic definition of the model of interest and will be explained in more detail as well as 

with more options in the following sections. In what follows I describe my simulated data scenarios and 
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fitted model alternatives. While these models represent a subset of the spatio-temporal model possibilities 

for these data, I believe that they are an appropriate representative subset. 

4.2.1. Simulated Data 

To simulate the data, I fix the expected rate  
ij

e  for the areas across the simulated data sets as a single 

realization of a  1,1Gam  distribution. This allows the primary focus to be on the estimation of risk 
ij . To 

complete the parameterization, a relative risk which is parameterized with a range of different risk models 

is assumed. Simulated data scenarios are notated with an ‘S’ preceding the model number. 

 

The predictors used to simulate the outcome data come from the AHRF46 data set for the state of Georgia, 

USA which was presented in Chapter 3. Here, this analysis covers the ten year time frame 1998 to 2007, 

and this leads to a ten year time frame for my data. The chosen ecological predictors are also the same as 

used previously: median household income (in thousands of dollars), PPBPL, UER, and percent AA 

population. These predictors are considered 1 2 3 4,  ,  ,  and x x x x  respectively; additionally, they are 

standardized for simulation purposes. Depending on the model of interest, some of these predictors will 

only vary spatially while others will vary temporally as well as spatially. For the strictly spatially varying 

covariates, I use a central year of the data, year 2003 or 6j   and assume that this covariate remains the 

same across the study time frame.  

                                                                                                                                                                                                                                                                                         

The ten basic models for risk (S1 up to S10) are presented in Table 17. The parameters that make up these 

models have the same prior distributions for each scenario, but over the 200 simulated data sets, I allow the 

temporal trend (
j ), the spatio-temporal interaction term (

ij ), and the UH term ( iu ) to vary from one 

simulated data set to the next. The respective hierarchical prior distributions of these random effects are as 

follows: 
1

1
( , ),

j
N


 





1 1(0, ),  and (0, )uN N  
. The CH term, 

~

1 1
~ ,  i l

i li i v

v N v
n n

 
 
 
 , is a conditional 

autoregressive (CAR) distribution,4 and unlike the other random effects, it remains constant as one 
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realization of this distribution so that the spatial correlation is known and the same for all models and 

simulated data sets. This definition of the correlated effect is such that i l , in is the number of neighbors 

for county i , and ~i l  indicates that the two counties i  and l  are neighbors. The standard deviations 

associated with these prior distributions,
1/2  

, are all uniformly distributed over the interval [0, 4]. In some 

ways, this uniform distribution on the standard deviation could be considered a strong assumption, but 

since I am dealing with a logit model, the interval still leads to a fairly non-informative prior distribution 

for the standard deviation. Further, other studies have shown that relative risks are not overly influenced by 

prior distributions placed on the variance parameters.57 Ultimately, the first two simulated models (S1 and 

S2) are simply to establish my ability to recover the random effect parameters, as they do not contain any 

predictors. 

 

Table 17: Simulated model scenarios. 

Model Contents 

S1   0
log

ij iji i j
u v        

S2   0
log

i i ijij
u v      

S3   0 1 1 2 2
log

i i i jij
x x u        

S4   0 1 1 2 2
log

i i i jij i
x x u v          

S5   0 1 1 2 2
log

i iij
x x      

S6   0 3 3 4 4
log

i ij ji j
x x     

S7   0 3 3 4 4
log

j ij j iij j
x x     

S8   0 1 1 2 2 3 3 4 4
log

i i j ij j iij j
x x x x          

S9   0 1 1 2 2 3 3 4 4
log

i i j ij j ij i iij i j
x x x x u v              

S10   0 1 1 2 2
log

j i j i i jij i
x x u v          

 

As far as the parameter estimates are concerned, the  ’s are fixed across the 200 simulated data sets. For 

the non-temporal varying model scenarios (S3 to S6), they are set to be  0.2,    0.3,  0.2,  0.4   so that they 

are forced to be fairly large and thus have a detectable relationship with the outcome, yet not so large 

resulting in simulated outcome counts that tend towards infinity. For the scenarios where the  ’s vary over 
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time (S7-S10), a single random walk trend,  , , 1
~ ,0.5

k j k j
N 


, is employed for the temporally varying 

parameters such that the following matrix represents the parameter estimates that are fixed across the 

simulated data sets:  

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
         

0.2 0.598 1.082 1.352 1.996 1.357 1.542 1.606 1.800 1.514

0.4 0.616 0.421 0.383 0.738 1.376 1.413 0.889 0.763 0.010

         

        

 
 
 
 
 
 

. 

This matrix is the fixed set of values for the scenarios that allow for some temporally varying parameter 

estimates (S7 to S10). Fixing the  ’s is for simplicity, consistency, and because they are not the main 

focus of the model selection application to begin with. The results in Chapter 3 suggests that model 

selection should be performed ultimately to select the best linear predictors, and re-fits of the chosen 

models should be executed to gain appropriate parameter estimates. Additionally, S10 differs from the 

other models that only include the spatially varying predictors in that the parameter estimates are allowed 

to vary over time; in this instance, I simply use the bottom two rows of fixed parameter estimates from the 

matrix above for simulation purposes. For all simulated model scenarios, the intercept, 0 , is set to be 5. 

These ten different scenarios furnish a wide range of models, and thus, a good basis to judge which fitted 

models perform best under the different conditions. Some models contain all of the predictors while others 

contain only a subset or none at all; I expect certain fitted models to perform better for specific scenarios 

based on this fact alone. 

4.2.2. Fitted Models 

The fitted models described below are applied to different combinations of the ten simulated models 

mentioned above based on their appropriateness. A model is deemed appropriate based on if it can 

accommodate spatio-temporal covariates. Fitted models are distinguished from the simulated model 

scenarios by an ‘F’ preceding the model number rather than an ‘S.’ 
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4.2.2.1. The Knorr-Held Model 

The first fitted model, F1, is not a model selection method, rather its purpose is to determine how well the 

spatio-temporal trends and random effects are being recovered. It is known as the Knorr-Held model58 and 

is as follows:  

  0log ij i i j iju v         

where the hierarchical prior distributions are such that  1

0
~ 0,N


 



,  1/2 ~ 0,4Unif


,  1

~ 0,
i u

u N 


, 

 1/2  ~ 0,4u Unif 
, 

1( , )~ /
i iviv N u n  

,  1/2  ~ 0,4v Unif 
,  1

1
~ ,

j j
N


  




,  1/2

~ 0, 4Unif





,  

 1

~ 0,
ij

N


 


, and  1/2

~ 0, 4Unif





. These priors will continue to apply for the rest of the fitted models 

when appropriate. This fitted model will be fitted with simulated data model scenarios S1 to S4, S9, and 

S10. Additionally, for the models, 1, ,159i   represents the spatial unit, counties, and 1, ,10j    

represents the temporal unit, years. 

4.2.2.2. Model Selection Methods 

The second fitted model that I propose, F2, is the first of the model selection techniques and takes the 

stance that there are only spatially varying predictors with outcomes that are measured over time. It is 

described as follows: 

  0

1

log
L

ij lij ij

l

jl iw   


    

where the indicators, lijw , vary over space and time, thus different linear predictors could be chosen for 

each of the counties as well as years. The Bernoulli probabilities associated with these indicators, lijp , are 

defined such that  ~
lij lij

w Bern p , 
1

/
L

lij lij lij

l

p z z


  ,    1
logit ~

lij l
z CAR 

 , and  1/2 ~ 0,4l Unif 
. The 

model probabilities for the following model selection methods are defined similarly, though some methods 

do not allow for temporal or spatial variation. Furthermore, the set of L  linear predictors are temporally 

dependent such that the parameter estimates are allowed to vary over time. Therefore, while the covariates 
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remain the same, their relationship with the outcome has the ability to change over time. Explicitly, the set 

of alternative linear predictors is as follows:  

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

i i

j i j i

ij j i j i j

j i j i j i i

i i j i i

x x

x x

x x

x x u v

x x u v

 

 

  

 

 


 



  
    


   

. 

These linear predictor alternatives are specified such that they are true for a selection of the simulated data 

scenarios defined in Table 7. F2 will be applied to simulated model scenarios S3- S5, and S10. 

 

F3 simply allows separate linear predictors for the spatial and temporal components of the model as well as 

a random residual term to represent the spatio-temporal interaction. This model is described with the 

following notation: 

  0

1 1

log
L K

S S T T

ij j l li k kij ij

l k

w w    
 

      

where L  and K  indicate the number of linear predictors associated with the spatial and temporal model 

sets, 
S

li  and 
T

kij  respectively; these are the models to be selected from based on the probabilities 

associated with indicators 
S

lw  and 
T

kw . Since these probabilities do not vary over space, they have the 

same distribution and it is described as follows with S

lw being the example:   ~ 
S

l l
w Bern p , 

1

/

L

l l l

l

p z z



 

,    1
log it ~ 0,

l l
z N 


, and  1/2

~ 0, 4
l

Unif


; this will be the model probability distribution associated 

with the remainder of the fitted models. This model will be fitted to simulated data models S3 through S10. 

Lastly, the sets of linear predictors are as follows: 

1 1 2 2

1 1 2 2

1 1 2 2

i i

i i i

i

S

i i i

i

x x

x x u

x x u v







 

 



 

  




 



, 

1 3 2 4

1 3 2 4

1 3 2 4

ij ij

j ij j ij

j ij j

T

ij

ij j

x x

x x

x x

 

 

  







 




 


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F4 is an extension of F2 whereby, for example,  1 11 1  ji      and will be fitted with the same 

simulated data scenarios as F2. In this expression, there exists a spatial and temporal component to the 

linear predictors, li  and  lj respectively, that allows the parameter estimates to vary over space and time 

rather than being fixed or temporally varying as they were in F2. Because of this increase in complexity 

among the alternative linear predictors, I have limited the indicators, w , such that they no longer have 

spatio-temporal variation. Thus, the model is now described as follows: 

  0

1

log
L

ij l lij

l

ijw   


   

Fitting the predictors in this fashion allows for more flexibility within the alternative linear predictors, and 

thus, there are fewer linear predictors to be selected from. Explicitly, the linear predictors are defined such 

that: 

1 1 1 2 2 2

1 1 1 2

1 2

1 2

1

2 2

1 1 1 2 2 22

'( ) '( )

'( ) '( )

'( ) '( )

i i

i i

i i j i i

i j i j

ij i j i j j

i j i j

x x

x x

x x u v

     

       

      

    


     
 





     

 

4.2.2.3. Spatio-temporal Mixture Model 

For F5, I consider a situation that applies a type of mixture model which allows the data to indicate the 

appropriate relationship, a spatially or spatio-temporally dependent model. This is considered to be a 

special case of the model selection methods and is similar in structure to the BaySTDetect model proposed 

by Li et al.52 It is described such that: 

   0 2 2 31 1 3 4 4log (1[ )] [ ]i iij i ij ji j ijij jx px u xv xp               

where some of the predictors vary across space and time, such as 3ijx ,  while others only vary across 

space, 1ix . For this, the model probability p  is large if a constant parameter spatial model is the preferred 

fit and small if a temporal dependence spatio-temporal model is favored.  F5 will be fitted to simulated data 

models S3 through S10.  
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4.2.2.4. Summary of Fitted Models 

Table 18 summarizes the fitted models described in the previous sections.  This table shows the simulated 

models associated with the different fitted models, the model description of the fitted models, and the linear 

predictor alternatives. Through these different combinations of simulated and fitted models, I believe that a 

wide range of scenarios are being tested and compared for inference. 

 

To compare these modeling options among the different scenarios, I will use a combination of qualitative 

and quantitative examinations. Maps and figures of inclusion probabilities will be presented for comparison 

in a qualitative way. For a quantitative approach, I will calculate DIC and its components along with  

MSE , variance, and mean bias squared for each of the simulated and fitted model combinations. These 

measures will aid in determining the best way of modeling these types of data scenarios. First, the DIC 

estimates are defined as follows: 

    

 

2 log

) / 2

|

( ( )

i

i

D p y

pD Var D

DIC D pD

 





 



 



 

The effective number of parameters, pD, in this definition involves the more conservative calculation using 

the variance of the deviance59 rather than the mean deviance minus the deviation of the means.60 This is 

considered a penalty term for the models as models tend to fit better when more parameters are effectively 

used. Second, MSE and bias squared are defined such that: 

 
 

2
*

1

ˆ
i ij

j

i

m
jy y

MSE M
m


   

 200

1 1

2

2

200

ˆ
m

i k

ijk ijk

j
m

R R
Bias

 


  

where ijkR  is the true random effect value and ˆ
ijkR is the estimated random effect value for each county ( i ) 

at each time ( j ) in each simulated data set ( k ). Thus, the mean bias squared subtracts the estimated 

parameter value from the true parameter value and then averages that difference over the 200 simulated 

data sets and m  spatial units. When the random effect is a temporal measure, such as j , the bias squared 
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calculation is only averaged over the simulated data sets, and when the random effect is a spatial only 

measure, such as iu  and iv , the bias squared calculation gives one value rather than J . 

4.3. Results 

The Knorr-Held model (F1) fits suggest that the random effects are recovered inconsistently based on the 

results displayed in Figures 16 and 17. Figure 16 displays a plot of the mean estimated variance against the 

mean bias squared for each parameter that is represented in the simulated model formulation. For example, 

simulated data model S2 does not include a random walk term, thus it is not displayed. I also display 

temporally varying estimates when applicable. This display indicates that the spatial and spatio-temporal 

random effects are behaving well while the temporal random walk effect is not. The larger values 

associated with both variance and mean bias squared for the temporal random walk effects are consistently 

for the later study years, thus the estimates appear to become more variable and extreme with time. It is 

also obvious from this display that the correlated random effect, iv , has very small estimates associated 

with the bias measure as well as the variance meaning that the estimates are close to the truth and consistent 

across the simulated data sets. This pattern is due to the fact that this random effect is constant across the 

simulated data sets. Additionally, the estimates associated with the spatio-temporal interaction term are 

very close together among the different model scenarios. This suggests that the interaction term fits 

consistently across time. 

 

Figure 17 illustrates the true and estimated values of the uncorrelated and correlated random effects for a 

single data set in model scenario S1F1. For the CH effect, 𝑣𝑖, the estimates appear to give more extreme 

values than the truth but the spatial structure of the truth is present in the estimates with higher values in the 

eastern area of the map. From the maps of the UH effect, the estimates appear to produce more positive 

values. This indicated poor estimation of the intercept for this model, which there is. The true intercept 

value is 5 while the estimated value averaged over the 200 simulated data sets is 2.57. 
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Figure 16: Variance versus mean bias squared for each random effect. 

Table 19 displays the GoF measures associated with all of the model combinations of the fitted model 

selection methods averaged over the 200 simulated data sets. I can only truly compare these DIC measures 

across the fitted models as the data varies across the simulated models. Fitted model F2 does not appear to 

perform the best for any of the simulated data scenarios. F3 appears to be a good option for some of the 

simulated data scenarios; it has the flexibility to fit models with spatio-temporal parameters, and produces 

the lowest DIC values for scenarios S7 and S10. F3 also provides the lowest DIC estimate for S8, but it is 

not significantly lower than the estimate produced by F5. F4 and F5 attain much smaller pD  values for the 

predominantly spatial models, with F4 performing the best overall for S3 and S4 while F5 performs the 

best for S5. Additionally, F5 produces the lowest DIC values for S6 and S9. From these estimates, I note 

that the deviances are quite close in value, and the large differences lie in the effective number of 

parameters, the penalty component to the DIC calculation. Altogether, these measurements accompanied by 

ability to fit a wide range of models indicates that the mixture model (F5) produces better fitting results 

overall since the DICs produced for this fitted model are consistently either the best or second best for all 

models except S10. 
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Figure 17: True and estimated random effect values for a single simulated data set with model S1F1. 
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Figure 18 displays the MSE measures for a selection of the models. The MSE values are calculated for each 

year and averaged over the 200 simulated data sets, thus this display shows the distribution of those 10 

years for a subset of the simulated and fitted model combinations. This indicates that the models whose 

boxplots are very wide have some years for which the models fit well while others still fit poorly. There are 

several model combinations that are excluded from this display because they produce MSE values that 

would dominate the display. The excluded values involve F2 fitted model scenarios, S10 simulated model 

scenarios, and S9F3. In sum, these plots suggest that fitted model F3 performs best across most model 

combinations, and that F5 performs slightly better or the same for some cases. Unlike for the DIC 

measures, F4 does not perform the best with respect to MSE for any model scenarios. The fits of S10 are 

displayed in the appendix and suggest that fitted model F3 is the best fitting option for S10, and this agrees 

with the DIC measures displayed in Table 19. For most models, particularly those that were excluded, the 

MSE values tend to increase over time. 

 

Figure 18: Averaged yearly MSE values. 
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The results for F2 are difficult to assess because the model probabilities vary over both space and time 

meaning that there are 1590 model probability estimates. I have included county maps displaying the model 

probabilities across time in the appendix. The maps show that there is not much variability across the 

counties, or across space, as the model probabilities are all very close in value. 

 

Figure 19 plots the model probabilities associated with all simulated data set fits with fitted model F3. Most 

obviously, these show that there is more variance associated with the temporal linear predictors than with 

the spatial linear predictors. Additionally, the misspecified models (S3F3, S4F3, S9F3, and S10F3) appear 

to exhibit more variance overall than the appropriately specified models (S5F3 up to S8F3). Of the models 

that are truly specified, they seem to be somewhat well identified. Models S3F3 and S4F3 are only slightly 

misspecified in that they match spatial linear predictors, 2

S  and 3

S  respectively, but additionally have a 

temporal component, j . This temporal component is included in 3

T , and that linear predictor does 

appear to be selected for these models. I also note that a large amount of models stay around the 0.333 

range in probability estimates meaning that no linear predictor is favored. S9F3 is behaving differently 

from expected in that, based on the simulated model definition in Table 17, it seems as though 3

S  and 2

T  

should be selected, and then the spatio-temporal interaction random effect would pick up the rest of the 

noise present in the data due to misspecification. Rather, it appears that the interaction term is attempting to 

explain all of the temporal noise since the temporal linear predictor that includes the appropriate temporal 

components, 3

T , is not being selected. Alternatively, S10F3 does appear to be selecting 3

T to account 

for the temporal variation. 
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Figure 19: Model probabilities associated with the different fits of fitted model F3. Each boxplot refers to 

one of the six (3 spatial only, 3 spatio-temporal) linear predictor alternatives. 

*indicates the true model for that particular model scenario 

 

Figure 20 displays the model probabilities associated with fitted model F4. The distribution of the model 

probabilities are similar for all model scenarios. For M4F4 and M10F4, the median for 3p  is appropriately, 

though only slightly, higher than 2p . Additionally, the estimates produced for scenario S5F4 appear to be 

much more stable than the others. Both of these issues are likely due to the fact that the first linear predictor 

alternative is less complex and does not involve random effects which are present in the second and third 

linear predictor alternatives. Thus, the second two linear predictors dominate the selection process and 

there is more variation present when random effects are a part of the simulated data scenario. 
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Figure 20: Model probabilities for F4 model fits. 

* indicates the probability parameter associated with the true linear predictor. 

 

Figure 21 displays violin plots of the model probabilities associated with the F5 model fits. These are 

produced using the vioplot package in R61 and allow for viewing the distributions associated with the 

model probabilities for each scenario. Each volin plot image is a boxplot with a kernal density plot on each 

side such that the while circle is the median and the black rectangle represents the quartiles. This plot also 

displays a horizontal line at 0.5probability   to aid in identifying the mixing effect of this fitted model. 

S3F5 and S4F5 are appropriately represented as spatial models with a bit of temporal mixture; their 

distributions are quite similar and this is to be expected because they only differ by one random effect, iv ; 

its inclusion in S4F5 causes that model to tend slightly more towards a predominantly spatial model. 

Alternatively, S5F5 is a simple, strictly spatial model that seems to be having a difficult time identifying 

that. Here, S6F5 and S7F5 are appropriately identified as spatio-temporal models based on their associated 

model probabilities; of these two models, S7F5 has a much smaller spread to its distribution because it is 

more truly specified within this model than S6F5 since the parameter estimates also vary temporally. 
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Interestingly, S8F5 appears to have a nearly identical distribution to S7F5, and while they do have common 

parameters, S8F5 additionally has spatial only covariates. Thus, it is expected to be represented as more of 

a mixed model. S9F5 and S10F5 also behave as expected by displaying mixture effects between the spatial 

and spatio-temporal components. 

 

Figure 21: Violin plots of the model probabilities for F5. 

4.4. Colon Cancer Data Example 

For my real data example, I use incidence of colon cancer obtained from the Oasis of the Georgia 

Department of Public Health as an outcome with the same predictors from the AHRF data set.46 These data 

overlap for a study time line of 2001 to 2007; as before, the spatially only varying covariates come from a 

central year of the study time line, 2004. Past studies suggest that colon cancer has a spatial structure and is 

related to these predictors, though they are not the main risk factors associated with colon cancer,41, 44, 45, 47 

and I are looking to explore the temporal structure as well. I apply these data using fitted models F3-F5 as 

these models appear to perform the best. 
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The GoF results from these different model selection alternatives are displayed in Table 20 and Figure 22.  

Table 20 shows the DIC measures while the MSE measures are shown in Figure 22. In terms of DIC, F5 

appears to be the best fitting model while F3 is the best with respect to MSE and mean deviance. However, 

there is not much of a difference in the MSE values from one fitted model to the next. Additionally, the 

MSE measures demonstrate that there is a similar relationship in model fit from one year to the next across 

the fitted models. This relationship appears to be influenced by the distribution of the outcome variable 

counts. The mean of those counts is lowest for year 5 (
5

8.2y  ) and highest for year 7 (
7

8.5y  ) while 

the median for all years is 4.0. This indicates 1) that the model fits poorly when there are outliers in the 

outcome variable and 2) that F3 is least vulnerable to the influence of outliers. 

 

Table 20: DIC measures for the real data example. 

Model  DIC   pD   D  

F3 5066.34 339.16 4727.18 

F4 4911.83 176.64 4735.19 

F5 4903.09 160.72 4742.36 

 

 

Figure 22:  MSE measures for the colon cancer data example. 
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Table 21 displays the model probabilities produced as well as the resulting selected linear predictor. The F3 

results indicate that there is more spatio-temporal structure in the data since that linear predictor is clearly 

selected while the spatial only linear predictors are not. F4 results look as though it is attempting to explain 

the temporal structure in the data using the 𝛾𝑗 term. Additionally, F5 continues to suggest that this is largely 

a spatio-temporal model with some spatial influence. The spatio-temporal suggestion here could be 

stemming from the covariates more so than the spatio-temporal random effect, this is suggested by F3’s 

selection of the first spatio-temporal linear predictor alternative, and the real data example in Chapter 3 

indicated that percent AA population is an important predictor for colon cancer.  

 

Table 21: Model probabilities and selected linear predictors for the real data example. 

Model 
Model Probabilities 

Selected Linear Predictor 
P1 P2 P3 

F3 

Spatial 
0.199 

(0.00,0.50) 

0.391 

(0.10,0.75) 

0.390 

(0.10,0.73) 1 1 2 2i i i
x x u    or 

1 1 2 2i i i i
x x u v     

Spatio-

Temporal 

0.459 

(0.13,0.88) 

0.266 

(0.00,0.59) 

0.262 

(0.01,0.60) 1 3 2 4ij ij
x x   

F4 
0.244 

(0.00,0.46) 

0.366 

(0.12,0.76) 

0.359 

(0.12,0.73) 

1 1 11
'( )

i ji
x     

2 2 22
'( )

i j ji
x        or 

1 1 1 2 2 21 2
'( ) '( )

i j ii i j i ij
x x u v            

 

F5 
0.237 

(0.077,0.674) 

 
1 10 2 2

l [o ]g
ij i i i i

xp x u v         

43 3 4
(1 )[ ]

ij j jj iji j
p x x       

 

Additional tables and figures included in the appendix display the estimates produced with the selected 

linear predictors. Supplemental Table 1 displays the temporal random walk term, 
j . Overall, the estimates 

are very small; further, they are not well estimated.  This agrees with the maps of the risk, 
ij

 , which are 

displayed in Supplemental Figures 2, 4, and 6. These maps show some, though not much variation from 

one year to the next. Supplemental Figures 3, 5, and 7 are also maps that display the UH and CH effects for 

the selected linear predictors. All of the maps have a similar distribution displayed from one fitted model to 

the next, with the CH effect for F3 and F5 being the most similar. Additionally, while the magnitude of the 

estimates for 
ij  is also similar across fitted models, F5 produces random effect estimates with more 
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variation than the other models. For all fitted models, the UH effect appears to dominate the models, and 

this, accompanied with the consistent CH effect estimates, suggests that the models are performing well. 

 

For the selected model re-fit, I have only chosen to use F3. F4 was eliminated because the inclusion of a 

spatio-temporal term appears to be important, and F4 cannot accommodate that appropriately. F5 is not 

being re-fit as there does appear to be mixing in the results, thus the model displayed above is the final 

model fit for F5. The re-fits of fitted model F3 involve both spatial linear predictor alternatives whose 

model probabilities were similar. The GoF measures produced in the re-fits are alike to each other as well 

as the values presented in Table 20 and Figure 22 in that F5 continues to be the best in terms of DIC while 

the F3 model with the third alternative spatio-temporal linear predictor is the best fitting in terms of MSE. 

The new displays of these GoF measures can be found in Supplementary Table 2 and Supplemental Figure 

8. The 
ij  and random effect estimates produced for these model refits are nearly identical to those 

displayed for the model selection fits of these models. Additionally, the parameter estimates produced of 

these models are contained in Supplemental Table 3. These parameter estimates show that the spatio-

temporal predictors are important since 4  is well estimated for both F3 alternatives; this parameter 

estimate does not appear to be significant for F5, and that is likely due to the parameter being forced to vary 

over time. I also note that the intercepts are well estimated for all models, but they have opposite signs. 

This is due to the different structures present in F3 and F5. Additionally, both models suggest that colon 

cancer has a negative relationship with 1x , median household income, and F5 shows that there is also a 

positive relationship with PPBPL. Both of these interpretations agree with the previous colon cancer data 

example in Chapter 3. 

4.5. Discussion 

Based on the results in the previous section, the mixture model, F5, is the best option for the majority of 

model scenarios, but it is not without fault. Fitted models F3 and F4 also perform well for certain models, 

but each have their own weaknesses. F3 offers the ability to fit more combiations of linear predictor 
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alternatives by allowing for separate selection between the spatial and spatio-temporal components. F4, on 

the otherhand, allows for more complex linear predictor alternative within the spatial setting. The more 

complex linear predictor alternatives offered by both of these fitted model scenarios lead to slow fitting 

models and more difficulty with convergence. Fitted model F2 does not perform as well as these other 

models, and this is ultimately because of the complexity within the model probability estimates. 

 

Concerning measures of GoF, most models fit best with F5 according to DIC. However, a few of the spatial 

and spatio-temporal models still perform better with F4 and F3 respectively.  When taking MSE into 

consideration, models F3 and F5 perform best everytime with F3 performing slightly better overall. This 

suggests that they fit more consistently across the temporal span of the study region. These results are 

somewhat conflicting, so moving on to the models’ ability to appropriately identify the true alternative 

linear predictors, it appears that while F3 performs well when the models are appropriately specified, but 

F5 seems to do best at identifying spatial only, spatio-temporal only, or both. 

 

As mentioned previously, I suggest that these model selection procedures be performed in sequence with 

individual model re-fits. This continues to be true for F2-F4, but F5 could be the final model fit in certain 

cases. For example, a scenario such as S3F5 has both spatial and spatio-temporal components, and this 

mixture model may be an appropriate final fit in this case. On the other hand, scenarios that give results 

such as S7F5 may be better to re-fit as fully spatio-temporal models since there appears to be no spatial 

only component. However, the interpretation of the mixture models would be quite complex. The real data 

example illustrates that model F3-F5 produce nearly identical risk estimates, and models F3 and F5 

produce random effect values that are alike. 

 

The conventional model selection models are all quite sensitive to model misspecification, and this is to be 

expected since the models are very intricate. Fitted model F5 also superceeds the others in terms of 

misspecification because almost all models are truly specified when supplied to F5; there may be 

additional, unnecessary terms included with certain model fits, but this is true for the other fitted models as 



 

82 

 

well. Through the mixture component, F5 is able to accomodate most of the linear predictor alternatives the 

other fitted models offer. Fitted model F3 gives the worst, most variable results for misspecifed models, 

particularly when temporal misspecification is present. 

 

Another issue among this study involves the random effects. With the amount of random effects included in 

these models, particularly for F2, F3, and F4, there can be issues with identifiability. Futhermore, all of the 

fitted models include a spatio-temporal interaction term as an uncorrelated random effect, and this may also 

be producing some identification issues with the model selection process. An example of this was 

distinguished involving model M9F3 selecting the inappropriate alternative linear predictor and letting the 

spatio-temporal intereaction term explain the variation instead. Even though the Knorr-Held model 

suggested that I am able to recover the random effects present in that model reasonably well, there is only 

one of each type of random effect in F1, thus no major identification concern.  Additionally, this is another 

advantage of F5 because there are no multiple random effects present in that model. 

 

One negative feature of fitted model F5 involves the results associated with model scenarios S5F5 and 

S8F5. S5 is fully spatial, but the median for that model probability distribution for S5F5 is below 0.5, 

however not significantly so. Correspondingly, S8 is spatio-temporal with a strong spatial component, but 

S8F5 does not appear to detect those spatial trends as the distribution of its model probabilities are quite 

stable and well below 0.5. This may be a fault in the data as the spatial only varying true parameter 

estimates do have smaller magnitudes than the temporally varying ones due to the random walk that was 

placed on these parameters. This fact may also be attributing to the extra variance noted among the 

temporal linear predictor alternatives in comparison to the spatial only alternatives for fitted model F3. 

Further, these simulated data model scenarios seem to have some temporal misidentification with F3 as 

well. 
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4.6. Conclusion 

Following these study results, I believe that fitted model F5, the mixture model, is the best option of the 

model selection alternatives. This model is fast fitting, the least vulnerable to misspecification, the least 

vulnerable to identification issues, accommodates a wide range of linear predictors, and the one that 

appears to fit the best overall. Following F5, F3 is another worthwhile option as this model also 

accommodates an even wider range of linear predictor alternatives and offers the best fit in certain 

situations.  

 

With respect to implementation in public health, my results suggest that both F5 and F3 are adequate 

starting points for spatio-temporal disease mapping situations in which there is a limited set of linear 

predictors that can be determined a priori. These alternative linear predictors 1) may be supposed optimal 

combinations of important predictors, 2) could be important in terms of the study design, and 3) can offer a 

comparison of alternating collinear predictors. 
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5. Summary 

5.1. Conclusions 

The motivation for this project stems from the need for a statistical method for dimension reduction in the 

spatial and spatio-temporal disease mapping setting. Dimension reduction is an important part of statistical 

inference because it aids in producing the ideal linear predictor for interpretation. Model selection furnishes 

a methodology that eliminates many of the issues associated with other alternatives for dimension 

reduction. In this project, I begin with a software comparison to determine the best platform for continuing 

with model selection methodologies that then are explored in the non-spatial, spatial, and spatio-temporal 

settings. 

 

Aim 1, presented in Chapter 2, concluded that the default settings in INLA are not appropriate in the 

disease mapping context, but that it performs nearly identically to OpenBUGS when the defaults are altered 

as suggested in Chapter 2. These suggestions include: specifying the use of the full Laplace approximation 

technique and specifying the default hyperpriors associated with the random effects more appropriately, 

e.g. Gamma(1,0.5). I conclude that OpenBUGS offers more flexibility while INLA offers quick 

computation. Thus, I made the decision to continue with the OpenBUGS platform. 

 

Aim 2, offered in Chapter 3, suggests that, based on the simulation results, BMS outperforms BMA in that 

it tends to recover the ground truth more appropriately, is more robust to misspecification, and produces 

more consistent results with respect to models with constant verses varying expected rates. For all models 

and in both methodologies, performance is improved for complete models over partial models, models with 

larger true parameter estimates, and areas where counties are smaller and closer together. From an 

application stand point, I believe that both BMS and BMA can be beneficial. Using the techniques in 

conjunction can lead to more information about the data of interest gained. Further, if BMS does not appear 

to clearly select one linear predictor over the others, BMA could produce a useful final model as it would 

be effectively averaging over the best linear predictor alternatives. 
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Aim 3, discussed in Chapter 4, shows that the mixture model, fitted model F5, offers the best results since it 

is fast fitting, least vulnerable to misspecification, and least vulnerable to identification issues. Further, F5 

accommodates a wide range of models and offers the best overall fits. Following F5, F3 also offers the best 

fit for certain scenarios and accommodates an even wider range of linear predictors. From an application 

stand point, F5 could be the first and final model fit for a set of data if the model probability does not 

clearly suggest that the data structure is strictly spatial or spatio-temporal. For fitted models F2 through F4, 

one or more re-fits of the selected linear predictors for the appropriate counties are required to gain 

appropriate values for the parameter estimates. 

5.2. Limitations 

 The explorations discussed in this dissertation contain several limitations. One that applies to all aims 

involves the limited number of fitted and simulated model scenarios explored. The number of possible 

scenarios is infinite, but I believe that this project explored a representative number of them. Two more 

issues that relate to all aims involve the varying county sizes and strength of association in the data. These 

two issues can lead to difficult model fits and inappropriate results in some areas of the spatial region.  

 

For the model selection methods, more limitations are introduced. One of these limitations presented in the 

model selection methods includes identification issues related to including multiple random effects across 

the linear predictor alternatives. This, along with gaining the appropriate fixed parameter estimates, means 

that most of the model selection methods also require model refits of the appropriate linear predictors for 

the selected counties. An additional limitation that Aim 3 presents involves the more complex parameters 

associated with spatio-temporal models. When these parameters are allowed to vary over time, the models 

become more computationally demanding as well as more difficult to interpret. 

5.3. Future Directions 

Future work related to this project includes more a more in depth analysis of the mixture model, F5, from 

the spatio-temporal model selection methods in Aim 3. This model proved to be very suitable for my 

simulated and real data, and I am interested in looking at an extension that would allow the model 

probabilities to vary over space, time, or both. These extensions would offer an even more flexible structure 
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for the mixture model in that a different amount of mixing could be estimated for each county, year, or 

both.  

 

In addition to the future work with fitted model F5 from Aim 3, there are many other spatio-temporal 

model selection methodological possibilities that could be explored for comparison to those that I have 

already analyzed. From an applied stand point, I also wish to explore how these methods can be used and 

optimized in other public health settings.  
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Appendix 

 

A.1. Aim 1 

A.1.1. Code 

 

OpenBUGS model file used for BRugs. Note that for different fits, I altered some of the parameters for u  

and v . 

 

model{ 

for (i in 1:159){ 

x1c[i]<-x1[i]-mean(x1[]) 

x2c[i]<-x2[i]-mean(x2[]) 

x3c[i]<-x3[i]-mean(x3[]) 

  

 y1[i]~dpois(mu1[i]) 

 mu1[i]<-e[i]*theta1[i] 

 log(theta1[i])<-a1[1]+a1[2]*x1c[i]+a1[3]*x2c[i] 

 y1.pred[i]~dpois(mu1[i]) 

  

 y2[i]~dpois(mu2[i]) 

 mu2[i]<-e[i]*theta2[i] 

 log(theta2[i])<-a2[1]+a2[2]*x1c[i]+a2[3]*x2c[i]+u2[i] 

 u2[i]~dnorm(0,tauu2) 

 y2.pred[i]~dpois(mu2[i]) 

  

 y3[i]~dpois(mu3[i]) 

 mu3[i]<-e[i]*theta3[i] 

 log(theta3[i])<-a3[1]+a3[2]*x1c[i]+a3[3]*x2c[i]+u3[i]+v3[i] 

 u3[i]~dnorm(0,tauu3) 

 y3.pred[i]~dpois(mu3[i]) 

 

 y4[i]~dpois(mu4[i]) 

 mu4[i]<-e[i]*theta4[i] 

 log(theta4[i])<-a4[1]+a4[2]*x1c[i]+a4[3]*x2c[i]+a4[4]*x3c[i]+a4[5]*x4[i] 

 y4.pred[i]~dpois(mu4[i]) 

 

 y5[i]~dpois(mu5[i]) 

 mu5[i]<-e[i]*theta5[i] 

 log(theta5[i])<-a5[1]+a5[2]*x1c[i]+a5[3]*x2c[i]+a5[4]*x3c[i]+a5[5]*x4[i]+u5[i]+v5[i] 

 u5[i]~dnorm(0,tauu5) 

 y5.pred[i]~dpois(mu5[i]) 

  

 y6[i]~dpois(mu6[i]) 

 mu6[i]<-e[i]*theta6[i] 

 log(theta6[i])<-a6[1]+u6[i]+v6[i] 

 u6[i]~dnorm(0,tauu6) 

 y6.pred[i]~dpois(mu6[i]) 

 

 e[i]<-1 

 } 

for (j in 1:3){ 

 a1[j]~dnorm(0,taua) 
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 a2[j]~dnorm(0,taua) 

 a3[j]~dnorm(0,taua) 

 } 

for (k in 1:5){ 

 a4[k]~dnorm(0,taua) 

 a5[k]~dnorm(0,taua) 

 } 

a6[1]~dnorm(0,taua) 

  

taua<-1 

 

tauu2~dgamma(1,.5) 

tauu3~dgamma(1,.5) 

tauu5~dgamma(1,.5) 

tauu6~dgamma(1,.5) 

tau3  ~dgamma(1,.5) 

tau5  ~dgamma(1,.5) 

tau6  ~dgamma(1,.5) 

 

v3[1:159]~car.normal(adj[],weights[],num[],tau3) 

v5[1:159]~car.normal(adj[],weights[],num[],tau5) 

v6[1:159]~car.normal(adj[],weights[],num[],tau6) 

for(l in 1:sumNumNeigh){ 

 weights[l]<-1 

 } 

} 

 

INLA code using M3F3 as an example. Note that for the different fits I altered the param= statement in the 

formula as well as the strategy= statement in the INLA call. Furthermore, I only show how to access predy  

and ŷ . 

 

n=159 

id=c(1:n,1:n) 

id2=id 

id3=id 

  

data=list(y3=c(y[1:n,3],rep(NA,n)), 

   x1=c(x[1:n,1],x[1:159,1])-mean(x[1:n,1]), 

   x2=c(x[1:n,2],x[1:159,2])-mean(x[1:n,2])) 

 

form3=y3~1+x1+x2+f(id,model="iid",param=c(1,.5))+ 

f(id2,model="besag",graph="adjGA_INLA.txt",param=c(1,.5))+ 

f(id3,model="iid") 

resM3<-inla(form3,family="poisson",data=data3, 

 control.compute   = list(dic=TRUE, mlik=TRUE,cpo=TRUE), 

 control.fixed     = list(prec.intercept = 1, prec = 1), 

 control.predictor = list(compute=TRUE), 

 control.inla      = list(strategy = "laplace")) 

 

 

yhat=resM3$summary.fitted.values[1:n,1] 

ypred=resM3$summary.fitted.values[(n+1):(2*n),1]  
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A.1.2. Supplemental Tables and Figures 

 

Table 1: GoF measures associated with each model and software package using the alternative prior 

distributions.  

Model Prior  D  pD  DIC  MSE  MMSE  MSE  MSPE  

S1F1 OpenBUGS Default 433.45 2.92 436.38 0.01 1.13 0.02 1.13 

S1F1 INLA(SL) Default 433.47 2.98 436.45 0.01 1.13 0.02 1.13 

S1F1 INLA(FL) Default 433.47 2.97 436.44 0.01 1.13 0.02 1.13 

S2F2 OpenBUGS Default 450.50 85.50 536.00 0.01 0.53 1.90 0.53 

S2F2 OpenBUGS  Gam(2,1) 450.61 85.51 536.13 0.01 0.54 1.90 0.53 

S2F2 OpenBUGS  Gam(1,1) 449.46 86.37 535.83 0.01 0.51 1.90 0.51 

S2F2 OpenBUGS  Gam(1,0.5) 450.18 85.91 536.09 0.01 0.53 1.90 0.53 

S2F2 INLA(SL)  Default 455.12 87.90 543.02 0.01 0.51 1.91 0.58 

S2F2 INLA(FL) Default 452.49 83.10 535.58 0.01 0.60 1.99 0.79 

S2F2 INLA(FL)  Gam(2,1) 451.43 83.58 535.02 0.01 0.57 1.99 0.76 

S2F2 INLA(FL)  Gam(1,1) 450.46 84.74 535.20 0.01 0.54 1.98 0.73 

S2F2 INLA(FL)  Gam(1,0.5) 451.04 84.36 535.40 0.01 0.53 1.98 0.74 

S3F3 OpenBUGS Default 449.60 84.65 534.25 0.01 0.52 1.91 0.52 

S3F3 OpenBUGS  Gam(2,1) 449.43 56.54 505.96 0.01 0.51 1.92 0.51 

S3F3 OpenBUGS  Gam(1,1) 448.05 50.43 498.48 0.01 0.48 1.92 0.48 

S3F3 OpenBUGS  Gam(1,0.5) 448.78 60.84 509.63 0.01 0.50 1.92 0.50 

S3F3 INLA(SL) Default 454.29 88.35 542.64 0.01 0.50 1.92 0.57 

S3F3 INLA(FL) Default 451.51 83.43 534.94 0.01 0.59 1.99 0.78 

S3F3 INLA(FL)  Gam(2,1) 449.79 85.12 534.91 0.01 0.54 2.00 0.73 

S3F3 INLA(FL)  Gam(1,1) 448.59 86.53 535.12 0.01 0.51 1.99 0.69 

S3F3 INLA(FL)  Gam(1,0.5) 449.61 85.70 535.31 0.01 0.56 1.99 0.72 

S4F4 OpenBUGS Default 433.11 4.75 437.87 0.02 1.15 0.05 1.15 

S4F4 INLA(SL)  Default 433.22 4.94 438.16 0.21 1.15 0.05 1.15 

S4F4 INLA(FL)  Default 433.22 4.92 438.15 0.21 1.15 0.05 1.15 

S5F5 OpenBUGS Default 448.76 83.26 532.02 0.03 0.52 1.84 0.52 

S5F5 OpenBUGS  Gam(2,1) 449.08 42.11 491.19 0.05 0.51 1.84 0.51 

S5F5 OpenBUGS  Gam(1,1) 447.61 35.30 482.91 0.06 0.48 1.85 0.48 

S5F5 OpenBUGS  Gam(1,0.5) 448.49 46.54 495.04 0.08 0.50 1.84 0.50 

S5F5 INLA(SL)  Default 453.67 88.90 542.57 0.14 0.49 1.85 0.56 

S5F5 INLA(FL)  Default 450.73 83.85 534.58 0.14 0.58 1.91 0.77 

S5F5 INLA(FL)  Gam(2,1) 449.21 85.02 534.23 0.05 0.54 1.91 0.72 

S5F5 INLA(FL)  Gam(1,1) 448.05 86.36 534.41 0.06 0.50 1.91 0.69 

S5F5 INLA(FL)  Gam(1,0.5) 448.98 85.64 534.62 0.05 0.52 1.91 0.71 

S6F6 OpenBUGS Default 449.84 84.64 534.48 0.01 0.54 1.60 0.54 

S6F6 OpenBUGS  Gam(2,1) 449.63 52.46 502.09 0.01 0.53 1.61 0.53 

S6F6 OpenBUGS  Gam(1,1) 448.01 46.30 494.30 0.01 0.50 1.61 0.50 

S6F6 OpenBUGS Gam(1,0.5) 449.17 56.55 505.72 0.01 0.53 1.61 0.52 

S6F6 INLA(SL)  Default 454.61 88.35 542.96 0.01 0.51 1.62 0.60 

S6F6 INLA(FL) Default 451.90 83.45 535.35 0.01 0.61 1.69 0.81 

S6F6 INLA(FL)  Gam(2,1) 450.07 85.12 535.19 0.01 0.56 1.69 0.76 

S6F6 INLA(FL)  Gam(1,1) 448.79 86.56 535.35 0.01 0.53 1.69 0.72 

S6F6 INLA(FL)  Gam(1,0.5) 449.84 85.73 535.58 0.01 0.55 1.69 0.74 
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Table 2: Altered INLA precision estimates compared the truth.  

Model Parameter M2F2 M3F3 M5F5 M6F6 
True 

value 

INLA 

Ga(1,5e-05) 

Scaling option 

u  
18654 

(18572) 

17429 

(17309) 

18808 

(18650) 

18657 

(18531) 
1 

v  --- 
18670 

(18533) 

21005 

(124899) 

18704 

(18551) 
1 

INLA 

Gam(1,0.5) 

Scaling option 

u  
0.99 

(0.20) 

1.07 

(0.25) 

1.12 

(0.27) 

1.11 

(0.26) 
1 

v  --- 
5.06 

(2.71) 

4.59 

(2.47) 

5.15 

(2.69) 
1 

INLA 

Gam(2,1) 

u  
1.01 

(0.20) 

1.06 

(0.24) 

1.10 

(0.26) 

1.10 

(0.25) 
1 

v  --- 
3.08 

(1.57) 

2.77 

(1.45) 

3.08 

(1.56) 
1 

INLA 

Gam(1,1) 

u  
0.97 

(0.19) 

1.03 

(0.23) 

1.08 

(0.25) 

1.06 

(0.24) 
1 

v  --- 
2.45 

(1.33) 

2.20 

(1.22) 

2.47 

(1.32) 
1 

OpenBUGS 

Gam(2,1) 

u  
0.96 

(0.19) 

1.03 

(0.23) 

1.07 

(0.26) 

1.06 

(0.25) 
1 

v  --- 
3.00 

(1.49) 

2.73 

(1.41) 

3.00 

(1.48) 
1 

OpenBUGS 

Gam(1,1) 

u  
0.92 

(0.18) 

1.00 

(0.24) 

1.03 

(0.25) 

2.14 

(1.15) 
1 

v  --- 
1.05 

(0.27) 

2.36 

(1.25) 

2.39 

(1.25) 
1 
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Table 3: Model re-fits with the  1,0.5  Gam prior for the precisions of random effects and Laplace strategy 

for INLA with the standardized models. 

 0  1  2  3  4  u  v  

M5F5S 
OpenBUGS 

-0.089 

(0.16) 

0.251 

(0.13)* 

-0.097 

(0.51) 

-0.282 

(0.28) 

0.540 

(0.25)* 

1.110 

(0.28) 

3.337 

(2.00) 

M5F5S  
INLA 

-0.101 

(0.17) 

0.259 

(0.13) 

-0.023 

(0.11) 

-0.115 

(0.11) 

0.573 

(0.26)* 

1.134 

(0.27) 

3.502 

(2.23) 

Truth 0.1 0.1 -0.05 -0.05 0.5 1 1 

 

 

Table 4: GoF estimates for model refits using the  1,0.5Gam  prior and Laplace strategy with the 

standardized models. 

Model D  pD  DIC   MSE     MSE M    MSE   MSPE  

M5F5S 
OpenBUGS 

452.05 43.83 495.88 0.28 0.52 1.80 0.52 

M5F5S 
INLA 

452.25 85.44 537.69 0.26 0.54 1.88 0.73 
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Table 5: Model re-fits with the  1,0.5  Gam prior for the precisions of random effects and Laplace strategy 

for INLA with the validation data set.  

 0  1  2  3  4  u  v  

S1F1V 
OpenBUGS 

0.092 

(0.08) 

0.099 

(0.03)* 

-0.041 

(0.15) 
--- --- --- --- 

S1F1V  
INLA 

0.092 

(0.08) 

0.099 

(0.02)* 

-0.043 

(0.15) 
--- --- --- --- 

S2F2V 
OpenBUGS 

-0.020 

(0.12) 

0.071 

(0.04) 

0.103 

(0.22) 
--- --- 

0.993 

(0.22) 
--- 

S2F2V  
INLA 

-0.012 

(0.13) 

0.071 

(0.04) 

0.105 

(0.22) 
--- --- 

1.050 

(0.23) 
--- 

S3F3V 
OpenBUGS 

-0.009 

(0.12) 

0.085 

(0.05) 

0.137 

(0.23) 
--- --- 

1.182 

(0.32) 

1.133 

(0.30) 

S3F3V  
INLA 

-0.002 

(0.12) 

0.085 

(0.05) 

0.141 

(0.22) 
--- --- 

1.229 

(0.31) 

3.740 

(2.37) 

S4F4V 
OpenBUGS 

-0.129 

(0.105) 

0.098 

(0.02)* 

-0.044 

(0.15) 

-0.047 

(0.14) 

0.492 

(0.14)* 
--- --- 

S4F4V  
INLA 

0.069 

(0.08) 

0.098 

(0.02)* 

-0.043 

(0.16) 

-0.048 

(0.07) 

0.498 

(0.15)* 
--- --- 

S5F5V 
OpenBUGS 

-0.283 

(0.17) 

0.078 

(0.04) 

0.139 

(0.22) 

-0.081 

(0.10) 

0.658 

(0.25)* 

1.188 

(0.32) 

3.667 

(2.20) 

S5F5V  
INLA 

-0.018 

(0.12) 

0.079 

(0.05) 

0.140 

(0.23) 

-0.082 

(0.11) 

0.708 

(0.26)* 

1.159 

(0.28) 

3.856 

(2.43) 

S6F6V 
OpenBUGS 

-0.003 

(0.12) 
--- --- --- --- 

3.733 

(2.26) 

3.827 

(2.26) 

S6F6V  
INLA 

0.003 

(0.12) 
--- --- --- --- 

1.234 

(0.31) 

3.867 

(2.39) 

Truth 0.1 0.1 -0.05 -0.05 0.5 1 0.5 
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Table 6: GoF estimates for models with the validation data set. 

Model D  pD  DIC    MSE     MSE M    MSE   MSPE  

S1F1V 
OpenBUGS 

437.08 2.93 440.01 0.01 1.17 0.02 1.17 

S1F1V 
INLA 

437.08 2.97 440.05 0.01 1.17 0.02 1.17 

S2F2V 
OpenBUGS 

422.98 80.05 477.14 0.02 0.51 1.24 0.51 

S2F2V  
INLA 

424.14 78.38 502.52 0.02 0.55 1.31 0.72 

S3F3V 
OpenBUGS 

426.22 50.91 477.14 0.02 0.52 1.25 0.51 

S3F3V  
INLA 

427.15 78.59 505.74 0.03 0.55 1.31 0.72 

S4F4V 
OpenBUGS 

431.38 4.70 436.0 0.22 1.12 0.04 1.12 

S4F4V  
INLA 

431.54 4.92 436.47 0.21 1.12 0.04 1.12 

S5F5V 
OpenBUGS 

431.38 4.70 436.07 0.32 0.50 1.31 0.51 

S5F5V  
INLA 

426.55 79.84 506.39 0.31 0.53 1.38 0.70 

S6F6V 
OpenBUGS 

425.27 50.37 425.27 0.02 0.53 1.24 0.53 

S6F6V  
INLA 

426.15 77.73 503.87 0.02 1.17 1.31 0.73 
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A.2. Aim 2 

 

Table 1: Descriptions of simulated data model contents 

Model Definition 

E1CS1 Model S1 with 1ie   and  ’s included for all regions 

E2CS1 Model S1 with  ~ 1,1ie Gam  and  ’s included for all regions 

E1CS2 Model S2 with 1ie   and  ’s included for all regions 

E2CS2 Model S2 with  ~ 1,1ie Gam  and  ’s included for all regions 

E1CS3 Model S3 with 1ie   and  ’s included for all regions 

E2CS3 Model S3 with  ~ 1,1ie Gam  and  ’s included for all regions 

E1CS4 Model S4 with 1ie   and  ’s included for all regions 

E2CS4 Model S4 with  ~ 1,1ie Gam  and  ’s included for all regions 

E1CS5 Model S5 with 1ie   and  ’s included for all regions 

E2CS5 Model S5 with  ~ 1,1ie Gam  and  ’s included for all regions 

E1CS6 Model S6 with 1ie   and  ’s included for all regions 

E2CS6 Model S6 with  ~ 1,1ie Gam  and  ’s included for all regions 

E1CS7 Model S7 with 1ie   and  ’s included for all regions 

E2CS7 Model S7 with  ~ 1,1ie Gam  and  ’s included for all regions 

E1CS8 Model S8 with 1ie   and  ’s included for all regions 

E2CS8 Model S8 with  ~ 1,1ie Gam  and  ’s included for all regions 

E1CS9 Model S9 with 1ie   and  ’s included for all regions 

E2CS9 Model S9 with  ~ 1,1ie Gam  and  ’s included for all regions 

E1PS1 1ie   for scenario PS1 

E2PS1  ~ 1,1ie Gam  for scenario PS1 

E1PS2 1ie   for scenario PS2 

E2PS2  ~ 1,1ie Gam  for scenario PS2 

E1PS3 1ie   for scenario PS3 

E2PS3  ~ 1,1ie Gam  for scenario PS3 

E1PS4 1ie   for scenario PS4 

E2PS4  ~ 1,1ie Gam  for scenario PS4 

E1PS5 1ie   for scenario PS5 

E2PS5  ~ 1,1ie Gam  for scenario PS5 

E1PS6 1ie   for scenario PS6 
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E2PS6  ~ 1,1ie Gam  for scenario PS6 

E1PS7 1ie   for scenario PS7 

E2PS7  ~ 1,1ie Gam  for scenario PS7 

E1PS8 1ie   for scenario PS8 

E2PS8  ~ 1,1ie Gam  for scenario PS8 

E1PS9 1ie   for scenario PS9 

E2PS9  ~ 1,1ie Gam  for scenario PS9 

E1CS1RE Model S1 with 1ie  ,  ’s included for all regions, and 
iu  is included 

E1PS1RE 1ie   for scenario PS1 and 
iu  is included 

E1PS1CV 1ie   for scenario PS1, 
iu  is included, and 

i
v  is included 

 

 

Table 2: Parameter Estimates for E1CS1 using BMS 

Parameter Mean (95% CI) Parameter Mean (95% CI) Parameter Mean (95% CI) 

 
1,1  0.42 (-0.85,1.44)  

2,1  0.22 (-1.60,1.78)  
3,1  0.35 (-1.27,1.58) 

 
1,2  0.07 (-0.91,1.03)  

2,2  0.00 (-1.96,1.97)  
3,2  0.03 (-1.32,1.40) 

 
1,3  0.07 (-0.90,1.00)  

2,3  0.00 (-1.96,1.96)  
3,3  0.00 (-1.96,1.97) 

 
1,4  0.06 (-1.00,1.06)  

2,4  0.02 (-1.64,1.68)  
3,4  0.00 (-1.96,1.96) 

 
1,5  0.05 (-1.07,1.15)  

2,5  0.04 (-1.67,1.69)  
3,5  0.00 (-1.96,1.96) 
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Table 3: Model weights for non-spatial models fit with BMS 

Model  1p   2p   3p  

E1CS1F1 
0.706 

(0.305) 

0.360 

(0.341) 

0.536 

(0.344) 

E2CS1F1 
0.633 

(0.358) 

0.310 

(0.338) 

0.600 

(0.348) 

E1CS2F2 
0.712 

(0.335) 

0.555 

(0.355) 

0.229 

(0.328) 

E2CS2F2 
0.661 

(0.350) 

0.582 

(0.340) 

0.183 

(0.307) 

E1CS3F3 
0.873 

(0.279) 

0.387 

(0.358) 

0.397 

(0.370) 

E2CS3F3 
0.810 

(0.336) 

0.422 

(0.349) 

0.389 

(0.371) 

E1CS4F4 
0.360 

(0.346) 

0.577 

(0.339) 

0.410 

(0.336) 

E2CS4F4 
0.312 

(0.353) 

0.459 

(0.365) 

0.412 

(0.378) 

E1CS5F5 
0.660 

(0.347) 

0.578 

(0.345) 

0.089 

(0.216) 

E2CS5F5 
0.661 

(0.344) 

0.537 

(0.352) 

0.080 

(0.211) 

E1CS6F6 
0.338 

(0.359) 

0.810 

(0.278) 

0.071 

(0.175)  

E2CS6F6 
0.361 

(0.378) 

0.797 

(0.290) 

0.073 

(0.179) 

E1CS7F7 
0.907 

(0.217) 

0.373 

(0.350) 

0.339 

(0.350) 

E2CS7F7 
0.943 

(0.166) 

0.324 

(0.331) 

0.318 

(0.332) 

E1CS8F8 
0.806 

(0.319) 

0.441 

(0.355) 

0.346 

(0.379) 

E2CS8F8 
0.769 

(0.345) 

0.427 

(0.354) 

0.238 

(0.342) 

E1CS9F9 
0.886 

(0.250) 

0.526 

(0.365) 

0.021 

(0.092) 

E2CS9F9 
0.885 

(0.252) 

0.531 

(0.372) 

0.042 

(0.155) 

E1CS1F1RE 
0.214 

(0.269) 

0. 161 

(0.240) 

0. 693 

(0.292) 
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Table 4: GoF measures for models fit with BMS. 

  D   DIC   
 
2

Var D
 

E1CS1F1 603.42 608.84 5.41 

E2CS1F1 516.11 521.23 5.12 

E1CS2F2 589.86 619.20 29.34 

E2CS2F2 502.85 523.14 20.30 

E1CS3F3 590.29 636.90 46.61 

E2CS3F3 504.63 544.59 39.96 

E1CS4F4 584.00 648.26 64.26 

E2CS4F4 501.47 537.60 36.13 

E1CS5F5 597.41 600.68 3.27 

E2CS5F5 507.01 510.24 3.23 

E1CS6F6 603.40 605.02 1.62 

E2CS6F6 511.63 513.36 1.73 

E1CS7F7 585.76 590.79 5.03 

E2CS7F7 477.80 482.92 5.12 

E1CS8F8 586.38 627.13 40.77 

E2CS8F8 497.38 516.05 18.67 

E1CS9F9 627.74 630.17 2.43 

E2CS9F9 530.14 532.55 2.41 

E1CS1F1RE 578.19 645.47 67.28 

 

 

Table 5: Alternative model probabilities for complete models fit with BMA 

Model 
1

p  
2

p  
3

p   1

1

DIC

p  1

2

DIC

p   1

3

DIC

p   2

1

DIC

p   2

2

DIC

p   2

3

DIC

p  

E1CS1F1 0.406 0.283 0.298 1.000 0.000 0.000 0.044 0.932 0.024 

E2CS1F1 0.405 0.283 0.300 1.000 0.000 0.000 0.000 0.660 0.338 

E1CS2F2 0.283 0.283 0.419 0.000 0.000 1.000 0.000 0.000 1.000 

E2CS2F2 0.283 0.284 0.418 0.000 0.000 1.000 0.000 0.000 1.000 

E1CS3F3 0.283 0.283 0.419 0.000 0.000 1.000 0.000 0.000 1.000 

E2CS3F3 0.283 0.284 0.418 0.000 0.001 0.999 0.000 0.000 1.000 

E1CS4F4 0.283 0.284 0.419 0.000 0.000 1.000 0.003 0.004 0.993 

E2CS4F4 0.283 0.283 0.418 0.000 0.000 1.000 0.000 0.000 1.000 

E1CS5F5 0.392 0.315 0.283 0.999 0.001 0.000 0.009 0.003 0.988 

E2CS5F5 0.394 0.314 0.283 0.970 0.030 0.000 0.000 0.000 1.000 

E1CS6F6 0.345 0.320 0.332 0.165 0.003 0.833 0.571 0.193 0.236 

E2CS6F6 0.349 0.317 0.330 0.009 0.001 0.989 0.969 0.021 0.010 

E1CS7F7 0.418 0.284 0.284 1.000 0.000 0.000 1.000 0.000 0.000 

E2CS7F7 0.418 0.285 0.283 1.000 0.000 0.000 0.000 0.000 1.000 

E1CS8F8 0.351 0.287 0.348 0.000 0.000 1.000 0.000 0.000 1.000 

E2CS8F8 0.284 0.283 0.418 0.00 0.000 1.000 0.000 0.255 0.745 

E1CS9F9 0.409 0.288 0.290 0.999 0.000 0.001 0.200 0.261 0.538 

E2CS9F9 0.410 0.287 0.290 0.982 0.000 0.018 0.000 0.833 0.167 

E1CS1F1RE 0.388 0.284 0.319 1.000 0.000 0.000 0.042 0.899 0.059 
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Table 6: GoF measures for complete models fit with BMA. 

 
 D   DIC   

 
2

Var D
 

E1CS1F1 2441.81 2452.82 11.01 

E2CS1F1 2096.86 2107.92 11.06 

E1CS2F2 2228.79 2402.97 174.18 

E2CS2F2 1903.82 2061.43 157.61 

E1CS3F3 2276.39 2447.25 170.86 

E2CS3F3 1956.93 2110.76 153.83 

E1CS4F4 2227.32 2389.90 162.58 

E2CS4F4 1905.62 2052.62 147.00 

E1CS5F5 2417.5 2426.21 8.71 

E2CS5F5 2062.73 2071.36 8.63 

E1CS6F6 2413.35 2420.06 6.71 

E2CS6F6 2046.98 2053.79 6.81 

E1CS7F7 2392.73 2402.76 10.03 

E2CS7F7 2062.94 2073.00 10.06 

E1CS8F8 2294.05 2402.46 108.41 

E2CS8F8 1902.00 2052.46 150.45 

E1CS9F9 2520.96 2527.68 6.72 

E2CS9F9 2143.05 2149.81 6.76 

E1CS1F1RE 2229.25 2584.24 354.99 

 

 

 

Figure 1: Model weights associated with the alternative linear predictors for BMS. 
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Figure 2: Model probabilities associated with the alternative linear predictors for BMA. 
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A.3. Aim 3 

 

 

Figure 1: MSE measures for simulated data model M10. 
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Figure 2: Model probabilities associated with fitted model F2.
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Table 1: Random walk estimates for the appropriate selected linear predictors. 

Model 𝛾1 𝛾2 𝛾3 𝛾4 𝛾5 𝛾6 𝛾7 

F4 -0.0001 0.0004 0.0009 0.001 0.0005 0.0006 0.00009 

0.0003 0.0006 0.002 0.002 0.003 0.003 0.003 

F5 -0.002 -0.003 -0.005 -0.003 -0.002 -0.004 -0.001 

 

Figure 2: Theta estimates for fitted model F3 in the real data example. 

 

 

Figure 3: UH and CH estimates for fitted model F3 in the real data example. 
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Figure 4: Theta estimates for fitted model F4 in the real data example. 

 

 

Figure 5: UH and CH estimates for fitted model F4 in the real data example. 

 

  



 

155 

 

Figure 6: Theta estimates for fitted model F5 in the real data example. 

 

 

Figure 7: UH and CH estimates for fitted model F5 in the real data example. 

 

Table 2: Colon cancer data example model re-fit DIC measures. 

Model DIC  pD  D  

F3: UH+CH 5071.31 348.84 4722.47 

F3: UH 4934.36 201.33 4733.03 

F5 4903.09 160.72 4742.36 
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Figure 8: Colon cancer data example model re-fit MSE values. 

 

Table 3: Parameter Estimates for the colon cancer data example. 

Parameter F3: UH F3: UH+CH F5 

𝛼01 0.373* 0.391* 

-0.295* 

𝛼02 0.373* 0.379* 

𝛼03 0.390* 0.397* 

𝛼04 0.391* 0.406* 

𝛼05 0.419* 0.424* 

𝛼06 0.428* 0.445* 

𝛼07 0.458* 0.465* 

𝛼1 -0.0004 -0.002 -0.010* 

𝛼2 0.005 0.011 0.160* 

𝛼31 

0.009 0.011 

0.000 

𝛼32 0.000 

𝛼33 0.000 

𝛼34 0.000 

𝛼35 0.000 

𝛼36 0.000 

𝛼37 0.000 

𝛼41 

-0.011* -0.009* 

0.000 

𝛼42 0.000 

𝛼43 0.000 

𝛼44 0.000 

𝛼45 0.000 

𝛼46 0.000 

𝛼47 0.000 

*indicates that the parameter is well estimated. 
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