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ELIZABETH HOLLY PAYNE. Statistical Methods for Modeling Count Data with Overdispersion 

and Missing Time Varying Categorical Covariates. (Under the direction of MULUGETA 

GEBREGZIABHER). 

 

ABSTRACT 

In studying the association between count outcomes and covariates using Poisson 

regression, the necessary requirement that the mean and variance of responses are equivalent 

for each covariate pattern is not always met in real datasets. This violation of equidispersion can 

lead to invalid inference unless proper alternative models are considered. There is currently no 

comprehensive and definitive assessment of the different methods of dealing with overdispersion, 

nor is there a standard approach for determining the threshold of overdispersion such that 

statistical intervention is necessary. The issue of overdispersion can be further complicated by 

the presence of missing covariate data in count outcome models. In this dissertation we have (1) 

compared the performance of different statistical models for dealing with overdispersion, (2) 

determined an appropriate threshold of the ratio of the Pearson chi-squared goodness of fit 

statistic to degrees of freedom 
p  such that statistical intervention is necessary to address the 

overdispersion, (3) developed a latent transition multiple imputation (LTMI) approach for dealing 

with missing time varying categorical covariates in count outcome models, and (4) compared the 

performance of LTMI with complete case analysis (CCA) and latent class multiple imputation 

(LCMI) in addressing missing time varying categorical covariates in the presence of 

overdispersion. Latent class assignment was determined via both SAS software and random 

effect modeling, and missing observation imputation was performed using predictive mean 

matching multiple imputation methods. We utilized extensive simulation studies to assess the 

performance of the proposed methods on a variety of overdispersion and missingness scenarios. 

We further demonstrated the application of the proposed models and methods via real data 

examples.  



x 
 

We conclude that the negative binomial generalized linear mixed model (NB-GLMM) is 

superior overall for modeling count data characterized by overdispersion. Furthermore, a general 

threshold for relying on the simple Poisson model for cross-sectional and longitudinal datasets is 

in cases where 1.2p  . LTMI methods outperform CCA and LCMI in many scenarios, 

particularly when there is a higher percentage of missingness and data are MAR. Lastly, NB-

GLMM is preferable to address overdispersion while LTMI is preferable for imputing covariate 

observations when jointly considering both issues. 
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1. Overdispersion 

Poisson regression is commonly used to study the association between count outcomes 

and covariates. However, a necessary requirement of Poisson regression is the underlying 

assumption that the response mean and variance are equivalent for each covariate pattern. This 

assumption often does not hold true in models with count outcomes based on real data. It is 

common that data are more variable than is accounted for under a reference (e.g., Poisson) 

model. This is called overdispersion (Cox 1983). Overdispersion arises only if the variability a 

model can capture is limited (for example, because of a functional relationship between mean 

and variance). This may be the result of population heterogeneity, correlated data, omission of 

important covariates in the model, or other reasons (Hardin and Hilbe 2007, Rigby, Stasinopoulos 

et al. 2008). For example, omitted important covariates increase the residual variance estimate 

because variability that should have been modeled through changes in the mean is now “picked 

up” as error variability if the model includes a dispersion parameter (the Poisson model has no 

such additional parameter). Another possible source of overdispersion is the presence of excess 

zeroes (or another value) in the count outcome. Two part (hurdle) and zero-inflated regression 

models have been developed to work with such data, including zero-inflated Poisson and zero-

inflated negative binomial models (Lambert 1992, Long 1997, Tin 2008).   

A model for which data are overdispersed can result in misleading inferences and 

conclusions, as overdispersion can lead to the underestimation of parameter standard errors and 

falsely increase the significance of beta parameters (McCullagh and Nelder 1983, Breslow 1990, 

Hilbe 2007, Faddy and Smith 2011). An earlier overview of the issue of overdispersion in both 

binary and count data can be found in (Hinde and Demétrio 1998) and recently a review of 

Poisson regression and overdispersion was published by Hayat and Higgins (Hayat and Higgins 

2014).   

Diagnosing and remedying overdispersion is a complicated process. As a result, 

numerous methods have been developed in an effort to deal statistically with the issue when 

modeling count responses. The most effective method will likely vary by situation depending on 

file:///C:/Users/VHACHAPayneE/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/P3EAJA7E/Overdispersion_finaldraft_07092014_EHP.docx%23_ENREF_8
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the source of the overdispersion. For example, the omission of necessary random effects in a 

model or their inclusion as fixed effects may increase the residual error in the model and can lead 

to overdispersion. On the other hand, including random effects in the model can be useful if 

overdispersion is the result of correlation in the count outcomes (Smith and Heitjan 1993, Booth, 

Casella et al. 2003, Molenberghs, Verbeke et al. 2007, Yang, Hardin et al. 2007). This approach 

has been shown to be useful for dealing with overdispersion in complicated settings, such as 

longitudinal models (Milanzi, Alonso et al. 2012). A straightforward post hoc method of 

addressing overdispersion is to scale the covariance by various dispersion parameters 

(McCullagh and Nelder 1983). Two commonly used scales are the deviance statistic and the 

Pearson chi-squared statistic (Pearson 1900, Hardin and Hilbe 2007). Numerous other models 

have also been discussed for dealing with overdispersion, including the hurdle (Mullahy 1986) 

and bivariate (Cameron and Trivedi 1998) Poisson models. Hierarchical Bayesian methods have 

also been examined for dealing with overdispersion with random prior parameters added to the 

model to account for additional variability (Dauxois, Druilhet et al. 2006, Aregay, Shkedy et al. 

2013).  

The negative binomial distribution is a common alternative to the Poisson distribution for 

modeling data that exhibit overdispersion relative to the Poisson (Cameron 2006, Joe and Zhu 

2005, Hilbe 2011). The negative binomial distribution accounts for further variance in count 

outcomes than the Poisson distribution through an additional gamma-distributed shape parameter 

to the Poisson rate parameter (Booth, Casella et al. 2003). Negative binomial regression has 

been shown to be effective in accounting for overdispersion in Poisson outcome models caused 

by missing covariates (Rigby, Stasinopoulos et al. 2008), outliers (Hilbe 2007) and other 

population heterogeneity factors, and is commonly used instead of Poisson in these situations 

(Ramakrishnan and Meeter 1993, Bouche, Lepage et al. 2009, Yau, Wang et al. 2003). 

The most appropriate method may vary by situation. To handle it appropriately, the 

source of overdispersion must be identified. Despite numerous efforts to present a definitive 

answer to how best to adjust or account for overdispersion in count regression models (Hardin 
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and Hilbe 2001, Hilbe 2007, Xia, Morrison-Beedy et al. 2012, Hayat and Higgins 2014), as has 

been recently discussed in R-user group forums, there is no comprehensive and more definitive 

assessment of the different methods of dealing with overdispersion.  

2.   Time Varying Categorical Covariates with Missing Data    

Missing data in time varying categorical variables are frequently encountered in 

longitudinal biomedical studies. While there has been progress with missing data methods that 

deal with longitudinally measured continuous variables, there is still paucity of methods that deal 

with time varying categorical variables that have missing values. Recently, multiple imputation 

based on latent class (LCMI) has been proposed to deal with the problem of missing data in time 

invariant categorical variables (Vermunt et al. 2008, Gebregziabher and DeSantis 2010). 

However, no extension has been made to address the problem of missing data in time varying 

categorical variables. 

There are four paradigms of missing data analysis: multiple imputation (MI), maximum 

likelihood (ML), Bayesian methods (BM) and weighted estimating equations (WEE) (Ibrahim and 

Molenberghs 2009). Conditional repeated measures data have been modeled, for example, using 

the ML estimates of marginal response probabilities in log-linear models (Lindsey 2000); 

generalized linear mixed models conditional on random effects (Follman and Wu 1995); fixed-

effect subject-specific logistic regression models (Rathouz 2009); joint models including time-to-

event data using two-stage semiparametric regression (Ye et al. 2008) or Bayesian methods 

(Guo and Carlin 2004). For the purposes of these papers, we will focus on MI. This method is 

widely used for dealing with missing data problems in a wide variety of multivariate and 

longitudinal biomedical applications (Schafer 1997a, Schafer 1997b, Ibrahim and Molenberghs 

2009, Engels and Diehr 2003, Nevalainen et al. 2009, Harel and Zhou 2007, Ferro 2014) and has 

recently been extended to random forest imputation via machine learning methods (Shah et al. 

2014). There are several reasons for its wide usage. First, it is routinely available in most 

commercial statistical software packages such as SAS. Second, once multiple imputed datasets 

are obtained, statistical analysis may proceed as if all data were observed with an additional 

file:///C:/Users/VHACHAPayneE/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/P3EAJA7E/Overdispersion_finaldraft_07092014_EHP.docx%23_ENREF_14
file:///C:/Users/VHACHAPayneE/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/P3EAJA7E/Overdispersion_finaldraft_07092014_EHP.docx%23_ENREF_18
file:///C:/Users/VHACHAPayneE/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/P3EAJA7E/Overdispersion_finaldraft_07092014_EHP.docx%23_ENREF_33
file:///C:/Users/VHACHAPayneE/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/P3EAJA7E/Overdispersion_finaldraft_07092014_EHP.docx%23_ENREF_17
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benefit of obtaining parameter estimates that appropriately account for possible uncertainty in the 

imputed values (Little and Rubin 2002). 

Recent work demonstrated that multiple imputation based on latent class can be used to 

impute missing categorical covariates (Vermunt et al. 2008, Gebregziabher and DeSantis 2010). 

Such a latent class based method is relevant because the problem of missing categorical data is 

ubiquitous in biomedical research. Via an extensive simulation study, Gebregziabher and 

DeSantis (2010) showed that a latent class-based imputation approach provided unbiased 

parameter estimates in a highly stratified data model with ignorable and some non-ignorable 

missing data in time invariant categorical variables. Specifically, they showed that in a 

generalized linear model framework with missing categorical variables, unbiased and efficient 

parameter estimates can be recovered utilizing latent class based multiple imputation. However, 

there are no readily available principled methods to deal with missing data in time varying 

categorical variables. This paper will seek to extend LCMI to latent transition multiple imputation 

(LTMI) to impute missing categories of time varying covariates by their latent status. We will 

consider two ways of identifying latent status for LCMI: via latent transition analysis (LTA) and 

random effects modeling. 

In latent transition analysis (LTA), a hidden Markov model is assumed where at each time 

point, an unobserved time varying latent variable is inferred from a group of longitudinally 

observed items (time varying items). Parameter estimation for latent transition methods has been 

successfully utilized and explored (Chung et al. 2008), as well as applied to longitudinal random 

effect models involving missing data (Albert and Follmann 2007, Xiaowei et al. 2007, Lee et al. 

2014). In LTA, the measurement model at each time point is a latent class model (Lazarsfeld and 

Henry 1968). All associations among categorical variables are explained by the underlying 

categorical latent variable. The result of fitting such a model is that for each individual, a latent 

trajectory that characterizes the missingness process is obtained. Conditional on the latent 

trajectory (latent status), observations and items are independent; this is known as the conditional 

independence assumption. At each time point, incomplete categorical data can be imputed 

https://exchange.musc.edu/owa/redir.aspx?C=bAE3-wrWmUassxSTFYWcUc6uNYoakNEIPkDZsuPqN2lFHOsROn-qHWhGIiEkVXS0UHkAODU9A7E.&URL=http%3a%2f%2fwww.ncbi.nlm.nih.gov%2fsites%2fentrez%3fDb%3dpubmed%26Cmd%3dSearch%26Term%3d%2522Albert%2520PS%2522%255BAuthor%255D%26itool%3dEntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
https://exchange.musc.edu/owa/redir.aspx?C=bAE3-wrWmUassxSTFYWcUc6uNYoakNEIPkDZsuPqN2lFHOsROn-qHWhGIiEkVXS0UHkAODU9A7E.&URL=http%3a%2f%2fwww.ncbi.nlm.nih.gov%2fsites%2fentrez%3fDb%3dpubmed%26Cmd%3dSearch%26Term%3d%2522Follmann%2520DA%2522%255BAuthor%255D%26itool%3dEntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
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conditional on this latent status. In this paper, we will use LTA to estimate latent status imputation 

model (LTMI-LTA) and latent class imputation model (LCMI-LCA) from completely observed 

covariates to implement multiple imputation of missing data in time varying categorical variables. 

Complete case analysis (CCA) is a widely used ad-hoc method for dealing with missing 

covariate data, in which all observations with incomplete data are removed from the dataset prior 

to analysis. This method may involve a high loss of information. Multiple imputation methods are 

generally considered superior to CCA, as MI is highly efficient and often demonstrate decreased 

bias compared to CCA depending on the magnitude and cause of missingness (Van der Heijden 

et al. 2006, Demissie et al. 2003, White and Carlin 2010). Complete case analysis may be 

acceptable in situations where missingness is completely at random (Knol et al. 2010) or 

independent of the outcome given covariates (White and Carlin 2010). Our simulation study and 

motivating data example include complete case analysis results as a general baseline for making 

comparison. 

In the random effects approach to LCMI, we will fit a generalized linear mixed model to 

the time varying categorical covariate and the predicted random effects will be classified into 

groups (quintiles, for example) to identify latent classes. Then, the predicted latent classes will be 

imputed to the missing values of the time varying covariate. The random effects model may be 

assumed to come from a homogenous, or one, normal distribution, or it can come from a finite 

mixture of normal distributions (Verbeke and Lesaffre 1996), leading to the use of the 

heterogeneity linear mixed model (Komarek et al. 2002). Our simulation study and motivating 

data example will include LTMI latent transition analysis results (LTMI-LTA) and LTMI based on 

heterogeneity linear mixed model (LTMI-LMM) results. These will be compared with CCA, LCMI-

LCA, and LCMI based on homogeneity linear mixed model (LCMI-LMM) results. 

We will study the statistical properties of LTMI and make comparison with complete case 

analysis and LCMI methods via simulation study and a real motivating dataset. We will then 

perform a similar analysis and comparison taking the additional issue of overdispersion into 

consideration. 
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1. Introduction 

Poisson regression is commonly used to study the association between count outcomes 

and covariates. However, a restriction of Poisson regression is that the response mean must be 

equal to the variance. This equidispersion often does not hold true in real data. Often, data are 

more variable than is accounted for under the Poisson model. This is called overdispersion (Cox 

1983). The overdispersion may occur due to population heterogeneity, correlated data, omission 

of important covariates in the model, outliers or other reasons (Hardin and Hilbe 2007, Rigby, 

Stasinopoulos et al. 2008). For example, if an important covariate is not measured, the residual 

variance estimate is increased because variability that should have been modeled through 

changes in the mean is now “picked up” as error variability if the model includes a dispersion 

parameter. The Poisson model has no such additional parameter. Another possible source of 

overdispersion is the presence of outliers: for example, excess zeroes (or another value) in the 

count outcome.  

An overdispersed model which assumes equidispersion can result in misleading 

inferences and conclusions, as overdispersion can lead to the underestimation of parameter 

standard errors and falsely increase the significance of beta parameters (McCullagh and Nelder 

1983, Breslow 1990, Hilbe 2007, Faddy and Smith 2011). An earlier overview of the issue of 

overdispersion in both binary and count data was published by Hinde and Demetrio (1998.) More 

recently, a review of Poisson regression and overdispersion was published by Hayat and Higgins 

(2014).  

Diagnosing and correcting overdispersion is a complicated process which is imperative to 

interpreting count data correctly. As a result, numerous methods have been developed in an 

effort to deal statistically with the issue when modeling count responses. The most effective 

method will likely vary based on the source of the overdispersion. For example, the omission of 

necessary random effects in a model or their inclusion as fixed effects may increase the residual 

error in the model and can lead to overdispersion. Including random effects in the model can 

therefore be useful if overdispersion is present as the result of correlation in the count outcomes 
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(Smith and Heitjan 1993, Booth, Casella et al. 2003, Molenberghs, Verbeke et al. 2007, Yang, 

Hardin et al. 2007). This approach is particularly useful when dealing with overdispersion in more 

complicated settings, such as longitudinal models (Milanzi, Alonso et al. 2012). A straightforward 

post hoc method of addressing overdispersion is to scale the covariance by various dispersion 

parameters (McCullagh and Nelder 1983). Two commonly used scales are the deviance statistic 

and the Pearson chi-squared statistic (Pearson 1900, Hardin and Hilbe 2007).  Numerous other 

models have also been discussed for dealing with overdispersion, including the hurdle (Mullahy 

1986) and bivariate (Cameron and Trivedi 1998) Poisson models. Bayesian methods have also 

been examined for dealing with overdispersion with random prior parameters added to the model 

to account for additional variability (Dauxois, Druilhet et al. 2006, Aregay, Shkedy et al. 2013). 

Two part (hurdle and zero-inflated) regression models including zero-inflated Poisson models 

(Lambert 1992, Long 1997, Tin 2008) have been further developed to work with overdispersion 

caused by excess zeros.   

The negative-binomial (NB) distribution is a common alternative to the Poisson 

distribution for modeling data that exhibit overdispersion relative to the Poisson (Cameron 2006, 

Joe and Zhu 2005, Hilbe 2011). The NB distribution accounts for further variance in count 

outcomes than the Poisson distribution through an additional gamma-distributed shape parameter 

to the Poisson scale parameter (Booth, Casella et al. 2003). NB regression has been shown to be 

effective in accounting for overdispersion in count data models caused by omitted covariates 

(Rigby, Stasinopoulos et al. 2008), outliers (Hilbe 2007), and other population heterogeneity 

factors, and is commonly used instead of Poisson in these situations (Ramakrishnan and Meeter 

1993, Bouche, Lepage et al. 2009, Yau, Wang et al. 2003). 

Despite numerous efforts to present a definitive answer regarding how best to adjust or 

account for overdispersion in count regression models (Hardin and Hilbe 2001, Hilbe 2007, Xia, 

Morrison-Beedy et al. 2012, Hayat and Higgins 2014), as has been recently discussed in R-user 

group forums, there is no comprehensive approach or more definitive assessment of the different 

methods for dealing with overdispersion. Moreover, the most appropriate method for dealing with 
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overdispersion may vary by source. Thus, there is a need to examine the differential performance 

of existing approaches for dealing with overdispersion with respect to the source of 

overdispersion. Our investigation is therefore an attempt to fill the gap and provide a 

comprehensive evaluation of six different approaches using simulation studies that consider three 

key sources of overdispersion and two case studies.  

This chapter is organized in the following manner. Subsequent to the introduction, the 

statistical models and maximum likelihood estimation are described in section 2. Section 3 

provides information about the design and results of the simulation study. Section 4 details the 

motivating case studies and results, and section 5 provides a discussion of all results as well as 

future research plans in this area. 

2. Statistical models and estimation 

2.1    Models 

Consider a random variable 𝑌 distributed Poisson with variance function 𝑉𝑎𝑟(𝑌) = 𝜇. If 

non-equidispersion relative to the Poisson is present, a variance function accounting for changes 

in variability can be specified as a scale-adjustment of the Poisson variance function 𝑉𝑎𝑟(𝑌) = 𝜑𝜇 

with dispersion parameter 𝜑. In this case, if 𝜑 = 1 then there is equidispersion; if 𝜑 < 1 there is 

underdispersion; and if 𝜑 > 1 there is overdispersion.  

Another approach to modeling overdispersion relative to the Poisson is to consider a two-

stage model for which 𝑌|𝜃~𝑃𝑜𝑖𝑠(𝜃) and 𝜃 is a random variable such that 𝐸(𝜃) = 𝜇 and 𝑉𝑎𝑟(𝜃) =

𝜎2. It then follows that 𝐸(𝑌) = 𝜇 and 𝑉𝑎𝑟(𝑌) = 𝜇 + 𝜎2, allowing for variability that is greater than 

the mean. When the distribution of 𝜃 is assumed to be gamma then 𝑌 has a negative-binomial 

distribution with 𝐸(𝑌) = 𝑘/𝜆 = 𝜇 and 𝑉𝑎𝑟(𝑌) = 𝜇 + 𝜇2/𝑘. 

Another approach is to include random effects in a generalized linear mixed model 

(GLMM) to deal with overdispersion. For vectors of fixed effect (𝑋𝑖) and random effect (𝑍𝑖) 

explanatory variables ( 𝑖 = 1, … , 𝑛) the GLMM family is given by, 

 𝐸(𝑌𝑖|𝑋𝑖 , 𝑍𝑖) = 𝑔−1(𝑋𝑖𝛽 + 𝑍𝑖𝛾𝑖) = 𝜇𝑖  



21 
 

Here, g represents a monotone link function, 𝛽 is a vector of 𝑝 fixed coefficients, and 𝛾𝑖 is a vector 

of unobserved random deviations (assumed to have zero mean) for which the variance will be 

estimated. When the distribution of 𝑌 is assumed to be Poisson and the link function is log, then 

the GLMM is referred to as the Poisson-GLMM. The variance function for this model with 

normally distributed random effect is given by 𝑉𝑎𝑟(𝑌𝑖) = 𝜇𝑖 + 𝑘𝜇𝑖
2
, which is the same as the 

variance function for NB. Similarly, when the distribution of 𝑌 is NB and the link function is log, the 

GLMM is referred to as the NB-GLMM (McCullagh and Nelder 1989). Because it includes an 

additional dispersion parameter, the NB-GLMM allows for additional residual overdispersion 

beyond what is captured for by Poisson-GLMM. 

Table 1. Summary of models with estimated level of overdispersion. 

Distribution Abbreviation Method Adjustment 

Poisson Poisson Not adjusted  N/A 

Poisson DS-Poisson Scale-adjusted Deviance statistic 

Poisson PS-Poisson Scale-adjusted Pearson 𝑋2 statistic 

Poisson Poisson-GLMM GLMM Random effects 

Negative-binomial NB Unadjusted Additional parameter 

Negative-binomial NB-GLMM GLMM Additional parameter, random effects 

Estimated Overdispersion 

Covariate Source Deviance/df ± sd Pearson Χ2/df ± sd 

Normal 
1 covariate omitted 3.65 ± 0.66 4.55 ± 1.22 

2 covariates omitted 15.90 ± 4.10 52.80 ± 51.94 

Binary 
1 covariate omitted 38.31 ± 1.11 33.93 ± 1.36 

2 covariates omitted 63.56 ± 1.95 70.87 ± 1.41 

Uniform 
1 covariate omitted 8.14 ± 0.90 8.48 ± 0.95 

2 covariates omitted 44.98 ± 4.52 80.50 ± 9.71 

Normal 

Small outliers 2.50 ± 0.36 25.42 ± 17.06 

Large outliers 9.42 ± 1.06 121.32 ± 59.30 

Lower % zero outliers 2.61 ± 0.47  1.53 ± 0.31 

Higher % zero outliers 4.34 ± 0.54  2.94 ± 0.45 

Binary 

Small outliers 2.07 ± 0.10 7.97 ± 0.77 

Large outliers 8.50 ± 0.28 50.64 ± 3.70 

Lower % zero outliers 1.86 ± 0.06 1.24 ± 0.06 

Higher % zero outliers 2.21 ± 0.04  1.84 ± 0.06 

Uniform 

Small outliers 2.16 ± 0.11 8.88 ± 0.92 

Large outliers 8.74 ± 0.30 54.74 ± 4.12 

Lower % zero outliers 1.69 ± 0.05  1.13 ± 0.05 

Higher % zero outliers 2.00 ± 0.04 1.67 ± 0.06 

Normal 
Small variance random effects 5.68 ± 1.66 8.56 ± 4.68 

Large variance random effects 18.28 ± 15.15 81.58 ± 217.85 

Binary 
Small variance random effects 2.52 ± 0.34 3.94 ± 1.26 

Large variance random effects 7.41 ± 1.81 19.19 ± 15.09 

Uniform 
Small variance random effects 2.28 ± 0.30 3.54 ± 1.03 

Large variance random effects 6.68 ± 1.54 17.13 ± 11.67 
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The six different methods considered in this study can be generally classified into two 

categories: scale adjustment and modeling methods. We considered two scale adjustment 

methods under the standard Poisson regression (abbreviated simply Poisson): (1) deviance 

scale-adjusted Poisson regression (DS-Poisson) and (2) Pearson scale-adjusted Poisson 

regression (PS-Poisson). We also considered three modeling methods, (3) negative-binomial 

regression (NB), and (4, 5) two GLMM with random intercept, log link, and compound symmetry 

covariance, with outcomes distributed as Poisson and negative-binomial (Poisson-GLMM, NB-

GLMM, respectively). Table 1 gives a summary of the various models we considered, including a 

description of the particular method and adjustment utilized for addressing overdispersion. 

2.2   Estimation and Inference 

The parameters of the model that need to be estimated include dispersion, regression 

coefficients and variance components. Estimation and inference for the model based methods 

can be accomplished using maximum likelihood (McCullagh and Nelder 1989), quasi-likelihood 

(Hardin and Hilbe 2001), or pseudo-likelihood (Fitzmaurice, Laird et al. 2004). In our case, the 

Poisson and NB were estimated via maximum likelihood and the NB-GLMM and Poisson-GLMM 

were estimated via pseudo likelihood. On the other hand, in the scale based methods, the two 

most commonly used estimators of dispersion in the literature are the ratio of the model deviance 

to its corresponding degrees of freedom and the ratio of the Pearson 𝑋2 statistic to its 

corresponding degrees of freedom. The degrees of freedom are typically given by 𝑛 − 𝑝 for a 

study with sample size 𝑛 observations and 𝑝 parameters. When the assumption of equal mean 

and variance is not violated, these ratios will be equal to 1. Relative to the model, if these ratios 

are greater than 1 then the data are considered overdispersed. Higher values demonstrate a 

greater magnitude of overdispersion.  

2.3   Model Comparison 

Akaike’s information criteria (AIC) (Akaike 1974) and Bayesian information criteria (BIC) 

(Schwarz 1978) were utilized to measure goodness of fit and make comparisons among the 

different models. Parameter standard errors and the 95% confidence interval coverage for each 



23 
 

parameter were also recorded to determine the level of bias in the standard error estimates 

compared to the assumed value in the simulation study. These values were then compared 

across the models to determine which method for dealing with overdispersion resulted in the 

lowest AIC and BIC values as well as offered standard errors that are closer to the simulated 

value with nominal 95% confidence interval coverage. This model comparison using multiple 

criteria is similar in format to work recently published by Xia et al., in which the authors compare 

Poisson, negative-binomial, and zero-inflated regression methods to model overdispersed and 

zero-inflated data from an HIV risk reduction intervention study (2012). Gardner et al. also 

compared Poisson and negative-binomial methods of analyzing overdispersed count outcomes 

related to psychological datasets (1995), while Ver Hoef and Boveng provide an overview and 

comparison of these methods for ecologists (2007).  

In this paper, we provide a more unified comparison among the many possible 

approaches to dealing with overdispersion. We also provide a detailed derivation of dispersion in 

the context of count data fitted using different models under multiple covariate type scenarios 

(see technical Appendix 1) to complement the simulation and case-studies. SAS 9.4 was utilized 

in all analyses for both simulated and real datasets, particularly Proc GENMOD and Proc 

GLIMMIX packages. 

3. Simulation Study 

We simulated 1 000 datasets each with a sample size of n=1 000 random observations 

generated following scenarios given in (Hilbe 2007) under three distributions of predictor 

scenarios. Scenarios under a sample size of 500 did not lead to different conclusions (results not 

shown). Table 1 provides a list of all scenarios with their corresponding measure of 

overdispersion. After generating overdispersed datasets for these scenarios, analysis was made 

using the six models for all simulated data from each scenario. Goodness of fit statistics including 

AIC, BIC, deviance, Pearson statistic and parameter estimates for the regression coefficients 

corresponding to each covariate with their corresponding variance and 95% confidence interval 

(CI) coverage were calculated.  
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3.1     Covariate dependent overdispersion design 

We considered three different scenarios. In scenario 1, each dataset included three 

normal independent predictors with x1~ Normal(1, 2), x2 ~Normal(2, 3), and x3~ Normal(3, 4). In 

the count regression model, 𝛽 = (𝛽0, 𝛽1, 𝛽2, 𝛽3) were assigned values (1.0, 0.5, -0.75, and 0.25). 

These variables were then utilized to create a count response Y using a Poisson error and log 

link function that ranged from 0 to 3443. The distributions of these variables are illustrated in 

Appendix 2 Figure 1a-d. In scenario 2, binary covariates were derived from the normally 

distributed covariates described above. Values less than the mean were assigned a value of 0; 

values greater than or equal to the mean were assigned a value of 1. The 𝛽 = (𝛽0, 𝛽1, 𝛽2, 𝛽3) for 

intercept, x1, x2, and x3 were assigned to be (1.0, 2.0, 1.5, 1.0) respectively. In scenario 3, 

predictor x1 was drawn from Uniform(5, 10), x2 from Uniform(10, 15), and x3 from Uniform(15, 

20). In this case, (𝛽0, 𝛽1, 𝛽2, 𝛽3) for the intercept, x1, x2, and x3 were again assigned to be (1.0, 

0.5, -0.75, 0.25), respectively. Overdispersion relative to the Poisson was then created in these 

datasets via the omission of important predictors from the model where (i) predictor x1 was first 

removed from the model and (ii) both x1 and x2 were removed from the model, creating 

overdispersion of a higher magnitude. Further details of the methodology are discussed in 

Appendix 1. 

3.2  Covariate dependent overdispersion results 

When one important predictor was omitted from the model, the mean deviance/df value 

for the unadjusted Poisson model was 3.65 ± 0.66 and the mean Pearson Χ2/df value was 4.55 ± 

1.22, indicating the presence of overdispersion. When two important predictors were omitted, 

these values increased to 15.90 ± 4.10 and 52.80 ± 51.94, respectively, indicating overdispersion 

of greater magnitude. For binary covariates, after the omission of one predictor the mean 

deviance/df value for the unadjusted Poisson model in binary covariate simulations was 38.31 ± 

1.11, and the mean Pearson Χ2/df value was 33.93 ± 1.36. After the omission of two predictors, 

the mean deviance/df value increased to 63.56 ± 1.95, and the mean Pearson Χ2/df value 

increased to 70.87 ± 1.41. In the scenario where the covariates come from a uniform distribution, 
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after the omission of one predictor the mean deviance/df value for the unadjusted Poisson model 

in uniform covariate simulations was 8.14 ± 0.90, and the mean Pearson Χ2/df value was 8.48 ± 

0.95. After the omission of two predictors, the mean deviance/df value increased to 44.98 ± 4.52, 

and the mean Pearson Χ2/df value increased to 80.50 ± 9.71 (Table 1).   

Figure 1 shows the mean AIC and BIC values when one important predictor is omitted, 

for the normal predictor scenario. The results indicate that the NB and NB-GLMM models have 

the lowest AIC and BIC that is comparable to the original model without overdispersion. All 

Poisson regression models exhibited very large values of AIC and BIC, indicating poorer fit to the 

data compared to the NB models.  

 

Figure 1. Mean AIC and BIC values for simulated dataset with one important predictor omitted. 

Figure 2 shows the mean parameter SE estimates for this simulation. The DS-Poisson 

and PS-Poisson had much larger SE than the model without overdispersion for the intercept 

(results are not shown) but the SE estimates for the x2 and x3 were generally closer. The 

consequence of not capturing the overdispersion is a more conservative inference with potential 

for type II error. On the other hand, the SE estimates for the regression coefficients of x2 and x3 

in the scale-adjusted models appeared to have moderately increased the SE estimates, 

especially compared to Poisson and Poisson-GLMM. The NB also appeared to have moderately 

increased the SE estimates for the coefficients of x2 and x3, thereby accounting for the 

overdispersion introduced into the data. NB-GLMM gave much higher values here. Not 
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surprisingly, the 95% CI appeared to follow a similar trend. These results generally hold true 

irrespective of the type of omitted covariate (binary, uniform or normal). Results for covariate 

dependent overdispersion resulting from the omission of two important covariates are given in 

Appendix 2, and are qualitatively similar. 

 

Figure 2. Mean parameter SE values for simulated dataset with one important predictor omitted. 

3.3    Outlier dependent overdispersion design 

The second scenario for creating overdispersion relative to the Poisson was the addition 

of either high outliers or excess zero outliers to the count outcome Y. In the first scenario, variable 

x1 was left in the model and a random Y value in each group of each simulation was increased by 

50 to create outlier dependent overdispersion in the data. This gave 10 total outliers in each 

dataset containing 1,000 values; i.e. 1% of the data were replaced by outliers. This was followed 

by an increase in the outliers by 150, which created overdispersion of a higher magnitude. In the 

second scenario, varying percentages of the outcome were replaced with 0. For binary 

covariates, the 𝛽 = (𝛽0, 𝛽1, 𝛽2, 𝛽3) for intercept, x1, x2, and x3 were assigned to be (1,0, 0.5, -

0.75, 0.25), respectively. Overdispersion was then created in the datasets as detailed above via 

the addition of outliers of differing magnitudes or zero values.  
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3.4    Outlier dependent overdispersion results 

The simulated data were analyzed with all variables in the model and overdispersion 

created via the addition of outliers. After the smaller outliers were added, the mean deviance/df 

value for the unadjusted Poisson model was 2.50 ± 0.36 and the mean Pearson Χ2/df value was 

25.42 ± 17.06, demonstrating the presence of overdispersion. After the addition of larger outliers, 

these values increased to 9.42 ± 1.06 and 121.32 ± 59.30, respectively. After the addition of 20% 

zero outliers, these values were 2.61 ± 0.47 and 1.53 ± 0.31, respectively. After the addition of 

40% zero outliers, these values increased to 4.34 ± 0.54 and 2.94 ± 0.45, respectively. For binary 

covariates, after the addition of smaller outliers the mean deviance/df value for the unadjusted 

Poisson model in binary covariate simulations was 2.07 ± 0.10, and the mean Pearson Χ2/df 

value was 7.97 ± 0.77. After the magnitude of the outliers was increased, the mean deviance/df 

value increased to 8.50 ± 0.28, and the mean Pearson Χ2/df value increased to 50.64 ± 3.70. 

After the addition of 40% zero outliers, these values were 1.86 ± 0.06 and 1.24 ± 0.06, 

respectively. After the addition of 60% zero outliers, these values increased to 2.21 ± 0.04 and 

1.84 ± 0.06, respectively. In the scenario where the covariates come from a uniform distribution, 

after the addition of the smaller outliers the mean deviance/df value for the unadjusted Poisson 

model in uniform covariate simulations was 2.16 ± 0.11, and the mean Pearson Χ2/df value was 

8.88 ± 0.92. After the magnitude of the outliers was increased, the mean deviance/df value 

increased to 8.74 ± 0.30, and the mean Pearson Χ2/df value increased to 54.74 ± 4.12 (Table 1). 

After the addition of 40% zero outliers, these values were 1.69 ± 0.05 and 1.13 ± 0.05, 

respectively. After the addition of 60% zero outliers, these values increased to 2.00 ± 0.04 and 

1.67 ± 0.06, respectively. 

Figures 3a and 3b respectively give the mean AIC and BIC values with smaller outliers 

(+50) and 20% zero outliers, for the normal predictor scenario. The NB followed by the NB-GLMM 

model had the lowest mean AIC and BIC values in models with all kinds of outliers showing good 

fit to the data while the Poisson model variations exhibited generally poor fit to the data.  
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Figure 3a. Mean AIC and BIC values for simulated dataset with outliers added (+50). 

 

 

Figure 3b. Mean AIC and BIC values for simulated dataset with zero outliers added (20%). 

Figures 4a and 4b show the mean SE estimates for these respective scenarios. The SE 

estimates for the full Poisson model without overdispersion are provided for comparison. When 

the covariates are from a normal distribution, the NB model appeared to produce moderately 

increased SE for the non-zero outliers while the NB-GLMM had somewhat highly increased SE 

estimates of the regression coefficients of the three covariates. The PS-Poisson model had 
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particularly high SE estimates for all parameters, while the Poisson and Poisson-GLMM models 

gave much lower estimates of the SE compared to what would be expected under the simulated 

dispersed data. The 95% CI appeared to follow the same trend. Therefore, it appears that the NB 

and DS-Poisson models may be considered superior for dealing with outlier dependent 

overdispersion in this case, with NB demonstrating better goodness of fit. The NB models gave 

higher SE for the zero outlier scenarios, while the scale-adjusted Poisson models gave 

moderately increased SE for both levels of overdispersion magnitude. 

 

Figure 4a. Mean parameter SE values for simulated dataset with outliers added (+50). 

 

 

Figure 4b. Mean parameter SE values for simulated dataset with zero outliers added (20%). 
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The lowest AIC and BIC values for the binary covariate results were given by the NB 

method. The two GLMM increased the AIC and BIC values, while the Poisson, DS-Poisson, and 

PS-Poisson gave identical results. NB and DS-Poisson gave moderate SE and 95% CI coverage. 

The NB-GLMM and PS-Poisson gave higher SE and 95% CI for all covariates, while the original 

Poisson and Poisson-GLMM gave lower values. Results are similar for the larger level outlier 

scenarios, given in Appendix 2. 

3.5    Random effect dependent overdispersion design 

The third scenario for creating overdispersion relative to the Poisson was the addition of 

a random intercept to the dataset which is then omitted from the model. The data were divided at 

random into ten groups, such that 𝑔 = 1, … ,10. The intercept value was assigned to be 1.0. A 

random effect  dependent on each group was added from distribution 𝑁(0, 𝑔/10) to create a 

lower magnitude of overdispersion, and from 𝑁(0, 𝑔/5) to create a higher magnitude of 

overdispersion. The random effect  was added to create extra heterogeneity or overdispersion 

of varying magnitudes. Higher variability of the random effect increases the overdispersion which 

occurs when it is omitted from the model. Similarly, binary and uniform covariates were created 

and their β parameters assigned as for the outlier dependent simulations described above. 

3.6    Random effect dependent overdispersion results 

When the covariates were all normally distributed for the random effect dependent 

overdispersion with lower magnitude, the mean deviance/df value for the unadjusted Poisson 

model was 5.68 ± 1.66 and the mean Pearson Χ2/df value was 8.56 ± 4.68. For the higher 

magnitude of overdispersion, these values increased to 18.28 ± 15.15 and 81.58 ± 217.85, 

respectively. For binary predictors, after the addition of the random effect with lesser variability, 

the mean deviance/df value for the binary covariate simulations was 2.52 ± 0.34, and the mean 

Pearson Χ2/df value was 3.94 ± 1.26. After the variability of the random effect was increased, the 

mean deviance/df value increased to 7.41 ± 1.81, and the mean Pearson Χ2/df value increased to 

19.19 ± 15.09. For uniform distributed predictors, after the addition of the less variable random 

effects, the mean deviance/df value for the uniform covariate simulations was 2.28 ± 0.30, and 




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the mean Pearson Χ2/df value was 3.54 ± 1.03. After the magnitude of the outliers was increased, 

the mean deviance/df value for the uniform covariate simulations increased to 6.68 ± 1.54, and 

the mean Pearson Χ2/df value increased to 17.13 ± 11.67 (Table 1). 

 

 

Figure 5. Mean AIC and BIC values for simulated dataset with random effect 𝛾 ~ 𝑁(0, 𝑔𝑟𝑜𝑢𝑝/10). 

Figure 5 shows the mean AIC and BIC values with random effects of smaller variance for 

the normal predictor scenario. These values before the addition of overdispersion are also 

included for comparison. The NB-GLMM model had the lowest mean AIC and BIC values, 

followed by the NB, showing good fit to the data, while the Poisson model variations exhibited 

poorer goodness of fit. 

Figure 6 shows the mean SE estimates for this scenario. Again, the SE estimates for the 

full Poisson model without overdispersion are provided for comparison. In this scenario, the NB, 

NB-GLMM, and DS-Poisson models appeared to produce moderately increased SE for both 

kinds of random intercepts. The PS-Poisson model had particularly high SE estimates for all 

parameters, while the Poisson and Poisson-GLMM gave much lower estimates of the SE 

compared to what would be expected under the simulated dispersed data. The 95% CI appeared 

to follow the same trend. Therefore, it appears that the NB-GLMM may be considered superior in 
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dealing with overdispersion resulting from these scenarios. Results are similar for the larger 

variance random effect scenarios, given in Appendix 2. 

 

 

Figure 6. Mean parameter SE values for simulated dataset with random effect 𝛾 ~ 𝑁(0, 𝑔𝑟𝑜𝑢𝑝/

10). 

3.7    Confidence interval coverage results 

In order to examine the nominal 95% CI coverage of the different methods, we recorded 

the percentage of estimates from each simulation in which the true beta value was contained in 

the parameter 95% confidence interval by method, covariate type, and overdispersion type. 

These results are given in Table 2.  

For the covariate dependent overdispersion simulations, the Pearson-scaled Poisson and 

negative-binomial methods generally gave the highest percentage of coverage closest to the 

nominal 95%. For the outlier and random effect dependent overdispersion, the Pearson-scaled 

Poisson and negative-binomial generalized linear mixed model gave the highest percentages of 

coverage. Other methods were generally unreliable.   
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Table 2. Percentage of simulations in which true beta was contained in 95% CI by methods. 

Covariate Dependent Overdispersion 

Simulation Covariate Poisson DS-Poisson PS-Poisson NB Poisson-GLMM NB-GLMM 

Normal – 1 cov 

omitted 
X2, X3 26.8, 31.7 47.0, 57.0 51.6, 61.7 80.2, 87.8 28.4, 34.8 86.8, 92.7 

Normal – 2 covs 

omitted 
X3 19.8 70.3 90.1 71.9 19.5 89.7 

Uniform – 1 cov 

omitted 
X2, X3 28.9, 23.3 67.7, 62.7 68.5, 63.8 38.0, 82.5 29.3, 23.9 45.1, 87.7 

Uniform – 2 covs 

omitted 
X3 15.8 81.1 92.3 91.8 16.3 94.1 

Binary – 1 cov 

omitted 
X2, X3 29.4, 23.2 98.3, 94.5 97.7, 93.7 97.5, 97.4 29.3, 23.9 96.3, 95.2 

Binary – 2 covs 

omitted 
X3 22.0 96.6 97.5 95.3 22.3 95.5 

Outlier Dependent Overdispersion 

Normal – outliers 

(+50) 
X1, X2, X3 15.0, 0.6, 31.7 31.6, 1.4, 54.5 99.1, 85.2, 99.5 22.0, 3.4, 36.2 15.5, 1.0, 32.2 33.2, 10.9, 46.4 

Normal – outliers 

(+150) 
X1, X2, X3 3.2, 0.0, 9.1 14.0, 0.4, 31.3 94.8, 46.1, 97.3 13.9, 3.0, 20.8 3.1, 0.0, 8.9 53.6, 25.8, 62.1 

Normal – low % 0 

outliers 
X1, X2, X3 39.3, 33.0, 44.9 62.3, 52.3, 62.6 48.5, 40.5, 51.2 96.8, 90.1, 98.5 45.0, 38.1, 49.0 95.8, 87.0, 98.4 

Normal – high % 0 

outliers 
X1, X2, X3 29.7, 24.5, 29.2  55.7, 47.9, 59.1 47.2, 40.8, 48.2 98.4, 89.8, 98.4 33.5, 29.4, 33.6 94.3, 83.6, 97.0 

Uniform – outliers 

(+50) 
X1, X2, X3 49.8, 24.9, 45.6 65.2, 39.9, 62.2 94.0, 80.3, 93.9 59.1, 36.2, 55.7 49.9, 24.9, 45.6 93.9, 79.2, 93.5 

Uniform – outliers 

(+150) 
X1, X2, X3 20.9, 9.5, 17.9 54.0, 27.0, 49.1 92.6, 73.6, 91.9 38.9, 21.3, 35.7 20.9, 9.5, 17.9 92.2, 75.3, 91.1 

Uniform – low % 0 

outliers 
X1, X2, X3 89.5, 92.7, 89.9 96.7, 98.0, 96.9 92.0, 93.8, 91.8 97.4, 98.2, 97.5 89.9, 92.7, 89.9 98.2, 98.3, 98.7 

Uniform – high % 

0 outliers 
X1, X2, X3 84.0, 84.5, 83.9 94.4, 95.0, 94.9 92.4, 93.2, 92.7 98.8, 98.8, 98.6 84.8, 84.7, 83.2 98.7, 98.8, 98.3 

Binary – outliers 

(+50) 
X1, X2, X3 44.9, 15.7, 47.1 55.3, 25.4, 67.5 91.4, 62.0, 93.9 51.3, 25.6, 58.3 45.1, 15.7, 47.1 90.8, 64.3, 93.6 

Binary – outliers 

(+150) 
X1, X2, X3 18.8, 11.6, 21.5 47.2, 32.1, 59.3 86.6, 69.3, 94.9 30.9, 20.1, 39.4 18.9, 11.6, 21.5 88.3, 75.0, 93.6 

Binary – low % 0 

outliers 
X1, X2, X3 90.2, 75.5, 57.1 97.6, 91.1, 76.8 92.9, 81.6, 63.2 98.0, 93.6, 74.7 90.3, 76.0, 57.1 98.3, 95.5, 79.3 

Binary – high % 0 

outliers 
X1, X2, X3 84.6, 77.2, 62.0 96.1, 93.2, 84.9 94.1, 90.8, 80.4 99.0, 98.7, 91.4 85.1, 77.5, 62.2 98.8, 98.4, 89.5 

Random Effect Dependent Overdispersion 

Normal – 

𝜸 ~ 𝑵(𝟎, 𝒈/𝟏𝟎) 
X1, X2, X3 22.8, 19.5, 20.1 51.6, 43.5, 47.9 59.2, 50.6, 57.1 83.3, 74.3, 84.7 26.3, 22.8, 22.9 85.4, 76.4, 86.0 

Normal – 

𝜸 ~ 𝑵(𝟎, 𝒈/𝟓) 
X1, X2, X3 10.7, 9.0, 11.5 43.3, 34.1, 41.2 65.8, 59.3, 65.0 66.1, 58.4, 64.1 12.5, 10.7, 12.2 74.2, 66.3, 76.9 

Uniform – 

𝜸 ~ 𝑵(𝟎, 𝒈/𝟏𝟎) 
X1, X2, X3 67.1, 70.5, 65.3 84.4, 87.5, 83.8 92.6, 94.3, 92.2 88.8, 89.4, 86.5 67.0, 71.2, 65.5 91.0, 90.2, 88.2 

Uniform – 

𝜸 ~ 𝑵(𝟎, 𝒈/𝟓) 
X1, X2, X3 37.2, 38.3, 33.7 74.6, 79.4, 75.9 91.0, 93.6, 92.1 76.4, 76.5, 75.7 36.2, 37.0, 35.3 83.8, 84.1, 83.2 

Binary – 

𝜸 ~ 𝑵(𝟎, 𝒈/𝟏𝟎) 
X1, X2, X3 64.9, 70.5, 65.6 86.8, 91.0, 84.6 94.9, 95.2, 94.5 88.2, 89.0, 86.8 64.9, 70.1, 63.8 91.0, 90.8, 89.6 

Binary – 

𝜸 ~ 𝑵(𝟎, 𝒈/𝟓) 
X1, X2, X3 34.3, 35.7, 33.4 76.3, 79.9, 74.3 93.8, 95.4, 93.2 74.3, 74.4, 74.0 35.2, 35.5, 30.8 83.2, 84.9, 82.5 
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4. Case studies 

The motivating case study is a large randomized trial dataset containing some 

overdispersion which results from any of the three scenarios discussed above. The second case 

study is a classical small sample example of overdispersion in the literature where the 

overdispersion could be attributed to population heterogeneity. In both datasets we estimated 

overdispersion using the Pearson and deviance scales, which have been shown to agree with the 

other score statistics based test for overdispersion relative to the Poisson and negative-binomial 

models (Dean and Lawless 1989, Dean 1992, Deng and Paul 2000). 

4.1    NLST dataset 

The National Lung Screening Trial (NLST) randomized a total of 53,454 current and 

former smokers into two types of screening for lung cancer (Aberle, Adams et al. 2010). The 

purpose of this study was to compare lung cancer mortality rates of patients screened with a low-

dose CT scan with those screened via chest radiography. Our interest is to examine the 

relationship between comorbidity count and whether patients were current or former smokers, 

adjusted for demographic covariates. Eligible participants were 55-74 years old, were either 

current or former smokers who had quit smoking within the last 15 years, and had a cigarette 

smoking history of 30 or more pack-years. Patients who were randomized to the CT scan showed 

a 20% and 6.7% reduction in lung cancer specific and all-cause mortality, respectively, compared 

with patients who received chest radiography. Demographic information was also collected for 

these patients to include comorbidity burden, race, gender, age, education status and smoking 

history.  

We applied the six methods of analysis to the NLST dataset. The deviance/df value for 

the unadjusted Poisson model was 1.35, and the Pearson Χ2/df value was 1.26, demonstrating 

mild overdispersion in the dataset. Table 3 gives the AIC and BIC values, SE, and 95% CI for 

each of the covariates included in the models.  
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Table 3. Comparison of methods for dealing with overdispersion in the NLST and Salmonella 

datasets. 

NLST 

Value Poisson DS-Poisson PS-Poisson NB Poisson-GLMM NB-GLMM 

AIC 158573.56 158573.56 158573.56 157208.53 158087.40 156833.00 

BIC 158689.01 158689.01 158689.01 157332.86 158109.90 156856.90 

Salmonella 

AIC 177.77 177.77 177.77 140.43 152.85 141.02 

BIC 173.55 173.55 173.55 143.10 149.24 136.51 

 

The NB-GLMM had the lowest AIC and BIC values followed by the NB model. The 

unadjusted and scale-adjusted Poisson models all had higher AIC and BIC values. The scale-

adjusted Poisson models have increased the SE for the parameters, particularly the DS-Poisson. 

The NB, Poisson-GLMM, and NB-GLMM models moderately corrected the SE and the width of 

the corresponding 95% CI for the parameters. We can conclude that the NB-GLMM may be 

considered superior in dealing with the overdispersion present in the NLST dataset. 

Table 4 gives NB-GLMM results comparing patient comorbidity burden with 

demographics. Former smokers had a higher comorbidity burden than current smokers 

(RR=1.11, p<0.0001), probably resulting in part from many years of smoking previously. There 

are also significant differences in comorbidity count based on patient gender, education, race, 

and age. Female patients had higher comorbidity burden than males (RR=1.08, p<0.0001). 

Patients who did not finish high school had the highest comorbidity burden among educational 

status (RR=1.24, p<0.0001). Non-Hispanic black patients had the highest comorbidity burden 

among the race groups (RR=1.08, p=0.0116). Not surprisingly, the youngest patients had the 

lowest comorbidity burden among the age categories (RR=0.69, p<0.0001).  
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Table 4. NB-GLMM model comparing comorbidity count with patient demographics in the NLST 

dataset. 

Covariate Rate Ratio 95% CI P-Value 

Former smoker vs. current smoker 1.11 (1.09, 1.12) <0.0001 

Female vs. Male 1.08 (1.07, 1.10) <0.0001 

<High school 1.24 (1.15, 1.33) <0.0001 

High school 1.08 (1.02, 1.15) 0.0149 

College 0.94 (0.88, 1.01) 0.0795 

Graduate school 0.94 (0.88, 1.01) 0.0733 

Other education (ref) -- -- -- 

NHW 0.90 (0.86, 0.94) <0.0001 

NHB 1.08 (1.02, 1.15) 0.0116 

Asian 0.91 (0.84, 0.99) 0.0271 

Hispanic/Other (ref) -- -- -- 

Age < 57 0.69 (0.67, 0.71) <0.0001 

57 ≤ Age < 60 0.76 (0.75, 0.79) <0.0001 

60 ≤ Age < 65 0.86 (0.84, 0.88) <0.0001 

Age ≥ 65 (ref) -- -- -- 

 

4.2   Salmonella dataset 

The Ames Salmonella dataset is a classic example of the presence of overdispersion in a 

small dataset (Mortelmans and Zeiger 2000). The variables in this dataset include three different 

plates, six levels of medication dose on each plate, and a count response of Salmonella bacterial 

colonies (refer to Figure 8 in Appendix 2). The medication dose variable was modeled as a log 

dose in this analysis (the smallest non-zero dose size of 10 was first added to the variable in 

order to avoid a log of zero).  

The deviance/df value for the unadjusted Poisson model was 4.69, and the Pearson Χ2/df 

value was 5.33, demonstrating the presence of overdispersion in the Salmonella dataset. This 

dataset was analyzed using the six approaches and the results are reported in Table 3. The AIC 

and BIC values, parameter SE, and 95% parameter CI were included for comparison.  

Based on the AIC and BIC criteria, the NB-GLMM demonstrated the best goodness of fit 

in this overdispersed dataset. The NB, NB-GLMM and Poisson-GLMM also gave SE values that 
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are higher than those in Poisson but lower than scale-adjusted Poisson. The scale-adjusted 

Poisson models both appeared to have much larger SE, particularly the PS-Poisson. The 95% CI 

appeared to follow the same trend. Overall, the NB-GLMM may be considered superior in dealing 

with overdispersion present in the Salmonella dataset based on the AIC and BIC criteria, SE, and 

95% CI estimates. This is likely because the overdispersion in this case study was at least in part 

the result of correlation in bacterial count outcome by plate, which was included in the model via 

the random effect. In the NB-GLMM model, the log dose variable significantly effects bacterial 

count outcome (RR=1.13, p=0.0194).  

5. Discussion 

In this paper, we provide a comprehensive comparative analysis of six different models 

for dealing with overdispersion caused by different mechanisms when modeling count data. 

Overall, the negative-binomial models appeared to demonstrate superiority in adjusting for 

overdispersion in the simulation studies. The NB-GLMM performed best in modeling count of 

comorbidity data in the motivating NLST study. This model also appeared to deal most effectively 

with overdispersion in the small Salmonella dataset.  

Based on our analyses, we conclude that NB-GLMM is superior overall for modeling 

count data characterized by overdispersion, jointly considering all criteria. The negative-binomial 

distribution is often used instead of Poisson to account for overdispersion resulting from omitted 

important covariates and population heterogeneity, among other causes. Therefore, it is 

reasonable that overdispersion caused by the omission of important predictors, the addition of 

high or zero outliers to the outcome, and the omission of a random effect would be effectively 

controlled by using models that are based on the negative-binomial distribution. For example, as 

in the NB-GLMM, the addition of random effects is shown to be effective in dealing with 

overdispersion resulting from with-in subject correlation of count outcome.  

Our results further demonstrate that the best method for dealing with overdispersion will 

likely vary by dataset depending on the cause of the overdispersion. The negative-binomial model 
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may account for overdispersion due to a number of common causes, but it is not ideal in every 

case. Numerous model options should be considered when overdispersion is an issue.  

In order to make application of these results to real datasets, a clinician should first check 

dispersion via the deviance/df and Pearson Χ2/df values to determine whether they are greater 

than 1. If the count outcome is overdispersed, the clinician should attempt to identify the cause of 

the overdispersion via testing of parameter significance, identifying excessive high or zero outliers 

in the outcome, and checking for the presence of random effects in the data. It may be possible to 

address the issue with simple model adjustments. To address the overdispersion via scale or 

modeling methods, Poisson and negative-binomial regression should both be considered as in 

our analysis and compared via parameter standard errors and goodness-of-fit statistics. It should 

also be determined that the benefit of utilizing the negative-binomial distribution will outweigh the 

added model complexity. Table 5 gives a summary of the possible overdispersion causes 

examined in our analysis and our corresponding choices of modeling method. 

Table 5. Summary of methods chosen to deal with overdispersion by cause. 

Type of Overdispersion Methods and Comments 

Covariate dependent NB and NB-GLMM performed best overall, jointly 
considering goodness-of-fit, error, and coverage 
criteria. NB-GLMM is preferable if the data 
includes random effects. The scale-adjusted 
Poisson methods performed fairly well with non-
normal covariates and could also be considered.  

Outlier dependent:  high outliers NB-GLMM and PS-Poisson performed best 
overall, jointly considering all criteria. NB-GLMM is 
preferable if the data includes random effects. 

Outlier dependent: zero outliers NB-GLMM performed best for normal covariate 
scenarios, jointly considering all criteria. The NB 
and scale-adjusted Poisson methods performed 
fairly well with non-normal covariates and could 
also be considered. 

Random effects dependent  NB and NB-GLMM performed best overall, jointly 
considering all criteria. The DS-Poisson performed 
fairly well with non-normal covariates and could 
also be considered. A random effect should be 
included. 
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This article illustrates how negative-binomial regression and NB-GLMM can be used to 

effectively model overdispersed count outcomes. It also showed that simple post hoc scaling in 

the Poisson model to decrease overdispersion was not consistently effective. Basic scaling does 

not take the specific cause of the overdispersion into account. Overdispersion may result from a 

variety of causes, which must be considered to determine the most effective method of dealing 

with it.  

To more thoroughly analyze the options for dealing with overdispersion present in 

datasets with count outcomes, we plan to examine the performance of these methods in the 

presence of missing covariate data. Pacheco et al. recently performed a related comparison of 

various methods for dealing with overdispersion using simulated time-dependent data, including 

generalized estimating equations models, generalized linear mixed models, and Bayesian 

methods (Durán Pacheco, Hattendorf et al. 2009). But there are none that address the co-

occurrence of both covariate missingness and overdispersion. Future studies need to explore and 

address how to handle co-occurrence of overdispersion and missing covariate data.  
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1. Introduction 

The assumption of Poisson regression that the conditional mean must be equal to the 

conditional variance often fails in real data situations. Overdispersion occurs when data have 

greater conditional variance than is assumed under the Poisson model (Cox 1983), which may 

result from population heterogeneity, correlation, omission of important covariates in the model, 

the presence of high or zero outliers, or other reasons (Hardin and Hilbe 2007, Rigby et al. 2008). 

A Poisson model estimated on overdispersed data can include underestimated standard errors of 

the parameter estimates. As a consequence, the hypotheses on the regression parameters may 

be rejected more often than they should be (McCullagh and Nelder 1989, Breslow 1990, Hilbe 

2011, Faddy and Smith 2011). We examined overdispersion occurring in real and simulated 

datasets resulting from outliers, omission of key predictors, and omission of necessary random 

effects (Payne et al. 2015). We compared six different scaling and modeling methods of analysis 

via goodness of fit and error statistics. The results showed that negative binomial regression and 

negative binomial generalized linear mixed models were preferred for dealing with overdispersion 

resulting from the sources we considered. Scaling methods and unadjusted Poisson regression 

were less reliable and often produced larger or smaller standard errors than expected.  

The two most commonly used estimators of dispersion in the literature are the ratio of the 

model deviance to its corresponding degrees of freedom and the ratio of the Pearson 
2  statistic 

to its corresponding degrees of freedom (McCullagh and Nelder 1989). For a study with sample 

n  and p  predictors, the degrees of freedom are typically given by n p . This ratio will equal 

one when the Poisson assumption or, equivalently, the assumption that the conditional mean and 

variance are equal, holds. Relative to the model, the data are considered overdispersed if this 

ratio is greater than one, with greater magnitudes of overdispersion corresponding to higher 

Pearson 
2  statistics. 

A likelihood ratio test may be used to test the difference of the simple Poisson and a 

more complex models such as negative binomial regression to assess whether the simpler model 
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should be rejected (Cameron and Trivedi 1986). The Wald statistic associated with a test of the 

dispersion parameter in the more complex model may also be used for this assessment (Molla 

and Muniswamy 2012). Score tests for determining the presence of extra-Poisson variation are 

also available in many case-specific variations (Gurmu 1991, Dean and Lawless 1989, Lee et al. 

2007, Breslow 1990, Collings and Margolin 1985), and may be more appropriate than Wald or 

likelihood ratio tests since the score test requires only an estimation of the simpler model and 

provides greater power (Yang et al. 2007). In addition, hypothesis testing of the ratios of negative 

binomial and Poisson regression log-likelihoods may rely on asymptotic distributions which 

underestimate the evidence against the base model and thereby provide results which are 

misleading (Cameron and Trivedi 1998, Dean 1992, Lawless 1987). O’Hara Hines provides an 

overview of numerous score tests which have been developed to test for overdispersion (1997). 

Molla and Muniswamy recently demonstrated the superior power of the score test compared to 

likelihood ratio and Wald tests via an extensive Monte Carlo simulation study (2012). 

Currently, one of the most commonly used estimators of dispersion in the literature is the 

goodness of fit ratio of the Pearson 
2  statistic to its corresponding degrees of freedom. A 

decision about whether data are overdispersed is made by checking whether this ratio is bigger 

than one. The relative variance is defined as the ratio of the variance to the mean and is 

theoretically comparable to the Pearson 
2  ratio with its degrees of freedom. One possible rule 

of thumb suggests that if the relative variance is greater than two, then the data may be 

considered overdispersed and require statistical intervention (Cameron and Trivedi 1990). In this 

case, the average of the covariate-pattern specific ratio of the conditional variance to conditional 

mean of the count outcome is more than two, contradicting the Poisson model. Smaller values in 

the average of the ratios of conditional variance to conditional mean may still point to an 

overdispersed model which underestimates the parameter standard errors and requires a more 

complex modeling strategy than simple Poisson regression (Rodriguez 2015). In some cases, 
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relative variance tests and curves may be more effective in identifying the presence of 

overdispersion than score tests (Lambert and Roeder 1995). 

In this paper, we examine count outcomes containing overdispersion represented by 

varying magnitudes of Pearson 
2  ratios in cross-sectional and longitudinal datasets, to 

determine the threshold over 1 at which overdispersion may be considered detrimental to data 

analysis if ignored. We examine scenarios in which overdispersion is the result of either outliers 

or zero inflation in the count outcome. Results from two real case studies containing varying 

magnitudes of overdispersion are also considered. This paper is organized in the following 

manner. Subsequent to the introduction, a description of the statistical models as well as 

measures and tests of overdispersion is given in section 2. Section 3 provides information about 

the design of the simulation study. Section 4 provides the results of the simulation study. Section 

5 gives a description and results from our real datasets. Section 6 gives a conclusion and 

discussion based on all results. 

2. Statistical Models and Estimation 

2. 1. Models 

For cross-sectional data, let vector 1( ,..., ) 'nY Y Y  be a response vector with 

independent and identically Poisson distributed random Y  values. The variance function is 

(Y )i iVar   and the probability mass function for the quasi-Poisson is given by 

 (y | )
!

i iy

i
i i

i

e
f

y






   (1) 

with 0 iy    and positive conditional mean parameter i . The conditional variance as a 

function of the conditional mean is given by  , with dispersion parameter  . There is 

equidispersion in the dataset when 1  , while if 1   there is underdispersion, and if 1   

there is overdispersion. The Poisson can be extended to define the generalized Poisson 
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regression model including covariates for which the conditional mean is (Y ) exp(X' )i iE     

via the following format (Rodriguez 2015): 

 

1
(1 ) (1 )

Pr(Y | , ,k) exp
1 ! 1

i
i

y
y

i i i i
i i

i i i

y y

y

   
 

 

    
    

    
  (2) 

with 0 iy   . A score test may then assess the parameter   to determine whether the 

conditional variance exceeds the conditional mean (refer to Section 2.2). 

If | ~ Pois( )Y    and   is a random variable such that ( )E    and 
2( )Var   , 

then (Y)E   and 
2(Y)Var    , indicating greater variance compared to the mean; if   

is assumed to be distributed gamma, then Y  follows a negative-binomial distribution with 

(Y)
k

E 


   and 

2

(Y)Var
k


  (Payne et al. 2015).  Random effects may also be 

included to deal with overdispersion. For vectors of fixed effect (X )i  and random effect (Z )i  for 

explanatory variables ( 1,..., )i n  the GLMM family is given by, 

1(Y | X ,Z ) g (X Z )i i i i i i iE b                                                 (3) 

Here,   is a vector of p  fixed coefficients, 
g

 is a monotone link function, and ib  is a 

vector of unobserved normally-distributed random deviations with zero mean for which the 

variance will be estimated. The conditional variance for this model is given by 

2(Y )i i iVar k   . NB-GLMM allows for greater conditional variance than assumed by the 

Poisson-GLMM. We have previously showed that NB and NB-GLMM are superior for dealing with 

overdispersion compared to other models in various scenarios, jointly considering the specified 

criteria (Payne et al. 2015). 

We also consider a generalized linear model setup for longitudinal scenarios. While a 

general set of predictor variables is allowed, we focus on a scenario including two covariates: a 
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main predictor variable and possible confounder. Let   ijY  be a response, while 
1 X ij

 and 
2 X ij

 

are covariates of interest at the 
thj  repeated measure for the 

thi   subject ( 1,..., , 0,..., ii n j T 

). Let iq  denote the random effects for each individual i  which could be assumed to have a 

normal distribution with zero mean and covariance G . Let 1 2( , )    be the regression 

coefficients corresponding to 
1 X ij

 and 
2 X ij

, respectively, and 

 
1 1 2 2ij i ij ijq X X       (4) 

We can rewrite this in vector form as for the cross-sectional GLMM above: 

i i i iZ b X                                                                (5) 

where 
1 2(X ,X ) 'i ij ijX  , (E[Y | q , ])i ij ig  , g  is a monotone link function, iZ  is the 

random effects design matrix and ib  is the random effects vector for each individual i . 

In this paper we address overdispersion resulting from the presence of outliers or zero 

inflation in the count outcome in both cross-sectional and longitudinal datasets. We consider four 

methods for analyzing cross-sectional data as in our previous work: unadjusted Poisson 

regression (Poisson), negative-binomial regression (NB), and two GLMM with random intercept, 

log link, and compound symmetry covariance, with outcomes distributed as Poisson and 

negative-binomial (Poisson-GLMM, NB-GLMM, respectively) (Payne et al. 2015).  In the 

longitudinal scenario, we considered GLMM with random intercept to account for individual 

variability with outcomes distributed as either Poisson or negative-binomial (Poisson-GLMM, NB-

GLMM, respectively). SAS 9.4 was utilized in all analyses, particularly the Proc GENMOD and 

Proc GLIMMIX packages. 

2. 2. Tests and Measures of Overdispersion 

A variety of score, Wald, and likelihood ratio tests have been considered to determine 

when overdispersion is statistically significant. One score statistic (Yang et al. 2009) for testing 
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whether the dispersion parameter indicates extra-Poisson variation 0 : 0H    vs. 1 : 0H    is 

given by 

 

1 2

2 2

1

1 1

ˆ ˆ ˆ( ) 2 ((y ) y )
n n

i i i i

i i

S   



 

   
     
   
                                                    (6) 

Under the null hypothesis that overdispersion is not present and the data follow an unadjusted 

Poisson model, the score statistic is distributed according to the 
2

1  distribution with 1 degree of 

freedom. We can also write this score statistic as  

 

1

2 2

2

1 1

ˆ ˆ ˆ( ) 2 ((y ) y )
n n

i i i i

i i

S   



 

 
   
 
 

                                                     (7) 

which is asymptotically distributed as a standard normal. It is clear from the structure of this 

statistic that greater variability between observed and predicted values will increase the 

magnitude of the score statistic, which implies overdispersion resulting from data heterogeneity or 

other factors. According to this statistic, we can reject the assumption of equidispersion at a 

significance level of 0.05 via a one-sided test if score statistic 2
ˆ( )S   is greater than the 95th 

percentile of the 𝑁(0,1) distribution. This gives us a score statistic cutoff of 1.65 for declaring the 

presence of overdispersion in large samples. Though this is a useful paradigm, our interest is in 

determining a general threshold for declaring the presence of overdispersion across datasets 

using the commonly considered Pearson 
2  ratio to its degrees of freedom. We will provide a 

crossover comparison of rejection via score test at each of our considered Pearson 
2  ratios. 

Using our notation, the Pearson 
2  statistic is defined for the Poisson distribution within 

the context of GLMs as below (Morel and Neerchal 2012): 

 

2

2

1

ˆ(y )

ˆ

n
i i

i i







   (8) 
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This statistic is commonly utilized to analyze model goodness of fit, and is approximately 

distributed 
2

df  [19]. For a study with sample n  and p  predictors, the degrees of freedom are 

typically given by n p . Dispersion parameter 
p  is therefore defined as the ratio of the 

Pearson 
2  to its degrees of freedom and is approximately unbiased (Ruoyan 2004) as follows: 

 

2

p
n p


 


  (9) 

Dispersion parameter 
p  will equal one where the assumption of equal mean and variance 

holds. Our goal is to determine if there is an appropriate threshold for declaring overdispersion 

requiring statistical intervention via the popular Pearson 
2  goodness of fit statistic using 

dispersion parameter 
p . This value may also be used to determine the presence of 

underdispersion in datasets, though this is a less common scenario when working with real 

clinical data. 

3. Simulation 

3. 1. Design 

We simulated 200 cross-sectional datasets each with a sample size of 100 random 

observations, to include a Poisson count outcome and 2m   binary predictor variables 1X  and 

2X  according to the model 

2

1

log(E(Y y | X ))im im m im

m

X 


    where   is the collection of 

parameters 1 2( , )   and 1.0  . Outcome count Y  for the 
thi  individual was determined by 

2

1

exp( )m im

m

X 


 . We alternated assigning true parameter value 1 [0.01,0.41,0.92]   to 

yield odds ratios of 1.0, 1.5, and 2.5 respectively, and assigned true parameter value 2 0.69   

to yield an odds ratio of 2.0 as a potential confounder.  
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We then created overdispersion relative to the Poisson in the first scenario via the 

addition of outliers to the count outcome Y . A random sample of 10% of the Y  values in each 

simulation was increased to create outlier-dependent overdispersion in the data such that running 

unadjusted Poisson regression or Poisson-GLMM resulted in varying values of 

[1.0,1.2,1.3,1.4,1.5,2.0,2.5,5.0,10.0]p  . We created a second scenario in which the 

unadjusted Poisson gave overdisperison magnitudes [1.0,1.2,1.3,1.4,1.5,2.0,2.5,5.0]p   by 

setting various percentages of the Y  outcome variable to zero (we could not achieve 10.0 here). 

Recall our discussion of a score test statistic (Yang et al. 2009) to test 0 : 0H    vs. 

1 : 0H    presented in Section 2.2. The frequency of rejection of 0 : 0H    via score test for 

both outlier-dependent and zero-dependent overdispersion of all magnitudes is given in Table 1.  

Table 1. Percent of simulations at varying levels of overdispersion in which the score test did in 
fact reject the null hypothesis and affirm the presence of overdispersion in the dataset. 

p  
Outlier Dependent 

β1=0.01 β1=0.41 β1=0.92 

1.0 6.50 6.50 6.50 

1.2 55.50 50.50 28.50 

1.3 71.50 53.00 47.00 

1.4 79.00 71.50 68.00 

1.5 95.50 88.00 87.50 

2.0 99.50 99.50 98.50 

2.5 100.00 100.00 100.00 

5.0 100.00 100.00 100.00 

10.0 100.00 100.00 100.00 

p  
Zero Inflation 

β1=0.01 β1=0.41 β1=0.92 

1.0 6.50 6.50 6.50 

1.2 46.50 43.50 51.50 

1.3 63.50 64.00 56.50 

1.4 74.50 77.00 69.00 

1.5 90.00 90.00 85.00 

2.0 100.00 100.00 99.00 

2.5 100.00 100.00 100.00 
5.0 100.00 100.00 100.00 

p  is defined as the ratio of the Pearson 
2  to its degrees of freedom 

Higher percentages of rejection via the score test statistic in simulations indicate overdispersion 

in the dataset at the given level of 
p , suggesting that statistical intervention is necessary. From 
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this table we can see that values of 1.5 2.0p   result in a percentage of rejection close to the 

nominal 95% depending on the effect size of 1 , indicating rejection of 0 : 0H    and 

conclusion that the data are overdispersed according to the score test. Values of 1.5p   result 

in lower rejection percentages under both scenarios and therefore do not reject the null 

hypothesis of equidispersion. Higher effect sizes give slightly more conservative results.  At 

values of 2.5p  , equidispersion is rejected in 100% of cases.  

We further simulated 200 longitudinal datasets of the same initial sample size of 100 to 

include the time-varying Poisson count outcome and two time-varying binary predictor variables 

according to the model 

2

1

log(E(Y y | X ))ijm ijm m ijm

m

X 


    with data now taken at five 

continuous time points 1,2,...,5j  . Again,   is the collection of parameters 1 2( , )   and 

1.0  . Outcome count Y  for the 
thi  individual was now generated using a mean 

2

1

exp( )m ijm

m

X 


 . In the outlier-dependent scenario, random Y  values were similarly 

increased at baseline each simulation as for the cross-sectional datasets. In the zero-dependent 

scenario, varying percentages of random Y  values were set to 0 over time as for the cross-

sectional datasets. 

Comparison among models in all scenarios was then made using Type 1 and Type 2 

errors, as well as coverage probabilities of 1 . Type 1 error is determined via the percentage of 

simulations in which the effect of 1  is detected though not present, i.e. the percentage of false 

positives; here we consider datasets with a true 1  value of 0.01. Type 2 error is determined via 

the percentage of simulations in which the effect of 1  is not detected though present, i.e. the 

percentage of false negatives. These errors are observed for both true 1  values of 0.41 and 
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0.92. Coverage probabilities are considered for all values of 1 [0.01,0.41,0.92]   and are the 

percentage of simulations in which parameter 95% confidence intervals contain the true 1 . 

4. Results 

4. 1. Cross-Sectional Results 

 Poisson and negative binomial results for both cross-sectional scenarios are given in 

Tables 2 and 3, respectively, and illustrated in Figures 1a-b and 2a-b by model type and value of 

1  at all considered values of 
p . 

Table 2. Percentage of simulations with 1X  Type 1 errors and Type 2 errors and in which 

parameter coverage included the true parameter given true values of 0.01, 0.041, and 0.92 for 
the cross-sectional scenario using the unadjusted Poisson model and Poisson GLMM. 

p  

Outlier Dependent Zero Inflation 

Unadjusted Poisson Unadjusted Poisson 

β1=0.01 β1=0.41 β1=0.92 β1=0.01 β1=0.41 β1=0.92 

Type 
1 (%) 

Coverage 
(%)  

Type 
2 (%) 

Coverage 
(%)  

Type 
2 (%) 

Coverage 
(%)  

Type 
1 (%) 

Coverage 
(%)  

Type 
2 (%) 

Coverage 
(%)  

Type 
2 (%) 

Coverage 
(%)  

1.0 3.50 95.50 0.50 92.50 0.00 91.50 3.50 95.50 0.50 92.50 0.00 91.50 

1.2 5.00 95.00 1.50 88.50 0.00 81.50 4.50 94.50 1.00 89.50 0.00 89.50 

1.3 6.00 94.00 1.50 87.50 0.00 76.00 7.00 93.00 2.00 91.00 0.00 88.50 

1.4 8.50 91.50 1.50 86.50 0.00 77.00 8.50 91.50 3.00 86.00 0.00 89.00 

1.5 11.00 87.00 2.00 83.50 0.00 66.00 10.00 90.50 6.00 83.50 0.00 86.50 

2.0 15.50 85.00 6.50 72.00 0.00 59.00 14.50 85.00 11.00 79.50 0.00 86.50 

2.5 19.50 81.00 8.50 71.00 0.00 52.50 29.00 71.50 14.50 74.00 0.00 82.00 

5.0 43.50 57.00 21.00 53.00 0.00 29.00 36.00 64.00 43.00 56.50 0.00 63.50 

10.0 59.50 39.50 23.00 42.50 1.00 23.00 -- -- -- -- -- -- 

p  

Poisson GLMM Poisson GLMM 

β1=0.01 β1=0.41 β1=0.92 β1=0.01 β1=0.41 β1=0.92 

Type 
1 (%) 

Coverage 
(%)  

Type 
2 (%) 

Coverage 
(%)  

Type 
2 (%) 

Coverage 
(%) 

Type 
1 (%) 

Coverage 
(%)  

Type 
2 (%) 

Coverage 
(%)  

Type 
2 (%) 

Coverage 
(%) 

1.0 3.00 95.50 1.00 93.50 0.00 92.00 3.00 95.50 1.00 93.50 0.00 92.00 

1.2 4.50 95.00 2.00 89.50 0.00 81.50 7.00 93.50 2.00 91.50 0.00 90.00 

1.3 6.00 93.50 2.50 89.00 0.00 77.50 8.50 91.50 2.50 91.50 0.00 90.50 

1.4 8.00 91.50 1.50 87.00 0.00 78.00 6.00 94.00 2.50 90.50 0.00 89.50 

1.5 11.00 90.00 2.50 84.00 0.00 67.50 10.00 90.00 4.00 86.50 0.00 89.00 

2.0 14.50 85.50 7.50 74.00 0.00 61.50 22.50 79.00 8.50 83.50 0.00 80.50 

2.5 18.00 82.00 8.50 71.50 0.00 52.50 20.00 80.00 8.50 78.50 0.00 82.00 

5.0 43.00 57.00 22.00 54.00 0.00 30.00 31.50 69.00 53.50 60.50 1.00 65.50 

𝟏𝟎.0 59.00 39.00 24.00 42.50 1.50 23.50 -- -- -- -- -- -- 

p  is defined as the ratio of the Pearson 
2  to its degrees of freedom 
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Table 3. Percentage of simulations with 1X  Type 1 errors and Type 2 errors and in which 

parameter coverage included the true parameter given true values of 0.01, 0.041, and 0.92 for 
the cross-sectional scenario using the negative binomial regression model and negative binomial 
GLMM. 

p  

Outlier Dependent Zero Inflation 

Negative Binomial Negative Binomial 

β1=0.01 β1=0.41 β1=0.92 β1=0.01 β1=0.41 β1=0.92 

Type 
1 (%) 

Coverage 
(%)  

Type 
2 (%) 

Coverage 
(%)  

Type 
2 (%) 

Coverage 
(%)  

Type 
1 (%) 

Coverage 
(%)  

Type 
2 (%) 

Coverage 
(%)  

Type 
2 (%) 

Coverage 
(%)  

1.0 3.00 95.50 0.50 93.00 0.00 91.50 3.00 95.50 0.50 93.00 0.00 91.50 

1.2 3.50 95.00 3.00 90.00 0.00 82.00 3.50 96.50 4.50 92.50 0.00 94.00 

1.3 3.00 97.50 3.50 91.00 0.00 79.00 5.00 94.50 5.50 93.00 0.00 92.50 

1.4 6.00 93.00 3.00 89.50 0.00 80.50 6.00 94.50 8.50 96.00 0.00 93.50 

1.5 7.00 94.50 5.50 90.50 0.00 77.50 5.00 94.00 10.00 95.00 0.00 93.50 

2.0 6.00 94.00 17.50 85.50 0.00 73.00 3.00 97.50 33.50 97.50 0.00 96.00 

2.5 7.50 93.50 24.00 85.00 0.00 67.50 2.00 98.50 60.50 99.00 0.00 95.00 

5.0 15.50 84.00 46.50 80.50 0.00 59.00 5.00 95.00 93.00 97.50 34.50 98.50 

10.0 22.50 78.00 61.00 77.50 11.00 54.50 -- -- -- -- -- -- 

p  

Negative Binomial GLMM Negative Binomial GLMM 

β1=0.01 β1=0.41 β1=0.92 β1=0.01 β1=0.41 β1=0.92 

Type 
1 (%) 

Coverage 
(%)  

Type 
2 (%) 

Coverage 
(%)  

Type 
2 (%) 

Coverage 
(%) 

Type 
1 (%) 

Coverage 
(%)  

Type 
2 (%) 

Coverage 
(%)  

Type 
2 (%) 

Coverage 
(%) 

1.0 0.52 99.48 7.33 97.38 0.00 96.88 0.52 99.48 7.33 97.38 0.00 96.88 

1.2 0.51 99.49 8.59 96.46 0.00 91.96 1.52 98.99 11.00 96.00 0.00 97.47 

1.3 0.50 99.50 12.63 95.96 0.00 91.96 1.02 97.46 12.56 98.49 0.00 97.50 

1.4 2.00 98.00 13.50 98.50 0.00 89.95 3.02 97.49 13.00 95.50 0.00 96.97 

1.5 0.50 99.50 21.00 96.00 0.00 86.93 0.50 99.50 19.00 98.50 0.00 96.00 

2.0 2.00 98.00 30.50 93.50 0.00 84.50 2.00 99.00 43.00 96.50 0.00 97.50 

2.5 1.00 98.50 38.50 92.00 0.00 80.00 2.00 98.50 59.50 98.00 0.00 96.00 

5.0 7.50 93.00 62.00 89.50 3.00 73.50 5.03 94.97 88.94 96.48 18.00 98.50 

𝟏𝟎.0 13.50 88.00 79.00 91.00 23.00 67.50 -- -- -- -- -- -- 

p  is defined as the ratio of the Pearson 
2  to its degrees of freedom 
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A.                                                                B. 

    

Figures 1a-b. Percentage of simulations with Type 1 errors and in which parameter coverage 
included the true parameter given a true parameter value of 0.01 in the cross-sectional scenario, 
for a.) outlier-dependent overdispersion and b.) overdispersion caused by zero inflation. 
 

A. 
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B. 

 

Figures 2a-b. Percentage of simulations with Type 2 errors and in which parameter coverage 
included the true parameter given true parameter values of 0.41 and 0.92 in the cross-sectional 
scenario, for a.) outlier-dependent overdispersion and b.) overdispersion caused by zero inflation. 
 

Increases in magnitude of both outlier-dependent and zero-dependent overdispersion result in 

increases in Type 1 and Type 2 errors of the 1  estimates as well as a decrease in coverage 

probabilities. Not surprisingly, the Type 2 error and coverage probabilities decrease with the 

higher effect size. Given the Type 1 error results, the unadjusted Poisson regression model and 

Poisson-GLMM perform fairly well for both scenarios with low overdispersion magnitude, 

particularly when 1.2p  . The negative binomial regression models have higher tolerance for 

extra variability, performing well up to 1.4p  . Furthermore, the NB-GLMM gives acceptable 

results in some cases up to 5.0p  .  
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It would appear the simple Poisson model may be utilized in cross-sectional cases where 

1.2p  . Furthermore, negative binomial regression should be utilized if 1.2 1.5p   while 

NB-GLMM should be utilized for higher values up to 5.0p  . 

There is clearly an effect of overdispersion on the models for values of 
p  lower than 

those picked up by the score test. NB-GLMM also results in the highest Type 2 error of all 

considered models, suggesting that negative binomial regression may be sufficient in some cases 

to address overdispersion of higher magnitude in these scenarios. The contrast between negative 

binomial and Poisson distribution models becomes more obvious as the magnitude of 
p  

increases.  

4. 2. Longitudinal Results 

Results for both longitudinal scenarios are given in Table 4 and illustrated in Figures 3a-b 

and 4a-b for all considered values of 
p , calculated under the Poisson-GLMM model. 

Longitudinal results are similar to those for the cross-sectional analysis. Given the percentage 

values of the Type 1 errors, the Poisson-GLMM again performs fairly well in addressing both 

outlier-dependent and zero-dependent overdispersion when 1.2p  .  

For larger magnitudes of overdispersion, up to 2.5p  , NB-GLMM performs well. NB-

GLMM results in considerably lower Type 1 errors and higher coverage probabilities and 

comparable Type 2 errors compared to Poisson-GLMM. As the magnitude of 
p  increases, the 

superiority of the NB-GLMM model becomes more apparent as the difference in errors and 

coverage increases compared to the Poisson-GLMM.  Results become much less reliable when 

5.0p  . 
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Table 4. Percentage of simulations with 1X  Type 1 errors and Type 2 errors and in which 

parameter coverage included the true parameter given true values of 0.01, 0.041, and 0.92 for 
the longitudinal scenario using Poisson and negative binomial GLMM. 

p  

Outlier Dependent Zero Inflation 

Poisson GLMM Poisson GLMM 

β1=0.01 β1=0.41 β1=0.92 β1=0.01 β1=0.41 β1=0.92 

Type 1 
(%) 

Coverage 
(%)  

Type 
2 (%) 

Coverage 
(%)  

Type 
2 (%) 

Coverage 
(%)  

Type 
1 (%) 

Coverage 
(%)  

Type 
2 (%) 

Coverage 
(%)  

Type 
2 (%) 

Coverage 
(%)  

1.0 3.50 98.00 0.00 97.50 0.00 98.00 3.50 98.00 0.00 97.50 0.00 98.00 

1.2 7.00 94.00 0.00 93.50 0.00 89.00 3.50 96.00 0.00 93.00 0.00 90.00 

1.3 9.00 95.00 0.00 85.50 0.00 85.50 10.50 90.00 0.00 93.50 0.00 90.00 

1.4 8.50 92.00 0.00 88.00 0.00 81.50 6.00 94.50 0.00 86.50 0.00 88.50 

1.5 14.00 86.00 0.00 85.50 0.00 77.50 7.00 93.50 0.00 86.50 0.00 89.00 

2.0 25.50 77.00 0.00 73.00 0.00 55.00 15.00 84.50 0.00 84.00 0.00 80.50 

2.5 31.50 70.00 0.00 61.00 0.00 46.50 27.00 72.50 0.00 68.00 0.00 75.50 

5.0 63.50 38.50 2.50 38.00 0.00 27.00 38.50 62.00 8.00 66.00 0.00 56.50 

10.0 86.00 15.00 12.00 18.50 0.50 15.50 -- -- -- -- -- -- 

p
 

Negative Binomial GLMM Negative Binomial GLMM 

β1=0.01 β1=0.41 β1=0.92 β1=0.01 β1=0.41 β1=0.92 

Type 1 
(%) 

Coverage 
(%)  

Type 
2 (%) 

Coverage 
(%)  

Type 
2 (%) 

Coverage 
(%) 

Type 
1 (%) 

Coverage 
(%)  

Type 
2 (%) 

Coverage 
(%)  

Type 
2 (%) 

Coverage 
(%) 

1.0 3.55 98.82 0.00 100.00 0.00 97.48 3.55 98.82 0.00 100.00 0.00 97.48 

1.2 4.02 95.98 0.00 94.44 0.00 90.86 3.00 97.50 0.00 96.00 0.00 92.46 

1.3 5.00 95.50 0.00 90.95 0.00 88.38 3.50 97.00 0.00 97.50 0.00 96.00 

1.4 4.50 95.50 0.00 90.95 0.00 86.00 1.00 99.50 0.00 97.00 0.00 97.50 

1.5 5.00 94.00 0.00 92.00 0.00 86.00 1.50 99.00 0.00 94.50 0.00 98.50 

2.0 9.00 91.50 0.00 90.50 0.00 71.00 1.50 99.50 0.00 99.00 0.00 99.50 

2.5 9.50 91.00 0.00 86.50 0.00 67.00 1.00 99.50 3.50 98.50 0.00 99.50 

5.0 19.00 83.00 0.50 81.50 0.00 72.50 0.00 100.00 75.00 99.50 0.00 100.00 

𝟏𝟎.0 18.50 83.00 3.50 86.50 0.00 81.00 -- -- -- -- -- -- 

p  is defined as the ratio of the Pearson 
2  to its degrees of freedom 
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A.                        B. 

      

Figures 3a-b. Percentage of simulations with Type 1 errors and in which parameter coverage 
included the true parameter given a true parameter value of 0.01 in the longitudinal scenario, for 
a.) outlier-dependent overdispersion and b.) overdispersion caused by zero inflation.   
 

A. 
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B. 

 

Figure 4a-b. Percentage of simulations with Type 2 errors and in which parameter coverage 
included the true parameter given true parameter values of 0.41 and 0.92 in the longitudinal 
scenario. 
 

5. Motivating Real Datasets 

5.1  Description 

We utilize two real datasets to examine model performance at varying magnitudes of 

overdispersion. We modify the datasets in order to produce datasets with different levels of 

overdispersion. The National Lung Screening Trial (NLST) (Aberle et al. 2011) randomized 

50,263 non-Hispanic white (NHW) and non-Hispanic black (NHB) patients to compare lung 

cancer mortality rates between those screened via low-dose CT screening and those given chest 

radiography. We consider the relationship between patient race predictor (NHB versus NHW) and 

comorbidity burden outcome, adjusted for assigned treatment group. The dispersion parameter 

p  for the whole cohort is 1.30. When we look into gender based subgroups, the dispersion 

parameter values for comorbidity burden are 1.25 and 1.36 for male and female patients, 

respectively. The second example is the classic Ames Salmonella dataset that is known for its 
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highly overdispersed count data (Mortelmans and Zeiger 2000). This classic overdispersed 

dataset includes a count outcome of bacterial colonies by six levels of medication dose on three 

different plates. The dispersion parameter 
p  for the whole cohort is 5.33. When we stratify the 

data by medication dose into low (less than or equal to 33 micrograms) and high (33 or more 

micrograms), we achieve a dispersion value of 1.99 for the low dose group and 4.18 for the high 

dose group. Here, we examine the relationship between bacterial colony count outcome and log 

medication dose predictor. 

5.2  Results 

All model results are given in Table 5, including rate ratios, AIC goodness-of-fit statistic, 

standard error of the beta parameters, and parameter p-values.  

Table 5. Standard error and rate ratio by overdispersion magnitude for NLST and Salmonella 

datasets. 

NLST 

Description Model 𝝋𝑷 AIC RR SE P-Value 

Male Patients 

Poisson 

1.25 

86772.4 1.127 0.025 <0.0001 

Poisson GLMM 86499.0 1.102 0.025 0.0001 

NB 86070.3 1.127 0.028 <0.0001 

NB GLMM 85861.2 1.200 0.020 0.0005 

Whole Cohort 

Poisson 

1.30 

151861.2 1.211 0.017 <0.0001 

Poisson GLMM 151314.1 1.190 0.018 <0.0001 

NB 150147.2 1.211 0.020 <0.0001 

NB GLMM 149741.7 1.190 0.021 <0.0001 

Female Patients 

Poisson 

1.36 

64958.8 1.296 0.024 <0.0001 

Poisson GLMM 64709.1 1.279 0.025 <0.0001 

NB 63952.0 1.296 0.029 <0.0001 

NB GLMM 63787.5 1.279 0.030 <0.0001 

Salmonella 

Description Model 𝝋𝑷 AIC RR SE P-Value 

Low Dose 

Poisson 

1.99 

61.5 1.117 0.120 0.3577 

Poisson GLMM 60.1 1.117 0.120 0.3999 

NB 62.6 1.114 0.147 0.4629 

NB GLMM 62.1 1.117 0.120 0.4000 

High Dose 

Poisson 

4.18 

81.7 0.824 0.061 0.0014 

Poisson GLMM 69.5 0.824 0.061 0.0244 

NB 73.7 0.824 0.107 0.0708 

NB-GLMM 71.5 0.825 0.062 0.0271 

Whole Cohort 

Poisson 

5.33 

171.77 1.119 0.027 <0.0001 

Poisson GLMM 152.85 1.119 0.027 0.0009 

NB 140.43 1.134 0.057 0.0275 

NB GLMM 141.02 1.132 0.047 0.0194 
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We observe that the negative binomial regression model results in moderately adjusted standard 

error values and low AIC goodness-of-fit statistics in the NLST datasets, with respective 

dispersion magnitudes of 1.25, 1.30, and 1.36. The standard errors resulting from the NB model 

for these dispersion magnitudes are, respectively, 12.00%, 17.65%, and 20.83% higher than 

those resulting from the simple unadjusted Poisson model. The percent increase in standard error 

produced by the NB here clearly increases with the level of overdispersion in the dataset. The 

negative binomial generalized linear mixed models also perform well.  

The results are similar among the higher magnitudes of overdispersion in the Salmonella 

datasets. The standard errors resulting from the NB model for dispersion magnitudes of 1.99, 

4.18, and 5.33 are 22.50%, 75.41%, and 111.11% higher than those resulting from the simple 

unadjusted Poisson model, respectively. For the dataset with the highest magnitude of 

overdispersion, the NB-GLMM gives a more moderate increase of 74.07% compared to the 

unadjusted Poisson and may be preferable here. Again, the percent increase in standard error 

appears to correspond with the increase in overdispersion magnitude. 

6. Conclusion 

We compared Poisson and negative binomial methods via simulation study for analyzing 

cross-sectional and longitudinal datasets with two binary predictors and count outcome containing 

overdispersion due to either the addition of outliers or zero inflation. Magnitude of overdispersion 

was measured by dispersion parameter 
p , defined as the ratio of the Pearson 

2  value to its 

corresponding degrees of freedom n p . Comparison among models was made using Type 1 

error with a true 1  value of 0.01, Type 2 errors using true 1  values of 0.41 or 0.92, and 

coverage probability of 1  for all effect sizes of 1 .  

Results of our analysis demonstrate that the unadjusted Poisson regression and Poisson-

GLMM perform fairly well for cross-sectional scenarios when there is low overdispersion 

magnitude, particularly when 1.2p  . The negative binomial regression model performs well at 

higher magnitudes of overdispersion under both outlier-dependent and zero-dependent 
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scenarios, up to 1.4p  . The NB-GLMM gives acceptable results at high magnitudes of 

overdispersion in some cases up to 5.0p  . Both the Poisson-GLMM and NB-GLMM resulted 

in more conservative Type 1 errors than their corresponding regression models. The Type 2 

errors are higher for negative binomial regression and NB-GLMM compared to the unadjusted 

Poisson and Poisson-GLMM. The Type 2 error and coverage probability also decreased for 

higher 1  effect sizes. NB-GLMM resulted in the highest Type 2 errors overall, so negative 

binomial regression appears to be sufficient to address the overdispersion in the cross-sectional 

datasets. Further statistical intervention would be required under the most extreme outlier-

dependent overdispersion scenario when 10.0p  , as our results demonstrate that none of our 

models give reliable results in these cases. 

Longitudinal datasets appeared to be somewhat less tolerant of the more moderate 

levels of overdispersion. NB-GLMM gave more conservative Type 1 errors and higher coverage 

probabilities than Poisson-GLMM, as well as generally comparable Type 2 errors. Again, the 

Poisson-GLMM performs well in addressing both outlier-dependent and zero-dependent 

overdispersion when 1.2p  . For larger magnitudes of overdispersion, up to about 2.5p  , 

NB-GLMM performs well. The superiority of the NB-GLMM model became more apparent as the 

overdispersion in the dataset increased. Once again, further statistical intervention may be 

required when 5.0p  in longitudinal analysis. Our models addressing both outlier-dependent 

and zero-dependent overdispersion are less reliable in these cases. In a clinical setting, the 

covariates included in the model should be reexamined for errors leading to faulty models beyond 

the issue of overdispersion.  

It would appear that a general threshold for relying on the simple Poisson model for 

cross-sectional and longitudinal datasets is in cases where 1.2p  . For cross-sectional 

datasets, the negative binomial distribution via NB or NB-GLMM should be utilized if 
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1.2 1.5p  . For higher values of 
p  in these scenarios, NB-GLMM should be utilized up to 

5.0p  . However, if 5.0p   for longitudinal datasets or if 10.0p   for cross-sectional 

datasets, the model may not be reliable based on adjustment for overdispersion and should be 

checked for additional modeling errors.  

We also utilized two real cross-sectional datasets to produce varying magnitudes of 

overdispersion for analysis. We used data from the National Lung Screening Trial (NLST) [1] to 

examine the relationship between comorbidity count and patient race (NHB to NHW), adjusting 

for assigned treatment group. The 
p  value for the whole cohort was 1.30, and stratifying by 

gender gave dispersion values of 1.25 and 1.36 for male and female patients, respectively. 

According to our simulation results, these levels of 
p  would require statistical intervention via 

negative binomial regression or NB-GLMM. This was confirmed by decreased goodness-of-fit 

statistics and moderately adjusted standard errors compared to the unadjusted Poisson model. 

We also considered higher magnitudes of overdispersion using the Ames Salmonella dataset 

[20], which is a classic example of overdispersion in a dataset and includes measures of 

medication dose by plate and a count of Salmonella bacterial colonies. The 
p  values were 1.99 

for observations with medication levels of 33 micrograms or lower, 4.18 for observations with 

medications of higher than 33 micrograms, and 5.33 for the whole cohort. Our results indicate 

that these high levels of overdispersion require adjustment via the NB or the NB-GLMM, which is 

also supported by our analysis. The percent increase in standard errors resulting from the 

negative binomial models compared to the unadjusted Poisson increased in correspondence with 

higher magnitudes of overdispersion. 

We discussed a score test for overdispersion in Section 2.2 of 0 : 0H    vs. 1 : 0H    

in which the score statistic has a standard normal distribution under the null hypothesis. This 

score test suggests that a dataset which results in a score statistic greater than or equal to 1.65 

allows us to reject the assumption of equidispersion at a significance level less than or equal to 
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0.05. In our simulations, this translated into a level of overdispersion given by a value of 
p  at 

about 1.5 2.0p   for both overdispersion scenarios dependent on effect size, as 

demonstrated by the nominal 95% rejection of equidispersion by the score test at these levels. It 

is clear from our simulations, however, that the presence of outlier-dependent overdispersion is 

harmful to our analyses and should be addressed at even lower values of 
p , particularly at 

1.2p  , although the assumption of equidispersion may not be rejected at these levels by the 

score test. 
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1. Introduction 

Missing data in time varying categorical variables are frequently encountered in 

longitudinal biomedical studies. While there has been progress with missing data methods that 

deal with longitudinally measured continuous variables, there is still paucity of methods that deal 

with time varying categorical variables that have missing values. Recently, multiple imputation 

based on latent class (LCMI) has been proposed to deal with the problem of missing data in time 

invariant categorical covariates (Vermunt et al. 2008, Gebregziabher and DeSantis 2010). 

However, no extension has been made to address the problem of missing data in time varying 

categorical covariates. 

Our motivating dataset is a retrospective, longitudinal cohort consisting of veterans with 

type 2 diabetes who were followed from 2002-2006 (Lynch et al. 2014). In this dataset, the 

outcome of interest is disease burden measured as a count of comorbidities based on those 

listed in the Elixhauser comorbidity index, which may range from 0 to 31. In this study two 

important covariates, medication non-adherence (MNA) and patient blood hemoglobin levels 

(A1C), which were measured longitudinally, were missing for a substantial number of patients. 

We use this motivating dataset to develop methodology for handling missing data in time varying 

categorical covariates.  

Recent work demonstrated that multiple imputation based on latent class can be used to 

impute missing categorical covariates (Vermunt et al. 2008, Gebregziabher and DeSantis 2010). 

Such a latent class based method is relevant because missing categorical data are ubiquitous in 

biomedical research and there are no readily available principled methods for handling this 

problem (Schafer 1997b). Via an extensive simulation study, Gebregziabher and DeSantis (2010) 

showed that a latent class-based imputation approach provided unbiased parameter estimates in 

a highly stratified data model with ignorable and some non-ignorable missing data in time 

invariant categorical variables. Specifically, they showed that in a general random effects model 

framework with missing categorical variables, unbiased and efficient parameter estimates can be 

recovered utilizing latent class based multiple imputation. However, there are no studies that 
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jointly considered multiple imputation and latent transition analysis (LTA) to deal with missing 

data in time varying categorical covariates. The current paper seeks to extend LCMI to latent 

transition multiple imputation (LTMI) to impute missing categories of time varying covariates by 

their latent status. 

In LTA, a hidden Markov model is assumed where at each time point, an unobserved 

time varying latent variable is inferred from a group of longitudinally observed items (time varying 

items). Parameter estimation for latent transition methods has been successfully utilized and 

explored (Chung, Lanza et al. 2008), as well as applied to longitudinal random effect models 

involving missing data (Albert and Follmann 2007, Xiaowei, Shoptaw et al. 2007, Lee, Lee et al. 

2014). In LTA, the measurement model at each time point is a latent class model (Lazarsfeld and 

Henry 1968). All associations among categorical variables are explained by the underlying 

categorical latent variable. The result of fitting such a model is that for each individual, a latent 

trajectory that characterizes the missingness process is obtained. Conditional on the latent 

trajectory (latent transition or status), observations and items are independent; this is known as 

the conditional independence assumption. At each time point, incomplete categorical data can be 

imputed conditional on this latent status. In this paper, we will use LTA to estimate the LTMI 

model from completely observed covariates to implement multiple imputation of missing data in 

time varying categorical variables. 

Complete case analysis (CCA) is a widely used ad-hoc method for dealing with missing 

covariate data, in which all subjects with incomplete longitudinal data are removed from the 

dataset prior to analysis. This method may involve a high loss of information. Multiple imputation 

methods are generally considered superior to CCA, as MI is highly efficient and often 

demonstrates decreased bias compared to CCA depending on the magnitude and cause of 

missingness (van der Heijden, T. Donders et al. 2006, Demissie, LaValley et al. 2003, White and 

Carlin 2010). Complete case analysis may be acceptable in situations where missingness is 

completely at random (Knol, Janssen et al. 2010) or independent of the outcome given covariates 
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(White and Carlin 2010). Our simulation study and motivating data example also include complete 

case analysis results as a general baseline for making comparison. 

In finite mixture models, missing data are assigned to one of numerous distinct mixture 

components or classes, creating groups in the data called clusters.  Missing data are generally 

assigned to a cluster based on maximum likelihood estimation, the most popular method of which 

is estimation-maximization (EM) (Leisch 2004). EM algorithms have been used to impute missing 

data in a wide variety of biomedical applications and missingness scenarios (Lipsitz et al. 1999, 

Stubbendick and Ibrahim 2003, Ibrahim, Chen et al. 1999, McLachlan 1997). Random effects 

pattern-mixture models have also been applied (Hedeker and Gibbons 1997). Because of the 

presence of clusters in mixture models, random effects may be assumed to come from not one 

but a finite mixture of normal distributions (Verbeke and Lesaffre 1996), leading to the use of the 

heterogeneity linear mixed model (Komarek et al. 2002). Mixture models using EM and Bayesian 

methods have been successfully used to model clustered longitudinal data (Heinzl and Tutz 

2013, Goodman, Li et al. 2013, Wan and Chan 2009, Grunwald, Bruce et al. 2011) and extended 

to latent class mixture models (Beunckens, Molenberghs et al. 2008). Our simulation study and 

motivating data example also include LCMI and LTMI heterogeneity linear mixed model 

applications. 

The paper is organized as follows. Section 2 reviews methods and provides discussion of 

LCMI. Section 3 introduces the LTMI method. Section 4 presents simulation results in terms of 

goodness of fit, bias and efficiency of LTMI versus CCA and LCMI methods. A description and 

results of analysis for the motivating dataset are given in Section 5. Section 6 includes a 

discussion of all results and future research plans in this area.  

2. Methods 

2.1.  Data, Model and Notation 

We consider a longitudinal generalized linear model setup to develop an analytic 

framework for the analysis of missing data in time varying categorical variables. Let   ijY  be a 
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response, while 
1 X ij

 (subject to missingness) and 
2 X ij

 (not subject to missingness) are 

covariates of interest at the 
thj  repeated measure for the 

thi   subject ( 1,..., , 0,..., ii n j T 

). Let iq  denote the random effects for each individual i  which could be assumed to have a 

normal distribution with zero mean and covariance G . Let 1 2( , )    be the regression 

coefficients corresponding to 
1 X ij

 and 
2 X ij

, respectively, and   

 
1 1 2 2ij i ij ijq X X        (1) 

We can rewrite this in vector form as: 

i i i iZ b X    

where 
1 2(X ,X ) 'i ij ijX  , (E[Y | q , ])i ij ig  , g  is a monotone link function, iZ  is the 

random effects design matrix and ib  is the random effects vector for each individual i . When 

data on all variables are observed, this model can be estimated in several different ways based 

on how one handles the estimation of the large number of nuisance parameters iq  which could 

be a source of loss of efficiency. Estimation of a model based on generalized estimating 

equations (GEE) could be used to make marginal inference on  . With an additional assumption 

on the distribution of iq , maximum likelihood methods (eg. pseudo-likelihood, REML) could also 

be used estimating models yielding inference on  . Under the assumption that iq  are Gaussian, 

the integral in the specification of the log-likelihood (see Equation 2) could be approximated using 

Gaussian quadrature to approximate the integral by weighted sums (Breslow and Clayton 1993). 

However, if some components of iX  are not fully observed, methods used for complete data may 

lead to biased estimates in these likelihood methods. On the other hand, if the missing data 

mechanism is characterized as being missing completely at random (MCAR), valid inference 
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could be made using GEE. The same is true with the maximum likelihood methods (Breslow and 

Clayton 1993). 

Suppose some components of iX  are not fully observed. Let 
ijR  be a missing indicator 

for covariate 
ijX  which takes values 𝑟𝑖𝑗 and comes from a distribution parameterized by  . 

Further define the joint density of 
ijR , 

ijY  and iq  as (Y ,R ,q )ij ij ih . This can be factored either 

using the selection model (Y ,R ,q ) h(Y | q ) h(q ) h(R | q )ij ij i ij i i ij ih    , or the mixture pattern 

model (Y ,R ,q ) h(Y | R ,q ) h(q ) h(R )ij ij i ij ij i i ijh    . Under the selection model, the full 

likelihood based on this joint density is given by, 

 
1 1

( , ,G) (y | q , ,G)h(q | G)h(r | ,Y )
iTn

ij i i ij ij i

i j

L h q   
 

    (2) 

In this paper, we use the multiple imputation paradigm to efficiently estimate parameters 

of the random effects data model given in Equation 1. We implement this by using pattern-mixture 

models which are more theoretically appealing (Rubin 1987, Allison 2001) than selection models 

for MI. Thus, we define the full likelihood based on pattern-mixture model as 

 
1 1

( , ,G) (y | r ,q , )h(q | G)h(r | )
iTn

ij ij i i ij i

i j

L h q   
 

    (3) 

We will use latent transition analysis coupled with multiple imputation to achieve our objectives. 

The details are given in Section 3. 

2.2. Conditional AIC 

The conditional Akaike information criterion (cAIC) has been adopted as a conditional 

deviation information criterion (Celeux, Forbes et al. 2006) and proposed to choose among mixed 

effects models when data are clustered, by accounting for shrinkage in the random effects via the 

effective degrees of freedom (Vaida 2005). The marginal AIC has been shown to be biased when 

estimating information for random effects models (Greven and Kneib 2010), suggesting that 

traditional information criterion measures may be inappropriate in these cases.  
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The conditional AIC has been further corrected and developed, increasing its usefulness 

(Vaida 2005, Liang, Wu et al. 2008, Greven and Kneib 2010). Further application has also been 

made to generalized linear mixed models (Donohue, Overholser et al. 2011).  The unbiased 

estimator of the cAIC is given as follows: 

0
ˆˆ2log(g[y | (y),b(y)]) 2 (y)cAIC      

Here, 
0

1 1

ˆ
(y)

iTn
ij

i j ij

y

y


 





  and we set 

1 1

iTn

i j

N ij
 

 . Note that iy  is the 
thi  component of y  

such that 1 5(y ,..., y ) 'i i iy   and ˆiy  is the 
thi  component of the fitted vector ˆ ˆŷ Zb X  . The 

partial derivatives 
ˆ

ij

ij

y

y




, with 1,...,ij N , can be approximated numerically by 

ˆ ˆ{y (y he ) y (y)}/ hij ij ij   where h  is a small number, 
ije  is the 1N   vector, the 

thi  component 

is equal to 1, and other components are equal to zero (Liang, Wu et al. 2008). In this study, we 

will compute the cAIC to compare goodness of fit among our Poisson models with random effects 

and equal N  as above, setting 0.0001h   as in (Liang, Wu et al. 2008). 

2.3.  Multiple Imputation 

In multiple imputation (MI) (Rubin 1987), an imputation model is based on the conditional 

distribution of the missing responses on the observed responses and is used to draw and replace 

each missing value with a set of plausible values. Each of the complete data sets (after 

imputation) is then analyzed using a standard method, and the results are later combined to 

produce parameter estimates, standard errors, and confidence intervals which account for the 

uncertainty in the imputation.  

Several different MI-based approaches have been proposed for a variety of clinical 

research applications (Rubin 1987, Engels 2003, Nevalainen, Kenward et al. 2009, Harel and 

Zhou 2007). The expectation–maximization (EM) algorithm finds the maximum likelihood estimate 

(MLE) of parameters via iterating the E- and M-steps until convergence (Dempster et al. 1977). 
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Loglinear multiple imputation (LLMI) imputes missing categorical data at time j  using a saturated 

log-linear model based on observed and imputed data from all prior time points, 1,..., 1j j   

(Schafer 1997a). The saturated log-linear model can also be reformulated as a logistic regression 

model with interaction terms included (Agresti 2002).  

In general, a suitable model is specified for the conditional distribution of the missing 

responses on the observed responses, (Y | X , )mis obsf  , where misY  indicates the missing 

portion of the data, obsX  denotes the observed portion and   is the vector of parameters. This 

joint distribution could be expressed as follows with an additional term of the missing indicator, 

ijR . 

 
1 2 1 2

1 2 1

Pr(R ,Z ,X ,Y ; , , ) Pr(Z ,X ,Y ; , ) Pr(R | Z ,X ,Y ; )

Pr(Z ,X ,Y ; , ) Pr( | Z ,Y ) Pr(R | Z ,X ,Y ; )

ij ij ij ij ij ij ij ij ij ij ij

ij ij ij ij ij ij ij ij ij

     

   

 

  
  (4) 

The pattern of missingness, missingness mechanism, and whether the distributions for 

ijR  and 
ijX  involve common parameters will determine the method of choice for the first stage. 

For missing categorical data with monotone missing data pattern, a propensity score method or 

regression method based on parametric models could be used (e.g., logistic or discriminant 

analysis) (Schafer 1997a, Little and Rubin 2002). In a propensity score method, a sequence of 

logistic regression models are estimated with 
ijR  as an outcome and all past observed values as 

covariates to estimate (Y | X , )mis obsf  . After fitting this model, imputed values are drawn from 

the fitted model following three steps; see (Li, Mehrotra et al. 2006, Rubin 1987). In regression 

methods, a model of the following form is fitted with the observed data for a variable 
ijY  with 

missing values. 

 1 1 0 1 1 1 1[E(Y | X ,...,X )] X ... Xij i ij i j ijg           (5) 

After fitting model (5) using observed data from subjects who have not dropped out at the 

thj  visit, 
*  and 

*  are then drawn from the distribution of ̂ and ̂  to account for the 
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uncertainty in estimating  and  , where   is the residual standard error of the model. Finally, 

predicted values based on the estimated model are used to impute the missing values. The 

predictive mean matching (PMM) method is a similar regression option for semi-parametric data. 

In this case, after the simulated regression model is run, a value is randomly chosen from among 

the observed values in which the predicted value is closest to the predicted value of the missing 

observation (Heitjan and Little 1991, Schenker and Taylor 1996).  

2.4. Latent class multiple imputation (LCMI) 

Latent class multiple imputation (LCMI) is a method developed by Gebregziabher and 

DeSantis (2010) for dealing with time invariant missing data in categorical covariates. They 

implemented LCMI by first fitting the latent class model to the observed data, 
,i obsx , using Proc 

LCA Version 1.1.5. This SAS procedure estimates latent classes measured by categorical 

indicators when covariates are time invariant. Gebregziabher and DeSantis went on to sample 

from the posterior probability of time invariant latent class iL  for each individual i  given the 

observed data, 
, ,(L l | Y y )i i obs i obsP   , and also sampled from the distribution of the missing 

data conditional on class, ,(Y | L l)i mis iP  .  Finally, they used a full Bayesian MCMC within 

class posterior sampling approach to impute the missing categorical data, 
,i misy . Additional 

technical details and information regarding the implementation of LCMI can be found in 

(Gebregziabher and DeSantis 2010). A complete discussion of latent transition analysis follows in 

Section 3.1. 

3. Latent transition multiple imputation 

3.1. Latent transition model 

Let 1(L ,...,L )j TL   represent class membership indicators at time 1,...,j T  where 

observed 1,...,jl L . The vector 1(Y ,...,Y )j j MjY   represents the M  observed categorical 

variables where each variable may take on values 1,...,Cmk   for every time point, 1,...,j T . 
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The joint probability that the 
thi  individual exhibits the realization of item responses, 1,...,i iTy y , 

and observed latent class membership, 
1(l ,..., l )j Tl  at time j  is 

 
1 1

(y k)(j)

1 1 | |

2 1 1 1

(Y y ,...,Y y ,L l )
m

imj

j j j

CT T M
I

i T iT j j l l l mkj l

j j m k

p   




   

   
       

   
    (6) 

where 
1 1 1(L l )l P   , 

1

(j)

| 1 1(L l | L l )
j jl l j j j jp

     , and | (Y k | L l )
jmkj l mj j jp    . 

This representation assumes that items are conditionally independent within each class of 
jl  for 

all time points, 1,...,j T . The collection of   and   parameters represent latent class 

prevalence at various time points where the sequence, 
jL , constitutes a first order Markov chain 

for 2,...,j T . The latent class prevalence at time j  where 2j   is calculated as, 

 
1 1 1

1 1

(j) (j)

|

1 1 2

(L l ) ...
j j

j

TL L

l j j l l l

l l j

P  


  

        

The likelihood contribution for the 
thi  individual across all time points becomes, 

 
1 1

1 1

(y k)(j)

1 1 | |

1 1 2 1 1 1

( ;Y y ,...,Y y ) ...
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imj

j j j

j

CT T ML L
I

i T iT l l l mkj l

l l j j m k

L    






     

   
      

   
     (7) 

A more detailed derivation of Equation 7 can be found in Appendix 3. The collection of free 

parameters ( , , )     can be estimated using maximum likelihood, i.e., solving the score 

equations. This can be accomplished using an EM algorithm (Dempster et al. 1977), which 

involves iterating between the posterior distribution of latent class conditional on the item 

responses (Equation 6) and the score equations (Chung, Lanza et al. 2008). For the purposes of 

multiple imputation, the following posterior probabilities of latent class membership are of interest: 
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| |
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ˆ
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  (8) 
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where 
1(l ,...,l ) 1 1 1

ˆ p(L l ,...,L l | y ,..., y )
Ti T T i iT    . LTA enables us to fit the dynamic imputers 

model to obtain latent status at each time point for the time varying missing covariates, while 

multiple imputation is used to impute the missing data. Thus, LTMI will improve upon standard 

multiple imputation techniques for missing categorical data by first clustering like observations in 

a time dependent manner based on the latent transition model, and then imputing based on latent 

status 
jl  at each time j . To accomplish this, the latent transition model may be expressed as a 

model for the observed data density, 
,(y ; )ij obsp  : 

 
1 1

1

(j)

, | 1

1 1 2 1 1 1

(y ; ) ... (y ,..., y | L l )
m

imj

j j

T

CT T ML L
r

ij obs l l l im imj j j

l l j j m k

p p  


     

   
     

   
      (9) 

Here, 0imjr   if the value of 
imjy  is missing and 1 otherwise. Note that 

imjr  represents a 

realization of the missing data indicator, 
imjR , so only variables 1,...,m M  at time points, 

1,...,j T  that do not have missing values contribute to the estimation of the model. This results 

in unbiased parameter estimation due to the assumption of conditional independence of variables 

given latent status assignment, and leads to a straightforward strategy for status-based multiple 

imputation. Once the latent transition model is estimated via the EM algorithm, one can easily 

obtain draws from the distribution of the missing data conditional on the observed data 

, ,(y | y ; )ij mis ij obsp   and with the conditional independence assumption we get, 

1 1

1

,(j)

, , | ,

1 1 2 ,

(y | L l )
(y | y ; ) ... (y | L l )

(y )j j

T

TL L
imj obs k ij ij

ij mis ij obs l l l imj mis k ij ij

l l j imj obs k

p
p p

p
  







   

 
   

 
        (10) 

Since the first part of Equation 10 is the posterior probability of membership in class 1,..., Tl l  at 

times 1,...,j T  respectively, given the observed data, then the distribution of 
, ,| ;imj mis imj obsy y   

can be rewritten as 

 
1(l ,...,l ) ,

ˆ (y | L l )
Ti imj mis ij ijp     (11) 
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which is equivalent to ,(y | L l ) imjr

imj mis ij ij

j m k

p   where 
imjy  are the complete data and 

imjr  is the missingness indicator. Recall that as only the observed data are used to fit the latent 

class model, 
,(y | L l )i mis ij ijp   is equivalent to 

1

1

(y | L l ) ij

T
r

ij ij ij

j

p




 , where 
ijy  are the 

complete data and 
ijr  is the missing data indicator. 

There is continuing debate on how to determine the number of classes when fitting a latent 

transition model (LTM). It has been recommended that specifying the number of latent statuses to 

be sufficiently large enables the LTM to capture the inherent characteristics of the data. 

Specifically, it will enable it to pick up the univariate distribution, bivariate association and higher 

order interactions among the covariates (items) used to fit the imputation model (McLachlan and 

Peel 2000). Statistical measures such as cAIC alone may not necessarily lead to the best 

imputation model. Hence we check model bias and efficiency as well as goodness of fit measures 

to choose an optimal missing data method of analysis.  

3.2. Imputation based on LTM 

LTMI is implemented following the example of Gebregziabher and DeSantis (2010). First, 

we estimated the latent class model to the observed data, 
,ij obsy . We then sampled from the 

posterior probability of latent class given the observed data, 
, ,(L l | Y y )ij ij ij obs ij obsP   . We also 

sampled from the distribution of the missing data conditional on latent class, ,(y | L l )ij mis ij ijP  . 

We finally used a within class posterior sampling approach to impute the missing data, 
,ij misy .  

The latent transition imputers model was estimated using Proc LTA Version 1.1.5 (Lanza 

et al. 2007, Lanza et al. 2008). Proc LTA is a SAS procedure for latent transition analysis 

developed for SAS Version 9.2 for Windows. It is used when the latent variable and the items or 

covariates are all time varying. After fitting the imputers model dependent on observed time 



75 
 

varying covariates, we used the output posterior probabilities of an individual having a particular 

latent class at a particular time point to assign latent class status by individual and time point.  

We imputed the missing categorical 
1X  observations dependent on count outcome Y  

and latent class. An interaction between Y  and latent class was also considered but did not 

improve results. We ran five imputations each with five iterations following a burn-in of 20 

iterations. Following imputation, we used the conditional likelihood to estimate the parameters of 

the model in Equation 1, which we then used to make model comparison. 

3.3. Latent Class Discovery via Heterogeneity Linear Mixed Model 

Heterogeneity linear mixed models differ from the homogeneity model described in 

Equation 1 via the distributional assumptions of the random effects. In Equation 1, iq  denote the 

random effects for each individual i  and are assumed to have a normal distribution with zero 

mean and covariance G . In a heterogeneity linear mixed model, the iq  random effects are 

distributed according to a mixture of g   normal distributions with mean 
j  and covariance 

matrices 
jG  such that 

1

~ ( ,G )
g

i j j j

j

q N 


  where 
j  are mixture weights and 

1

1
g

j

j




 . The 

number of mixture weights must be chosen and should be driven by the data. Further details can 

be found in (Komarek et al. 2002, Heinzl and Tutz 2013). Latent classes are then chosen to 

correspond with the random effects mixtures, and multiple imputation methods based on latent 

class are utilized to impute the missing data. A SAS HetMixed macro that can be used to produce 

latent class results for inputting into the LTMI-LMM and LCMI-LMM is given in (Komarek et al. 

2002). An application of mixture models to latent transition analysis using a real substance abuse 

dataset is given in (Chung, Park et al. 2005). LTMI results using heterogeneity linear mixed 

models (LTMI-LMM) to assign latent class are provided for comparison with our LTMI method 

results using Proc LTA (LTMI-LTA). 
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3.4.  Fitting the outcomes model in SAS 

We first imputed the missing observations dependent on count outcome and assignment 

time varying latent class via PMM regression methods. We then utilized Proc GLIMMIX in SAS 

9.3 to perform longitudinal Poisson regression analysis on our generalized linear mixed models 

using a log link and random intercept. We included both time varying and time invariant 

covariates in the model as required. We removed bounds from the covariance parameter 

estimates to ensure model convergence. We also used the Cholesky root when calculating the 

random-effects matrix in mixed model equations. This algorithm uses more computing power but 

provides greater numerical stability, and is particularly useful when the estimated variance of the 

random effects model is not positive definite. We further utilized the Newton-Raphson method 

with ridging non-linear optimization method to estimate non-linear parameters in our models. This 

is an ideal optimization method for small problems with computationally simple Hessian matrices. 

We output pseudo-likelihood goodness of fit statistics, parameter estimates, and predicted 

outcomes for analysis using Proc MIANALYZE. 

4. Simulation study 

4.1. Design 

We generated time varying longitudinal cohort data with a Poisson count outcome with 

2m   categorical predictor variables. We created 300 datasets each containing 200 

observations with data taken at five continuous time points 1,2,...,5j  . The data for each 

subject were generated according to the model, 

2

1

log(E(Y y | X ))ijm ijm m ijm

m

X 


    where 

  is the collection of parameters 1 2( , )  . We set the intercept 1.0  . In a given stratum, the 

outcome count Y  for the 
thi  individual was generated using a mean given by 

2

1

exp( )m ijm

m

X 


 . We considered a time varying categorical exposure variable 1X  with 

2k   levels. Time varying covariate 2X  is a potential binary confounder of the relationship 
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between main exposure, 
1X , and the outcome variable,  Y . We assigned parameter 

1 0.41   

to yield a rate ratio of 1.5  and 2 0.69   to yield a rate ratio of 2.0 .  

After generating complete data according to the above model, data sets with missing 

exposure 
1X  were generated from the cohort with both 20% and 50% proportions of 

observations with missing data. Observations at the first two time points were left completely 

observed, with observations first set to missing at 3j   and missingness assigned through 

5j  . Once an observation was assigned missingness at a time point, the remaining time points 

of exposure 1X  were also set to missing to make the simulation more accurate to clinical data. 

We generated data to be missing completely at random (MCAR), missing at random (MAR), or 

missing not at random (MNAR) in the sense of Little and Rubin (2002). Further specification of 

the missingness within MAR was based on the dependence of the probabilities of missing 1X  on 

either 2X , Y , or both 2X  and Y  in three different scenarios. Missingness within the MNAR 

setting was based on the dependence of the probabilities of missing 1X  on interaction between 

1X  and Y . We make the assumption that the missingness model is logistic with all the variables 

as covariates, 

1 2 0 1 1 2 2 3 4 1logit (M 1) | X , , X X (Y X )j j j j j jpr X Y Y              

where 1M R   is a binary indicator that takes a value of 1 if 1X  is missing and 0  if 1X  is 

observed. The intercept of the model 0  determines the overall proportion of missingness while 

the other   parameters are the corresponding log odds ratios of missingness for each variable. 

For the 20% missing proportion MAR and MNAR data, we assigned   values via the appropriate 

variables such that about 5% of the observations were assigned missingness at 3j  , 5% at 

4j  , and 10% at 5j  .  For the 50% MAR and MNAR proportions, we assigned these values 
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such that about 10% of the observations were assigned missingness at 3j  , 10% at 4j  , 

and 30% at 5j  . 

4.2. Results 

We made comparison among CCA, LCMI, and LTMI methods for imputing missing data 

in the simulated datasets via cAIC, asymptotic standard errors (ASE), estimated standard errors 

(ESE), and 95%  confidence intervals (CI). Figures 1 and 2 respectively give the ASE and ESE 

for MCAR, MARx2, MARy, MARx2,y, and MNAR models with 20% and 50% proportions of 

missingness imputed via LCMI and LTMI methods. The values for the dataset with no 

missingness are included for comparison.  

 

Figure 1. Comparison of asymptotic standard errors for all simulated models with count outcome 

Y . Results are stratified by percentage of missing data, method of dealing with missingness 

(CCA, LCMI, or LTMI methods), and type of missingness (MCAR, MAR, MNAR) for predictor 1X  

including missingness and complete covariate 2X . 



79 
 

 

 

Figure 2. Comparison of estimated standard errors for all simulated models with count outcome 

Y . Results are stratified by percentage of missing data, method of dealing with missingness 

(CCA, LCMI, or LTMI methods), and type of missingness (MCAR, MAR, MNAR) for predictor 1X  

including missingness and complete covariate 2X . 

Under the 50% missingness scenarios, LTMI-LTA gives moderately adjusted ASE and ESE 

values for both compared to CCA and LCMI methods. LTMI-LMM appears to inflate the 

magnitude of the standard errors, while LCMI-LCA and LCMI-LMM give comparable reduced 

standard error estimates. The contrast is particularly pronounced in the various 50% MAR and 

MNAR scenarios. Not surprisingly, CCA performs more adequately under the 20% MCAR 

scenario but gives much higher ASE and ESE in other scenarios. Under the 20% missingness 

scenarios, the SE are fairly comparable for all latent class methods by type of missingness. 

Goodness of fit may be assessed via Figure 3, which gives the cAIC for all imputation methods 

compared to the cAIC for the dataset excluding missingness. Comparable goodness of fit is 

achieved among the various imputation methods. 
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Figure 3. Comparison of conditional AIC for all imputation methods with count outcome Y . 

Results are stratified by percentage of missing data, method of dealing with missingness (CCA, 

LCMI, or LTMI methods), and type of missingness (MCAR, MAR, MNAR) for predictor 1X  

including missingness and complete covariate 2X . 

 

A full table of results demonstrating the consistent performance of LTMI-LTA, including 

decreased bias compared to other methods, is given in Table 1. Similar tables for CCA, LCMI-

LCA, LCMI-LMM, and LTMI-LMM are given in Appendix 4 Tables 1 - 4. The ratio of the Pearson 

2   to its degrees of  freedom are included in the tables and are equal to about one in all cases, 

showing no indication of overdispersion in the count outcome. 

 

 

 

 

 



81 
 

Table 1. Results of LTMI-LTA imputation for 20% and 50% missingness scenarios. 
 

No missing 
20% Missing 

MCAR MAR (x2) MAR (y) MAR (x2,y) MNAR 

Conditional AIC 3229.46 3233.62 3232.55 3234.62 3233.84 3288.38 

Pearson 
2 /df 1.002 1.006 1.004 1.009 1.008 1.042 

X1  (β1 = 0.41)       

Mean β1 0.414 0.400 0.403 0.378 0.387 0.286 

Mean RR 1.513 1.492 1.496 1.459 1.473 1.331 

ASE 0.047 0.048 0.048 0.048 0.048 0.054 

ESE 0.051 0.054 0.052 0.055 0.053 0.061 

Bias -0.004 0.010 0.007 0.032 0.023 0.124 

Mean 95% CI for β1 0.321, 0.506 0.305, 0.494 0.310, 0.497 0.280, 0.470 0.291, 0.481 0.181, 0.393 

X2  (β2 = 0.69)       

Mean β2 0.696 0.685 0.688 0.670 0.678 0.603 

Mean RR 2.006 1.984 1.990 1.954 1.970 1.828 

ASE 0.048 0.048 0.048 0.049 0.049 0.054 

ESE 0.049 0.052 0.050 0.053 0.052 0.060 

Bias -0.006 0.005 0.002 0.020 0.012 0.087 

Mean 95% CI for β2 0.603, 0.790 0.590, 0.780 0.594, 0.782 0.572, 0.763 0.583, 0.775 0.500, 0.712 

 

No missing 

50% Missing 

 
MCAR MAR (x2) MAR (y) MAR (x2,y) MNAR 

Conditional AIC 3229.46 3237.77 3236.63 3241.10 3238.99 3298.20 

Pearson 
2 /df 1.002 1.009 1.008 1.017 1.014 1.047 

X1  (β1 = 0.41)       

Mean β1 0.414 0.383 0.389 0.337 0.360 0.244 

Mean RR 1.513 1.467 1.476 1.401 1.433 1.276 

ASE 0.047 0.049 0.049 0.048 0.048 0.054 

ESE 0.051 0.055 0.056 0.055 0.054 0.062 

Bias -0.004 0.027 0.021 0.073 0.050 0.166 

Mean 95% CI for β1 0.321, 0.506 0.286, 0.480 0.293, 0.484 0.242, 0.428 0.264, 0.453 0.116, 0.327 

X2  (β2 = 0.69)       

Mean β2 0.696 0.671 0.676 0.637 0.657 0.566 

Mean RR 2.006 1.956 1.966 1.891 1.929 1.761 

ASE 0.048 0.049 0.049 0.049 0.049 0.054 

ESE 0.049 0.052 0.054 0.054 0.053 0.061 

Bias -0.006 0.019 0.014 0.053 0.033 0.124 

Mean 95% CI for β2 0.603, 0.790 0.574, 0.768 0.580, 0.771 0.543, 0.731 0.561, 0.722 0.440, 0.651 

- ASE = the mean of the Asymptotic SE as computed by Proc MEANS (reported as mean 

of ASE) 

- ESE = the SD of the estimates of beta as computed by Proc MEANS (reported SD 

Estimate) 
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5. Data Example 

5.1. Description 

We used a real data example to demonstrate the application of LCMI and LTMI methods, 

for dealing with missing categorical covariate data. The outcome is count data and the model 

used to study the association between the outcome and covariates is Poisson regression. The 

motivating dataset comes from a study designed to explore relationships between count of 

comorbidities with MNA and A1C adjusting for demographics such as geographic and 

racial/ethnic factors in veterans with type 2 diabetes. A total of 892,223 patients participated in 

this retrospective cohort study with yearly time points from 2002-2006, from which we randomly 

sampled 10,000 patients with complete outcomes and time invariant covariates. Two covariates 

of particular interest in this study are medication possession ratio (MPR), a measure of 

adherence to medication, and patient hemoglobin levels (A1C), a measure of blood sugar control 

in diabetic patients. The primary outcome was the patient’s time varying comorbidity burden 

measured as an Elixhauser comorbidity count of up to 31 comorbidities. These include medical 

comorbidities such as cancer, cardiovascular disease, hypertension, and obesity, and mental 

comorbidities, including depression, psychosis, and substance abuse.  

 
Figure 4. Mean Elixhauser score by MNA and A1C status over five year time period. 
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Line graphs modeling mean Elixhauser score over time by MNA and A1C status are 

given in Figure 4. An MPR of less than 0.80 demonstrates medication non-adherence (MNA), 

while an MPR of 0.80 or higher demonstrates adherence to medication. An A1C of 8.0 or lower 

suggests normal blood sugar control, while an A1C of greater than 8.0 suggests abnormally high 

blood sugar control (common in diabetic patients). In many cases, these values are missing for a 

given patient at one or more time points. Other covariates of interest include patient 

demographics such as age, gender, race, marital status, and urban or rural living. The data have 

been previously published in 2014 by Lynch et al. and more information about the study design 

can be found there. 

Plots modeling the percentage of missing MNA and A1C values over time are given in 

Figure 5. 

 
Figure 5. Percentage of missing MNA and A1C statuses over five year time period. 

To understand the nature of the missing MNA and A1C values, logistic regression results 

examining the relationship between the dichotomized missing MNA and missing A1C values and 

demographic covariates are given in Table 2. There is association between missingness in the 

MNA and A1C variables and observed variables. As missingness is not expected to depend on 

the individual patient's MNA or A1C status, the missing mechanism is likely to be MAR.  
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Table 2. Missing MNA and A1C covariates by demographics. 

Covariate 
Missing MNA Missing A1C 

OR P-Value OR P-Value 

Time 1.049 <0.0001 1.057 <0.0001 
Age 1.038 <0.0001 1.016 <0.0001 
Comorbidity Count 0.880 <0.0001 0.852 <0.0001 
Region     

   South (reference)     
   Northeast 1.818 <0.0001 1.532 <0.0001 

   Midatlantic 1.560 <0.0001 1.469 <0.0001 

   Midwest 1.421 <0.0001 2.128 <0.0001 

   West  1.231 <0.0001 0.975 0.5090 

Gender         

   Male (reference)         
   Female 1.447 0.0004 1.048 0.5557 

Race         

   NHW (reference)         

   NHB 1.481 <0.0001 0.853 <0.0001 
   Hispanic 10.546 <0.0001 2.116 <0.0001 
   Other 5.081 <0.0001 0.937 0.0612 
Living         
   Urban (reference)         
   Rural 1.070 0.0505 1.157 <0.0001 
Marital Status         

   Married (reference)         
   Unmarried 1.052 0.1531 0.927 0.0022 
Percent Service Connected Disability         
   <50% (reference)         

   ≥50% 0.834 0.0007 0.833 <0.0001 

 

To examine the relationship between disease burden defined as count of patient 

Elixhauser comorbidities with both time invariant and time varying demographics of interest, we 

performed Poisson regression with a log link and random individual intercept. We ran CCA as 

well as LCMI-LCA, LCMI-LMM, LTMI-LTA, and LTMI-LMM via PMM regression imputation 

methods to make comparison among the methods of dealing with missing time varying 

categorical covariates. We utilized Proc GLIMMIX in SAS 9.3 to perform our Poisson regression 

analyses. Method performance is assessed and compared using goodness of fit statistics 

including cAIC, parameter standard errors, and 95% confidence intervals. 
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5.2. Results 

We compared models via two-class LCMI and LTMI methods for model parsimony and 

given that our missing covariates are binary.  Figure 6 gives the parameter standard error 

estimates for the missing data parameters A1C and MNA by method, while Figure 7 gives the SE 

for all parameters included in the models.  

 
Figure 6. Comparison of parameter standard errors for A1C and MNA predictors with missing 

observations, by method of dealing with missing data (CCA, LCMI, or LTMI methods). 

 

 
Figure 7. Comparison of parameter standard errors for all predictors in the model, by method of 

dealing with missing data (CCA, LCMI, or LTMI methods). 
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The SE estimates were lowest for LTMI-LTA, notably in the case of the covariates with missing 

data and particularly for the A1C covariate which had a higher percentage of missingness. LCMI-

LTA and the LMM methods gave fairly comparable results in terms of parameter standard error. 

LTMI-LCA and CCA gave higher standard errors for nearly every parameter.  The conditional AIC 

for all latent class models by method are given in Figure 8, and are generally comparable.  

 
Figure 8. Comparison of conditional AIC goodness of fit values. 

 

Table 3 gives LTMI-LTA results comparing patient Elixhauser score with MNA or A1C, 

both adjusted for demographics. There are significant differences in score based on medication 

adherence, A1C level, patient age, region, race, rural living, marital status, and percent of service 

connected disability. In the model containing MNA value, medically non-adherent patients have 

borderline higher scores than adherent patients (RR=1.009, p=0.0571), suggesting that patients 

with higher comorbidity burden may have poorer medication adherence. Patients from the West 

in the same model have the lowest comorbidity burden compared to patients from the South 

(RR=0.975, p=0.0101). Non-Hispanic black patients have the highest comorbidity burden among 

the race groups, compared to non-Hispanic white patients (RR=1.064, p=<0.0001), while 

Hispanic and Other race groups have lower comorbidity burden (respectively, RR=0.964, 

p=0.0025; RR=0.935, p<0.0001). Unmarried patients have higher Elixhauser scores than married 

patients (RR=1.043, p<0.0001). Not surprisingly, patients with 50% or higher disability also have 

a higher comorbidity burden than patients with reduced disability (RR=1.079, p<0.0001). In the 
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model containing A1C value, patients with abnormally high blood sugar (A1C greater than 8.0) 

also have a statistically higher comorbidity burden than those with normal blood sugar 

(RR=1.022, p=0.0002). The other covariate parameters are nearly identical to those in the MNA 

model. Similar tables can be found for CCA, LCMI-LCA, LCMI-LMM, and LTMI-LMM methods in 

Appendix 4 Tables 5 – 8, and give comparable results. 

Table 3. Relationship between Elixhauser score and covariates in Diabetes dataset via LTMI-

LTA. 

Covariate 
MNA A1C 

RR SE P-Value RR SE P-Value 

Covariate with Missingness       

   Medically adherent (reference)     
-- 

   Medically non-adherent  1.009 0.006 0.0571 

   Normal blood sugar (reference) 
-- 

   

   Abnormally high blood sugar 1.022 0.006 0.0002 

Time 1.044 0.002 <0.0001 1.044 0.002 <0.0001 

Age 1.002 0.000 <0.0001 1.003 0.000 <0.0001 

Region       

   South (reference)       

   Northeast 0.985 0.012 0.1121 0.986 0.012 0.1173 

   Midatlantic 1.002 0.010 0.4241 1.002 0.010 0.4290 

   Midwest 0.997 0.010 0.3770 0.997 0.010 0.3754 

   West  0.975 0.011 0.0101 0.975 0.011 0.0107 

Gender           

   Male (reference)           

   Female 1.034 0.023 0.0790 1.035 0.023 0.0710 

Race           

   NHW (reference)           

   NHB 1.064 0.011 <0.0001 1.063 0.011 <0.0001 

   Hispanic 0.964 0.013 0.0025 0.964 0.013 0.0023 

   Other 0.935 0.011 <0.0001 0.936 0.011 <0.0001 

Living           

   Urban (reference)           

   Rural 1.001 0.007 0.4709 1.000 0.007 0.4757 

Marital Status           

   Married (reference)           

   Unmarried 1.043 0.007 <0.0001 1.043 0.007 <0.0001 

Percent Service Connected Disability           

   <50% (reference)           

   ≥50% 1.079 0.010 <0.0001 1.079 0.010 <0.0001 
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6. Discussion 

Complete case analysis is a common approach to missing data analysis, in which the 

missing data are ignored altogether and only subjects with data available at all time points are 

utilized. This method is only valid under MCAR. Even if this is a correct assumption, while 

parameter estimates are unbiased, such an analysis may suffer from loss of power. Another 

related approach is the all available case analysis approach based on GEE. If the data are 

missing at random, both complete case analysis and GEE methods yield results with moderate to 

large bias. However, GEE coupled with propensity score method (commonly called weighted 

GEE) provides valid estimates of the parameters when the missing mechanism is missing at 

random (MAR). Researchers also use single imputation techniques such as last (LVCF) or worst 

(WVCF) value carried forward. But these methods are commonly shown to lead to biased 

estimates and underestimated variance. The variance underestimation is typical in follow-up 

studies whose outcome is measured using scale scores (e.g., NIHSS) since worst values often 

tend to be similar, leading to less variable data set. Single imputation techniques also have an 

inherent problem of not accounting for uncertainty in the imputed value.  

This study proposes a latent transition multiple imputation approach to deal with missing 

data in time varying categorical covariates. This study is the first to assess and implement LTMI 

for modeling time varying missing categorical covariate data. We have demonstrated that this 

method is statistically efficient and leads to unbiased estimates and can be implemented using 

standard software. In comparing simulated and real data scenarios, parameter standard errors 

were most efficient in the LTMI-LTA scenarios. In simulation studies, LTMI-LTA outperformed 

other methods most clearly in the 50% MAR and MNAR scenarios. CCA performed fairly well in 

the 20% MCAR scenario, and generally produced standard error results of greater magnitude 

otherwise. LCMI methods produced biased estimates and reduced standard error estimates in 

the simulations compared to the dataset with no missing data. LTMI-LMM also performed fairly 

well in simulation studies, though standard error estimates were higher and generally less 

consistent for this method than LTMI-LTA.  
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The standard error estimates in the real data analysis were lowest for LTMI-LTA, notably 

in the case of the A1C and MNA variables with missing data. Goodness of fit was measured and 

compared via conditional AIC, which is useful for choosing mixed effects models when dealing 

with clustered data, and results are comparable for all LCMI and LTMI scenarios in both real and 

simulated data scenarios. LTMI-LTA outperforms other methods for dealing with missing data in 

time varying categorical covariates, particularly in various non-MCAR scenarios with a higher 

percentage of missingness, jointly considering all criteria. 

LTMI methods are appropriate for imputing time varying categorical variables. Multiple 

imputation methods account for uncertainty in the imputed categorical variable by utilizing time 

varying latent classes assigned via observed data.  Both LTMI-LTA and LTMI-LMM results are 

more efficient and less biased than CCA or LCMI methods for imputing categorical missing data 

over time under some missingness scenarios, particularly under various MAR and some MNAR 

scenarios including a higher percentage of missingness. Additionally, LTMI methods are 

computationally inexpensive and the results are easily interpretable for clinicians.  

Overdispersion was not an issue here, and therefore the methods we have previously 

studied for dealing with overdispersion were not applicable (Payne et al. 2015). However, future 

research will involve examining data scenarios with overdispersed count outcomes and time 

varying categorical covariates containing missingness. We will examine various methods for 

dealing with overdispersed data taking into account missingness in the time varying categorical 

predictor via real data and extensive simulation studies.  
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1. Introduction 

The restriction of Poisson regression that the response mean must be equal to the 

variance often fails in real data situations. Overdispersion occurs when data are more variable 

than is allowed under the Poisson model (Cox 1983), which may result from population 

heterogeneity, correlation, omission of important covariates in the model, the presence of high or 

zero outliers, among other reasons (Hardin and Hilbe 2007, Rigby, Stasinopoulos et al. 2008). An 

overdispersed model can result in underestimated parameter standard errors and falsely 

increased beta parameter significance, which may result in misleading inferences and 

conclusions (McCullagh and Nelder 1983, Breslow 1990, Hilbe 2007, Faddy and Smith 2011).  

We recently examined overdispersion occurring in real and simulated time invariant datasets 

resulting from omission of key predictors, high and zero outliers, and omission of necessary 

random effects (Payne et al. 2015). We compared six different scaling and modeling methods of 

analysis via goodness of fit and error statistics. The results showed that negative binomial 

regression and negative binomial generalized linear mixed models were preferred for dealing with 

overdispersion resulting from the sources we considered, while scaling methods and unadjusted 

Poisson regression were less reliable and often produced larger or smaller standard errors than 

expected. However, multiple options should be considered as the optimal method for data 

analysis may vary based on the source of the overdispersion. In this paper, we extend our 

comparison to longitudinal datasets which include categorical time varying predictor variables 

with missing observations.  

Missing data is a common statistical issue in longitudinal biomedical studies. Multiple 

imputation based on latent class (LCMI) is a method previously proposed to deal with missing 

data in time invariant categorical variables (Vermunt et al. 2008, Gebregziabher and DeSantis 

2010), which we have previously extended to address time varying categorical variables via latent 

transition multiple imputation (LTMI) under Poisson regression (Payne et al. 2016b). Parameter 

estimation for latent transition methods has been explored (Chung et al. 2008), and applied to 

longitudinal random effect models involving missing data (Albert and Follmann 2007, Xiaowei et 

file:///C:/Users/VHACHAPayneE/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/P3EAJA7E/Overdispersion_finaldraft_07092014_EHP.docx%23_ENREF_15
file:///C:/Users/VHACHAPayneE/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/P3EAJA7E/Overdispersion_finaldraft_07092014_EHP.docx%23_ENREF_30
https://exchange.musc.edu/owa/redir.aspx?C=bAE3-wrWmUassxSTFYWcUc6uNYoakNEIPkDZsuPqN2lFHOsROn-qHWhGIiEkVXS0UHkAODU9A7E.&URL=http%3a%2f%2fwww.ncbi.nlm.nih.gov%2fsites%2fentrez%3fDb%3dpubmed%26Cmd%3dSearch%26Term%3d%2522Albert%2520PS%2522%255BAuthor%255D%26itool%3dEntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
https://exchange.musc.edu/owa/redir.aspx?C=bAE3-wrWmUassxSTFYWcUc6uNYoakNEIPkDZsuPqN2lFHOsROn-qHWhGIiEkVXS0UHkAODU9A7E.&URL=http%3a%2f%2fwww.ncbi.nlm.nih.gov%2fsites%2fentrez%3fDb%3dpubmed%26Cmd%3dSearch%26Term%3d%2522Follmann%2520DA%2522%255BAuthor%255D%26itool%3dEntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
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al. 2007, Lee et al. 2014). In summary, a latent class model is created at each time point 

(Lazarsfeld and Henry 1968) such that the underlying categorical latent variable explains all 

associations among categorical variables. A latent trajectory characterizing the missingness 

process for each individual is thereby obtained, and missing categorical covariates can then be 

imputed conditional on the assigned latent class status. For LTMI, we fitted the latent status 

imputers model using PROC LTA Version 1.1.5 (Lanza et al. 2007, Lanza et al. 2008), a SAS 

procedure for latent transition analysis developed for SAS Version 9.2 for Windows for utilization 

in scenarios where the latent variable and items of interest are time varying. We then imputed 

missing observations by sampling from the posterior distribution of the missing data model via 

predictive mean matching methods. We further considered latent status derived via heterogeneity 

linear mixed modeling. We then demonstrated the capability of LTMI performance compared to 

that of complete case analysis and LCMI methods through simulation studies and real data 

application, particularly in cases where data was missing at random (MAR). 

It is not uncommon in real datasets to deal simultaneously with missing predictor data 

and overdispersion resulting from model specifications. However, there are presently no studies 

that address the co-occurrence of both time varying categorical covariate missingness and 

overdispersed count outcomes in models via a comprehensive evaluation. Our investigation 

therefore extends the approaches we examined previously to deal with overdispersion in 

Poisson-distributed count data to longitudinal Poisson analysis. We simultaneously address the 

issue of time varying categorical covariates with missing observations with complete case 

analysis and LTMI methods. We then make comparison among all of the models to determine 

superiority of method. We utilize simulation studies that consider outlier dependent 

overdispersion and make real data application while also addressing the co-occurrence of 

missingness in important categorical predictors. A study of related issues was recently performed 

by Zhang et al. (2015), in which researchers address the issue of overdispersion in non-

parametric count outcomes with missing data in repeated measures scenarios. In this article, the 
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researchers extend the Mann–Whitney–Wilcoxon rank sum test to longitudinal data and address 

missingness via the inverse probability weighted method.  

Our real data application comes from a retrospective cohort data example consisting of 

veterans with type 2 diabetes who were followed from 2002 – 2006. This dataset was previously 

published by Lynch et al. in 2014, and this study examined the association of various patient 

demographics with patient comorbidity burden to better understand health disparities among 

diabetic veterans. The outcome of interest is the patient Elixhauser score, a count of patient 

comorbidities which may range from 0 to 31. We choose a small subset of patients for analysis 

such that the count outcome in the dataset is overdispersed. Covariates include dichotomized 

values for medication non-adherence (MNA) and patient hemoglobin levels (A1C), which are 

time-varying and missing intermittently or monotonically for many patients.  

This paper is organized in the following manner. Subsequent to the introduction, the 

statistical models and estimation are described in section 2. Section 3 provides information about 

the design and results of the simulation study. Section 4 details the real data application and 

results, and section 5 provides a discussion of all results as well as future research plans in this 

area. 

2. Statistical models and estimation 

2. 1. Overdispersion and missing covariate data in longitudinal analysis 

As in our previous work, we utilize a generalized linear model setup (Payne et al. 2016b) 

for the analysis of simultaneous occurrence of missing data in time varying categorical variables 

and overdispersion resulting from model specifications. Let   ijY  be a time varying response 

containing overdispersion. Let  Xij
 be a time varying covariate subject to missingness and  Zij

 

be a time varying covariate not subject to missingness. Let  t ij  be the time of the 
thj  repeated 

measure for the 
thi   subject ( 1,..., , 0,..., ii n j T  ) and iq  denote the random effects for each 

individual i , assumed to have a normal distribution with mean 0 and covariance 𝐺. The 
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regression coefficients corresponding to  Zij
,  Xij

, and  t ij
 respectively are 1 2 3( , , )    . 

So we have  

 
1 2 3ij i ij ij ijq Z X t         (1) 

where (E[Y | q , ])i ij ig   and g  is a monotone link function. 

Let a random longitudinal variable Y  be distributed Poisson with variance function 

(Y)Var  . If this variable is not equidispersed, a dispersion parameter   may be utilized as a 

scale-adjustment to the variance function to account for changes in variability, via (Y)Var  . 

If 1   then there is equidispersion and we can assume equal mean and variance in the 

Poisson model. If 1   there is underdispersion in the model, and if 1   there is 

overdispersion.  

There are a variety of methods available for dealing with overdispersion in datasets, 

several of which we have utilized previously and compared (Payne et al. 2015). We considered 

both deviance and Pearson scale adjustment methods in addition to various Poisson and 

negative-binomial modeling methods. We previously showed that the negative-binomial 

distribution is effective in dealing with overdispersion resulting from a variety of causes. Here, 

| ~ ( )Y Pois   and   is a random variable such that ( )E    and 
2( )Var   . We can 

then say that (Y)E   and 
2(Y)Var    , such that the variance is greater than the mean. 

Variable Y  has a negative-binomial distribution when   is assumed to be gamma; here, 

(Y)
k

E 


   and 

2

(Y)Var
k


  . Another option for picking up extra variability in 

overdispersed data is to include random effects in a generalized linear mixed model (GLMM). The 

GLMM family is given by 

 
1(Y | X ,R ) g (X R )i i i i i i iE        

for vectors of fixed effect ( Xi  ) and random effect ( R i ) explanatory variables ( 1,...,i n ).  
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In this paper we jointly address the issues of missing time varying covariate data and 

overdispersion resulting from the presence of outliers in the count outcome. We consider GLMM 

with random intercept to account for individual variability with outcomes distributed as either 

Poisson or negative-binomial (Poisson-GLMM and NB-GLMM, respectively). We use a 

combination of latent transition analysis and multiple imputation methods to address the issue of 

missing data in our analysis prior to dealing with the overdispersion in our count outcome 
ijY  in 

simulation study and real data application. 

2. 2. Latent Transition Multiple Imputation 

We previously introduced the LTMI method for imputing missing time-varying categorical 

covariates and proved its capability via simulation and real data application (Payne et al. 2015). In 

this model, the joint probability that the 
thi  individual exhibits a categorical response at each time 

point 1 1Y y ,..., yi iT , as well as latent class membership at the corresponding time point 

1(l ,..., l )j Tl  , is given below: 

1 1

(y k)(j)

1 1 | |

2 1 1 1

(Y y ,...,Y y ,L l )
m

imj

j j j

CT T M
I

i T iT j j l l l mkj l

j j m k

p   




   

   
       

   
   

The likelihood contribution for the 
thi  individual to the whole model across all possible latent 

classes at each time point is therefore given via 

1 1

1 1

(y k)(j)

1 1 | |

1 1 2 1 1 1

( ;Y y ,...,Y y ) ...
m

imj

j j j

j

CT T ML L
I

i T iT l l l mkj l

l l j j m k

L    






     

   
      

   
     

The collection of free parameters ( , , )     can be estimated using maximum likelihood. In 

order to impute missing observations in our datasets via LTMI methods, we fit a two-class latent 

class model to the observed data 
i,obsy , and sampled from the posterior probability of latent class 

given the observed data, , ,(K k | X x )i i obs i obsP   . We also sampled from the distribution of the 

missing data conditional on class, 
,(x | K k)i mis iP  . We imputed the missing data 

,xi mis
 using 
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predictive mean matching regression methods for monotone missing class data imputation by 

fully conditional specification methods.  

2. 3. Estimation and Model Comparison 

One of the most commonly used estimators of dispersion in the literature is the ratio of 

the Pearson 
2  statistic to its corresponding degrees of freedom, typically n p  for a study with 

sample size n   observations and p  parameters. Dispersion parameter 
p  is thus defined as: 

2

p
n p


 


 

This ratio will be equal to one when data is equidispersed. When these ratios are greater than 

one then the data are considered overdispersed, with higher values signaling a greater 

magnitude of overdispersion. We recently determined that a general threshold for relying on the 

simple Poisson model for cross-sectional and longitudinal datasets is in cases where 1.2p  . 

Negative binomial models should be utilized if 1.2 5.0p  . If 5.0p   for longitudinal 

datasets or if 10.0p   for cross-sectional datasets, the model will likely be unreliable (Payne et 

al. 2016a). 

We also computed the conditional AIC (cAIC) goodness of fit statistic for model 

comparison, which has been proposed to choose among mixed effects models when data is 

clustered by using the effective degrees of freedom to account for shrinkage in the random 

effects (Vaida 2005). Traditional information criterion may be inappropriate in these cases, as the 

marginal AIC has been shown to be biased when estimating information for random effects 

(Greven and Kneib 2010). The usefulness of the conditional AIC has increased as it has been 

corrected and developed (Vaida 2005, Liang, Wu et al. 2008, Greven and Kneib 2010) and 

applied to generalized linear mixed models (Donohue, Overholser et al. 2011). 

Mean asymptotic and estimated parameter standard errors, mean bias, and the mean 

95% confidence intervals for each parameter were also recorded to determine the predictive 
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ability of the models compared to the assumed value in the simulation study. These values were 

compared across the models to determine which method for dealing with both outlier dependent 

overdispersion and missing categorical time varying predictor data jointly resulted in the lowest 

cAIC values as well as offered moderately adjusted standard errors and 95% confidence intervals 

and low bias.  

2. 4. Fitting the SAS model 

After imputing missing observations via LTMI, we performed generalized linear mixed 

model analysis using Poisson or negative-binomial distributions, a log link, and a random 

intercept to account for individual subject variability. We removed bounds from the covariance 

parameter estimates in order to ensure model convergence and used the Cholesky root when 

calculating the random-effects matrix in mixed model equations. We estimated non-linear 

parameters in our models using the Newton-Raphson method with ridging non-linear 

optimization. We then output results for analysis including pseudo-likelihood goodness of fit 

statistics, parameter estimates, and predicted outcomes. All analysis was performed using SAS 

9.4, particularly the Proc GLIMMIX package. 

3. Simulation 

3. 1. Design 

We simulated 300  longitudinal datasets each with a sample size of 200n   random 

observations to include a time varying longitudinal Poisson count outcome and two categorical 

predictor variables. Data was generated at five continuous time points 1,2,...,5j   according to 

the model 

2

1

log(E(Y y | X ))ijm ijm m ijm

m

X 


    where   is the collection of parameters 

1 2( , )   and intercept 1.0  . We considered time varying binary exposure variables 1X  and 

2X . We assigned parameter 1 0.41   to yield an rate ratio of 1.5  and 2 0.69   to yield a 



98 
 

rate ratio of 2.0 . Outcome count Y  for the 
thi  individual was determined by 

2

1

exp( )m ijm

m

X 


 .  

We then created overdispersion relative to the Poisson via the addition of outliers to the 

count outcome Y . Y  values greater than 10 in each simulation were chosen at random and 

increased by 20  to create outlier dependent overdispersion in the data; i.e. about 1% of the data 

were replaced by high outliers. Following the addition of overdispersion, missing time varying 

categorical covariate data was added via a variety of missingness scenarios as described below. 

3. 2. Missingness scenarios 

After generating overdispersed datasets for this scenario, datasets with missing exposure 

1X  were generated from the cohort with a 20% and 50% proportion of missingness. We 

considered various missingness scenarios including data missing completely at random (MCAR), 

missing at random (MAR), or missing not at random (MNAR) according to a logistic missingness 

model (Little and Rubin 2002). Observations at 1,2t   were left completely observed, while 

missingness was assigned at 3,4,5t  . Once an observation was assigned missingness at a 

time point, the remaining time points of exposure 1X  were also set to missing to create 

monotone missingness. Missingness within MAR was given by three different scenarios, based 

respectively on the dependence of the probabilities of missing 1X  on 2X , Y , or both 2X  and 

Y . 

Analysis was then made using Poisson and negative binomial GLMM for all simulated 

data from each scenario using both complete case analysis and LTMI methods to address 

missing observations in predictor 1X . Conditional AIC, dispersion parameter, parameter 

estimates for the regression coefficients corresponding to each covariate with their corresponding 

asymptotic and estimated standard errors, bias, and 95% confidence interval (CI) coverage were 

calculated for comparison among methods. 
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3. 3. Results  

After the addition of outliers to the count outcome, the mean 
p  for the Poisson-GLMM 

model with no missing data was 1.44 ± 0.16. Thus we can conclude that overdispersion is 

present in the full dataset prior to the addition of missingness in the categorical predictor. We then 

added 50% missing data to variable 1X  via various missingness mechanisms and either 

performed CCA or used LTMI methods to impute the missing categorical covariate data as 

described above. The CCA and LTMI results of our analysis are given in Tables 1 and 2, 

respectively.  

According to the high 
p  dispersion statistics, CCA and LTMI Poisson-GLMM are both 

overdispersed under complete data and the various missingness scenarios. When LTMI methods 

were utilized to impute missing 1X  values in all scenarios, the result was comparable ASE and 

ESE values and conditional AIC goodness of fit statistics compared to the models with no missing 

data. Parameter estimates were again closest to those in the scenarios without missingness in 

MCAR and MAR cases.   

NB-GLMM resulted in moderately adjusted ASE and ESE compared to the Poisson-

GLMM in the 50% missing data scenarios. Overdispersion in both cases was effectively 

addressed via the NB-GLMM method under all missingness scenarios, while Poisson-GLMM did 

not address the overdispersion. The conditional AIC also demonstrates the superior goodness of 

fit of NB-GLMM. The NB-GLMM often resulted in comparable parameter and standard error 

estimates compared to those in the scenario without missingness. CCA and LTMI results for the 

20% missing data scenarios are given in Appendix 5 Tables 1 and 2 and give similar results. In 

general NB-GLMM outperformed Poisson-GLMM in addressing outlier dependent overdispersion 

after utilizing LTMI methods, jointly considering all criteria. 
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Table 1. Results for high outlier scenario via CCA. 

 No missing or 
overdispersion 

Poisson-GLMM 

MCAR MAR (x2) MAR (y) MAR (x2,y) MNAR 

Conditional AIC 3229.34 1939.41 1967.71 1937.85 1961.03 1853.13 

p  1.000 1.445 1.488 1.406 1.437 1.370 

X1  (β1 = 0.41)       

Mean β1 0.409 0.495 0.508 0.455 0.484 0.345 

Mean RR 1.505 1.640 1.662 1.576 1.623 1.412 

ASE 0.047 0.068 0.065 0.066 0.065 0.083 

ESE 0.048 0.120 0.124 0.117 0.125 0.146 

Bias 0.001 0.085 0.098 0.045 0.074 0.065 

Mean 95% CI for β1 0.317, 0.501 0.361, 0.630 0.380, 0.637 0.328, 0.582 0.356, 0.611 0.181, 0.509 

X2  (β2 = 0.69)       

Mean β2 0.690 0.814 0.821 0.726 0.703 0.786 

Mean RR 1.994 2.257 2.273 2.067 2.020 2.195 

ASE 0.048 0.069 0.068 0.066 0.067 0.084 

ESE 0.047 0.125 0.120 0.115 0.121 0.143 

Bias 0.000 0.124 0.131 0.036 0.013 0.096 

Mean 95% CI for β2 0.597, 0.783 0.678, 0.950 0.687, 0.955 0.596, 0.856 0.572, 0.835 0.621, 0.951 

 No missing or 
overdispersion 

NB-GLMM 

 MCAR MAR (x2) MAR (y) MAR (x2,y) MNAR 

Conditional AIC 3228.55 1953.85 1978.15 1967.89 1985.46 1877.07 

p  1.000 0.974 0.974 0.974 0.976 0.968 

X1  (β1 = 0.41)       

Mean β1 0.409 0.486 0.500 0.446 0.473 0.333 

Mean RR 1.505 1.626 1.649 1.562 1.605 1.395 

ASE 0.047 0.095 0.093 0.089 0.091 0.108 

ESE 0.048 0.108 0.113 0.106 0.113 0.131 

Bias 0.001 0.076 0.090 0.036 0.063 0.077 

Mean 95% CI for β1 0.317, 0.501 0.300, 0.673 0.317, 0.683 0.272, 0.621 0.294, 0.652 0.121, 0.545 

X2  (β2 = 0.69)       

Mean β2 0.690 0.807 0.812 0.718 0.692 0.777 

Mean RR 1.994 2.241 2.252 2.050 1.998 2.175 

ASE 0.047 0.095 0.095 0.090 0.092 0.107 

ESE 0.047 0.113 0.109 0.105 0.111 0.129 

Bias 0.000 0.117 0.122 0.028 0.002 0.087 

Mean 95% CI for β2 0.597, 0.783 0.619, 0.994 0.625, 0.999 0.541, 0.895 0.510, 0.874 0.566, 0.988 
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Table 2. Results for high outlier scenario via LTMI. 

 No missing or 
overdispersion 

Poisson-GLMM 

MCAR MAR (x2) MAR (y) MAR (x2,y) MNAR 

Conditional AIC 3229.34 3886.05 3875.84 3877.86 3874.94 3974.62 

p  1.000 1.471 1.462 1.471 1.467 1.536 

X1  (β1 = 0.41)       

Mean β1 0.409 0.440 0.460 0.425 0.447 0.277 

Mean RR 1.505 1.553 1.584 1.530 1.564 1.319 

ASE 0.047 0.051 0.050 0.049 0.049 0.055 

ESE 0.048 0.090 0.094 0.089 0.090 0.095 

Bias 0.001 0.030 0.050 0.015 0.037 0.133 

Mean 95% CI for β1 0.317, 0.501 0.344, 0.544 0.361, 0.558 0.361, 0.558 0.372, 0.570 0.169, 0.386 

X2  (β2 = 0.69)       

Mean β2 0.690 0.767 0.782 0.757 0.777 0.645 

Mean RR 1.994 2.153 2.186 2.132 2.175 1.906 

ASE 0.048 0.051 0.050 0.049 0.050 0.055 

ESE 0.047 0.087 0.091 0.087 0.088 0.094 

Bias 0.000 0.077 0.092 0.067 0.087 0.045 

Mean 95% CI for β2 0.597, 0.783 0.669, 0.868 0.682, 0.879 0.680, 0.876 0.694, 0.893 0.537, 0.754 

 
No missing or 

overdispersion 

NB-GLMM 

 MCAR MAR (x2) MAR (y) MAR (x2,y) MNAR 

Conditional AIC 3228.55 3909.45 3901.58 3899.76 3897.71 3990.38 

p  1.000 0.971 0.972 0.970 0.971 0.977 

X1  (β1 = 0.41)       

Mean β1 0.409 0.428 0.444 0.412 0.430 0.264 

Mean RR 1.505 1.534 1.559 1.510 1.537 1.302 

ASE 0.047 0.069 0.068 0.068 0.069 0.076 

ESE 0.048 0.081 0.084 0.079 0.081 0.085 

Bias 0.001 0.018 0.034 0.002 0.020 0.146 

Mean 95% CI for β1 0.317, 0.501 0.297, 0.568 0.310, 0.577 0.315, 0.592 0.314, 0.587 0.115, 0.413 

X2  (β2 = 0.69)       

Mean β2 0.690 0.757 0.767 0.746 0.762 0.633 

Mean RR 1.994 2.132 2.153 2.109 2.143 1.883 

ASE 0.047 0.069 0.068 0.069 0.070 0.076 

ESE 0.047 0.080 0.082 0.079 0.080 0.085 

Bias 0.000 0.067 0.077 0.056 0.072 0.057 

Mean 95% CI for β2 0.597, 0.783 0.623, 0.892 0.632, 0.899 0.632, 0.908 0.637, 0.910 0.485, 0.782 
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Figures 1 and 2 respectively give the ASE and ESE for MCAR, MARx2, MARy, MARx2,y, 

and MNAR models with 20% and 50% proportions of missingness analyzed via CCA and LTMI 

methods.  

 

Figure 1. ASE for CCA and LTMI results. 
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Figure 2. ESE for CCA and LTMI results. 

The values for the dataset with no missingness are also included for comparison. LTMI 

consistently gives reduced ASE and ESE values compared to CCA methods. The contrast is 

more pronounced in the various 50% MAR and MNAR scenarios. Furthermore, the 

overdispersion appears to be adequately addressed via the negative binomial regression, with 

negative binomial providing adjusted errors compared to the Poisson. Figure 3 illustrates the bias 

for both predictors compared to the true beta values.  
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Figure 3. Bias for CCA and LTMI results. 

Bias is generally higher for the CCA methods than for LTMI, particularly for variable 2X  in the 

MAR, MNAR, and the 50% missingness scenarios. The negative binomial also outperforms the 

Poisson in many cases, particularly among the MAR data and the 50% missingness scenarios. 

Figure 4 gives the cAIC for all imputation methods compared to the cAIC for the dataset 

excluding missingness, demonstrating comparable goodness of fit between LTMI NB and the 

CCA methods. CCA performs most adequately under the MCAR scenarios, jointly considering all 

criteria. 
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Figure 4. Conditional AIC for CCA and LTMI results. 

4. Data Example 

4. 1. Description 

We also used a real data example to compare methods of dealing with overdispersion 

assuming co-occurrence of missing categorical predictor data. The motivating dataset comes 

from a study designed to explore relationships between demographics such as geographic and 

racial/ethnic factors and patient multimorbidity in veterans with type 2 diabetes (Lynch et al. 

2014). Our primary outcome is the patient’s time varying Elixhauser comorbidity count of up to 31 

comorbidities, including both mental and medical comorbidities. A total of 892,223 patients 

participated in this retrospective cohort study with yearly time points from 2002-2006, from which 

we took a sample of 40 non-Hispanic white patients, aged 65 or older, with complete outcomes 

and time invariant covariates as well as at least one Elixhauser score of 13 or more to ensure the 

presence of overdispersion in the dataset. Our two time varying predictors of interest containing 
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missingness are patient monthly prescribing reference (MPR), a measure of adherence to 

medication, and patient hemoglobin levels (A1C), a measure of blood sugar control. An MPR of 

less than 0.80 demonstrates medication non-adherence (MNA) compared to higher values, and 

an A1C higher than 8.0 suggests abnormally high blood sugar control. Figure 5 gives line graphs 

modeling mean Elixhauser score over time by MNA and A1C status.  

 
Figure 5. Mean Elixhauser score by MNA and A1C status over time. 

 

Plots modeling the percentage of missing MNA and A1C values over time are given in 

Figure 6, while logistic regression results examining the relationship between the dichotomized 

missing MNA and missing A1C values and other demographic covariates are given in Table 3.  
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Figure 6. Percentage of missing MNA and A1C values over time. 

 

Table 3. Missing MNA and A1C covariates by demographics. 

Covariate 
Missing MNA Missing A1C 

OR P-Value OR P-Value 

Time 3.117 <0.0001 1.896 0.0003 

Age 1.139 0.0248 1.011 0.7925 

Comorbidity Count 0.915 0.2467 1.121 0.0803 

Region     

   South (reference)     
   Northeast 3.959 0.2144 0.397 0.3617 
   Midatlantic 32.092 <0.0001 0.504 0.3562 
   Midwest 6.841 0.0086 1.725 0.2618 
   West  0.000 0.9990 0.000 0.9991 

Gender         

   Male (reference)         
   Female 2.823 0.3959 10.274 0.0291 

Living         

   Urban (reference)         
   Rural 1.205 0.7573 0.992 0.9936 

Marital Status         

   Married (reference)         
   Unmarried 8.861 0.0006 1.736 0.2375 

Percent Service Connected Disability         

   <50% (reference)         
   ≥50% 1.735 0.3305 1.549 0.3234 

 

There is some association between missingness in the MNA and A1C variable by observed time, 

age, regional, gender, and marital status. Missingness is not expected to depend on the individual 

patient's comorbidity count; thus we can assume that the missing mechanism is likely to be MAR. 

We then performed both CCA and LTMI via Proc LTA to impute missing categorical covariates. 
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We utilized Poisson-GLMM and NB-GLMM methods of analysis on the complete case and 

imputed diabetes datasets.  Model comparison was made using conditional AIC, bias, asymptotic 

and estimated standard errors, and 95% confidence intervals of parameter estimates. 

4. 2. Results 

A comparison of conditional AIC and 
p  results for both CCA and LTMI Poisson-GLMM and NB-

GLMM methods is presented in Table 4.  

Table 4. Comparison of goodness of fit and dispersion statistics. 

CCA 

  
p  Conditional AIC 

MNA Poisson-GLMM 1.242 533.78 
NB-GLMM 1.054 530.35 

A1C Poisson-GLMM 1.349 521.10 

NB-GLMM 1.014 512.00 

LTMI 

  
p  Conditional AIC 

MNA Poisson-GLMM 1.253 835.30 
 NB-GLMM 1.033 826.70 

A1C Poisson-GLMM 1.258 835.86 
 NB-GLMM 1.032 827.06 

 

It is clear that mild overdispersion is present in both scenarios for the Poisson models, while 

goodness of fit is slightly better in the negative binomial models. Furthermore, Figure 7 gives the 

standard errors for all parameters included in the models by GLMM distribution and method of 

dealing with missing data. The LTMI methods result in lower standard error estimates compared 

to CCA.  

Tables 5 and 6 respectively give CCA and LTMI results comparing patient Elixhauser score with 

MNA or A1C under Poisson and negative binomial regression after adjusting for demographics. 

Looking at the analysis of MNA under negative binomial distribution and imputing missing data 

via LTMI, we conclude that there are significant or borderline differences in Elixhauser score 

based on time, western region, and marital status. With each year increase, patients have higher 

multimorbidity (RR=1.084, p<0.0001). Patients living in the west have decreased comorbidity 

burden compared to patients in the south (RR=0.597, p=0.0054). Unmarried patients are also 
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likely to have higher multimorbidity than married patients (RR=1.134, p=0.0579). Medication non-

adherent patients have statistically comparable comorbidity burden compared to medication 

adherent patients in this cohort (RR=1.041, p=0.2474). In the NB-GLMM model utilizing LTMI 

containing A1C value, patients with abnormally high blood sugar do not have a statistically higher 

comorbidity burden than those with normal blood sugar (RR=1.024, p=0.3692). Covariates in 

other models produce generally comparable parameter estimates. 

 

 

Figure 7. Standard errors for covariates in MNA and A1C model scenarios by GLMM distribution 

and method of addressing missing data. 
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Table 5. Relationship between Elixhauser score and covariates via CCA by distribution. 

Poisson-GLMM 

Covariate 
MNA A1C 

RR SE P-Value RR SE P-Value 

Covariate with Missingness       

   Medically adherent (reference)     
-- 

   Medically non-adherent  1.063 0.068 0.3714 
   Normal blood sugar (reference) 

-- 
   

   Abnormally high blood sugar 1.159 0.079 0.0633 
Time 1.141 0.021 <0.0001 1.145 0.022 <0.0001 
Age 1.002 0.012 0.8700 1.009 0.009 0.3429 
Region       
   South (reference)       
   Northeast 0.950 0.182 0.7806 1.010 0.152 0.9487 
   Midatlantic 1.041 0.166 0.8085 1.108 0.126 0.4192 
   Midwest 1.053 0.153 0.7361 1.161 0.129 0.2488 
   West  0.618 0.297 0.1079 0.674 0.255 0.1247 
Gender           
   Male (reference)           
   Female 1.081 0.395 0.8441 0.996 0.327 0.9913 
Living           
   Urban (reference)           
   Rural 1.015 0.109 0.8915 0.965 0.090 0.6944 
Marital Status           
   Married (reference)           
   Unmarried 1.195 0.125 0.1558 1.232 0.095 0.0304 
Percent Service Connected Disability           
   <50% (reference)           
   ≥50% 1.044 0.116 0.7128 1.073 0.102 0.4939 

NB-GLMM 

Covariate 
MNA A1C 

RR SE P-Value RR SE P-Value 

Covariate with Missingness       
   Medically adherent (reference)     

-- 
   Medically non-adherent  1.060 0.075 0.4367 
   Normal blood sugar (reference) 

-- 
   

   Abnormally high blood sugar 1.182 0.088 0.0605 
Time 1.142 0.023 <0.0001 1.148 0.026 <0.0001 
Age 1.002 0.012 0.8899 1.009 0.009 0.3453 
Region       
   South (reference)       
   Northeast 0.953 0.185 0.7958 1.014 0.155 0.9297 
   Midatlantic 1.042 0.168 0.8067 1.116 0.128 0.3943 

   Midwest 1.052 0.155 0.7453 1.167 0.131 0.2400 

   West  0.614 0.302 0.1088 0.675 0.259 0.1328 
Gender           

   Male (reference)           

   Female 1.093 0.401 0.8240 1.019 0.330 0.9548 
Living           

   Urban (reference)           

   Rural 1.014 0.110 0.9001 0.963 0.092 0.6784 

Marital Status           

   Married (reference)           
   Unmarried 1.198 0.127 0.1581 1.236 0.096 0.0305 
Percent Service Connected Disability           
   <50% (reference)           

   ≥50% 1.046 0.118 0.7032 1.083 0.104 0.4461 
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Table 6. Relationship between Elixhauser score and covariates via LTMI by distribution. 

Poisson-GLMM 

Covariate 
MNA A1C 

RR SE P-Value RR SE P-Value 

Covariate with Missingness       

   Medically adherent (reference)     
-- 

   Medically non-adherent  1.031 0.053 0.2810 
   Normal blood sugar (reference) 

-- 
   

   Abnormally high blood sugar 1.005 0.065 0.4670 
Time 1.083 0.017 <0.0001 1.084 0.017 <0.0001 
Age 1.003 0.007 0.3571 1.002 0.007 0.3690 
Region       
   South (reference)       
   Northeast 1.044 0.129 0.3687 1.040 0.128 0.3799 
   Midatlantic 1.046 0.101 0.3274 1.046 0.101 0.3286 
   Midwest 1.046 0.090 0.3079 1.047 0.089 0.3038 
   West  0.599 0.198 0.0052 0.598 0.197 0.0049 
Gender           
   Male (reference)           
   Female 1.213 0.191 0.1573 1.231 0.189 0.1360 
Living           
   Urban (reference)           
   Rural 1.044 0.076 0.2873 1.043 0.076 0.2906 
Marital Status           
   Married (reference)           
   Unmarried 1.131 0.078 0.0591 1.131 0.078 0.0587 
Percent Service Connected Disability           
   <50% (reference)           
   ≥50% 1.085 0.076 0.1405 1.086 0.076 0.1391 

NB-GLMM 

Covariate 
MNA A1C 

RR SE P-Value RR SE P-Value 

Covariate with Missingness       
   Medically adherent (reference)     

-- 
   Medically non-adherent  1.041 0.059 0.2474 
   Normal blood sugar (reference) 

-- 
   

   Abnormally high blood sugar 1.024 0.071 0.3692 
Time 1.084 0.019 <0.0001 1.086 0.019 <0.0001 
Age 1.003 0.007 0.3492 1.003 0.007 0.3552 
Region       
   South (reference)       
   Northeast 1.050 0.130 0.3557 1.044 0.128 0.3697 
   Midatlantic 1.051 0.102 0.3126 1.049 0.101 0.3177 

   Midwest 1.050 0.091 0.2966 1.052 0.090 0.2869 

   West  0.597 0.200 0.0054 0.598 0.197 0.0050 
Gender           

   Male (reference)           

   Female 1.215 0.194 0.1587 1.243 0.189 0.1260 
Living           
   Urban (reference)           
   Rural 1.044 0.077 0.2893 1.042 0.076 0.2945 
Marital Status           
   Married (reference)           
   Unmarried 1.134 0.079 0.0579 1.132 0.078 0.0571 

Percent Service Connected Disability           

   <50% (reference)           

   ≥50% 1.090 0.076 0.1313 1.095 0.077 0.1188 
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5. Discussion 

It is not uncommon in real datasets to deal simultaneously with both missing predictor 

data and overdispersion resulting from model specifications. This investigation extends the 

approaches we examined previously to deal with overdispersion in Poisson-distributed count data 

to longitudinal Poisson analysis including overdispersion, while simultaneously addressing the 

issue of time varying categorical covariates with missing data in the models. We considered 

outlier dependent overdispersion and made real data application while also addressing the co-

occurrence of missingness in important categorical predictors via both CCA and LTMI methods. 

We then made comparison among all methods using conditional AIC, bias, and error estimates. 

In the simulation study, LTMI consistently gave lower ASE and ESE values for both 

missingness scenarios compared to CCA methods. The contrast was more pronounced in the 

various 50% MAR and MNAR scenarios. The bias for both predictors compared to the true beta 

values was generally higher for the CCA methods than for LTMI, particularly for variable 2X  in 

the MAR, MNAR, and higher missingness scenarios. The negative-binomial also outperforms the 

Poisson in many cases, particularly among the MAR datasets and the 50% missingness 

scenarios, giving moderately adjusted errors and comparable goodness of fit. Outlier dependent 

overdispersion appears to be adequately addressed via the negative binomial regression.  

The real data application gives similar results for analyzing the relationship between 

Elixhauser score and covariates. LTMI methods are preferred over CCA given the lower standard 

error estimates produced, while NB-GLMM is preferred over Poisson-GLMM. Jointly considering 

all results and criteria, we can conclude both that NB-GLMM is superior for analysis of data 

containing overdispersion in the outcome and also that LTMI is preferred for imputing missing 

data in time-varying categorical predictors. Therefore, both methods are utilized when analyzing 

datasets in which both issues are present. 
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1. Summary and discussion of all results 

In Chapter 2, we provide a comprehensive comparative analysis of six different models 

for dealing with overdispersion caused by different mechanisms when modeling count data. 

Overall, the negative-binomial models appeared to demonstrate superiority in adjusting for 

overdispersion in the simulation studies. The NB-GLMM performed best in modeling count of 

comorbidity data in the motivating NLST study. This model also appeared to deal most effectively 

with overdispersion in the small Salmonella dataset. Based on our analyses, we conclude that 

NB-GLMM is superior overall for modeling count data characterized by overdispersion, jointly 

considering all criteria. Simple post hoc scaling in the Poisson model to decrease overdispersion 

was not consistently effective, as basic scaling does not take the specific cause of the 

overdispersion into account. Our results further demonstrate that the best method for dealing with 

overdispersion will likely vary by dataset depending on the cause of the overdispersion. The 

negative-binomial model may account for overdispersion due to a number of common causes, but 

it is not ideal in every case. Numerous model options should be considered when overdispersion 

is an issue.  

In Chapter 3, we utilized simulations to compare Poisson and negative binomial methods 

for analyzing cross-sectional and longitudinal datasets with two binary predictors and count 

outcome with overdispersion of varying magnitudes resulting from the addition of outliers or zero 

inflation. Magnitude of overdispersion was measured by dispersion parameter 
p , defined as the 

ratio of the Pearson 
2  value to its corresponding degrees of freedom n p . Comparison 

among models was made using Type 1 error with a true 1  value of 0.01, Type 2 errors using 

true 1  values of 0.41 or 0.92, and coverage probability of 1  for all effect sizes of 1 . It would 

appear that a general threshold for relying on the simple Poisson model for cross-sectional and 

longitudinal datasets is in cases where 1.2p  . For cross-sectional datasets, the negative 

binomial distribution via NB or NB-GLMM should be utilized if 1.2 1.5p  . For higher values 
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of 
p  in these scenarios, NB-GLMM should be utilized up to 5.0p  . However, if 5.0p   for 

longitudinal datasets or if 10.0p   for cross-sectional datasets, the model will likely not be 

reliable based on adjustment for overdispersion and should be checked for additional modeling 

errors. Results of our real data application to the NLST and Salmonella datasets indicate that 

these high levels of overdispersion require adjustment via the NB or the NB-GLMM, which is also 

supported by our analysis. The percent increase in standard errors resulting from the negative 

binomial models compared to the unadjusted Poisson increased in correspondence with higher 

magnitudes of overdispersion. 

In Chapter 4, we propose a latent transition multiple imputation approach to deal with 

missing data in time varying categorical covariates in count outcome datasets. This study is the 

first to assess and implement LTMI for modeling time varying missing categorical covariate data. 

We have demonstrated that this method is statistically efficient and leads to unbiased estimates 

and can be implemented using standard software. In comparing simulated and real data 

scenarios, parameter standard errors were most efficient in the LTMI scenarios using Proc LTA 

for the dynamic imputers model. In simulation studies, LTMI-LTA outperformed other methods 

most clearly in the 50% MAR scenarios. Complete case analysis performed fairly well in the 20% 

MCAR scenario, and generally produced standard error results of greater magnitude otherwise. 

LCMI methods produced biased estimates and reduced standard error estimates in the 

simulations compared to the dataset with no missing data. The standard error estimates in the 

real diabetes analysis were also lowest for LTMI-LTA, notably in the case of the A1C and MNA 

variables with missing data. Goodness of fit was measured and compared via conditional AIC, 

which is useful for choosing mixed effects models when dealing with clustered data, and results 

are comparable for all LCMI and LTMI scenarios in both real and simulated data scenarios. LTMI-

LTA outperforms other methods for dealing with missing data in time varying categorical 

covariates, particularly in various non-MCAR scenarios with a higher percentage of missingness, 
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jointly considering all criteria. Additionally, LTMI methods are computationally inexpensive and 

the results are easily interpretable for clinicians.  

It is not uncommon in real datasets to deal simultaneously with missing predictor data 

and overdispersion resulting from model specifications. Our investigation in Chapter 5 extends 

the approaches we examined previously to deal with overdispersion in time invariant data to 

longitudinal Poisson analysis including overdispersion, while simultaneously addressing the issue 

of time varying categorical covariates with missing data in the models. Here, we considered 

outlier dependent overdispersion and made real data application while also addressing the co-

occurrence of missingness in important categorical predictors via both CCA and LTMI methods. 

We then made comparison among all methods using conditional AIC, bias, and error estimates. 

In the simulation study, LTMI consistently gave moderately adjusted ASE and ESE values for 

both missingness scenarios compared to CCA methods. The contrast is again more pronounced 

in the various 50% MAR scenarios. The negative-binomial also outperforms the Poisson in many 

cases, particularly among the MAR datasets and several 50% missingness scenarios. There is 

comparable conditional AIC goodness of fit between the LTMI negative binomial and CCA 

methods. Application to the real diabetes dataset gives similar results for analyzing the 

relationship between Elixhauser score and covariates. LTMI methods are preferred over CCA 

given the lower standard error estimates produced. Jointly considering all results and criteria, we 

can conclude that NB-GLMM is preferable for analysis of data containing overdispersion in the 

outcome and that LTMI is preferred for imputing missing data in time-varying categorical 

predictors.  

2. Future work 

These analyses may be expanded to include future research in several areas. First, the 

generalizability of the Pearson 𝑋2/df thresholds of overdispersion may be improved with 

simulations in which overdispersion in the count outcome results from additional causes, 

including the removal of important covariates or necessary random effects. Predictors from 

different distributions could also be considered in addition to the binary, such as normal and 
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uniform covariates. Thresholds for declaring the presence of overdispersion utilizing the 

deviance/df value could also be examined in addition to the Pearson 𝑋2/df and compared with the 

results given here. 

We could further consider the ability of LTMI methods to address the issue of 

missingness in time varying categorical covariates under additional outcome scenarios, including 

normal and logistic regression models. The joint ability of LTMI and NB methods to address co-

occurring overdispersion relative to the Poisson and time varying categorical covariate 

missingness could also be considered under additional overdispersion scenarios. Lastly, it would 

be interesting to consider the ability of Bayesian Poisson regression to deal with the presence of 

overdispersion in datasets, perhaps via Proc MCMC methods in SAS 9.4, and compare with our 

scale adjustment and modeling techniques. 
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APPENDIX 1  

CHAPTER 2 METHODOLOGY 

Throughout this section, we assume estimating the full generalized linear model 

y = exp(β0 + x1β1 + x2β2 + x3β3)  

as well as the two reduced generalized linear models 

y = exp(α0 + x2α2 + x3α3)  

y = exp(γ0 + x3γ3)  

Coefficients of remaining terms are unbiased as discussed in (Neuhaus and Jewell 1993). 

If we generate three independent covariates  

x1 ~ Bernoulli(0.5)       x2 ~ Bernoulli(0.5)      x3 ~ Bernoulli(0.5) 

then  

1.00 + 2.00x1 + 1.50x2 + 1.00x3 ~ Known Discrete 

If we define an outcome 

y ∼ Poisson(exp(1.00 + 2.00x1 + 1.50x2 + 1.00x3)) 

then E(y) ≈ 58.10.  Estimating a full model should result in unbiased estimates of the parameters 

β̂0  ≈ 1.00       β̂1  ≈ 2.00       β̂2  ≈ 1.50    β̂3  ≈ 1.00         

Estimating a reduced model in which we leave out x1 should result in: 

α̂0  ≈ 2.43                                  α̂2  ≈ 1.50    α̂3  ≈ 1.00         
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where the constant term can be solved from the discrete distribution.  Estimating a reduced 

model in which we leave out x1 and x2 should result in: 

γ̂0  ≈ 3.44                                                          γ̂3  ≈ 1.00         

for which the constant term can be solved from the discrete distribution. 

       

Similarly, if we define three covariates 

𝑥1 ~ Normal(1,2)       𝑥2 ~ Normal(2,3)      𝑥3 ~ Normal(3,4) 

then a linear combination of these covariates gives the following distribution:  

1 + 0.50𝑥1 − 0.75𝑥2 + 0.25𝑥3 ~ Normal (
3

4
,
39

16
) 

If we define an outcome as 

𝑦 ∼ Poisson(exp(1 + 0.50𝑥1 − 0.75𝑥2 + 0.25𝑥3)) 

then 

𝐸(𝑦) = exp [
3

4
+  (

39

16
) (

1

2
)] = exp (

63

32
) ≈  7.16 

Estimating a full model should result in: 

𝛽̂0  ≈ 1.00       𝛽̂1  ≈ 0.50       𝛽̂2  ≈ −0.75    𝛽̂3  ≈ 0.25         

Estimating a reduced model in which 𝑥1 is omitted should result in: 

𝛼̂0  ≈ 1.75                                  𝛼̂2  ≈ −0.75    𝛼̂3  ≈ 0.25         

The constant term can be estimated under constrained maximum likelihood so that it is 

approximately equal to:  
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𝛼̂0 ≈ ln (
exp [

3
4

+  (
39
16

) (
1
2

)]

exp [−
3
4

+  (
31
16

) (
1
2

)]
) =

63

32
− 

7

32
=  1.75 

Estimating a reduced model in which 𝑥1 and 𝑥2 are omitted should result in: 

𝛾0  ≈ 1.09                                                            𝛾3  ≈ 0.25         

The constant term can be estimated under constrained maximum likelihood so that it is 

approximately equal to:  

𝛾0 ≈ ln (
exp [

3
4

+ (
39
16

) (
1
2

)]

exp [
3
4

+ (
1
4

) (
1
2

)]
) =

63

32
− 

28

32
=  1.09375 

Finally, if we define three covariates 

𝑥1 ~ Uniform(5,10)       𝑥2 ~ Uniform(10,15)      𝑥3 ~ Uniform(15,20) 

and we define an outcome as 

𝑦 ∼ Poisson(exp(1 + 0.50𝑥1 − 0.75𝑥2 + 0.25𝑥3)) 

then E(y) ≈ 1.81.  Estimating a full model should result in unbiased estimates of the parameters 

𝛽̂0  ≈ 1.00       𝛽̂1  ≈ 0.50       𝛽̂2  ≈ −0.75    𝛽̂3  ≈ 0.25         

Estimating a reduced model in which we leave out x1 should result in: 

𝛼̂0  ≈ 5.00                                  𝛼̂2  ≈ −0.75    𝛼̂3  ≈ 0.25         

where the constant term was obtained from simulation.  Estimating a reduced model in which we 

leave out x1 and x2 should result in: 

𝛾0  ≈ −3.86                                                            𝛾3  ≈ 0.25         

where the constant term was obtained from simulation.  
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APPENDIX 2 

ADDITIONAL FIGURES AND TABLES CORRESPONDING TO CHAPTER 2 

The figures in Appendix 2 correspond to those presented in Chapter 2, giving results for 

methods with larger magnitudes of overdispersion and normal predictors. The distributions of the 

variables in our normal simulation scenario are illustrated in Appendix 2 Figure 1a-d. A figure of 

AIC and BIC where two important predictors have been omitted from the model can be found in 

Figure 2, and the corresponding SE figure is given in Figure 3. Similar figures of AIC and BIC for 

the models containing larger outliers (+150) and 40% zero outliers are given respectively in 

Figures 4a and 4b, and the corresponding figures of SE can be found in Figures 5a and 5b. 

Lastly, Figure 6 gives the AIC and BIC for the random effects model with larger variance, and 

Figure 7 shows the corresponding SE figure. The results from these additional analyses are 

qualitatively similar to those presented in the paper. The lowest AIC and BIC values and 

moderately corrected standard errors are overall generally given by the NB-GLMM . 

Appendix 2 also gives a summary of goodness-of-fit results for all covariate, outlier, and 

random effects dependent overdispersion models in Tables 1, 2a and 2b, and 3, respectively. 

The NB and NB-GLMM give consistently lower AIC and BIC values compared to other models. In 

general, the NB and NB-GLMM also give moderate SE and 95% CI coverage, the original 

Poisson and Poisson-GLMM give lower values, and the scale-adjusted models give mixed 

results.  
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Figure 1a-d. Distributions of normal covariates and response for simulation study. 

 

 

Figure 2. Mean AIC and BIC values for simulated dataset with two important predictors omitted. 
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Figure 3. Mean parameter SE values for simulated dataset with two important predictors omitted. 

 

 

Figure 4a. Mean AIC and BIC values for simulated dataset with outliers added (+150). 
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Figure 4b. Mean AIC and BIC values for simulated dataset with zero outliers added (40%). 

 

 

Figure 5a. Mean parameter SE values for simulated dataset with outliers added (+150). 
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Figure 5b. Mean parameter SE values for simulated dataset with zero outliers added (40%). 

 

 

 

 
 

Figure 6. Mean AIC and BIC values for simulated dataset with random effect 𝛾 ~ 𝑁(0, 𝑔𝑟𝑜𝑢𝑝/5). 
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Figure 7. Mean parameter SE values for simulated dataset with random effect 𝛾 ~ 𝑁(0, 𝑔𝑟𝑜𝑢𝑝/5). 

 

 

 

Figure 8. Bacterial count response by dose and plate in Salmonella dataset. 
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Table 1. Comparison of methods for dealing with covariate dependent overdispersion using 

simulated data by covariate distribution and number of omitted predictors. 

Covariate No.Omitted Value Poisson DS-Poisson PS-Poisson NB Poisson-GLMM NB-GLMM 

Normal 

1 
AIC 6273.13 6273.13 6273.13 4249.52 6113.79 4315.32 

BIC 6287.86 6287.86 6287.86 4269.15 6115.30 4316.95 

2 
AIC 18501.66 18501.66 18501.66 5655.97 17952.10 6133.45 

BIC 18511.47 18511.47 18511.47 5670.70 17953.31 6134.77 

Binary 

1 AIC 43306.61 43306.61 43306.61 9363.32 42845.28 9386.82 

BIC 43321.34 43321.34 43321.34 9382.95 42846.79 9388.44 

2 AIC 68541.13 68541.13 68541.13 9894.71 67836.79 9899.21 

BIC 68550.94 68550.94 68550.94 9909.43 67838.00 9900.52 

Uniform 

1 AIC 10582.41 10582.41 10582.41 4166.76 10128.85 4181.82 

BIC 10597.14 10597.14 10597.14 4186.39 10130.37 4183.44 

2 AIC 47351.56 47351.56 47351.56 5937.99 45948.34 5955.97 

BIC 47361.37 47361.37 47361.37 5952.72 45949.55 5957.30 

 

Table 2a. Comparison of methods for dealing with outlier dependent overdispersion using 

simulated data by covariate distribution and magnitude of outliers. 

Covariate Outlier Value Poisson DS-Poisson PS-Poisson NB Poisson-GLMM NB-GLMM 

Normal 

+50 
AIC 5153.42 5153.42 5153.42 4427.09 5156.79 4622.05 

BIC 5173.05 5173.05 5173.05 4451.63 5158.60 4623.99 

+150 
AIC 12055.89 12055.89 12055.89 5278.41 12051.44 6874.90 

BIC 12075.52 12075.52 12075.52 5302.95 12053.26 6876.80 

Binary 

+50 
AIC 4989.94 4989.94 4989.94 4192.88 4993.94 5313.65 

BIC 5009.57 5009.57 5009.57 4217.42 4995.76 5315.47 

+150 
AIC 11405.51 11405.51 11405.51 5075.12 11409.51 7613.69 

BIC 11425.14 11425.14 11425.14 5099.66 11411.32 7615.51 

Uniform 

+50 
AIC 4967.39 4967.39 4967.39 4099.04 4971.39 5306.66 

BIC 4987.03 4987.03 4987.03 4123.58 4973.21 5308.47 

+150 
AIC 11534.20 11534.20 11534.20 4963.86 11538.20 7610.13 

BIC 11553.83 11553.83 11553.83 4988.40 11540.02 7611.94 
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Table 2b. Comparison of methods for dealing with outlier dependent overdispersion using 

simulated data by covariate distribution and percentage of excess zeros. 

Covariate Outlier Value Poisson DS-Poisson PS-Poisson NB Poisson-GLMM NB-GLMM 

Normal 

Lower % 
AIC 4708.91 4708.91 4708.91 3694.7 4647.39 3703.74 

BIC 4728.54 4728.54 4728.54 3719.24 4649.2 3705.66 

Higher % 
AIC 5905.90 5905.90 5905.90 3437.05 5763.10 3477.61 

BIC 5925.53 5925.53 5925.53 3461.58 5764.91 3479.54 

Binary 

Lower % 
AIC 3596.27 3596.27 3596.27 3477.75 3599.03 3488.81 

BIC 3615.90 3615.90 3615.90 3502.29 3600.85 3490.73 

Higher % 
AIC 3369.53 3369.53 3369.53 2886.92 3369.42 2893.47 

BIC 3389.16 3389.16 3389.16 2911.46 3371.24 2895.40 

Uniform 

Lower % 
AIC 3355.53 3355.53 3355.53 3278.80 3358.50 3297.99 

BIC 3375.16 3375.16 3375.16 3303.34 3360.32 3299.92 

Higher % 
AIC 3112.77 3112.77 3112.77 2739.91 3113.16 2743.07 

BIC 3132.40 3132.40 3132.40 2764.44 3114.98 2744.99 

 

 

Table 3. Comparison of methods for dealing with lower random effect dependent overdispersion 

using simulated data by covariate distribution and magnitude of outliers. 

Covariate 𝜸  Value Poisson DS-Poisson PS-Poisson NB Poisson-GLMM NB-GLMM 

Normal 

𝑵(𝟎, 𝒈/𝟏𝟎) 
AIC 8301.66 8301.66 8301.66 4424.69 7740.06 4418.28 

BIC 8321.29 8321.29 8321.29 4449.23 7741.88 4420.39 

𝑵(𝟎, 𝒈/𝟓) 
AIC 20037.57 20037.57 20037.57 4098.81 15522.58 4044.95 

BIC 20057.20 20057.20 20057.20 4123.35 15524.40 4047.06 

Binary 

𝑵(𝟎, 𝒈/𝟏𝟎) 
AIC 5410.88 5410.88 5410.88 4586.73 5327.46 4582.96 

BIC 5430.51 5430.51 5430.51 4611.27 5329.28 4585.08 

𝑵(𝟎, 𝒈/𝟓) 
AIC 10269.75 10269.75 10269.75 5377.65 9717.36 5418.19 

BIC 10289.38 10289.38 10289.38 5402.19 9719.18 5420.31 

Uniform 

𝑵(𝟎, 𝒈/𝟏𝟎) 
AIC 5056.44 5056.44 5056.44 4374.92 4983.67 4364.20 

BIC 5076.07 5076.07 5076.07 4399.46 4985.49 4366.32 

𝑵(𝟎, 𝒈/𝟓) 
AIC 9427.43 9427.43 9427.43 5155.89 8931.69 5130.26 

BIC 9447.07 9447.07 9447.07 5180.43 8933.50 5132.38 
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APPENDIX 3 

DERIVATION OF LIKELIHOOD CONTRIBUTION BASED ON LATENT STATUS 

CORRESPONDING TO CHAPTER 4 

Recall that we have defined 1(l ,..., l )j TL   to represent class membership indicators at 

time 1,...,j T  where 1,...,jl L . The vector 1(Y ,...,Y )j j MjY   represents the M  observed 

categorical variables where each variable may take on values 1,...,Cmk   for every time point, 

1,...,j T . To derive the likelihood equation for LTMI, we must begin with the basic joint 

probability equation below: 

1 1 1 1(Y y ,...,Y y ;L l ) p(L l ) (Y y ,...,Y y | L l )i T iT j j j j i T iT j jp p          

We define 
1 1 1(L l )l P    as the probability that the latent class is 1l  at the first time 

point. This implies that the sum of the probabilities of the observation being assigned to a 

particular latent class 1,...,jl L  at given time point 1,...,j T  is given as follows: 

 
1 1 1

1 1

(j) (j)

|

1 1 2

(L l ) ...
j j

j

TL L

l j j l l l

l l j

P  


  

        

With 
1

(j)

| 1 1(L l | L l )
j jl l j j j jp

      defined as the probability that the latent class at 

time j  is any jl  given the latent class assignments at previous time points. We then define the 

probability that the thi  individual has categorical response 1,...,Cmk   for each variable 

1,...,m M across time points 1,...,j T  given the time varying latent class assignment jl  as:  

(y k)

1 1 |

1 1 1

(Y y ,...,Y y ;L l )
m

imj

j

CT M
I

i T iT j j mkj l

j m k

p 


  

     
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where | (Y k | L l )
jmkj l mj j jp    . Therefore, the joint probability that the thi  individual exhibits 

a specific categorical response at each time point 1,...,i iTy y , and latent class membership at 

the corresponding time point, 1(l ,..., l )j Tl  , is given as follows: 

 
1 1

(y k)(j)

1 1 | |

2 1 1 1

(Y y ,...,Y y ,L l )
m

imj

j j j

CT T M
I

i T iT j j l l l mkj l

j j m k

p   




   

   
       

   
     

We can then calculate the likelihood contribution for the thi  individual to the whole model 

across all possible latent classes at each time point. This is the joint probability that the thi  

individual exhibits a specific categorical response for each variable at each time point and is also 

assigned to a specific latent class at each time point, and is given below: 

 
1 1

1 1

(y k)(j)

1 1 | |

1 1 2 1 1 1

( ;Y y ,...,Y y ) ...
m

imj

j j j

j

CT T ML L
I

i T iT l l l mkj l

l l j j m k

L    






     

   
      

   
       
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APPENDIX 4 

ADDITIONAL FIGURES AND TABLES CORRESPONDING TO CHAPTER 4 

Table 1. Results of CCA imputation for 20% and 50% missingness scenarios. 

 
No missing 

20% Missing 

MCAR MAR (x2) MAR (y) MAR (x2,y) MNAR 

Conditional AIC 3229.46 2593.84 2596.56 2530.56 2541.12 2524.03 

Pearson 
2 /df 1.002 1.002 1.001 0.926 0.940 0.954 

X1  (β1 = 0.41)       

Mean β1 0.414 0.410 0.414 0.384 0.394 0.310 

Mean RR 1.513 1.507 1.513 1.468 1.483 1.363 

ASE 0.047 0.053 0.052 0.052 0.052 0.061 

ESE 0.051 0.056 0.056 0.054 0.057 0.064 

Bias -0.004 0.000 -0.004 0.026 0.016 0.100 

Mean 95% CI for β1 0.321, 0.506 0.307, 0.514 0.312, 0.516 0.282, 0.485 0.292, 0.496 0.209, 0.428 

X2  (β2 = 0.69)       

Mean β2 0.696 0.693 0.697 0.638 0.621 0.653 

Mean RR 2.006 2.000 2.008 1.893 1.861 1.921 

ASE 0.048 0.053 0.053 0.052 0.053 0.061 

ESE 0.049 0.054 0.054 0.054 0.055 0.063 

Bias -0.006 -0.003 -0.007 0.052 0.069 0.037 

Mean 95% CI for β2 0.603, 0.790 0.588, 0.798 0.593, 0.801 0.535, 0.741 0.517, 0.725 0.532, 0.774 

 
No missing 

50% Missing 

 MCAR MAR (x2) MAR (y) MAR (x2,y) MNAR 

Conditional AIC 3229.46 1632.64 1622.03 1560.37 1579.51 1580.24 

Pearson 
2 /df 1.002 1.005 1.004 0.887 0.925 0.992 

X1  (β1 = 0.41)       

Mean β1 0.414 0.410 0.416 0.360 0.385 0.302 

Mean RR 1.513 1.507 1.516 1.433 1.470 1.353 

ASE 0.047 0.067 0.064 0.062 0.063 0.082 

ESE 0.051 0.070 0.073 0.067 0.066 0.084 

Bias -0.004 0.000 -0.006 0.050 0.025 0.108 

Mean 95% CI for β1 0.321, 0.506 0.279, 0.541 0.290, 0.543 0.238, 0.483 0.260, 0.509 0.141, 0.462 

X2  (β2 = 0.69)       

Mean β2 0.696 0.692 0.699 0.594 0.569 0.713 

Mean RR 2.006 1.998 2.012 1.811 1.766 2.040 

ASE 0.048 0.067 0.067 0.064 0.065 0.082 

ESE 0.049 0.069 0.070 0.065 0.066 0.084 

Bias -0.006 -0.002 -0.009 0.096 0.121 -0.023 

Mean 95% CI for β2 0.603, 0.790 0.559, 0.825 0.568, 0.830 0.469, 0.719 0.441, 0.697 0.552, 0.874 

- ASE = the mean of the Asymptotic SE as computed by Proc MEANS (reported as mean 

of ASE) 

- ESE = the SD of the estimates of beta as computed by Proc MEANS (reported SD 

Estimate) 
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Table 2. Results of LCMI-LCA imputation for 20% and 50% missingness scenarios. 
 

No missing 
20% Missing 

MCAR MAR (x2) MAR (y) MAR (x2,y) MNAR 

Conditional AIC 3229.46 3248.57 3257.22 3240.26 3232.65 3300.96 

Pearson 
2 /df 

1.002 1.022 1.022 1.011 0.999 1.061 

X1  (β1 = 0.41)       

Mean β1 0.414 0.299 0.311 0.315 0.391 0.100 

Mean RR 1.513 1.349 1.365 1.370 1.478 1.105 

ASE 0.047 0.047 0.048 0.050 0.048 0.056 

ESE 0.051 0.054 0.057 0.059 0.053 0.070 

Bias -0.004 0.111 0.099 0.095 0.019 0.310 

Mean 95% CI for β1 0.321, 0.506 0.206, 0.393 0.216, 0.406 0.215, 0.415 0.297, 0.486 -0.012, 0.212 

X2  (β2 = 0.69)       

Mean β2 0.696 0.590 0.600 0.604 0.663 0.441 

Mean RR 2.006 1.804 1.822 1.829 1.941 1.554 

ASE 0.048 0.047 0.047 0.049 0.047 0.053 

ESE 0.049 0.051 0.052 0.054 0.046 0.065 

Bias -0.006 0.100 0.090 0.086 0.027 0.249 

Mean 95% CI for β2 0.603, 0.790 0.498, 0.682 0.507, 0.693 0.507, 0.700 0.571, 0.755 0.336, 0.546 

 
No missing 

50% Missing 

 MCAR MAR (x2) MAR (y) MAR (x2,y) MNAR 

Conditional AIC 3229.46 3265.24 3280.81 3256.76 3245.24 3292.48 

Pearson 
2 /df 1.002 1.037 1.037 1.026 1.005 1.058 

X1  (β1 = 0.41)       

Mean β1 0.414 0.204 0.220 0.209 0.306 -0.011 

Mean RR 1.513 1.226 1.246 1.232 1.358 0.989 

ASE 0.047 0.046 0.046 0.047 0.046 0.051 

ESE 0.051 0.050 0.057 0.064 0.055 0.066 

Bias -0.004 0.206 0.190 0.201 0.104 0.421 

Mean 95% CI for β1 0.321, 0.506 0.113, 0.296 0.129, 0.312 0.114, 0.304 0.213, 0.399 -0.013, 0.091 

X2  (β2 = 0.69)       

Mean β2 0.696 0.505 0.515 0.509 0.578 0.355 

Mean RR 2.006 1.657 1.674 1.664 1.782 1.426 

ASE 0.048 0.044 0.044 0.045 0.044 0.046 

ESE 0.049 0.046 0.050 0.054 0.045 0.056 

Bias -0.006 0.185 0.177 0.181 0.112 0.335 

Mean 95% CI for β2 0.603, 0.790 0.418, 0.591 0.429, 0.602 0.421, 0.597 0.490, 0.666 0.264, 0.446 

- ASE = the mean of the Asymptotic SE as computed by Proc MEANS (reported as mean 

of ASE) 

- ESE = the SD of the estimates of beta as computed by Proc MEANS (reported SD 

Estimate) 
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Table 3. Results of LCMI-LMM imputation for 20% and 50% missingness scenarios. 
 

No missing 
20% Missing 

MCAR MAR (x2) MAR (y) MAR (x2,y) MNAR 

Conditional AIC 3229.46 3249.22 3259.85 3241.80 3232.67 3304.41 

Pearson 
2 /df 

1.002 1.020 1.023 1.012 0.999 1.063 

X1  (β1 = 0.41)       

Mean β1 0.414 0.303 0.314 0.316 0.390 0.106 

Mean RR 1.513 1.354 1.369 1.372 1.477 1.112 

ASE 0.047 0.047 0.047 0.050 0.048 0.056 

ESE 0.051 0.052 0.056 0.060 0.054 0.069 

Bias -0.004 0.107 0.096 0.094 0.020 0.304 

Mean 95% CI for β1 0.321, 0.506 0.210, 0.397 0.220, 0.407 0.216, 0.415 0.296, 0.484 -0.006, 0.218 

X2  (β2 = 0.69)       

Mean β2 0.696 0.595 0.603 0.604 0.662 0.446 

Mean RR 2.006 1.813 1.828 1.829 1.939 1.562 

ASE 0.048 0.047 0.047 0.048 0.047 0.053 

ESE 0.049 0.047 0.052 0.054 0.045 0.066 

Bias -0.006 0.095 0.087 0.086 0.028 0.244 

Mean 95% CI for β2 0.603, 0.790 0.504, 0.687 0.511, 0.695 0.508, 0.700 0.571, 0.754 0.341, 0.551 

 
No missing 

50% Missing 

 MCAR MAR (x2) MAR (y) MAR (x2,y) MNAR 

Conditional AIC 3229.46 3265.74 3280.63 3258.22 3244.47 3296.56 

Pearson 
2 /df 1.002 1.036 1.037 1.025 1.004 1.058 

X1  (β1 = 0.41)       

Mean β1 0.414 0.213 0.224 0.218 0.311 -0.003 

Mean RR 1.513 1.237 1.251 1.244 1.365 0.997 

ASE 0.047 0.046 0.046 0.047 0.047 0.051 

ESE 0.051 0.052 0.054 0.062 0.054 0.061 

Bias -0.004 0.197 0.186 0.192 0.179 0.413 

Mean 95% CI for β1 0.321, 0.506 0.121, 0.305 0.132, 0.315 0.123, 0.314 0.217, 0.404 -0.106, 0.101 

X2  (β2 = 0.69)       

Mean β2 0.696 0.514 0.518 0.518 0.585 0.363 

Mean RR 2.006 1.672 1.679 1.679 1.795 1.438 

ASE 0.048 0.044 0.044 0.045 0.045 0.047 

ESE 0.049 0.046 0.048 0.052 0.044 0.053 

Bias -0.006 0.176 0.172 0.172 0.105 0.327 

Mean 95% CI for β2 0.603, 0.790 0.427, 0.601 0.432, 0.605 0.429, 0.607 0.497, 0.673 0.271, 0.456 

- ASE = the mean of the Asymptotic SE as computed by Proc MEANS (reported as mean 

of ASE) 

- ESE = the SD of the estimates of beta as computed by Proc MEANS (reported SD 

Estimate) 
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Table 4. Results of LTMI-LMM imputation for 20% and 50% missingness scenarios. 
 

No missing 
20% Missing 

MCAR MAR (x2) MAR (y) MAR (x2,y) MNAR 

Conditional AIC 3229.46 3230.34 3236.55 3231.60 3228.29 3273.66 

Pearson 
2 /df 1.002 1.001 1.007 1.002 1.001 1.027 

X1  (β1 = 0.41)       

Mean β1 0.414 0.406 0.406 0.405 0.402 0.335 

Mean RR 1.513 1.501 1.501 1.499 1.495 1.398 

ASE 0.047 0.049 0.048 0.049 0.049 0.057 

ESE 0.051 0.057 0.055 0.054 0.057 0.069 

Bias -0.004 0.004 0.004 0.005 0.008 0.075 

Mean 95% CI for β1 0.321, 0.506 0.311, 0.501 0.311, 0.501 0.309, 0.501 0.305, 0.498 0.223, 0.448 

X2  (β2 = 0.69)       

Mean β2 0.696 0.692 0.691 0.690 0.690 0.644 

Mean RR 2.006 1.998 1.996 1.994 1.994 1.904 

ASE 0.048 0.049 0.049 0.049 0.049 0.056 

ESE 0.049 0.050 0.051 0.051 0.054 0.065 

Bias -0.006 -0.002 -0.001 0.000 0.000 0.046 

Mean 95% CI for β2 0.603, 0.790 0.597, 0.788 0.596, 0.787 0.594, 0.786 0.594, 0.786 0.534, 0.755 

 

No missing 
50% Missing 

 
MCAR MAR (x2) MAR (y) MAR (x2,y) MNAR 

Conditional AIC 3229.46 3231.48 3225.08 3228.12 3234.17 3278.25 

Pearson 
2 /df 

1.002 1.003 0.999 1.001 1.006 1.029 

X1  (β1 = 0.41)       

Mean β1 0.414 0.412 0.416 0.408 0.404 0.350 

Mean RR 1.513 1.510 1.516 1.504 1.498 1.419 

ASE 0.047 0.050 0.050 0.050 0.050 0.059 

ESE 0.051 0.054 0.055 0.064 0.060 0.081 

Bias -0.004 -0.002 -0.006 0.002 0.006 0.060 

Mean 95% CI for β1 0.321, 0.506 0.314, 0.510 0.318, 0.513 0.309, 0.507 0.306, 0.502 0.233, 0.467 

X2  (β2 = 0.69)       

Mean β2 0.696 0.694 0.699 0.694 0.691 0.656 

Mean RR 2.006 2.002 2.012 2.002 1.996 1.927 

ASE 0.048 0.050 0.049 0.050 0.050 0.058 

ESE 0.049 0.052 0.052 0.057 0.056 0.075 

Bias -0.006 -0.004 -0.009 -0.004 -0.001 0.034 

Mean 95% CI for β2 0.603, 0.790 0.597, 0.792 0.602, 0.796 0.596, 0.792 0.594, 0.788 0.542, 0.771 

- ASE = the mean of the Asymptotic SE as computed by Proc MEANS (reported as mean 

of ASE) 

- ESE = the SD of the estimates of beta as computed by Proc MEANS (reported SD 

Estimate) 
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Table 5. Relationship between Elixhauser score and covariates in Diabetes dataset via CCA. 

Covariate 
MNA A1C 

RR SE P-Value RR SE P-Value 

Covariate with Missingness       

   Medically adherent (reference)    -- 

   Medically non-adherent  1.017 0.006 0.0076 

   Normal blood sugar (reference) --    

   Abnormally high blood sugar 1.008 0.008 0.3299 

Time 1.045 0.002 <0.0001 1.048 0.002 <0.0001 

Age 1.003 0.000 <0.0001 1.003 0.000 <0.0001 

Region       

   South (reference)       

   Northeast 0.993 0.014 0.6110 1.030 0.017 0.0782 

   Midatlantic 1.005 0.010 0.6299 1.022 0.013 0.0950 

   Midwest 0.998 0.011 0.8684 1.017 0.015 0.2345 

   West  0.970 0.012 0.0131 0.989 0.014 0.4478 

Gender       

   Male (reference)       

   Female 1.040 0.026 0.1408 1.024 0.032 0.4603 

Race       
   NHW (reference)       

   NHB 1.058 0.012 <.0001 1.073 0.014 <.0001 

   Hispanic 1.006 0.017 0.7039 0.992 0.018 0.6560 

   Other 0.904 0.013 <.0001 0.937 0.015 <.0001 

Living       

   Urban (reference)       

   Rural 1.007 0.008 0.4015 1.004 0.010 0.7192 

Marital Status       

   Married (reference)       

   Unmarried 1.038 0.008 <0.0001 1.038 0.010 0.0003 

Percent Service Connected Disability       

   <50% (reference)       

   ≥50% 1.078 0.011 <0.0001 1.064 0.014 <0.0001 
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Table 6. Relationship between Elixhauser score and covariates in Diabetes dataset via LCMI-

LCA. 

Covariate 
MNA A1C 

RR SE P-Value RR SE P-Value 

Covariate with Missingness       

   Medically adherent (reference)     
-- 

   Medically non-adherent  1.008 0.006 0.0831 

   Normal blood sugar (reference) 
-- 

   

   Abnormally high blood sugar 1.023 0.006 0.0002 

Time 1.044 0.002 <0.0001 1.045 0.002 <0.0001 

Age 1.003 0.000 <0.0001 1.003 0.000 <0.0001 

Region       

   South (reference)       

   Northeast 0.987 0.013 0.1526 0.996 0.013 0.3684 

   Midatlantic 1.002 0.010 0.4119 1.008 0.010 0.2042 

   Midwest 0.996 0.010 0.3389 0.999 0.010 0.4666 

   West  0.976 0.011 0.0136 0.976 0.011 0.0170 

Gender           

   Male (reference)           

   Female 1.042 0.023 0.0381 1.043 0.023 0.0351 

Race           

   NHW (reference)           

   NHB 1.062 0.011 <0.0001 1.059 0.011 <0.0001 

   Hispanic 0.976 0.015 0.0576 0.973 0.015 0.0385 

   Other 0.931 0.011 <0.0001 0.931 0.011 <0.0001 

Living           

   Urban (reference)           

   Rural 1.004 0.007 0.2898 1.005 0.008 0.2481 

Marital Status           

   Married (reference)           

   Unmarried 1.044 0.008 <0.0001 1.041 0.008 <0.0001 

Percent Service Connected Disability           

   <50% (reference)           

   ≥50% 1.080 0.010 <0.0001 1.076 0.011 <0.0001 
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Table 7. Relationship between Elixhauser score and covariates in Diabetes dataset via LCMI-

LMM. 

Covariate 
MNA A1C 

RR SE P-Value RR SE P-Value 

Covariate with Missingness       

   Medically adherent (reference)     
-- 

   Medically non-adherent  1.008 0.006 0.0813 

   Normal blood sugar (reference) 
-- 

   

   Abnormally high blood sugar 1.033 0.006 <0.0001 

Time 1.044 0.002 <0.0001 1.044 0.002 <0.0001 

Age 1.002 0.000 <0.0001 1.003 0.000 <0.0001 

Region       

   South (reference)       

   Northeast 0.985 0.012 0.1123 0.986 0.012 0.1247 

   Midatlantic 1.002 0.010 0.4236 1.002 0.010 0.4105 

   Midwest 0.997 0.010 0.3774 0.997 0.010 0.3948 

   West  0.975 0.011 0.0101 0.975 0.011 0.0114 

Gender      
 

   

   Male (reference)           

   Female 1.034 0.023 0.0793 1.035 0.023 0.0677 

Race           

   NHW (reference)           

   NHB 1.064 0.011 <0.0001 1.062 0.011 <0.0001 

   Hispanic 0.964 0.013 0.0025 0.965 0.013 0.0027 

   Other 0.935 0.011 <0.0001 0.936 0.011 <0.0001 

Living           

   Urban (reference)           

   Rural 1.001 0.007 0.4719 1.001 0.007 0.4704 

Marital Status           

   Married (reference)           

   Unmarried 1.043 0.007 <0.0001 1.042 0.007 <0.0001 

Percent Service Connected Disability           

   <50% (reference)           

   ≥50% 1.079 0.010 <0.0001 1.079 0.011 <0.0001 
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Table 8. Relationship between Elixhauser score and covariates in Diabetes dataset via LTMI-

LMM. 

Covariate 
MNA A1C 

RR SE P-Value RR SE P-Value 

Covariate with Missingness       

   Medically adherent (reference)      
-- 

   Medically non-adherent  1.010 0.006 0.0408  

   Normal blood sugar (reference)  
-- 

   

   Abnormally high blood sugar  1.033 0.006 <0.0001 

Time 1.044 0.002 <0.0001 1.044 0.002 <0.0001 

Age 1.002 0.000 <0.0001 1.003 0.000 <0.0001 

Region       

   South (reference)       

   Northeast 0.985 0.012 0.1122 0.986 0.012 0.1254 

   Midatlantic 1.002 0.010 0.4231 1.002 0.010 0.4101 

   Midwest 0.997 0.010 0.3785 0.997 0.010 0.3950 

   West  0.975 0.011 0.0102 0.975 0.011 0.0114 

Gender           

   Male (reference)           

   Female 1.033 0.023 0.0799 1.035 0.023 0.0683 

Race           

   NHW (reference)           

   NHB 1.064 0.011 <0.0001 1.062 0.011 <0.0001 

   Hispanic 0.964 0.013 0.0024 0.965 0.013 0.0027 

   Other 0.934 0.011 <0.0001 0.936 0.011 <0.0001 

Living           

   Urban (reference)           

   Rural 1.001 0.007 0.4705 1.001 0.007 0.4694 

Marital Status           

   Married (reference)           

   Unmarried 1.043 0.007 <0.0001 1.042 0.007 <0.0001 

Percent Service Connected Disability           

   <50% (reference)           

   ≥50% 1.079 0.010 <0.0001 1.079 0.010 <0.0001 
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APPENDIX 5 

ADDITIONAL TABLES CORRESPONDING TO CHAPTER 5 

Tables giving Poisson-GLMM and NB-GLMM results for the 20% missingness scenarios 

are given below. They demonstrate results comparable to those in the manuscript with 20% 

missingness. 

Table 1. Results for high outlier scenario via CCA. 
 No missing or 

overdispersion 

Poisson-GLMM 

MCAR MAR (x2) MAR (y) MAR (x2,y) MNAR 

Conditional AIC 3229.34 3093.89 3118.75 3062.57 3075.42 2923.05 

p  1.000 1.437 1.459 1.384 1.403 1.313 

X1  (β1 = 0.41)       

Mean β1 0.409 0.507 0.508 0.478 0.487 0.348 

Mean RR 1.505 1.660 1.662 1.613 1.627 1.416 

ASE 0.047 0.054 0.053 0.053 0.053 0.063 

ESE 0.048 0.099 0.101 0.099 0.100 0.101 

Bias 0.001 0.097 0.098 0.068 0.077 0.062 

Mean 95% CI for β1 0.317, 0.501 0.402, 0.612 0.404, 0.612 0.374, 0.582 0.382, 0.592 0.224, 0.472 

X2  (β2 = 0.69)        

Mean β2 0.690 0.821 0.822 0.766 0.746 0.728 

Mean RR 1.994 2.273 2.275 2.151 2.109 2.071 

ASE 0.048 0.054 0.054 0.054 0.054 0.064 

ESE 0.047 0.097 0.100 0.096 0.097 0.099 

Bias 0.000 0.131 0.132 0.076 0.056 0.038 

Mean 95% CI for β2 0.597, 0.783 0.714, 0.928 0.716, 0.929 0.660, 0.872 0.640, 0.852 0.603, 0.853 

 No missing or 
overdispersion 

NB-GLMM 

 MCAR MAR (x2) MAR (y) MAR (x2,y) MNAR 

Conditional AIC 3228.55 3118.43 3141.09 3104.14 3108.49 2971.05 

p  1.000 0.971 0.971 0.964 0.965 0.959 

X1  (β1 = 0.41)       

Mean β1 0.409 0.496 0.499 0.466 0.473 0.348 

Mean RR 1.505 1.642 1.647 1.594 1.605 1.416 

ASE 0.047 0.074 0.074 0.072 0.073 0.081 

ESE 0.048 0.089 0.091 0.089 0.090 0.092 

Bias 0.001 0.086 0.089 0.056 0.063 0.062 

Mean 95% CI for β1 0.317, 0.501 0.350, 0.642 0.353, 0.645 0.325, 0.608 0.330, 0.617 0.190, 0.506 

X2  (β2 = 0.69)       

Mean β2 0.690 0.811 0.813 0.755 0.733 0.728 

Mean RR 1.994 2.250 2.255 2.128 2.081 2.071 

ASE 0.047 0.075 0.075 0.073 0.074 0.081 

ESE 0.047 0.088 0.089 0.087 0.087 0.093 

Bias 0.000 0.121 0.123 0.065 0.043 0.038 

Mean 95% CI for β2 0.597, 0.783 0.664, 0.958 0.666, 0.961 0.612, 0.897 0.588, 0.877 0.570, 0.886 
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Table 2. Results for high outlier scenario via LTMI. 
 No missing or 

overdispersion 

Poisson-GLMM 

MCAR MAR (x2) MAR (y) MAR (x2,y) MNAR 

Conditional AIC 3229.34 3867.38 3865.26 3866.97 3863.95 3765.62 

p  1.000 1.454 1.452 1.457 1.454 1.542 

X1  (β1 = 0.41)       

Mean β1 0.409 0.481 0.486 0.468 0.478 0.316 

Mean RR 1.505 1.618 1.626 1.597 1.613 1.372 

ASE 0.047 0.050 0.049 0.049 0.050 0.057 

ESE 0.048 0.090 0.090 0.090 0.091 0.096 

Bias 0.001 0.071 0.076 0.058 0.068 0.094 

Mean 95% CI for β1 0.317, 0.501 0.386, 0.581 0.391, 0.583 0.372, 0.567 0.381, 0.579 0.198, 0.424 

X2  (β2 = 0.69)       

Mean β2 0.690 0.800 0.804 0.792 0.802 0.676 

Mean RR 1.994 2.226 2.234 2.208 2.230 1.966 

ASE 0.048 0.050 0.049 0.050 0.050 0.057 

ESE 0.047 0.088 0.088 0.087 0.088 0.095 

Bias 0.000 0.110 0.114 0.102 0.112 0.014 

Mean 95% CI for β2 0.597, 0.783 0.702, 0.898 0.708, 0.901 0.690, 0.886 0.704, 0.902 0.557, 0.781 

 No missing or 
overdispersion 

NB-GLMM 

 MCAR MAR (x2) MAR (y) MAR (x2,y) MNAR 

Conditional AIC 3228.55 3894.29 3893.44 3891.91 3889.28 3787.40 

p  1.000 0.971 0.971 0.970 0.970 0.979 

X1  (β1 = 0.41)       

Mean β1 0.409 0.469 0.473 0.453 0.461 0.315 

Mean RR 1.505 1.598 1.605 1.573 1.586 1.370 

ASE 0.047 0.070 0.068 0.068 0.069 0.079 

ESE 0.048 0.082 0.081 0.080 0.081 0.087 

Bias 0.001 0.059 0.063 0.043 0.051 0.095 

Mean 95% CI for β1 0.317, 0.501 0.337, 0.605 0.341, 0.605 0.319, 0.586 0.328, 0.598 0.166, 0.486 

X2  (β2 = 0.69)       

Mean β2 0.690 0.789 0.792 0.778 0.786 0.674 

Mean RR 1.994 2.201 2.208 2.177 2.195 1.962 

ASE 0.047 0.068 0.068 0.068 0.069 0.079 

ESE 0.047 0.081 0.080 0.078 0.080 0.088 

Bias 0.000 0.099 0.102 0.088 0.096 0.016 

Mean 95% CI for β2 0.597, 0.783 0.656, 0.923 0.660, 0.924 0.639, 0.906 0.651, 0.922 0.513, 0.831 
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