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Introduction: Diffusional Kurtosis Imaging and the Application of 

Neuroimaging Biomarkers in Epilepsy 

________________ 

iffusion MRI (dMRI) is a powerful, non-invasive tool for probing the structural organization 

of the human brain. Quantitative dMRI analyses provide unique capabilities for the 

characterization of tissue microstructure as well as imaging contrast that is not available to other 

modalities. White matter tractography relies on dMRI and is currently the only non-invasive 

technique for mapping structural connections in the human brain. In this chapter, we will describe 

diffusional kurtosis imaging, an effective and versatile dMRI technique, and discuss a clinical 

problem in temporal lobe epilepsy (TLE) which is insurmountable with current diagnostic 

approaches. Subsequent chapters will further develop the capabilities of DKI and demonstrate 

how it may be particularly well suited to overcome current barriers to care in the clinical 

management of TLE. 

Introduction 

Quantitative neuroimaging techniques are revolutionizing our understanding of the human brain 

by providing non-invasive tools for investigation of the structure, function, and physiology of in 

vivo neural tissue. These tools are rapidly generating new and exciting insights into normal and 

D



   

2 

 

pathological processes that affect the brain and hold unique promise for improving our ability to 

detect, diagnose, and predict the clinical course of disease.  

 

One key problem that has yet to be solved is the development of diagnostic tools for temporal 

lobe epilepsy (TLE). TLE is a relatively common and disabling neurological condition with a 

largely variable clinical course. TLE is frequently refractory to pharmacotherapy and effective 

surgical treatment is often delayed (1,2). This may, in part, be due to our inability to accurately 

predict drug response and surgical outcomes in TLE with current diagnostic approaches. Thus, 

the development of neuroimaging biomarkers in TLE is a high-priority area in epilepsy research.  

 

Diffusion MRI (dMRI) is a quantitative neuroimaging tool that is sensitive to the random, 

molecular motion, or diffusion, of water on a microscopic scale (3,4). The diffusion signal is 

shaped by the cytoarchitectural organization of biological tissue and is affected by disease 

processes including stroke, cancer, and numerous neurological and psychiatric disorders (5). 

Because TLE is a focal epilepsy disorder associated with both circumscribed and diffuse 

structural brain abnormalities, we hypothesize that dMRI will be sensitive to abnormalities in 

TLE which are not apparent by other modalities; in particular, by developing advanced dMRI 

tools, we will improve the ability to characterize clinicopathological features of TLE.   

Temporal Lobe Epilepsy 

Temporal lobe epilepsy (TLE) is the most common form of medically refractory focal epilepsy. 

Despite recent advances in anti-epileptic drug (AED) therapy (6-8), many patients with TLE 

cannot be treated with AEDs and are consequently at risk for developing irreversible cognitive 
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deficits (9,10), psychosocial disability (11-13), and premature death (14,15) from damage 

caused by recurrent seizures. Surgery can cure TLE by removing epileptogenic foci and has 

been shown to improve treatment and quality of life over continued AED therapy with  

comparable or improved risks (16). However, surgical success is not universally achieved, as 

approximately 50% of patients with TLE continue to experience seizures after a technically 

successful operation (17-21). Patients who become seizure free are clinically indistinguishable 

from those who continue to experience seizures after surgery (22). As a result, surgery is often 

viewed as having unpredictable outcomes and patients with difficult to treat TLE are not 

referred to surgery until well after the recommended guidelines (1,2). Thus, our inability to 

accurately predict surgical outcomes prevents optimal medical care as delayed surgical referral 

reduces the life span and quality of life for individual patients with difficult to treat TLE and 

increases the burden of epilepsy on the overall population.  

 

The mechanisms underlying surgical responsiveness are not well understood. One 

hypothesis suggests that brain damage leads to biochemical and structural changes that result in 

the reorganization of neural tissue leading to abnormal neuronal synchronization and 

eventually, spontaneous epileptiform discharges (23-27). Thus, seizure freedom is achieved 

when patients exhibit epileptogenic changes that are restricted to the structures removed during 

surgery, whereas patients who continue to experience seizures have broader epileptogenic 

abnormalities (2,23,27,28). A diagnostic tool that could detect these abnormalities and 

accurately predict surgical outcomes would have a tremendous impact in the treatment of TLE 

by fostering early surgical referral for patients with optimal chances of success, permitting 
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timely access to cure and preventing the negative effects of recurrent seizures for most patients 

with refractory TLE.  

Diffusional Kurtosis Imaging 

Diffusional kurtosis imaging (DKI) is a clinically feasible diffusion dMRI technique which 

measures the diffusion and kurtosis tensors to characterize the three-dimensional diffusion 

dynamics occurring in vivo. To accomplish this, DKI assumes that the diffusion-weighted signal 

can be well described by its fourth-order cumulant expansion, provided the b-value (the strength 

of diffusion weighting) is not too large. The natural logarithm of the diffusion signal is thus given 

by (29,30): 

 

                    ln ���, �� = ln �
 − � ∑ ������� + �����
� ∑ ������������� ,                         [1] 

 

where � is the b-value, � is a normalized direction vector, �
 is the signal with no diffusion 

weighting, � is the diffusion tensor, �� is the mean diffusivity, � is the kurtosis tensor, the 

subscripts label Cartesian components, and sums on the indices are carried out from 1 to 3.  

 

The second order diffusion tensor and fourth order kurtosis tensor are defined by:  

 

                                                            ��� ≡ �
�� 〈!�!�〉,                                                              [2] 

 

and  
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                    ����� ≡ $〈%∙%〉� '〈!�!�!�!�〉 − 〈!�!�〉〈!�!�〉 − 〈!�!�〉〈!�!�〉 − 〈!�!�〉〈!�!�〉(,                    [3] 

 

respectively, for a diffusion displacement % over time ), with the angle brackets indicating the 

expected value of a random variable, which in this case is the average displacement over the 

ensemble of diffusing spins. From Eqs. [2] and [3] it is clear that the diffusion and kurtosis 

tensors are invariant to permutations of the vector, %, and are thus fully symmetric.  

 

A motivation for estimating the diffusion and kurtosis tensors is to describe the directional 

dependence of diffusion dynamics in anisotropic biological tissues, which can then yield unique 

information on microstructural tissue organization. Directional diffusivity and diffusional kurtosis 

estimates for an arbitrary direction are thus given by:  

 

                                                       ���� = ∑ ������� ,                                                         [4] 

 

and   

 

                                         *��� = ���
����� ∑ ������������� .                                                [5] 

 

Mean diffusivity and diffusional kurtosis are calculated as the mean directional diffusivity and 

kurtosis over all directions:  
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                                                       �� = �
,- . /� ����,                                                           [6] 

 

and         

 

                                                        *� = �
,- . /� *���.                                                          [7] 

 

Note that the calculation of *� requires knowledge of both the diffusion and kurtosis tensors. 

However, it is possible to calculate the mean of the kurtosis tensor by letting:  

 

                                              ���� = ∑ ������������� .                                                   [8] 

 

Then,  

 

                                                      �� = �
,- . /� ����.                                                          [9] 

 

Both �� and ��  can be computed readily from � and � by:  

 

                                          �� = 01��� 3⁄ = �4� + 4� + 45� 3⁄ ,                                           [10] 

 

where 01�⋯ � is the trace operator and 4�, 4�, and 45 are the three eigenvalues of the diffusion 

tensor, and (31): 
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                 �� = ������ + ����� + �5555 + 2����� + 2���55 + 2���55� 5⁄ .                 [11] 

 

It should be noted that ��  approximates *�, but they are only strictly equal in the isotropic case as:  

 

                                                    *� = �
,- . /� ���

����� ����.                                                   [12] 

The Kurtosis Diffusion Orientation Distribution Function 

A novel feature of DKI in comparison to conventional diffusion tensor imaging (DTI) is its 

ability to directly resolve multiple fiber bundle orientations in voxels with a non-uniform fiber 

bundle distribution. To accomplish this, DKI evaluates the diffusion orientation distribution 

function (dODF) (32,33), which is a commonly used function to extract directional information 

from dMRI data
 
(32-39).  

 

The dODF evaluates the radial projection of the diffusion displacement probability density 

function (dPDF) along a given direction in space to quantify the relative degree of diffusion 

mobility along that direction, without making any explicit assumptions about tissue 

microstructure. The equation for the dODF is given by: 

 

                                                 9:��� = �
; . <% %:=�%, )�,>
                                                  [13] 

 

where =�%, )�is the dPDF, the radial weighting power, ?, increases the sensitivity to relatively 

long diffusion displacements and @ is the normalization constant.  
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By assuming the dPDF is fully characterized by the diffusion tensor, the Gaussian dODF is 

given by:  

 

                                                    9:,A��� = B �
�CD�E�:F�� �⁄

.                                                 [14] 

 

where D = ���GH for diffusion tensor � and mean diffusivity ��. 

 

By including the leading non-Gaussian corrections provided by the kurtosis tensor, the 

kurtosis dODF may be evaluated explicitly as (32):       

 

  9:,I��� = 9:,A��� J1 + �
�, ∑ L3M�������M�� − 6�? + 1�M�������O�� +�,�,�,�

�? + 1��? + 3�O�������O��PQ,  [15] 

 

where � is the kurtosis tensor,  

 

                                                         O�� = �D��R�D��S�CD� ,                                                             [16] 

 

and the sums on the indices �T, U, V, W� are carried out from 1 to 3. 

 

Since the diffusion and kurtosis tensors are fully symmetric, the dODF is symmetric with 

respect to the origin. Thus, local maxima pair in the dODF indicate orientations with overall less 

restricted diffusion and are interpreted as distinct fiber bundle orientations. By accounting for the 

leading effects of non-Gaussian diffusion, the kurtosis dODF can resolve angular differences in 

the dPDF which are not apparent from analysis of the diffusion tensor alone. The DKI-derived 

[ [15]
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fiber bundle orientations may then be utilized to reconstruct distinct white matter fiber bundles 

via tractography. Examples of Gaussian and kurtosis dODFs for a single voxel, as well as distinct 

fiber bundles identified with DKI-based tractography, are illustrated in Figure 1. 

 

 

Figure 1. DKI-based tractography uses the kurtosis dODF. (A) Sagittal slice from a T2-weighted 

EPI image used by DKI to help estimate the diffusion and kurtosis tensors in each voxel. (B-C) 

Example kurtosis and Gaussian dODFs, respectively, from a single voxel, can be evaluated to 

estimate the orientation of preferential diffusion mobility in vivo. (B) The diffusion and kurtosis 

tensors are combined to calculate the kurtosis dODF, which is capable of resolving the orientation 

of multiple crossing fibers. (C) The Gaussian dODF can only directly resolve one fiber bundle 

orientation in each voxel, which averages effects from all fiber bundle orientations present. (D) A 

midline, sagittal view of fiber tracts estimated with whole-brain, DKI-based tractography reveals 

specific structures such as the corpus callosum (CC), cingulum bundle (CB), fornix, brain stem 

(BS), transverse pontine fiber (Pons), and cerebellar white matter (CER). The equations used to 

calculate (B) and (C) are given in Eqs. [14] and [ [15]. 

 

Summary 

The overarching aim of this work is to develop advanced, clinically feasible neuroimaging 

methodology for the application of neuroimaging biomarkers in TLE. We focus on DKI as DKI 

is a powerful and versatile dMRI technique with unique advantages compared to other dMRI 

methods. These advantages are further developed in this work and demonstrated to be 

advantageous for neuroimaging in TLE.  
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We begin our investigation, in Chapter 2, by studying anisotropic features of the diffusion 

signal, including distinct and complementary information provided by the kurtosis tensor. This 

can be advantageous as conventional DTI analyses of anisotropy may contain substantial errors 

in complex neural tissue. In Chapter 3, we deconstruct the kurtosis tensor using mathematical 

models to study how it may be affected by specific features of the underlying 

cytoarchitectonics. Improved understanding of the kurtosis tensor can lead to the development 

of more specific biomarkers for detecting pathology. In Chapter 4, we study properties of the 

kurtosis dODF, which can be used to detect crossing white matter fibers for tractography, and 

in Chapter 5, we contrast orientations estimated with the kurtosis dODF to other dMRI 

techniques to evaluate the potential of DKI for tractography. DKI is an attractive method for 

tractography, because it combines sensitive quantitative analyses from the diffusion and 

kurtosis tensor with the ability to directly resolve crossing white matter fiber bundles with the 

kurtosis dODF. In Chapter 6, we test the potential for combining quantitative dMRI analyses 

with tractography via along-the-tract analyses for surgical outcomes prediction in epilepsy 

using a fully automated image analysis procedure. In Chapter 7 we adapt the along-the-tract 

measures to DKI using DKI-derived quantitative parameters and DKI-tractography and 

demonstrate improved sensitivity for detecting pathology in TLE. Improved diagnostic 

capabilities are of paramount importance in TLE as current limitations can significantly affect 

the quality of care for individual patients. In Chapter 8, we provide a brief conclusion for this 

work.   
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Development of Novel Kurtosis-Based Image Analysis Methods 

________________ 

iffusion anisotropy is an important property of tissue microstructure. In this chapter we will 

begin exploring novel features of diffusion dynamics based on the directional dependence of 

the kurtosis tensor which relate to the anisotropic nature of diffusion in complex biological tissue. 

This chapter is based on the following peer-reviewed publication:  

 

1. Glenn GR, Helpern JA, Tabesh A, Jensen JH. Quantitative assessment of diffusional kurtosis 

anisotropy. NMR Biomed. 2015;28:448-59. 

Abstract 

DKI measures the diffusion and kurtosis tensors to quantify restricted, non-Gaussian diffusion 

that occurs in biological tissue. By estimating the kurtosis tensor, DKI accounts for higher order 

diffusion dynamics, when compared to DTI, and consequently, it can describe more complex 

diffusion profiles. Here, we compare several measures of diffusional anisotropy which 

incorporate information from the kurtosis tensor, including kurtosis fractional anisotropy (KFA) 

and generalized fractional anisotropy (GFA) to the diffusion-tensor derived fractional anisotropy 

D
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(FA). KFA and GFA demonstrate a net enhancement relative to FA when multiple white matter 

fiber bundle orientations are present in both simulated and human data. In addition, KFA shows 

net enhancement in deep brain structures, such as the thalamus and the lenticular nucleus where 

FA indicates low anisotropy. Thus, KFA and GFA provide additional information relative to FA 

regarding diffusional anisotropy and may be particularly advantageous for assessing diffusion in 

complex tissue environments. 

Introduction 

Diffusion anisotropy measures are common for quantifying properties of tissue microstructure 

from diffusion MRI data. Among them, fractional anisotropy (FA) is the most widely used 

(40,41). However, FA has the shortcoming that it may take on small values, or in principle even 

vanish, despite the diffusion dynamics having significant angular dependence, for example, in 

white matter regions with multiple fiber bundle orientations (41-43). In addition, FA has been 

shown to be sensitive to partial volume effects (44-48) and the orientation dispersion of neurites 

and neurite density (49). For these reasons, it may be of interest to consider additional measures 

of diffusional anisotropy.  

  

Since the introduction of the kurtosis tensor (29,30), investigators have proposed several 

anisotropy measures based on this quantity (31,50,51). Some of these measures incorporate 

information from the diffusion tensor and are therefore not directly analogous to FA for 

measuring anisotropy (50,51). However, a novel measure of anisotropy was recently proposed, 

which is purely a property of the kurtosis tensor and can be regarded as a natural extension of the 

FA concept to the kurtosis tensor (31). Here, we have termed this measure of anisotropy kurtosis 
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fractional anisotropy (KFA) and demonstrate that it provides distinct and complementary 

information about diffusional anisotropy when compared to FA.  

 

In addition, generalized fractional anisotropy (GFA) (37) can be calculated from the diffusion 

and kurtosis tensors. In contrast to other measures of anisotropy, GFA has the advantage of 

describing anisotropy in the dODF which can be interpreted as the degree of preferential 

directional diffusion mobility, like FA, with the benefit of being able to accommodate more 

complex diffusion profiles.  

 

The main purpose of this chapter is to describe and motivate the application of KFA and 

GFA, which can both be calculated directly from DKI datasets. In addition, we illustrate distinct 

features of KFA by comparing it with FA and alternative kurtosis-based measures of anisotropy 

for both numerical simulations and for in vivo human data.   

Fractional Anisotropy 

Fractional anisotropy (FA) is the most commonly used measure of diffusion anisotropy taken 

from the diffusion tensor. The original concept behind FA is to decompose the diffusion tensor 

into isotropic and anisotropic tensors, � =  ��X��� + '� − ��X���(, where X��� is the fully 

symmetric, second order isotropic tensor defined by its components, Y����� = Z�� ,  where Z�� is the 

Kronecker delta. Then, FA is the ratio of the magnitudes of the anisotropic component and the 

diffusion tensor (40):  

 

                                                     [\ ≡  ]5
� ∙ ^�G��X���^_‖�‖_ ,                                                       [17] 
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where the normalization constant a3 2⁄  is included so that FA values range from 0 to 1, and 

‖⋯ ‖c indicates the Frobenius norm for a tensor d of rank N:  

 

                                            ‖d‖c ≡ ]∑ '\�e,��,…,�g(��e,��,…,�g .                                              [18] 

 

Note that the special case of h = 1 simply corresponds to the standard Euclidian vector norm, 

and the Frobenius norm is manifestly invariant under rotations.  

 

This definition of FA can be rewritten into the conventional form by incorporating the 

relationships between the eigenvalues and the Frobenius norm of the diffusion tensor (40):  

 

                                        [\ = ]5
� ∙ a�ieG����F�i�G����F�ijG���� 

]ie�Fi��Fij�
.                                            [19] 

Kurtosis Anisotropy 

One method for examining anisotropy in the kurtosis tensor proposed by Hui et al. (50) is to 

sample directional kurtosis along the diffusion tensor eigenvectors kR corresponding to each 

eigenvalue 4�, such that *� = *�kR�, and then define kurtosis anisotropy (KA) with an analogous 

equation (50):  

 

                                      *\i = ]5
� ∙ a�IeGI��F�I�GI��F�IjGI�� 

]Ie�FI��FIj�
,                                           [20] 
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where * = �*� + *� + *5� 3⁄ . One motivation for this definition is that in white matter regions, 

the eigenvectors of the diffusion tensor estimate orientations which are parallel and perpendicular 

to the orientation of a white matter fiber bundle, where diffusion displacement is expected to be 

minimally and maximally restricted. However, this definition is not analogous to the original 

definition of FA, and by applying a rank 2 diffusion tensor property to the rank 4 kurtosis tensor, 

it cannot reliably capture the full anisotropy in the kurtosis tensor.  This observation prompted 

Poot et al. to propose an additional measure of KA (51): 

 

                                          *\l = ] �
,- . /� �*��� − *���,                                                  [21] 

 

which measures the standard deviation of the directional kurtosis. Although KAσ evaluates 

variability of directional kurtosis measures, it is not normalized to a range of 0 to 1, as it scales 

with the magnitude of diffusional kurtosis, and it does not directly parallel the original definition 

of FA.   

 

As noted by Eq. [12], ��  approximates *� with the correspondence becoming exact for 

isotropic diffusion. So another possible measure of anisotropy taken from the diffusion and 

kurtosis tensors is given by:  

 

                                                          *\m = n1 − o�
I� n,                                                           [22] 
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where |⋯ | is the absolute value. Although not directly analogous to FA, KAμ does provide a 

measure of the degree to which the mean diffusional kurtosis differs from the mean of the 

kurtosis tensor as a consequence of diffusional anisotropy. It is of interest to investigate 

differences in ��  and *� as ��  can be estimated from as few as 13 diffusion encoding directions, 

thereby significantly reducing the data acquisition time (31).  

 

KAλ, KAσ, and KAμ integrate information from both the diffusion and kurtosis tensors and are 

thus not pure measures of kurtosis tensor anisotropy. However, generalizing the original 

definition of FA to the kurtosis tensor is straightforward, and one finds (31): 

 

                                                    *[\ = ^�Go� X�q�^_‖�‖_ ,                                                            [23] 

 

where X�,� is the fully symmetric, rank 4 isotropic tensor defined by its components:  

 

                                           Y�����,� = �
5 'Z��Z�� + Z��Z�� + Z��Z��(.                                            [24] 

 

Note that Eq. [24] gives the unique rank 4 tensor that is both symmetric and isotropic. The 

normalization is chosen so that KFA values range from 0 to 1. When ‖�‖c = 0, then Eq. [23] is 

indeterminate, but one can define this case to have KFA = 0.  

 

The kurtosis and diffusion tensors are distinct physical quantities that encode different 

aspects of the diffusion dynamics (30). As a consequence, they can vary independently and in 

principle have no definite relationship to each other. FA and KFA are thus also distinct quantities, 
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either of which may vanish when the other is nonzero. Hence, they should be regarded as 

complementary rather than redundant metrics of diffusion anisotropy.  

Generalized Fractional Anisotropy 

A more comprehensive measure of diffusion anisotropy calculates anisotropy over the dODF as 

opposed to measures obtained directly from the diffusion or kurtosis tensors. 

 

Eq. [19] can be extended to the dODF to define the generalized fractional anisotropy (GFA) 

by (37):  

 

                                                            r[\ = s�t�uv�
wxs�uv�,                                                          [25] 

 

where 9: is the dODF for radial weighting power ?, !)/�9:� is the standard deviation of 9:, 

and 1y!�9:� is the root mean square of 9: . Since !)/�9:� is zero for isotropic diffusion, and 

1y!�9:� is always greater or equal to than !)/�9:�, with the ratio increasing as the standard 

deviation, increases, i.e. as the difference between 〈9:�〉 and 〈9:  〉� increases, GFA values range 

from 0 to 1 indicating zero to maximal anisotropy in the dODF. Thus, GFA makes heuristic sense 

as a measure of anisotropy by normalizing the angular variability in the dODF by its magnitude, 

similar in spirit to both FA and KFA, in order to quantify the angular dependence of diffusion 

mobility. 
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The closed form solution to the kurtosis dODF given by Eq. [ [15] depends only on the 

diffusion and kurtosis tensors. Thus GFA can be readily calculated from DKI data to indicate the 

anisotropy in the dODF by:  

 

                                                      r[\ = ]1 − 〈uv,z〉�
〈uv,z� 〉 ,                                                        [26] 

 

which follows directly from Eq. [25], where 9:,I is the kurtosis dODF approximation. It should 

be noted that the GFA depends both on the approximation used for the dODF (e.g., kurtosis or q-

ball) and on the choice of the radial weighting power, ?. In this study, we used the kurtosis dODF 

with ? = 4 (32). 

Multiple Gaussian Compartment Model 

To illustrate differences in the anisotropy metrics, we consider some simple examples for a 

multiple, Gaussian compartment model having |, non-exchanging compartments, with each 

compartment having the water fraction }x and a compartmental diffusion tensor, ~�x�. The 

diffusion and kurtosis tensors can then be obtained as combinations of the diffusion tensors from 

each compartment by (33): 

 

                                                        ~ = ∑ }x~�x��x�� ,                                                        [27] 

 

and, 
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����� = �
��� J�∑ }x B����x�����x� + ����x�����x� + ����x�����x�E�x�� � −

������ − ������ − ������  Q.          [28] 

 

For this model (29,30):  

 

                                                          ���� = 3 ������
��� ,                                                         [29] 

where, 

 

                                     Z�����  ≡  ∑ }x JL��x���� − ����P�Q�x�� ,                                  [30]  

 

is the variance of the diffusion coefficient, illustrating that the kurtosis tensor reflects overall 

heterogeneity in the diffusion environment.   

  

Because we are interested in measuring differences in isotropic and anisotropic diffusion, we 

consider combinations of cylindrically symmetric, anisotropic tensors, defined with eigenvalues 

of 4 = �4∥, 4�, 4��, where 4∥ is the parallel or principal eigenvalue and 4� are the perpendicular 

eigenvalues, which represent idealized Gaussian diffusion in white matter fiber bundles, and the 

rank 2 isotropic tensor,  Y���, �[\ = 0�, which may, for example, represent unrestricted diffusion 

in cerebrospinal fluid.  

 

To evaluate the effects of changing the ratio of 4∥ and 4� on each of the parameter estimates, 

we varied 4� while keeping 4∥ set at 1.7 μm
2
/ms for a single diffusion compartment, �H. Because 

[28]
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this represents idealized Gaussian diffusion with zero kurtosis, we then increased diffusional 

heterogeneity by adding a second, equivalently oriented compartment, �� = 2�H, resulting in a 

non-zero kurtosis tensor. To evaluate the effects of crossing fibers on anisotropy measures, we 

consider examples with 2 or 3 crossing fiber bundles with 4 = �1.7,0.3, 0.3� μm
2
/ms and 

separation angles between the principal eigenvectors ranging between 1 and 90 degrees. For 

simplicity, we considered compartments with equal water fractions. 

 

For a given separation angle, �, the orientation for the principle eigenvectors, k�, of each 

tensor can be readily calculated.  For example, for the case with three anisotropic fiber bundles, 

the first orientation was given by kH = �cos�� 2⁄ �, sin�� 2⁄ � , 0��, the second orientation was 

given by k� = �cos�� 2⁄ �, −sin�� 2⁄ � , 0��, and the third orientation was chosen to be separated 

from both kH and k� by �, by k� = �cos���, 0,  sin�����, where � = cosG���1 − 2 sin��� 2⁄ ��/
cos�� 2⁄ ��. The corresponding diffusion tensor for each individual compartment was then defined 

as �� = �� ∗ /T����1.7,0.3, 0.3�� ∗ ��, where �� =  L�k� + ���k� + ��� 'k�C k + 1( − X� P, 
and � = �1, 0,0��.  

 

To avoid numerical artifacts, directional kurtosis estimates used to calculate *\i were 

regularized by setting *��� = 1 × 10G$ when *��� < 1 × 10G$. In addition, in the case where 

the crossing angle between multiple fiber bundles was 90⁰, the eigenvectors used to evaluate *\i 

were fixed by interpolation to avoid random variation in *\i.   

Data Acquisition 
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DKI datasets were acquired for 5 healthy, adult volunteers ranging in age from 27 to 53, with a 

3T TIM Trio MRI scanner (Siemens Medical, Erlangen, Germany) using a vendor-supplied 

diffusion sequence, 3 b-values of 0, 1000, and 2000 s/mm
2
, and 60 isotropically distributed 

gradient directions to estimate the diffusion and kurtosis tensors. Acquisition parameters used 

were TR = 7200 ms, TE = 103 ms, voxel dimensions = 2.5 × 2.5 × 2.5 mm
3
, matrix size ×  

number of slices = 88 ×  88 ×  52, parallel imaging factor of 2, bandwidth = 1352 Hz/Px, and a 

32 channel head coil with adaptive combine mode. To estimate inter- and intra-subject variability, 

3 independent DKI datasets and a total of 25 images with no diffusion weighting (b0 images) 

were acquired for each subject. Each independent DKI acquisition took 16 min, and the full DKI 

acquisition with a total of 25 b0 images took 51 min. An additional MPRAGE sequence was also 

acquired for each subject for anatomical reference.  

Image Analysis 

To correct for subject motion, all b0 images for each subject were co-registered to the subject’s 

first b0 image using SPM8 (Wellcome Trust Center for Neuroimaging, London, UK) with an 

affine, rigid body transformation with the normalized mutual information cost function and 

trilinear interpolation. In the case where the co-registered b0 image came from an independent 

DKI acquisition, the rigid-body transformation was also applied to all DWIs of that dataset. An 

average DKI dataset was then created by averaging all 25 independent b0 images and all 3 

independent images for each applied diffusion encoding gradient.  

 

DKI processing was performed by a previously described method using Gaussian smoothing 

with a full-width at half maximum of 1.25 times the voxel dimensions to minimize the effects of 

noise and misregistration, and tensor fitting was then performed using a constrained linear least 
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squares algorithm (52). Since our analyses included independent DKI datasets with only one b0 

image, ln ��
� was included as an unknown parameter to be estimated resulting in a total of 22 

unknown parameters to be determined.  The kurtosis ODF was evaluated using in-house software. 

GFA was calculated in each voxel by evaluating the kurtosis ODF for 1281 points spread evenly 

over one half of a spherical shell resulting in a separation angle of approximately 4.3 degrees 

between each point and its nearest neighbors. The orientation of each local maxima pair was 

estimated by an exhaustive grid search over these 1281 points followed by the non-linear quasi-

Newton method for iterative optimization.  

 

To analyze anisotropy measures in different regions of interest (ROIs) across the 5 healthy 

volunteers, the FA maps from the average DKI datasets were normalized to the ICBM-DTI-81 

FA white matter atlas (53) using SPM8 with non-linear transformation and trilinear interpolation. 

The transformation for the average DKI dataset was also applied to all DKI-derived parameter 

maps from each of the independent DKI datasets. White matter ROIs analyzed (and the number 

of voxels they contain, n) include the full white matter ROI (n = 170,006) corpus callosum (CC) 

(n = 35,291), cingulum bundle (CB) (n = 5,093), superior longitudinal fasciculus (SLF) (n = 

13,212), and corona radiata (CR) (n = 36,151). Gray matter ROIs were also created for the 

lenticular nucleus (LN) (n = 6,815), which consists of the globus pallidus and the putamen of the 

basal ganglia, and the thalamus (Thal) (n = 4,293). The LN was defined bilaterally as the area 

between the internal capsule (IC) and the external capsule (EC) in the white matter template. The 

Thal was manually segmented using the white matter template overlaid on the T2-weighted 

template image, to be at or above the level of the splenium of the CC, lateral to the lateral 

ventricles, and medial to the IC.   
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To highlight differences between the anisotropy parameters, parameter difference maps were 

calculated as the difference between selected parameters of interest. To emphasize the average 

group difference in the anisotropy parameters, these maps were generated from the mean of the 

normalized parameter maps across all subjects. 

Results 

To illustrate differences in quantitative measures of diffusion anisotropy, all anisotropy measures 

are evaluated from simulated data with the multiple Gaussian compartment model in Figure 2 for 

a single diffusion orientation with non-zero kurtosis and in Figures. 3 and 4 for 2 and 3 crossing 

white matter fiber bundles, respectively.  

 

In Figure 2, increasing 4� relative to 4∥ decreases FA, GFA, and KFA. In the case with only 

anisotropic diffusion, this has no effect on KAλ or KAσ since the directional kurtosis is constant, 

*��� =  1 3⁄ , resulting in KAλ = 0 and KAσ = 0. KAμ decreases as diffusional anisotropy 

decreases. Adding an isotropic compartment decreases both FA and KFA, but causes a slight 

increase in KFA by increasing variability in the directional diffusional heterogeneity. The 

addition of isotropic diffusion has variable effects on the other kurtosis anisotropy parameters.  

 

In Figures. 3 and 4, FA is reduced for fiber bundle orientations at high crossing angles and 

vanishes for the 3 fiber bundle example with a 90° crossing angle.  KFA, on the other hand, is 

less sensitive to the crossing angle in cases where there is no isotropic diffusion, but shows a dip 

at a particular crossing angle as the relative magnitude of the contributions from the isotropic and 

anisotropic compartments to the diffusional heterogeneity are reversed. For the case with 2 

anisotropic white matter fiber bundles and no isotropic diffusion, KFA is constant, and it can be 
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evaluated explicitly as *[\ = a13 15⁄ . A mathematical derivation of this result is included in 

the appendix to further explore the effects of the adjustable parameters on the kurtosis tensor and 

to highlight differences between KFA and FA. The overall shape of the dODF most accurately 

depicts the simulated fiber bundle orientation across all crossing angles, thus for this model, GFA 

may be the most accurate measure quantifying preferential diffusion mobility in regions with 

crossing fibers. In Figure 3A, *\i is zero, resulting from regularization, as the eigenvalues of the 

diffusion tensor point to directions with approximately zero diffusional kurtosis. *\l scales with 

the magnitude of the mean diffusional kurtosis, so in Figures 3A and 4A, *\l vanishes at small 

crossing angles, as the overall diffusion dynamics with this model become increasingly Gaussian. 

The magnitude of *\m is typically small, particularly in cases with no isotropic diffusion, but for 

this particular model, when there at low crossing angles and isotropic diffusion, *\m can be 

appreciatively large. 
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Figure 2. Multiple Gaussian compartment model for one white matter fiber bundle orientation 

with only anisotropic diffusion (A) and an additional isotropic compartment (B). The principal 

eigenvector was set at 4∥ = 1.7 �y�/y!, and the 2 perpendicular eigenvectors, 4� were varied 

so that the ratio 4� 4∥⁄  varied from 0 to 1. Diffusional heterogeneity was increased to cause a 

nonzero kurtosis tensor by adding a second, identically oriented diffusion tensor which was 2 

times the magnitude of the first, �� = 2�H. Numbers at the top of each column represent the 

ratio 4� 4∥⁄  for that column. The fiber bundle orientation depicts the orientation the diffusion 

ellipsoid for each of the separate compartments, where the colored ellipsoid represents simulated 

white matter fiber bundles and the gray spheres represent simulated isotropic diffusion. The blue 

diffusion ellipsoid is taken from the net diffusion tensor and is a way of visualizing FA. The 

dODF is used to calculate GFA and is taken from Eq. [13], using the kurtosis diffusion 

displacement PDF representation (29). ���� illustrates the directional dependence of the kurtosis 

tensor and is calculated by Eq. [8]. The plots at the bottom of each column represent the 

anisotropy parameter values for 4� 4∥⁄  ratios between 0 and 1. Renderings of the diffusion 

ellipsoid, dODF, and ���� are not shown to scale to emphasize anisotropic features, as FA, 

KFA, or GFA are not affected by the overall scaling. In panel (A), KAλ and KAσ are always zero, 

as discussed in the text.    
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Figure 3. Multiple Gaussian compartment model for 2 crossing fibers with only anisotropic 

diffusion (A) and an additional isotropic compartment (B). Numbers at the top of each column 

represent the separation for that column, and the three-dimensional renderings depicted are 

calculated from the same equations as those in Figure 2. The plots at the bottom of each column 

represent the anisotropy parameter values for simulated crossing angles for each integer value 

between 1 and 90 degrees. 
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Figure 4. Multiple Gaussian compartment model for 3 crossing fibers with only anisotropic 

diffusion (A) and an additional isotropic compartment (B). Numbers at the top of each column 

represent the separation for that column, and the three-dimensional renderings depicted are 

calculated from the same equations as those in Figure 2. The plots at the bottom of each column 

represent the anisotropy parameter values for simulated crossing angles for each integer value 

between 1 and 90 degrees. For this example, both FA and KAμ drop to zero at 90 degrees, while 

all other measures are non-zero. 

 

Representative parameter maps for the 6 different anisotropy measures from a single healthy 

volunteer are given in Figure 5. In general, GFA is greater than FA, but the two values are closely 

correlated. KFA shows similar enhancement as FA in white matter regions that are expected to 

show diffusional anisotropy. However, KFA also shows enhancement in gray matter regions such 

as the Thal and LN where FA values are relatively low. In addition, KFA shows enhancement in 

regions between the CC and CB, which could demonstrate complex diffusion profiles due to 

separate contributions from these two large, well-defined fiber bundles. KAλ and KAσ show 

enhancement in regions with expected diffusional anisotropy, but the anisotropic regions are 
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typically narrower, particularly when compared to GFA. KAµ demonstrates anisotropy in 

expected regions, but the values are much less than other measures of anisotropy.  

 

 

Figure 5. Representative anisotropy maps from a healthy volunteer. (A) Anisotropy maps for two 

slices taken from a healthy volunteer. MPRAGE and GFA color map for the first slice (B) and 

second slice (C) point out a few regions of interest. (D) Sagittal MPRAGE image with white bars 

indicates the slice location for the parameter maps.   

  

The specific ROIs analyzed as well as differential anisotropy maps are shown in Figure 6. 

GFA is typically greater than FA so the difference between GFA and FA is positive throughout 

the white matter. However, this difference can be enhanced in regions where there is complex 

tissue architecture, as may occur in voxels with crossing white matter fibers from the SLF, CR, 

and CC; the CC and CB; or in the pons. The difference between KFA and FA is also enhanced in 

these regions, particularly in the boundary regions between white matter ROIs, where 

contributions to the overall diffusion dynamics from crossing fibers with high crossing angles can 

cause FA to be anomalously low. The difference between KFA and FA is also increased in deep 
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brain structures such as the LN and Thal, where FA typically indicates low diffusional anisotropy. 

Crossing fiber regions detected from the kurtosis dODF are illustrated by the maps in the 

orientations column of Figure 6, which gives the total number of local-maxima pair detected in 

each voxel. The difference between KFA and FA is generally enhanced in regions where there are 

multiple fiber bundle orientations.  GFA is increased relative to KFA in white matter regions with 

high diffusional anisotropy, such as the CC. This trend is similar with FA relative to KFA, but the 

difference is significantly less.  

 

 

Figure 6. Differential anisotropy maps. Representative transverse (A) and (B), sagittal (C), and 

coronal (D) slices from the differential maps highlight differences in the anisotropy parameters. 

The first column illustrates the average of the normalized GFA colormaps (37) illustrating white 

matter structures in the normalized data. The second column overlays the template ROIs on the 

mean GFA map. The ROIs shown are CC (red), CB (green), SLF (blue), CR and IC (yellow), EC 

(orange), other white matter structures (magenta), Thal (light grey), and LN (dark grey). The 

differential anisotropy maps shown are indicated at the top of each column, and the orientations 

column shows the number of fiber bundle orientations estimated from each voxel from the 

kurtosis dODF (32) averaged across all subjects. There is a strong correlation between regions 

enhanced in the KFA-FA differential map and regions with multiple fiber bundle orientations 

detected, depicted in the orientations maps. 
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Figure 7 shows representative slices from the ICBM white matter template as well as the 

group average for the normalized FA, GFA, and KFA images. The template and the average of 

the normalized FA images are highly similar, validating the normalization procedure. The GFA 

map is enhanced relative to the FA map and the white matter regions identified with GFA are 

slightly broader.  

 

Figure 7. Representative transverse, sagittal, and coronal slices from the ICBM white matter 

template as well as the normalized FA, GFA, and KFA parameter maps. 

Discussion  

KFA measures anisotropy in the fourth order kurtosis tensor, is mathematically analogous to FA, 

and provides complementary information about anisotropy in diffusion dynamics. Other measures 

of anisotropy, such as KAλ, KAσ, and KAµ measure anisotropy in diffusional kurtosis but they are 
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not specific to the kurtosis tensor, as they also incorporate information from the diffusion tensor. 

It should be noted that KFA is purely a function of the kurtosis tensor and does not correspond 

precisely to the angular variability in the diffusional kurtosis (which depends on both the kurtosis 

and diffusion tensors). 

 

GFA measures anisotropy in the dODF as a way of quantifying preferential diffusion 

mobility. When there is only one fiber bundle orientation, GFA and FA are strongly correlated 

suggesting they provide similar information. However, by incorporating higher-order information 

from the kurtosis tensor, GFA can account for anisotropy from more complex diffusion profiles 

compared to FA. As a result, GFA may sometimes be a more appropriate measure of diffusional 

anisotropy, particularly in regions with crossing white matter fiber bundles, where FA may 

underestimate the degree of diffusional anisotropy. 

 

We have used multiple, non-exchanging, Gaussian compartment models as simple 

illustrations of the intricate relationships between the underlying diffusion dynamics and 

quantitative measures of diffusion anisotropy. These are particularly apparent when there are 

multiple anisotropic diffusion compartments with preferential diffusion occurring along different 

orientations, as occurs in vivo when white matter fiber bundles cross. Since a single quantitative 

anisotropy measure cannot characterize all features of the underlying diffusion dynamics, it may 

be of interest to combine anisotropy measures in analysis of complex tissue architecture. We note 

in particular that the FA may vanish even when the diffusion is not isotropic (see, for example, 

Figure 4), in which case the kurtosis anisotropies may be especially useful. In Figures 3B and 4B 

there is a dip in KFA at a specific crossing angle. This occurs in this model as the crossing angle 

affects the overall degree of non-Gaussian diffusion in the anisotropic compartments, and at a 
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specific crossing angle, the relative magnitude of the effects of the isotropic and anisotropic 

compartments to the overall diffusional heterogeneity inverts, as can be seen in the change in 

morphology of ����.  

 

It is of interest that KAμ is typically very small in simulations (Figures 2-4) and for in vivo 

experiments (Figure 5), which is consistent with the results of Hansen et al. (31). This supports 

the use of ��  as an alternative to *� for characterizing the overall kurtosis. This is of practical 

importance, since an efficient image acquisition protocol for ��  has recently been proposed, 

which may be particularly advantageous in the acute setting where scan time is of paramount 

concern (31). 

Conclusion 

Diffusion anisotropy is an important aspect of tissue microstructure. However, anisotropy 

measures from the diffusion tensor, such as FA, can potentially take on small values despite 

significant diffusion anisotropy, due to the presence of complex fiber bundle geometries. As a 

consequence, alternative measures of diffusion anisotropy, such as the KFA and GFA, may be of 

interest. KFA is based purely on the kurtosis tensor, and is distinct from the conventional FA 

measure, as the kurtosis and diffusion tensors describe different features of the diffusing 

environment and can vary independently. It differs from other kurtosis anisotropy measures in 

depending only on the kurtosis tensor and in being defined in a manner more conceptually 

analogous to the original definition of the FA. GFA, on the other hand, uses the dODF to quantify 

the degree of preferential diffusion mobility and thereby effectively integrates information from 

both the diffusion and kurtosis tensors. By measuring higher order diffusion anisotropy, KFA and 
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GFA can help to better characterize more complex diffusion profiles and may be particularly 

useful for regions where white matter fiber bundles cross. 

 

Appendix: Kurtosis Fractional Anisotropy for Two Identical Crossing Fibers 

In order to better understand the physical meaning of the kurtosis fractional anisotropy, consider 

two identical crossing fiber bundles intersecting at an angle of 2�. As in the simulation 

experiments of Figure 3, assume that both fiber bundles are non-exchanging, cylindrically 

symmetric, Gaussian compartments, with the diffusion tensor eigenvalues4ǁ ≥ 4� . The fiber 

bundles both lie parallel to the xy-plane and are oriented at angles of ±� with respect to the x-

axis. The diffusion tensor for the first fiber bundle (A) is  

 

                                                            �  = ��
 ��                                                            [31] 

 

and the diffusion tensor for second bundle is  

 

                                                                  �¡ = ���
�,                                                            [32] 

 

where 

 

                                                     �
 = ¢4ǁ 0 00 4� 00 0 4�
£,                                                        [33] 

 

and  
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                                 � = ¢¤�� ¤�� 0¤�� ¤�� 00 0 1£ = ¢cos � − sin � 0sin � cos � 00 0 1£.                                     [34] 

 

The matrix � rotates a vector in the xy-plane by an angle �. As for all rotation matrices, �G� =
��. If the water fraction is } for bundle \ and �1 − }� for bundle ¥, then the total diffusion 

tensor is 

 

                                                     � = }�  + �1 − }��¡.                                                   [35] 

 

The components of the corresponding kurtosis tensor, �, are given by 

 

����� = �
��� L}'� ,��� ,�� + � ,��� ,�� + � ,��� ,��( + �1 − }�'�¡,���¡,�� + �¡,���¡,�� +

�¡,���¡,��( − ������ − ������ − ������P,       [36] 

 

where �� = 01���/3 is the mean diffusivity, � ,�� are the components of � , and �¡,�� are the 

components of �¡. With the help of Eq. [35], Eq. [36] may be recast as 

 

����� = ¦��G¦�
�� L'� ,�� − �¡,��('� ,�� − �¡,��( + '� ,�� − �¡,��('� ,�� − �¡,��( +

'� ,�� − �¡,��('� ,�� − �¡,��(P.          [37] 

 

Now consider the difference matrix 

 

[36]

[37]
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                                               Z� ≡ �  − �¡ = ��
�� − ���
�.                                          [38] 

 

This may be rewritten as 

 

          Z� = ���
 − 4�X��� − ����
 − 4�X�� = �4ǁ − 4����§�� − ��§��,              [39] 

 

where X is the identity matrix and  

 

                                                         § ≡ ¢1 0 00 0 00 0 0£.                                                            [40] 

 

By using the fact that ¤�� = −¤��, a direct calculation then shows that  

 

                                                 Z� = 2�4ǁ − 4��¤��¤��¨,                                                  [41] 

 

with 

 

                                                        ¨ ≡ ¢0 1 01 0 00 0 0£.                                                            [42] 

 

From Eqs. [34], [37], [38], and [41], we then see that 
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               ����� = ¦��G¦�
��� �4ǁ − 4��� sin��2��'©��©�� + ©��©�� + ©��©��  (.                       [43]     

 

Thus, the parameters }, 4ǁ, 4�, and � only affect the overall scaling of �. Since KFA is invariant 

with respect to this scaling factor, KFA is strictly independent of }, 4ǁ, 4�, and �. By applying 

the definition of KFA, one may show that it always equals a13 15⁄ ≈ 0.931. 

 

 For this same model, FA, in contrast, depends significantly on all four adjustable parameters, 

illustrating the distinct information provided by FA KFA; FA reflects the directional dependence 

of the diffusivity mobility, while, for multiple Gaussian compartment models, KFA reflects the 

directional dependence of the variance of the compartmental diffusivities. 
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3 
 

Kurtosis-Based Microstructural Modeling 

________________ 

icrostructural modeling aims to increase the specificity of dMRI for characterization of 

specific features of biological tissue, as these may be differentially affected by disease 

processes. In this chapter, we will continue to explore novel properties of the kurtosis tensor 

using various microstructural modeling techniques. The models under consideration assume the 

kurtosis tensor is affected by particular configurations of microstructural tissue 

compartmentalization, which are leveraged to estimate specific modeling parameters. This 

chapter is based on the following peer-reviewed publications:  

 

1. Hui ES, Glenn GR, Helpern JA, Jensen JH. Kurtosis analysis of neural diffusion 

organization. Neuroimage. 2015;106:391-403. 

2. Jensen JH, Glenn GR, Helpern JA. Fiber Ball Imaging. Neuroimage. 2016;124:824-33. 

Abstract 

Typical diffusion parameters from DKI, such as mean diffusivity (MD), fractional anisotropy 

(FA), and mean kurtosis (MK) characterize general, non-specific changes in tissue 

microstructure, which may obscure the determination of causal relationships between quantitative 

dMRI parameters and tissue microstructure. To help better understand the meaning of the 

M
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observed changes in the context of pathological disease mechanisms, it is of interest to develop 

more specific biomarkers. In this chapter, DKI-based modeling techniques are compared to a 

novel high angular resolution diffusion imaging (HARDI) method termed fiber ball imaging 

(FBI) for the characterization of specific white matter tissue properties in two healthy volunteers.  

Introduction 

In addition to quantifying features of in vivo water diffusion and estimating the orientation of 

white matter fiber bundles, the kurtosis tensor may also be used to facilitate more detailed 

quantitative models of biological tissue architecture. The key idea underlying these methods is 

that by assuming tissue microstructure consists of multiple, non-exchanging compartments with 

Gaussian diffusion, the kurtosis tensor can be mathematically represented as a combination of the 

compartmental diffusion tensors. From this assumption there are a variety of methods which can 

be used to relate properties of the dMRI signal to specific features of the underlying tissue 

microstructure.  

 

 One such approach is the white matter model (WMM) proposed by Fieremans et al. (54) The 

WMM assumes that white matter consist of two, non-exchanging Gaussian compartments, the 

extra-axonal space (EAS) and intra-axonal space (IAS), where the IAS consists of highly aligned 

white matter fiber bundles. Then, the fraction of MRI visible water confined to the intra-axonal 

space, the axonal water fraction (AWF), may be evaluated as (54):  

 

                                                            \�[ = I¬®I¬®F5 ,                                                        [44] 
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where *x¯° is the maximum directional kurtosis value in all directions, and the diffusivity in the 

IAS, the intra-axonal diffusivity (�¯), may be defined for an arbitrary direction, �, by (54):  

 

                                       �¯��� = ���� ±1 − ]I�����G oc�
5  oc ².                                              [45] 

 

Since Eq. [45] is true for any direction, the compartmental diffusion tensor for the IAS, �³,  may 

be reconstructed using standard diffusion tensor estimation techniques, as �¯��� = �C�³�. Then 

the intra-axonal diffusivity is given by: 

 

                                                            �¯ = )1��³�,                                                             [46] 

 

where )1�⋯ � is the trace operator.  

 

WMM-based parameters, such as AWF and �¯, have been demonstrated to be sensitive to 

disease related pathology in a variety of disease states including Alzheimer’s disease (55,56), 

multiple sclerosis (57), autism (58), acute axonal injury (59,60), and traumatic brain injury (60), 

and they can provide insight into specific pathological mechanisms underlying white matter 

changes such as demyelination (61,62). However, the WMM is only mathematically valid in 

regions with a single population of aligned white matter fiber bundles. Because brain tissue 

microstructure can consist of more complex configurations, such as crossing white matter fiber 

bundles, it is of interest to develop more general microstructural modeling frameworks. One such 

method using the kurtosis tensor is kurtosis analysis of neural diffusion organization (KANDO) 
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proposed by Hui et al.(63). As in the WMM, KANDO assumes that the measured kurtosis tensor 

reflects the underlying organization of restricted compartments of Gaussian diffusion by:  

 

�����∗ = �
��� J�∑ }́ B����´�����´� + ����´�����´� + ����´�����´x�E�́�
 � − ������ − ������ − ������  Q,   [47]                                                                                                            

 

 

where h + 1 is the number of compartments, ��´� is the compartmental diffusion tensor for the 

�µcompartment, }́  is the compartmental water fraction, and the asterisk superscript indicates 

this is the theoretically predicted kurtosis tensor from the underlying tissue model.  

 

The basic computational problem of KANDO is then to select the set of unknown parameters 

for a given model ��x� which minimize the difference between the experimental (observed) 

kurtosis tensor, �, and the model-predicted kurtosis tensor �∗��x�, where the functional 

dependence of the predicted kurtosis tensor has been made explicit. The cost function for this 

general  estimation problem is given by (63):  

 

                                       ¶ ≡ ∑ ·��,�,�,�∗ ��x� − ��,�,�,�·�5�,�,�,��� ,                                        [48] 

 

which can be minimized with conventional non-linear optimization algorithms to solve for the set 

of unknown model parameters. 

 

KANDO is a general computational framework for estimating model parameters based on 

DKI data. Thus, it is compatible with a variety of potential microstructural models. In this chapter 

we will focus on two models, including a single fiber bundle model (Model 1) comprised of white 
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matter with unidirectional axons and a dODF model comprised of white matter with potential 

crossing fibers (Model 2) (63). Model 1 is similar to the WMM proposed by Fieremans et al., 

except the intra-axonal diffusivity is a model parameter which varies during the optimization. 

Model 2 incorporates information from the kurtosis dODF and can potentially accommodate 

voxels with more complex fiber bundle geometries. In all cases, the glial cells are assumed to be 

in fast exchange with the EAS. A schematic for Model 2 is given in Figure 8. 

 

 
Figure 8. Schematic for Model 2 representing white matter regions with crossing fibers. (A) 

KANDO assumes that the IAS is isolated from the EAS by myelin and no water is exchanged 

between the compartments. Diffusion of water molecules in the IAS and EAS are indicated by the 

red and blue arrows, respectively. (B) DKI estimates the net diffusion tensor (blue) and the net 

kurtosis tensor (red) to characterize the overall non-Gaussian diffusion dynamics from the 

underlying tissue architecture. The diffusion and kurtosis tensors are combined to estimate the 

kurtosis dODF (gray), which can detect multiple fiber bundle orientations (red lines).  (C) Taken 

together the diffusion tensor, the kurtosis tensor, and the kurtosis dODF can be used to estimate 

diffusion dynamics in each individual compartment, where }
 and ��
� indicate the volume 

fraction and compartmental diffusion tensor of the EAS (gray sphere), }�, ����, }�, and ����indicate the volume fraction and compartmental diffusion in first and second fiber bundles 

(green and blue ellipsoids, respectively). By applying constraints of the WMM, there are only 2 

independent parameters that need to be estimated from KANDO, which determine the AWF and 

the intra-axonal diffusivity, which then yield information on diffusion dynamics in the IAS and 

EAS. 
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To test these models, we will compare with a novel technique proposed by Jensen et al., 

termed Fiber Ball Imaging (FBI) (64). FBI is a high angular resolution diffusion imaging 

(HARDI) approach which uses strong diffusion weightings and relatively dense q-space sampling 

distributions to model white matter fiber bundles with the fiber orientation distribution function  

(fODF). Unlike the dODF, the fODF makes explicit assumptions about the relationship between 

the underlying tissue microstructure and the diffusion signal. Like the WMM and KANDO, FBI 

assumes that water in white matter can be divided into two non-exchanging intra- and extra-

axonal pools. The water in the EAS is relatively free for diffusion mobility and the dMRI signal 

in this compartment decays rapidly with increased diffusion weighting. Thus, with high diffusion 

weighting, the dMRI signal in the IAS predominates, allowing this compartment to be 

characterized more effectively. FBI also explicitly assumes that �¯ is constant for all axons 

within a given voxel and that the axons can be regarded as thin, straight cylinders. With these 

assumptions it can be shown that (64):  

 

                             ¸ ≡  oc
a� ≈ �

�-¹º»º� ]�
- . /¼��¼�Z�|¼| − ½
�,                                    [49] 

 

where ¸ is a measurable property of the tissue microstructure ½
 is the magnitude of the q-space 

vector, ¼, corresponding to the b-value, �, and Z is the Dirac delta function, indicating integration 

of a spherical shell in q-space, with the approximation becoming more exact for increasing b-

value up to the limit that the diffusion signal becomes sensitive to the internal geometry of the 

IAS. 
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Because of the general biophysical derivation of the FBI model and the markedly distinct 

computational approach for approximating ¸, the FBI approach can be used as a reference to 

compare the DKI-based modeling techniques. In this chapter, we will compare parameters 

derived from both the WMM and KANDO to ¸ derived from FBI in white matter regions with 

highly aligned white matter fiber bundles.  

Methods 

HARDI datasets were acquired for 2 healthy, adult volunteers ranging in age from 25 to 55, with 

a 3T TIM Trio MRI scanner (Siemens Medical, Erlangen, Germany) using a vendor-supplied 

diffusion sequence with a twice-refocused spin echo (65), 4 b-values of 0, 1000, 2000, and 5000 

s/mm
2
, and 128 isotropically distributed gradient directions. Acquisition parameters used were 

TR = 7200 ms, TE = 149 ms, voxel dimensions = 3.0 × 3.0 × 3.0 mm
3
, matrix size ×  number of 

slices = 74 ×  74 ×  40, parallel imaging factor of 2, bandwidth = 1351 Hz/Px, and a 32 channel 

head coil with adaptive combine mode. A total of 20 images with no diffusion weighting (b0 

images) were acquired for each subject, with a single b0 image preceding each block of 128 

diffusion weighted images for each respective b-value. All b0 images were coregistered to the b0 

image preceding the b = 1000 s/mm
2
 images, and an average b0 image was created. In the case 

where the b0 image was followed by a set of diffusion weighted images, the coregistration matrix 

was applied to the subsequent block of diffusion weighted images. The diffusion encoding 

gradient vectors were updated to account for rotations of the image volume that occurred during 

coregistration (66).  

 

Diffusion and kurtosis tensors were reconstructed from the b0 and b = 1000 and 2000 s/mm
2
 

images using diffusional kurtosis estimator (DKE) software (http://www.nitrc.org/projects/dke/) 
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and the WMM and KANDO parameters were estimated with in-house scripts. FBI was performed 

using the b0 and b = 5000 s/mm
2
 images using in-house software and ¸ was calculated using the 

�

 coefficient for the spherical harmonic expansion of the diffusion signal (64). To evaluate ¸ 

calculated with each method a white matter mask was created with FA > 0.4 to represent white 

matter regions with highly-aligned fiber bundles.  

Results 

Comparisons between each of the different methods for calculating ¸ are given in Figure 9. Mean 

(± SD) values for ¸ in the aligned white matter region (FA > 0.4)  across both subjects are 0.46 (± 

0.07) for FBI, 0.48 (± 0.06) for WMM, 0.54 (± 0.08) for Model 1 of KANDO, and 0.52 (± 0.08) 

for Model 2 of KANDO. Compared to FBI, the Pearson’s product moment correlation coefficient 

for ¸ is 0.83 for WMM, 0.62 for Model 1 of KANDO, and 0.52 for Model 2 of KANDO.  

 



   

   45

 

Figure 9. ¸ calculations for each of the different modeling methods in regions with aligned white 

matter fiber bundles (FA > 0.4). (A) Representative transverse slices for a single volunteer. The 

T1 and FA colormap images are given for anatomical reference. FBI is used as a criterion 

standard to assess the DKI-based modeling methods. The WMM method agrees qualitatively with 

FBI, whereas the two KANDO models tend to overestimate ¸, qualitatively. (B) Distribution of ¸ 

values demonstrates the relative probability of ¸for each technique. (C) Voxel-wise correlation 

plots of  ¸ for the DKI-based techniques relative to FBI, where ρ is the Pearson’s product moment 

correlation coefficient and the solid black line representing unity. In (B) and (C) red represents 

the WMM, green represents Model 1 of KANDO, and blue represents Model 2 of KANDO.  

 

Discussion and Conclusion  

DKI-based modeling techniques are promising candidates for developing biomarkers for specific 

biophysical properties of tissue microstructure such as AWF and �¯, which may be differentially 

affected by pathological mechanisms. The WMM is a straightforward algebraic method for 

estimating modeling parameters from DKI data and it is in remarkable agreement with FBI for 
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calculating ¸ (\�[ a�¯⁄ ) throughout regions with high FA. KANDO is a general computational 

framework for estimating parameters from a given model based on the measured and theoretical 

kurtosis tensors, which is desirable as it can, in general, accommodate distinct microstructural 

models, thereby accounting for a variety of complex cytoarchitectural configurations. However, 

the KANDO models tested in this study tend to overestimate ¸ compared to FBI and demonstrate 

lower voxel-wise correlation with FBI compared to the WMM. Although the precise origin of this 

is unclear this may reflect that KANDO models are more sensitive to noise effects in estimation 

of the kurtosis tensor.  

 

Microstructural modeling remains an area of active research, and holds promise for 

increasing the specificity of quantitative dMRI parameters to a variety distinct properties of tissue 

microstructure. The methods discussed in this chapter may help elucidate the complex and subtle 

relationships between the dMRI signal and tissue microstructure, which are of interest for the 

improved characterization of disease mechanisms and provide insight for a variety of pathological 

processes affecting the structural organization of the human brain.  
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4 
 

Optimization of Kurtosis-Based White Matter Tractography 

________________ 

hite matter tractography exploits anisotropic properties of water diffusion to reconstruct 

white matter pathways in the human brain. In this chapter, we will further explore 

properties of the kurtosis tensor which can be used to estimate the orientation of white matter 

fiber bundles. We will also develop efficient image analysis algorithms to help reduce the 

computational demands of this technique. This chapter is based on the following peer-reviewed 

publication:  

 

1. Glenn GR, Helpern JA, Tabesh A, Jensen JH. Optimization of white matter fiber 

tractography with diffusional kurtosis imaging. NMR Biomed. 2015;28:1245-56. 

 

The algorithms developed in this chapter have been incorporated into the DKE Tractography 

Module, which is freely available online and may be downloaded online at:  

 

http://www.nitrc.org/projects/dke/ 

Abstract 

DKI is a clinically feasible dMRI technique for white matter tractography with the ability to 

directly resolve intra-voxel crossing fibers by means of the kurtosis dODF. Here we expand on 

W
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previous work by exploring properties of the kurtosis dODF and their subsequent effects on white 

matter tractography for in vivo human data. For comparison, the results are contrasted with fiber 

bundle orientation estimates provided by the diffusion tensor, which is the primary quantity 

obtained from diffusion tensor imaging. We also outline an efficient method for performing DKI 

based tractography that can substantially decrease the computational requirements. The 

recommended method for implementing the kurtosis ODF is demonstrated to optimize the 

reproducibility and sensitivity of DKI for detecting crossing fibers while reducing the occurrence 

non-physically meaningful, negative values in the kurtosis dODF approximation. In addition, 

DKI-based tractography is illustrated for different protocols differing in image acquisition times 

from 48 to 5.3 minutes.  

Introduction 

The inability of DTI to directly resolve multiple white matter fiber bundle orientations has 

prompted the development of a number of advanced dMRI methods capable of overcoming this 

limitation. Underlying several of these techniques is estimation of the dODF. These methods 

include diffusion spectrum imaging (DSI), which exploits the Fourier relationship between 

diffusion data in q-space and the dODF (39,67), and Q-ball imaging (QBI), which applies the 

Funk transform on high angular resolution diffusion imaging (HARDI) data to estimate the dODF 

(37,38). These reconstruction techniques are typically best suited for dMRI acquisitions with 

relatively high maximum b-values and a large number of diffusion weighted images, which can 

limit clinical applicability (37-39,67-70). Moreover, QBI acquisitions are not optimal for 

estimation of the diffusion tensor or quantitative tensor-derived parameters as these primarily 

reflect the low b-value behavior of the dMRI signal (37,67). 
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DKI is an extension of DTI that estimates both the diffusion and kurtosis tensors in order to 

characterize non-Gaussian diffusion dynamics within complex biological tissue (29,30). 

Approximating the dODF from the diffusion and kurtosis tensors is one approach for resolving 

the orientation of crossing white matter fiber bundles, which is not possible utilizing just the 

diffusion tensor (32,36,71). In addition, DKI typically uses a maximum b-value of about 2000 

s/mm
2 

and always allows for estimation of the diffusion tensor and its associated metrics (e.g., 

fractional anisotropy). Consequently, DKI may be more suitable for a variety of clinical 

applications where scan times and quantitative, tensor-derived parameters are of interest. 

 

The closed-form, analytic solution of the kurtosis dODF has recently been derived, 

facilitating its implementation for tractography (32). In previous work, radial weighting was 

added to the kurtosis dODF in order to enhance the accuracy and sensitivity of DKI for detecting 

fiber bundle orientations (32). A primary goal of this paper is to optimize the implementation of 

DKI-derived tractography in human brain by systematically investigating how the properties of 

the kurtosis dODF depend on the choice of radial weighting power. In addition, we present an 

efficient numerical algorithm for finding the local maxima of the kurtosis dODF, which are used 

to estimate the fiber directions. 

Theory  

The dODF for a normalized direction in space, �, may be defined as in Eq. [13] by: 9��� =
�
; . !:/!=�!�, )�>
 , where =�%, )� is the diffusion displacement probability density function 

(dPDF) for a molecular displacement % over a diffusion time ), ! = |%|, ? is the radial weighting 

power, and @ is a normalization constant.  
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The radial weighting power is included to increase the contribution of relatively long 

diffusion displacements, which may have low diffusion displacement probabilities but 

demonstrate a stronger dependence on the anisotropic properties of complex diffusion 

environments (39,67). Consequently, radial weighting can increase the resolving power for 

detecting directional differences. When this power is set to ? = 2, the dODF can be interpreted as 

the cumulative probability density for a diffusion displacement in the direction � (67). However, 

this is not a strict requirement for the dODF, and in general, the dODF magnitude may be 

interpreted as a relative degree of diffusion mobility (39).
  
Q-ball imaging, for example, typically 

uses a radial weighting power of zero (37,38). 

 

DKI assumes that the dPDF can be well described by the second and fourth order diffusion 

and kurtosis tensors, respectively, provided the b-value is not too large (typically with � ≤ 3000 

s/mm
2
) (29,30,51,72). Consequently, a closed-form expression for evaluating Eq. [13] from DKI 

data, termed the kurtosis dODF, may be derived (32). The kurtosis dODF includes a correction 

factor, Λ:���, to account for the leading effects of non-Gaussian diffusion that go beyond the 

Gaussian dODF approximation, which is obtainable with DTI (40,73,74).
 
Thus, the equation for 

the kurtosis dODF has the form: 

 

                                                 Ψ:,I��� = Λ:��� Ψ:,A���,                                         [50]  

 

where Ψ:,I and Ψ:,A refer to the kurtosis and Gaussian ODF approximations, respectively, 

and Λ:��� is a function of � to account for non-Gaussian diffusion, which is calculated directly 
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from the diffusion and kurtosis tensors and the chosen value for ?.
 
By accounting for the effects 

of non-Gaussian diffusion, the number of local maxima pairs in the kurtosis ODF can exceed one 

enabling the resolution of crossing fibers (32,36,71,75).  

 

Because the diffusion and kurtosis tensors are symmetric, the kurtosis dODF is symmetric. 

Consequently, local maxima occur in pairs, which only need to be detected once over one-half of 

the dODF. An efficient method for evaluating Λ:��� and detecting local maxima pairs in the 

kurtosis dODF is given in the Appendix and is shown to improve image processing times over 

previously published methods (32,71). 

Data Acquisition 

DKI datasets were acquired from 5 healthy volunteers whose ages ranged from 27 to 53 y with a 

3T TIM Trio MRI scanner (Siemens Medical, Erlangen, Germany) using a vendor-supplied, 

single-shot diffusion-weighted EPI sequence with a twice-refocused spin echo (65). All protocols 

were approved by the institutional review board at the Medical University of South Carolina, and 

informed consent was obtained from all the volunteers prior to participation in the study. All 

subjects underwent a primary protocol (Protocol A), and for one subject, two additional DKI 

datasets were acquired using a clinically oriented protocol (Protocol B) and a more time 

demanding research protocol (Protocol C). All protocols used 3 b-values of 0, 1000, and 2000 

s/mm
2
 and a 32 channel head coil with adaptive combine mode. 

 

Protocol A consisted 3 full DKI datasets with 64 isotropically distributed gradient directions, 

TR/TE = 7200/103 ms, voxel dimensions = 2.5 × 2.5 × 2.5 mm
3
, matrix size × number of slices = 

88 × 88 × 52, parallel imaging factor of 2, and bandwidth = 1352 Hz/Px. For each subject, a total 
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of 25 images without diffusion weighting (b0 images) and a T1-weighted MPRAGE image with 

1.0 × 1.0 × 1.0 mm
3
 voxel dimensions were also acquired. The acquisition time for each 

independent DKI acquisition was 15.5 min, and the full DKI acquisition including 3 independent 

acquisitions for each diffusion-encoding vector and 25 b0 images took 48.0 min.  

 

Protocol B used decreased scanner requirements which are more appropriate for clinical 

environments. This scan was performed during the same MRI session as the DKI dataset 

described above and acquisition parameters included 3 b-values of 0, 1000, and 2000 s/mm
2
, a 

single b0 image, 30 isotropically distributed gradient directions, TR/TE = 5200/96 ms, voxel 

dimensions = 3.0 × 3.0 × 3.0 mm
3
, matrix size × number of slices = 74 × 74 × 40, parallel 

imaging factor of 2, bandwidth = 1352 Hz/Px. The acquisition time for this protocol was 5.3 min.  

 

Protocol C was performed with more demanding scanner settings during a second MRI 

session. Acquisition parameters for this scan included 3 b-values of 0, 1000, and 2000 s/mm
2
, a 

single b0 image, 64 isotropically distributed gradient directions, TR/TE = 8400/100 ms, voxel 

dimensions = 2.0 × 2.0 × 2.0 mm
3
, matrix size × number of slices =110 × 110 × 60, parallel 

imaging factor of 2, bandwidth = 1337 Hz/px. The acquisition time for this protocol was 18.1 

min.  

Data Analysis 

All images for each subject were co-registered to the b0 image from their initial, independent 

DKI dataset in Protocol A using SPM8 (Wellcome Trust Center for Neuroimaging, London, UK). 

An average DKI dataset was then created by averaging all corresponding b0 images and DWIs 

from Protocol A. For each independent DKI acquisition, the gradient table was rotated to reflect 
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rotations of the image volume from co-registration (66). For the datasets in Protocol B and C, the 

affine transformation matrix from co-registration was modified to preserve rotations and 

translations but discard dilations and contractions in order to preserve the original voxel 

dimensions. All data analyses were performed on the average DKI datasets from Protocol A, with 

the exception of analysis of angular dispersion and reproducibility (described below), which were 

performed on the independent DKI acquisitions.   

 

Tensor fitting was performed using a previously proposed constrained weighted linear least 

squares algorithm (52). Because our analyses included image datasets with only one b0 image, 

the algorithm was modified to fit directly to the signal magnitude with the log of the b0 signal 

intensity, ln��
�, included as an unknown parameter to be estimated (73). Unless otherwise 

stated, kurtosis dODFs were evaluated with ? = 4. 

 

Brain masks were created by performing a semi-automated, connected components analysis 

on the signal intensity values in the average b0 image from Protocol A for all subjects. Additional 

brain masks were similarly defined for the DKI datasets from protocols B and C, as these have 

different voxel dimensions. The diffusion tensor, the kurtosis tensor, and the kurtosis dODF were 

estimated throughout the brain mask prior to tractography. For comparison, orientations predicted 

from the Gaussian dODF were also calculated throughout the brain mask. Since these are 

equivalent to the principal eigenvector of the diffusion tensor (corresponding to the maximum 

eigenvalue) (38,74), Gaussian dODF orientation estimates were calculated directly from the 

diffusion tensor.  
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White matter masks were defined from the average DKI dataset of each subject as voxels 

within the brain mask with mean kurtosis (MK) values greater than 0.9. To avoid cerebrospinal 

fluid and reduce the influence of partial volume effects, voxels with mean diffusivity (MD) 

values less than 1.5 μm
2
/ms were excluded from the white matter masks. These values were 

selected based on the work of Falangola et al. (76). White matter masks were used to analyze 

properties of the kurtosis dODF and to calibrate the radial weighting parameter, as this function is 

intended for characterization of white matter microstructural features.  

 

To detect the local maxima pairs of the kurtosis dODF, a spherical grid was defined using a 

tessellation of the icosahedron, and Eq. [ [15] was evaluated in each voxel for points over one 

half of the surface of the spherical grid. All points of the spherical grid were then tested with their 

nearest neighbors to estimate local maxima. Local maxima estimates were then refined using the 

iterative quasi-Newton method with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm 

(32,71,77) Our method for peak detection is described and motivated further in the Appendix. 

Unless otherwise stated a tessellation of the icosahedron resulting in 1281 points over one-half 

surface of the spherical grid was used.  

 

Tractography was performed using the deterministic fiber assignment by continuous tracking 

(FACT) algorithm (78) using an FA cutoff threshold of 0.1, angle threshold of 35°, a minimum 

tract length of 20 mm, and 100,000 seed points randomly generated throughout the brain mask. 

Tractography was performed separately based on the kurtosis and Gaussian dODFs using the 

same seed point distributions. The effects of crossing fiber bundles on tractography are assessed 

visually in regions with well-known crossing fibers, such as between the corpus callosum (CC), 

superior longitudinal fasciculus (SLF), and the corona radiata (CR).  
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Conventional DKI parameter maps, such as MD, MK, and FA, were calculated from the 

diffusion and kurtosis tensors (52). Additional parameters, including generalized fractional 

anisotropy (GFA) (37,79), number of fiber directions (NFD) (32,79), and apparent tract density 

(TD) (80)
 
were also calculated following optimization of the kurtosis dODF and subsequent 

tractography.  

 

To test the effects of the radial weighting parameter, ?, the kurtosis dODF was evaluated for 

11 consecutive integer values of ? between 0 and 10 from the average dataset as well as each 

independent DKI scan from each subject. Peak detection sensitivity was assessed by the relative 

probability of detecting a given value for NFD in a randomly chosen voxel, as well as the mean 

NFD value throughout the white matter. The influence of ? on the predicted fiber bundle 

orientations was assessed by angular difference, which was defined as the difference in degrees 

between the orientation of the maximum of the Gaussian dODF, which does not depend on ?, and 

the nearest direction detected from the kurtosis dODF. The nearest direction was chosen as 

opposed to the global maximum from the kurtosis dODF, as small fluctuations in the magnitude 

of kurtosis dODFs with multiple peaks could vary which peak was identified as the global 

maximum, resulting in artificially large angular difference estimates. Although angular difference 

quantifies the effect of accounting for non-Gaussian diffusion with the kurtosis dODF, this 

measure does not quantify accuracy of the orientation estimates as the true fiber bundle 

orientations for in vivo human data are unknown. The effects of radial weighting were also 

assessed qualitatively by their effects on tractography. 
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The angular dispersion of dODF estimates was measured to test variability in the orientations 

predicted across multiple independent acquisitions. To calculate angular dispersion, orientation 

vectors from the 3 independent scans were taken from each voxel and averaged. Angular 

dispersion was then defined as the average angle between each orientation vector and the average 

of the 3 orientation vectors. In the Gaussian dODF dataset, these orientation vectors were the 

principal eigenvectors from the diffusion tensor. However, in the DKI dataset each orientation 

vector was defined as the closest maxima pair to the principal orientation from the average 

dataset. 

 

Since the dODF evaluates the radial integral of the dPDF, physically meaningful values of the 

dODF are non-negative, as the probability of diffusion is non-negative for all real displacements. 

To assess the physical plausibility of the kurtosis dODF approximations, the fraction of non-

positive definite dODFs was calculated as the fraction of image voxels with at least one negative 

value of the kurtosis dODF. Positive definiteness was assessed with a finite sampling distribution 

over vertices in the pre-defined spherical grid.  

 

All data was processed using in-house software written in MATLAB 2012a (Mathworks, 

Natick, MA) using the parallel computing toolbox on a personal computer with 32 GB of RAM 

and a 2.4 GHz, Intel Xeon 8-core processor. Our software builds off of tensor fitting algorithms 

provided by Diffusional Kurtosis Estimator (DKE) (http://www.nitrc.org/projects/dke/, Center for 

Biomedical Imaging, Medical University of South Carolina), and was written to be compatible 

with both DSI Studio (dsi-studio.labsolver.org, Department of Psychology, Carnegie Mellon 

University) and TrackVis (trackvis.org, Martinos Center for Biomedical Imaging, Massachusetts 

General Hospital) software. DKE was used for tensor estimation, DSI Studio was used for 3D 
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rendering of the kurtosis dODFs over an entire image slice, and TrackVis was used for 3D 

rendering the white matter fiber tracts. All other images were created using MATLAB.  

Results  

DKI-derived parameter maps as well as kurtosis dODFs for a transverse brain slice from a single 

volunteer are given in Figure 10. GFA, NFD, and TD differ from typical DKI derived parameters 

(e.g. MK) in that they require computation of the kurtosis dODF. In Figures 10 B and C, kurtosis 

dODFs with corresponding FA values below 0.1 are not shown to illustrate the applicability of 

the FA cutoff threshold used for tractography. Intra-voxel features from multiple fiber bundle 

orientations can be appreciated from the kurtosis dODF in well-known crossing fiber regions.  

 

Figure 10. The kurtosis dODF. (A) A b0 image from a single transverse slice from a healthy 

volunteer, as well as DKI-derived parameters from the diffusion and kurtosis tensors, such as 

MK, MD, and kurtosis fractional anisotropy (KFA) (79) are given in the top row. The kurtosis 

dODF enables calculation of additional parameter maps, such as GFA, NFD, and TD, which are 

depicted in the bottom row. The GFA color map (4) illustrates anisotropy in the kurtosis dODF, 
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NFD depicts the number of local maxima pair detected from the kurtosis dODF in each voxel 

(32,79), and TD depicts the relative density of streamlines that pass through a given voxel with a 

particular tractography algorithm (80). A sagittal MPRAGE slice is also given, where the white 

bar indicates the location from which the parameter maps are taken. (B) 3D renderings of the 

kurtosis dODF overlaid on the corresponding transverse slice from the volunteer’s anatomical 

MPRAGE image. (C) A zoomed in section from the white box in panel (B) illustrates the 

morphology of individual kurtosis dODFs. These kurtosis dODFs detect contributions in the 

diffusion environment from three well known fiber tracts; cortical projections from the CC (red 

arrow), the SLF (green arrow), and ascending and descending fibers in the CR (blue arrow 

coming out of the plane of the page). These three fiber bundles putatively overlap around the 

dashed black line, where 3 distinct peaks can be seen in the kurtosis dODF. The location of these 

fiber tracts can also be appreciated in the corresponding GFA map in panel (A).   

 

Qualitative visualization of white matter fiber tracts are illustrated in Figure 11. The white 

matter tracts shown were selected with TrackVis to highlight the effect of detecting crossing 

fibers on the continuity of fibers detected in the SLF. The highlighted region has complex fiber 

bundle geometries as cortical commissural fibers from the CC pass through voxels with 

contributions from other fiber bundles, such as the CR and the SLF, limiting the applicability of 

the Gaussian diffusion approximation. The kurtosis dODF can resolve detectable features from 

these separate fiber bundles, which affects their visualization with white matter tractography. 

Streamlines estimated from the Gaussian dODF cannot resolve the orientations of multiple, 

distinct intra-voxel fiber bundles and are consequently more likely to fuse anatomically distinct 

tracts, as indicated by the white arrows in panels C and D. 
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Figure 11. DKI-based tractography. (A-B) Illustrate fibers estimated from the Gaussian and 

kurtosis dODF, respectively overlaid on a sagittal MPRAGE image for anatomical reference. The 

SLF runs in the anterior–posterior direction from the temporal lobe to the frontal lobe, the CC 

connects the left and right cerebral hemispheres, and the CR is part of the pathway which 

connects the cerebral cortex with the brainstem. (C-D) Zoomed in sections from the regions 

depicted in the white box of panels A and B, respectively. Fiber tracts identified from the kurtosis 

dODF (D) show more coherent green fibers in the SLF and more red CC fibers crossing through 

the SLF. Fibers identified from the Gaussian dODF (C) are more disorganized. These fibers were 

selected to demonstrate continuity of tracts in the SLF and the effects that crossing fibers can 

have in complex regions such as this with multiple fiber bundle orientations. The white arrows 

point to regions putatively containing tracts from the CC and SLF. In Panel C, these tracts are 

fused together resulting in green tracts. However in Panel D, these tracts are distinct. 

The effects of radial weighting are highlighted in Figures 12 and 13. In Figure 12, radial 

weighting sharpens the convexities of the kurtosis dODF, enhancing the resolving power for 

detecting multiple peaks. This has noticeable effects on the visualization of specific white matter 

fiber tracts. In this example, the SLF passes through voxels with non-uniform fiber bundle 

distributions and radial weighting of the kurtosis dODF affects the fibers identified with white 

matter tractography.  
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Figure 12. The effects of radial weighting for a single kurtosis dODF for integer values between 0 

and 10 are given in the top row, and WHITE MATTER tracts in the SLF for even integer values 

between 0 and 10 are given in the bottom row. The region from which the kurtosis dODF was 

taken is indicated by the black box in the first image in the bottom row. 

 

 

Figure 13. Effects of radial weighting on the kurtosis dODF. (A-C) Relative probability for 

detecting a given number of fiber directions (peak detection sensitivity), angular difference 

(which quantifies the effect of accounting for non-Gaussian diffusion), and angular dispersion, 

respectively, in a randomly chosen white matter voxel averaged across all 5 subjects for even 

powers of radial weighting. (D-G) Histograms for mean peak detection sensitivity, mean angular 

difference, mean percentage of non-positive definite dODFs, and mean angular dispersion. Mean 

white matter parameter estimates are calculated for each subject and then averaged across all 5 

subjects. Error bars represent the standard deviation of the mean parameter estimates, across all 5 

subjects and reflect inter-subject variability. 

 

In Figure 13, properties of the kurtosis dODF as functions of the radial weighting parameter 

are quantified. Increasing radial weighting can increase the sensitivity of peak detection and the 

effects of including non-Gaussian corrections in the dODF reconstruction. However, radial 
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weighting also increases the variability in the principal orientation and can lead to dODFs that are 

not positive definite, due to the exclusion of higher-order terms from the DKI signal 

approximation. The peak detection sensitivity is maximized for α = 6, as indicated by the 

magnitude of the bars in Figure 13 D, with a mean (± std) white matter NFD value of 1.35(±0.02) 

and 2 or more detected fiber directions in 32.4(±1.4)% of white matter voxels. The angular 

difference is maximized for α = 5 with a mean angular difference of 8.21(±0.45) degrees 

throughout the white matter. Note that angular difference quantifies the effect of accounting for 

non-Gaussian diffusion on orientations from the kurtosis dODF and does not indicate improved 

accuracy as the true fiber bundle orientations is unknown for in vivo human data.  For α = 4, the 

mean percentage of white matter voxels with non-positive definite kurtosis dODFs is 

0.53(±0.29)%, but for α = 5 and higher, this percentage exceeds 1% on average. The mean 

angular dispersion from the kurtosis dODF increases on average with increased radial weighting; 

however, in all cases the angular dispersion of the kurtosis dODF is less than the angular 

dispersion of the Gaussian dODF. For α = 4, the angular dispersion of the kurtosis dODF was 

found to be 5.37(±0.83) degrees.  

 

Differences between the kurtosis and Gaussian dODFs are further demonstrated in Figure 14. 

Angular difference is elevated in regions with crossing white matter fibers (indicated by NFD > 

1), suggesting accounting for non-Gaussian diffusion has the largest effect in orientation 

estimates in this region. The mean (± std) angular difference in crossing fiber regions across all 

subjects (n = 38,230 voxels) was 14.1(± 9.1) compared to 5.6(± 4.3) in regions where only a 

single fiber bundle was detected (n = 97,716 voxels). Similarly, the mean (± std) angular 

dispersion for the Gaussian/kurtosis dODFs was 11.6(± 12.5) / 6.2(± 7.1) in crossing fiber regions 

and 5.2(± 4.9) / 5.0(± 4.7) when only a single fiber bundle orientation was predicted. In Figure 14 
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E, angular dispersion in the kurtosis dODF is plotted as a function of the radial weighting power 

in both the single and crossing fiber bundle regions, and these two populations show differing 

trends. When only one fiber bundle distribution is present, radial weighting increases angular 

dispersion, but when multiple fiber bundles orientations are present, angular dispersion is 

minimized for α = 3 or α = 4.  

 

Figure 14. Properties of the kurtosis and Gaussian dODFs are influenced by the underlying fiber 

bundle geometries. (A) NFD map for a single transverse slice illustrates regions where multiple 

fiber bundle directions are detected (NFD > 1). (B) Angular difference is increased in regions 

with crossing fibers, suggesting accounting for non-Gaussian diffusion has the greatest effect in 

these regions. (C-D) Angular dispersion in the Gaussian and kurtosis dODFs, respectively, 

quantifies the variation of the predicted orientations from 3 independent acquisitions. Angular 

dispersion for the Gaussian dODF is increased in regions where multiple fiber directions are 

detected, but it is significantly less affected by the number of fiber directions in the kurtosis 

dODF. (E) The effects of radial weighting on angular dispersion in the kurtosis dODF are 

influenced by the underlying fiber geometry. When only one fiber bundle distribution is present 

(blue) angular dispersion is relatively small, but increases gradually with α. Angular dispersion is 

increased with more complex fiber distributions (green), but is minimized with a moderate 

amount of radial weighting (up to about α = 4). 

 

Reproducibility of DKI based tractography is illustrated in Figure 15. The voxel dimensions 

and scan times differed substantially between the different protocols, but fibers identified with 
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DKI-based white matter tractography demonstrate good qualitative consistency. However, the TD 

images show regions with distinct tract density concentrations in the higher resolution scans, 

suggesting that the streamlines fill the brain volume with slightly different trajectories, although 

the overall trends are similar.  

 

 

Figure 15. Reproducibility of the DKI-based white matter tractography across different 

acquisition schemes. (A-D) white matter fiber tracts identified from DKI acquisitions with voxel 

dimensions ranging from 3.0 × 3.0 × 3.0 mm
3 
to 2.0 × 2.0 × 2.0 mm

3 
and scan times ranging from 

5.5 to 48.0 minutes. All fiber tracts shown pass through the transverse brain slice given, with (E-

H) corresponding TD images for the same slice. TD images quantify the density of tracts passing 

through each voxel for a given tractography algorithm. In each case tractography was performed 

from 100,000 seed points, randomly generated within the brain mask. Protocol A was used for 

C,D,G, and H, Protocol B was used for A and E, and Protocol C was used for B and F. 

 

Discussion 
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The kurtosis dODF provides a convenient framework for performing DKI-based tractography 

from standard DKI datasets. By directly resolving the orientations of intra-voxel, crossing white 

matter fiber bundles, the kurtosis dODF improves upon Gaussian-based methods for 

tractography. The kurtosis dODF shows high reproducibility across independent scans, as well as 

good qualitative consistency from different acquisition schemes. We chose to use 60 

isotropically-distributed gradient directions and relatively high resolution for our primary 

analyses because we were primarily interested in image quality rather than scan time for these 

experiments. However, the DKI-based tractography results from the scan with lower resolution 

and only 30 gradient directions are quite comparable and more applicable to a clinical 

environment, where scan time is a major concern. This suggests that DKI-based tractography can 

be performed with many existing datasets having similar acquisition protocols. 

 

In addition to the dODF a separate class of model-dependent functions termed fiber 

orientation distribution functions (fODFs) can be used to model the orientations of fiber bundles 

from dMRI data (81). A common fODF reconstruction technique is spherical deconvolution, 

which assumes the diffusion signal over a spherical shell in q-space can be represented by the 

convolution of the fODF and a single fiber bundle response function, which is estimated from 

DW images (DWIs) with the highest FA values (82). The fODF and dODF differ in that the 

fODF presumes a specific model of white matter microstructure whereas the dODF is based on 

model-free, or general properties of diffusion dynamics. Consequently, fODF measures may have 

improved peak detection sensitivity and resolving power for detecting directional differences. 

However, fODF measures suffer from their own limitations, including the accuracy of the model 

used to describe in vivo properties of neural tissue in normal and diseased states. Spherical 

deconvolution is also typically best suited for relatively high diffusion weighting b-values (i.e. 
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3000 s/mm
2
) (82). However, constrained (or super-constrained) spherical deconvolution (CSD) 

can resolve crossing fibers at relatively low b-value (e.g. b = 1000 s/mm
2
) (77,83,84), and it has 

recently been shown to improve fiber detection rate and minimize orientation estimation errors 

relative to other advanced diffusion techniques (such as QBI) in simulated dMRI data with b = 

1000 s/mm
2
 (85).

 
A related technique, termed diffusion deconvolution, can be applied to estimate 

the fODF from dODF reconstructions to improve the angular resolution (86). However, fODF 

measures have not yet been investigated in relation to DKI data or the kurtosis dODF.  

 

In the analysis of the kurtosis dODF, the radial weighting power is an important parameter to 

be optimized as it affects orientations predicted from the kurtosis dODF, thereby impacting DKI-

based tractography. Beyond ? = 6, the benefits from radial weighting diminish, which can be 

appreciated by the decrease in the mean peak sensitivity in Figure 13 as well as the reduction in 

fibers identified in the SLF in Figure 12, which is in agreement with the simulations provided by 

Jensen et al. (32). The negative effects of radial weighting increase gradually, including an 

increase in the percentage of non-positive definite dODFs (an indicator that the kurtosis 

approximation is failing) and an increase in the angular dispersion of the orientations predicted, 

which is likely due to the approximate nature of the kurtosis dODF and the effects of signal noise 

on estimation of the diffusion and kurtosis tensors. Thus in Figure 12, the number of fibers 

identified in the SLF increases up to about ? = 6 as radial weighting increases peak detection 

sensitivity, but begins to diminish with further radial weighting as the kurtosis dODF 

approximation becomes less reliable.  

 

We chose ? = 4 for our analyses, because it provides a good balance between increasing 

peak detection sensitivity, increasing the effects of accounting for non-Gaussian diffusion, and 
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minimizing the negative consequences of too strong radial weighting, such as increasing 

variability in the principal orientation vector and the occurrence of non-positive definite ODFs. 

This choice of radial weighting also minimizes the dispersion in the orientation estimates when 

multiple fiber bundles are detected (Figure 14 E), which may be beneficial for tractography when 

streamlines pass through complex white matter regions. This is the first time angular dispersion 

measures in the kurtosis dODF have been quantified. Moreover, this is the first time the negative 

consequences of too strong radial weighting in the kurtosis dODF have been reported for real 

human data.  

 

When ? = 4, the kurtosis dODF estimates approximately 28.2% of white matter voxels 

contain multiple fiber bundle orientations. This is significantly less than the value of >90% 

reported by Jeurissen et al. using CSD (77). Although both methods can resolve distinct 

orientations from intra-voxel crossing fibers (cf. Figure 10 C in this chapter and Figure 5 B in 

Jeurissen et al. (77)), CSD is more sensitive at detecting fiber bundle orientations than DKI, 

owing in part, to the strong assumptions employed in modeling white matter by the fODF 

measures. 

 

Averaging the co-registered DWIs to form an average DKI dataset is a possible limitation of 

our study design, as each DWI has slightly different contrast owing to rotations of the image 

volume to account for subject motion that accumulates over the duration of the scan. Correcting 

for rotation of the image volume is necessary to account for changes to the image coordinate 

system that occur when selecting the field of view or correcting for subject motion (66), which 

may lead to small errors in angle estimates when the signals are averaged. However, the average 

angle of rotation from the affine transformation matrices applied during image co-registration in 
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this study was calculated to be only 0.85 degrees. Thus, corrections for subject motion were 

minimal, and we do not expect this to be a confounding factor in our analyses. An additional 

approach would be to combine all co-registered DWIs independently in the tensor estimation to 

form a reference dataset. Although this approach may have some advantages in keeping signals 

with slightly different diffusion contrast separate, this was not explored here for continuity with 

previous work (32). In addition, although correction for subject motion was small, subject motion 

may still contribute to some variability that occurs in the kurtosis dODF orientation estimates 

from co-registration errors. Thus, orientation dispersion estimates from repeated scans may 

overestimate the pure random error in the measurement techniques. Nevertheless, the values 

reported here provide a reasonable estimate for the intrinsic variability that occurs in kurtosis 

dODF measures for real human data. 

 

In this chapter, we have demonstrated that a radial weighting power of ? = 4 is a reasonable 

choice for performing the kurtosis dODF reconstruction for in vivo human scans. From the data 

presented in Figure 5, when  ? = 4, crossing fibers are detected in 28.2(±1.56)% of white matter 

voxels, the average NFD was 1.31(±0.02), the average angular difference was 8.06(±0.56) 

relative to the Gaussian orientation estimates, the average angular dispersion was 5.37(±0.83) for 

kurtosis dODF estimates, and 0.53(±0.29)% of voxels had at least one non-physically meaningful 

negative value. The radial weighting power of ? = 4 is also shown to minimize angular 

dispersion estimates in crossing fiber regions, with a mean angular dispersion of 6.20(±0.82) 

degrees. The angular difference relative to the Gaussian dODF in crossing fiber regions increases 

to 14.2(±0.31) degrees, supporting the notion that accounting for non-Gaussian diffusion has the 

largest effect in these regions. This choice for radial weighting is in agreement with previous 

work from Jensen et al., where ? was shown to influence angular accuracy in simulated data (32).  
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In addition, we have demonstrated that DKI-based tractography can be performed on DKI 

datasets with significantly different acquisition parameters ranging in voxel dimensions from 2.0 

× 2.0 × 2.0 mm
3
 to 3.0 × 3.0 × 3.0 mm

3
, TR from 5.2 to 8.4 s, TE from 96 to 103 ms, and 

acquisition times from 5.3 to 48.0 mins. These results agree with those of Henriques et al. (71), 

who found the performance of the kurtosis dODF to be stable across different acquisition settings 

by varying the number of b-values tested (71). This suggests that the kurtosis dODF and 

subsequent DKI-based tractography may be less sensitive to protocol acquisition settings than 

other techniques, which is also in agreement with previous work by Veraart et al. (87), suggesting 

DKI-derived tensor parameters are relatively stable to changes in acquisition parameters.
 
The 

stability of the DKI-dODF may, in part, be due to the unique method used to reconstruct the 

kurtosis dODF from the diffusion and kurtosis tensors as opposed to applying integral transforms 

on q-space data, where angular resolution, for example, does depend on the q-space sampling 

density and the b-values used (37,39).
 
However we do find some differences in the TD images 

resulting from DKI data with different acquisition settings, suggesting that the voxel dimensions 

used does affect the trajectory of streamlines through the image volume. Note that biological 

interpretation of TD is problematic (81). Here, TD is not intended to reflect or infer the actual 

density of axonal projections but rather to highlight similarities and differences in DKI-based 

tractography from differing protocols. 

 

In the Appendix, novel tensor-derived coefficients are provided that remove redundancy from 

evaluations of the kurtosis dODF in order to improve computational efficiency and a peak 

detection routine is proposed to further reduce the computation demands. The proposed method 
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provides a practical technique for performing DKI-based tractography from standard DKI 

datasets.  

Conclusion 

DKI is a clinically-feasible dMRI technique which shows promise for tractography due to its 

ability to directly resolve crossing fibers with the kurtosis dODF.  Here, we consider properties of 

the kurtosis dODF for in vivo human data, including quantification of positive and negative 

effects of varying degrees of radial weighting, reproducibility of DKI derived tractography across 

different acquisition schemes, and strategies for reducing the image processing times for 

detecting peaks from the kurtosis dODF. By accounting for non-Gaussian diffusion, the kurtosis 

dODF can significantly enhance tractography when compared to Gaussian-based methods. The 

proposed method for analyzing the kurtosis dODF provides an efficient and effective method for 

performing tractography with DKI. Since the kurtosis dODF can be reliably calculated from 

standard DKI data, DKI-based tractography may be applied to pre-existing DKI datasets for 

retrospective studies. 

Appendix: Numerical evaluation of the kurtosis dODF 

The Gaussian dODF approximation depends solely on the diffusion tensor and the degree of 

radial weighting and may be given by Eq. [14].  

 

The leading non-Gaussian correction factor for the Gaussian dODF approximation in Eq. 

[50], Λ:��Á�, is given by (32): 

 

Λ:��� = 1 + �
�, ∑ L3M�������M�� − 6�? + 1�M�������O�� + �? + 1��? + 3�O�������O��P���� .  [51] 
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To evaluate the kurtosis dODF and estimate local maxima pairs, Eq. [51] must be evaluated 

numerous times for each image voxel (more than 1281 evaluations for our protocol, as Eq. [51] 

must be evaluated at each vertex in the sampling distribution followed by iterative, non-linear 

optimization). This is a computationally intensive problem resulting from repeated tensor 

calculations and the non-linearity of Eq. [51], which can result in substantial image processing 

times when evaluated over an entire image volume. As a result, removing all redundancy in 

evaluation of Λ:��� can result in a significant decrease in image processing times. This can be 

accomplished with a single-pass coefficient calculation for all components that depend only on �, 

�, and ?, and are thus independent of the sampling direction, �, which is varied in the sampling 

distribution.   

 

To accomplish this, we can break apart each term in Eq. [51] and calculate coefficients which 

do not depend on the orientation being varied, �. The first term can be defined as 

 

                                                \ = ∑ 3M�������M���,�,�,� .                                                      [52] 

 

Then, let =��T�, T�� be the set of all permutations of the indices ÂT�, T�Ã and =,�T�, T�, T5, T,� be the 

set of all permutations of the indices ÂT�, T�, T5, T,Ã, and define 

 

                        ¥�e,�� = ∑ −6�? + 1�M������� ∙ ∑ M�,ÄeM�,Ä�ÄÅÆ���e,����,�,�,� ,                            [53] 

 

and  
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           ¶�e,��,�j,�q = ∑ �? + 1��? + 3������ ∙ ∑ M�,ÄeM�,Ä�M�,ÄjM�,ÄqÄÅÆq��e,��,�j,�q��,�,�,� .             [54] 

 

After calculating all of the scalar coefficients for a given image voxel,  

 

ψ:,I���        B �
�CD�E�:F�� �⁄ J1 +

 �
�, �\ + �¥���� + ¥���� + ¥555� + ¥���� + ¥�5�5 + ¥�5�5� �ÈM�⁄ +
�¶�����, + ¶�����5� + ¶���5�55 + ¶�������� + ¶���5���5 + ¶��55��5� +
¶������5 + ¶���5���5 + ¶��55��5� + ¶�555�55 + ¶�����, + ¶���5�55 +
¶��55��5� + ¶�555�55 +¶55555,� '�CD�(�� �Q, 

    [55]                                     

which can be evaluated approximately 81 times faster than its equivalent formulation given above 

due to the absence of redundant calculations and nested for loops. When incorporating Eqs. [52-

54] into a script for coefficient calculation, the nested for loops can be eliminated all together by 

expanding the summations and writing each term in the equations explicitly.  

Appendix: Detection of local maxima 

Because the kurtosis dODF is a continuously differentiable function the quasi-Newton method 

with the BFGS algorithm for peak estimation is used (32,71,77), as it utilizes both the function 

and its first-order partial derivatives. However, non-linear optimization of the kurtosis dODF is 

computationally intensive. So to limit the number of times non-linear optimization is invoked and 

minimize image processing time, we first performed brute force peak estimation over a pre-

defined sampling distribution and then apply the quasi-Newton method to refine peak estimates. 

[55]

= 
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Undersampling the kurtosis dODF decreases the sensitivity of peak detection and oversampling 

increases processing time. By only invoking the non-linear step from a few seed points which are 

relatively close to the precise local-maximum, this method suffers from lower peak-detection 

sensitivity but can dramatically decrease the computational time. The pre-defined sampling 

distribution is also used to calculate GFA. As a result, it provides a convenient framework for 

analyzing the kurtosis dODF.  

 

Evaluating the kurtosis dODF over the entire brain for each dataset with 2.5 × 2.5 × 2.5 mm
3
 

voxel dimensions (including the all radial weighting powers in the average and independent DKI 

datasets) throughout the brain mask took 32.3 ± 2.3 minutes using MATLAB’s parallel 

computing toolbox on a personal computer with 32 GB of RAM and a 2.4 GHz, Intel Xeon 8-

core processor. 

 

Our method for choosing a sampling distribution is illustrated in Figure  and Table 1. To 

generate a relatively evenly spaced sampling distribution over the domain of the kurtosis dODF 

function, we performed a tessellation of the icosahedron by iteratively quadrisecting each face 

and projecting the new vertices onto the surface of the unit sphere, which generates VÊ = Ó G� +
4´G� × 30 vertices, where  is the number of iterations, and O
 = 12 are the number of vertices 

of an icosohedron. In addition to generating relatively evenly spaced points, this method has the 

added benefits that the vertices occur on a well-defined geometrical surface, which facilitates 

estimating candidate local maxima, as each vertex can readily be tested against its nearest 

neighbors to determine if it is the local maximum of its neighborhood. After local maxima are 

estimated, the candidate points are used as seed points for the quasi-Newton method to iteratively 

refine the peak estimates and precisely identify the peaks. This differs from previously published 
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methods which use electrostatic repulsion (ESR) to define a sampling distribution and then uses 

all of the sampling distribution vertices as seed points for non-linear optimization (32,71,77). For 

comparison with previous methods (32,71), we also generated a sampling distribution with 100 

points distributed over one half surface of the spherical grid using an ESR algorithm (88).  

 

Figure 16. The kurtosis dODF sampling distribution. (A) Experimental sampling distributions 

were defined by iteratively quadrisecting the faces of an icosohedron, where the number in the 

bottom right indicates the number of iterations used, and vertices over one half of the distribution 

were used to identify local maxima pairs. (B) The vertices of the quadrisected icosahedron are 

then projected onto the surface of kurtosis dODF using Eq. [55] (small dark gray spheres). Each 

vertex is then tested against its nearest neighbors (connected by an edge) and candidate local 

maxima identified by having the largest value in their neighborhood (large gold spheres). The 

corresponding vertex in the sampling distribution is then used to seed the non-linear optimization 

algorithm to precisely identify the local maxima of the kurtosis dODF (brown lines). 
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Table 1. Summary Statistics for Sampling Distributions 

SD n �̅ 

Crossing 

Fibers  

(% voxels) 

Missed 

Peaks 

(%) 

NFD GFA 
Fiber 

Count (k) 

Processing 

Time (min) 

0 6 63.4(0.0) 0 (0) 23.8(1.1) 1.0(0.0) 0.4(0.0) 43.8(1.8) 4.9(0.52) 

1 21 33.9(2.2) 17.3(0.9) 10.2(0.9) 1.2(0.0) 0.5(0.0) 54.8(2.3) 5.2(0.40) 

2 81 17.2(1.1) 25.0(1.3) 3.5(0.4) 1.3(0.0) 0.5(0.0) 60.3(2.3) 6.7(0.43) 

3 321 8.6(0.6) 27.5(1.5) 1.3(0.2) 1.3(0.0) 0.5(0.0) 62.4(2.2) 11.3(0.83) 

4 1281 4.3(0.3) 28.2(1.6) 0.6(0.1) 1.3(0.0) 0.5(0.0) 63.1(2.4) 29.4(2.14) 

5 5121 2.2(0.1) 28.4(1.6) 0.4(0.0) 1.3(0.0) 0.5(0.0) 63.3(2.4) 100.1(7.21) 

ESR 100 14.8(1.1) 28.9(1.6)  1.3(0.0) 0.5(0.0) 63.6(2.5) 402.5(30.15) 

Note: SD is sampling distribution. Values represent the mean (± standard deviation) for each 

measure in the white matter ROI, pooled from all 5 subjects. Values were calculated from the 

average DKI scan with α = 4. With the ESR-derived sampling distribution, iterative non-linear 

optimization was performed for each vertex (n). However, for all other sampling distributions, 

non-linear optimization was only performed on a small subset of the vertices, which reflect local 

maxima estimates obtained over the spherical grid 

 

In Table 1, summary statistics are given for each a sampling distribution used in analysis of 

the kurtosis dODF with ? = 4, where SD defines the sampling distribution (numbers represent 

the number of iterations used for iterative quadrisection of the icosahedron and ESR denotes the 

previously published peak detection routine) (32,71), n is the number of vertices in the sampling 

distribution, �̅ is the average separation angle between each point and its surrounding neighbors, 

crossing fibers represents the percentage of voxels with NFD > 1, missed peaks represents the 

percentage of orientation estimates missed using the previously published method as a reference, 

NFD is the average NFD throughout the white matter, GFA is the average value for GFA 

throughout the white matter, fiber count is the number of fibers (in thousands) identified by 

tractography from 100,000 seed points, and processing time is the total amount of time in minutes 

required for estimation of the kurtosis dODF orientations from DKI data, including tensor 

estimation and evaluation of the kurtosis dODF for peak detection. Increasing the sampling 

density increases the number of crossing fibers regions as well as white matter fiber tracts 
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identified but has minimal effects on mean GFA estimates after the second iteration. From SD 3 

to 4 there is a small increase in the number of peaks and fibers detected and a decrease in the 

number of missed peaks. However, image processing time increases from 11.3 to 29.4 minutes. 

We chose SD 4 as opposed to 5 as the incremental improvement in peak sensitivity was not worth 

the significant increase in image processing time (from 29.4 to 100.1 minutes per dataset) for our 

primary analyses (with 220 image datasets). However, the sampling distribution defined with 3 

iterations also offers good performance when decreasing image processing time further is a major 

concern. The previously published ESR method does have the highest peak detection sensitivity 

but at the expense of substantially longer image processing times. Image processing times 

presented include constrained weighted linear least squares estimation and depend on our specific 

implementation, which was performed in MATLAB. However, similar improvements in image 

processing times can be expected on other platforms, as this reflects the computational efficiency. 
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5 
 

Mapping the Orientation of White Matter Fiber Bundles 

________________ 

KI is a promising method for tractography owing to its ability to directly resolve crossing 

white matter fiber bundles with the kurtosis dODF. In this chapter, we will compare the 

orientations estimated from the kurtosis-dODF approximation to the full dODF reconstructed via 

diffusion spectrum imaging (DSI). This chapter is based on the following peer-reviewed 

publication:  

 

1. Glenn GR, Kuo LW, Chao YP, Lee CY, Helpern JA, Jensen JH. Mapping the orientation of 

white matter fiber bundles: A comparative study of diffusion tensor imaging, diffusional 

kurtosis imaging, and diffusion spectrum imaging. AJNR Am. J. Neuroradiol. 2016:[Epub 

ahead of print]. 

Abstract  

White matter tractography relies on fiber bundle orientation estimates from dMRI. However, 

clinically feasible techniques such as DTI and DKI utilize assumptions, which may introduce 

error into in vivo orientation estimates. In this study, fiber bundle orientations from DTI and DKI 

are compared to DSI as a gold standard to assess the performance of each technique.  For each 

D
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subject, full DTI, DKI, and DSI datasets were acquired during 2 independent sessions, and fiber 

bundle orientations were estimated using the specific theoretical assumptions of each technique. 

Angular variability and angular error measures were assessed by comparing the orientation 

estimates. Tractography generated with each of the three reconstructions was also examined and 

contrasted. Orientation estimates from all three techniques had comparable angular 

reproducibility, but DKI decreased angular error throughout the white matter compared to DTI. 

DSI and DKI enabled the detection of crossing fiber bundles, which had pronounced effects on 

tractography relative to DTI. DSI had the highest sensitivity for detecting crossing fibers; 

however, the DSI and DKI tracts were qualitatively comparable. Fiber bundle orientation 

estimates from DKI were found to have less systematic error than those from DTI, which can 

have notable effects on tractography. However, tractography obtained with DKI is qualitatively 

comparable to that of DSI. Since DKI has a shorter typical scan time than DSI, DKI is potentially 

more suitable for a variety of clinical applications.  

Introduction  

White matter tractography is used clinically to visualize functionally important white matter tracts 

and aid neurosurgeons during pre-surgical planning (89,90). Tractography is also an important 

research tool for studying structural connectivity, as tractography is currently the only non-

invasive technique for mapping in vivo anatomical neural connections in the human brain (36). 

However, tractography relies on fiber bundle orientation estimates derived from particular dMRI 

techniques, which may suffer from inherent methodological limitations, potentially resulting in 

clinically misleading information (91,92).  
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Of the several proposed dMRI methods for estimating the orientation of white matter fiber 

bundles, a common approach utilizes the dODF, which quantifies the relative degree of diffusion 

mobility along a given direction from physical properties of water diffusion (37-39,67). Diffusion 

of water is assumed to be least restricted parallel to the orientation of white matter fiber bundles 

resulting in local maxima of the dODF.  

 

There are several distinct techniques for reconstructing the dODF from dMRI data that differ 

in their theoretical assumptions and optimal experimental implementation. These include DTI 

which assumes the diffusion of water can be completely described by Gaussian (normal) 

diffusion (40,73,74); diffusional kurtosis imaging (DKI), which extends the DTI model to 

account for non-Gaussian diffusion effects (29,30,32,33); q-ball imaging, which applies the Funk 

transformation to dMRI data from high angular resolution diffusion-weighted imaging  (37,38), 

and diffusion spectrum imaging (DSI) (39,67).  

 

In contrast to other methods, DSI quantifies the dODF by employing an exact (in the narrow 

gradient pulse limit) Fourier transform relationship between the dMRI signal and the dPDF. To 

accomplish this requires a dense sampling of q-space with relatively high maximum b-values. In 

this way, DSI effectively characterizes complex intra-voxel microarchitecture without the need 

for intricate tissue models or ancillary approximations, although it tends to have more demanding 

data acquisition requirements than alternative methods. Due to its rigorous mathematical 

formulation and comprehensive description of intra-voxel diffusion dynamics, DSI may be 

considered a reference standard for validating of other dODF techniques for in vivo experiments 

(93). Nonetheless, it should be appreciated that even the exact dODF may not give the precise 
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orientation of white matter fiber bundles, reflecting the complex and subtle relationship between 

diffusion and microstructure. 

 

The DTI dODF contains the same information as the diffusion ellipsoid, and the global 

maximum of the DTI dODF gives the same direction as the principal eigenvector of the diffusion 

tensor (32,37). Although efficient in terms of image acquisition time, DTI is not capable of 

directly resolving intra-voxel fiber crossings (40,73,74), which can lead to significant errors in 

orientation estimates from regions with complex tissue architecture (77,91).  

 

The motivation for considering the kurtosis dODF is twofold. First, there have been a 

significant number of prior studies employing DKI to investigate neuropathology, including 

stroke (59,94-97), Alzheimer’s disease (55,56,98-100), cancer (101-103), and numerous others 

(75). Therefore, a tractography method that is compatible with DKI can be of value. Second, DKI 

shares some of the practical advantages of DTI that make it particularly attractive for clinical 

settings, such as small maximum b-values and protocol options with relatively short scan times 

(30,59,104). For example, in clinical settings, a whole-brain DKI dataset with reasonable image 

quality may be acquired in approximately 7 minutes (59) and good quality whole-brain DKI 

tractography has been demonstrated with acquisition times as short as 5.3 minutes (104). 

Moreover, DKI inherently provides measures of the diffusion and kurtosis tensors, as well as all 

tensor-derived quantitative measures (e.g., fractional anisotropy and mean kurtosis), which are of 

interest for characterizing tissue microstructure (52).  

 

In this study, dODFs derived from DSI, DKI, and DTI from in vivo human measurements are 

directly compared, particularly with regard to their fiber bundle orientation estimates. The errors 
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intrinsic to the dODF orientations from DTI and DKI are calculated using the DSI orientations as 

benchmarks. In addition, the intra-subject variabilities of dODF orientation estimates are 

calculated across independent sessions for all three methods. A primary goal of this study is to 

assess the degree to which the DKI dODF approximates the DSI dODF and improves upon the 

DTI dODF. Tractography results are also compared qualitatively for the three dODF 

reconstruction techniques. 

Methods 

The study was approved by the institutional review board at the National Health Research 

Institutes (Taiwan), and informed consent was obtained from all participants prior to enrollment 

in the study. All imaging experiments were performed on a 3T MRI system with a maximum 

gradient strength of 45 mT/m and a maximum single direction slew rate of 200 mT/m/ms (Tim 

Trio, Siemens, Erlangen, Germany), using a twice-refocused balanced spin-echo diffusion echo-

planer imaging pulse sequence (65) with fat suppression. Each session included independent DSI 

and DKI acquisitions, with the DTI data being taken as a subset of the DKI acquisition. To 

quantify variability for each dMRI method, each volunteer was scanned during two separate 

sessions, resulting in a total of 6 complete DSI and DKI datasets. The dMRI protocols were 

optimized to maximize the SNR rather than minimize the acquisition times in order to facilitate 

the assessment of the accuracy of DKI and DTI fiber orientation estimates relative to those of 

DSI.  

 

Acquisition parameters common to both DSI and DKI acquisitions were: voxel size = 2.7 × 

2.7 × 2.7 mm
3
, matrix = 82 × 82, number of slices = 45, bandwidth = 1356 Hz/Pixel, and a 32 

channel head coil with an acceleration factor of 2 using generalized autocalibrating partially 
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parallel acquisition (105) and adaptive combine coil mode (106). Additional parameters for the 

DSI acquisition were TR/TE = 8300/151 ms and a total of 515 diffusion encoding gradient 

directions over a Cartesian grid with a maximum b-value of 6000 s/mm
2
, which was optimized 

for diffusion sensitivity and gradient performance (70), resulting in a total acquisition time of 

71.7 minutes. For the DKI acquisitions, additional parameters were TR/TE = 6100/102 ms, 64 

diffusion encoding gradient directions at b-values of 1000 s/mm
2
 and 2000 s/mm

2
 , and a total of 

20 independent acquisitions without diffusion weighting (b0 images), resulting in a total 

acquisition time of 15.6 minutes. In both cases, TE was minimized to maximize SNR. DTI data 

were also analyzed using the 0 and 1000 s/mm
2
 b-value images from the DKI dataset. During 

each session, an additional T1-weighted magnetization-prepared rapid gradient echo (MPRAGE) 

image with 1.0 × 1.0 × 1.0 mm
3
 voxel dimensions was also acquired for anatomical reference. By 

assuming 80% of the maximum gradient strength (45 mT/m), i.e. 36 mT/m, was used to achieve 

the minimum echo time δ and Δ can be estimated to be 32 ms and 74 ms for the DSI scan, and for 

22.5 ms and 50 ms for the DKI scan, respectively. 

 

Each scan for each subject was co-registered to the subject’s initial DSI scan using a 12-

parameter affine transformation with SPM12 (Wellcome Trust Center for Neuroimaging, London, 

UK). Following co-registration, spatial smoothing was applied to all diffusion weighted images to 

reduce the effects of signal noise using a Gaussian smoothing kernel of 1.25 times the voxel 

dimensions (52). 

 

The intra-voxel DSI dODF was reconstructed using DSI Studio (dsi-studio.labsolver.org, 

Department of Psychology, Carnegie Mellon University) with a Hanning filter of width 17 

applied to the q-space data. DKI-derived diffusion and kurtosis tensors were calculated using a 
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constrained weighted linear least squares algorithm (52), and the DKI dODF was calculated using 

the closed form solution derived by Jensen et al. (32). The DTI-derived diffusion tensor was 

obtained by using weighted linear least squares (73). Following previous studies, the radial 

weighting power was set to ? = 2 for DSI (39,67) and ? = 4 for DKI (32,71,104). For 

visualization of DTI dODFs, the radial weighting power was set to ? = 4; however this has no 

effect on the DTI-derived orientation estimates. All orientations were corrected for rotations of 

the image volume that occurred during image acquisition and co-registration (66). The kurtosis 

dODF reconstruction was performed using the Diffusional Kurtosis Estimator Fiber Tractography 

Module (https://www.nitrc.org/projects/dke/), and the DTI dODF was reconstructed using in-

house software.  

 

Angular variability of the dODFs was calculated by the absolute voxel-wise angular 

difference for each reconstruction between the principal orientation (the orientation 

corresponding to the global maxima pair) from the first scan and the nearest orientation from the 

second scan. Angular errors in the DKI and DTI dODFs were calculated using the absolute 

angular differences between the principal orientation from the corresponding DSI scan and the 

nearest dODF maximum from the respective reconstruction. For angular difference measures, the 

nearest orientation in the second scan was chosen as opposed to the global maximum from the 

second scan as small fluctuations in dODF magnitudes in voxels with multiple orientation 

estimates could vary which orientation was identified as the global maximum resulting in 

artificially large angular differences (104).  Angular error estimates include intrinsic variability in 

the reconstruction techniques and hence combine both random and systematic error. In addition, 

because absolute differences are employed, these measures are positively biased by noise and will 
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consequently overestimate the true systematic differences.  The experimental design is illustrated 

in Figure 17, and the angular variability and error measures are illustrated in Figure 18.  

 

 

Figure 17.  Experimental design illustrated with example images from a single subject. For each 

subject, 2 separate scans are performed, which include independent DSI and DKI acquisitions 

optimized for the respective reconstructions. The DTI reconstruction is calculated from a subset 

of the DKI acquisition and is fully independent from the DSI scan but not the DKI scan. Angular 

variability is calculated between scans (blue arrows) and angular error is calculated for DKI and 

DTI in reference to the corresponding DSI scan (red arrows). Units for the b-value are s/mm
2
, and 

the signal intensity ranges for each image are given by the corresponding color bar (in arbitrary 

units). DWIs from the highest b-value for each acquisition are given to illustrate the range of 

diffusion weighting applied, and for all DWIs shown, the diffusion encoding vector was oriented 

in the left-right orientation (� = �1,0,0��). 
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Figure 18. Polar 2D dODF cross-section plots illustrate angular variability and angular error 

measures. Row (A) illustrates dODFs taken from a single voxel in the corpus callosum where one 

predominant fiber bundle orientation is expected, and Row (B) illustrates dODFs taken from a 

single voxel where multiple fiber bundles are expected to occur between cortical projections from 

the corpus callosum and ascending and descending fiber bundles in the corona radiata. The Voxel 

Location tab illustrates the location of the voxels overlaid on the corresponding slice from the 

MPRAGE image and the FA color map for anatomical reference; the Angular Variability tab 

illustrates angular variability measures, which are taken between scans for each reconstruction; 

and the Angular Error tab illustrates the angular error measures, which are taken relative to the 

corresponding DSI dODF for each scan. The slice plane for the polar plots is rotated to contain 

the first and second largest orientations of the DSI dODF, as DSI is used as a reference. For 

visualization, each dODF is scaled to a maximum value of 1. 

 

To quantify angular variability and angular error, ROIs were defined for each subject. These 

include an inclusive white matter ROI, which was defined as voxels with FA > 0.1; a 

conservative white matter ROI, which was defined as voxels with FA > 0.3; a single fiber bundle 

ROI, which was defined as voxels within the inclusive white matter ROI with the estimated 

number of fiber directions (NFD) equal to 1 in the DSI scan; a two crossing fibers ROI, which 

was defined as voxels within the inclusive white matter ROI with NFD = 2 in the DSI scan; and a 

3 or more crossing fibers ROI, which was defined as voxels within the inclusive white matter 

ROI with NFD > 3 in the DSI scan. To reduce CSF partial volume effects, voxels within each 

ROI with mean diffusivity > 1.5 μm
2
/ms were excluded from quantitative analyses (32,104). To 

help reduce the occurrence of spurious peaks in the DSI reconstruction a quantitative anisotropy 
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threshold of 0.1 was used to filter the DSI orientations (107). To visualize group differences in 

the angular variability and angular error measures, parameter maps from each subject were 

normalized to the International Consortium for Brain Mapping white matter template (53) using 

SPM12 with non-linear registration, and average, group-wise parameter maps were constructed.  

 

The angular error estimates quantified in this study include two sources of error; intrinsic 

variability resulting from random error in independent acquisitions and systematic error inherent 

to the DTI and DKI dODF approximations. Intrinsic variability results from thermal noise, 

insufficient SNR, insufficient q-space sampling resolution, and physiological effects such as 

pulsatile flow, CSF partial volume effect, and bulk subject motion. Systematic error results from 

theoretical and methodological error in the dODF approximations employed. By assuming the 

angular variability is equivalent for all three techniques, the intrinsic variability from the angular 

error estimate reduces to the angular variability calculated between repeated scans. Thus, the 

qualitative degree of systematic error can be appreciated by the difference between the angular 

error and respective angular variability estimates for a given reconstruction method. In this study 

we used this heuristic method for calculating systematic error in DTI and DKI by assessing the 

difference between the angular error and angular variability measures for the DTI and DKI 

reconstructions.   

 

White matter tractography was performed with DSI Studio using the Euler method (74) with 

a step size of 1.35 mm, a minimum track length of 20 mm, and a maximum track length of 450 

mm. For direct and qualitative comparison across the three techniques, a common white matter 

tracking ROI was defined to include regions in the inclusive white matter ROI with quantitative 

anisotropy > 0.1 in the DSI scan. The fiber tracking algorithm was seeded with 200,000 random 
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seed points within the white matter tracking ROI. White matter fiber tracts were visualized using 

TrackVis (trackvis.org, Martinos Center for Biomedical Imaging, Massachusetts General 

Hospital). Tractography results are assessed qualitatively by examining the reconstructed tracts 

over the whole brain and in specific regions with complex fiber bundle geometries, including  

corpus callosum, cortico-spinal tract, superior longitudinal fasciculus, and cingulum bundle, as 

shown in the video provided in the online-supplemental material for Glenn et al. (108). To aid the 

qualitative assessment visually, a color-encoding scheme is employed where each individual tract 

is colored by its overall displacement from the starting point to the ending point of the tract, with 

red indicating a left-right displacement, blue indicating an inferior-superior displacement, and 

green indicating an anterior-posterior displacement. Similar colors represent similar overall 

trajectories whereas differing colors indicate tracts following different overall trajectories.  

Results 

Summary statistics for each subject and ROI are given in Table 2. DTI has the lowest angular 

variability in both the inclusive and conservative white matter ROIs as well as the single fiber 

bundle ROI, and DSI has the lowest angular variability in the both the two and three or more 

crossing fibers ROI. Conversely, DKI has the highest angular variability in all ROIs, with the 

exception of the three or more crossing fibers ROI, where DTI has the highest angular variability. 

However, the angular variabilities for all reconstructions are comparable within each of the ROIs, 

differing by at most 2.1 degrees in the single fiber bundle ROI. On the other hand, DKI 

consistently improves angular error compared to DTI in all ROIs. Moreover, the DKI angular 

error measures are typically comparable to the size of the DKI angular variability estimates,  

differing by at most 3.2 degrees in the 3 or more crossing fibers ROI, whereas the DTI angular 

error measures are larger relative to their angular variability estimates, increasing to 11.9 degrees 
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in the 3 or more crossing fibers ROI, supporting the notion that the DTI dODF approximation 

assumes greater systematic error relative to the DKI dODF approximation. For the ROIs tested, 

dODF performance measures are significantly influenced by the FA value, with the reliability 

being greater for regions with higher FA. Conversely, the occurrence of crossing fibers decreases 

the reliability of dODF-derived orientation estimates. However, the performance of the DKI 

dODF is less affected than the DTI-derived dODF in crossing fiber regions. Performance of the 

dODF reconstructions is explored further in Figs 19 and 20.  

 

Table 2. Summary of dODF performance stats in the FA- and NDF-defined white matter ROIs. 

Inclusive White Matter ROI (FA > 0.1) 

  Angular Variability Angular Error Systematic Error 

  DSI DKI DTI DKI DTI DKI DTI 

Subject 1  8.7 (9.7) 8.2 (9.4) 7.6 (9.9) 9.9 (10.4) 13.7 (13.8) 1.7 6.1 

Subject 2  9.5 (9.7) 9.9 (9.9) 7.7 (9.7) 11.4 (12.3) 14.0 (14.0) 1.4 6.3 

Subject 3  6.4 (7.6) 8.3 (9.3) 7.4 (9.3) 10.0 (10.4) 13.8 (14.1) 1.7 6.5 

Mean  8.2 (9.0) 8.8 (9.5) 7.6 (9.7) 10.4 (11.0) 13.8 (14.0) 1.6 6.3 

 

Conservative White Matter ROI (FA > 0.3) 

  Angular Variability Angular Error Systematic Error 

  DSI DKI DTI DKI DTI DKI DTI 

Subject 1  5.3 (5.7) 4.8 (5.6) 4.4 (5.8) 6.2 (6.6) 10.1 (10.7) 1.4 5.7 

Subject 2  5.4 (5.4) 5.8 (5.4) 4.3 (5.6) 6.2 (7.1) 9.4 (10.1) 0.4 5.2 

Subject 3  3.7 (4.6) 5.2 (5.7) 4.8 (6.3) 6.3 (6.9) 9.9 (10.7) 1.1 5.0 

Mean  4.8 (5.2) 5.3 (5.6) 4.5 (5.9) 6.2 (6.9) 9.8 (10.5) 1.0 5.3 

 

Single Fiber ROI (NFD = 1) 

  Angular Variability Angular Error Systematic Error 

  DSI DKI DTI DKI DTI DKI DTI 

Subject 1  8.3 (8.3) 7.8 (8.2) 6.4 (7.6) 9.0 (8.7) 10.2 (9.7) 1.2 3.8 

Subject 2  8.8 (8.2) 9.2 (8.4) 6.0 (6.4) 10.0 (9.9) 10.5 (9.7) 0.9 4.6 

Subject 3  6.3 (7.0) 8.0 (8.4) 6.2 (7.4) 9.4 (9.2) 10.9 (10.8) 1.4 4.7 

Mean  7.8 (7.8) 8.3 (8.4) 6.2 (7.1) 9.5 (9.3) 10.6 (10.1) 1.2 4.4 
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Two Crossing Fibers ROI (NFD = 2) 

  Angular Variability Angular Error Systematic Error 

  DSI DKI DTI DKI DTI DKI DTI 

Subject 1  9.2 (10.9) 8.7 (10.3) 8.8 (11.5) 10.7 (11.7) 17.4 (16.2) 2.0 8.6 

Subject 2  10.0 (10.9) 10.5 (10.8) 9.3 (11.5) 12.4 (13.7) 17.4 (16.2) 1.9 8.1 

Subject 3  6.6 (8.6) 8.6 (10.4) 9.2 (11.6) 10.8 (11.8) 18.2 (16.7) 2.2 9.0 

Mean  8.6 (10.1) 9.3 (10.5) 9.1 (11.5) 11.3 (12.4) 17.7 (16.4) 2.1 8.6 

 

Three or More Crossing Fibers (NFD > 3) 

  Angular Variability Angular Error Systematic Error 

  DSI DKI DTI DKI DTI DKI DTI 

Subject 1  9.7 (12.3) 9.0 (11.7) 10.4 (14.1) 12.6 (14.1) 22.4 (18.9) 3.5 12.0 

Subject 2  11.3 (12.4) 12.0 (13.1) 11.4 (14.5) 14.9 (16.6) 21.7 (19.4) 2.9 10.3 

Subject 3  7.7 (10.0) 10.1 (12.3) 11.6 (14.0) 13.2 (14.3) 24.8 (19.8) 3.0 13.2 

Mean  9.6 (11.6) 10.4 (12.4) 11.1 (14.2) 13.5 (15.0) 23.0 (19.4) 3.2 11.8 

Note: Values for angular variability and angular error represent the mean (± standard deviation) 

of the voxel-wise performance measures throughout the ROI. Systematic error is calculated by 

the difference between the mean angular error and the mean angular varibility over each ROI for 

the respective reconstructions. All values are given in degrees. 

 

 

Figure 19. The performance of dODF-derived orientation estimates depends on FA, with angular 

variability and angular error decreasing with increasing FA. Data points for each group are averaged 

over the indicated interval and are separated in the horizontal direction within each interval for 

legibility. The Spearman rank correlation coefficient for the voxel-wise performance measure relative 

to FA is indicated by ρ. 
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Figure 20. For each reconstruction, dODFs within the inclusive white matter ROI are overlaid on the 

MPRAGE image for anatomic reference. The dODF reconstructions are qualitatively consistent 

between repeat scans, but DTI cannot detect crossing fibers (red box); this feature may increase 

angular error relative to DSI. DSI is more sensitive than DKI at detecting crossing fibers (blue box). 

The inclusive white matter ROI may include partial volume effects (white arrows), which may 

increase variability and error in orientation estimates. 
 

To illustrate the group-wise performance of the dODF reconstructions, mean normalized 

parameter maps are given in Figure 21. All three of the reconstruction techniques demonstrate 

similar angular variability throughout the white matter, but DTI shows improvements in angular 
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variability in regions with high FA (for example note the corpus callosum and corticospinal tracts 

in rows 2 and 3, which show high FA contrast). The DKI angular error estimates are relatively 

consistent throughout the white matter, whereas the DTI angular error estimates show distinct 

white matter regions where the angular error deteriorates. In comparing these regions to the 

normalized FA color maps, it is likely that these regions represent voxels with more complex 

fiber bundle geometries owing to influences from multiple fiber bundle orientations within a 

voxel (for example, note the intersecting regions between the corpus callosum and corona radiata 

which are apparent in rows 1 and 3).  

 

 

Figure 21. Group mean angular variability and angular error maps illustrate dODF performance. 

(A-B) Mean of the normalized b0 and FA color map images, respectively, from all DKI 

acquisitions. These are included for anatomical reference and to help validate the normalization 

procedure. The rows illustrate representative transverse, coronal, and sagittal orientations. (C-E) 

Illustrate angular variability for the DSI, DKI, and DTI reconstructions, respectively. All three 

techniques demonstrate similar angular variability in the white matter regions. (F,G) Illustrate 

angular error for the DKI and DTI reconstructions, respectively. Angular error measures increase 
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significantly in regions with low FA, though the angular error for the DKI reconstruction is 

relatively consistent throughout the white matter. The angular error is higher for the DTI 

reconstruction in the white matter, particularly in regions where complex fiber bundle geometries 

may be present. 

 

Exemplary tractography results are given in Figure 22. A cross-sectional view of the fiber 

tracts was selected to highlight the effects of interactions that occur in regions with complex 

tissue architecture. This particular slice was chosen as it contains large influences from the corpus 

callosum, which is mainly oriented along the left-right orientation, and the cortico-spinal tracts 

(among others), which are mainly oriented along the inferior-superior orientation. This slice also 

contains effects from the superior longitudinal fasciculus and the cingulum bundle, which are 

mainly oriented along the anterior-posterior direction. In the tractography panels for DSI and 

DKI, the corpus callosum can be seen fanning through the corona radiata as it passes from one 

hemisphere to the next. However, strong influences form the corona radiata obscure these 

trajectories from the DTI dODFs, and the corpus callosum tracts are either prematurely truncated 

or swept into the corticospinal tracts. It can also be seen from these images that the DSI dODF 

approximation is more sensitive at detecting multiple peaks (note the extent of the superior 

longitudinal fasciculus fibers (white arrow) and the predominance of green lobes in the respective 

3D dODF renderings). DTI is not capable of directly resolving crossing fibers, which 

significantly affects tractography through complex regions such as this. Full brain tractography 

results are compared with a video provided in the supplemental material for Glenn et al. (108). 
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Figure 22. Effects of dODF reconstructions on tractography. Column (A) shows a coronal cross 

section through the fiber tracts identified with DSI, DKI, and DTI, respectively, overlaid on the 

corresponding slice from the MPRAGE image for anatomical reference. The color encoding is 

used to represent the overall displacement of the end points of each tract with one color being 

applied per tract, where red represents an overall left (L) – right (R) orientation, blue represents 

an overall inferior (I) – superior (S) orientation, and green represents an overall anterior (A) – 

posterior orientation. DSI is the most sensitive technique for detecting fibers (White Arrow); 

however, DSI and DKI are fairly similar in both the color, which illustrates the overall trajectory, 

and distribution of fibers identified. Column (B) shows selected dODFs colored with the same 

coloring scheme as fibers in column (A). The region shown in Column (B) is demarcated by the 

white box in the corresponding images in Column (A). DTI fibers are significantly affected in this 

region, as the dODFs cannot detect crossing fibers causing fibers to prematurely terminate or 

meld anatomically distinct tracts. This cross section was chosen to demonstrate interactions that 

occur between the corpus callosum, corona radiata, superior longitudinal fasciculus, and 

cingulum bundle, and their effects on dODFs and subsequent tractography. 
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Discussion 

In this chapter, we have employed DSI as a reference standard to assess the angular error in 

orientation estimates from DKI and DTI and quantified the intra-subject angular variability of 

white matter fiber bundle orientation estimates from DTI, DKI, and DSI. We have focused 

primarily on comparing the estimated fiber orientations that the dODFs identify, as these are the 

inputs needed for constructing dMRI tractography. However, it should be emphasized that these 

are only approximations for the true fiber orientations, which are not easily verified for in vivo 

human experiments, even if the dODF is measured exactly.  

 

There have been a significant number of prior studies employing DKI to measure 

neuropathological changes in a variety of disease states using voxel-based scalar measures 

(55,56,59,94-103). A primary goal of this study is to assess the potential of DKI for conducting 

tractography using in vivo human data for strengthening its use on future clinical applications, 

such as presurgical planning (89,90) and potentially, assessing the prognosis of postsurgical 

functional deficits (109). By estimating the kurtosis tensor, DKI is more apt to characterize 

diffusion phenomena within complex neural fiber structures than conventional DTI, which may 

improve the accuracy of tractography. Therefore DKI may be particularly well suited for clinical 

applications where tractography and quantitative assessment of tissue microstructure are of 

interest.  

 

Since the performance of DKI tractography has not been tested against other advanced 

diffusion techniques for in vivo human data, in the present study, we use DSI as a gold standard 

tractography technique to assess the accuracy of the DKI-based dODF as well as improvements 
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gained over conventional DTI. However, quantifying the error in DKI and DTI is complicated as 

all measurement techniques, including DSI, contain intrinsic, random variability. Therefore, in 

assessing error in the DKI and DTI orientation estimates, it is crucial to assess the random 

variability that can be expected between independent, repeated measures. Thus, the angular 

variability and angular error measures used in this study differ in that angular variability 

quantifies intrinsic, random variation in each measurement technique, whereas angular error 

consists of both random variation from independent measures and systematic sources of error 

incurred by assuming either the DKI or DTI dODF approximations. Since little is known a priori 

about the probability distributions that govern the angular variations, we use the heuristic 

definition of systematic error as the difference between the angular error measured relative to DSI 

and the angular variability measured between repeated acquisitions for each reconstruction. 

Minimizing systematic error is paramount for tractography as error accumulates along the length 

of each tract and large sources of error can potentially result in systematically misleading 

information.  

 

In order to acquire high quality, whole-brain DSI and DKI datasets for evaluation, the total 

scan time employed in this study was long relative to typical clinical protocols. Since a goal of 

this study was to evaluate the dODF accuracy, we optimized our protocol for high SNR rather 

than a short acquisition time. As a result, the acquisition times reported here do not reflect those 

optimized for clinical scanning, as there are additional strategies to increase acquisition 

efficiency. For example, there have been a number of successful efforts to decrease the q-space 

sampling burden of DSI, including decreasing the q-space sampling density by sampling fewer 

points (70,110), sampling only one-half of q-space by assuming symmetry of the q-space data 

(111,112), or sampling only a quarter of q-space using compressed sensing (113). The echo train 
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time (and repetition time) can also be reduced with faster gradients or multi-slice EPI (114-118). 

In addition, stronger diffusion encoding gradients can be used to reduce the echo time (and 

repetition time) to improve the SNR while reducing acquisition time (118). Although DSI may 

show the largest improvement in acquisition time, these considerations are generally applicable to 

DKI as well. Moreover, there may be a trade-off in the error and variability of angular orientation 

estimates if SNR is compromised, as may occur with accelerated acquisition schemes (117), or if 

sparse q-space sampling schemes are employed (111). Nevertheless, DKI may be assumed to 

have generally shorter acquisition times than DSI due to the assumption that DKI estimates only 

the second and fourth cumulants of the dPDF, which requires less information than determining 

the full dPDF (119).  

 

In general, DKI decreases the angular error compared to DTI and the angular variability 

estimates are comparable for all three reconstructions in all ROIs, differing by at most 2.1 degrees 

in the single fiber ROI. However, DKI tends to have increased angular variability compared to 

both DTI and DSI in all ROIs except for the ROI with three or more crossing fiber bundles. 

Although the precise origin of this is unclear, DKI’s increased angular variability could result 

from a trade-off between estimation error from incomplete q-space sampling distributions and 

subject motion, which accumulates over the duration of the scan. DTI, for example, requires the 

shortest acquisition time, which may result in the lowest contributions of subject motion to 

angular variability. DSI, on the other hand, uses a large number of diffusion encoding vectors to 

characterize diffusion dynamics, which could have lower angular variability from the dODF 

reconstruction but an increased likelihood for subject motion. DKI is also known to be sensitive 

to reconstruction artifacts resulting from Gibbs ringing (120,121) and noise bias (122), although 

this is also expected to affect DSI. 
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 There are a variety of additional techniques which can be used to resolve the orientations of 

crossing fiber bundles for tractography. For example, fiber bundle orientations can be estimated 

from directional diffusional kurtosis estimates provided by DKI without estimating the dODF 

directly (71) or the white matter fiber bundles may be modeled mathematically and used to 

estimate a model-dependent, fiber orientation distribution function, for example using fiber ball 

imaging (64) or constrained spherical deconvolution (83,84). Since neither of these techniques is 

directly analogous to the dODF, they were not included in the present study. However, the 

diffusional kurtosis approach has been show to increase fiber detection through the corpus 

callosum (71), and constrained spherical deconvolution has been shown to be highly sensitive for 

detecting crossing fibers (77), as well as for increasing detection of crossing fibers at low b-value 

(85). 

 

A potential limitation of this study design is that by optimizing the SNR of each sequence for 

the respective reconstructions we have not fully addressed the issue of acquisition times, which is 

one of the key obstacles for clinical scanning. Indeed, doubling the acquisition time to acquire 

DKI may be prohibitive in some clinical settings. A useful follow-up study would be to 

quantitatively investigate the differences in the orientation estimates using protocols with similar 

acquisition times that are suitable for clinical scanning. By focusing on shorter acquisitions, 

additional reconstructions could also be included to test model-based fODF measures such as 

CSD or fiber ball imaging. However, it is important to emphasize that DTI, DKI, and DSI share a 

common feature in that they are theoretically based on physical properties of water diffusion. In 

contrast, model-based approaches make explicit assumptions about the relationship between 

white matter and the dMRI signal in order to characterize more specific features of tissue 

R1,C4
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microstructure. Although mathematical modeling can increase the resolving power for detecting 

multiple fiber bundle orientations, definitive validation of modeling assumptions has not yet been 

achieved in healthy or diseased brains.  

 

To summarize, in this study we acquired a unique dataset with 6 full DSI and DKI 

acquisitions with a total of 515 and 128 diffusion weighted images, respectively, from 3 healthy 

volunteers in order to quantify dODF performance measures from DSI, DKI, and DTI for in vivo 

human data. In general, DKI decreases the error of dODF orientation estimates relative to DTI. 

Moreover, DKI enables the detection of crossing fibers, which has pronounced improvements 

relative to DTI for tractography throughout regions with complex fiber bundle geometries. With 

improved tractography results relative to DTI and shorter typical scan times than DSI, DKI-based 

tractography is potentially more applicable to a variety of clinical applications. However, future 

studies will be needed to more fully investigate the potential utility of DKI-based tractography.  

Conclusion 

The higher order information provided by the kurtosis tensor enables DKI to directly resolve 

crossing fibers and improves the accuracy of DKI relative to DTI for tractography. Both DKI and 

DTI are capable of mapping the single predominant fiber bundle orientation, but the angular error 

of DTI deteriorates in regions with complex fiber orientations due to its theoretical limitation 

under the assumption of Gaussian diffusion. DSI, DKI, and DTI all have comparable angular 

variability; however, DKI has decreased angular error in the dODF approximation relative to 

DTI. With a shorter typical scan time than DSI, DKI is potentially more suitable for a variety of 

clinical applications. 
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Surgical Outcomes Prediction in Epilepsy 

________________ 

pilepsy is a serious neurological disorder which can be difficult to manage clinically. In this 

chapter, we will explore the potential of combining quantitative, tensor-derived parameters 

with along-the-tract white matter tissue characterization for surgical outcomes prediction in 

patients with refractory temporal lobe epilepsy. This chapter is based on the following peer-

reviewed publication:  

 

1. Keller SS
§
, Glenn GR

§
, Weber B, Kreilkamp B, Jensen JH, Helpern JA, Wagner J, Barker 

GJ, Richardson MP, Bonilha L. Preoperative automated fiber quantification predicts 

postoperative seizure outcome in temporal lobe epilepsy. Brain. [Under Review].  

 

§ Shared first authorship 

Abstract 

Approximately one in every two patients with pharmacoresistant temporal lobe epilepsy (TLE) 

will not be rendered completely seizure free after temporal lobe surgery. The reasons for this are 

unknown and are likely to be multifactorial. Quantitative volumetric Magnetic Resonance 

E
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Imaging (MRI) techniques have provided limited insight into the causes of persistent 

postoperative seizures in patients with TLE. The relationship between postoperative outcome and 

preoperative pathology of white matter tracts, which constitute crucial components of 

epileptogenic networks, is unknown. In the present study, we investigated regional tissue 

characteristics of preoperative temporal lobe white matter tracts known to be important in the 

generation and propagation of temporal lobe seizures in TLE, using diffusion tensor imaging 

(DTI) and Automated Fiber Quantification (AFQ). We studied 43 patients with mesial TLE 

associated with hippocampal sclerosis and 44 healthy controls. Patients underwent preoperative 

DTI, amygdalohippocampectomy and postoperative assessment using the International League 

Against Epilepsy (ILAE) seizure outcome scale. From preoperative DTI, the fimbria-fornix (FF), 

parahippocampal white matter bundle (PWMB) and uncinate fasciculus (UF) were reconstructed 

using AFQ, and scalar diffusion metrics were calculated along the length of each tract. 51.2% of 

patients were rendered completely seizure free (ILAE 1) and 48.8% continued to experience 

postoperative seizure symptoms (ILAE 2-5). Relative to controls, both patient groups exhibited 

strong and significant diffusion abnormalities along the length of the UF bilaterally, the ipsilateral 

PWMB, and the ipsilateral FF in regions located adjacent to the anterior and midportion of the 

medial temporal lobe. However, only patients with persistent postoperative seizures showed 

evidence of significant pathology of tract sections located in the ipsilateral dorsal fornix and in 

the contralateral PWMB. Using receiver operating characteristic (ROC) curves, diffusion 

characteristics of these regions could classify individual patients according to outcome with 84% 

sensitivity and 89% specificity. Pathological changes in the dorsal fornix were beyond the 

margins of resection, and contralateral PWMB changes may suggest a bi-temporal disorder in 

some patients. Furthermore, diffusion characteristics of the ipsilateral UF could classify patients 

from controls with a sensitivity of 98%; importantly, by co-registering the preoperative AFQ 
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maps to postoperative lacuna maps, we observed that the extent of UF resection was significantly 

greater in patients who were rendered seizure free, suggesting that a smaller resection of the UF 

may represent insufficient disconnection of an anterior temporal epileptogenic network. These 

results hold promise as imaging prognostic markers of postoperative outcome and may provide 

mechanistic explanations for why some patients with TLE continue to experience postoperative 

seizures. 

Introduction 

Epilepsy is the most common serious neurological disorder, affecting over 50 million people 

worldwide (123,124). Approximately 30% of all patients with a diagnosis of epilepsy will 

develop chronic pharmacoresistant epilepsy (125). Temporal lobe epilepsy (TLE) is the most 

common pharmacoresistant focal epilepsy disorder (126,127) and is potentially remediable by 

neurosurgical intervention.  

 

In the only randomized controlled trial of surgery for refractory TLE, it was reported that 

surgical intervention is significantly superior for the attainment of seizure freedom one year after 

surgery compared to continuing pharmacological treatment (128); at one year, 58% of patients 

receiving surgery were free from seizures impairing awareness and 38% were free from any 

seizure related symptom, whereas only 8% were seizure-free in the non-surgical control group. 

There are contrasting reports regarding the proportion of patients attaining seizure freedom after 

temporal lobe surgery for refractory seizures, which may range from 35-80% (128-133). The 

most significant contributions to this variance are likely to be time to postoperative follow up 

(longer follow up is associated with lower seizure-free rate) and definition of seizure freedom 

(complete seizure freedom is associated with lower seizure-free rate relative to freedom from 
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disabling seizures only). The reasons underlying persistent postoperative seizures in patients who 

are seemingly excellent candidates for temporal lobe surgery are unknown. Although patients 

with TLE and neuroradiological evidence of hippocampal sclerosis (HS) have improved 

postsurgical outcomes relative to patients with TLE and no MRI lesion (130,131), between two-

thirds and one-half of patients with HS will continue to experience postoperative seizures 

(131,134). Current suggestions for why these persistent postoperative seizures occur include a 

combination of insufficient resection of mesial temporal lobe tissue (135,136), mesial temporal 

lobe pathology existing outside the margins of resection (137-140), contralateral temporal lobe 

seizure involvement (137,141,142), occult extra-temporal lobe involvement, including temporal-

plus epilepsy (143-146), thalamo-mesial temporal network alterations (147,148), and atypical 

subtypes of TLE that may be particularly resistant to conventional temporal lobe surgery (149-

151). The development of predictive biomarkers for the future success of surgical intervention in 

epilepsy represents an important research endeavour, particularly as a reliable prognostic marker 

could inform patient clinical management and surgical decision-making. 

 

As non-invasive imaging techniques improve, there is increasing interest in modelling brain 

connectivity. This endeavour is providing new insights into the structural and functional 

organisation of the human brain, as well as into how alterations in connectivity underlie 

neurological disorders. Understanding brain connectivity in epilepsy is particularly important 

given that even focal seizures may be generated in context of distributed epileptogenic brain 

networks (152,153). Diffusion tensor imaging (DTI) techniques permit the reconstruction of 

white matter tract bundles, which form the connections between cortical regions within structural 

networks. There has been increasing application of tractography techniques to study DTI scalar 

metric alterations for reconstructed white matter tracts in patients with TLE, with a particular 
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focus on tracts within and connecting to the temporal lobe (154). However, there is a paucity of 

data on the relationship between preoperative DTI tractography and postoperative seizure 

outcome after temporal lobe resection. This may be partly due to the fact that sophisticated DTI 

acquisitions are not incorporated into routine preoperative evaluation in a clinical setting. 

However, the application of graph theoretical methods to determine alterations in structural 

network topology is growing in TLE (152), and there have been recent attempts to correlate 

preoperative structural connectomes with postoperative seizure outcome in small groups of 

patients with TLE (155-157). Despite the interest in developing potential prognostic markers of 

outcome using preoperative connectomes, the underlying biological significance and anatomical 

specificity of such data are difficult to interpret. 

 

Automated fiber quantification (AFQ) is a DTI tractography technique that permits a 

comprehensive analysis of tissue characteristics along the length of white matter tract bundles 

(158). This approach offers a potentially more sensitive measure of neuroanatomical white 

matter alterations in patients with neurological disorders than whole-tract approaches, as it 

considers regional intra-tract tissue characteristics. Tissue characteristics may vary considerably 

along a tract (159), which conventional DTI analyses of whole tract mean diffusion measures are 

unable to consider. Furthermore, it is likely that at least some pathological alterations in TLE 

occur in circumscribed regions of tracts and not along entire tracts. Such anatomical specificity 

could potentially improve the detection of anatomical prognostic markers of treatment outcome 

in patients with TLE.  

 

In the present study, we applied AFQ to preoperative DTI in patients with TLE who 

underwent surgical treatment and postoperative follow-up, with a primary goal of identifying 
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preoperative diffusion markers of postoperative seizure outcome. We focused on three temporal 

lobe tract bundles that are known to be important in the generation and propagation of temporal 

lobe seizures and susceptible to pathological alterations in refractory TLE: the fimbria-fornix 

(FF) (160-162), parahippocampal white matter bundle (PWMB) (163-166) and uncinate 

fasciculus (UF) (165,167,168). A secondary goal of the present study was to determine whether 

extent of resection of the temporal lobe tract bundles was associated with seizure outcome. 

Whilst there are several studies that have addressed whether the general extent of resection is 

associated with outcome based on analysis of conventional (e.g. T1-weighted) MRI scans 

(135,148,169-173), there has to date been no assessment of the relationship between seizure 

outcome and extent of white matter tract resection. 

Methods 

Participants 

We studied 43 patients with unilateral TLE with HS (27 left TLE, 16 right TLE; 23 females, 20 

males; mean age 39.7 years, SD 12.6) and 44 neurologically healthy age- and sex-matched 

controls (28 females, 16 males; mean age 38.0 years, SD 14.0). Each patient had a 

comprehensive presurgical evaluation at University Hospital Bonn, Germany, that included 

clinical assessment of seizure semiology, interictal EEG, long-term video EEG monitoring, if 

clinically necessary additional invasive electrophysiological investigations, diagnostic MRI (T1-

weighted, T2-weighted and FLAIR scans), and neuropsychological assessment (174). HS was 

identified by an expert neuroradiologist with considerable experience of lesion diagnosis in 

epilepsy, and was defined by hippocampal volume loss and internal structure disruption on T1-

weighted scans, and/or hyperintensities on T2-weighted and FLAIR images. There was no 

evidence of bilateral HS in any patient, all patients had seizures of presumed unilateral temporal 
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lobe origin, and there was no evidence of a secondary extrahippocampal lesion that may have 

contributed to seizures. All patients underwent amygdalohippocampectomy (175), as well as 

routine diagnostic analysis of resected hippocampal specimens by an experienced 

neuropathologist. HS was histologically confirmed in all resected specimens (176). Postsurgical 

seizure outcome was assessed using the ILAE outcome classification system (177). All patients 

had a minimum of one year and an average of two year postoperative follow-up. 

Image Acquisition 

All study participants underwent MRI at the Life & Brain Center in Bonn on a 3 Tesla scanner 

(Magnetom Trio, Siemens, Erlangen, Germany). An eight-channel head coil was used for signal 

reception. T1-weighted MPRAGE images (160 slices, TR = 1300 ms, TI = 650 ms, TE = 3.97 

ms, voxel size 1.0 × 1.0 × 1.0 mm, flip angle 10°, acquisition time approx. 7 min) were acquired 

for all controls and all patients prior to surgery. Postoperative T1-weighted data were acquired 

for 33 patients. Diffusion-weighted data (diffusion-weighted single shot spin-echo EPI sequence, 

TR = 12 s, TE= 100 ms, 72 axial slices, voxel size 1.726 x 1.726 x 1.7 mm, no cardiac gating, 

GRAPPA acceleration factor 2) was acquired for all controls and patients preoperatively. 

Diffusion gradients were equally distributed along 60 directions (b-value = 1000 s/mm
2
). 

Additionally, six datasets with no diffusion weighting (b-value = 0 s/mm
2
) (b0 images) were 

acquired in an interleaved fashion, with one b0 dataset preceding each block of 10 diffusion-

weighted images.  

Image analysis 

Motion correction was performed on the diffusion-weighted data using SPM8 (Wellcome Trust 

Center for Neuroimaging, London, UK) using the initial b0 image for each subject as a reference, 
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with subsequent b0 images being co-registered with a 12-parameter affine transformation. The 

transformation for each b0 image was applied to the 10 subsequent diffusion-weighted images 

and the diffusion encoding vectors were corrected for all rotations of the image volume (66). 

After co-registration, an average b0 dataset was created, and the full DTI dataset was processed 

using the AFQ image analysis pipeline (https://github.com/jyeatman/AFQ).  

 

AFQ performed a series of automated steps, including additional motion correction for each 

of the individual diffusion-weighted images and estimation of the diffusion tensor. Brain masks 

were created within AFQ using FSL’s brain extraction tool (178) and tractography was performed 

within the brain mask using the Euler method with a step size of 1 mm, an angle threshold of 35 

degrees, and a minimum tract length of 20 mm (179). Following tractography AFQ performed a 

non-linear normalization of the average b0 dataset to the International Consortium for Brain 

Mapping (ICBM) template using SPM. This nonlinear transformation was then used to map 

standardized white matter regions of interest (ROIs) from the ICBM template to the diffusion 

images, where AFQ automatically segmented the tractography data into fiber bundles of interest. 

Once fiber bundles were segmented, AFQ identified the core region of each bundle and 

calculated along-the-tract diffusion profiles along a fixed number of sections, which were 

analysed for individual and group-wise comparisons.  

 

Fiber bundles were selected based on their hypothesized roles in TLE, and included the FF, 

PWMB, and UF. For segmentation of the FF, we implemented an in-house algorithm using 

AFQ’s routine. Each fiber bundle was interpolated along 100 sections and along-the-tract profiles 

were reconstructed for mean diffusivity (MD) and fractional anisotropy (FA) for both left- and 

right-sided pathways. For patients with TLE, tract profiles were separated into ipsilateral and 
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contralateral sides, and for controls, tract profiles for left- and right-side pathways were 

combined. Tract profiles were excluded in instances where AFQ could not reconstruct the white 

matter pathways (159).  

Statistical analysis of tract profiles 

We compared tract profiles between healthy controls, patients rendered completely seizure free 

(ILAE 1) and patients with persistent postoperative seizure-related symptoms (ILAE 2-6). For 

statistical analysis, individual tract profiles were averaged over five ROIs consisting of sets of 20 

consecutive sections. Comparisons were performed with a two sample t-test and multiple 

comparisons were corrected for using the false discovery rate (FDR) procedure (180). Effect size 

was quantified using Cohen’s d parameter. The ROIs used are illustrated in Figure 23 along with 

representative tract profiles from a single patient with TLE. To illustrate the anatomical location 

of the observed differences, a section-wise t-score plot was reconstructed.  

 

 

Figure 23. Anatomical location of fiber bundle ROIs used for statistical comparison. The inset for 

each fiber bundle illustrates representative tracts reconstructed for a single subject, with the solid 

black line indicating the AFQ-identified tract core used for calculation of the tract profiles. Tract 

cores for each subject are mapped to the ICBM template and averaged to indicate the group-wise 

representation of each fiber bundle. For statistical comparison, each fiber bundle is divided into 5 

ROIs by averaging every 20 consecutive tract sections. ROI numbers correspond to the ROIs 

used in Figure 24 and in Table 4. 
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Development of potential biomarker assays 

To test the potential clinical applicability of the preoperative diffusion-weighted data, receiver 

operating characteristic (ROC) curves for the along-the-tract profiles were calculated. For the 

ROC curves, ROIs were selected along each pathway based on observed differences in tissue 

characteristics, and individual tract profiles were averaged over each ROI. Sensitivity and 

specificity were assessed for group-wise separations between TLE and control groups as well as 

between patient outcome groups for incrementally decreasing values of the test parameter. The 

ROIs used to distinguish between patient outcome groups were also pooled to test the 

combination of multiple classifiers for outcome prediction.  

White Matter Bundle Resection Analysis 

33 of the 43 patients received postoperative structural imaging. Lacunar maps of the resected 

tissue volumes were traced on postoperative T1-weighted images as previously described (148), 

and postoperative images were normalized to the ICBM template using the Clinical Toolbox for 

SPM 181 (https://www.nitrc.org/projects/clinicaltbx/) with enantiomorphic normalization to 

account for loss of the resected tissue (182). Individual fiber bundles were then mapped to the 

ICBM template using the AFQ-identified non-linear deformation, and tract profiles were 

reconstructed using AFQ’s routine over the normalized, binary lacunar maps. Thus, tract profiles 

were created by calculating the proportion of the resected fiber bundle at a given section 

overlapping with the resected tissue. The total proportion of an individual fiber bundle resected 

was then calculated by averaging over all sections. Comparisons between fiber bundle resections 

patient outcome groups were then made with a two sample t-test, correcting for multiple 

comparisons using the FDR. Fiber bundle resection maps were created using a two-step 

procedure. First, individual bundle resection maps were created by intersecting the binary mask 
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of the reconstructed fiber bundles with the normalized lacunar maps of the resected tissue for 

each patient. Subsequently the individual bundle resection maps were averaged, taking into 

account ipsilateral and contralateral distinctions by flipping the ipsilateral side to the left 

hemisphere. For anatomical reference, fiber bundle distribution maps were calculated for the 

control group by averaging the binary masks of the left-sided fiber bundles. 

Results 

Outcome 

Of the 43 patients included in this study, 22 (51.2%) patients had an excellent postoperative 

seizure outcome (ILAE 1) and 21 (48.8%) had a suboptimal outcome (ILAE 2-5). No patient 

experienced worsening seizures after surgery (ILAE 6). A breakdown of clinical variables 

according to outcome groups is provided in Table 3. There were no significant differences 

between outcome groups with respect to patient age, age of onset of epilepsy, duration of 

epilepsy, seizure frequency, a history of childhood febrile seizures, or preoperative volumes of 

the hippocampus, or global grey and white matter. There were a greater proportion of males who 

were rendered seizure free relative to females (p=0.03).  

 

Table 3. Clinical information with respect to outcome 

 ILAE 1 ILAE 2+ sig 

n 22 (51.2%) 21 (48.8%) - 

outcomes 1 = 22 2 = 5 

3 = 7 

4 = 8 

5 = 1 

6 = 0 

- 

left / right TLE 11/11 16/5 χ
2
=3.2, p=0.12 

female / male 8/14 15/6 χ
2
=5.3, p=0.03 

febrile seizures, 15/7 14/7 χ
2
=0.01, p=0.59 
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no/yes 

age 38.8 (11.3) 40.6 (13.9) F=0.22, p=0.64 

onset 16.05 (11.49) 15.6 (10.5) F=0.02, p=0.89 

duration 22.7 (13.9) 25.0 (15.8) F=0.25, p=0.62 

seizure frequency 8.8 (18.7) 4.2 (2.3) F=1.27, p=0.27 

ipsi hipp vol  3329 (1129.7) 3120.1 (499.0) F=0.96, p=0.41 

contra hipp vol  4289.3 (703.1) 4155.7(602.6) F=0.44, p=0.51 

grey matter volume 462203.7 (74066.2) 449096.8 

(80295.6) 

F=0.31, p=0.58 

white matter volume 474268.1 (72806.9) 476185.4 

(79811.0) 

F=0.01, p=0.94 

 

Note. Outcome, side of TLE, sex, and incidence of febrile seizures are number. Age, age of onset 

of epilepsy, preoperative duration of epilepsy, preoperative seizure frequency, and volumes are 

mean (and SD). Hippocampal, grey matter and white matter volumes were calculated using 

Freesurfer software (164). 

 

AFQ comparisons 

Ipsilateral and contralateral tract profiles for ILAE 1 and ILAE 2+ groups relative to controls are 

shown in Figure 24, including corresponding histograms for average tract profiles over each 

ROI. MD tract characteristics were generally more revealing than FA characteristics. MD tract 

profiles were significantly higher in both outcome groups relative to controls along the entire 

length of the ipsilateral PWMB (Figure 24, left middle) and the UF bilaterally (Figure 24, left 

bottom). MD was also significantly higher for both outcome groups in the ipsilateral FF in ROIs 

4 and 5. Conversely, only ILAE 2+ patients showed evidence of significantly increased MD 

within ipsilateral fornical ROIs 1-3 (Figure 24, top left). Controls and ILAE 1 patients had 

roughly equal MD characteristics within these ROIs. Fornical ROIs 4 and 5 were located in the 

mesial temporal lobe, ROIs 1 and 2 outside the temporal lobe, and ROI 3 in a transitional region 

between the two (Figure 23). Diffusion parameters of the contralateral FF were not altered in 

patient outcome groups relative to controls. There were additionally significant MD alterations 

only in ILAE 2+ patients located in contralateral PWMB ROIs 1-3 (Figure 24, middle left). To 
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illustrate the location of the observed MD differences, section-wise t-score plots are 

reconstructed in Figure 25. Areas in red represent significant regional increases in MD in the 

respective patient group relative to controls. Arrows indicate the areas exclusively altered only in 

patients with a suboptimal seizure outcome. 

 

No significant alterations in contralateral FA tract characteristics were observed in patient 

groups relative to controls. Both patient outcome groups had reduced FA of the ipsilateral UF 

through the length of the tract, but only significantly so in ROIs 4 and 5 (increasingly anterior 

temporal) for ILAE 2+ patients (Figure 24, bottom right). The increase in MD exclusively in 

ILAE 2+ patients in the ipsilateral dorsal FF and contralateral PWMB were mirrored by a non-

significant reduction in FA in the same regions (Figure 24, top right and middle right, 

respectively). Effect sizes for FA were generally smaller than the corresponding changes in MD. 

The results from Figure 24 are tabulated in Table 4.  
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Figure 24. MD and FA tract profiles for mean (± SEM) for ipsilateral and contralateral tracts in 

the ILAE 1 and ILAE 2+ groups relative to controls. The histograms indicate the average tract 
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profile over a given ROI. In all cases, increasing tract section corresponds to increasing ROI 

number and the ROIs correspond to those given in Figure 23. The asterisk (*) indicates p-value < 

0.05 compared to controls after correcting for multiple comparisons with FDR.  Arrows highlight 

statistically significantly different regions in the MD tract profiles.   

 

Figure 25. Section-wise t-scores for MD tract profiles. Differences between patient groups and 

controls are shown projected onto an anatomical template to illustrate the localisation of 

alterations in Figure 24. Red areas represent significantly increased MD in respective patient 

groups relative to controls. Arrows indicate regions significantly different only in patients with a 

suboptimal outcome. 
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Table 4. Summary Statistics for Tract Profiles 

Fornix  

  Param ROI Control ILAE-1 ILAE-2+ 

ILAE-1 vs 

Control 

ILAE-2+ vs 

Control 

  d p d p 

Ip
si

la
te

ra
l 

M
D

  

(µ
m

2
 /

 m
s)

 

1 1.16 (0.30) 1.22 (0.27) 1.43 (0.31) 0.19 0.601 0.89 0.003 

2 1.39 (0.34) 1.46 (0.29) 1.67 (0.37) 0.22 0.537 0.83 0.005 

3 1.07 (0.25) 1.19 (0.19) 1.32 (0.28) 0.49 0.114 0.97 0.001 

4 1.05 (0.15) 1.22 (0.19) 1.34 (0.26) 1.00 0.001 1.58 <0.001 

5 1.14 (0.22) 1.43 (0.18) 1.37 (0.29) 1.37 <0.001 0.98 0.001 

F
A

 

1 0.22 (0.05) 0.22 (0.04) 0.19 (0.06) -0.06 0.893 -0.57 0.065 

2 0.16 (0.04) 0.16 (0.04) 0.15 (0.05) 0.02 0.955 -0.34 0.303 

3 0.28 (0.08) 0.28 (0.06) 0.26 (0.09) -0.04 0.916 -0.19 0.601 

4 0.26 (0.06) 0.26 (0.07) 0.24 (0.08) 0.05 0.906 -0.32 0.332 

5 0.20 (0.05) 0.17 (0.03) 0.18 (0.06) -0.74 0.013 -0.36 0.285 

        

C
o

n
tr

a
la

te
ra

l 
 

M
D

  

(µ
m

2
 /

 m
s)

 

1 1.16 (0.30) 1.15 (0.34) 1.20 (0.38) -0.05 0.906 0.11 0.800 

2 1.39 (0.34) 1.42 (0.44) 1.41 (0.35) 0.11 0.800 0.07 0.886 

3 1.07 (0.25) 1.16 (0.26) 1.14 (0.35) 0.34 0.299 0.25 0.462 

4 1.05 (0.15) 1.06 (0.16) 1.15 (0.28) 0.07 0.891 0.53 0.087 

5 1.14 (0.22) 1.22 (0.22) 1.26 (0.28) 0.39 0.239 0.54 0.082 

F
A

 

1 0.22 (0.05) 0.23 (0.05) 0.22 (0.06) 0.28 0.400 0.06 0.891 

2 0.16 (0.04) 0.16 (0.04) 0.16 (0.05) 0.02 0.955 -0.02 0.955 

3 0.28 (0.08) 0.27 (0.07) 0.29 (0.09) -0.06 0.891 0.14 0.730 

4 0.26 (0.06) 0.27 (0.05) 0.28 (0.08) 0.25 0.455 0.30 0.364 

5 0.20 (0.05) 0.21 (0.04) 0.20 (0.05) 0.12 0.780 0.02 0.955 

 

Parahippocampal White Matter Bundle 

  Param ROI Control ILAE-1 ILAE-2+ 

ILAE-1 vs 

Control 

ILAE-2+ vs 

Control 

  d p d p 

Ip
si

la
te

ra
l 

M
D

  

(µ
m

2
 /

 m
s)

 

1 0.98 (0.13) 1.14 (0.21) 1.19 (0.26) 1.02 <0.001 1.25 <0.001 

2 0.94 (0.10) 1.14 (0.22) 1.18 (0.25) 1.53 <0.001 1.66 <0.001 

3 0.99 (0.16) 1.19 (0.29) 1.19 (0.23) 1.04 <0.001 1.15 <0.001 

4 1.02 (0.20) 1.24 (0.36) 1.22 (0.23) 0.92 0.001 0.96 0.001 

5 1.07 (0.23) 1.40 (0.40) 1.30 (0.29) 1.20 <0.001 0.92 0.001 

F
A

 

1 0.22 (0.06) 0.19 (0.05) 0.21 (0.07) -0.56 0.046 -0.26 0.414 
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2 0.26 (0.06) 0.21 (0.06) 0.23 (0.06) -0.89 0.001 -0.49 0.089 

3 0.23 (0.05) 0.20 (0.06) 0.20 (0.05) -0.52 0.069 -0.40 0.193 

4 0.19 (0.05) 0.17 (0.05) 0.17 (0.05) -0.40 0.183 -0.32 0.299 

5 0.15 (0.04) 0.12 (0.04) 0.14 (0.05) -0.68 0.014 -0.23 0.459 

        

C
o

n
tr

a
la

te
ra

l 
 

M
D

  

(µ
m

2
 /

 m
s)

 

1 0.98 (0.13) 0.99 (0.13) 1.08 (0.19) 0.01 0.955 0.66 0.019 

2 0.94 (0.10) 0.95 (0.12) 1.08 (0.19) 0.08 0.854 1.15 <0.001 

3 0.99 (0.16) 0.92 (0.13) 1.11 (0.23) -0.43 0.137 0.72 0.010 

4 1.02 (0.20) 0.93 (0.15) 1.07 (0.24) -0.46 0.114 0.24 0.455 

5 1.07 (0.23) 1.01 (0.19) 1.13 (0.29) -0.31 0.310 0.25 0.444 

F
A

 

1 0.22 (0.06) 0.22 (0.05) 0.21 (0.07) -0.13 0.735 -0.16 0.646 

2 0.26 (0.06) 0.26 (0.06) 0.23 (0.07) -0.03 0.953 -0.55 0.057 

3 0.23 (0.05) 0.25 (0.06) 0.21 (0.06) 0.38 0.205 -0.32 0.299 

4 0.19 (0.05) 0.21 (0.05) 0.20 (0.06) 0.48 0.090 0.30 0.319 

5 0.15 (0.04) 0.16 (0.04) 0.16 (0.05) 0.10 0.800 0.09 0.826 

 

Uncinate Fasiculus  

  Param ROI Control ILAE-1 ILAE-2+ 

ILAE-1 vs 

Control 

ILAE-2+ vs 

Control 

  d p D p 

Ip
si

la
te

ra
l 

M
D

  

(µ
m

2
 /

 m
s)

 

1 0.76 (0.07) 0.86 (0.05) 0.86 (0.07) 1.51 <0.001 1.53 <0.001 

2 0.73 (0.06) 0.85 (0.09) 0.81 (0.05) 1.82 <0.001 1.47 <0.001 

3 0.76 (0.05) 0.90 (0.11) 0.88 (0.08) 2.08 <0.001 2.05 <0.001 

4 0.76 (0.07) 0.95 (0.12) 0.93 (0.07) 2.27 <0.001 2.50 <0.001 

5 0.77 (0.08) 0.97 (0.11) 0.96 (0.07) <0.001 2.41 <0.001 

F
A

 

1 0.39 (0.06) 0.35 (0.06) 0.35 (0.05) -0.66 0.016 -0.71 0.011 

2 0.42 (0.05) 0.36 (0.07) 0.39 (0.05) -1.12 <0.001 -0.59 0.038 

3 0.33 (0.04) 0.30 (0.05) 0.31 (0.04) -0.90 0.001 -0.73 0.009 

4 0.29 (0.05) 0.26 (0.05) 0.25 (0.04) -0.53 0.064 -0.79 0.005 

5 0.26 (0.04) 0.25 (0.04) 0.23 (0.04) -0.32 0.299 -0.78 0.005 

        

C
o

n
tr

a
la

te
ra

l 
 

M
D

  

(µ
m

2
 /

 m
s)

 

1 0.76 (0.07) 0.84 (0.06) 0.82 (0.05) 1.24 <0.001 0.96 0.001 

2 0.73 (0.06) 0.81 (0.07) 0.80 (0.05) 1.40 <0.001 1.34 <0.001 

3 0.76 (0.05) 0.85 (0.05) 0.85 (0.04) 1.85 <0.001 1.72 <0.001 

4 0.76 (0.07) 0.86 (0.05) 0.87 (0.07) 1.52 <0.001 1.62 <0.001 

5 0.77 (0.08) 0.87 (0.05) 0.90 (0.09) 1.31 <0.001 1.57 <0.001 
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F
A

 

1 0.39 (0.06) 0.37 (0.08) 0.38 (0.04) -0.34 0.275 -0.15 0.668 

2 0.42 (0.05) 0.40 (0.06) 0.39 (0.05) -0.37 0.239 -0.56 0.059 

3 0.33 (0.04) 0.33 (0.04) 0.33 (0.04) -0.09 0.815 -0.05 0.901 

4 0.29 (0.05) 0.27 (0.04) 0.28 (0.05) -0.33 0.290 -0.16 0.648 

5 0.26 (0.04) 0.25 (0.05) 0.25 (0.05) -0.33 0.293 -0.23 0.479 

Note. ROIs correspond to those in Figure , values are mean (and SD), d is Cohen’s-d parameter, 

and p is p-value. P-values are corrected for multiple comparisons with FDR and bold font 

indicates corrected p-values less than 0.05.  

 

ROC curves and outcome prediction 

ROC curves for selected ROIs are shown in Figure 26. The ipsilateral and contralateral UF 

(Figure 26 A,E) demonstrated excellent separation between patient and control groups with area 

under the curve (AUC) values of 0.97 and 0.90, respectively. The ipsilateral FF and PWMB 

(Figure 26 B,F) demonstrated acceptable separation between patient and control groups with 

AUC values of 0.84 and 0.82, respectively. The contralateral PWMB also demonstrated 

acceptable separation between patient outcome groups with an AUC value of 0.81 (Figure 26 G), 

and the ipsilateral FF demonstrated fair separation between outcome groups with an AUC value 

of 0.71 (Figure 26 C). Sensitivity and specificity were both increased when combining MD data 

from the ipsilateral FF and contralateral PWMB for the separation of outcome groups (Figure 

27).  
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Figure 26. ROC curves. In all cases, blue indicates separation between patient and control groups 

and red indicates separation between patient outcome groups. AUC is used to assess quality of the 

ROC curves and the dashed line gives example sensitivity and 1-specificity calculations. The MD 

value indicates the corresponding MD threshold in units of (µm
2
/ms). The inset for each curve 

indicates the location of the ROI used to calculate the ROC curve, which was selected based on 

observed group differences in MD. 

 



   

   117

 

Figure 27. Combining ipsilateral dorsal fornix and contralateral PWMB MD values increases the 

sensitivity and specificity for separating patient outcome groups. (A) MD values in the ipsilateral 

dorsal fornix and contralateral PWMB are plotted on the x- and y-axes, respectively, for all 

patients in the ILAE 1 group (blue) and ILAE 2 group (red) using the ROIs indicated for the 

respective tracts in Figure 4C/G. A combined test was used to separate groups for patients with 

MD > 1.12 µm
2
/ms in the ipsilateral fornix and MD > 0.93 µm

2
/ms in the contralateral PWMB, 

indicated by the grey dashed lines with positive test values occurring in the upper right-hand 

quadrant (black arrow). (B) Sensitivity, specificity, positive predictive value (PPV), and negative 

predictive value (NPV) indicate reasonable test performance, illustrating the potential clinical 

applicability for surgical outcome prediction. 

 

Extent of tract resection 

Of the 33 patients with postoperative structural imaging, 17 (51.5%) patients were rendered 

seizure free (ILAE 1) while 16 (48.5%) patients experienced persistent postoperative symptoms. 

Resection maps are shown in Figure 28. Exemplary tractography and resection data are given in 

Figure 6A, which illustrates the intersections between fiber bundles and resected tissue volume. 

Section-wise resection maps for the ILAE 1 and ILAE 2+ groups are given in Figure 28 C-D, 

respectively. These maps indicate a high probability of anterior FF and PWMB resection, and low 
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probability of posterior FF and PWMB resection, across all patients. However, outcome group 

ILAE 1 had high probability of UF resection, whereas group ILAE 2+ had a lower probability of 

UF resection. Representative transverse and coronal image slices of the left sided fiber bundle 

distributions for the control group are given in Figure 28 E, demonstrating the anatomical 

location of the reconstructed fiber bundles. In Figure 28 F-G, voxel-wise resection maps for the 

reconstructed fiber bundles are indicated for ILAE 1 and ILAE 2+ groups. The location of the 

image slices are indicated by the black bars in Figure 28 B.  

 

For quantitative analysis, the ILAE 1 group had non-significant increases in the extent of 

resected FF and PWMB relative to the ILAE 2+ group (FF: 20.8 ± 12.6%, 18.3 ± 8.9%; p=0.54; 

PWMB: 44.8 ± 27.2%, 33.2 ± 16.8%; p=0.23). However, there was a significantly increased 

proportion of UF resection in the ILAE 1 group relative to the ILAE 2+ group (41.7 ± 20.9%, 

19.7 ± 23.1%; p=0.02). For individual UF resections, 1 of 17 patients in the ILAE 1 group had 

proportions of UF resection less than 0.15 and 9 of 16 patients in the ILAE 2 group had 

proportions of UF resection less than 0.15 giving sensitivity and specificity of 56% and 94%, 

respectively, for identifying the ILAE 2 group based on proportion of UF resection.  
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Figure 28. Fiber bundle resection analysis. (A) Representative tractography data and resection 

volume overlaid on an individual patient’s T1-weighted image illustrate the fiber bundles of 

interest overlapping with the resected tissue volume in circumscribed regions along each tract. 

(C-D) Section-wise representation of the extent of resected fiber bundles for the ILAE 1 and 

ILAE 2+ groups, respectively, indicate the region of these tracts typically resected. (E) 

Representative slices for the fiber bundle distributions of the reconstructed tracts in the control 

group illustrate the anatomical location of the fiber bundles of interest. (F-G) Fiber bundle 

resection maps for the ILAE 1 and ILAE 2+ groups, respectively illustrate the proportion of the 

fiber bundles resected. The location of the representative transverse and coronal slices are given 

by the black bars in (B). 

 

Discussion 

The primary objective of the present study was to determine preoperative imaging correlates of 

postoperative seizure outcome in patients with refractory TLE using a novel DTI technique 

sensitive to the regional tissue characteristics of temporal lobe white matter tract bundles. We 

report that whilst all patients with TLE show evidence of diffusion abnormalities of the FF, 

PWMB and UF, only patients with persistent postoperative seizures have circumscribed 

alterations in two principal regions that are not observed in patients with an excellent 

postoperative outcome: the dorsal segment of the ipsilateral FF and the contralateral PWMB. 
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Furthermore, we observe that whilst MD of the UF was considerably affected in both patient 

outcome groups – and could be used to reliably classify patients from controls using ROC curves 

– the extent of resection of this tract bundle was also significantly related to postoperative 

outcome. We separate discussion of these findings according to the three tract bundles 

investigated, before highlighting pertinent methodological issues.  

Fimbria-Fornix 

DTI studies of patients with TLE frequently reveal diffusion abnormalities of the FF, particularly 

in patients with HS (160-162). In a novel imaging-histological correlational study, it was 

reported that preoperative diffusion abnormalities of the FF is significantly related to increased 

extra-axonal fraction, and reduced cumulative axonal membrane circumference and myelin area 

of the surgically resected tissue (160), thus indicating that in-vivo diffusion alterations in TLE 

have a histopathological basis. Myelin pathology has also been implicated in FF DTI alterations 

in animal models of TLE (183). In animal studies, excision of the FF causing denervation of the 

hippocampus from subcortical (principally thalamic) targets results in hippocampal seizure 

activity (184), a concomitant loss of hippocampal neurons (185) and increased hippocampal N-

methyl-D-aspartate receptor density (186), which may reflect a pathological regenerative process 

that supports the development of limbic epileptogenicity. There is consequently an accumulation 

of human and animal data providing support for the hypothesis that the FF has an important role 

in temporal lobe seizures. 

 

Our data indicate that the FF is equally pathological in mesial temporal lobe regions 

typically resected in patients who later experience postoperative seizure freedom and those with 

persistent postoperative seizures. However, only patients who continue to experience persistent 
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postoperative seizures show clear circumscribed diffusion abnormalities in fornical regions 

outside the margins of resection, principally in dorsal regions proximal to the thalamus. This is 

consistent with previous work that indicated that patients with TLE and persistent postoperative 

seizures had posterior mesial temporal lobe atrophy outside the margins of resection compared to 

patients who were rendered seizure free (137). Furthermore, it was recently reported that a 

suboptimal postoperative seizure outcome was related to altered tissue diffusion characteristics 

of probabilistic hippocampothalamic pathways, which included the posterior fornical route 

(148). Probabilistic seed-target tractography, like the approach employed by Keller et al. (148), 

does not offer the anatomical specificity that AFQ can provide. The present study has refined the 

nature of hippocampothalamic pathology in patients with suboptimal postoperative outcomes. 

The FF is the principal connector between the posterior mesial temporal lobe and thalamus (187) 

and mediates resting-state functional connectivity between the hippocampus and thalamus (188). 

Fornical abnormalities may therefore in part explain previously reported relationships between 

thalamotemporal alterations and persistent postoperative seizures in refractory TLE (147,148). 

Parahippocampal bundle 

The parahippocampal gyrus, particularly the anterior entorhinal and perirhinal regions, play an 

important role in the generation and propagation of temporal lobe seizures (189-192). 

Parahippocampal diffusion alterations have been reported in patients with TLE using DTI 

techniques (163-166). In the present study, we report that tissue characteristics of the ipsilateral 

PMWB are similarly affected in patients with excellent and suboptimal postoperative outcomes, 

but diffusion alterations of a circumscribed region of the contralateral PMWB was only 

identified in patients with persistent seizures. This suggests the possibility of a bi-temporal 

seizure disorder in some patients with persistent postoperative seizures. Other imaging studies 
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have suggested contralateral mesial temporal alterations in patients with persistent postoperative 

seizures (137,141,147,148), although parahippocampal involvement was not specified. Detailed 

electrophysiological investigations of postoperative seizures in patients with TLE and HS 

suggested that 25% of patients have seizure onset in the contralateral temporal lobe (142). When 

contralateral PWMB and ipsilateral dorsal fornical MD measures were combined, we were able 

to classify postoperative outcome groups with an 84% sensitivity and 89% specificity. A 

bihemispheric mesial temporal-subcortical epileptogenic network may therefore have 

significance for persistent postoperative seizures in patients with TLE.  

Uncinate fasciculus 

We did not find any preoperative UF differences between outcome groups; the ipsilateral and 

contralateral UF were affected equally across groups, and throughout the length of the uncinate. 

A previous study has reported MD alterations throughout the entire length of the uncinate in 

patients with TLE (193). Several studies report diffusion alterations of the UF in patients with 

TLE (165,167,168). The UF plays an important role in seizure propagation from the temporal 

lobe to the frontal lobe in patients with TLE as evidenced in electrophysiological studies 

(194,195), and reflected in studies showing interictal hypometabolism in insular-frontal-

opercular regions (196-198). We did, however, identify that patients who were rendered seizure 

free had significantly larger resections of the UF relative to those rendered seizure free. This is a 

new finding that is compatible with the idea of improved disconnection of anterior epileptogenic 

networks in patients with TLE and an excellent outcome. It has been suggested that anterior 

temporal lobe regions are epileptogenic in patients with mesial TLE, and resection of the anterior 

temporal lobe is associated with an improved outcome (199). However, whether anterior 
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temporal lobectomy provides consistently improved postoperative seizure outcomes relative to 

amygdalohippocampectomy is a contentious issue. A review of the literature has indicated that 

the extent of resection does not necessarily lead to improved postoperative seizure outcome, that 

patients with significant hippocampal and amygdalaoid remnants may experience excellent 

postoperative seizure outcomes, and that amygdalohippocampectomy and anterior temporal 

lobectomy do not differ in rates of seizure freedom (200). In the present study, we have provided 

important new information indicating that what the resection encompasses is more important 

than the overall extent of resection, with resection of the UF in particular being an important 

factor. 

Methodological issues 

There are three methodological issues that warrant discussion. Firstly, although our sample is 

one of the largest to date that has investigated the relationship between preoperative DTI and 

postoperative seizure outcome (148,155-157,201), it is small in context of epidemiological 

studies of outcome, and therefore caution should be exercised when interpreting the relationship 

between clinical data and outcomes. We do report a significant effect of sex on outcome, with 

males being more likely to attain complete seizure freedom compared to females, which is 

consistent with other larger epidemiological studies (202,203). A restricted sample size also 

affects the generalizability of our results with respect to whether presurgical diffusion 

abnormalities are sufficient to predict outcome or whether outcomes would be improved by 

adjusting the surgical margins to include a significant proportion of the UF. However, we have 

demonstrated the sensitivity of AFQ for detecting individual diffusion abnormalities and the 

potential relevance of these specific structural alterations, which may represent a significant step 

forward in the clinical translation of advanced neuroimaging techniques for predicting surgical 
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outcomes in TLE. Secondly, because of the limited sample size, it was necessary to side flip 

imaging data to increase outcome group sample size. Therefore, we were unable to investigate 

whether the side of seizure onset was related to tract characteristics and outcome. Finally, the 

ultimate goal of this kind of work is to develop prognostic markers that could translate into 

clinical practice. DTI sequences suitable for sophisticated tractography are currently not 

considered clinical MRI sequences that should be routinely incorporated into preoperative 

evaluation of patients with refractory TLE, principally because of demands on acquisition time, 

and time and expertise required for image post-processing. However, we have showcased the 

potential predictive clinical utility of determining regional tract alterations ahead of surgery and 

endorse automated quantitative diffusion approaches ahead of surgery. 

Conclusion 

The reasons underlying persistent postoperative seizures in patients with refractory TLE are 

likely to be multifactorial and vary between patients. In the present study, we have identified 

three important factors that contribute to persistent postoperative seizures: (i) diffusion 

abnormalities of the ipsilateral dorsal fornix outside the margins of resection, (ii) diffusion 

abnormalities of the contralateral PWMB, and (iii) insufficient resection of the UF. These results 

hold promise as imaging prognostic markers of postoperative outcome and may provide 

mechanistic explanations for why some patients with TLE continue to experience postoperative 

seizures. 
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7 
 

Abnormalities Along White Matter Pathways in Epilepsy 

________________ 

emporal lobe epilepsy (TLE) is a disorder associated with structural white matter changes. In 

the preceding chapters, we have demonstrated compelling advantages of DKI over DTI for 

assessment of tissue microstructure and the translational potential for along-the-tract quantitative 

analyses for surgical outcomes potential in refractory TLE. In this chapter, we will adapt along-

the-tract tissue characterization to DKI data and explore structural brain changes TLE. This 

chapter is based on the following peer-reviewed publication:  

 

1. Glenn GR, Jensen JH, Helpern JA, Spampinato MV, Kuzniecky R, Keller SS, Bonilha L. 

Epilepsy-related cytoarchitectonic abnormalities along white matter pathways. J. Neurol. 

Neurosurg. Psychiatry. [Epub ahead of print]. 

Abstract 

Temporal lobe epilepsy (TLE) is one of the most common forms of epilepsy. Unfortunately, the 

clinical outcomes of TLE cannot be determined based only on current diagnostic modalities. A 

better understanding of white matter connectivity changes in TLE may aid the identification of 

network abnormalities associated with TLE and the phenotypic characterization of the disease. In 

T
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this chapter, we implemented a novel approach for characterizing microstructural changes along 

white matter pathways using diffusional kurtosis imaging (DKI). Along-the-tract measures were 

compared for 32 subjects with left TLE and 36 age- and gender-matched controls along the left 

and right fimbria-fornix (FF), parahippocampal white matter bundle (PWMB), arcuate fasciculus 

(AF), inferior longitudinal fasciculus (ILF), uncinate fasciculus, and cingulum bundle (CB). 

Limbic pathways were investigated in relation to seizure burden and control with anti-epileptic 

drugs. By evaluating measures along each tract, it was possible to identify abnormalities localized 

to specific tract sub-regions. Compared with healthy controls, subjects with TLE demonstrated 

pathological changes in circumscribed regions of the FF, PWMB, UF, AF and ILF. Several of 

these abnormalities were detected only by kurtosis-based and not by diffusivity-based measures. 

Structural white matter changes correlated with seizure burden in the bilateral PWMB and 

cingulum. DKI improves the characterization of network abnormalities associated with TLE by 

revealing connectivity abnormalities that are not disclosed by other modalities. Since TLE is a 

neuronal network disorder, DKI may be well suited to fully assess structural network 

abnormalities related to epilepsy and thus serve as a tool for phenotypic characterization of 

epilepsy. 

Introduction 

Temporal lobe epilepsy (TLE) is the most common form of medically intractable focal epilepsy 

and is frequently associated with hippocampal sclerosis (HS) (204). Despite that hippocampal 

pathology is generally considered the primary seizure generator and principal node in a temporal 

epileptiform network in TLE (205), there is a sizeable literature indicating that structural 

abnormalities extend beyond the medial temporal lobe. Many studies have reported gray matter 

atrophy, white matter  loss, and gliosis affecting extra-hippocampal and extra-temporal regions 
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(154,162,206,207). Crucially, the distribution of tissue damage in TLE is not random, but follows 

an anatomical and functional pattern whereby the most affected regions are those directly or 

indirectly associated with the medial temporal lobe and the limbic system (208-210). This regular 

distribution of damage implies that a limited number of common pathophysiological mechanisms 

are responsible for brain injury in TLE. In particular, gray matter loss may be caused by cellular 

excitoxicity along the limbic path of seizure spread, or by deafferentation injury from loss of 

neural connectivity (211). 

 

However, the full extent of microstructural brain damage in TLE is still incompletely 

understood, and most patients with TLE demonstrate some degree of extra-hippocampal 

abnormality (212). Importantly, seizure control after pharmacological and surgical intervention 

can vary significantly among patients with TLE, and there are clearly distinct phenotypes of TLE 

when it comes to treatment responsiveness. For this reason, it is fundamentally important to 

accurately assess in vivo patterns of brain injury in TLE, with special emphasis to 

cytoarchitectonic features of tissue damage and their anatomical distribution.  

  

Previous studies have investigated alterations in white matter pathways in TLE using 

diffusion tensor tractography (161,163,166). However, these studies predominantly utilize whole-

tract analyses, which are limited as pathological changes may be concentrated in anatomically 

specific regions and whole-tract analyses may obstruct the detection of focal pathology. 

Moreover, diffusion tensor imaging (DTI) is incapable of detecting multiple, intra-voxel fiber 

bundle orientations in complex neurological tissue, which limits its potential for tractography 

(32,81). Diffusional kurtosis imaging (DKI) extends conventional DTI by estimating both the 

diffusion and kurtosis tensors to quantify restricted, non-Gaussian diffusion that occurs in 
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biological tissues (29,30). Accordingly, DKI has demonstrated improved sensitivity for detecting 

neuropathology in a variety of conditions including epilepsy (213-216), stroke (59,94,96,97), 

Alzheimer’s disease (55,56,98), and numerous others (75). More recently, the advantages of DKI 

have been leveraged to provide more comprehensive assessment of diffusion in complex neural 

environments, including the characterization of diffusion anisotropy beyond the conventional 

fractional anisotropy (FA) (79) and computation of DKI-based white matter tractography, 

enabling the resolution of multiple intra-voxel fiber bundles (32,104). These advantages are 

improved by utilizing DKI in conjunction with automated fiber quantification (AFQ) (158), for 

characterization of tissue microstructure along white matter pathways, by incorporating a more 

comprehensive and potentially more sensitive collection of parameters for detecting disease-

related pathology than does DTI. Thus, DKI is remarkably synergistic with AFQ, and the 

combination of the two form a particularly effective imaging method for detecting pathological 

white matter changes. 

 

In this present study, we applied a novel neuroimaging approach combining the strengths of 

DKI and AFQ for the non-invasive characterization of pathological white matter changes in TLE. 

We hypothesize that cytoarchitectural abnormalities follow a crescendo gradient towards the 

temporal lobe with pathological effects concentrated in particular white matter regions, revealing 

patterns of neuroarchitectural pathology associated with TLE potentially underlying distinct 

phenotypical subtypes.  

Methods 

Subjects 
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This study was approved by the Institutional Review Board at the Medical University of South 

Carolina (MUSC). We evaluated data from 32 consecutive subjects with left TLE who were 

followed at the Comprehensive Epilepsy Center at MUSC. All subjects were diagnosed with left 

TLE in concordance with the diagnostic criteria proposed by the International League Against 

Epilepsy (ILAE), including a comprehensive medical history, a full neurological evaluation, and 

epileptiform discharges on interictal EEG, with the majority of subjects demonstrating 

neuroradiological evidence of HS (217). The mean (± std) age of all subjects was 44.8 (± 16.7) 

years, and included 10 males and 22 females. A control group of 36 age and gender matched 

healthy individuals with no history of neurological problems was also recruited from the local 

community. Control subjects had a mean (± std) age of 40.4 (± 11.6) years, including 12 males 

and 24 females. Clinical and demographic information for the subjects with TLE included in this 

study are further described Table 3. The subjects included in this study are also described in a 

previous study from our group using voxel-based methods without tractography (22).  

 

Table 5. Demographic and Clinical Information for Subjects with TLE 

Patient  

Number 
Gender 

Age 

(yr) 

Age of 

Epilepsy 

Onset 

(yr) 

Durration 

(yr) 

Seizure 

Frequency  

(per 6 Mo) 

MRI 

Results 
Interictal EEG 

1 F 57 52 5 3 Normal Left tIEDs 

2 F 57 35 22 24 Left HS Left tIEDs 

3 F 63 57 6 1 Normal Left tIEDs 

4 M 46 3 43 12 Left HS Left tIEDs 

5 M 56 30 26 6 Left HS Left tIEDs 

6 F 18 3 15 72 Left HS Left tIEDs 

7 F 37 33 4 6 Left HS Left tIEDs 

8 F 51 50 1 12 Normal Left tIEDs 

9 F 23 17 6 6 Left HS Left and right tIEDs 

10 M 22 10 12 0.5 Left HS Left tIEDs 

11 F 21 20 1 1 Left HS Left tIEDs 

12 M 34 15 19 1 Normal Left tIEDs 

13 F 58 55 3 1 Left HS Left tIEDs 
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14 M 20 20 0 0.2 Left HS Left and right tIEDs 

15 F 67 66 1 6 Normal Left tIEDs 

16 F 62 62 0 0.2 Left HS Left tIEDs 

17 F 57 1 56 2 Left HS Normal 

18 F 18 5 13 3 Left HS Left tIEDs 

19 F 37 28 9 2 Left HS Normal 

20 F 20 19 1 1 Left HS Normal 

21 F 57 50 7 6 Left HS Left and right tIEDs 

22 F 45 33 12 2 Left HS Normal 

23 M 43 0 43 3 Left HS Normal 

24 F 76 30 46 6 Left HS Left tIEDs 

25 M 36 17 19 1 Left HS Normal 

26 M 65 59 6 1 Left HS Normal 

27 F 57 2 55 6 Left HS Left tIEDs 

28 M 45 27 18 2 Left HS Normal 

29 F 27 27 0 0.2 Left HS Normal 

30 F 59 42 17 3 Left HS Left tIEDs 

31 F 46 35 11 0.5 Left HS Left tIEDs 

32 M 40 37 3 0.2 Left HS Normal 

Note: HS, hippocampal sclerosis; EEG, electroencephalography; tIED, temporal interictal 

epileptiform discharges; in cases where left and right tIEDs were noted, left tIEDs were greater 

than right tIEDs and signs of unilateral left HS were present on MRI. 

 

Our cohort contained subjects with varying disease severity including subjects with recently 

diagnosed TLE and subjects whose seizures were well controlled with anti-epileptic drugs 

(AEDs). Thus subjects in this cohort were not all surgical candidates. Subjects well controlled on 

AEDs were identified by having one or fewer seizures per six months (n = 13), and subjects not 

well controlled on AEDs were identified by having more than one seizure per six months (n = 

19). 

Image Acquisition 

DKI datasets were acquired with a 3 Tesla Magnetom Verio MRI scanner (Siemens Medical, 

Erlangen, Germany) using a vendor-supplied, single-shot diffusion-weighted EPI sequence with a 

twice-refocused spin echo (65) and a 12-channel head coil. To characterize non-Gaussian 

diffusion, the protocol included 3 diffusion weightings of b = 0, 1000, and 2000 s/mm
2
, with 30 
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isotropically distributed diffusion encoding directions and a total of 10 images with no diffusion 

weighting (b=0). Other acquisition parameters were: repetition time (TR) = 8500 ms, echo time 

(TE) = 98 ms, voxel dimensions = 3.0×3.0×3.0 mm
3
, matrix size × number of slices = 74×74×40, 

and a parallel imaging factor = 2 with no partial Fourier encoding. The acquisition time for this 

protocol was 9 minutes and 12 seconds. Structural imaging was also performed for each 

participant using a sagittal T1-weighted magnetization-prepared rapid acquisition gradient echo 

(MPRAGE) image sequence, with TR/TE = 2250/4.18 ms, inversion time = 900 ms, voxel 

dimensions = 1.0×1.0×1.0 mm
3
, and matrix size × number of slices = 256×256×176.  

Image Analysis 

DKI analysis included the estimation of the diffusion and kurtosis tensors (52) and subsequent 

DKI-derived tractography (32,104) and was performed using diffusional kurtosis estimator 

(DKE) software (https://www.nitrc.org/projects/dke/). Quantitative tensor analyses included 

characterization of mean diffusivity (MD) and FA from the diffusion tensor and corresponding 

mean kurtosis (MK) (52) and kurtosis fractional anisotropy (KFA) (79). DKI was incorporated 

into the AFQ image processing pipeline (https://github.com/jyeatman/AFQ) using fully 

automated in-house scripts written in MATLAB (MathWorks, Natick, MA, USA). 

 

AFQ utilizes diffusion tractography data and performs a series of automated steps to identify 

and segment specific white matter fiber bundles and isolate the core of each tract (158). Fiber 

bundles are selected by specifying regions of interest (ROIs) chosen from a white matter 

template, which are applied to define the extremities of each tract. Once the core of a tract is 

identified, AFQ interpolates a fixed number of sections along the tract and estimates the diffusion 

and kurtosis tensors at every section, enabling reconstruction of all tensor-derived metrics. By 
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using each subject’s unique tractography data, this approach can potentially accommodate more 

inter-subject variability in tract locations than alternative voxel-based methods. Tract profiles 

were excluded in cases where AFQ did not identify individual tracts (159).  

 

Beyond the conventional AFQ pipeline, we implemented in-house algorithms to 

automatically segment the fimbria-fornix (FF) white matter fibers, in addition to the standard 

fiber groups used by AFQ. This was done as hippocampal sclerosis is a common pathological 

feature of TLE and the FF represents a major conduit of information to and from the 

hippocampus. Additional white matter pathways were selected based on their hypothesized role 

in TLE, and include the parahippocampal white matter bundle (PWMB), arcuate fasciculus (AF), 

inferior longitudinal fasciculus (ILF), cingulum bundle (CB) and uncinate fasciculus (UF). A 

summary of the image analysis steps for a single subject is given in Figure 29. 
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Figure 29. AFQ with DKI. (A) DKI uses multiple diffusion weighting b-values and diffusion 

encoding directions to characterize non-Gaussian diffusion which occurs in vivo. The images 

shown include an average b=0 image along with images with diffusion weightings of b = 1000 

and b = 2000 s/mm
2 

for a single diffusion-encoding direction. (B) Images in the DKI dataset are 

combined to estimate the diffusion tensor (DT) and kurtosis tensor (KT), which characterize the 

3D intra-voxel diffusion dynamics based on physical properties of water diffusion. (C) The 

diffusion and kurtosis tensors are then analyzed to generate scalar, quantative parameter maps 

that can be used to characterize tissue microstructure. (D) The diffusion and kurtosis tensors are 

combined to perform DKI-based tractography, which can improve tractography relative to DTI 

by enabling the resolution of multiple intra-voxel fiber bundles in complex neural tissue. (E) AFQ 

performs a series of automated steps to segment fiber groups from standardized white matter 

ROIs and then isolates each fiber group’s tract core for analysis of the diffusion parameters. Each 

subject generates tract profiles for each diffusion metric along each tract core, which can be 

compared to investigate individual and group-wise differences. 

 

The effects of seizure burden and seizure control with AEDs were tested in the PWMB and 

CB, as these limbic pathways are crucial for the progression of disease (161), neuropsychological 

manifestations of TLE (163), and differentiation of TLE subtypes by treatment response 

including surgical outcomes (149,218) and pharmacoresistance (219). Seizure burden was defined 

as equal to log�
�}1Î½ÏÎÐÑ × /Ï1�)TÒ�, with the logarithm being applied to accommodate 
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subjects with very high seizure frequency, and the effects were assessed using Pearson’s product-

moment correlation coefficient. 

 

Tractography  

DKI tractography was performed using the closed-form analytical expression of the kurtosis 

orientation distribution function derived by Jensen et al. (32) and the image analysis procedures 

developed by Glenn et al. (104) using the DKE tractography module 

(https://www.nitrc.org/projects/dke/). Whole brain masks were calculated within AFQ using 

FSL’s brain extraction tool (178), and DKI-based tractography was performed using the Euler 

method with an angle cutoff threshold of 35 degrees, a minimum tract length threshold of 20 mm, 

and 250,000 seed points randomly placed within each subject’s brain mask.  

 

Statistical Analysis 

Tract profiles were created for each fiber group using AFQ along 100 sections by interpolating 

the DKI-derived diffusion and kurtosis tensors along each tract and then quantifying the tensor-

derived parameters for each section. Each tract was then divided into 5 regions of interest (ROIs), 

consisting of 20 consecutive sections. The respective along-the-tract diffusion metrics were 

averaged over each ROI and a two sample t-test was performed to determine the significance of 

group-wise differences. In all, there were a total of 12 fiber groups × 4 diffusion metrics × 5 

regions of interest per fiber group, resulting in 240 total comparisons. Significance levels were 

corrected for multiple comparisons using the false discovery rate (FDR) procedure (180). To 

quantify the effect size of the observed changes, the Cohen’s d parameter was calculated for each 

ROI for group-wise differences as well as differences between subjects whose seizures were well-

controlled with AEDs and those whose seizures were not well-controlled with AEDs. For 
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correlations with seizure burden, statistical significance was corrected for multiple comparisons 

with FDR, and the effects of pharmacoresistance were tested using the well-controlled and not 

well-controlled groups using a two sample t-test. Cohen’s d parameter was used to quantify the 

effect size. The ROIs used in this study are illustrated in Figure 30. 

 

 

Figure 30. The location of white matter ROIs is defined from the reconstructed fiber tracts. The 

insert for each fiber group in the upper right-hand corner illustrates white matter tracts identified 

by AFQ and DKI for a single subject, overlaid on the corresponding b=0 image. The solid black 

line indicates the core of each tract used in generating the individual tract profiles. Tract cores 

identified for all subjects in this study are averaged and overlaid on an anatomical MRI template 

to illustrate the group-wise representation of each fiber group. Each fiber group is divided into 5 

ROIs with increasing ROI numbers indicating regionally-specific locations in each tract. The 

ROIs in this figure correspond to the ROIs used in the tables included in this study. 

 

Results 

Group-wise tract profiles for all fiber groups are shown in Figure 31. The tract profiles 

demonstrate similar along-the-tract variation of the diffusion metrics between subjects and 

controls and between the ipsilateral and contralateral hemispheres. Importantly, these results 

demonstrate that epilepsy-related abnormalities can be restricted to specific regions of each tract, 
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which would be undetected by methods that group all data from one tract into a single value. The 

results in Figure 31 are tabulated in Table 6.  

 

 

Figure 31. Mean tract profiles (± sem) for ipsilateral and contralateral fiber groups demonstrate 

regional group-wise differences in diffusion metrics between subjects and controls. Group-wise 

differences are tested over bins indicated by the green and purple bars and summary statistics for 

group-wise comparisons are given in the online supplemental material. Comparisons marked with 

an asterisk (*) have p-values < 0.05, and a double asterisk (**) indicates p-values < 0.005, after 

correction the significance level for multiple comparisons using FDR. The vertical bins 

correspond to the ROIs illustrated in Figure 2 with increasing ROI number corresponding to 

increasing Tract Section number. The MD is in units of μm
2
/ms, while the remaining parameters 

are dimensionless. 
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Table 6. Tract Profile Summary Statistics 

Fimbria-Fornix 

    Left Right 

Param ROI Control Patient d p Control Patient d p 

MD 

1 1.81 (0.34) 1.98 (0.46) -0.42 0.332 1.99 (0.37) 1.98 (0.52) 0.01 0.976 

2 1.91 (0.34) 2.05 (0.40) -0.38 0.407 1.97 (0.42) 2.04 (0.45) -0.17 0.744 

3 1.22 (0.25) 1.37 (0.39) -0.45 0.283 1.24 (0.22) 1.30 (0.34) -0.24 0.631 

4 1.27 (0.18) 1.40 (0.31) -0.50 0.212 1.28 (0.17) 1.30 (0.23) -0.12 0.832 

5 1.15 (0.18) 1.23 (0.25) -0.36 0.426 1.29 (0.28) 1.22 (0.24) 0.29 0.565 

FA 

1 0.20 (0.04) 0.19 (0.05) 0.42 0.338 0.19 (0.04) 0.18 (0.05) 0.12 0.829 

2 0.18 (0.05) 0.16 (0.04) 0.32 0.510 0.17 (0.04) 0.16 (0.04) 0.26 0.589 

3 0.28 (0.07) 0.26 (0.07) 0.27 0.594 0.28 (0.06) 0.25 (0.06) 0.46 0.276 

4 0.24 (0.04) 0.22 (0.05) 0.34 0.448 0.24 (0.05) 0.23 (0.05) 0.27 0.593 

5 0.21 (0.04) 0.19 (0.07) 0.25 0.619 0.20 (0.05) 0.20 (0.05) 0.11 0.822 

MK 

1 0.71 (0.08) 0.66 (0.09) 0.59 0.116 0.68 (0.08) 0.68 (0.10) 0.07 0.920 

2 0.69 (0.08) 0.65 (0.08) 0.44 0.311 0.68 (0.09) 0.65 (0.09) 0.24 0.630 

3 0.82 (0.06) 0.77 (0.09) 0.70 0.055 0.83 (0.07) 0.79 (0.09) 0.40 0.388 

4 0.80 (0.06) 0.74 (0.07) 1.00 <0.005 0.81 (0.05) 0.78 (0.06) 0.51 0.194 

5 0.79 (0.05) 0.72 (0.07) 1.22 <0.005 0.78 (0.06) 0.75 (0.09) 0.45 0.281 

KFA 

1 0.15 (0.04) 0.16 (0.09) -0.16 0.772 0.14 (0.04) 0.15 (0.06) -0.26 0.603 

2 0.13 (0.04) 0.13 (0.04) 0.09 0.877 0.14 (0.04) 0.14 (0.05) 0.05 0.930 

3 0.30 (0.10) 0.27 (0.11) 0.24 0.622 0.28 (0.08) 0.26 (0.08) 0.18 0.745 

4 0.25 (0.06) 0.23 (0.07) 0.24 0.628 0.23 (0.06) 0.24 (0.08) -0.16 0.765 

5 0.25 (0.07) 0.24 (0.08) 0.05 0.932 0.23 (0.08) 0.23 (0.08) -0.09 0.882 

Parahippocampal White Matter Bundle 

Left Right 

Param ROI Control Patient d p Control Patient d p 

MD 

1 1.25 (0.29) 1.30 (0.34) -0.17 0.753 1.26 (0.28) 1.38 (0.32) -0.40 0.383 

2 1.23 (0.21) 1.24 (0.24) -0.07 0.922 1.28 (0.20) 1.34 (0.26) -0.29 0.571 

3 1.18 (0.18) 1.20 (0.25) -0.09 0.872 1.20 (0.16) 1.21 (0.21) -0.06 0.929 

4 1.14 (0.18) 1.19 (0.29) -0.23 0.633 1.08 (0.13) 1.10 (0.18) -0.14 0.790 

5 1.14 (0.19) 1.23 (0.30) -0.38 0.400 1.06 (0.15) 1.11 (0.19) -0.27 0.589 

FA 

1 0.18 (0.05) 0.16 (0.03) 0.48 0.229 0.17 (0.05) 0.15 (0.04) 0.36 0.432 

2 0.20 (0.05) 0.18 (0.03) 0.45 0.288 0.18 (0.04) 0.18 (0.04) 0.09 0.874 

3 0.20 (0.04) 0.18 (0.03) 0.36 0.420 0.20 (0.04) 0.20 (0.04) -0.02 0.980 

4 0.18 (0.03) 0.16 (0.04) 0.62 0.092 0.19 (0.04) 0.19 (0.04) 0.09 0.880 

5 0.15 (0.03) 0.13 (0.04) 0.48 0.234 0.15 (0.03) 0.16 (0.04) -0.01 0.980 

MK 

1 0.79 (0.06) 0.75 (0.06) 0.66 0.066 0.80 (0.05) 0.77 (0.06) 0.51 0.205 

2 0.80 (0.05) 0.76 (0.06) 0.81 0.018 0.82 (0.04) 0.79 (0.05) 0.61 0.108 

3 0.79 (0.05) 0.74 (0.08) 0.67 0.064 0.81 (0.04) 0.80 (0.05) 0.31 0.520 

4 0.76 (0.07) 0.72 (0.09) 0.57 0.127 0.76 (0.08) 0.77 (0.08) -0.20 0.712 

5 0.75 (0.05) 0.70 (0.10) 0.71 0.045 0.74 (0.09) 0.74 (0.08) -0.04 0.947 

KFA 

1 1.26 (0.28) 1.38 (0.32) -0.40 0.383 0.21 (0.09) 0.20 (0.09) 0.13 0.811 

2 1.28 (0.20) 1.34 (0.26) -0.29 0.571 0.20 (0.07) 0.21 (0.08) -0.04 0.949 

3 1.20 (0.16) 1.21 (0.21) -0.06 0.929 0.24 (0.08) 0.24 (0.08) -0.09 0.874 

4 1.08 (0.13) 1.10 (0.18) -0.14 0.790 0.29 (0.11) 0.28 (0.09) 0.06 0.931 

5 1.06 (0.15) 1.11 (0.19) -0.27 0.589 0.28 (0.10) 0.26 (0.09) 0.20 0.709 
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Arcuate Fasciculus  

    Left Right 

Param ROI Control Patient d p Control Patient d p 

MD 

1 0.80 (0.02) 0.80 (0.05) -0.11 0.821 0.80 (0.03) 0.80 (0.05) 0.03 0.969 

2 0.82 (0.03) 0.83 (0.05) -0.24 0.625 0.83 (0.04) 0.83 (0.05) -0.11 0.826 

3 0.84 (0.03) 0.85 (0.06) -0.28 0.572 0.85 (0.03) 0.86 (0.06) -0.17 0.750 

4 0.86 (0.03) 0.89 (0.06) -0.44 0.284 0.88 (0.04) 0.89 (0.07) -0.32 0.490 

5 0.88 (0.04) 0.89 (0.06) -0.34 0.445 0.88 (0.04) 0.88 (0.06) -0.02 0.979 

FA 

1 0.36 (0.05) 0.35 (0.06) 0.17 0.746 0.33 (0.06) 0.33 (0.08) -0.07 0.923 

2 0.34 (0.06) 0.33 (0.05) 0.16 0.752 0.33 (0.07) 0.34 (0.06) -0.12 0.811 

3 0.37 (0.06) 0.36 (0.07) 0.17 0.751 0.38 (0.06) 0.37 (0.05) 0.14 0.793 

4 0.31 (0.06) 0.28 (0.05) 0.76 0.026 0.29 (0.06) 0.28 (0.05) 0.03 0.961 

5 0.41 (0.06) 0.35 (0.04) 1.12 <0.005 0.41 (0.06) 0.40 (0.06) 0.15 0.785 

MK 

1 1.20 (0.06) 1.15 (0.08) 0.83 0.016 1.19 (0.06) 1.14 (0.10) 0.62 0.094 

2 1.18 (0.06) 1.11 (0.08) 0.95 <0.005 1.16 (0.06) 1.10 (0.09) 0.73 0.038 

3 1.14 (0.05) 1.07 (0.08) 1.21 <0.005 1.13 (0.06) 1.06 (0.09) 0.96 <0.005 

4 1.11 (0.05) 1.03 (0.08) 1.36 <0.005 1.10 (0.06) 1.03 (0.09) 0.96 <0.005 

5 1.09 (0.05) 1.02 (0.09) 0.94 <0.005 1.08 (0.06) 1.03 (0.09) 0.75 0.031 

KFA 

1 0.54 (0.04) 0.55 (0.07) -0.24 0.625 0.52 (0.04) 0.53 (0.08) -0.26 0.587 

2 0.53 (0.04) 0.54 (0.07) -0.23 0.641 0.54 (0.04) 0.56 (0.08) -0.23 0.638 

3 0.53 (0.05) 0.53 (0.08) 0.02 0.971 0.52 (0.05) 0.52 (0.07) 0.00 0.997 

4 0.42 (0.05) 0.39 (0.07) 0.44 0.284 0.37 (0.06) 0.38 (0.07) -0.16 0.758 

5 0.45 (0.06) 0.42 (0.07) 0.48 0.236 0.42 (0.06) 0.43 (0.09) -0.18 0.748 

Inferior Longitudinal Fasciculus 

    Left Right 

Param ROI Control Patient d p Control Patient d p 

MD 

1 0.97 (0.10) 1.00 (0.12) -0.31 0.514 0.96 (0.09) 0.97 (0.13) -0.11 0.821 

2 0.96 (0.09) 0.98 (0.08) -0.29 0.569 0.97 (0.08) 0.98 (0.09) -0.05 0.932 

3 0.96 (0.06) 1.00 (0.08) -0.56 0.135 1.00 (0.07) 0.99 (0.09) 0.16 0.756 

4 0.96 (0.06) 0.99 (0.10) -0.36 0.422 1.00 (0.07) 0.99 (0.10) 0.18 0.745 

5 0.99 (0.09) 1.04 (0.18) -0.38 0.409 0.99 (0.11) 0.98 (0.12) 0.04 0.949 

FA 

1 0.43 (0.10) 0.42 (0.06) 0.14 0.793 0.40 (0.05) 0.39 (0.05) 0.32 0.494 

2 0.41 (0.08) 0.39 (0.06) 0.29 0.562 0.37 (0.05) 0.37 (0.05) 0.15 0.789 

3 0.33 (0.07) 0.31 (0.06) 0.42 0.328 0.29 (0.06) 0.30 (0.05) -0.18 0.749 

4 0.25 (0.06) 0.24 (0.06) 0.26 0.591 0.23 (0.06) 0.22 (0.05) 0.14 0.787 

5 0.18 (0.07) 0.16 (0.05) 0.37 0.409 0.17 (0.06) 0.16 (0.06) 0.16 0.761 

MK 

1 0.98 (0.08) 0.92 (0.09) 0.79 0.021 1.00 (0.06) 0.92 (0.09) 1.09 <0.005 

2 0.96 (0.06) 0.88 (0.09) 0.97 <0.005 0.96 (0.05) 0.90 (0.08) 0.90 0.007 

3 0.93 (0.06) 0.86 (0.09) 0.87 0.010 0.90 (0.06) 0.86 (0.06) 0.58 0.116 

4 0.88 (0.06) 0.82 (0.08) 0.98 <0.005 0.87 (0.06) 0.82 (0.05) 0.81 0.018 

5 0.83 (0.07) 0.76 (0.08) 1.00 <0.005 0.83 (0.05) 0.76 (0.11) 0.78 0.023 

KFA 

1 0.41 (0.10) 0.42 (0.08) -0.07 0.924 0.38 (0.06) 0.41 (0.09) -0.38 0.405 

2 0.39 (0.08) 0.39 (0.09) -0.02 0.975 0.34 (0.07) 0.37 (0.09) -0.34 0.445 

3 0.35 (0.08) 0.34 (0.08) 0.14 0.798 0.28 (0.06) 0.33 (0.09) -0.66 0.065 

4 0.28 (0.07) 0.29 (0.09) -0.06 0.925 0.25 (0.05) 0.27 (0.07) -0.35 0.431 

5 0.22 (0.09) 0.22 (0.09) 0.08 0.907 0.22 (0.08) 0.24 (0.11) -0.17 0.748 
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Cingulum Bundle 

    Left Right 

Param ROI Control Patient d p Control Patient d p 

MD 

1 0.93 (0.05) 0.94 (0.06) -0.14 0.797 0.91 (0.05) 0.95 (0.08) -0.59 0.112 

2 0.89 (0.05) 0.91 (0.08) -0.30 0.525 0.89 (0.05) 0.91 (0.08) -0.27 0.589 

3 0.86 (0.04) 0.88 (0.07) -0.30 0.541 0.88 (0.06) 0.90 (0.08) -0.20 0.679 

4 0.87 (0.04) 0.88 (0.08) -0.29 0.564 0.89 (0.06) 0.89 (0.10) -0.06 0.928 

5 0.85 (0.03) 0.87 (0.07) -0.35 0.429 0.86 (0.04) 0.88 (0.11) -0.21 0.668 

FA 

1 0.20 (0.05) 0.19 (0.05) 0.16 0.770 0.19 (0.04) 0.17 (0.03) 0.65 0.072 

2 0.26 (0.06) 0.26 (0.07) 0.00 0.996 0.23 (0.04) 0.22 (0.05) 0.26 0.595 

3 0.31 (0.05) 0.32 (0.07) -0.13 0.789 0.27 (0.05) 0.27 (0.07) -0.04 0.951 

4 0.33 (0.05) 0.33 (0.07) 0.07 0.924 0.27 (0.05) 0.28 (0.07) -0.19 0.714 

5 0.29 (0.05) 0.28 (0.06) 0.14 0.793 0.24 (0.06) 0.25 (0.07) -0.14 0.801 

MK 

1 0.87 (0.06) 0.84 (0.07) 0.37 0.407 0.87 (0.06) 0.82 (0.07) 0.70 0.050 

2 0.89 (0.07) 0.86 (0.09) 0.36 0.431 0.88 (0.07) 0.85 (0.09) 0.39 0.383 

3 0.94 (0.06) 0.89 (0.11) 0.59 0.112 0.90 (0.07) 0.87 (0.11) 0.37 0.409 

4 0.94 (0.07) 0.90 (0.10) 0.55 0.139 0.91 (0.06) 0.87 (0.09) 0.52 0.184 

5 0.93 (0.06) 0.88 (0.10) 0.61 0.095 0.90 (0.05) 0.87 (0.10) 0.45 0.284 

KFA 

1 0.41 (0.07) 0.40 (0.09) 0.15 0.771 0.40 (0.07) 0.36 (0.07) 0.53 0.163 

2 0.51 (0.08) 0.50 (0.11) 0.02 0.970 0.47 (0.07) 0.45 (0.11) 0.23 0.622 

3 0.56 (0.07) 0.57 (0.11) -0.08 0.904 0.52 (0.08) 0.51 (0.11) 0.12 0.832 

4 0.53 (0.06) 0.53 (0.11) 0.00 0.998 0.47 (0.08) 0.49 (0.12) -0.18 0.749 

5 0.41 (0.06) 0.44 (0.11) -0.35 0.430 0.40 (0.08) 0.41 (0.12) -0.11 0.828 

Uncinate Fasciculus 

    Left Right 

Param ROI Control Patient d p Control Patient d p 

MD 

1 0.96 (0.08) 0.97 (0.14) -0.02 0.970 0.93 (0.12) 0.94 (0.10) -0.14 0.806 

2 0.96 (0.16) 0.96 (0.17) -0.01 0.990 0.95 (0.17) 0.94 (0.10) 0.07 0.919 

3 1.03 (0.24) 1.02 (0.19) 0.04 0.945 0.99 (0.22) 0.98 (0.09) 0.07 0.923 

4 1.04 (0.23) 1.07 (0.27) -0.10 0.875 1.01 (0.26) 1.03 (0.13) -0.07 0.920 

5 1.05 (0.18) 1.10 (0.26) -0.24 0.637 1.03 (0.26) 1.13 (0.28) -0.37 0.432 

FA 

1 0.25 (0.09) 0.26 (0.08) -0.04 0.951 0.29 (0.09) 0.27 (0.09) 0.29 0.578 

2 0.27 (0.08) 0.27 (0.09) -0.04 0.946 0.28 (0.08) 0.26 (0.07) 0.24 0.633 

3 0.26 (0.09) 0.26 (0.09) -0.04 0.952 0.28 (0.08) 0.26 (0.08) 0.21 0.706 

4 0.25 (0.08) 0.23 (0.08) 0.24 0.635 0.27 (0.08) 0.24 (0.07) 0.43 0.348 

5 0.20 (0.07) 0.18 (0.07) 0.30 0.572 0.24 (0.06) 0.20 (0.08) 0.62 0.119 

MK 

1 0.78 (0.05) 0.74 (0.07) 0.62 0.123 0.77 (0.06) 0.75 (0.10) 0.25 0.623 

2 0.80 (0.06) 0.76 (0.10) 0.53 0.222 0.78 (0.06) 0.76 (0.09) 0.26 0.632 

3 0.80 (0.05) 0.76 (0.09) 0.65 0.109 0.79 (0.08) 0.77 (0.08) 0.28 0.591 

4 0.81 (0.05) 0.74 (0.12) 0.85 0.023 0.80 (0.07) 0.77 (0.09) 0.30 0.568 

5 0.81 (0.05) 0.74 (0.10) 0.95 0.011 0.81 (0.06) 0.78 (0.08) 0.48 0.286 

KFA 

1 0.34 (0.12) 0.36 (0.12) -0.16 0.784 0.42 (0.13) 0.37 (0.12) 0.40 0.400 

2 0.33 (0.12) 0.36 (0.13) -0.30 0.583 0.35 (0.12) 0.32 (0.10) 0.33 0.502 

3 0.26 (0.11) 0.29 (0.11) -0.27 0.601 0.29 (0.10) 0.29 (0.11) -0.05 0.948 

4 0.26 (0.10) 0.29 (0.13) -0.26 0.629 0.28 (0.11) 0.27 (0.10) 0.13 0.808 

5 0.23 (0.08) 0.25 (0.12) -0.19 0.747 0.26 (0.09) 0.23 (0.09) 0.34 0.498 
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Note: ROI locations correspond to those illustrated in Figure 30. Control and Patient values 

represent mean (± sandard deviation). d = Cohen’s d parameter and p = p-value after correcting 

for multiple comparisons with FDR. Statistically significant differences are indicated by bold font 

for p < 0.05.  

 

In general, MD is higher in subjects with TLE relative to controls in all ROIs and all fiber 

groups with the exception of one ipsilateral ROI (ROI 3 in the UF) and eight contralateral ROIs 

(ROI 1 and 5 in the FF, ROI 1 in the AF, ROI 2 and 3 in the UF, and ROIs 3-5 in the right ILF), 

although the observed changes were not found to be statistically significant. FA tended to be 

lower in subjects with TLE relative to controls, with statisitically significant reductions being 

found in ROIs 4 and 5 of the ipsilateral AF. 

 

MK demonstrated significant reduction in the ipsilateral FF, PWMB, and UF in multiple 

ROIs. In the ipsilateral FF and UF, this reduction was more pronounced with increasing ROI 

number (further anteriorly within the temporal lobe). MK showed statistically significant 

reductions in all ROIs in the bilateral AF and ILF, except for ROI 1 in the contralateral AF and 

ROI 3 in the contralateral ILF, with the ipsilateral side tending to demonstrate a stronger effect 

size.  

 

The location and relative significance of the observed differences are illustrated in the 

section-wise t-score plots in Figure 4. Qualitatively, the abnormal t-scores demonstrated a 

crescendo effect increasing in significance into the temporal lobe. Similar to the tract profiles, the 

section-wise t-score plots demonstrated a slight, but general increase in MD and decrease in FA 

in subjects relative to controls. With MK, the changes can be seen bilaterally, with the effect 

being the largest within the ipsilateral temporal lobe.  
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Figure 32. Section-wise t-score plots summarize the observed differences in the tract profiles. 

Section wise t-scores are calculated from the tract profiles illustrated in Figure 31. These are 

overlaid on a white matter template at positions indicated by the average of the tract-cores for all 

participants included in this study. Section-wise t-scores provide a visual representation of where 

pathological changes occur, with dark red indicating greater group-wise reductions in the subject 

versus control groups and dark blue indicating greater group-wise increases in the subjects versus 

control group. 

 

Correlations with seizure burden are illustrated in Table 7. Significant correlations were 

found in the PWMB and CB with MD demonstrating significant correlations on the ipsilateral 

hemisphere and MK and KFA demonstrating bilateral limbic effects. In the ipsilateral PWMB, 

significant correlations were found for MD, MK, and KFA in ROI 3, with the correlations 

extending further along the tract anteriorly and posteriorly with MD and KFA. In the ipsilateral 

CB, significant correlations were found in ROI 5 for MD, ROIs 2-5 for MK, and all ROIs for 

KFA. On the contralateral side, significant correlations with MK were found in ROI 3 of the 

PWMB and ROIs 2-5 of the CB, and with KFA in ROI 3 and 4 of the PWMB and ROI 5 of the 

CB.  
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Table 7. Correlations with Seizure Burden 

Param ROI 

Parahippocampal White Matter Bundle   Cingulum Bundle  

Ipsilateral   Contralateral   Ipsilateral  Contralateral  

r p r p r p  r p  

MD 

1 0.272 0.196   0.310 0.150   0.336 0.126  0.099 0.622  

2 0.442 0.038  0.279 0.197   0.314 0.140  0.187 0.364  

3 0.602 0.007  0.342 0.129   0.316 0.138  0.176 0.390  

4 0.532 0.017  0.386 0.083   0.386 0.075  0.261 0.209  

5 0.457 0.036  0.277 0.197   0.446 0.037  0.331 0.132  

FA 

1 -0.122 0.547  -0.089 0.665   -0.212 0.305  -0.060 0.765  

2 -0.214 0.304  -0.166 0.430   -0.284 0.178  -0.003 0.986  

3 -0.246 0.238  -0.285 0.192   -0.338 0.127  0.024 0.908  

4 -0.202 0.329  -0.130 0.542   -0.358 0.098  -0.219 0.296  

5 0.138 0.502  -0.190 0.369   -0.303 0.150  -0.390 0.073  

MK 

1 0.120 0.549  0.174 0.408   0.415 0.054  0.394 0.071  

2 0.325 0.132  0.204 0.339   0.518 0.019  0.566 0.010  

3 0.484 0.027  0.436 0.050  0.454 0.035  0.592 0.007  

4 0.397 0.070  0.396 0.076  0.456 0.035  0.477 0.029  

5 0.233 0.262  0.329 0.142  0.489 0.026  0.504 0.022  

KFA 

1 -0.258 0.212  -0.253 0.236  -0.465 0.034  -0.317 0.140  

2 -0.459 0.036  -0.336 0.135  -0.498 0.023  -0.366 0.090  

3 -0.623 0.006  -0.465 0.035  -0.515 0.019  -0.306 0.150  

4 -0.564 0.009  -0.452 0.039  -0.623 0.011  -0.380 0.078  

5 -0.306 0.148  -0.313 0.147  -0.582 0.008  -0.525 0.018  

Note: Correlations with seizure burden for the PWMB and CB indicate limbic involvement in the 

progression of cytocarchitectural changes in TLE. ROI numbers correspond to the ROIs depicted 

in Figure 30. r = Pearson's product moment correlation coefficient and p = p-value after 

correcting for multiple comparisons with FDR. Statistically significant correlations are indicated 

by bold font p < 0.05. 

 

Comparisons between AED responsive and unresponsive groups are illustrated in Table 8. 

Uncorrected p-values less than 0.05 were found in comparing subjects well-controlled with AEDs 

with those poorly controlled for the ipsilateral PWMB in ROI 3 in MD and ROIs 3-4 in KFA and 

for the ipsilateral CB in ROI 5 in MD and all ROIs with the anisotropy parameters, FA and KFA. 

Uncorrected p-values less than 0.05 were also found for the contralateral CB in MK in ROI 2 and 

KFA in ROI 5. While none of these attained statistical significance following FDR correction, 

they may be indicative of trends that would warrant further investigation with a larger sample 

size. For example, the not well-controlled group demonstrated a 21% reduction in KFA in ROI 2 
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of the ipsilateral CB compared to the well-controlled group with a Cohen’s d parameter of -1.262, 

suggesting a potentially large effect.  

 

Table 8. AED Response 

Parahippocampal White Matter Bundle 

    Left Right 

Param ROI Control Patient d p Control Patient d p 

MD 

1 1.29 (0.24) 1.31 (0.41) 0.04 0.918 1.33 (0.25) 1.41 (0.36) 0.26 0.491 

2 1.19 (0.17) 1.28 (0.27) 0.35 0.343 1.30 (0.18) 1.37 (0.30) 0.26 0.489 

3 1.08 (0.12) 1.28 (0.28) 0.90 0.019 1.17 (0.16) 1.24 (0.24) 0.35 0.360 

4 1.07 (0.13) 1.27 (0.34) 0.73 0.050 1.08 (0.15) 1.12 (0.20) 0.24 0.529 

5 1.12 (0.19) 1.30 (0.34) 0.66 0.079 1.11 (0.18) 1.10 (0.20) -0.05 0.898 

FA 

1 0.16 (0.03) 0.16 (0.04) -0.15 0.680 0.16 (0.04) 0.15 (0.04) -0.23 0.546 

2 0.19 (0.02) 0.18 (0.04) -0.39 0.292 0.18 (0.04) 0.18 (0.04) -0.12 0.745 

3 0.20 (0.03) 0.18 (0.04) -0.54 0.147 0.20 (0.04) 0.19 (0.04) -0.38 0.311 

4 0.17 (0.04) 0.15 (0.04) -0.54 0.145 0.20 (0.04) 0.18 (0.03) -0.50 0.194 

5 0.12 (0.04) 0.14 (0.04) 0.34 0.356 0.16 (0.04) 0.15 (0.04) -0.18 0.641 

MK 

1 0.75 (0.04) 0.75 (0.07) -0.05 0.902 0.77 (0.04) 0.78 (0.08) 0.12 0.752 

2 0.75 (0.06) 0.77 (0.06) 0.19 0.601 0.79 (0.04) 0.80 (0.06) 0.21 0.577 

3 0.73 (0.10) 0.76 (0.07) 0.34 0.357 0.78 (0.05) 0.81 (0.05) 0.49 0.196 

4 0.69 (0.09) 0.73 (0.09) 0.45 0.225 0.75 (0.05) 0.79 (0.09) 0.44 0.244 

5 0.67 (0.11) 0.72 (0.08) 0.60 0.104 0.73 (0.06) 0.75 (0.09) 0.25 0.503 

KFA 

1 0.22 (0.08) 0.23 (0.09) 0.04 0.916 0.21 (0.09) 0.19 (0.10) -0.23 0.537 

2 0.25 (0.08) 0.23 (0.08) -0.30 0.421 0.22 (0.07) 0.20 (0.08) -0.19 0.617 

3 0.30 (0.08) 0.23 (0.09) -0.78 0.039 0.26 (0.07) 0.23 (0.09) -0.36 0.340 

4 0.29 (0.09) 0.22 (0.10) -0.74 0.049 0.31 (0.09) 0.26 (0.09) -0.50 0.189 

5 0.24 (0.10) 0.20 (0.08) -0.53 0.155 0.26 (0.08) 0.26 (0.09) 0.02 0.952 

                      

Cingulum Bundle 

    Left Right 

Param ROI Control Patient d p Control Patient d p 

MD 

1 0.91 (0.06) 0.96 (0.06) 0.72 0.053 0.94 (0.08) 0.95 (0.08) 0.16 0.669 

2 0.88 (0.07) 0.92 (0.08) 0.65 0.083 0.90 (0.08) 0.92 (0.07) 0.30 0.417 

3 0.85 (0.06) 0.89 (0.07) 0.63 0.091 0.89 (0.09) 0.90 (0.07) 0.15 0.690 

4 0.85 (0.06) 0.90 (0.09) 0.67 0.073 0.87 (0.09) 0.90 (0.10) 0.33 0.369 

5 0.84 (0.05) 0.89 (0.08) 0.77 0.040 0.84 (0.07) 0.90 (0.13) 0.58 0.118 

FA 

1 0.21 (0.05) 0.18 (0.04) -0.79 0.036 0.17 (0.04) 0.16 (0.03) -0.26 0.474 

2 0.29 (0.06) 0.23 (0.07) -1.03 0.007 0.22 (0.05) 0.22 (0.05) -0.09 0.807 

3 0.36 (0.06) 0.29 (0.06) -1.15 0.003 0.27 (0.07) 0.27 (0.07) -0.05 0.896 

4 0.35 (0.05) 0.31 (0.07) -0.79 0.036 0.30 (0.09) 0.27 (0.06) -0.45 0.226 

5 0.31 (0.06) 0.26 (0.06) -0.81 0.033 0.28 (0.08) 0.23 (0.06) -0.63 0.091 

MK 

1 0.83 (0.07) 0.85 (0.06) 0.29 0.428 0.81 (0.08) 0.83 (0.07) 0.24 0.507 

2 0.83 (0.09) 0.88 (0.09) 0.51 0.166 0.81 (0.08) 0.87 (0.09) 0.75 0.045 

3 0.86 (0.13) 0.91 (0.10) 0.43 0.246 0.83 (0.10) 0.90 (0.10) 0.69 0.065 
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4 0.87 (0.10) 0.92 (0.09) 0.50 0.173 0.84 (0.09) 0.89 (0.10) 0.54 0.148 

5 0.86 (0.12) 0.90 (0.09) 0.44 0.228 0.83 (0.10) 0.89 (0.09) 0.63 0.090 

KFA 

1 0.45 (0.08) 0.37 (0.08) -1.03 0.008 0.38 (0.06) 0.34 (0.08) -0.55 0.136 

2 0.57 (0.09) 0.45 (0.10) -1.26 0.001 0.49 (0.10) 0.42 (0.10) -0.60 0.109 

3 0.63 (0.10) 0.53 (0.09) -1.10 0.005 0.53 (0.12) 0.49 (0.10) -0.43 0.239 

4 0.59 (0.09) 0.49 (0.10) -1.06 0.006 0.52 (0.13) 0.47 (0.11) -0.44 0.234 

5 0.50 (0.11) 0.40 (0.09) -0.93 0.015 0.46 (0.12) 0.37 (0.11) -0.78 0.039 

Note: Group-wise comparisons between subjects whose seizures are well-controlled with AEDs 

(n = 13) and subjects whose seizures are not well-controled by AEDs (n = 19) in PWMB and CB 

pathways. d = Cohen’s d parameter and p = p-value (uncorrected). Differences with p < 0.05 

(uncorrected) are indicated by bold font. These may be regarded as trends, as no differences 

where significant after correcting for multiple comparisons. 

 

Discussion  

In this study, we employed a novel neuroimaging technique that combines DKI and AFQ for the 

in vivo characterization of cytoarchitectronic abnormalities in TLE along white matter pathways 

which are physiologically relevant for TLE. In accordance with the previous literature, we 

detected pathological changes in several extra-hippocampal and extra-temporal white matter 

tracts in subjects with TLE. Moreover, the important novel findings of this study pertain to the 

superior sensitivity of DKI-based tractography to identify and localize intra-pathway structural 

connectivity abnormalities in TLE. These observations complement our initial reports of 

increased sensitivity of DKI in scalar diffusion voxel-based maps of subjects with epilepsy (213). 

This is the first study to use DKI-based tractography combined with AFQ, demonstrating how 

DKI tractography can overcome limitations imposed by fiber crossing and unveil epilepsy related 

abnormalities. Our data indicate that group-wise reductions in MK are observed in regionally 

specific areas of the ipsilateral FF, UF, and PWMB, as well as more diffuse bilateral 

abnormalities in the ILF and AF (Figure 31). We also report significant effects of seizure burden 

on MD, MK, and KFA of ipsilateral limbic pathways. MK and KFA indicated additional 

correlations with seizure burden in contralateral pathways (Table 7). The overall salience of these 
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findings hinges on the technical innovations of these new forms of tractography and the critical 

need to better define phenotypic characterizations of subjects with epilepsy. 

Technical Innovations 

This is the first study to combine DKI and AFQ for the fully automated detection of 

cytoarchitectonic alterations along white matter fiber pathways, which may be a particularly 

sensitive method for assessing white matter tissue microstructure. With scalar, voxel-based data, 

it is not always clear which pathways are compromised. For example, an abnormal voxel in an 

ROI corresponding to the ILF may be related to transverse fibers in the same region. By defining 

which specific tracts are abnormal, one can develop a more detailed understanding of the 

distribution of cytoarchitectonic abnormalities. The methodological benefits of these approaches 

are further enhanced when augmented with along the tract measures, which not only identify the 

structurally compromised tracts, but additionally have the capability to localize specific 

abnormalities within the long axis of a tract. Moreover, the tract cores analyzed can preserve a 

significant amount of inter-subject anatomical tract variability while still enabling group-wise 

comparisons, which can help avoid normalization errors that complicate conventional voxel-wise 

techniques. This is further improved by utilizing DKI, which characterizes higher-order diffusion 

dynamics compared to DTI and can thus describe more complex diffusion profiles. Consequently, 

DKI enables the detection of crossing white matter fiber bundles for diffusion tractography and 

provides a more comprehensive collection of quantitative parameters, which may enhance the 

detection of disease-related abnormalities. Thus, the combination of DKI and AFQ creates an 

effective tool for characterizing white matter pathways, enabling further insights into patterns of 

neuroarchitectural pathology that occur in numerous neurological and psychiatric disorders.  
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Towards a phenotypic microstructural connectivity characterization of TLE 

Increasingly, advanced neuroimaging techniques have demonstrated both localized and 

networked cytoarchitectonic abnormalities in TLE with limbic alterations potentially underlying 

various clinicopathological features of the disorder, including the pathological mechanisms that 

lead to medically intractable TLE (161), neuropsychological impairments (163), AED response 

(55), and surgical outcomes (149,218). In the present study, we recruited a cohort of 32 

consecutive subjects diagnosed with left TLE, which was comprised of subjects with various 

disease severities. DKI in combination with AFQ detected pathological white matter alterations 

consistent with our understanding of TLE as a network disease having tissue abnormalities 

concentrated in the temporal lobe of the brain. Moreover, statistical trends were observed in 

limbic structures between subjects whose seizures were well controled with AEDs and those who 

had worse AED control (Table 8), which could be an important clinical prognosticator. 

Interestingly, KFA in the ipsilateral PWMB and CB correlated with seizure burden, and we 

observed trends for differences in tract characteristics between subjects who had well-controlled 

seizures and those who did not, despite no detectible group-wise differences in this region with 

normal controls. A similar trend was seen between subjects who had well-controlled seizures with 

AEDs and those who did not in FA in the ipsilateral CB. A possible explanation for this is that 

distinct mechanisms may underlie AED response compared to pharmacoresistance, with AED 

responders having higher than normal diffusion anisotropy and subjects whose seizures were not 

well controlled having lower than normal diffusion anisotropy in these limbic structures. This 

also supports the need for the improved sensitivity in detecting patterns of neuroarchitectural 

alterations in TLE afforded by DKI. Moreover, DKI detected contralateral changes in MK that 

were not apparent in analysis of the conventional diffusivity-based parameters of MD and FA.  
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This study also extends the work of Concha et al. (193), where along-the-tract measures were 

assessed in the ILF, AF, and UF using a manual segmentation routine with DTI in subjects with 

medically intractable TLE. In that work, it was argued that the changes in diffusion metrics could 

reflect astrogliosis and microstructural alterations related to the occurrence of seizures with 

potential effects of postictal vasogenic edema. In the present study, the reduction in MK reflects a 

net loss in the complexity of microstructural tissue compartmentalization, which is also consistent 

with subtle pathological denervation. By including a more comprehensive assessment of along-

the-tract diffusion abnormalities, the proposed technique may provide an important step towards a 

better understanding of the neuroarchitectural alterations that occur in TLE, as well as the 

development of fully automated imaging biomarkers for the separation of TLE subtypes based on 

clinically important distinctions.   

Limitations  

By focusing this study on tract profiles within the AFQ identified tract cores and using only a 

subset of the possible DKI-derived diffusion metrics, we have substantially restricted the scope of 

our analysis. This is a potential limitation of this study, as there may be important disease-related 

differences missed outside of the tract cores. Moreover, the quantitative parameters employed in 

this study depict physical properties of water diffusion which may be differentially influenced by 

multiple, distinct factors (81). To address this limitation DKI-based white matter modeling 

techniques can be applied, which may improve the specificity of the observed changes (54). The 

subject cohort included in this study was comprised of individuals with left-sided TLE, as left- 

and right-sided TLE may have intrinsically different pathological effects on temporal lobe 

structures (220). Thus we were not able to assess the effects of right sided disease. In addition, 
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this study was comprised of individuals with varying disease severity, including recently 

diagnosed and chronic TLE as well as individuals whose seizures were well-controlled and not 

well-controlled with AEDs. Well-controlled and intractable TLE may represent distinct 

pathological mechanisms; so by including both groups, sensitivity may be lost in characterizing 

regionally specific distinctions. Nevertheless, combining DKI with AFQ revealed distinct patterns 

of cytoarchitectronic abnormalities, which highlights the sensitivity as well as the potential 

applicability of the proposed techique.  

Conclusion  

There are measurable differences in white matter tissue that are not routinely considered in the 

clinical assessment of subjects with unilateral TLE. We have described a diffusion MRI-based 

image analysis technique that, by combining the strengths of DKI and AFQ, can quantify 

cytoarchitectonic abnormalities in specific, white matter fiber pathways. The proposed technique 

is shown to detect group-wise pathological changes, with the largest effect sizes lateralizing to the 

ipsilateral temporal lobe and extending along the tracts from the ipsilateral temporal lobe and 

including the contralateral side of the brain. Microstructural changes are also found to correlate 

with seizure burden in specific limbic pathways and trends are found towards detecting 

differences between subjects with well-controlled and not well-controlled TLE. Combining DKI 

and AFQ may be a particularly effective neuroimaging technique for detecting microstructural 

alterations along physiologically relevant white matter pathways that could provide further 

insights into the variable clinical course of TLE, as well as a wide array of other 

neuropsychological conditions affecting the structural organization of the human brain. 
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8 
 

Conclusion 

________________ 

DKI is an effective and versatile dMRI technique for studying the structural organization of the 

human brain. In this work, the capabilities of DKI have been expanded and the techniques 

developed have been shown to offer advantages compared to traditional DTI analyses.  These 

advantages are afforded by estimation of the kurtosis tensor which enhances the depiction of in 

vivo diffusion dynamics, including additional quantitative analyses, such as mean kurtosis and 

kurtosis fractional anisotropy; the ability to perform kurtosis-based microstructural modeling, 

which can  improve the specificity of dMRI to disease-related changes; and the ability to detect 

crossing white matter fiber bundles, which improves tractography for studying the structural 

connectivity of the human brain. Taken together these advantages may be leveraged to provide 

sensitive markers of pathology in TLE, which could augment the clinical management of patients 

with TLE and improve patient outcomes through improved diagnostic techniques and a better 

mechanistic understanding of the disorder. There remains vast potential for growth of DKI, 
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including better understanding of the origins of kurtosis-based microstructural changes, 

development of new analytical tools for detecting pathology, and further exploration into the 

clinical applicability of this technology in disorders of the brain and beyond. This work 

supplements a vibrant field of research in dMRI and has opened new avenues of exploration and 

discovery for the continued development of DKI and neuroimaging applications in TLE.  
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