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RALPH C. WARD.  Improved Methods for Modeling High Dimensional Binary Features 
Data with Applications for Assessing Disease Burden from Diagnostic History and for 
Dealing with Missing Covariates in Administrative Health Records. (Under the direction 
of Mulugeta Gebregziabher). 

1. Abstract

Healthcare outcomes research based on administrative data is frequently 

hindered by two important challenges: (1) accurate adjustment for disease burden and 

(2) effective management of missing data in key variables. Standard approaches exist 

for both problems, but these may contribute to biased results. For example, several well-

established summary measures are used to adjust for disease burden, often without 

consideration for whether other methods could perform this task more accurately.  

Similarly, observations with missing values are often arbitrarily excluded, or the values 

are imputed without regard for the involved assumptions. Despite recent substantial 

gains in computing power, statistical approaches and machine learning methods, no 

comprehensive effort has been made to develop an improved comorbidity index based 

on predictive performance comparisons of competing approaches. Similarly, recently 

developed machine learning approaches have shown promise in addressing missing 

data problems, but these have not been compared with parametric methods via a 

rigorous simulation study using large-dimensional data with the complete range of 

missingness types. This makes it difficult to assess the relative merits of each 

procedure. 

This work accomplished three broad aims:  (1) Improved models for summarizing 

disease burden were developed by comparing the predictive performance of a wide 
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variety of statistical and machine learning methods. (2) A new comorbidity summary 

score for predicting five-year mortality was developed. (3)  A comprehensive comparison 

of machine learning and model-based multiple imputation methods was completed, both 

in simulations and through an application to real data. Several sensitivity analyses were 

also examined for variables with missing not at random (MNAR) missingness.     

  This work successfully demonstrated several new approaches for summarizing 

disease burden. Each of the competing disease burden models in the first aim and the 

summary score from the second aim had superior predictive performance when 

compared to the Elixhauser index, a commonly-used summary measure. This research 

also led to new applications for applying machine learning methods within the multiple 

imputation with chained equations (MICE) framework. Additionally, several MNAR 

sensitivity methods were adapted and applied to demonstrate that unbiased inference 

under MNAR may not be possible in some situations, even when the missingness 

mechanism is fully understood. 
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2.  Introduction 
 

2.1 Motivation 

 The motivation for this research came from my work in the Veteran’s Health 

Administration’s (VHA) Health Services Research and Development (HSR&D) Center of 

Innovation (COIN) for Health Equity and Rural Outreach, located in Charleston, South 

Carolina. This group works to reduce disparities in healthcare access and outcomes 

between Veterans due to racial, ethnic, geographic, or gender-based differences. Much 

of this research involves observational studies based on VHA and Medicare 

administrative healthcare datasets, which typically involve millions of patients, each of 

whom may have thousands of observations involving demographic information, 

diagnostic and procedure codes, laboratory results, pharmacy records, text notes, and 

cost data. Most studies are forced to deal with two key challenges:  

 1) Models examining differences between groups must accurately account for each 

patient’s disease burden by summarizing information contained in diagnostic 

codes, for which there are thousands of unique values. 

 2) Many patients are missing data in key variables that are essential for making 

any valid inference concerning disparities, such as the race/ethnicity variable. 

Further compounding the challenge, the pattern for such missingness is often not 

random. 
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 Standard approaches exist for both problems, but these may risk contributing to 

biased results. For example, investigators often use the Charlson or Elixhauser 

Comorbidity indices [1, 2] to summarize a patient’s disease burden from the information 

collected from thousands of covariates, but they may do this without regard for the 

assumptions and limitations associated with these measures. When dealing with missing 

data, some investigators exclude observations with missing values and only consider 

complete cases, while others impute values using models that are based on missing-at-

random (MAR) assumptions. Either option could lead to bias, particularly since 

missingness patterns for some important variables in VHA data likely violate this crucial 

MAR assumption [3 – 6] . 

 In developing better approaches for these challenges, it was important to 

consider the full range of available methods, and to consider whether approaches that 

combined the strengths of several methods might produce superior results. For example, 

substantial advances in computing power, statistical and machine learning methods 

since the Elixhauser index’s development in 1998 could support the development of an 

improved summary measure, perhaps one based on the combined predictions of several 

methods. Similarly, statistical and machine learning methods each bring different 

strengths to the missing data problem. 

 

2.2 Specific Aims 

2.2.1  Aim 1 

 Using two large Veteran’s Health Administration cohorts involving diabetes and 

traumatic brain injury, develop improved models for summarizing disease burden from 
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large-dimension binary diagnostic features data by training and validating models based 

on a wide variety of statistical and machine learning methods for variable selection and 

dimension reduction, including a model based on the pooled predictions of the other 

models. Compare each method’s predictive performance with existing scores using 

AUC, sensitivity, specificity, positive predictive value (PPV), negative predictive value 

(NPV), and net reclassification improvement statistics for events and non-events. Include 

methods from the following broad categories: 

a. Generalized linear model and regularized regression approaches:

(i) Model-Averaged Regression Coefficients (MARC)

(ii) Probability Based Features (PBF).

(iii) Penalized generalized linear model (elastic-net)

b. Machine learning methods:

(i) Association Rules Analysis (unsupervised method)

(ii) Random Forest (supervised method)

c. Bayesian methods (includes machine learning approaches)

(i) Naïve Bayes variable selection (Multi-morbidity Index)

(ii) Bayesian Additive Regression Trees

Compare model performance for several mortality outcomes, by applying several 

methods of establishing baseline comorbidities, and by validating models on both single-

disease populations and combined populations.  

2.2.2 Aim 2:  

Develop a new comorbidity summary score for predicting five-year mortality based on 

variable importance measures from the top-performing models in the first aim. Train and 

validate these models using three large VA cohorts with diabetes (DM), chronic kidney 

disease (CKD), or a history of traumatic brain injury (TBI). Compare the score’s 
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performance to the Elixhauser-Quan index using AUC, sensitivity, specificity, Brier 

Index, and net reclassification index statistics. Determine if the new score provides any 

population insights beyond those provided by the existing Elixhauser-Quan index. 

 

2.2.3 Aim 3 

Compare machine learning and model-based multiple imputation methods for dealing 

with missing covariate data under missing at random (MAR) and missing not at random 

(MNAR) scenarios. For MNAR situations, also examine sensitivity analysis approaches 

to determine whether unbiased imputation is possible in typical missing data scenarios 

seen in VA research. Evaluate imputation performance using simulations and by 

application to VA traumatic brain injury data using relative bias, root mean squared error, 

efficiency, and coverage probability statistics.  

 

2.2.4 Aim 4: 

Publish the R and SAS program code used in each aim on GitHub, along with a 

simulated dataset that can be used to demonstrate its function. 

 

2.3 Background 

2.3.1 Diagnostic code system 

 In administrative healthcare data, comorbidity information can be found in 

numerous forms, including physical exam notes, laboratory results and pharmacy 

records, but this work is focused on that information encoded by the International 

Classification of Diseases, Clinical Modification (ICD-9-CM or ICD-10-CM), or by a 
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similar system. These variables consist of 5-digit hierarchical codes, where codes 

sharing the first three or first four digits are likely to involve related diseases. This 

hierarchy creates a correlation structure within these data, yet the methods commonly 

used to model disease burden in ICD-CM data do not account for this structure; nor do 

they attempt to account for any unidentified interactions. Figure 1 shows the hierarchy 

for hypertensive chronic kidney disease within the ICD-9-CM system. All codes 

associated with this condition share the first three digits, while the fourth digit in this 

example indicates whether the disease is benign, malignant, or unspecified. The fifth 

digit further classifies the disease. 

 

Figure 1: Example hierarchy for the ICD-9-CM system. CKD is chronic kidney disease, and ESRD 
is end stage renal disease. 

 

2.3.2 Existing comorbidity summary measures 

 There are several well-known comorbidity summary measures based on the ICD 

system. The Charlson Comorbidity Index is a score based on the sum of seventeen 

weighted comorbidities [1]. Deyo et al., Romano et al., Quan et al. and others developed 

closely-related indices; the newer versions were based on the ICD-9-CM system and 

thus could be directly applied to administrative databases [7 – 9]. Elixhauser et al. 
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developed a less parsimonious ICD-9-CM approach for predicting in-hospital mortality 

that defined 31 comorbidities [2]. Elixhauser excluded numerous conditions such as 

those related to the primary diagnosis, acute complications related to treatment, or those 

considered to be unimportant. The Elixhauser index was shown in several studies to be 

more effective than the Charlson Index in predicting in-hospital mortality and one-year 

mortality [2, 9, 10] and today remains one of the most commonly used comorbidity 

indices based on the ICD system. Quan et al. developed enhanced indices that 

corrected inconsistencies in earlier algorithms and provided better accounting for the 

ICD taxonomy, which can frequently lead to the same condition being coded in multiple 

ways.  

 Van Walraven et al. [11] sought to derive a single score to represent the 31 

independent Elixhauser comorbidities, such that it might be easier to develop more 

parsimonious models, particularly for small populations. This approach produced 

weights for each comorbidity based on the relative magnitude of predicted coefficients 

from a multivariate logistic model. Though the authors concluded that neither the 

summary score nor the original Elixhauser index was effective in predicting in-hospital 

mortality, they demonstrated their score’s predictive ability was as effective as the 

original Elixhauser index in adjusting for comorbidities based on the comparison of AUC 

statistics in a dataset of approximately 345,000 hospital admissions. 

 Quan’s enhanced version of the ICD-9-CM Elixhauser index is used throughout 

the first two aims as the primary basis for comparison since it was shown to have 

superior predictive performance over the earlier versions of the Elixhauser index [9], and 

since the van Walraven score was shown to offer no additional advantage. Further 
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reference to the ‘Elixhauser Index’ throughout this work thus refers to the Quan 

enhanced version of the ICD-9-CM Elixhauser Index unless otherwise indicated. 

 Alemi et al. developed an ICD summary score called the multi-morbidity index 

based on an application of the Naïve Bayes classification model [12]. This index was 

applied in several large Veteran’s Administration populations [13] to predict mortality 

within 6 or 12 months, and the authors compared prediction performance against models 

based on the Quan variant of the Charlson index and the van Walraven variant of the 

Elixhauser index. The AUC for the multi-morbidity index predicting 6-month mortality was 

0.784, compared with values of 0.652 and 0.639 for the Quan-Charlson and van 

Walraven Elixhauser measures. Although this represents a substantial improvement, the 

authors do not demonstrate whether the Naïve Bayes approach was the best for binary 

ICD data, or whether other statistical or machine learning approaches might produce 

superior results.  

 

2.3.3 Choice of classification models 

 The first two aims both involve problems of classification. In the first aim, for 

mortality outcome 1( ,..., y )ny  and binary ICD-9 predictors 1( ,..., )px x , the goal is to find 

an unknown function capable of predicting the outcome: y = f (x). In the second aim, the 

challenge is similar, except that the ICD-9 binary predictor matrix is replaced by a single 

summary score for each patient. Existing comorbidity measures such as the Elixhauser 

or Charlson indices were developed using traditional statistical methods (logistic 

regression and Cox proportional hazards models) with input from clinicians for decisions 

on whether to include or exclude various conditions [1, 2]. In order to produce models 
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with improved classification performance, numerous approaches were considered, 

including statistical models, machine learning algorithms, and Bayesian methods which 

incorporated both statistical and machine learning elements. Although there were 

dozens of methods to consider (see Hastie et al [14]), the intent was to adapt and test as 

many as feasible, with the goal for finding those with the best classification performance 

in ICD-9 data, and with the additional goal for finding a collection of methods which 

succeeded due to dissimilar strengths. For example: 

1)  Some statistical models may succeed based on their ability to account for the 

correlation structure in ICD-9 data. These data are characterized by hundreds of 

binary features, many of which are sparse, and many are correlated with other 

features. This correlation could be due to the hierarchical structure imposed by 

the ICD system; in other cases it could be due to associations between disease 

conditions not found within the same hierarchy.  

2)  Machine learning methods may succeed due to their ability to automatically 

account for unknown interactions and non-linear relationships between predictors 

[15 – 18]. 

3)  Methods based on an ensemble of models may be more successful. Dietterich 

[19] provided a justification for the observation that ensembles of accurate and 

diverse classifiers often perform better than the individual models. While his work 

helps to explain the success of several machine learning methods, it also justifies 

a model based on the pooled predictions of the successful statistical and 

machine learning methods from the first aim. Dietterich defined an accurate 

classifier as one with an error rate lower than that based on random guesses; 
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diverse classifiers are those with different error rates for the same data. He 

provided three reasons why an ensemble often provides better results than the 

individual classifiers [19]. First, given a hypothesis space, H , each classifier 

provides a hypothesis, with errors associated with the model’s inherent 

characteristics and with the amount of training data provided. When the votes of 

many classifiers are combined, the overall accuracy will likely improve if the 

classifiers are truly diverse. Next, models based on searches over the hypothesis 

space may become fixed on local optima, and an ensemble of models with 

different search paths will likely provide a better overall solution. Finally, although 

H  theoretically contains all possible hypotheses, its size is in practice limited by 

the training data’s dimensions such that the true classification function might be 

excluded from H . When the results of numerous models are combined, perhaps 

in a weighted sum, it may be possible to expand the hypothesis space such that 

the true classification function is found.  

 

2.3.4 Establishing baseline disease burden 

 Each aim involves observational data in which patients were included at the start 

of the study if they met diagnostic criteria for the primary disease (diabetes, chronic 

kidney disease, or traumatic brain injury), and additional patients entered each year of 

the study as they first met the same criteria. Patients were followed until death or the 

end of the study. There was no “dropout” category: patients who had no in-patient or out-

patient visits in a given year were assumed to be alive unless a date of death was found. 

In many cases an exact diagnosis date was unknown. For example, in TBI patients, the 
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original injury may have occurred in combat, and the injury date would likely only be 

found in the patient’s Department of Defense medical record, which was not available in 

this study. Similarly in other cohorts, the original diagnosis may be recorded by another 

healthcare system. Given these limitations, mortality outcomes were defined based on 

how many years the patient lived after entering the study. Each patient’s set of unique 

ICD-9 codes were collected from the earliest entry in the patient’s VHA record until an 

appropriate cutoff point before death, or until the study’s end, as applicable. For five year 

mortality, this cutoff was arbitrarily set as follows: 

1)  If the patient died within five years of entering the study, the cutoff was set at one 

year prior to death. This excluded codes for conditions that typically occur just 

prior to death, such as palliative care; these conditions are highly associated with 

the outcome but are of less use in making long-term predictions.  

2)  If the patient died after being in the study for more than five years, the cutoff for 

ICD code collection was set at five years after study entry. 

3)  If the patient did not die during the study, the cutoff was set at the study’s end 

date.  

Figure 2 illustrates these limits for two patients (A and B). Regions shaded in red are 

ICD-9 code collection periods for patients A and B. Patient A entered the VA system in 

1985 and entered the study in 2000; patient B entered the VA system in 2003 and 

entered the study at the same time. Patient A died within 5 years of the study’s start 

date, while patient B was still alive 5 years after entering the study and was recorded as 

“alive” in the five-year mortality variable. Patient B’s ICD code collection stopped five 

years after he or she entered the study. The two patients may have substantially 
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different total numbers of ICD codes, and the challenge for the models was similar to 

asking, “given everything in the record up until this point, what is the probability the 

patient actually died within five years of entering the study?” For the models to provide 

good predictions, the presence of more or less information for a given patient should not 

lead to bias in either direction. The comparison models based on the Elixhauser index 

faced the same challenge. While there are several possible ways to establish the limits 

described here, this method was found to produce reasonable results.  

Figure 2: Establishing five year mortality and ICD-9 collection periods for a study running between 
2000-2015.  

 

2.3.6 Evaluation of model performance 

2.3.6.1 Evaluation of classification models (Aims 1 and 2) 

 Area under the receiver operating characteristic curve (AUC), sensitivity, 

specificity, positive predictive value (PPV) and negative predictive value (NPV) were all 

considered when comparing models. The net reclassification improvement (NRI) statistic 
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for events (patients who died) and non-events (patients who lived) was also considered 

[20]. NRI statistics for the Elixhauser models are not provided since they form the 

reference. While NRI statistics have been widely adopted, Pepe et al. [21] showed they 

should be used with caution. In particular, the authors demonstrated that positive NRI 

results could be achieved in some situations where the new model involved an added 

variable with no predictive value, possibly due to poorly fitting risk models. The AUC and 

related ROC statistics provided reliable results in these situations. Primary emphasis 

was thus placed on the AUC and related statistics; in particular, the NRI result was not 

claimed as evidence for prediction performance improvement unless similar gains were 

seen in the AUC. Finally, the Brier Score provided a measure of misclassification error or 

mean-squared error for binary outcomes [22]. 

 

2.3.6.2 Evaluation of multiple imputation models (Aim 3) 

Imputation methods were compared using the following statistics: 

1) Relative bias: ˆ ˆ ˆ( ) /
o

    , where ̂  and ˆo
 are the generalized linear model 

parameter estimates based on the imputed data and the full dataset of complete 

cases, respectively. 

2) Efficiency: ˆ ˆvar( ) / var( )
o

    

3) Root mean square error: 
2 2ˆ ˆ ˆ( )o    , where 

2̂ is the estimated variance of the 

parameter estimate from the model based on imputed data. 

4) Coverage probability: the probability based on 1000 bootstrapped iterations that the 

95% confidence interval for the parameter estimate contains ˆ o . 
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2.3.7 Missingness in VHA data 

 Missing data in key VHA variables such as race/ethnicity poses a substantial 

problem for investigators involved in healthcare inequities. Further, several investigators 

have reported missing race information in VHA or Medicare data may not be missing at 

random [4 – 6]. Depending on the timeframe being studied, the level of missingness may 

be substantial. Stroupe et al. [23] reported that 48% of VHA patient records had missing 

race-ethnicity information in 2004, but this value had been reduced to 15% by 2012 [3] 

due to concerted efforts to collect this information and due to a 2003 requirement for 

recording self-reported race-ethnicity rather than observer-reported values [24].  Stroupe 

et al. [23] demonstrated that further improvements were possible by merging VHA data 

with Medicare data; in the author’s experience with several VHA cohorts followed 

through 2012 or later, the missing race fraction can now be reduced to below 5%. 

However, the missing race-ethnicity problem is far from solved: even at these lower 

levels, if the data are believed to be missing due to non-random processes, investigators 

must still be concerned whether unbiased results were achieved. Further, studies 

involving patients who were not followed in recent years will likely still face substantial 

missing data problems.  
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2.3.8 Existing multiple imputation methods 

 In past years, researchers often dealt with the missing data problem by simply 

conducting complete-case analysis, though this strategy could lead to biased results 

unless the data were missing completely at random. More recently, steps to attempt to 

assess the pattern of missingness and methods to help achieve unbiased results are 

commonly seen. Numerous parametric imputation methods exist for handling data with 

missing completely at random (MCAR) or missing at random (MAR) patterns; multiple 

imputation with by chained equations (MICE) is one commonly used approach due to its 

ability to handle multiple imputation for mixed data types [25, 26]. MICE imputes missing 

values from separate conditional distributions for each variable with missing values, but 

has been criticized for lacking a theoretical basis [27], and for requiring the investigator 

to have advance knowledge of non-linear relationships or collinearities between 

predictors  [17]. Other researchers have concluded that machine learning methods can 

automatically handle interactions and other concerns while also producing inference 

estimates with narrower confidence limits and with more computational efficiency. The 

random forest algorithm has been applied in several multiple imputation research efforts, 

and involves bootstrap aggregation of numerous independent decision trees, and can 

account for complex interactions and collinearities between predictors more readily than 

many parametric methods, while the ensemble voting of independent trees naturally 

lends itself to an efficient imputation process [28]. For example Stekhoven et al. [16] 

claim their multiple imputation approach (missForest) based on the random forest 

method was superior to traditional statistical methods including MICE, based on 

improved misclassification error rates or normalized root mean squared errors. Jerez et 
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al. [29] provided a similar conclusion based on a comparison of machine learning and 

statistical imputation methods.  Other researchers have incorporated machine learning 

methods within an existing statistical method. For example, Shah et al. [17] incorporated 

random forest as the multiple imputation method within the existing MICE method and 

showed the new approach had a superior ability to handle nonlinear relationships and 

collinearities.  

 

2.3.9 Evaluating missing not at random (MNAR) situations 

 Though the multiple imputation methods described above are capable of 

producing unbiased results under MCAR and MAR, such results are far less likely under 

MMAR. As Verbeke et al. [30] discuss, it is possible to construct models based on 

MNAR assumptions, but these assumptions are not testable since their support is not 

contained in the data. Further, Molenburghs et al. [31] demonstrated that it is not 

possible to empirically distinguish between MNAR and MAR situations from the data 

alone because for every MNAR model, it is possible to build an MAR model with the 

same fit. The most common approach given these circumstances is to conduct 

sensitivity analysis on MAR models to examine their stability when MNAR assumptions 

are introduced [32, 33] Though numerous approaches are possible, two general types of 

sensitivity analyses are most common; these are based on pattern mixture models [32 – 

34] and selection models [35].  

 A pattern mixture model assumes that a number of missingness patterns may 

exist, each with a separate joint distribution for the partially and fully observed variables. 

For patients 1i ,...,n  and covariates 1iY  and 2iY , assume 1iY  has missing values with 
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indicator
iR , such that 0iR when 

1iY is missing and 0iR otherwise. Under MNAR the 

joint distribution 1 2i i if (Y ,Y ,R )  is factored as 1 2i i i if (Y ,Y | R ) f(R ) , where the joint distribution of 

the partially and fully observed variables is conditional on the partially observed variable. 

Since the MNAR distribution cannot be determined from the observed data, Carpenter 

and Kenward [32] suggest starting from the MAR scenario and then adjusting the model 

using MNAR assumptions in order to examine whether the MAR assumption is sensitive 

to such changes.  

  A selection model, on the other hand, factors the joint distribution 1 2i i if (Y ,Y ,R )  

differently; now the focus is on the mechanism behind the MNAR process: 

1 2 1 2 1 2i i i i i i i if (Y ,Y ,R ) f ( R |Y ,Y ) f (Y ,Y ) . Numerous methods are based on this factorization; in 

the third aim, a weighting approach is applied [36]. 

  

2.3.10 Resampling Methods (Aims 1 - 3) 

Resampling methods were applied for several reasons:  

1)  Some methods, including Bayesian additive regression trees and random forest 

could not be run in a reasonable amount of time on large datasets involving millions 

of patients without resorting to a parallel computing environment. Instead, a 

resampling approach was used to generate model performance estimates. For 

example, in the first aim, 1000 smaller test and training datasets of 5000 

observations each were generated by randomly sampling the full datasets with 

replacement. Performance statistics were collected for each validation run and the 
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overall mean and 95% confidence intervals generated by 1000 iterations were used 

to compare the models’ relative performance.  

2)  In simulations, a resampling approach was used to generate large numbers of 

independent training and validation datasets from actual VHA data rather than 

relying on fully-generated data. This helped to ensure that the complex structures 

and associations found in real patient observations were also present in synthetic 

datasets. This was particularly important due to the complex correlation structure in 

ICD-9 data. As demonstrated by Marshall et al. [37] and Gebregziabher et al. [38] 

this approach is reasonable when the original dataset is large enough to help assure 

independence between samples.  

 

 When applying resampling methods, steps were taken to ensure full 

independence between training and validation datasets. In the first aim, training and 

validation datasets were generated in pairs during each iteration, with steps taken to 

ensure no observations were common to the two sets during the bootstrapping process. 

In the second aim, 1000 training data sets were used to determine variable importance 

measures, which were then used to determine the comorbidity score. The score, in turn, 

was tested on 1000 validation data sets. Because the validation step took place after all 

of the training datasets had been analyzed, it was necessary to randomly partition the 

full dataset such that training data was drawn from one subset, and validation data from 

the other. This ensured that validation data had not been used in model development. 

 

  



 

 

18 

 

 

2.4 Significance 

This research made new contributions in the following areas: 

1)  Although other research has compared traditional statistical methods and machine 

learning approaches in the development of predictive models for specific disease 

conditions [39 – 44], to the best of the author’s knowledge, this is the first effort to 

conduct a detailed application of such methods in the development of improved ICD- 

based disease burden models (aim 1) and an improved ICD-based summary score 

(aim 2). In the first aim, the best models (Bayesian additive regression trees, random 

forest, elastic-net and the pooled model) consistently had better predictive 

performance when compared with the Elixhauser index. Similarly in the second aim, 

the comorbidity summary score for predicting five-year mortality had stronger 

predictive performance than the widely-used Elixhauser index. 

2)  This research provided a comprehensive comparison of multiple imputation methods 

under both MAR and MNAR conditions, and in particular, developed new 

applications for applying machine learning methods within the multiple imputation 

with chained equations (MICE) framework. Additionally, several MNAR sensitivity 

methods were adapted and applied, both in simulations and in actual data, to 

demonstrate that unbiased inference may not be possible in some MNAR scenarios, 

even when the missingness mechanism is fully understood. This result has direct 

implications for VHA research involving missing race/ethnicity data.
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3.  First manuscript: Comparison of Statistical and Machine Learning Methods for 
Developing Improved Comorbidity Models Based on the ICD System 

 

3.1  Introduction 

 When conducting healthcare outcomes research, accounting for disease burden 

is essential for reducing the potential for bias in estimating the association between 

outcomes and risk factors. For example, researchers designing studies to examine 

disparities between racial and ethnic groups with diabetes must first account for each 

patient’s other diseases and conditions; otherwise, the study is not likely to produce 

meaningful results. Since this research frequently involves administrative healthcare 

databases or electronic health records, this effort will become increasingly important as 

the availability and quantity of such data continues to rapidly expand.  

 In administrative healthcare data, comorbidity information is found in numerous 

forms, including physical exam notes, laboratory results and pharmacy records, but this 

paper is concerned with that comorbidity information encoded by the International 

Classification of Diseases, Clinical Modification (ICD-9-CM or ICD-10-CM), or by a 

similar system. These variables consist of hierarchical codes. For example, in the ICD-9- 

system, codes sharing the first three or first four digits are likely to involve related 

diseases. This hierarchy creates a correlation structure, yet the methods commonly used 

to model disease burden in ICD-CM data do not account for this structure. Nor do they 
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attempt to account for any unidentified complex interactions and frequently do not 

consider disease severity.  

 There are several well-known comorbidity summary indices based on the ICD 

system. The Charlson Comorbidity Index [1] is a single score based on the sum of 17 

weighted comorbidities. Deyo et al. [45], Romano et al. [8], Quan et al. [9] and others 

developed closely related indices based on the same 17 comorbidities. In contrast to the 

Charlson’s single summary score, Elixhauser et al. [2] developed a more complex index 

that consisted of 31 distinct comorbidities. Because the outcome was in-hospital 

mortality, Elixhauser excluded conditions related to the primary diagnosis, acute 

complications related to treatment, or those considered unimportant. The Elixhauser 

index was shown in several studies to be more effective than the Charlson Index for 

predicting in-hospital mortality and one-year mortality and today remains one of the most 

commonly used comorbidity indices based on the ICD system [2, 9,10]. Quan et al. [9] 

developed enhanced indices that corrected inconsistencies in earlier algorithms and 

added improved accounting for the ICD taxonomy, where the same condition might be 

coded in several ways. Quan’s enhanced version of the ICD-9-CM Elixhauser index is 

used as the basis for comparison here since it was shown to have superior predictive 

performance over the earlier versions [9].  

 Kheirbek et al. [12] developed an ICD summary score called the multi-morbidity 

index based on an application of the Naïve Bayes classification model. This index has 

been applied in several large Veteran’s Administration populations to predict mortality 

within 6 or 12 months [13]. The multi-morbidity index’s prediction performance was 

shown to be superior against models based on the Quan variant of the Charlson index 
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and the van Walraven variant of the Elixhauser index [11]. However, the authors only 

considered the naïve Bayes approach, and did not demonstrate whether other statistical 

or machine learning methods might produce superior results. Similarly, Siddique et al.     

[46] relied on a single method (classification trees) to develop an ICD-9-CM based 

algorithm for predicting which patients had lower gastrointestinal bleeding.  

  This work is based on the premise that advances in computing power, machine 

learning and statistical methods since the Elixhauser Index’s introduction in 1998 will 

support the development of improved ICD-based models with better predictive 

performance. Seven statistical and machine learning methods for the analysis of high 

dimensional data with binary ICD-CM predictors are compared. These methods apply 

various approaches that were not considered in the Elixhauser index’s development, 

including (1) empirically identifying latent features, (2) accounting for the inherent 

hierarchical structure in ICD-CM data, (3) automatically incorporating complex 

interactions, and (4) attempting to account for disease severity. Although other research 

has compared traditional statistical methods and machine learning approaches in the 

development of predictive models for specific disease conditions [39 – 44], to the best of 

the author’s knowledge, this is the first effort to conduct a detailed comparison of such 

methods in the development of an improved ICD-CM based comorbidity summary 

measure.  

 This research is focused on the ICD-9-CM rather than the ICD-10-CM system 

because it involves Veteran’s Administration data recorded under the ICD-9 system, 

though the same methods could easily be applied to ICD-10-CM data.  
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3.2  Study Design and Methods 

 This study was conducted in two phases. In the first phase, the seven methods 

described below were applied, each in separate models for two populations. The 

outcome was mortality within the study’s timeframe, and no ICD-9 codes were excluded 

based on their temporal proximity to the patient’s death. Each model’s predictions were 

compared to those from models based on the Elixhauser-Quan comorbidities derived 

from the same ICD-9 data. Each model was trained using a single-disease population 

and was validated using other patients drawn from the same population. In the second 

phase, the top four models based on predictive performance from the first phase were 

used to examine whether performance varied when the outcome was shifted to five-year 

mortality instead of death within the study’s timeframe. Further, ICD-9 codes recorded 

within one year of death were excluded since these might provide an unrealistic 

advantage over the Elixhauser-Quan index. For example, the ICD-9 code for palliative 

care is strongly associated with death but may not be useful for predicting mortality 

several years in the future. Finally, in the second phase each model was again trained in 

a single-disease population, but was now validated on a combined population equally 

drawn from the traumatic brain injury and diabetes groups in order to examine how well 

they each performed in a more general setting with a wider range of comorbidities. 

 

3.2.1 Populations 

Two national cohorts of U.S. Veterans were used; these had been created for 

earlier studies by linking numerous Veterans Health Administration patient and 

administrative databases. The first included 625,903 patients with diabetes mellitus (DM) 



 

 

23 

 

based on two or more related ICD-9-CM codes and at least one prescription filled for a 

medication to treat diabetes [47]. In the original study, Veterans were followed from 2002 

until death, loss to follow-up, or until December 2006, and newer data was added to 

extend the follow-time until December 2012. The second cohort involved 168,125 

Veterans diagnosed with traumatic brain injury (TBI) during 2004 and 2005. In the 

original study, patients were followed from the point of entry until death, loss to follow-up, 

or until December 2010 [48]; newer data were added to extend the follow-time to 

December 2014. Both studies were approved by the Medical University of South 

Carolina Institutional Review Board (IRB) and the Ralph H. Johnson Veterans Affairs 

Medical Center Research and Development committee. 

 

3.2.2 Patient demographic and clinical covariates 

Models termed ‘unadjusted’ used only on ICD-9 predictors; those termed 

‘adjusted’ also controlled for each patient’s demographic and clinical covariates. In both 

cohorts, the patient’s age in years was treated as a continuous variable. Race and 

ethnicity were categorized as non-Hispanic white, non-Hispanic black, Hispanic, and 

other / missing. Gender and marital status were treated as binary variables. In the TBI 

cohort, homeless status was treated as a binary variable. TBI severity was categorized 

as ‘not severe’, ‘moderately severe’, and ‘severe’. A binary variable was used to indicate 

if the TBI injury was related to military service. The patient’s location was categorized 

over the five Veterans Administration (VA) regions. The patient’s location by Rural Urban 

Commuting Area (RUCA) code was categorized as ‘urban’, ‘rural’, and ‘highly rural’. 
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Finally, the availability of poly-trauma treatment centers by VA station and by VA 

integrated service network (VISN) were each included as binary variables. 

 Prior to analysis, erroneous duplicate formats of ICD-9 codes were identified and 

corrected to the single correct format. For example, codes 250, 2500, and 25000 all 

represent the same condition, but each would be treated as separate predictors in 

machine learning algorithms. Next, the listing of unique ICD-9 codes gathered from all 

patients was ranked by frequency. The 1000 most frequent codes formed the feature set 

used in subsequent analyses, and this listing accounted for approximately 90% of all 

ICD-9 codes recorded among all patients in the respective datasets.  

 

3.2.3 Outcomes 

 In the first phase, the outcome was death within the study window; in the second 

phase, the outcome was five-year mortality.  

 

3.2.4 Methods 

Each phase was conducted in two parts: (i) first prediction models were 

developed using training datasets; (ii) each prediction model was then validated using 

test data. Since computational efficiency was a concern for some methods due to the 

very large datasets involved, resampling methods were used to generate 1000 smaller 

test and training datasets of 5000 observations each by randomly sampling the full 

datasets with replacement. Performance statistics were collected for each validation run, 

and their mean and 95% confidence intervals were determined over 1000 iterations. As 

demonstrated by Marshall et al. [37] and Gebregziabher et al. [49], this non-parametric 
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bootstrapping approach is reasonable for these large datasets, such that independence 

between numerous samples is reasonably assured. 

 
3.2.4.1 Generalized linear model with penalized maximum likelihood (elastic-net 

regression):  

 Several penalized generalized linear models were considered, including ridge 

regression [50], LASSO regression [51], elastic-net regression [52], and group LASSO 

regression [53]. Elastic-net regression provided the best predictive performance in the 

ICD-9-CM datasets. The elastic-net model incorporates both the LASSO and ridge 

approaches with the addition of parameter  such that the loss function becomes the 

LASSO model when   is 1, and the ridge model when   is 0. An iterative process 

showed that  = 0.5 provided the best predictive performance. For binary outcome

( 1,1)y  , predictors 1 1,: (1, ,..., )i i p ix x x   and shrinkage parameter  , the following 

equation was minimized in order to determine coefficient estimates [14]:   

𝑚𝑎𝑥
𝛽0, 𝛽

 [∑ {𝑦𝑖(𝛽0 + 𝛽𝑇𝑥𝑖) − log(1 + 𝑒𝛽0+𝛽
𝑇𝑥𝑖)}𝑛

𝑖=1 − 𝜆∑ {𝛼|𝛽𝑗| + (1 − 𝛼)𝛽𝑗
2 }

𝑝
𝑗=1 ]. 

The R package glmnet [54] was used to determine parameter estimates based on the 

training data, and then used these estimates to generate predictions in the test data. 

 

3.2.4.2 Model averaged regression coefficients (MARC):  

 This model is based on adapting a method developed by Glance et al. [55] for 

their Trauma Mortality Prediction Model. This approach attempted to account for the 

correlation structure created by the ICD-9-CM hierarchy. The first step involved creating 

two generalized linear models using a probit link. The first model used the full ICD-9-CM 
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code as it appears in the data. For the second model, Glance et al. relied on a separate 

scale for trauma location and severity to group related injuries into higher level ‘bins’. 

This would not be practical here since the models include every unique disease code 

rather than a limited set of trauma injuries. Instead, each ICD code was collapsed to its 

first three digits, thereby combining all information for a given hierarchy of related 

comorbidities into a single high-level variable. The estimated coefficients for the two 

models were then combined using an inverse variance weighting approach such that the 

high-level model coefficients were weighted more when the variance of the 

corresponding coefficient estimate was lower than that for the full model. Thus, when 

there was little information about a particular comorbidity (and thus a higher estimated 

coefficient variance), information from the related comorbidities in the hierarchy was 

given a stronger weight.  

 The full model, which relied on the 5 digit ICD-9-CM code, was written: 

 
1000

0 1 2 3 4 5 6

1

 Φ          ii

i

P death age gender rural rx ace edm s marital       


 
        

 
 , 

where   is the probit link, i ix  and  are the coefficient and binary indicator for the 
thi  

ICD-9-CM code, and i  is the coefficient for a given patient covariate. 

 The high-level model, which collapsed data to the first three digits of the ICD-CM 

code, was written: 

  0 1 2 3 4 5 6
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j
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where j jz  and  are the 
thj  coefficient and binary indicators for the J high level ICD-

CM variables created when the ICD-CM codes were collapsed to the highest level. The 

parameter estimates from the two models were combined using weighted inverse 

variances to produce a Model Averaged Regression Coefficient (MARC) for each of the 

top 1000 ICD-CM predictors. That is, 
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where var( ˆ )j  is a weighted variance of the ˆ 'i s  that map to a specific ˆ
j , where each 

ˆ 'i s contribution to the overall variance was weighted by its inverse variance [55]: 
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Finally, new predictions were made using test data and the sum of each patient’s MARC 

values associated with their ICD-9-CM codes. In summary, the MARC values were 

determined from training data, and were then applied in test data for new patients in the 

validation model: 

    50 1 1 2 3 4 6P   C C       medsdeath Φ age gender rural raceMAR maritau ls  C m              . 
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3.2.4.3 Naïve Bayes Variable Selection (multi-morbidity index) 

 Kheirbek et al. [12] developed an ICD summary score called the multi-morbidity 

index based on an application of the Naïve Bayes classification model. For binary 

random variables 1( , , ,... )r dX X XX =  sampled from a population classified by two 

categories ( i  or j ), the odds of outcome i  occurring are: 

( | ) ( | ) (i)
.

( | ) ( | ) ( )

P i x P x i P

P j x P x j P j
  

Each random variable is assumed to be independent of the others: 

1

1

( ) ( | )
( | )

.
( | )

( ) ( | )

d

r

r

d

r

r

P i P x i
P i x

P j x
P j P x j









 

The posterior probability for outcome i  can be easily calculated from the posterior odds 

above. The assumption of independence among the predictors in X  is questionable, 

and Hand et al. [56] discuss reasons why this approach is nonetheless often successful. 

In particular, the authors argue that although the Naïve Bayes approach may produce 

biased estimates, the variance for such estimates is often lower than seen in less 

parsimonious models. Further, for classification purposes such bias is not a hindrance 

as long as it is in the right direction. Kheirbek et al. made several necessary 

accommodations in order to apply the Naïve Bayes approach to ICD-9 data. For 

perfectly separated predictors, the posterior odds were arbitrarily defined as 1 1n  

when all patients died and 1n  when all patients survived, where n  is the number of 

patients with a given ICD-9 code. Next, when the number of patients with a given ICD-9 

code was small, data from related diagnoses in the same ICD-9 hierarchy were 
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combined based on the assumption that related conditions have similar associations 

with the outcome of interest. 

 

3.2.4.4 Association Rules Analysis [14]: 

  This is an unsupervised machine learning method concerned with finding joint 

values of predictors  1, 2, ... pX X X  that appear most often in the data. Because ICD-9-

CM data is binary, the support for each jX  is S {0,1} , and the goal is to find 

conjunctive rules based on regions in the X space with a larger probability for joint 

occurrences: 

1
Pr (X s)

p

jj

 
 

, 

where s is a single value of the support for jX . Next, the conjunctive rules are 

transformed to become: 

Pr ( 1) Pr ( 1)
p

k kk Kk K
Z Z



         ,  

where kZ represents a binary dummy variable formed from one level of jX . The set of 

predictors in conjunctive rule K is called the item set, and the number of kZ variables in 

the set is known as the size. The estimated value for a conjunctive rule is called the 

support or prevalence T : 
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where ikz is the value of kZ  for the 
thi observation. T  thus represents the proportion of 

observations which contain the conjunctive rule. When the item set K  is divided into two 

parts, such that antecedent A  predicts the presence of consequent B , ( )T K  becomes

( )T A B . The confidence C  for this association could be viewed as finding ( | )P B A  : 

 
 

 

T A B
C A B

T A


  . 

When the predictors which make up A  appear in an observation, the confidence value 

represents the probability that predictor B  will also appear. Hastie et al. [14] comment 

that association rules analysis is very good at finding combinations of variables that 

appear frequently, but is less good at finding those with lower support. Thus we would 

not expect to identify a joint occurrence that included at least one rare ICD-9-CM 

diagnosis, even if this joint occurrence were strongly associated with the outcome.  

 The R package arules was used to implement association rules analysis [57]. 

Prevalence and confidence thresholds t and c were set to limit the number of rules 

returned by the algorithm: 

( ) tT A B   and ( )C A B c  . 

Because this is an unsupervised method, joint occurrences were identified without 

regard to the outcome of interest. Each candidate rule was tested for significance 

against the outcome on a univariate basis using a different set of training data than that 

used to generate the association rule. Multiple testing was accounted for during this 

process using the Bonferroni adjustment, such that the critical value for significance 

(p=0.05) was divided by the total number of rules that were tested. Next, LASSO 
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regularized logistic regression was used to help determine which rules were most 

important in predicting the outcome. The resulting association rules and their parameter 

estimates were then used to make predictions for other patients in a test data set.  

 

3.2.4.5 Random Forest (RF)  [28] 

  This is a well-known ensemble method based on classification trees that relies 

on bootstrap aggregation (or ‘bagging’) to generate a forest of generally uncorrelated 

trees, where each tree then votes for the predicted outcome. The forest is termed 

“random” due to the random selection of a pre-specified number of features (or predictor 

variables) at each node; the feature that leads to the largest improvement in the tree’s 

classification ability is then used to split the data at that node. The random forest method 

can identify complex interactions, and was reported to be very competitive with other 

machine learning methods when compared on the basis of misclassification error [14]. 

The R package randomForest was used to implement this method [58]. A forest was 

generated using patients in a training dataset, which was then used to make predictions 

on other patients in test data. 

 

2.4.6 Bayesian Additive Regression Trees (BART) [59] 

  This is an extension of the supervised tree-based ensemble learning method, 

but unlike random forest, prior distributions are established for each tree’s decision rules 

and terminal node parameters, and an MCMC algorithm is used to sample from the 

posterior distribution for the ensemble of trees. The authors contend their approach 

provides a substantial degree of regularization such that each tree’s complexity is 
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reduced. They also claim that the predictive results in some datasets were superior to 

random forest, neural nets, and regularized regression methods [59]. For a BART model 

with binary outcome Y , a probit model is used: 

[ 1| x] [ ( )]P Y G x   , 

where x represents the data and ( )G x  is a summation of m trees, where the 
thj  tree is 

designated as ( ;T , )j jg x M  : 

1

( ) ( ; , )
m

j j

j

G x g x T M


 . 

Here, T and M are the tree’s decision rules and terminal node parameters, respectively, 

and each is assumed to have independent and identical prior distributions. The prior for 

jT  is defined in multiple parts. First, the probability that a given node of depth d is non-

terminal is (1 )d   , for (0,1), [0, )    . Values of 0.95 and 2 were selected for 

  and  , respectively in order to help limit each tree’s size. Finally, uniform priors were 

used to model the splitting variable and splitting rule assignments for interior nodes in 

each jT . For jM , a Gaussian prior distribution is assumed for the mean value ij  for 

terminal node i within tree j: 

2~ (0, )ij N   , where 3.0 / k m  , 

where m is the number of trees, typically 200, and k is a parameter typically set between 

1 and 3. This prior serves to limit the values of G(x) to within (-3.0, 3.0), and thus shrinks 

G(x) towards 0 and P(Y=1|x) towards 0.5.  
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 The R package BayesTree was used to implement BART [60]. This algorithm 

develops the model based on the training data, and then provides the results of post-

convergence samples from the posterior distribution using test data. The mean or 

median of these samples is then used to provide a prediction for each test set 

observation. The algorithm also returns the number of times each predictor is used in a 

decision rule among all trees; this serves as a variable importance measure.  

 

3.2.4.7 Pooled prediction model  

 An ensemble model was developed based on the combined predictions from all 

of the models considered. Here each model’s test data predictions were used as 

independent predictors in a logistic model using the same test data. The predictive 

performance of this combined model was then compared against the other six models. 

 

3.2.4.8 Elixhauser-Quan comparison model 

  Each of the above approaches was compared against a model based on the 31 

independent Elixhauser-Quan comorbidities: 

  
31

0 i i 1 2 3 4 5 6

i 1
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 ,  

where iC  is the estimated coefficient for the ith comorbidity from the enhanced 

Elixhauser-Quan index [9].  
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3.2.4.9 Model Performance Assessment 

 Area under the receiver operating characteristic curve (AUC), sensitivity, 

specificity, positive predictive value (PPV) and negative predictive value (NPV) were all 

considered when comparing models. Net reclassification improvement (NRI) was also 

reported for events (patients who died) and non-events (patients who lived) [20]. While 

NRI statistics have been widely adopted, Pepe et al. [21] showed they should be used 

with caution. In particular, the authors demonstrated that positive NRI results could be 

achieved in some situations where the new model involved an added variable with no 

predictive value, possibly due to poorly fitting risk models. The AUC and related ROC 

statistics provided reliable results in these situations. Primary emphasis was thus placed 

on the AUC and related statistics; in particular, a strong positive NRI result was not 

claimed as evidence for prediction performance improvement unless similar gains were 

seen in the AUC. Finally, the Brier Score was reported as a measure of misclassification 

error [22]. 

 

3.3.  Results 

 Table 1 provides demographic information for the two populations examined in 

this study and Figure 3 provides the percentage of each group diagnosed with each of 

the 31 Elixhauser comorbidities. The DM cohort was older than the TBI group (mean age 

73.1 versus 49.9), and had a higher five-year mortality rate (13.3% versus 4.4%). The 

DM cohort had higher rates of congestive heart failure, peripheral vascular disorders, 

hypertension, diabetes complications, and renal failure when compared to the TBI group.  
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Table 1:  Demographic characteristics for the Diabetes Mellitus (DM) and Traumatic Brain Injury 
(TBI) cohorts 

Variable Level 
Diabetes 

(n=625,903) 

Traumatic 
Brain Injury 
(n=168,125) 

Five-year mortality (%) 
 

13.3 4.4 

Mean age 
 

73.1 49.9 

Gender (%) male 97.0 93.7 

 
female 3.0 6.3 

Marital status (%) single 7.0 26.0 

 
widowed 11.0 4.6 

 
divorced 21.0 25.9 

 
married 59.0 42.1 

Race/ethnicity (%) Non-Hispanic white 76.0 55.8 

 
Non-Hispanic black 15.0 13.0 

 
Hispanic 5.0 1.9 

 
Other or missing 4.0 29.2 

Homeless (%) 
 

8.0 1.5 

Greater than 50% disability (%) (service-connected) 27.0 23.3 

 

The TBI cohort had substantially higher rates of depression, psychoses, drug abuse, 

alcohol abuse, liver disease, and neurological disorders. 

 Table 2 provides a comparison of validation results for the DM and TBI cohorts 

for the seven models that were compared against the Elixhauser-Quan model in phase 

1, and Figures 4 and 5 provide a corresponding graphical comparison of confidence 

intervals for each statistic based on 1000 iterations. Results labeled “unadjusted” 

correspond to models in which only ICD-9-CM codes were used as predictors, while 

“adjusted” models also included patient demographic variables. Overall, the BART, 

random forest, elastic-net and pooled models had the best predictive performance as 

seen in their consistently higher mean AUC values and lower Brier scores for unadjusted 

and adjusted models in both cohorts. The MARC, association rules and multi-morbidity  
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Figure 3:  Prevalence of the 31 Elixhauser-Quan comorbidities in the diabetes and traumatic brain 
injury cohorts 

 

models were less successful when compared to the Elixhauser-Quan model, particularly 

in the TBI population. In the TBI cohort, mean AUC values for unadjusted models varied  

between 0.83 and 0.92, compared with 0.83 for the Elixhauser-Quan model. In the DM 

cohort, they varied between 0.68 and 0.78, compared with 0.64 for Elixhauser-Quan 

model. In general, net reclassification statistics for predicting mortality (NRI (event)) for 

top-performing models were improved compared to the Elixhauser-Quan model, but NRI 

(non-event) results were either similar or slightly worse, indicating an improved ability to  
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Table 2:  Mean performance statistics for Phase 1 models from validation data for the diabetes 
and traumatic brain injury cohorts based on 1000 replications. Unadjusted models were based 
only on ICD predictors, while adjusted models also included other patient demographic and 
clinical variables. The outcome was death within the study timeframe. 

 

Diabetes Mellitus Cohort (Phase 1 models) 

  
Elix- 

Quan 
MARC 

Assoc.  
 Rules 

Naïve 
Bayes 

BART 
Elastic-

Net 
Random 
 Forest 

Pooled 

AUC 

unadj. 0.64 0.68 0.71 0.72 0.75 0.75 0.77 0.78 

adj. 0.77 0.78 0.80 0.80 0.82 0.82 0.82 0.84 

adj. 0.73 0.74 0.76 0.75 0.77 0.78 0.78 0.79 

NRI 
(event) 

unadj. ref 0.11 0.10 0.10 0.20 0.22 0.27 0.29 

adj. ref 0.04 0.07 0.03 0.09 0.12 0.12 0.14 

NRI 
(nonevent) 

unadj. ref -0.05 -0.01 -0.02 -0.04 -0.05 -0.05 -0.05 

adj. ref -0.02 -0.01 0.03 0.00 -0.01 0.00 0.01 

Brier Score 
unadj. 0.23 0.22 0.21 0.21 0.20 0.20 0.19 0.19 

adj. 0.19 0.18 0.17 0.18 0.17 0.17 0.16 0.16 

Traumatic Brain Injury Cohort (Phase 1 models) 

  
Elix- 

Quan 
MARC 

Assoc.  
 Rules 

Naïve 
Bayes 

BART 
Elastic-

Net 
Random 
 Forest 

Pooled 

AUC 
unadj. 0.83 0.83 0.83 0.87 0.92 0.91 0.91 0.92 

adj. 0.87 0.89 0.88 0.88 0.92 0.92 0.91 0.93 

NRI 
(event) 

unadj. ref 0.14 0.06 0.20 0.22 0.27 0.24 0.27 

adj. ref 0.03 0.00 0.00 0.10 0.14 0.10 0.12 

NRI 
(nonevent) 

unadj. ref -0.03 -0.02 -0.10 0.01 0.00 0.00 0.00 

adj. ref 0.00 -0.01 -0.02 0.01 0.00 0.01 0.01 

Brier Score 
unadj. 0.13 0.13 0.13 0.13 0.09 0.09 0.09 0.09 

adj. 0.11 0.11 0.11 0.11 0.09 0.09 0.09 0.08 

 

predict which patients would die, but no improvement for predicting which patients would 

survive.  

 Table 3 and Figure 6 provide the results from phase 2, where the top-performing 

methods in phase 1 were applied (BART, elastic-net, RF, and pooled models). Here the  



 

 

38 

 

 

 

Figure 4: Diabetes Cohort performance statistics are shown for the unadjusted (in black) and 
adjusted (in red) phase 1 models, with 95% confidence intervals based on 1000 iterations. 
Adjusted models are based on both ICD code predictors and patient demographic variables, 
while unadjusted models are based only on ICD code predictors. The outcome was death within 
the study timeframe. NRI values for the Elix-Quan models are 0.00 since they serve as the 
reference. 

 
outcome was five-year mortality rather than death within the study’s timeframe, and ICD 

codes recorded within one year of death were excluded in order to avoid favoring  

conditions such as palliative care that would be strongly associated with death but would 

provide little long term predictive ability. As in phase 1, each model was trained in a 

single-disease dataset but was validated on a combined dataset comprised of the DM 

and TBI groups. This permitted a better evaluation of predictive performance in a more  
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Figure 5: Traumatic Brain Injury Cohort: performance statistics are shown for the unadjusted (in 
black) and adjusted (in red) phase 1 models, with 95% confidence intervals based on 1000 
iterations. Adjusted models are based on both ICD code predictors and patient demographic 
variables, while unadjusted models are based only on ICD code predictors. The outcome was 
death within the study timeframe. NRI values for the Elix-Quan models are 0.00 since they serve 
as the reference. 

 

general population with a wider range of comorbidities. Phase 2 included only ICD codes 

as predictors since the phase 1 results demonstrated that adjusted for other covariates 

did not provide additional predictive performance insights. The BART, RF, elastic-net 

and pooled models were again superior to the Elixhauser model as seen in consistently 

higher mean AUC values and lower Brier scores for unadjusted and adjusted models in 

both cohorts. Similar to phase 1 results, the NRI statistics indicate performance gains  
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Table 3: Mean performance statistics from validation data for phase 2 models for diabetes and 
traumatic brain injury cohorts based on 1000 replications. Each model was trained on a single-
disease dataset but was validated on a combined group drawn equally from the DM and TBI 
datasets. All models were unadjusted, based only on ICD predictors. The outcome was five-year 
mortality. 
 

 
Elixhauser- 

Quan 
BART 

Elastic-
Net 

Random 
 Forest 

Pooled 

Diabetes cohort (training) with combined cohort (validation) (Phase 2) 

AUC 0.74 0.85 0.84 0.83 0.86 

NRI 
(event) 

Ref 0.08 0.10 0.10 0.16 

NRI 
(nonevent) 

Ref -0.01 -0.01 -0.01 -0.01 

Brier Score 0.07 0.07 0.07 0.07 0.06 

TBI cohort (training) with combined cohort (validation) (Phase 2 ) 

AUC 0.74 0.89 0.88 0.83 0.89 

NRI 
(event) 

Ref 0.27 0.23 0.20 0.29 

NRI 
(nonevent) 

Ref -0.02 -0.02 -0.01 -0.02 

Brier Score 0.07 0.06 0.06 0.06 0.06 

 

 

were seen in predicting mortality but little improvement was seen in predicting survival. 

In the TBI cohort, mean AUC values varied  

between 0.83 and 0.89, compared with 0.74 for the Elixhauser-Quan model. In the DM 

cohort, AUC values varied between 0.83 and 0.86, compared with 0.74 for Elixhauser-

Quan model. Table 4 provides a summary of comorbidities that were important 

predictors of five-year mortality but which were not accounted for by the Elixhauser-

Quan index. These comorbidities were identified by finding the common group of ICD-9-

CM codes in the RF, elastic-net, and BART models for both the TBI and DM populations  
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Figure 6:  Phase 2 model mean performance statistics are shown with 95% confidence intervals 
based on 1000 iterations. Each model was trained on a single-disease dataset but was validated 
on a combined group drawn equally from the DM and TBI datasets. All models were unadjusted, 
based only on ICD predictors. The outcome was five-year mortality 

 

which were not included in the Elixhauser index definition, were associated with mortality 

rather than survival, and were ranked in the top 50% for variable importance by each 

phase 2 model. Many of these conditions are related to functional status or cognitive 

problems. 
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Table 4: Summary of comorbidities from phase 2 models which were found to be important 
predictors of five-year mortality but were not accounted for by the Elixhauser-Quan index. These 
comorbidities were identified by finding the common group of ICD-9-CM codes associated with 
mortality in the RF, elastic-net, and BART models for both the TBI and DM populations that were 
consistently ranked in the top 50% for variable importance. This list was further narrowed to 
include only those conditions not accounted for by the Elixhauser-Quan index. Many of the below 
conditions are related to functional status or cognitive problems. 
 

ICD-9-CM  

code 
Description 

07051 Acute hepatitis C 

29048 Vascular dementia 

2948 Other persistent mental disorders 

3310 Alzheimer's disease 

4111 Intermediate coronary disease 

41400 Coronary atherosclerosis of unspecified type of vessel 

4293 Cardiomegaly 

436 Acute but ill-defined cerebrovascular disease 

43889 Other late effects of cerebrovascular disease 

5234 Chronic periodontitis 

5251 Loss of teeth 

5939 Disorder of kidney and ureter, unspecified 

600 Hyperplasia of prostate 

7070 Pressure ulcer 

7809 Altered mental status 

7866 Swelling, mass, or lump in chest 

7872 Dysphagia 

7993 Debility, unspecified 

V048 Need for prophylactic vaccination against viral diseases 

V604 No other household member able to render care 

V651 Person consulting on behalf of another person 

V670 Follow-up examination following surgery 
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3.4  Discussion  

 This work compared the performance of seven approaches for predicting patient 

outcomes based on comorbidities derived from ICD-9-CM codes. To the best of the 

author’s knowledge, this is the first effort to conduct a detailed comparison of statistical 

and machine learning methods in the development of an improved prediction model 

based on the ICD system. In the first phase, the outcome was death within the study’s 

timeframe, and no ICD-9 codes in the patient’s record were excluded from consideration.  

Models were validated with observations for other patients drawn from the same cohort. 

The second phase involved a more robust evaluation of the top-performing models from 

the first phase. The outcome was five-year mortality, ICD-9 codes recorded within one 

year of death were excluded, and models were validated on a combined dataset drawn 

from both disease populations.  

 In both phases, the BART, RF, elastic-net and pooled models consistently had 

better predictive performance compared to models based on the Elixhauser-Quan index. 

Each method may have succeeded due to different strengths, of which none were seen 

in the Elixhauser-Quan approach. The pooled model, which attempted to merge the 

strengths from individual models, appeared to offer the best results in both phases and 

in both populations. This is consistent with conclusions that ensemble methods often 

outperform any single classifier [19]. The elastic-net model provided a balanced 

approach for handling possible collinearities between ICD-9 predictors while also 

shrinking less important estimated coefficients towards zero. The successful machine 

learning approaches (RF and BART) may automatically account for complex interactions 

that might otherwise be overlooked by other methods. Additionally, most models 
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attempted to account for a condition’s relative severity rather than considering each to 

be an equally weighted and independent predictor.  

 Though the phase 2 models involved greater prediction challenges due to the 

shift to five-year mortality, the exclusion of ICD-9 data within a year of death, and the 

use of a wider population for validation, no substantial loss in predictive performance 

was seen. Mean AUCs for unadjusted DM models improved in phase 2 by 6% to 10%, 

while mean AUCs for unadjusted TBI models were 3% to 8% lower than for the 

corresponding phase 1 model. In all cases, each model had substantially better 

predictive performance when compared to the corresponding Elixhauser-Quan models. 

This provides some evidence these methods could be generalized to a wider population 

and to a range of different outcomes. 

 In addition to improved predictive performance, the phase 2 results provided 

additional insights into the patient populations beyond those provided by the Elixhauser 

index. As seen in Table 4, the patient’s functional status was an important predictor of 

five-year mortality not accounted for by the Elixhauser-Quan model; examples of these 

conditions include cognitive problems, pressure ulcers, and caregiver status. This 

conclusion concerning functional status is consistent with previous research [61, 62]. 

Other serious conditions not included in the Elixhauser-Quan index were also identified; 

examples include Alzheimer’s disease, cardiomegaly, and acute hepatitis C. These were 

likely excluded from the Elixhauser Index because they were not highly associated with 

the short-term outcomes used in its development. 

 Although the  pooled model is based on a simple logistic regression, efforts to 

develop more complex ensemble models with  improved prediction performance did not 
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lead to any improvements.  For example, the prediction densities from the BART, RF 

and elastic net models were plotted separately for true positive, false positive, true 

negative and false negative training data observations under the pooled model.  

Differences in respective densities between the four groups were used to adjust the 

pooled model predictions, but this led to a slight drop in predictive performance.  For 

example, any prediction improvement in the false negative group was negated by a 

decline in the true negative group. 

 There are several important limitations. First, this work was limited to two 

populations of generally older, male Veterans, and it was not demonstrated whether 

these methods would achieve similar results in other groups. Next, the use of 

administrative data imposes substantial risks for measurement inaccuracies and missing 

data. For example, one patient might have different ICD-9-CM codes entered for the 

same condition. In some cases less severe comorbidities such as diabetes, depression, 

angina or high blood pressure may be omitted from the record for critically ill patients; as 

a result, these conditions have been incorrectly associated with lower mortality odds in 

some studies [2]. Additionally, patients with good functional status and access to 

healthcare are more likely to have detailed health information recorded, while patients 

who are housebound, live in isolated rural areas, have cultural obstacles, or are 

otherwise disadvantaged are more likely to have incomplete records. Despite these 

sources of potential bias, a large body of previous work has shown that meaningful 

inference is possible from these data. 
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4.  Second Manuscript: Improved Comorbidity Summary Score for Measuring Disease 
Burden and Predicting Outcomes with Applications to Three National Cohorts  

 

4.1.  Introduction 

 Research involving administrative healthcare data to study patient outcomes 

requires the investigator to carefully consider the patient’s comorbidities, or disease 

burden in order to reduce the potential for biased inferences. This paper focuses on 

developing an improved summary score using one of the most popular sources for 

comorbidity information, that encoded by the International Classification of Diseases 

(ICD), which, in the ICD-9-CM version, consists of more than 14,000 unique codes. Each 

patient may have hundreds of ICD codes recorded over many years, and a large 

database may contain thousands of unique codes. Summary measures based on 

dimension reduction have thus become very popular tools. In some cases, these 

measures consist of a collection of disease conditions that serve as independent 

predictors; the Elixhauser comorbidity index is perhaps the most well-known example     

[2]. Other measures consist of single scores, such as the Charlson comorbidity index    

[1]. Because the Charlson and Elixhauser indices are well known and have been widely 

applied, investigators frequently use them without consideration for whether other 

methods could better adjust for disease burden. 

 ICD codes are primarily recorded for billing purposes, which can introduce 

numerous challenges when they are applied in research. Some disease conditions are 
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found to be under-reported when ICD codes are compared to the patient’s clinical record 

[1, 63, 64]. Further, some chronic conditions such as high blood pressure or obesity are 

more likely to be recorded for patients who are generally fit, but more likely to be omitted 

for patients who are critically ill. Investigators have shown how this can lead to the false 

conclusion that some chronic conditions are associated with lower mortality odds [2]. 

This observation supported a hypothesis examined in this paper that gains in ICD 

summary measure performance might be made by including codes in prediction models 

that are associated with survival even when the clinical evidence suggests such codes 

may actually be associated with mortality. 

 The Charlson and Elixhauser indices were developed by different approaches, 

and were initially used to predict different outcomes. Charlson et al. [1] collected the 

comorbidities observed in 607 patients with hospital admissions during one month in 

1984; these patients were then followed for one year. She used those baseline 

comorbidities to predict time to death over the one year period using Cox proportional 

hazards models. The relative magnitudes of the estimated coefficients were used to 

develop a weighted score that was validated in a population of 685 breast cancer 

patients. Elixhauser later noted that the Charlson score was soon repurposed by other 

investigators to predict numerous events other than one-year mortality, including short-

term outcomes such as in-hospital mortality, hospital charges or length of stay. She was 

also concerned that the range of Charlson comorbidities was limited by the small 

population used to develop the score. Elixhauser et al. [2] instead considered the full 

range of conditions included in the ICD-9-CM coding manual as well as the comorbidities 

considered in a number of current studies. Her models were limited to predicting short-
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term hospitalization outcomes, and used a narrow comorbidity definition that excluded 

conditions related to the primary reason for hospitalization, problems that might be 

complications that arose during treatment, or conditions she considered unimportant. To 

assess which conditions were most predictive, she conducted ordinary least squares 

regression or logistic regression to predict hospitalization charges, length of stay, or in-

hospital mortality. She proposed an index of 31 independent comorbidities, and 

deliberately avoided combining them into a single score because she considered each 

investigator should examine the independent contributions of comorbidities where 

possible. Her index did not include numerous serious conditions that were not strongly 

associated with her short-term hospitalization outcomes; examples include dementia, 

Alzheimer’s disease, or some types of renal disease. She reported that by excluding any 

condition that could be considered a complication of treatment, her index was less 

successful in predicting mortality than her other short-term outcomes. Such excluded 

conditions included pneumonia, cardiac arrest, cardiogenic shock, and respiratory failure 

[2]. 

  The Elixhauser index has subsequently been applied to a wide range of 

outcomes, in some cases with little apparent regard for the reasoning behind the index’s 

construction. For example, Baldwin et al. [65] used the Elixhauser index in models to 

predict two-year non-cancer mortality and the receipt of chemotherapy in cancer 

patients; Chu et al. [10] used it to predict one-year mortality; Lix et al. [66] used it to 

predict amputation, end stage renal disease, and stroke in diabetes patients. Since the 

Elixhauser index deliberately omitted numerous conditions not strongly associated with 
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short-term hospitalization outcomes or associated with treatment complications, the 

index may be less effective in predicting these other outcomes.  

 Both the Charlson and Elixhauser indices were developed using simple 

regression and proportional hazards models, and both involved arbitrary inclusion or 

exclusion of specific conditions rather than relying on strictly empirical methods to 

determine which predictors were most important. Since their development, numerous 

advances in statistical methods, machine learning algorithms, and computational power 

have occurred. In the first manuscript, a number of machine learning and statistical 

classification methods were compared to demonstrate that substantial improvements in 

prediction performance over existing indices could be achieved to predict five-year 

mortality.   The most effective of these methods included Bayesian Additive Regression 

Trees (BART), Random Forest (RF), and elastic-net penalized generalized linear 

models. However, such models included up to 1000 predictors and could be 

cumbersome to apply in some areas of research. Here the goal is to instead develop a 

simple comorbidity summary score based on the insights gained in the previous work 

and show it has superior predictive performance to the Quan version of the Elixhauser 

index [9] when used to predict five-year mortality. The Elixhauser index is used as the 

basis for comparison because it was shown to have better predictive performance than 

the Charlson Index; the Quan version is used because of its improved performance over 

earlier versions of the Elixhauser Index [9]. The ICD-9-CM is included here rather than 

the ICD-10-CM system because the Veteran’s Administration data used here was 

recorded under the older ICD-9 system, though the same methods could easily be 

applied to ICD-10-CM data.  
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4.2.  Study Design and Methods 

4.2.1 Study Populations 

Three national cohorts of U.S. Veterans were used in this work; these had been 

created for earlier studies by linking numerous Veterans Health Administration patient 

and administrative databases. The first included 625,903 patients with diabetes mellitus 

(DM) based on two or more related ICD-9-CM codes and at least one prescription filled 

for a medication to treat diabetes [47]. In the original study, Veterans were followed from 

2002 until death, loss to follow-up, or until December 2006, and newer data was added 

here to extend the follow-time until December 2012. The second cohort involved 

168,125 Veterans diagnosed with traumatic brain injury (TBI) during 2004 and 2005. In 

the original study, patients were followed from the point of entry until death, loss to 

follow-up, or until December 2010 [48]; newer data was added to extend the follow-time 

to December 2012. The third cohort involved 3,359,560 patients with chronic kidney 

disease (CKD) defined for stages 1 through 5 based on estimated glomerular filtration 

rates calculated from serum creatinine levels and the patient’s age, gender, and race. 

CKD patients were also identified through ICD-9-CM codes. CKD patients were followed 

from 2000 until December 2012, loss to follow-up, or until death. Kidney or liver 

transplant recipients were excluded (M. N. Ozieh, M. Gebregziabher, R. Ward, D. J. 

Taber, L. Egede, unpublished data, 2016). All studies were approved by the Medical 

University of South Carolina Institutional Review Board (IRB) and the Ralph H. Johnson 

Veterans Affairs Medical Center Research and Development committee. 
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4.2.2 Covariates and outcome 

  The predictors in all models were binary variables, each based on a single ICD 

condition. No other predictors were included since it was demonstrated in the first 

manuscript that no additional insights into effective modeling of ICD data were obtained 

by including other patient covariates. The outcome for all models was five-year mortality. 

 

4.2.3 Methods 

 Figure 7 provides an overview of the index development steps. For each patient 

in the three disease cohorts, the available ICD-9-CM codes were collected from the 

earliest available data until one year prior to mortality or through the end of the study if 

the patient did not die. Codes recorded within a year of death were excluded because 

conditions that often occur in this period (such as palliative care) might provide an 

unrealistic advantage against the Elixhauser models but would provide little help in 

making long-term predictions. An early cutoff for starting ICD collection was not 

established; instead all available codes were used for each patient. The challenge for 

the competing models was similar to asking, “given all of the patient’s ICD codes up until 

today, predict whether he or she will die in the next five years.” Although patients varied 

by the length of available ICD code history, this was considered this was an expected 

condition in chronic disease cohorts, and results were compared to those from 

Elixhauser models that faced the same challenges.  
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Figure 7: Overview of summary score development. 

 

 Prior to analysis, erroneous duplicate formats of ICD-9 codes were identified and 

corrected to the single correct format. For example, codes 250, 2500, and 25000 all 

represent the same condition, but each would be treated as separate predictors in 

machine learning algorithms. Out of the approximately 14,000 unique ICD-9 codes, the 

1000 most prevalent codes for each cohort were retained, and then those codes that 

were not common to all cohorts were excluded. There were 814 such codes, which 

formed the common set of binary predictors, where a ‘1’ indicated the given ICD-9-CM 

code was found in a patient’s record.   
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Four types of training and validation data sets were generated; three were drawn 

from the DM, CKD and TBI cohorts, and the fourth was a combined cohort created by 

sampling in approximately equal proportions from the three disease cohorts. Use of the 

combined cohort was intended to show how well the index might function in a more 

general population. 

Resampling methods were used due to concerns for computational efficiency 

with the machine learning methods, for which is could be difficult or impossible to 

complete an analysis of the entire dataset without use of a parallel computing 

environment. Smaller test and training datasets were generated, each with 5000 

observations, by randomly sampling the full datasets 1000 times with replacement. 

Performance statistics were collected for each validation run and the overall mean and 

95% confidence intervals generated by 1000 iterations were used to compare the 

models’ relative performance. As demonstrated by Marshall et al. [37] and 

Gebregziabher et al. [49], this non-parametric bootstrapping approach is reasonable for 

our large datasets, such that independence between numerous samples is reasonably 

assured. 

4.2.3.1 Prediction Models 

The top-performing methods from the first manuscript: random forest (RF), 

Bayesian additive regression trees (BART) and elastic-net penalized regression (REG), 

are again used here to provide variable importance measures for use in summary score 

development. The machine learning methods (RF and BART) are capable of 

automatically accounting for complex interactions between predictors that are likely to 
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exist in these data. Elastic-net penalized regression provides an efficient way to handle 

possible collinearities between predictors, while shrinking the estimated coefficients of 

less important predictors. Each method is used to develop separate estimates of 

variable importance for use in index development. 

 Random forest [28] is an ensemble method based on classification trees that is 

often effective in datasets with many weak predictors, as is the case with ICD-9 data. It 

relies on bootstrap aggregation (or ‘bagging’) to generate a forest, which is termed 

“random” due to the random selection of a pre-specified number of features (or predictor 

variables) at each tree’s nodes. The feature that leads to the largest improvement in the 

tree’s classification ability is then used to split the data at that node. The random forest 

method can automatically account for complex interactions, and was reported to be very 

competitive with other machine learning methods when compared on the basis of 

misclassification error [14]. Each variable’s mean decrease in the Gini Index is used as a 

measure of variable importance for use in model development. For  observations at 

node m, for outcome variable y with class levels k, and with predictors  , the 

proportion of observations at a node for a given predictor and class level k is 

. 

The Gini Index at this node is given by [14] : 

. 

Large changes in the Gini index at a given node indicate the splitting variable’s 

importance is relatively high, and the mean decrease over all nodes involving a given 
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predictor across all trees and across 1000 iterations is used as the variable importance 

measure. These values are always positive, regardless of whether a predictor is 

associated with survival or mortality. The R package randomForest is used to implement 

this method [58] . 

 Bayesian Additive Regression Trees (BART) [60] is an extension of the 

supervised tree-based ensemble learning method, but unlike random forest, prior 

distributions are established for each tree’s decision rules and terminal node 

parameters, and an MCMC algorithm is used to sample from the posterior distribution for 

the ensemble of trees. The authors contend their approach provides a substantial 

degree of regularization such that each tree’s complexity is reduced. Predictive results 

reported in some datasets were superior to random forest, neural nets, and regularized 

regression methods [60].  

 The R package BayesTree was used to implement BART [59]. This algorithm 

develops the model based on the training data, and then provides the results of post-

convergence samples from the posterior distribution using test data. Variable importance 

is estimated by the mean count of how many times each predictor is selected for use in 

a node’s decision rule among all trees over all MCMC samples and over all 1000 

iterations. These values are always positive. 

 Elastic-net regression, which involves the use of a regularized generalized linear 

model, provided another measure of variable importance. In the work supporting the first 

manuscript a number of regularized regression methods were compared, including ridge 

regression [50], LASSO regression [51], elastic-net regression [52], and group LASSO 
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regression [53], and found that elastic-net regression provided the best predictive 

performance in the ICD code data. The elastic-net model combines the LASSO and 

ridge approaches with the addition of parameter  such that the loss function becomes 

the LASSO model for , and the ridge model when . For binary outcome

, predictors  and shrinkage parameter , the following 

equation is minimized in order to determine coefficient estimates:   

. 

= 0.5 provided the best predictive performance. The R package glmnet [54] was used 

to implement this method, and used the mean coefficient estimates from 1000 iterations 

as variable importance measures. The sign of the mean coefficient estimates were used 

to weight the index by  based on the association with survival or mortality, as 

discussed further below. 

4.2.3.2 Score algorithm: 

 When analyses were completed on the DM, TBI, CKD and combined datasets, 

there were 12 variable importance results from the RF, BART and REG models for each 

of the 814 ICD-9-CM predictors. The following algorithm was used to develop a 

summary score: 

 (1) Determine which predictors have variable importance measures ranked in the 

top 50% in all 12 results.  
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 (2) For such predictors and the patient, establish , 

, to signify which predictors are recorded in a given patient’s record. 

 (2) Determine whether each predictor is associated with mortality or survival 

based on whether the majority of elastic-net estimated parameters from the four 

datasets are positive or negative; in the rare case of a tie assume a mortality 

association. Note that RF and BART variable importance measures are always positive 

regardless of the association.  

 (3) Assign weights  of +1 to those conditions associated with 

mortality and -1 to those associated with survival.  

 (4) Calculate a summary score for each patient: .  

 

4.2.4.3 Score assessment 

 The summary score was used as the single predictor in a logistic regression 

models using validation datasets from each of the four population groups. Its 

performance was compared to similar models based on the Elixhauser index using the 

area under the ROC curve (AUC), net reclassification improvement, Brier score [22], 

sensitivity and specificity statistics. 
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Table 5: Demographic information for the Chronic Kidney Disease, Diabetes and Traumatic Brain 
Injury cohorts. 

Variable Level 

Chronic 

Kidney 

Disease 

Diabetes 

Traumatic 

Brain 

Injury 

Mean age 

 

75.0 73.1 49.9 

Five-year mortality (%) 

 

41.9 38.7 20.9 

Gender (%) male 96.7 97.0 93.7 

 

female 3.3 3.0 6.3 

Marital status (%) single 6.3 7.0 26.0 

 

widowed 14.8 11.0 4.6 

 

divorced 21.0 21.0 25.9 

 

married 58.0 59.0 42.1 

Race/ethnicity (%) Non-Hispanic white 81.4 76.0 55.8 

 

Non-Hispanic black 13.6 15.0 13.0 

 

Hispanic 2.9 5.0 1.9 

 

other or missing 2.2 4.0 29.2 

Homeless (%) 

 

6.3 8.0 1.5 

Greater than 50% 

disability (%) service-related 23.4 27.0 23.3 

 

4.3.  Results 

Table 5 provides a summary of demographic information for the three cohorts. 

Five-year mortality ranged between 20.9 and 41.9%. The TBI cohort’s mean age was  

49.9, while the other groups had mean ages of 75.0 and 73.1. The groups’ gender and 

racial-ethnic makeup is typical for Veteran populations with these age distributions. 

Between 23% and 27% of Veterans had at least 50% disability connected with their 

military service.  

 Figure 8 and Table 6 compare the performance of the summary score to the 

Elixhauser index based on area under ROC curve (AUC), Brier score, net  
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Figure 8: Mean performance statistics with 95% confidence intervals based on 1000 iterations 
using validation datasets for the chronic kidney disease (CKD), traumatic brain injury (TBI), type 2 
diabetes mellitus (DM), and the combined cohort, which was formed by randomly drawing from 
the first three cohorts in equal proportions. AUC is the area under the receiver operator 
characteristic curve; NRI (event) and NRI (nonevent) are the net reclassification improvement 
statistics for mortality and survival. NRI values for the Elixhauser models are set at 0.00 since 
they serve as the reference. The outcome was five-year mortality. In each cohort, summary score 
models demonstrated significantly better predictive performance compared to models based on 
the 31 Elixhauser comorbidities.  

 

reclassification improvement, sensitivity, and specification statistics from models 

validated on each disease cohort and on a combined cohort. Mean AUC values for the 

four datasets ranged between 0.81-0.84 for the new score, and between 0.72 - 0.78 for  
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Table 6: Mean performance statistics with 95% confidence intervals based on 1000 iterations 
using validation datasets for the chronic kidney disease (CKD), traumatic brain injury (TBI), type 2 
diabetes mellitus (DM), and the combined cohort, which was formed by randomly drawing from 
the first three cohorts in equal proportions. AUC is the area under the receiver operator 
characteristic curve; NRI (event) and NRI (nonevent) are the net reclassification improvement 
statistics for mortality and survival. NRI values for the Elixhauser models are set at 0.00 since 
they serve as the reference. The outcome was five-year mortality. In each cohort, summary score 
models demonstrated significantly better predictive performance compared to models based on 
the 31 Elixhauser comorbidities. 

Cohort CKD TBI 

Index Elix-Quan 
Summary  

Score 
Elix-Quan 

Summary  

Score 

AUC  0.72 (0.70;  0.73)   0.81 (0.80;  0.82)   0.78 (0.77;  0.80)   0.84 (0.83;  0.85)  

Sensitivity  0.46 (0.42;  0.50)   0.66 (0.64;  0.68)   0.24 (0.20;  0.29)   0.39 (0.35;  0.49)  

Specificity  0.82 (0.80;  0.84)   0.81 (0.79;  0.82)   0.96 (0.95;  0.96)   0.97 (0.95;  0.97)  

NR(event) ref  0.20 (0.16;  0.24)  ref  0.15 (0.10;  0.24)  

NRI(nonevent) ref -0.02 (-0.04;  0.01)  ref  0.01 (0.00;  0.02)  

Brier Score  0.21 (0.20;  0.21)   0.17 (0.17;  0.18)   0.14 (0.13;  0.14)   0.11 (0.11;  0.12)  

Cohort DM Combined 

Index Elix-Quan 
Summary  

Score 
Elix-Quan 

Summary  

Score 

AUC  0.72 (0.71;  0.74)   0.84 (0.83;  0.85)   0.74 (0.73;  0.75)   0.84 (0.82;  0.85)  

Sensitivity  0.41 (0.36;  0.45)   0.69 (0.61;  0.71)   0.36 (0.32;  0.40)   0.60 (0.51;  0.64)  

Specificity  0.86 (0.84;  0.89)   0.83 (0.82;  0.86)   0.89 (0.88;  0.91)   0.88 (0.86;  0.92)  

NR(event) ref  0.28 (0.22;  0.33)  ref  0.24 (0.15;  0.29)  

NRI(nonevent) ref  -0.03 (-0.06;  0.00)  ref  -0.01 (-0.03;  0.02)  

Brier Score  0.20 (0.20;  0.21)   0.16 (0.15;  0.16)   0.19 (0.18;  0.19)   0.15 (0.15;  0.16)  

 

the Elixhauser index. Brier score values were consistent with the AUC results. Mean 

sensitivity values for the new score ranged between 0.39 – 0.69, compared to 0.24 – 

0.46 for the Elixhauser index. Mean specificity values for the score ranged between 0.81 

– 0.97, compared to 0.82 – 0.96 for the Elixhauser models. Mean net reclassification 

improvement (NRI) statistics for predicting mortality or survival were consistent with the 

respective trends in sensitivity and specificity. 
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 Table 7 (following the Discussion section) lists the ICD-9-CM codes used to 

predict five-year mortality in the summary score, and indicates whether each code is 

included in the Elixhauser index’s definition. Overall, 97 of the 121 codes in the index 

were not part of the Elixhauser index definition, and 63 of the 121 codes are associated 

with mortality. 

 

4.4.  Discussion  

 This work produced a comorbidity summary score for predicting five-year 

mortality that had stronger predictive performance than the widely-used Elixhauser 

index. The models used in the score’s development were trained and validated on three 

large Veterans Administration datasets and further validation was based on a combined 

cohort, which provided a broad range of comorbidities and disease severity levels. The 

score was comprised of ICD-9 codes with variable importance measures that fell in the 

top 50% of all twelve model runs (four training datasets and three classification 

methods). Strong improvements in predictive performance were demonstrated based on 

AUC and Brier Score statistics. There were also some improvements in sensitivity and 

net reclassification improvement for mortality when compared to the Elixhauser index, 

while specificity values remained generally the same. The score’s strong performance in 

the combined cohort provided some initial evidence that it could be successfully applied 

to a more general population, but further work is needed to demonstrate this. 

 The summary score approach differs from existing measures in several ways: 
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  (1) First, 58 of 121 conditions were negatively weighted since they were 

associated with survival in the models, and many patients had an overall negative score. 

As hypothesized, by including codes statistically associated with survival, model 

predictive performance improved, even when the clinical evidence suggests such codes 

in some cases may actually be associated with mortality. Such codes may be recorded 

in healthier patients who are not being treated for more serious conditions (obesity or 

hyperlipidemia for example); other codes in this category simply recorded routine 

outpatient visits (routine screening or exam codes). The models predicted that patients 

with large numbers of these negatively weighted conditions and few of the more serious 

illnesses are more likely to survive.  

 (2) Next, the summary score is simpler to implement since it consists of only 121 

ICD-9 codes, compared to more than 1000 unique codes in the Elixhauser index 

definition.  

 (3) While the Elixhauser index definition excluded conditions not associated with 

short-term hospitalization outcomes and any acute conditions considered treatment 

complications, all such conditions that occurred at least one year prior to death were 

considered since they could be valid mortality predictors. This approach is more suitable 

for the long-term outcome was considered here. Examples of acute conditions included 

in the summary score but excluded in the Elixhauser index include pneumonia and acute 

cerebrovascular disease. 

 (4) The summary score contained a number of conditions related to the patient’s 

functional status that were not covered by the Elixhauser index, including Alzheimer’s 
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disease, senile dementia, hearing loss, persistent mental disorders, memory loss, falls, 

no other household member able to render care, and urinary incontinence.  

 Several conditions in the summary score may have unexpected associations with 

mortality, and warrant further discussion. For example, nail dermatophytosis, or nail 

fungal infection, might generally be considered a benign condition, but Scher et al. [67] 

and Loo [68] report its prevalence rises both with age and the presence of peripheral 

vascular disease and diabetes. This may explain its predictive importance in these 

Veteran populations. In another example, the code ‘V048: need for prophylactic 

vaccination against other viral diseases’ might also be considered to be benign, but 

further investigation showed this code may be a proxy for age since its use was 

discontinued in 2003 when it was replaced by a number of other codes [69].  

  The new comorbidity measure is not intended to provide a comprehensive 

clinical summary of a patient’s disease burden; instead, it provides a simple prediction of 

five-year mortality based on a comparison with millions of other Veterans for whether a 

the patient has specific conditions that were most predictive in this population.   

 Although summary scores are convenient tools, investigators should apply them 

with care. As Elixhauser et al. noted [2], combining individual predictors into a single 

index may lead to a loss of explanatory power. Romano et al. [8] commented that 

summary indices might be most appropriate in small datasets where it is not feasible to 

model a large group of comorbidities. They also warned that investigators should not 

apply an index without carefully considering the assumptions and outcomes used in its 

development; this is a warning that appears to be unheeded by many investigators. 
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Scneeweiss et al. [70] further cautioned that the weights developed for one population 

are not likely to be generalizable to other groups. Although the new score was 

developed using three large datasets involving different disease cohorts with a wide 

variety of comorbidities, these populations are generally limited to older male Veterans, 

and further work is needed to determine the score’s predictive performance in a wider 

population. As Scneewiess et al. [70] wrote, a summary score might be most suitable for 

use as a convenient data exploration tool to rapidly assess large ICD code datasets. In 

general, investigators working with such data may be most successful by developing 

dedicated comorbidity models for their unique populations and outcomes using the 

methods described here. 
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Table 7: ICD-9-CM conditions that form the summary score, ordered by ICD hierarchy. Those 
conditions contained in the Elixhauser index definition [9] are indicated by a “+” symbol. 
Conditions associated with mortality have an index weight of +1; those associated with survival 
have weights of -1. 97 of the 121 codes in the index were not part of the Elixhauser index 
definition, and 63 of the 121 codes are associated with mortality. Many of those conditions not 
included in the Elixhauser index definition are related to the patient’s functional status. 

 
Contained 

in 
Elixhauser 
Definition 

Index 
Weight 

ICD-9- 
CM 

code 
Condition 

  1 1101 Dermatophytosis of nail 

+ 1 1629 Malignant neoplasm of bronchus and lung, unspecified 

  1 1733 Unspecified malignant neoplasm of skin, unspecified parts of face 

  1 1739 Other malignant neoplasm of skin 

+ 1 185 Malignant neoplasm of prostate 

+ 1 25000 Diabetes mellitus without mention of complication 

+ 1 25001 Type I Diabetes mellitus  

+ 1 25060 Diabetes with neurological manifestations 

  -1 2722 Mixed hyperlipidemia 

  -1 2724 Other and unspecified hyperlipidemia 

+ 1 2765 Volume depletion disorder 

+ 1 2767 Hyperpotassemia 

+ -1 27800 Obesity, unspecified 

+ 1 2809 Iron deficiency anemia, unspecified 

+ 1 2859 Anemia, unspecified 

+ 1 2875 Thrombocytopenia, unspecified 

  1 2900 Senile dementia, uncomplicated 

  1 2948 Other persistent mental disorders  

  1 2949 Unspecified persistent mental disorders  

+ 1 2989 Unspecified psychosis 

  -1 30272 Psychosexual dysfunction  

  -1 32723 Obstructive sleep apnea  

  1 3310 Alzheimer's disease 

+ 1 3320 Parkinson’s disease 

  -1 33829 Other chronic pain 

  -1 3540 Carpal tunnel syndrome 

  1 36201 Background diabetic retinopathy 

  1 36250 Macular degeneration (senile), unspecified 

  1 36251 Nonexudative senile macular degeneration 

  -1 36501 Open angle glaucoma with borderline findings, low risk 

  1 36610 Senile cataract, unspecified 
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Table 7 (continued) 

Contained 
in 

Elixhauser 
Definition 

Index 
Weight 

ICD-
9- 

CM 
code 

Condition 

 -1 3671 Myopia 

 -1 38830 Tinnitus, unspecified 

 -1 38831 Subjective tinnitus 

 1 38910 Sensorineural hearing loss, unspecified 

 1 3892  Mixed conductive and sensorineural hearing loss 

+ 1 40391 Hypertensive chronic kidney disease with end stage renal disease 

 1 41400 Coronary atherosclerosis  

+ 1 4241 Aortic valve disorders 

+ 1 42731 Atrial fibrillation 

+ 1 4280 Congestive heart failure, unspecified 

 1 436 Acute, but ill-defined, cerebrovascular disease 

 1 4389 Unspecified late effects of cerebrovascular disease 

+ 1 4439 Peripheral vascular disease, unspecified 

 
1 4538 Acute venous embolism and thrombosis of other specified veins 

 
1 45981 Venous (peripheral) insufficiency, unspecified 

 
-1 4619 Acute sinusitis, unspecified 

 
-1 462 Acute pharyngitis 

 
-1 4659 Acute upper respiratory infections of unspecified site 

 
-1 4739 Unspecified sinusitis (chronic) 

 
-1 4779 Allergic rhinitis, cause unspecified 

 
1 486 Pneumonia, organism unspecified 

+ 1 49121 Obstructive chronic bronchitis with (acute) exacerbation 

+ 1 4928 Other emphysema 

+ -1 49390 Asthma, unspecified type, unspecified 

+ 1 496 Chronic airway obstruction 

 
1 51889 Other diseases of lung, not elsewhere classified 

 
-1 52102 Dental caries extending into dentine 

 
-1 52103 Dental caries extending into pulp 

+ 1 5715 Cirrhosis of liver without mention of alcohol 

 
1 5789 Hemorrhage of gastrointestinal tract, unspecified 

+ 1 585 Chronic kidney disease 

 
-1 5920 Calculus of kidney 

 
1 5939 Unspecified disorder of kidney and ureter 

 
1 5990 Urinary tract infection 

 
1 5997 Hematuria 

 
1 7051 Acute hepatitis C without mention of hepatic coma 

 
-1 71536 Osteoarthrosis, localized, lower leg 

 
-1 71941 Pain in joint, shoulder region 

 
-1 71944 Pain in joint, hand 

 
-1 71946 Pain in joint, lower leg 

 
-1 71947 Pain in joint, ankle and foot 
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Table 7 (continued) 
Contained 

in 
Elixhauser 
Definition 

Index 
Weight 

ICD-9- 
CM 

code 
Condition 

  -1 7231 Cervicalgia 

  -1 7242 Lumbago 

  -1 7243 Sciatica 

  -1 72690 Enthesopathy of unspecified site 

  -1 72871 Plantar fascial fibromatosis 

  1 73300 Osteoporosis, unspecified 

  -1 78057 Unspecified sleep apnea 

  1 78097 Altered mental status 

  1 7812 Abnormality of gait 

  -1 7820 Disturbance of skin sensation 

  1 7823 Edema 

  1 78321 Loss of weight 

  -1 7840 Headache 

  -1 78659 Other chest pain 

  1 78820 Retention of urine, unspecified 

  1 78830 Urinary incontinence, unspecified 

  -1 79021 Impaired fasting glucose 

  -1 79029 Other abnormal glucose 

  1 7931 
Abnormal findings on radiological /other examination of lung 
field 

  -1 7962 
Elevated blood pressure reading without diagnosis of 
hypertension 

  1 7993 Debility, unspecified 

  -1 9953 Allergy, unspecified, not elsewhere classified 

  1 E8889 Unspecified fall 

  -1 V0382 Other vaccinations against streptococcus pneumoniae  

  1 V048 Need for prophylactic vaccination, other viral diseases 

  -1 V0481 
Need for prophylactic vaccination and inoculation against 
influenza 

  -1 V065 Need for prophylactic vaccination against tetanus-diphtheria 

  -1 V1272 Personal history of colonic polyps 

  1 V431 Lens replaced by other means 

  -1 V531 Fitting and adjustment of spectacles and contact lenses 

  1 V583 Attention to dressings and sutures 

  1 V5861 Long-term (current) use of anticoagulants 

  -1 V5883 Encounter for therapeutic drug monitoring 

  1 V604 No other household member able to render care 

  -1 V653 Dietary surveillance and counseling 

  -1 V6540 Counseling NOS 

  -1 V6549 Other specified counseling 

  -1 V659 Unspecified reason for consultation 
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Table 7 (continued) 
Contained 

in 
Elixhauser 
Definition 

Index 
Weight 

ICD-9- 
CM 

code 
Condition 

  -1 V6801 Disability examination 

  1 V681 Issue of repeat prescriptions 

  -1 V700 Routine general medical examination at a health care facility 

  -1 V703 Other general medical examination for administrative purposes 

  -1 V705 Health examination of defined subpopulations 

  -1 V7189 
Observation and evaluation for other specified suspected 
conditions 

  -1 V7260 Laboratory examination, unspecified 

  -1 V7651 Special screening for malignant neoplasms of colon 

  -1 V802 Screening for other eye conditions 

  -1 V812 Screening for other and unspecified cardiovascular conditions 

  -1 V8289 Special screening for other specified conditions 
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5.  Third Manuscript: Comprehensive Comparison of Machine Learning and Model-
Based Multiple Imputation Methods with Competing Sensitivity Analyses for Non-
Random Missingness. 

 

5.1. Introduction 

 
 Missing data is a frequent problem in administrative healthcare databases, and 

investigators working with such data must carefully assess how to best approach this 

problem in order to reduce the possibility for biased results. In Veterans Health 

Administration (VHA) research to investigate the reasons for health inequities among 

minority groups, missing data in key variables such as patient race and ethnicity can 

pose tremendous challenges. In past years, researchers often dealt with the missing 

data problem by simply conducting complete-case analysis, though this strategy could 

lead to biased results unless the data were missing completely at random. More 

recently, steps to attempt to assess the pattern of missingness and methods to help 

achieve unbiased results such as multiple imputation are commonly seen.  

 When assessing missing data, it is important to determine what type of 

relationship exists between the missing values and the mechanism that led to their being 

missing. Three such scenarios are typically defined [71]: 

a. Missing completely at random (MCAR): in this situation, the probability of missing 

values does not depend on either the observed or the missing values. 

b. Missing at random (MAR): In this case, the probability of missing values depends 

on the observed values, but does not depend on the missing values. 
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c. Missing not at random (MNAR): in this case, the probability of missing values 

occurring depends on unobserved observations. The MNAR pattern cannot be 

ruled out by examining the data since it exists due to information not contained in 

the data, and investigators who rely on imputation methods that rely on MAR or 

MCAR assumptions should take additional steps to assess whether their results 

are sensitive to changes under MNAR conditions. 

 Numerous parametric imputation methods exist for handling data with MCAR or 

MAR patterns; multiple imputation by chained equations (MICE) is one commonly used 

approach due to its ability to handle multiple imputation for mixed data types [25, 26]. 

MICE imputes missing values from separate distributions for each variable with missing 

values conditional on the other variables, but has been criticized for lacking a theoretical 

basis [27], and for requiring the investigator to have advance knowledge of non-linear 

relationships or collinearities between predictors [17]. Other researchers have concluded 

that machine learning methods can automatically handle interactions and other concerns 

while also producing inference estimates with narrower confidence limits and with more 

computational efficiency. The random forest algorithm has been applied in several 

multiple imputation research efforts, and involves bootstrap aggregation of numerous 

independent decision trees, and can account for complex interactions and collinearities 

between predictors more readily than many parametric methods, while the ensemble 

voting of independent trees naturally lends itself to an efficient imputation process [28]. 

For example Stekhoven et al. [16] claim their multiple imputation approach (missForest) 

based on the random forest method was superior to traditional statistical methods 

including MICE, based on improved misclassification error rates or normalized root 
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mean squared errors. Jerez et al. [29] provided a similar conclusion based on a 

comparison of machine learning and statistical imputation methods.  Other researchers 

have incorporated machine learning methods within an existing statistical method; for 

example, Shah et al [17] incorporated random forest as the multiple imputation method 

within the existing MICE method and showed the new approach had a superior ability to 

handle nonlinear relationships and collinearities.  

 Though the multiple imputation methods described above are capable of 

producing unbiased results under MCAR and MAR, such results are far less likely when 

a missing not at random (MNAR) condition exists. As Verbeke et al. [30] discuss, it is 

possible to construct models based on MNAR assumptions, but these assumptions are 

not testable since their support is not contained in the data. Further, Molenburghs et al. 

[31] demonstrated that it is not possible to empirically distinguish between MNAR and 

MAR situations from the data alone because for every MNAR model, it is possible to 

build an MAR model with the same fit. The most common approach given these 

circumstances is to conduct sensitivity analysis on MAR models to examine their stability 

when MNAR assumptions are introduced [32, 33]. Though numerous approaches are 

possible, two general types of sensitivity analyses are most common; these are based 

on pattern mixture models [32 – 34] and selection models [35].  

 

5.1.1  Motivating Example  

 This research involves a VHA cohort of 161,586 Veterans treated for traumatic 

brain injury (TBI) between 2004 and 2010. In the original study, patients were followed 

from the point of entry until death, loss to follow-up, or until December 2010 [48]; newer 
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data was merged to extend the follow-time to December 2012. The study was approved 

by the Medical University of South Carolina Institutional Review Board (IRB) and the 

Ralph H. Johnson Veterans Affairs Medical Center Research and Development 

committee. 

  The original dataset had approximately 30% missing race-ethnicity, which was 

derived solely from VHA Corporate Data Warehouse (CDW) MedSAS files. The missing 

proportion was reduced to 2% by merging newer information from the CDW 

PatSub_PatientRace and Pat_Sub_PatientEthnicity tables, followed by Medicare race-

ethnicity information from the VitalStatus table. Table 8 provides the demographic and 

clinical characteristics for this group, and Table 9 provides a comparison of the original 

and updated race distributions. The newer race distribution appears to be more typical of 

the VA population, and the combined effects of better race-ethnicity data collection [24] 

and the use of Medicare data [23] provide solid support for the claim that the newer 

distribution is more accurate. The updated race distribution provided strong evidence 

that an MNAR pattern existed in the original data. It was then possible to compare the 

results of several multiple imputation methods using the original data against results 

obtained by using the updated race distribution. Since the motivating example involves 

MNAR missingness, this research also involved applying several types of sensitivity 

analyses to determine if such approaches provide any additional insights. 

 Consistent with the problems seen in the TBI cohort, several investigators have 

reported the absence of race information in VHA or Medicare data may be due to non-

random causes [4 – 6]. Depending on the timeframe being studied, the level of 

missingness may be substantial in VHA data. Stroupe et al. [23] reported that 48% of 
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VHA patient records had missing race-ethnicity information in 2004, but this value had 

been reduced to 15% by 2012 [3] due to concerted efforts to collect this information and 

due to a 2003 requirement for recording self-reported race-ethnicity rather than 

observer-reported values [24]. Stroupe et al. [23] demonstrated that further 

improvements were possible by merging VHA data with Medicare data; in the author’s 

experience with several VHA cohorts followed through 2012 or later, the missing race 

fraction can be reduced below 3% in some cases.    

 This research provides a unique contribution by conducting a comprehensive 

comparison of multiple imputation (MI) methods under both MAR and MNAR conditions 

using approaches that incorporate both machine learning and statistical methods. 

Additionally, for missing race/ethnicity variables under MNAR, it examines the 

effectiveness of several types of sensitivity analyses, both in simulations and in real data 

application. The remainder of this aim is organized as follows: the Methods section 

provides a description of the multiple imputation methods and sensitivity analyses that 

are applied here, first in a simulation, and then in the TBI example. The simulation 

framework is then described, including how MCAR, MAR and MNAR patterns are 

generated in the simulation data. In the Results and Discussion sections the insights 

gained from this work are reviewed, particularly that MNAR missingness is an extremely 

challenging problem, even when the data’s MNAR mechanism is well understood. 

 

5.2. Methods 

 Multiple imputation (MI) is a common approach for handling missing data. Rubin 

et al. [25] provided a detailed description of multiple imputation’s advantages over 
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numerous single imputation methods, particularly that MI is far more capable of 

modeling the uncertainty associated with each imputed value, especially when the 

reason for value being missing is unknown. Van Buuren et al. [26] discussed the 

challenges for applying MI to multivariate data, where many predictors can have missing 

values, and described two general approaches:  

a. Joint modeling, where a joint parametric multivariate distribution is specified, and 

imputations are generated in a Bayesian framework from the posterior predictive 

distribution. However, this approach requires the analyst to fully specify the model, 

such that any unknown interaction or nonlinearity may lead to biased results.  

b. Fully conditional specification models (FCS), or Multiple Imputation by Chained 

Equations (MICE): here each predictor has a distribution conditional on all of the 

other predictors, with distribution parameters specific to each predictor rather than 

associated with a joint distribution. This provides the important advantage of being 

able to easily handle continuous and categorical data types since each predictor has 

its own conditional distribution [26].  In MICE models, if Y  is a matrix for n patients 

and k predictors, and a portion of each predictor is missing: 

obs

jy  are the observed observations for the jth predictor, 

mis

jy are the missing observations for the jth predictor, and 

 jy  is defined as all of the predictors except the jth predictor. 

For ( | , )j j jP Y Y  , where j is the vector of parameters for the jth conditional 

distribution, each of the k parameters and predictors is successively sampled via a 

Gibbs sampler, where the tth iteration is represented by: 
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M sampling processes are conducted in parallel, where M is typically 5 or 10, and 

each is continued for enough iterations to ensure convergence, typically less than 20 

iterations. M imputed data sets are produced, and the results are pooled as follows   

[25] : 
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  where jB  is the variance of the parameter estimates.  

1(1 )*j j jT U M B    where T is the total pooled variance for the 
thj  pooled 

parameter. 

 

5.2.1 MICE methods 

 Numerous imputation methods can be applied within the MICE framework, 

including traditional statistical methods and machine learning algorithms. The MICE 

package in R [72] was used to implement this framework, and separate functions were 

written to incorporate the BART and neural net methods. The R program code 

developed here is made available for downloading as described in Appendix A. 
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5.2.1.1 MICE with logistic regression and predictive mean matching (MICE-LR) 

 Here, logistic regression and predictive mean matching [73] are used to form the 

predictive conditional distributions for missing categorical and continuous variables. The 

goal was to compare these traditional methods with the machine learning approaches 

described below. 

 

5.2.1.2 MICE with random forest (MICE-RF)  

 Here the random forest algorithm [28] is used during each imputation to generate 

a selected number of trees based on observed data, each of which is used to make a 

prediction. The imputed value is randomly selected from these predictions.  

 

5.2.1.3 MICE with Bayesian Additive Regression Trees (MICE-BART) 

 BART [59] is an extension of the supervised tree-based ensemble learning 

method, but unlike random forest, prior distributions are established for each tree’s 

decision rules and terminal node parameters, and an MCMC algorithm is used to sample 

from the posterior distribution for the ensemble of trees. The R packages BayesTree [60]        

and MPBART [74] were used to generate imputed values for continuous and categorical 

variables, respectively. A separate function was developed here to incorporate these 

methods within the MICE framework.  While this method produced reasonable results for 

several iterations of the simulation, it was too slow to be viable when used on a typical 

PC, though it could be useful in a parallel environment.  
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5.2.1.4 MICE with neural net (MICE-NNET) 

 Here, a single hidden layer neural network was used during each imputation step 

[14]. This machine learning approach is a non-linear statistical model that approximates 

more traditional classification and regression models. The R package nnet [75]  was 

used to implement this method, and the size and weight decay parameters were tuned 

using 10-fold cross validation with the caret package in R [76].  A separate function was 

developed to incorporate neural net imputations within the MICE framework. 

 

5.2.2 Random forest multiple imputation: 

 The random forest algorithm was applied as a multiple imputation method 

independent of the MICE framework using the missForest package in R [16]. This 

algorithm orders the predictors with missing values based on their increasing proportion 

of missing values, and then imputes each variable in turn by generating a random forest 

based on the observed values for the variable of interest and all corresponding 

observations from the other variables. This forest is then used to impute the missing 

values of the variable of interest. Once each variable has been imputed, the entire 

process is repeated until a stopping point is reached based on the difference between 

successive imputed datasets. 

 

5.2.3 MNAR sensitivity analyses 

 Several sensitivity analyses were compared; these involve imposing MNAR 

assumptions on multiple imputation models that are based on MAR assumptions. This 

was of particular interest since there was strong evidence that the race-ethnicity 
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covariate in the TBI example had an MNAR missingness mechanism. Each of these 

methods requires the investigator to make assumptions about the missingness pattern, 

though such assumptions are unverifiable from the data itself. The departure of MNAR 

sensitivity analysis results from the MAR results is an indication that the MAR 

assumption may not hold. 

 

5.2.3.1 Pattern mixture model adjustment [32]  

 A pattern mixture model assumes that a number of missingness patterns may 

exist, each with a separate joint distribution for the partially and fully observed variables. 

For patients 1i ,...,n  and covariates 
1iY  and 2iY , assume 

1iY  has missing values with 

indicator
iR , such that 0iR when 

1iY is missing and 0iR otherwise. Under MNAR the 

joint distribution  is factored as , where the joint distribution of 

the partially and fully observed variables is conditional on the partially observed variable.  

 Since the MNAR distribution cannot be determined from the observed data, 

Carpenter and Kenward [32] suggest starting from the MAR scenario and then adjusting 

the model using MNAR assumptions in order to examine whether the MAR model is 

sensitive to such changes. For example, the race-ethnicity variable in the TBI data has 4 

levels, and a multinomial logistic model was used to impute the missing values under 

MAR assumptions, where the probability for imputing race group level j  is given by: 

4

1

j

k

d

d

k

e
pr( race j )

e

, where 

1 2i i if (Y ,Y ,R ) 1 2i i i if (Y ,Y | R ) f(R )
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k k kd  x'β , for 4k  and 4 0d , and where  and   are multinomial model 

parameters.  

  

 In order to test various MNAR assumptions, shift parameters 
k  are introduced 

for each level of the race variable, and the probability for imputing race group level j   

becomes: 

4

1

j j

k k

d

d

k

e
pr( race j )

e




. 

Following the adjustment, we then examine how the model inference changes under the 

MNAR assumption. An iterative processes is used to determine the combination of shift 

parameters that best matches the MNAR assumptions. 

 Several other types of pattern mixture models are applied to MNAR sensitivity 

analysis. One group of such methods involves data with monotone missingness 

patterns, which are defined for variables 1,... py y , such that when jy  is missing for a 

given observation, then it is also missing for ky  with k j . Such observations are 

grouped based on their missingness patterns, and specific groups are then used to 

impute a given variable. Two such methods were attempted here; the first is termed 

complete case missing values (CCMV), in which only observations with no missing 

values are used [73]. The second is neighboring case missing value (NCMV), where, for 

imputing values of jy , the closest group in the monotone hierarchy is used for imputation 

[77]. In this closest group, observations exist for jy  but not for 1jy 
 . 
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5.2.3.2 Parameter re-weighting  

 In this selection model approach described by Carpenter et al. [36], the estimated 

parameters determined from multiple imputation datasets generated under MAR 

assumptions are reweighted to reflect MNAR assumptions. This approximation requires 

that the MAR and MNAR distributions for these parameters overlap. 

The MNAR assumption is incorporated in a logistic model, 

1   i i ilogit(Pr( R )) 'X Y , 

where the outcome that patient i  has an observed value for covariate Y is related to iY

such that large positive values of   make the odds for observing Y  in this patient much 

higher, while large negative values have the opposite effect. Carpenter et al. [36] show 

that for m  imputations and 11i ,...,n  patients who are missing covariate Y , the weight 

for the 
thm  imputation is related to a linear combination of the imputed data:

1

1

n
m

m i
i

w exp Y , and the normalized weight is 

1

m
m m

m
i

w
w

w

. The imputed results are 

pooled in a manner similar to that developed by Rubin [25]: 

1

M

MNAR m m
m

ˆ ˆw  , where m̂ is the MAR parameter estimate for the 
thm  imputation; 

2

1

ˆ
M

m m
m

U w 


  where U is the weighted mean of parameter estimate variances;

2

1

ˆ ˆw ( )
M

m m MNAR

m

B  


   where B  is the between variance of the parameter estimates. 

1(1 )*T U M B    where T is the total pooled variance. 
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While Carpenter et al. demonstrated this approach for continuous outcomes with MNAR 

missingness, Heraud-Bousquet et al. [78] provide additional insights for applying the   

weighting method to datasets with missing covariates, including categorical variables. 

 

5.2.1 Simulation Study 

 A simulation study was conducted in order to compare the multiple imputation 

methods described above against results from complete-case analysis under MCAR, 

MAR and MNAR scenarios. 1000 datasets with 5000 observations each were selected 

by randomly sampling with replacement from a Veterans Administration dataset that 

consisted of approximately 37,000 complete case observations from a diabetes cohort. 

Though it would have been possible to fully simulate such data, a resampling approach 

was used instead to help ensure that the complex structures and associations found in 

real patient observations were also present in the synthetic datasets. As demonstrated 

by Marshall et al. [37] and Gebregziabher et al. [38] this approach is reasonable when 

the original dataset is large enough to help assure independence between samples.  

 The outcome was mortality within the 10-year study timeframe, and covariates 

included demographic measures such as age (continuous variable), gender, racial-

ethnic group (non-Hispanic white, non-Hispanic black, Hispanic, other), marital status 

(married or single), and urban-rural location indicator. Clinical indicators included the 

percentage of disability connected to military service, the patient’s mean medication 

possession ratio (mean MPR), and the patient’s mean glycated hemoglobin (mean A1c) 

level during the study period. The variables with missingness imposed were racial-ethnic 

group, mean A1c, and mean MPR.  
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 MCAR, MAR and MNAR missingness scenarios were separately imposed on 

each bootstrapped dataset, and for each of these in turn, versions were generated with 

10%, 30%, or 50% missing values. Complete case analysis was conducted on each of 

these nine datasets, along with multiple imputation by the four methods discussed 

above.  Missing data patterns were generated by the following rules [79]: 

1) Missing Completely at Random (MCAR): missing observations for the racial-ethnic 

group, mean MPR, and mean A1c variables were determined on a completely 

random basis. 

2) Missing at Random by rank (MAR): when the patient died, the racial-ethnic group 

value was more likely to be missing; when the patient was single, the mean MPR 

variable was more likely to be missing; when the patient lived in a rural location, the 

mean A1c variable was more likely to be missing. 

3) Missing Not At Random (MNAR): when the patient was in the non-Hispanic black or 

Hispanic groups and died during the study window, the racial-ethnic value for that 

patient was more likely to be missing. When mean MPR or mean A1c were above 

their respective medians, each was more likely to be missing. 

  

 Once missing values were established using the rules described above, further 

adjustments were made on a random basis as needed to achieve the required total 

proportion of observations with any missing values. Finally, each dataset was tested 

using logistic regression to verify that the required missingness structure had been 

generated. Binary indicators were generated for each of the variables with missing 

values, such that a ‘0’ meant the value was missing. These indicators served as the 
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outcomes in the three logistic regression models. For each type of missingness, the 

significance of the estimated parameters was evaluated, and a given dataset was 

accepted if odds ratios for the parameters of interest were at least 1.5. For example, in 

the MNAR case, predictors of interest were the non-Hispanic black and Hispanic groups, 

and mortality.  

 Imputation methods were compared using the following statistics: 

1) Relative bias: ˆ ˆ ˆ( ) /
o

    , where ̂  and ˆo
 are the generalized linear model 

parameter estimates based on the imputed data and the full dataset of 37,506 

complete cases, respectively. 

2) Efficiency: ˆ ˆvar( ) / var( )
o

    

3) Root mean square error: 
2 2ˆ ˆ ˆ( )o     , where 

2̂ is the estimated variance of 

the parameter estimate from the model based on imputed data. 

4) Coverage probability: the probability based on 1000 bootstrapped iterations that the 

95% confidence interval for the parameter estimate contains ˆ o . 
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5.3  Results  

5.3.1 Simulation results:  

 Table 8 provides a summary of clinical and demographic characteristics for the 

diabetes (simulation) cohort. Figures 9 and 10 provide relative bias results for MAR and 

MNAR scenarios for those variables on which missingness was imposed: non-Hispanic 

black and Hispanic groups and for mean medication possession ratio (mean MPR) and 

mean glycated hemoglobin (mean A1c). Figure 11 provides coverage probability results. 

 When confidence intervals are compared in the MAR scenario, MICE with 

random forest imputation appeared to provide the least biased results when compared to 

complete case analysis, particularly at 50% missingness.  

 In the MNAR scenario, for the non-Hispanic black and Hispanic groups, all 

multiple imputation results were biased. However, for the two continuous variables, the 

MICE methods provided reasonable results. Coverage probability under MNAR is very 

poor for both race groups regardless of the MI method, but for mean MPR and mean 

A1C, coverage probability remains high. The missForest MI method appears to lag the 

other MI methods in coverage performance.   

 Figure 12 provides simulation results for MNAR sensitivity analyses, which were 

performed on multiple imputation results from data with 30% MNAR missingness in the 

non-Hispanic black and Hispanic groups. Under pattern mixture model 1 and selection 

model parameter weighting, shift parameters were iteratively adjusted to achieve the 

lowest relative bias when compared against the true race distribution. Under pattern  
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Table 8: Demographic and clinical characteristics of the diabetes (used in simulation) and the 
traumatic brain injury cohorts. 

 

Variable Level 
Diabetes 
Cohort 

n = 37,506 

TBI 
Cohort 

n = 161,586 

Mean age (sd)      --- 73.4 (5.4) 49.9 (17.9) 

Mortality rate (%)      --- 45.6 23.9 

Gender (%) male 98.7 93.7 

Marital status (%) non-married2 28.2 57.9 

 
married 71.8 42.1 

Race/ethnicity (%)1 non-Hispanic white 80.9 55.9 

 
non-Hispanic black 9.9 13.0 

 
Hispanic 5.1 1.9 

 
other  4.0 2.6 

 missing --- 26.6 

Rural location (%)      --- 39.0 --- 
More than 50% service-
related disability (%)      --- 

 
7.3 23.3 

TBI severity less severe --- 22.7 

 moderate  --- 27.5 

 highest --- 49.8 

Mean HbA1c (mean/sd)3      --- 7.2 (1.1) --- 

Mean MPR (mean/sd)4      --- 0.79 (0.2) --- 
1  

original race-ethnicity distribution in TBI cohort 
2  

includes single, divorced, widowed, never married 
3 mean glycated hemoglobin 
4  

mean medication possession ratio (number of days of diabetes medication supply divided by 365 days (or if 
deceased during that year, the number of days until death) over the study period  

 

 

mixture model 2 (PMM-2), shift parameters were iteratively adjusted in order to provide 

the closest match in the imputed data with the true race distribution proportions for each 

group. While PMM-1 results did achieve low relative bias, the imputed datasets had 

substantially more non-Hispanic black and Hispanic members than seen in the original 

data. In PMM-2 on the other hand, when imputed datasets had approximately the same 

race distribution as in the original data, relative bias remained high. Bias was also high 

after parameter reweighting analysis.  
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Table 9: comparison of original and updated race-ethnicity distributions for the traumatic brain 
injury (TBI) data. NHW is non-Hispanic white, NHB is non-Hispanic black. Under the original 
distribution, 26% of patients were classified as missing race-ethnicity information; under the 
newer distribution, which incorporated more recent VHA data sources and merged Medicare 
information, the percentage of missing values was reduced to approximately 2%. The new race 
distribution showed that race was likely missing under MNAR conditions in the original data (see 
table 10). 

 

 Original distribution 
   Updated 

Distribution NHW NHB Hispanic Other Missing Total (percent) 

NHW 83190 335 621 0 29562 113708 0.70 

NHB 478 19911 42 0 5795 26226 0.16 

Hispanic 5565 385 2339 0 4267 12556 0.08 

Other 1024 444 117 4231 0 5816 0.04 

Missing 0 0 0 0 3280 3280 0.02 

    
 

   Total 90257 21075 3119 4231 42904  161586 
 (percent) 0.56 0.13 0.02 0.03 0.27 

   

 

5.4.2 Results from TBI application: 

 The original and updated race and ethnicity distributions for the TBI group are 

shown in Table 9. By merging updated VHA and Medicare information, the proportion of 

missing values was reduced from about 26% to 2%. Of note, 34% of the Hispanic group 

in the updated distribution was in the missing category under the original distribution, 

compared with 26% and 22% for non-Hispanic whites and non-Hispanic blacks, 

respectively. Further, 47% of the Hispanic group had been misclassified to a different 

group originally, substantially higher than for other groups.  
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Figure 9: Simulation results: relative bias with 95% confidence intervals for four multiple 
imputation methods compared to complete case analysis under MAR missingness. In this 
scenario, when the patient died, the racial-ethnic variable was more likely to be missing; when the 
patient was single, mean medication possession ratio (mean MPR) was more likely to be missing; 
when the patient lived in a rural location, the mean glycated hemoglobin (mean A1c) variable was 
more likely to be missing. Based on relative confidence intervals, MICE with random forest 
imputation appeared to provide the least biased results when compared to complete case 
analysis, particularly for at 50% missingness. 
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Figure 10: Simulation results: relative bias with 95% confidence intervals for four multiple 
imputation methods compared to complete case analysis under MNAR missingness. In this 
scenario, when the patient was in the non-Hispanic black or Hispanic groups and died during the 
study window, the racial-ethnic variable for that patient was more likely to be missing. When 
mean medication possession ratio (mean MPR) or mean glycated hemoglobin (mean A1c) were 
above their respective medians, each was more likely to be missing. For the non-Hispanic black 
and Hispanic groups, all of the multiple imputation results were biased. For the two continuous 
variables, however, the MICE methods provided reasonable results.  
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Figure 11: Simulation results: coverage probability for each multiple imputation (MI) method and 
missingness scenario. For the non-Hispanic black and Hispanic groups, coverage probability 
under MNAR is very poor regardless of the MI method. For the continuous variables, coverage 
probability remains high under MNAR. The missForest MI method appears to lag the other MI 
methods in coverage performance. 
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Figure 12: Simulation results for MNAR sensitivity adjustment: comparison of relative bias for 
three MNAR sensitivity analyses, all with 30% missingness. Sensitivity adjustments were made to 
multiple imputation results based on multinomial logistic regression models. These are compared 
with the unadjusted results (MAR imputation, in black) and with complete case analysis (light 
blue). Under pattern mixture model 1 and selection model parameter weighting, shift parameters 
were iteratively adjusted to achieve the lowest relative bias when compared against the true race 
distribution. Under pattern mixture model 2 (PMM-2), shift parameters were iteratively adjusted in 
order to provide the closest match in the imputed data with the true race distribution proportions 
for each group. While PMM-1 results were substantially improved, the imputed datasets had 
substantially more non-Hispanic black and Hispanic members than seen in the original data. In 
PMM-2, when imputed datasets had approximately the same race distribution as in the original 
data, relative bias remained high. The parameter reweighting analysis did not succeed because 
the distribution of MNAR coefficients fell outside the distribution of the MAR coefficients for any 
plausible adjustment. 
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 Table 10 summarizes the association between missing race in the TBI data and  

other covariates. Of note, the association between the updated race-ethnicity variable 

and missing race in the original data shows indications of an MNAR pattern in the 

Hispanic group, with OR = 1.47 (95% CI, 1.41 - 1.52).  

 Table 11 compares the mortality odds ratios based on the updated race-ethnicity 

variable with those for complete case analysis in the original data, multiple imputation 

results, and three MNAR sensitivity analyses. The complete case odds ratio for 

Hispanics is 1.22 (95% CI, 1.11 - 1.33) compared with non-Hispanic whites, while the 

OR based on the updated race information is protective: 0.73 (95% CI, 0.69 - 0.77). In 

the multiple imputation comparison, the MissForest results appear to be biased lower for 

all three race groups, while the other multiple imputation methods provided generally 

similar results, and none differed substantially from complete case analysis. In the first 

pattern mixture model analysis (PMM-1) and selection model parameter weighting, shift 

parameters were iteratively adjusted to achieve the lowest relative bias when compared 

against the updated race distribution. The PMM-1 Hispanic OR result was 0.85 (95% CI: 

0.82 – 0 .88), but the imputed data contained an average of 28% Hispanic patients, 

compared with the actual value of 8%. The parameter weighting Hispanic result was 

nearly identical to the complete case result.  Under PMM-2, shift parameters were 

iteratively adjusted in order to provide the closest match in the imputed data with the 

updated race distribution; here the Hispanic group OR was 1.04 (95% CI, 0.96 - 1.12), 

lower than the complete case result.    
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Table 10: Odds ratios for the association between missing race-ethnicity in the original TBI 
dataset and other covariates. The race-ethnicity predictor here is the updated, or “true” race 
determined with newer information. The strong association between the Hispanic group and 
missing race is strong evidence for an MNAR mechanism.  

 

 
Variable Level OR (95% CI) 

 

 
Age   1.00 (1.00, 1.00) 

 

 
Gender Female 1.08 (1.03; 1.13) 

 

 
Marital Status Married --- 

 

 
  Non-married 0.88 (0.86; 0.91) 

  Race-ethnicity1 NHW ---  

  NHB 0.91 (0.78; 0.83)  

  Hispanic 1.47 (1.41; 1.52)  

  Other2 0  

 
TBI severity less  --- 

 

 
  moderate 1.27 (1.23; 1.31) 

 

 
  most 1.34 (1.30; 1.39) 

 

 
Homeless   0.41 (0.36; 0.47) 

 

 
Death   0.78 (0.75; 0.80) 

 

 
Disability >50% 

 
0.82 (0.79; 0.85) 

 

 

1
Using updated race-ethnicity distribution to predict missing values 
in older race-ethnicity data 

2
No patients were missing in the ‘other’ category  

      

5.4  Discussion 

 
 Three MICE methods and the missForest algorithm were compared against 

complete case analysis in MCAR, MAR and MNAR scenarios and several types of  

MNAR sensitivity analysis were then applied, both in a simulation and in an application 

to TBI data. One specific goal was to examine competing methods for approaching the 

problem of missing race-ethnicity information typically seen in VHA datasets. In 
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Table 11: Traumatic brain injury (TBI) example: comparison of mortality odds ratio based on the 
updated race distribution against the odds ratios from complete case analysis, multiple imputation 
(MI), and MI with MNAR sensitivity analyses using the original TBI data, where approximately 
26% of the race-ethnicity data was missing. Under PMM-1 and selection model parameter 
weighting (“weighted”), shift parameters were iteratively adjusted to achieve the lowest relative 
bias when compared against the updated race distribution. Under pattern mixture model 2 (PMM-
2) shift parameters were iteratively adjusted in order to provide the closest match in the imputed 
data with the updated (“true”) race distribution. 
 

Analysis   MI Type 
MNAR 

sensitivity  
analysis 

 Mortality OR by race-ethnicity group   
(95% CI) 

Ref group is NHW 

  NHB Hispanic Other 

OR based on 
updated race 
distribution 

--- --- 
0.80 (0.77; 

0.83) 
0.73 (0.69; 

0.77) 
0.92 (0.85; 

1.00) 

Complete 
Case 

Analysis 
--- --- 

0.79 (0.75; 
0.83) 

1.22 (1.11; 
1.33) 

0.71 (0.64; 
0.79) 

Multiple 
imputation 

Multinomial 
logistic 

regression 
--- 

0.76 (0.73; 
0.80) 

1.19 (1.10; 
1.30) 

0.71 (0.65; 
0.78) 

Random 
Forest 

--- 
0.84 (0.72; 

0.97) 
1.18 (0.86; 

1.51) 
0.78 (0.55; 

1.08) 

Neural Net --- 
0.85 (0.83; 

0.88) 
1.13 (1.02; 

1.27) 
0.71 (0.64; 

0.81) 

MissForest --- 
0.62 (0.60; 

0.65) 
0.93 (0.89; 

0.98) 
0.35 (0.32; 

0.38) 

MI with 
MNAR 

sensitivity 
analysis 

Multinomial 
logistic 

regression 

PMM-1 
0.82 (0.79; 

0.85) 
0.85 (0.82; 

0.88) 
0.67 (0.60; 

0.74) 

PMM-2 
0.80 (.076, 

0.77) 
1.04 (0.96; 

1.12) 
0.68 (0.61; 

0.75) 

Weighted 
0.79 (0.76; 

0.83) 
1.21 (1.11; 

1.31) 
0.67 (0.60; 

0.75) 

 

 

 

particular, this work examined whether MI methods that incorporate machine learning 

algorithms have any performance advantage, and whether any sensitivity analyses were 

more successful under MNAR. The TBI example provided a good opportunity for this 

comparison. 
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 As expected, under MCAR and MAR conditions in the simulation, the MICE 

methods and miss Forest imputation provided reliable results with reasonably low bias 

and good efficiency when compared with complete case analysis. In particular, MICE 

with random forest imputation appeared to have a slight performance advantage, while 

the missForest method appeared to lag.   

 Under MNAR, where the scenario led to African American and Hispanic patients 

who died were more likely to have missing racial-ethnic group information, relative bias 

and coverage probabilities were extremely poor for those groups by all imputation 

methods.  In contrast, performance statistics were substantially better for imputed values 

for mean A1c and mean MPR. This difference may be due to the complex MNAR 

mechanism for the race groups, which also involved the outcome. It may also be due in 

part to the data structure: the two racial groups were small compared to the reference 

group, and there was thus less information available in the data for making effective 

imputations. For the mean A1c and mean MPR variables there was far more information 

available even with 50 percent of observations missing, and the imputation algorithms 

appeared to more effective.  

 The simulation demonstrated the challenges for applying MNAR sensitivity 

analysis, even in the unusual situation where the exact missingness mechanism was 

known. When the pattern mixture model was used to attempt to minimize the relative 

bias,  the imputed datasets contained unrealistic race-ethnicity distributions. Other 

sensitivity analyses were less successful. In particular, the selection model weighted-

parameter method failed because the distribution for the MNAR parameter estimates fell 
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outside the distribution for the MAR parameter estimates. Carpenter et al. discuss this 

limitation of the weighting method [36] . 

 Many of the conclusions drawn from the simulation were repeated with the TBI 

example. The multiple imputation methods produced relatively unbiased results for the 

non-Hispanic black group, for which missingness was generally MAR. On the other 

hand, in the Hispanic group, missingness was MNAR and biased results were seen as a 

result. In the TBI sensitivity analyses, though the pattern mixture model in which relative 

bias was minimized (PMM-1) appeared to be generally successful, the Hispanic group in 

the imputed results was 3.5 times larger than actual. In the pattern mixture model for 

which the goal was to match the true race distribution within the imputed data (PMM-2), 

biased results were still seen.  

 Further work to better understand the MNAR mechanisms that led to the missing 

race data could help inform future MNAR sensitivity analyses; however, there may be 

limits to how much can be achieved given the challenges seen in the simulation, where 

the MNAR situation was fully described.  
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6.  Summary and Conclusions 
 

6.1 Summary  

 This work was motivated by two challenges that are commonly experienced by 

investigators who work with large VHA administrative healthcare datasets. These 

challenges included the need for better ways to account for the patient’s disease burden 

based on diagnostic codes, and the need for improved ways to handle missing data, 

particularly when the missingness exists in important covariates.   

 In the first manuscript, improved models for summarizing a patient’s disease 

burden were developed by applying seven machine learning and statistical methods. 

Each method provided more accurate predictions than models based on the Elixhauser 

index, and the pooled model, based on the combined predictions of the other six 

methods, usually had the best predictive performance.  

 In the second manuscript, an improved comorbidity summary score was 

developed based on the variable importance measures from the top performing models 

in the first manuscript. Three large VHA cohorts were used to both train these models 

and to validate the score. When compared against models based on the Elixhauser 

index, the score demonstrated more accurate predictive performance. 
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 In the third manuscript, four multiple imputation methods were compared using 

simulations and applications to real data under several types of missingness. The 

effectiveness of MNAR sensitivity analyses based on pattern mixture models and 

selection models was carefully examined, with implications for other VHA investigators 

who work with similar datasets. 

 

6.2  Discussion and Conclusions 

 The following paragraphs provide a summary of the insights and conclusions 

drawn from this research: 

 

6.2.1 Comparing machine learning to traditional statistical methods. 

 One goal in the first and third aims was to examine whether machine learning 

methods offered any advantages over traditional statistical approaches, particularly in 

their ability to automatically account for complex interactions and non-linear effects.  

 In the first aim, where the goal was to develop better ways to account for disease 

burden, predictive performance was compared between three machine learning and 

three statistical methods. The top performers (excluding the pooled model) included two 

machine learning methods (random forest and Bayesian additive regression trees) and 

one statistical method (elastic-net penalized logistic regression).  

 In the third aim, where several multiple imputation methods were compared, 

machine learning algorithms were incorporated in three models, while the fourth relied 

on statistical methods for imputation. Here, the top performer in many situations was the 
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model with random forest incorporated within the multiple imputation with chained 

equations (MICE) framework, but MICE models using logistic regression and predictive 

mean matching often achieved similar results.  Random forest was far less successful as 

a stand-alone multiple imputation method, and neural net imputation within the MICE 

framework also performed poorly.  

 Overall, neither machine learning nor traditional statistical methods offered a 

clear advantage over the other group in these applications, and the investigator should 

carefully consider a wide variety of methods that are not limited to any particular type. 

 

6.2.2 Problems with modeling the correlation structure inherent in the ICD hierarchy. 

 One goal in the first aim was to take advantage of the hierarchy established by 

the ICD system, such that if data were sparse for a particular ICD code, information from 

similar codes within the same hierarchy could be used to approximate the effects for the 

sparse predictors. This approach was incorporated in the Probability Based Features 

models (dropped prior to completion of manuscript 1) and Modeled Averaged 

Regression Coefficients models. Both were among the weakest performing methods, 

and the original assumption is likely false that the correlation structure imposed by the 

ICD hierarchy can be used to make valid assumptions about sparsely populated ICD 

conditions. 

 

6.2.3 Performance advantages of ensemble models. 

 In the first aim, the model based on the pooled predictions of the other models 

had the strongest predictive performance of any model. Dietterich [19] described why an 
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ensemble of accurate and diverse classifiers is likely to perform better than the individual 

models. A somewhat different ensemble approach was used in the second aim, when 

the variable importance measures for the top three models applied to four populations 

were combined such those predictors with importance measures falling in the top 50% in 

all 12 results were selected for use in the summary score.  

 

6.2.4 New population insights based on variable importance models. 

 The variable importance results developed in the first and second aims 

demonstrated that a number of conditions not included in the Elixhauser index were 

highly predictive for five year mortality. As discussed in the second manuscript, 

Elixhauser developed the index in order to predict short-term events including in-hospital 

mortality, hospital charges, or length of stay, and she thus excluded a wide range of 

conditions from her index [2] since they were not associated with short-term events. It 

thus was not surprising to find a number of conditions associated with the patient’s 

functional status were strongly associated with longer-term outcomes such as five year 

mortality. These included Alzheimer’s disease, senile dementia, hearing loss, persistent 

mental disorders, memory loss, falls, lack of household assistance, and urinary 

incontinence. 

 

 

6.2.5 Summary score weights based on statistical rather than clinical importance. 

 The variable importance results in the second aim highlighted that ICD codes for 

potentially harmful conditions are not always associated with mortality. This is often 
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related to the codes’ primary use as billing mechanisms, such that codes for less serious 

conditions are often not recorded when the patient is critically ill since other conditions 

are more likely to be the main drivers of the patient’s medical costs. As a result, it would 

be possible to falsely conclude from ICD data that high blood pressure is protective 

against mortality [2]. Rather than exclude these associations, which are accurate from a 

statistical view, codes that predicted survival were instead included in summary score 

with a negative weighting, even when this appeared to contradict clinical evidence. As a 

result, many patients had an overall negative score, meaning more of their highly 

predictive ICD codes were associated with survival rather than mortality. Failure to take 

advantage of this artifact related to the ICD billing system would lead to substantially 

worse predictive performance. The disadvantage of such an approach is that the 

summary score does not provide a clinical picture of the patient’s comorbidities; instead, 

it provides a score used to predict mortality based on a comparison with millions of other 

Veterans for whether the patient has specific conditions that were most predictive in this 

population.   

 

6.2.6 Unbiased imputation of continuous variables under MNAR  

 In the third aim, MNAR scenarios were simulated for two continuous variables 

and for two of the four levels in a nominal categorical variable (race/ethnicity). None of 

the multiple imputation methods could provide unbiased results for the categorical 

variable, but several methods (random forest within MICE and logistic 

regression/predictive mean matching within MICE) provided unbiased results with 

slightly narrower confidence intervals than complete case analysis, even when 50% of 
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values were missing. This difference may be due to the complex MNAR mechanism for 

the race groups, which also involved the outcome. It may also be due in part to the data 

structure: the two racial ethnic groups were small compared to the reference group, and 

there was thus less information available in the data for making effective imputations. 

For the mean A1c and mean MPR variables there was far more information available 

even with 50 percent of observations missing, and the algorithms were more effective. In 

summary, unbiased imputation under MNAR may be possible in some situations, but the 

investigator must be careful to conduct sensitivity analysis to try to verify the results are 

reasonable. 

 

6.2.7 Challenges for conducting sensitivity analyses under MNAR 

 Two types of sensitivity analysis were performed on imputed values in the third 

aim; these analyses were based on pattern mixture models and selection models (see 

section 2.3.9). In both the simulations and the application to real data, the MNAR 

mechanism was well understood. For the real data, this unusual situation existed 

because different sources of race/ethnicity information became available after the initial 

cohort had been formed, such that a more accurate variable with substantially lower 

missingness could be determined for comparison against the original. Thus, sensitivity 

analysis could be applied in situations where “true” parameter estimates existed. While 

the pattern mixture model approach could be used to produce reasonable inference, the 

imputed datasets under those conditions contained unrealistic race-ethnicity 

distributions. The selection model weighted-parameter method failed because the 

distribution for the MNAR parameter estimates fell outside the distribution for the MAR 
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parameter estimates. While this work did not provide a solution for the MNAR 

race/ethnicity challenge likely faced by many investigators, it did provide important 

insights into the specific challenges researchers face when the reason for missingness is 

related to the missing data itself, or to other unknown variables. 

 

6.3 Limitations 

 Three Veteran populations were studied, with an average age of 73.7, and with 

an average of 4.2% women. Further work is needed to determine if the results from the 

first two aims could be generalized to a wider population. The results of the third aim 

involving missing data are less likely to be affected by the distinct populations.  

 While each aim considered a wide variety of available methods, these were 

limited to those which could be completed in a reasonable time on a typical desktop 

computer (64 bit machine with 16GB RAM, 2.56GHz processor) or on a shared server 

(64 bit server with 16GB RAM and a 2.36 GHz processor). While this limitation helped to 

ensure these methods can be directly applied by most investigators, additional methods 

could be attempted in a parallel environment. 
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6.4 Future Work 

Numerous areas for additional work were noted.  Since the original dissertation aims 

were developed to support specific research problems encountered in work with VHA 

administrative healthcare data, these future work goals are also well suited for 

application to VHA research.  

 1) In the second aim, the summary score algorithm involved a simple weighting 

scheme, and this was validated only on Veteran populations.  Additional work is planned 

in the following areas: 

  a. The score will be validated on other groups, including non-Veteran 

populations to help determine generalizability beyond the older, male population in which 

the score was originally developed. Other weighting schemes could boost predictive 

performance, and validation in other outcomes such as one-year mortality could widen 

its applicability. 

  b. The score’s definition will be expanded to include other types of 

administrative data, including vital signs, health services utilization, medications, and 

laboratory tests using a similar approach to that developed for the first two aims;  a wide 

variety of methods will be examined for each of the data types, and competing variable 

importance measures will be used to identify a group of variables with the strongest 

predictive performance.  This expanded score will be compared to existing measures, 

such as the Care Assessment Needs Score [80]. 

  c. Since the score is similar in some ways to a propensity score [81], 

applications for its use in adjusting for confounding and selection bias will be examined.  

For example, in studies that examine disparities in health outcomes, the comorbidity 
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score could be used to match patients by various exposures to attempt to control for  

selection bias or confounding. 

 2) Expanding further on the third aim, the following additional areas concerning 

multiple imputation merit further work: 

  a) Other multiple imputation methods could be applied to the missing 

race-ethnicity problem for comparison against the existing results.  For example, 

Gebregziabher and DeSantis [82] and Vermunt et al. [83] apply latent class models 

within the multiple imputation framework.  Such models are typically limited to only 

categorical data, and it would be difficult to apply them directly to most administrative 

healthcare datasets.   However, LCMI may still be a useful tool for investigating the 

missing race-ethnicity problem. 

  b)   Bayesian Additive Regression Trees (BART)  could be tested as the 

imputation method within the MICE framework within a parallel computing environment. 

While this method was successfully implemented in the third aim, it was too slow in a 

single-processor environment to be feasible.  

 3)  The MNAR sensitivity analyses conducted as part of the third aim were limited 

to missing race-ethnicity, and thus involved only a multi-level, nominal categorical 

variable.  This work will be expanded to include all variable types and a wider range of 

methods in order to better understand the limitations of current work in this area, and to 

look for areas where methodological development is warranted.  The following 

paragraphs provide an expanded summary of possible approaches when MNAR 

conditions are suspected, beyond those already considered in the third aim:  



 

 

105 

 

  a)  The first approach involves developing a joint model that attempts to 

incorporate the MNAR mechanism.  Such a joint distribution may be very complex and 

inference may require MCMC methods.  As Molenberghs and Lesaffre discuss [33], 

such models are based on untestable assumptions, and may be very sensitive to minor 

changes in such assumptions. For these reasons sensitivity analyses based on models 

developed from an MAR basis are more commonly seen. 

  b) Another option is to consider the addition of auxiliary variables, which 

may help to explain why missingness occurred, but are otherwise not useful for 

explaining the outcome.  Raykov et al. describe that such variables could be included in 

the maximum likelihood or multiple imputation models, and could perhaps help the 

models meet the underlying MAR assumption [84].  However this approach, like the 

basic MNAR models in paragraph (1), may still rely on untestable assumptions, and it 

may not be possible to identify the correct auxiliary variables to produce the needed 

improvement. 

  c)  The most common approach is to conduct sensitivity analyses on 

MAR models to test whether the inference from models is sensitive to the imposed 

changes.  The analyst must select what types of analyses to conduct based on a “best 

guess” for what caused the missingness.   As discussed in the third aim, most sensitivity 

analyses are broadly grouped into selection model or pattern mixture model approaches 

[32, 85]. The data type will further dictate how the analyses are conducted. 

   i) Sensitivity analyses based on pattern mixture models typically 

involve one or more shift parameters.  For continuous variables, scale factors and shift 

factors are multiplied by or added to the imputation results. For categorical data, shift 
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parameters are applied within the appropriate generalized linear model; for example, in 

logistic regression, the shift represents the change in the log-odds that a specific level of 

the variable is observed. Different shifts could be imposed for each level of the variable 

[86]. 

   ii) Selection model sensitivity analyses can take numerous forms; 

one method was examined in the third aim [36].  Another approach involves developing 

a measure of local influence.  Here the goal is to produce an index that quantifies how 

much an MAR model deviates from its MLE when it is perturbed towards an MNAR 

condition.  Verbeke et al. [30] derived this approach for normally-distributed longitudinal 

data, and Troxel et al. demonstrated a similar method for generalized linear models [87].   

While Verbeke’s approach examines the model’s behavior at the individual level, Troxel 

is concerned with behavior at the group level. Troxel’s Index of Sensitivity to non-

ignorability (ISNI) is easily implemented since it relies only on determining the MLE from 

complete case data, and a separate model for predicting missingness. 

  d) Summary and description of future work: while much work is available 

in the literature concerning the development of MNAR models (paragraphs a and b 

above), there is a strong consensus that this effort is less likely to be successful because 

the basic assumptions for such models are untestable.  Sensitivity analyses continue to 

offer the most promise, and my work will focus on two areas: 

   i) Pattern mixture model adjustments for other variable types 

besides nominal categorical data, particularly continuous variables. 

   ii) Local influence analyses, particularly as described by Troxel 

[86]. 
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APPENDIX A:  EXAMPLES OF R AND SAS PROGRAMS DEVELOPED TO SUPPORT 
RESEARCH AIMS 

 

A.1 Introduction 

This Appendix provides a description of the software program files that were developed 

to support this research. These files and supporting sample datasets are available in 

GitHub (user: rcccward, respository: comorbidity-models). All R functions described in 

this appendix were developed using R version 3.2.3 [88].  SAS macros were developed 

using SAS software (SAS Institute Inc., Cary, NC), version 9.4. 

 

A.2 Comorbidity models development (first manuscript) 

A.2.1  Description (models_func) 

 This R function (models_func) applies the top-performing methods applied in the 

first aim to summarize disease burden from ICD-9-CM data by training and validating 

models and comparing each method’s predictive performance with models based on the 

Elixhauser index using AUC, sensitivity, specificity, positive predictive value (PPV), 

negative predictive value (NPV), and net reclassification improvement statistics for 

events and non-events. Methods include elastic-net regularized generalized linear 
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model, random forest, Bayesian additive regression trees, and an ensemble model 

based on the pooled predictions of the other models.  

 

A.2.2  Usage (models_func) 

models_func(patient_dat, binary_dat, elixmat, iterations, size, covariate_flag) 

 

A.2.3  Arguments (models_func) 

patient_dat Dataframe containing the outcome and covariates such as race, 

age, gender, marital status, and clinical variables. Categorical 

variables should be stored as factors 

binary_dat Dataframe containing binary ICD-9 data, one row per patient and 

one column per unique ICD-9 code. Variables should be stored as 

factors. The column names should list each 5 digit code. 

elixmat Dataframe containing the Elixhauser-Quan comorbidities, one row 

per patient, and one binary column for each of the 31 

comorbidities, stored as factors. Alternatively, the user could 

establish a different comparison comorbidity measure in place of 

the Elixhauser index, where each column serves as an 

independent predictor in the comparison model. 

iterations The number of bootstrapped training and validation samples to be 

generated in order to determine the distribution of the comparison 

statistics. 

size The number of observations within each bootstrapped sample. 
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covar_flag A flag indicating whether patient covariates from patient_dat 

should be included in the models, or whether inference should be 

based solely on ICD-9 information. 

 

A.2.4  Output objects (models_func) 

A single list is returned containing the following objects: 

meanvarimpRF A vector of the random forest ICD-9 variable importance 

measures, with one measure for each column of binary_mat. 

meanvarimpBART A vector of the Bayesian additive regression trees ICD-9 variable 

importance measures, with one measure for each column of 

binary_mat. 

meanvarimpREG A vector of the elastic-net regression ICD-9 variable importance 

measures, with one measure for each column of binary_mat. 

output A matrix containing the performance statistics and their 95% 

confidence limits for models based on the Elixhauser index, 

random forest, BART, elastic-net, and the pooled model. Statistics 

include AUC, sensitivity, specificity, Brier score, net 

reclassification error (NRI) for events and non-events. 

train_id, test_id Indices of training and validation observations used in partitioning 

the dataset such that the same partition is used during summary 

score development (score_fn, below). 
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A.2.5  Examples (models_func) 

Sample datasets patient_dat, binary_dat, and elixmat are provided with the program 

code in GitHub. These are simulated observations for a diabetes patient population 

similar to the Veteran population studied in aims 1 – 3.  The following console summary 

is provided in addition to the information stored in the returned object: 

 

pred_out<-models_func(dat,binary, elixmat,iterations, size, covar_flag) 

Model Performance Comparison (covariates not included in model) 

1000  iterations 

size =  2000 patients 

                 Elix     RF       BART    REG      Pool   

AUC-UCL          0.709    0.834    0.841   0.840    0.854 

AUC              0.684    0.820    0.823   0.823    0.837 

AUC-LCL          0.663    0.799    0.806   0.803    0.819 

 

sens-UCL         0.537    0.702    0.748   0.709    0.733 

sens             0.485    0.672    0.719   0.663    0.701 

sens-LCL         0.424    0.627    0.680   0.609    0.660 

 

spec-UCL         0.813    0.841    0.802   0.842    0.834 

spec             0.772    0.818    0.774   0.820    0.810 

spec-LCL         0.731    0.788    0.739   0.794    0.785 

 

Brier-UCL        0.228    0.182    0.178   0.180    0.173 

Brier            0.222    0.172    0.171   0.171    0.164 

Brier-LCL        0.215    0.164    0.161   0.162    0.155 

 

NRIevent-UCL     -----    0.246    0.280   0.225    0.273 

NRIevent         -----    0.188    0.234   0.178    0.217 

NRIevent-LCL     -----    0.142    0.189   0.119    0.169 

 

NRInonevent-UCL  -----    0.088    0.041   0.095    0.079 

NRInonevent      -----    0.045    0.002   0.048    0.038 

NRInonevent-LCL  -----    0.018   -0.030   0.016    0.008 
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A.3  Summary score development (second manuscript) 

A.3.1  Description (score_fn) 

 This function demonstrates the method used in the second aim to develop a 

summary score based on variable importance measures from the top performing models 

in aim 1. Those ICD-9 codes with importance measures in the top 50% among all 

models were included in the summary score, and codes associated with mortality and 

survival were assigned weights of +1 or -1, respectively. The patient’s score is a simple 

weighted sum of how many of the selected ICD-9 codes were found in the patient’s 

record. Score performance was compared to models based on the Elixhauser-Quan 

index using AUC, sensitivity, specificity, Brier Index, and net reclassification index 

statistics. Note that the models function (models_func) described above must be run first 

since score_fn requires variable importance rankings from models_func in order to 

develop the summary score. 

 

A.3.2  Usage (score_fn) 

Score_fn(models_out, patient_dat, binary_dat, elixmat, iterations, size, covar_flag) 

 

A.3.3  Arguments (score_fn) 

models_out  This is the list object produced by models_func, above. 

patient_dat Dataframe containing the outcome and covariates such as race, 

age, gender, marital status, and clinical variables. Categorical 

variables should be stored as factors.  
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binary_dat Dataframe containing binary ICD-9 data, one row per patient and 

one column per unique ICD-9 code. Variables should be stored as 

factors. The column names should list each 5 digit code. 

elixmat Dataframe containing the Elixhauser-Quan comorbidities, one row 

per patient, and one binary column for each of the 31 

comorbidities, stored as factors. Alternatively, the user could 

establish a different comparison comorbidity measure in place of 

the Elixhauser index, where each column serves as an 

independent predictor in the comparison model. 

iterations The number of bootstrapped training and validation samples to be 

generated in order to determine the distribution of the comparison 

statistics. 

size The number of observations within each bootstrapped sample. 

covar_flag A flag indicating whether patient covariates from patient_dat 

should be included in the models, or whether inference should be 

based solely on ICD-9 information. 

 

A.3.4  Output objects (score_fn) 

Score_fn produces a list with the following objects: 

comorbidities This is a list of the ICD-9 codes from binary_mat which were 

included in the summary score. 

weights This is the weights (+1 for mortality, -1 for survival) assigned to 

each code in the score. 
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output Matrix of performance statistics and 95% confidence limits for the 

model based on the Elixhauser-Quan index and the summary 

score.  

 

A.3.5  Examples (score_fn) 

Console output: 

>score_run<-score_fn(pred_out,dat,binary, elixmat, iterations,size,  

           covar_flag) 

Score performance (covariates not included in model) 

1000  iterations 

                 Elix     Summary Score 

AUC-UCL          0.693    0.827 

AUC              0.676    0.816 

AUC-LCL          0.663    0.806 

 

sens-UCL         0.512    0.719 

sens             0.472    0.700 

sens-LCL         0.436    0.681 

 

spec-UCL         0.795    0.796 

spec             0.773    0.781 

spec-LCL         0.744    0.765 

 

Brier-UCL        0.228    0.179 

Brier            0.224    0.174 

Brier-LCL        0.219    0.169 

 

NRIevent-UCL     -----    0.265 

NRIevent         -----    0.228 

NRIevent-LCL     -----    0.184 

 

NRInonevent-UCL  -----    0.038 

NRInonevent      -----    0.008 

NRInonevent-LCL  -----   -0.024 
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A.4 Missing data analyses simulation (third aim) 

A.4.1  Description (missdat_sim) 

This function compares compares several machine learning and model-based multiple 

imputation methods for dealing with missing covariate data under missing completely at 

random (MCAR), missing at random (MAR) and missing not at random (MNAR) 

scenarios. Beginning with complete case data, the function simulates the desired 

missingness scenario, and imputation performance is evaluated using relative bias, root 

mean squared error, efficiency and coverage probability statistics.  

 

A.4.2  Usage (missdat_sim) 

Missdat_sim(patient_dat, MissType, pctMiss, size, iterations) 

 

A.4.3  Arguments (missdat_sim) 

patient_dat Dataframe containing the outcome and covariates such as race, 

age, gender, marital status, and clinical variables. Categorical 

variables should be stored as factors.  

MissType  The missingness pattern to be simulated in patient_dat. The 

options are “MCAR”, “MAR”, “MNAR”. See details (below) for 

further information concerning the missingness scenarios. 

pctMiss The fraction of patients in the bootstrapped dataset with any 

missing value. Options are restricted to .1, .3, and .5. 
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iterations The number of bootstrapped training and validation samples to be 

generated in order to determine the distribution of the comparison 

statistics. 

size The number of observations within each bootstrapped sample. 

 

A.4.4  Details (missdat_sim) 

In the example dataset, under MCAR, missingness is generated for race, mean_mpr and 

mean_A1c variables completely at random. Under MAR, the probability of missing race 

is higher when the patient died, the probability of missing mean_mpr is higher when the 

patient is not married, and the probability of missing mean_A1c is greater when the 

patient lives in a rural area. Under MNAR, missing race is more likely when the patient is 

non-Hispanic black or Hispanic and died; missing mean_mpr is more likely when the 

patient’s medication possession ratio (MPR) is above the median value among all 

patients; missing mean_A1c is more likely when the patient’s mean A1c level is above 

the median value for all patients.  

 

 

A.4.5  Output objects (missdat_sim) 

missdat_sim returns the following objects within a single list: 

output This is a list of dataframes, one per multiple imputation method. Each 

provides the performance statistics with 95% confidence limits for that 

method, including relative bias, efficiency, root mean squared error, and 

coverage probability. 
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prob.miss This provides a list of matrices, one per iteration, that summarizes the 

missingness probabilities under each scenario. This permits the user to 

verify that the requested scenario was generated. 

odd.miss This provides a list of matrices, one per iteration, that summarizes the 

missingness odds ratios for each scenario. Odds ratios are generated 

from separate logistic models for each variable with missing values, 

where the outcome is a missingness indicator. This permits the user to 

verify that the requested scenario was generated.  

 

A.4.6  Example (missdat_sim) 

R console output example: 

> MissType="MNAR" 
> pctMiss=.3 
> Nobs=1000 
> iterations=1000 
> missrun<-missdat_sim(dat,MissType,pctMiss,Nobs,iterations) 
 
------------------ 
> missrun[[1]][[1]] 
                 missType pctMiss MIType   intercept     single1     rural1 
rel.bias-median         3       2      1 -0.08798639 -0.01950551  0.2395583 
rel.bias-UCL            3       2      1  0.14671663  0.91969042  3.3358113 
rel.bias-LCL            3       2      1 -0.34776225 -1.28024266 -1.5368577 
ratio_var-median        3       2      1 43.06712909 43.30529920 41.1828111 
ratio_var-UCL           3       2      1 46.45898708 46.09625178 42.1956729 
ratio_var-LCL           3       2      1  3.00000000  2.00000000  1.0000000 
rmse-median             3       2      1  1.67613116  0.31493434  0.2080584 
rmse-UCL                3       2      1  2.71125326  0.40489587  0.3515986 
rmse-LCL                3       2      1  3.00000000  2.00000000  1.0000000 
CovProb-pct             3       2      1  1.00000000  0.66666667  0.6666667 
                      male1         age      race2       race3      race4 
rel.bias-median   0.1954343 -0.05470550 -14.729965  -6.3138931 -0.1648961 
rel.bias-UCL      0.4009245  0.23325525 -10.182891  -4.6691325 -0.1515784 
rel.bias-LCL     -1.4137884 -0.12348141 -16.919479  -7.7017439 -0.2718389 
ratio_var-median 39.0422326 41.81670229 199.818772 156.8015798 45.6921451 
ratio_var-UCL    44.2419931 44.26315920 434.076280 484.9759815 59.3085076 
ratio_var-LCL    -0.3477623 -1.28024266  -1.536858  -1.4137884 -0.1234814 
rmse-median       0.6738387  0.01871629   2.659716   2.1834179  0.3735142 
rmse-UCL          0.8181008  0.02679147   3.095889   2.7849435  0.4686748 
rmse-LCL          3.0000000  2.00000000   1.000000  -0.3477623 -1.2802427 
CovProb-pct       1.0000000  1.00000000   0.000000   0.0000000  1.0000000 
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                     meana1c     meanmpr 
rel.bias-median   -1.1485749 -0.06151144 
rel.bias-UCL      -0.6711596  0.07616864 
rel.bias-LCL      -1.2526204 -0.17614600 
ratio_var-median  53.8702350 52.63004672 
ratio_var-UCL     65.4548691 55.82645845 
ratio_var-LCL    -16.9194787 -7.70174393 
rmse-median        0.1643232  0.44817799 
rmse-UCL           0.1722005  0.63815386 
rmse-LCL          -1.5368577 -1.41378845 
CovProb-pct        0.6666667  1.00000000 

 

 

A.5 Sensitivity analyses: selection model 

A.5.1  Description 

This simulation program written in R implements the method described by Carpenter et 

al. for selection model sensitivity analysis after multiple imputation under MAR [36]. The 

program in its current form requires the use of the example dataset, patient_dat, which is 

stored with the program on GitHub.  

A.5.2  Usage  

Given the example dataset, a separate function is used to generate MNAR missingness 

in the race/ethnicity variable in which race is more likely to be missing in non-Hispanic 

blacks and Hispanics who died. These data are then imputed under MAR assumptions 

using MICE with logistic regression imputation [26]. Next, the weighted sensitivity 

approach is applied through an iterative process to examine candidate values for the 

delta vector, which adjusts how strongly a given level of the race variable is associated 

with the logodds that it is missing [36]. The user then selects the best values for delta 

from these results.  
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A.5.3 Arguments 

The following arguments must be provided: 

patient_dat Dataframe containing the outcome and covariates such as race, 

age, gender, marital status, and clinical variables. Categorical 

variables should be stored as factors.  

MissType  Must be set to “MNAR” for the purposes of the sensitivity analysis.   

pctMiss The fraction of patients in the bootstrapped dataset with any 

missing value. Options are restricted to 0.1, 0.3, and 0.5. Default 

value is 0.3. 

delta Elements of this vector adjust how strongly a given level of the 

race variable is associated with the logodds that it is missing. The 

user could optionally adjust the coded values that are iteratively 

tested.  

 

A.5.4  Output objects  

Output  An output matrix provides a summary of results for each 

combination of delta values. These include the estimated race 

coefficients under MNAR, with relative bias, efficiency, root mean 

squared error and coverage probability provided for each. Finally, 

the mortality odds ratios for the MNAR coefficient estimates are 

provided. 
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Weights This is a list, with a separate matrix for each iteration, providing 

the calculated weights. See Carpenter et al. [36]for further 

information on the weights. 

 

A.6 Sensitivity analyses: pattern mixture model 

A.6.1  Description 

This SAS program demonstrates the method for adjusting each level of the imputed 

race/ethnicity variables using pattern mixture models [32].  For now, it requires the use 

of the provided example dataset. 

 

A.6.2  Usage 

The demonstration includes three macros which work together: 

%macro missgen  This macro generates MNAR missingness for the race 

variable in the provided SAS dataset (simdat). See 

sections A.4 and A.5 for more information on the MNAR 

association. The macro requires a separately provided 

SAS program file (missgen.sas) be available. The user 

should modify the first line of the macro to indicate where 

this file is stored. The SAS dataset simdat must be loaded 

in the user’s SAS work directory. 

%macro tune This macro uses SAS PROC MI to perform multiple 

imputations with pattern mixture model adjustments. Four 

inputs are required (variables zero, one, two, three); these 
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are the adjustments to each of the race/ethnicity variables. 

PROC GENMOD and PROC MIANALYZE are then used 

to analyze and combine the multiple imputation results. 

%macro shell This macro helps the user to iteratively determine the best 

combination of the four race/ethnicity adjustment 

parameters. For the range of selected values and for the 

total number of desired iterations, each combination of 

adjustments is tested using the %missgen and %tune 

macros.  

 

A.6.4  Output objects  

The results of %shell are stored in two files found in the work directory: 

results_freq  This table provides the race distribution for each imputed 

dataset after MNAR adjustment. 

results_OR This table provides the results for each combination of the 

adjustment parameters. Provided results include 

parameter estimates and their standard errors, the 

mortality odds ratio and 95% confidence limits, relative 

bias, efficiency, root mean squared error, and coverage 

probability.  
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