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ABSTRACT 

Clustered binary outcomes are frequently encountered in medical research (e.g. 

longitudinal studies). Generalized linear mixed models (GLMMs) typically employed for 

clustered endpoints have challenges for some scenarios (e.g. high dimensional data). In 

the first dissertation aim, we develop an alternative, data-driven method called Binary 

Mixed Model (BiMM) tree, which combines decision tree and GLMM. We propose a 

procedure akin to the expectation maximization algorithm, which iterates between 

developing a classification and regression tree using all predictors and developing a 

GLMM which includes indicator variables for terminal nodes from the tree as predictors 

along with a random effect for the clustering variable. Since prediction accuracy may be 

increased through ensemble methods, we extend BiMM tree methodology within the 

random forest setting in the second dissertation aim. BiMM forest combines random 

forest and GLMM within a unified framework using an algorithmic procedure which 

iterates between developing a random forest and using the predicted probabilities of 

observations from the random forest within a GLMM that contains a random effect for 

the clustering variable. Simulation studies show that BiMM tree and BiMM forest 

methodology offer similar or superior prediction accuracy compared to standard 

classification and regression tree, random forest and GLMM for clustered binary 

outcomes. The new BiMM methods are used to develop prediction models within the 

acute liver failure setting using the first seven days of hospital data for the third 

dissertation aim. Acute liver failure is a rare and devastating condition characterized by 

rapid onset of severe liver damage. The majority of prediction models developed for 

acute liver failure patients use admission data only, even though many clinical and 
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laboratory variables are collected daily. The novel BiMM tree and forest methodology 

developed in this dissertation can be used in diverse research settings to provide highly 

accurate and efficient prediction models for clustered and longitudinal binary outcomes.  
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1 INTRODUCTION 

1.1 Overview  

There are many statistical models which may be used to classify observations into 

pre-defined outcome groups. From traditional parametric models such as linear 

discriminant analysis to newer algorithmic techniques like random forest (RF), there is no 

shortage of choices for statistical classification procedures. A multitude of factors must 

be considered when selecting the modeling framework. The structure and distribution of 

variables within the dataset must be examined, model assumptions checked and missing 

data assessed before a classification method may be chosen. One must also consider the 

overall goal of the model and whether the purpose is for use as a prediction model or to 

assess relationships between variables and the outcome. For example, if a goal is to 

understand how predictor variables relate to an outcome, then all variables might be 

included for modeling; however, this may produce a complex model that requires 

collection of many variables, which may not be practical in clinical settings for obtaining 

predictions of outcome. Decisions must be made about assessing predictor variables and 

prediction accuracy, which are often opposing factors in classification problems. As 

model development is considered an art, so too is choosing a classification method. 

Selecting a statistical method for studies in which a categorical outcome is of 

primary interest can be challenging in the setting of clustered and longitudinal outcomes. 

Since some standard models, such as linear or logistic regression, assume independence 

of outcome observations, alternative models must be employed (e.g. mixed models) to 

account for clustered outcomes, which occurs when outcomes are correlated within a 

group. For instance, studies which collect outcomes for several family members would be 
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clustered within family groups because people in the same family may have shared 

characteristics which make their outcome observations dependent. Another example of 

clustered data occurs in longitudinal or repeated measures studies, in which outcome 

variables are collected at multiple time points for each subject. For example, a 

longitudinal study may evaluate prognosis (e.g. good, moderate, or poor outcome) in a 

disease setting, diagnosis (e.g. if a patient has a disease or does not have a disease), or 

other outcomes (e.g. if a patient will be re-admitted or not re-admitted to the hospital) 

over time. Outcomes collected at multiple time points for each subject results in a 

correlation structure since values of the same variable for a subject are dependent. This 

should be modeled properly so that the assumption of independent observations required 

by some statistical methods (e.g. standard regression) is not violated. 

Though many statistical methods have been extended to account for clustered 

binary outcomes, newer machine learning procedures such as decision trees and RFs 

provide unprecedented opportunities to investigate these types of outcomes. A commonly 

used decision tree method is classification and regression trees (CART) [1], which allows 

the development of predictive models using binary splits on variables which can be read 

like a flow chart. Gaining popularity in diverse medical fields [2, 3], CART models offer 

an intuitive method for predicting outcome, using processes consistent with clinical 

interpretation of predictors (e.g. “high” versus “low” values of a predictor). First 

introduced by Breiman in 2001 [4], RFs are a collection of CARTs [1] which are 

constructed using randomly selected training datasets and random subsets of predictor 

variables for prediction of a categorical or continuous outcome. CART and RF offer 

many benefits compared to traditionally used classification procedures. Unlike standard 
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regression methods, CART and RF can be used in the setting of high dimensional data 

and can handle interactions between predictors and nonlinear relationships between 

predictors and outcome without the need for user specification of such relationships [5]. 

A benefit of CART and RF compared to other machine learning methods is that the 

former methods can determine which variables are important in the model, which is 

especially important in clinical prediction modeling where both prediction and 

interpretation of predictors related to outcome are of interest.  

While CART and RF can often better predict outcomes compared to other 

procedures such as logistic regression, discriminant analysis, and support vector 

machines for data captured at a single time point [6], these methods need to be 

thoroughly investigated for clustered and longitudinal outcomes. Methods for employing 

CART and RF for data with clustered outcomes thus far have largely focused on 

continuous outcomes, so development of the methodology for binary outcomes is 

warranted.  

1.2 Gaps in the Current Literature 

There are several methods available to implement CART and RF models for 

clustered continuous outcomes [7-16]. Laroque [12], Hajjem [10, 17] and Sela [15] 

proposed similar methods for implementing CART and RF models for longitudinal or 

clustered data with continuous outcomes. These methods incorporate mixed effects 

within the tree framework to account for the correlation structure within the data, using 

an algorithm analogous to expectation-maximization described by Wu and Zhang [18]. 

Though there are many CART and RF models available for continuous clustered 

outcomes, there is a paucity of methodology for modeling clustered binary and 
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categorical endpoints. For example, the R package party can be used to implement CART 

and RF models if two predictor variables are correlated, but it does not adjust for 

correlations resulting from clustered and longitudinal outcomes [19]. There are some 

techniques which circumvent the issue of adjusting for clustered outcome measures, such 

as summarizing variables (e.g. using averages or most frequent categorical values within 

the cluster) or using data from only a single time point (e.g. admission values); however, 

these methods have a marked loss of information since available data is summarized or 

partially used.  

Adjusting the continuous outcome methods proposed by Laroque [12], Hajjem 

[10, 17] and Sela [15] for clustered categorical outcomes is non-trivial. For continuous 

endpoints, outcomes are updated at each iteration based on fixed and random variables 

using an additive effect. For categorical outcomes, the optimal method for updating 

outcomes is unclear because an effect cannot simply be added. Another consideration 

within the generalized model setting for categorical outcomes is that an iterative 

procedure (e.g. iterative reweighted least squares or Newton Raphson) must be used to 

calculate random effects of clustering variables for generalized linear mixed models 

(GLMMs). For complex datasets, GLMMs may not converge, or other computational 

issues may arise (e.g. inverting large covariance matrices) which make GLMM 

estimation challenging [20]. Also, if data are quasi-separated or completely separated 

(meaning that one or a combination of variables perfectly predicts the outcome), 

traditional implementations of GLMMs cannot be used [21, 22]. Thus, developing CART 

and RF methods for clustered and longitudinal categorical outcomes is not an easy 

extension from continuous methods proposed in the literature.  
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1.3 Motivating Example 

A specific motivating example dataset for the proposed aims is the Acute Liver 

Failure Study Group (ALFSG) registry funded by the National Institute of Diabetes and 

Digestive and Kidney Diseases (U01-DK-58369-10). Affecting an estimated 2,000 

people per year in the United States [23], acute liver failure (ALF) is an orphan condition. 

To date, the registry consists of over 3,000 patients who have been affected by ALF. 

Study data are collected daily over seven days following enrollment or until a transplant 

or hospital discharge occurs, and patients can be followed for one year. The most 

common cause of ALF is acetaminophen overdose, which accounts for approximately 

half of the cases captured in the ALFSG database. Acetaminophen is the main active 

ingredient in many over-the-counter pain relievers and cold/fever medications such as 

Tylenol, Excederin, Sudafed, and DayQuil.  

Data for an example patient from the ALFSG registry is depicted in Table 1.1. 

The patient is a 37-year old, non-Hispanic/Latino female. She has a primary diagnosis of 

acetaminophen and was not wait-listed for a transplant. The patient was discharged from 

the hospital after seven days. Table 1.1 contains a few laboratory and clinical variables 

collected in the ALFSG registry. There are many other variables not depicted within 

Table 1.1 which are collected within the ALFSG registry. Information collected includes, 

but is not limited to, patients’ medical history, risk factors and past medications, physical 

exams including neurological status, imaging, laboratory data, daily updates, vital signs, 

transplant status and various other clinical characteristics. 

A goal of the ALFSG is to develop models to predict the outcome (poor or 

favorable condition) of ALF patients using daily data collected from the first week of 



6 

hospitalization. An important question for clinicians is the prompt and accurate daily 

prediction of the condition of ALF patients who overdosed on acetaminophen so that the 

decision of whether or not to list the patient for liver transplant can be made. Though 

many patients have high likelihood of survival with a new liver, transplantation 

Table 1.1: Example patient data from ALFSG registry 

for acetaminophen-induced ALF often presents significant challenges in management due 

to the rapidity and severity of illness, the potential for recovery without a transplant, and 

complex psychosocial issues, such as depression, in many patients [24, 25]. With 

advances in treatments available to those with ALF, patients who would have otherwise 

died remain alive past hospital admission. Several prognosis models are available at the 

time a patient is admitted to the hospital (e.g. King’s College Criteria and Clichy Criteria 

[26, 27]); however, prediction of outcome at later time points appears less accurate [28].  

There are challenges associated with the ALFSG dataset which make developing 

accurate prediction models difficult. Many laboratory variables collected within the ALF 

registry, such as INR and ionized calcium, have skewed distributions, which means that 

the user must specify a transformation of the predictor in order to meet linearity 
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assumptions for standard linear mixed models. Choosing a transformation function is 

sometimes challenging because several functions may satisfy linearity assumptions, and 

using transformations often makes interpretation of estimates for predictor variables 

difficult. Additionally, there may be complex interactions among predictor variables, but 

there is little guidance in the clinical literature about these relationships which limits a 

priori specification of interaction terms. Also, linear mixed models may be sensitive to 

outliers and data containing many extreme values, so these methods may perform poorly 

for the ALFSG data, which contain many extreme values (particularly for laboratory 

variables).  

There are several obstacles to developing accurate models to predict the daily 

condition of acetaminophen-induced ALF patients which may be used both on hospital 

admission and post-admission. The challenges described above often associated with 

clinical datasets are common in many disease settings. We employ CART and RF as the 

statistical modeling tools because they offer several solutions to these problems: both 

methods naturally model nonlinear relationships and complex interactions among 

predictors without user specification, and can sometimes provide higher prediction 

accuracy compared to many other classification procedures. CART and RF offer 

alternative methods for some situations when traditional models (logistic regression or 

GLMMs) are not optimal; namely, if the number of predictor variables is greater than the 

number of observations or if the predictor variables contain many extreme values [5]. 

Additionally, CART and RF can capture nonlinear patterns between predictors and the 

outcome of interest, without a priori knowledge of a nonlinear form [5]. For these 

reasons, CART and RF can often better predict outcomes compared to other procedures 
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such as discriminant analysis and logistic regression for data captured at a single time 

point [6].Though CART and RF clearly have many advantages over some traditionally 

used models, there is no existing method for modeling clustered and longitudinal 

categorical endpoints.  

Although our motivating example is within the acute, rare disease setting of ALF, 

there are many clinical settings where there is a need for methodology for modeling 

clustered categorical outcomes. For instance, our proposed methodology could be used to 

develop models for disease relapse for patients such as multiple sclerosis or lupus 

nephritis. Additionally, models could be developed to determine the likelihood a patient 

will be re-admitted into the hospital. Thus, proposed methodology to model clustered 

binary outcomes may be applied in myriad settings.  

1.4 Overall Goal and Specific Aims 

The goal of this dissertation is to develop statistical methodology which extends CART 

and RF framework for clustered binary outcomes, and to develop prediction models for 

the ALF setting which can be used throughout hospitalization. Specifically, the objectives 

for this dissertation are: 

 Aim 1: To develop a CART method for clustered and longitudinal binary

outcomes using an iterative procedure to combine CART and mixed effect models

 Aim 2: To develop a RF method for clustered and longitudinal binary outcomes

using an iterative procedure to combine RF and mixed effect models

 Aim 3: To develop a prediction model for daily outcomes of acetaminophen-

induced ALF patients.
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2 STATISTICAL BACKGROUND 

The main focus of this dissertation is to extend methodologies within the CART 

and RF setting for longitudinal and clustered datasets with binary outcomes. In this 

section, common classification methods used for non-clustered and clustered data are 

reviewed, with emphasis on the CART and RF methodology. An overview of CART and 

RF classification is presented.  

2.1 Classification Methods for Non-Clustered Data 

There are a number of statistical procedures which may be used to model 

categorical outcomes when observations are not longitudinal or clustered. In this section, 

we focus on methods which may be employed when predictor variables are collected at a 

single time point (i.e. the data does not contain longitudinal measures or clustering 

variables). Commonly used classification methods include linear procedures, support 

vector machines, neural networks, and decision trees.  

A popular linear classifier is logistic regression, which may be used if the 

outcome of interest is binary (e.g. alive or dead). Easily applied to datasets within 

virtually any statistical computing platform, logistic regression is simple and offers 

straight-forward interpretations when there are only a small number of predictors (e.g. 

less than 20). The odds of the outcome are modeled as a linear function of predictor 

variables, using the logit link. Potential pitfalls of logistic regression include: model 

assumptions may not be appropriate in all applications (e.g. linearity of the logit), 

interactions between several predictor variables complicate interpretation of model 

parameters, and lack of applicability for complex datasets (e.g. when the number of 

predictor variables is greater than the number of observations) [29]. Logistic regression 
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may also provide poor fit if the event rates of the outcome are at the extremes, either very 

small or large.  

Another parametric classification method is linear discriminant analysis, in which 

outcome classes are separated using linear decision boundaries. Several assumptions 

made in linear discriminant analysis include: common covariance across classes, classes 

are linearly separable using hyperplanes, and predictor variables follow a multivariate 

normal distribution. Though violations of the assumption of common covariance matrix 

of classes may be addressed using quadratic discriminant analysis, the parametric nature 

of discriminant analysis may be limiting in some settings (e.g. for applications of ALFSG 

registry data since variables are not normally distributed). Another limitation of 

discriminant analysis is that the number of parameters which need to be estimated is often 

quite large, so this procedure may not be applicable for datasets which have many 

predictor variables and for outcomes which have many categories [29-31].  

Support vector machines (SVMs) extend the method of linear discriminants, 

through construction of nonlinear boundaries for classes. While SVMs often provide high 

classification accuracy for complex training datasets, there may be difficulty determining 

an appropriate kernel distribution, and there is no way to interpret and assess variables 

included in the model.  Furthermore, SVMs are prone to overfitting, so accuracy may 

decrease for testing or validation datasets. For this reason, SVMs are not ideal in many 

clinical settings, where assessing predictor variables is an essential part of model-

building. Another limitation of SVMs is that they can be sensitive to outliers and data 

containing many extreme values, which is the case for many important clinical variables 

within the ALF setting [32].  
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Another machine learning classification procedure is a neural network, in which 

linear combinations of predictor variables are constructed (called hidden layers) to model 

the outcome of interest. Though neural networks offer a multi-stage modeling strategy in 

which latencies in the data are considered, there are several disadvantages of the method. 

Neural networks are sensitive to starting values and the scale of predictor variables, and 

are prone to overfitting [29]. Moreover, users must determine how many hidden layers to 

include, and choosing various amounts of hidden layers may lead to different models. 

Initial neural network models were created for binary outcomes only, and extensions for 

multi-class outcomes recently developed are computationally intensive and have low 

accuracy if classes are not balanced. Like SVMs, neural networks also lack 

interpretability of predictor variables [33-35].  

2.1.1 Decision Trees for Non-Clustered Data 

Decision trees are alternate classification methods which require fewer 

assumptions compared to parametric methods such as logistic regression and discriminant 

analysis. Read like a flow chart, decision trees develop predictive models using splits on 

variables. While there are many different ways to develop decision trees [36], one of the 

most common procedures implemented is classification and regression tree (CART) 

modeling. Developed by Breiman [1], the nonparametric nature of CART offers results 

which are simple to use (e.g. does not require calculation or use of an application) and 

interpret (e.g. low versus high variable values). These aspects of CART are advantageous 

compared to logistic regression and many other classification methods, where 

calculations may be cumbersome (e.g. plugging in numbers and exponentiation requires a 

calculator or application) and interpretation of results may be unclear (e.g. if there are 



12 

interactions between two or more predictors or if predictor variables cannot be readily 

and easily analyzed). CART also allows for inclusion of complex interactions among 

predictor variables. Modern advances in computing have provided efficient 

implementation of CART modeling using many standard statistical software platforms.   

Binary partitions of data, selected with an exhaustive search, are used to construct 

CART models. For each predictor variable, every possible combination of sets 

(groupings of the values) is evaluated using a measure of impurity based on the 

distribution of the outcome in the node (splitting point). For categorical predictor 

variables, all combinations of the categories are assessed. For example, if a variable 

consisted of three groups, ሼ1, 2, 3ሽ, the possible splits are ሼ1ሽ versus ሼ2, 3ሽ, ሼ1, 2ሽ versus 

ሼ3ሽ, and ሼ1, 3ሽ versus ሼ2ሽ. All combinations of the ordered values are assessed for 

continuous predictor variables. For instance, if a variable consisted of the values 

ሼ2.2, 5.6, 4.5ሽ, the possible sets for splits include ሼ2.2ሽ versus ሼ4.5, 5.6ሽ and ሼ2.2, 4.5ሽ 

versus ሼ5.6ሽ. Notice that these splits could correspond to a number of non-unique cutoffs. 

Using the same example set, a split achieving the set ሼ2.2ሽ versus ሼ4.5, 5.6ሽ could use 3 

as a cutoff, but any number between 2.2 and 4.5 would result in the same split. The set 

which minimizes the sum of the impurities of the outcome variable in the two resulting 

(sometimes called child or daughter) nodes is selected at each step of the CART 

algorithm.   

CARTs are developed using the following algorithm (Figure 2.1). First, the 

predictor variable that optimally separates outcome groups is selected from the root node 

(containing all data), and a binary split is made (e.g. bilirubin < 2) which splits data at the 
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parent (present) node into two daughter nodes. Next, from both of these subgroups, 

another variable is selected with replacement, which best predicts outcome and binary 

splits are made. These splits are made recursively until stopping criteria are reached (e.g. 

when the threshold for the relative decrease in node impurity is reached), in which case a 

terminal node occurs. Each terminal node yields the outcome prediction for the specific 

subset of the data, along with the proportion of observations contained in each outcome 

class. Trees can become very complex; thus, it is advisable to prune CART models, a 

process in which unimportant variable splits are removed. Pruning not only simplifies 

tree models, but also makes them more generalizable to external datasets. CARTs are 

often pruned by selecting the complexity parameter that minimizes the cross-validated 

relative error rate [36, 37].  

Figure 2.1: The CART algorithm 

Two CARTs are presented within Figure 2.2 which predict the binary 21-day 

outcome (spontaneous survival versus death/liver transplant) for acetaminophen-induced 

acute liver failure patients at hospital admission [38]. The left panel displays a CART 

Step 1:

Initialize

•Start at the root node

Step 2:

Find Split

•For each variable, find
the set that minimizes
the sum of the node
impurities in the two
daughter nodes

•Choose the variable split
that gives the minimum
overall impurity in the
daughter nodes

Step 3:

Iterate

• If stopping criteria is
met, then the tree is final

•Otherwise, repeat Step
2 for each daughter
node
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developed using the same variables as a commonly used prognosis model, the King’s 

College Criteria (denoted KCC-CART), and the right panel displays a CART developed 

using readily available laboratory and clinical variables (denoted NEW-CART). The 

admission KCC-CART (left panel of Figure 2.2) has three decision rules and consists of 

six total nodes. Each node provides the total number of subjects within the node, as well 

as the number of survivors and dead/transplant patients with the respective rates. Node 6 

represents high risk of dead/transplant outcome, nodes 1 and 3 are low risk of 

dead/transplant outcome, and node 5 is moderate risk of dead/transplant outcome. To 

calculate performance measures for the model, all subjects in nodes 5 and 6 are predicted 

as dead/transplant outcomes, and all subjects in nodes 1 and 3 are predicted as 

spontaneous survivors. The admission NEW-CART (right panel of Figure 2.2) also has 

three decision rules and consists of six total nodes. Node 6 patients are considered high 

risk for dead/transplant outcome and are predicted as such, whereas nodes 1, 3 and 5 are 

predicted as survivors.   

Tree models are visual in nature, and an example is one of the easiest ways to 

grasp how CARTs are developed and used in practice. Suppose a patient presents at 

hospital admission with the following characteristics: creatinine 3.2 mg/dL, INR 2.5, 

coma grade III, model for end stage liver disease (MELD) 22, lactate 5.2 mmol/L, and 

the patient was on a ventilator. First, the admission KCC-CART prognosis model will be 

used (Figure 2.2). At the start, the creatinine of 3.2 mg/dL is greater than 1.5, so we  
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Figure 2.2: Admission CART models for predicting survival or death/transplant. 



16 

proceed to Node 2. Next, INR of 2.5 is greater than 1.75, so we proceed to Node 4. 

Finally, coma grade is III, so we move to terminal Node 6, which estimates that the risk 

of death/transplant at 21 days is high (probability of death/transplant is 0.736). Using the 

admission NEW-CART, we move to Node 2, then to Node 4 and reach Node 6, where 

the probability of death/transplant is 0.761. 

Several decision tree algorithms other than CART are described within the 

literature. Loh discusses benefits and shortcomings of various decision tree algorithms: 

C4.5, CART, CHAID, CRUISE, GUIDE, and QUEST [36]. C4.5 and CART use an 

exhaustive search on every variable to determine variable splits and stops when criteria 

are met. CHAID and GUIDE differ from the other algorithms in that they group ordered 

variables then choose splitting points based on these groups, which aims to correct the 

bias to select continuous variables which other tree models suffer. CRUISE, GUIDE and 

QUEST use a two-step approach in which the variable most strongly associated with the 

outcome is selected then the cut-point is determined using an exhaustive search. While 

these alternatives aim to address some deficiencies within the CART framework, we 

focus on extending traditional decision tree (CART) and forest methodologies and leave 

exploration of other algorithms as future work.  

2.1.2 Random Forest for Non-Clustered Data 

Though CART models offer an alternative classification procedure to standard 

regression methods, there are some limitations which should be discussed. Firstly, CART 

models can create models which are complex, and users must decide how to prune 

models, which may introduce bias. Also, CARTs are weak learners, meaning that they 

may have more variability compared to more complex statistical algorithms [6]. For 
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example, small changes in the training dataset or predictor variables included may result 

in different CART models. Ensemble methods use many simple models (e.g. CARTs) 

which are slightly different and combine results from each model to produce predictions 

of outcome [39, 40]. Aggregating across many models generally results in more 

consistent predictions of outcome, although the price for model stability is diminishing 

simplicity and interpretability. While CART models may be beneficial compared to 

ensemble methods if interpretation of predictor variables is the main aim of a study, 

ensembles often offer higher prediction accuracy, particularly for complex datasets. 

Because CART models are sensitive to small changes within training data and may offer 

poor predictive ability for some complex dataset, ensemble methods may be preferable, 

especially if prediction accuracy is the main goal of the study. 

Simple models, such as CART, may perform poorly for complex datasets, 

particularly when the number of predictor variables within a dataset is greater than the 

number of observations. There are various types of ensemble methods, which differ by 

how each simple model is developed (e.g. splitting training and testing data and subsets 

of predictor variables to be used) and how results from the simple models are combined 

to create overall predictions. Small differences in the simple models can lead to more 

accurate predictions when many models are developed and results are aggregated [39]. 

Rokach presents a framework for describing ensemble methods based on inducer 

(method for sampling observations), combiner (method for combining each of the 

classifiers), diversity (classifiers are as different as possible while maintaining accuracy 

of the training dataset), size (number of classifiers) and members’ dependency 

(correlation structure of the classifiers) [40].  
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To overcome some of the limitations of CART models (e.g. poor predictive 

accuracy for complex datasets and high sensitivity to changes in the training dataset), an 

ensemble method called random forest (RF) can be employed. RF may be used to 

construct prediction models for continuous, categorical, ordinal, and survival outcomes. 

First introduced by Breiman in 2001 [4], the procedure offers an alternative modeling 

framework which offers many benefits compared to traditional, parametric models. RF is 

used in a wide variety of fields. The RF method is a standard statistical tool in the field of 

genetics and is often used in applications ranging from ecology to business administration 

[5, 41-51]. RF can be implemented on many standard computing platforms, including the 

commonly used R package randomForest [52]. RFs are an advantageous ensemble 

method for datasets in which the number of subjects is much smaller than the number of 

predictor variables, or if analyzing the relationship between predictor variables and 

outcome is of interest [40]. 

The RF procedure iteratively develops CARTs to model an outcome of interest. 

RF is a machine learning algorithm, which builds CART models in multiple steps (Figure 

2.3). First, the dataset is randomly split into two groups using bootstrap sampling: an in-

bag (training) set and an out-of-bag (validation) set. The in-bag dataset, approximately 

two-thirds of the entire dataset, is used to grow a CART within the forest. A CART is 

developed using a subset of predictor variables randomly selected at each node (splitting 

branches of the tree). When the tree is fully grown (i.e., when stopping criteria have been 

met), the out-of-bag dataset, consisting of the remaining data (approximately one-third), 

is run down all the trees in the forest. Each CART votes for what it predicts for the 

classification of all observations in the out-of-bag dataset (meaning the observations not 
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used to construct the tree), and the outcome group with the most votes is the prediction 

for the model. This process is repeated until the specified number of trees has been 

created. The out-of-bag error rate should be plotted against the number of trees within the 

forest to ensure that a sufficient number of trees have been grown, which is indicated if 

the error rate converges to a certain value.  

Figure 2.3: The RF algorithm 

After a RF model is developed to predict a categorical outcome, there are several 

methods for evaluating its performance [47]. The first statistic which is typically assessed 

is the out-of-bag error rate, an unbiased measure of prediction error for the model. 

Additionally, a confusion matrix with class error rates may be assessed to determine how 

observations are being incorrectly classified. An example confusion matrix is provided 

within Table 2.1, in which a RF is used to predict etiology of ALF patients, an outcome 

with six groups: autoimmune hepatitis (AIHep), acetaminophen (APAP), drug induced 

liver injury (DILI), hepatitis B (HepB), indeterminate (Indeter), and other [47]. Columns 



20 

of the table represent the outcome class that the model predicts for the subjects, and rows 

represent the actual outcome class of the subject. Thus, the diagonal of the table, shaded 

in Table 2.1, represents the numbers of subjects correctly classified by the model. Using 

this table, information can be gained about which categories are most likely to be 

incorrectly classified. For example, there are four subjects whose etiology is autoimmune 

hepatitis, but the model predicts that they are in the acetaminophen group.  Similar 

interpretations can be made for the rest of the cells in the table. The last column in Table 

2 specifies the error rate of the model, broken down by outcome categories. For this 

model, the rate of misclassification is very low for the acetaminophen etiology group, is 

moderate for the autoimmune hepatitis and other groups, and is fairly high for the 

remaining groups. 

Table 2.1: Confusion matrix for etiology of acute liver failure patients 

   Predicted Class 

Actual 
Class 

AIHep APAP DILI HepB Indeter Other 
Class 
Error 

AIHep 63 4 35 5 22 7 0.54 
APAP 1 873 3 2 3 32 0.04 
DILI 29 30 60 17 48 36 0.73 
HepB 7 30 12 48 29 16 0.66 
Indeter 15 49 34 14 87 46 0.64 
Other 10 90 28 12 17 164 0.49 

A visual method for presenting the same results can be produced using a measure 

called the margin. The margin of a data point is the proportion of votes for the correct 

class minus the maximum proportion of votes for the remaining classes. Thus, positive 

margins correspond to correct prediction and negative margins mean incorrect prediction 

[52]. Moreover, the margin of an observation serves as a measure of confidence in correct 

classification. The values are contained in the interval [-1, 1]; margins closer to 1 indicate 
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higher confidence in accurate classification and margins closer to -1 indicate lower 

confidence in accurate classification [53]. A histogram of margins for all observations 

may be produced to assess model accuracy overall, and boxplots of margins by outcome 

groups provide a visual method for comparing model accuracy by outcome categories 

[47].  

There are many reasons that RF is a beneficial statistical tool for classification. 

Primarily, it does not have the same limitations that inhibit many traditional statistical 

procedures (e.g. those described in Section 2.1). For example, the RF procedure can 

handle the high dimensional data, when the number of predictor variables is much larger 

than the sample size. Additionally, RF can determine which variables are important in the 

model and can capture nonlinear patterns between predictors and the outcome of interest 

without a priori specification [5]. Another benefit of RF is that outliers or sub-clusters of 

data may be identified using proximities [50]. Proximities are stored within a square 

matrix with dimension equal to the number of observations within the dataset. For two 

different observations, the proximity is increased by 1 if the observations fall within the 

same terminal node of a tree. This is repeated for all trees and all combinations of 

observations, and the proximity matrix is normalized by dividing by the number of trees 

within the forest [4]. RF differs greatly from its traditional statistical counterparts and 

offers an alternate method which often has lower prediction error rates than many 

traditional models. Verikas et al. illustrate the higher accuracy of RF compared to logistic 

regression,  linear and quadratic discriminant analysis, k-nearest neighbor, support vector 

machines and naïve Bayes [54]. For these reasons, RF is an attractive solution to the 

problem of classification.  
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Even though there are many positive aspects to the RF procedure, it does have 

challenges in implementation and interpretation. The algorithm is quite different from 

most statistical classification procedures, and many of the statistics commonly reported 

for traditional regression modeling approaches are not used. RF does not calculate p-

values, confidence intervals, or test statistics in the traditional sense. Moreover, it does 

not provide users with a closed form of a model because of the complexity of the 

algorithm, which is partially why RF is called a ‘black box’ method. Although the 

procedure lacks many tools that are conventionally used to evaluate models, it is possible 

to extract similar information from the output.  

Before presentation of variable importance measures and imputation of missing 

data within the RF framework within the next few sections, a detour will be taken to 

briefly discuss conditional RF. Several researchers have developed alternative RF 

methodologies which aim to address some deficiencies of the method. A criticism of 

standard CART and RF is that the mechanism for selecting variable splits within trees is 

biased since it tends to use continuous variables and categorical variables with many 

groups more often than other types of variables [55]. This issue will be discussed in detail 

in the following section. The conditional RF framework offers an alternative framework 

in which significance tests are used to determine split variables and split points [55, 56]. 

Assessing variables with statistical tests reduces the bias for variables of certain forms 

(e.g. continuous variables or categorical variables with many groups) compared to 

standard RF. However, conditional RFs often have higher computation times compared 

to traditional RFs and have not been rigorously examined within the literature to assess 

its robustness for clustered datasets. For these reasons, we focus this dissertation on 
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traditional RF, and note that future research into conditional RF for clustered outcomes 

may be worthwhile.   

2.1.3 Missing Data in Random Forest 

Deciding how to handle missing data is an important step in the model-building 

process. There are many methods for imputing (filling in) missing values for parametric 

models, such as mean imputation, least squares estimation, iterative procedures (such as 

expectation-maximization) and multiple imputation [57]. While there are some available 

methods which may be used to impute missing predictor data when modeling clustered 

binary outcomes (e.g. multiple imputation using chained equations [58]), we focus on 

decision tree and RF methodology for imputing missing data. CART and RF frameworks 

have their own techniques for handling missing data.  

There are many different methods for handling missing data within decision trees. 

The default method for handling missing data within the CART setting involves finding a 

surrogate split, in which a different variable is substituted within a node for observations 

with missing values of the predictor selected for the node. Surrogate variables are 

selected using the same method as variable selection for each node, which minimize the 

node impurity for non-missing observations. Ding and Smirnoff provide an overview of 

missing data techniques for classification trees applied to binary data [59]. The authors 

compare probabilistic split (deterministic rules for the probability that an observation 

follows right or left daughter node when the predictor at the node is missing), complete 

case analysis, grand mode or mean imputation, separate class (including “missing” as a 

class category for the split), surrogate split, and complete variable method for handling 

missing data. The results from this study indicate that the best way to handle missing data 
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depends mainly on two factors: the missingness mechanism (missing at random, missing 

completely at random, or missing not at random) and whether there are missing data in 

the test dataset. If there are missing predictor values in the test set, then including a 

separate class for missing values is optimal; otherwise, the probabilistic split method is 

best. However, if a test set is not available at the time of data analysis, it is unclear which 

method for handling missing data is optimal. Twala et al. determine that including a 

missing category for both continuous and categorical variables is an effective way to 

handle missing data for decision trees [60]. Compared to more computationally intensive 

proposed approaches, the technique of adding a category for missing variables performs 

similarly for 21 datasets in the Repository of Machine Learning Databases where 

missingness is induced using various mechanisms. 

Methods for missing data imputation within the RF framework are slightly more 

complex compared to those of decision trees. However, the default procedure for RF 

imputation may be easily computed using the rfImpute function within the R package 

randomForest [52]. The algorithm to impute missing input values is as follows. First, all 

missing values are replaced using a rough fix, with the median of non-missing continuous 

variables and the most frequent class of non-missing categorical variables. Next, a RF is 

developed and new imputed values are estimated using the non-missing values of 

variables weighted by the proximities matrix. The process—create RF then impute 

missing values—is repeated for several iterations to obtain final imputed values. 

Typically four to six iterations are sufficient, and the default for rfImpute within the R 

package randomForest is five iterations.  
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Several studies demonstrate similar or better performance of RF imputation 

compared to other missing data imputation methods. Reiger et al. use simulations to show 

that using a surrogate splitting method to handle missing data is equivalent to K-nearest 

neighbor imputation within the conditional inference forest framework [61]. Schwarz et 

al. provide an imputation technique using RF for genome-wide association study data 

which contained missing data after combining multiple datasets [62]. Pantanowitz and 

Marwala demonstrate that RF imputation is more accurate and computationally efficient 

compared to imputation methods used in neural networks [63].  

While the original imputation method for RF is beneficial compared to many 

other imputation techniques, some researchers have developed alternatives. For example, 

Hapfelmeier et al. compare multiple imputation by chained equations with surrogate 

splits in decision trees and forest applications, concluding that imputation may be worse 

than surrogate splits if there is a small percentage of missing [64]. Multiple imputation by 

chained equations is computationally intensive and produces ambiguous results for the 

twelve datasets analyzed. Surrogate splits are negligibly worse compared to this 

imputation method in this study. However, the only missingness mechanism assessed was 

missing completely at random, an assumption which may be violated for some 

applications. Stekhoven and Buhlmann develop a new RF imputation method which does 

not require the outcome to be non-missing, as in the case of the original RF imputation 

method [65]. MissForest is available as an R package, and authors conclude that the 

method can unbiasedly impute missing data up to 30%, with no distributional 

assumptions or tuning parameters.  
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Imputation of missing data affects all aspects of RFs, including variable 

importance and selection of variables. Hapfelmeier et al. develop a new variable 

importance measure within the conditional forest framework which is less biased than 

permutation importance when predictors have missing data [66]. Several missing data 

schemes are used in a simulation study to illustrate the unbiasedness of the new variable 

importance measure. Another study by Hapfelmeier and Ulm discusses a variable 

selection method which may be used when predictors have missing data up to 30% within 

conditional forest modeling [67]. While a limited number of variables are used in a 

simulation study, the method is more accurate than selection procedures based on 

performance, such as varSelRF by Diaz-Uriarte and De Andres [42]. The issue of missing 

data arises in many real-world data analyses, and careful consideration of how imputation 

of missing values impact modeling is essential.  

2.1.4 Variable Importance in Random Forest  

Aside from imputation methods, a major benefit of RF compared to some other 

machine learning algorithms such as neural networks and SVMs is the capability to 

assess variables within the model through variable importance measures. Two measures 

are typically considered: the mean decrease in accuracy and the mean decrease Gini [5, 

54]. The latter is based on the number of splits within the decision trees for each predictor 

and is criticized for its bias for continuous variables. Because continuous variables have 

many more options for where splits can occur within each decision tree in the RF, the 

mean decrease Gini tends to give higher importance to these variables, as opposed to 

ordinal or categorical variables, which have a limited number of places for splits to occur. 

Formally, the Gini importance is defined in the following manner [4, 68]. Suppose there 
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are i = 1,2,…, n total observations, j = 1, 2,…, p predictor variables, and k = 1, 2,…, 

ntree trees included in an RF model. Let ݊௠ represent the total observations within node 

m and ݊௠௭ represent the number of observations within node m in outcome class z for 

outcomes z=1,…,Z. The proportion of observations in node m that are contained in 

outcome class z is defined by 

௠௭̂݌ ൌ 	
௡೘೥

௡೘
	. 

The Gini index is given by: 

ܫܩ ൌ 	∑ ௠௭ሺ1̂݌ െ ௠௭ሻ௓̂݌
௭ୀଵ . 

Gini importance is defined in terms of importance of variable j to tree k for all outcomes 

z: 

௝௞௭ܫܰܫܩ ൌ ൫ܫܩ௣௔௥௘௡௧ െ ௡௢ௗ௘	ௗ௔௨௚௛௧௘௥	௟௘௙௧ܫܩ ൅  . ௞௭݌ݖ௡௢ௗ௘൯	ௗ௔௨௚௛௧௘௥	௥௜௚௛௧ܫܩ

Summing this over nodes containing variable j within tree k yields: 

௝௞ܫܰܫܩ ൌ 	∑ ௝௞௭ܫܰܫܩ
௓
௭ೕ	∈்௥௘௘	௞ . 

Finally, averaging over the trees within the forest gives the formula for the mean decrease 

in Gini importance measure for variable j is: 

௝ܫܰܫܩ ൌ
ଵ

௡௧௥௘௘
	∑ ௝௞ܫܰܫܩ

௡௧௥௘௘
௞ୀଵ . 

Another importance measure is the mean decrease in accuracy (also called 

permutation accuracy or permutation importance), which is the difference between the 

out-of-bag error rate from a randomly permuted dataset and the out-of-bag error rate of 

the original dataset, expressed as an average percent over all trees in the forest. A proper 

definition for permutation importance is described in the following manner [4, 68]. Let 
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 ௜௝௞ beݎ ,௜௝௞ be the number of trees which split on variable j and misclassify observation iݏ

the number of trees which do not split on variable j and misclassify observation i, ̃ݏ௜௝௞ be 

the number of trees which split on variable j and misclassify observation i when variable j 

is permuted, and ̃ݎ௜௝௞ be the number of trees which do not split on variable j and 

misclassify observation i when variable j is permuted. The permutation index is defined 

in terms of variable j to tree k for all observations i: 

௝௞௜ܯܴܧܲ ൌ ൫̃ݏ௜௝௞ 	൅ ௜௝௞൯ݎ̃ െ ሺݏ௜௝௞ ൅  .௜௝௞ሻݎ

Averaging over all observations and trees, the permutation importance is defined by: 

ܯܫ	ܯܴܧܲ ௝ܲ ൌ
ଵ

௡∗௡௧௥௘௘
∑ ∑ ௝௞௜ܯܴܧܲ

௡௧௥௘௘
௞ୀଵ

௡
௜ୀଵ . 

For both mean decrease in Gini and permutation accuracy, high values represent 

important variables, and low values represent unimportant variables in the RF 

framework. A general discussion of theoretical considerations for variable importance 

measures for machine learning methods is presented by Van der Laan, in which statistical 

tests and confidence intervals for the importance measures are derived [69].  

Several alternative variable importance measures are suggested within the literature. 

Sandri and Zuccolotto discuss four methods for evaluating variable importance: 

permutation importance, importance based on the maximal margin function, importance 

based on the difference of the number of lowered and raised margins, and the Gini 

importance [70]. A variable selection procedure incorporating these importance measures 

within a principal components analysis framework is presented, though no simulation 

study is provided to examine the effectiveness of the method [70]. Wang et al. propose a 

measure based on the maximal conditional chi-square p-value [71]. Traditional 
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importance measures average over effects of other predictors, so this new importance 

measure aims to accurately capture importance of variables, even ones involved in 

complex interactions. The method is successful for high dimensional data, and is 

demonstrated with a real microarray study. Zhou et al. define a new variable importance 

measure using the proximity matrix, which provides similar performance to the 

permutation importance for eight microarray datasets [51]. The new importance measure 

offers no distinguishable benefit compared to permutation importance. 

A limitation of several variable importance measures, including Gini accuracy 

and permutation accuracy, is the bias towards higher values for continuous variables and 

variables with many categories. Strobl et al. suggest use of conditional RFs or traditional 

RF without replacement in the bootstrap samples to reduce bias of variable importance 

[55]. Simulated datasets in this study are low dimensional (do not contain many 

variables), so results may not generalize to other datasets. Nicodemus et al. extends 

results of Strobl, again using a low dimensional simulated dataset with few predictors 

[56]. Variable importance measures are shown to depend on forest size and the amount of 

correlation between predictor variables. Variable importance measures are presented in 

unscaled and scaled (divided by standard errors) forms. In another study, Nicodemus et 

al. further demonstrate the bias of Gini importance relative to permutation importance 

using a simulation study, also noting that permutation importance is less sensitive to 

small changes within the data [72]. Authors additionally claim that there is no benefit to 

scaling importance measures (dividing by the empirical standard error); however, the 

simulations in this study conducted used a balanced outcome variable, so results may 

differ if the proportion of observations in each outcome class is different.  
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It should be noted that variable importance is not synonymous with statistical 

significance. Variables may be important within the RF but may not be statistically or 

clinically significant. However, the measures provide a means of identifying variables 

which are most important in predicting the outcome, as well as a statistic for comparing 

the relative importance of many input variables. Altmann et al. incorporate a statistical 

test for a new variable importance measure, which is based on the p-value of repeated 

permutations of the outcome vector [73]. While traditional importance measures used in 

the RF setting will divide importance between groups of correlated predictors, the 

method proposed by authors provides p-values for each variable which are significant for 

important variables regardless of correlations with other variables. However, simulations 

in this study only included categorical predictors, which may limit the generalizability of 

results. Additionally, computing time to calculate the novel importance measure of 

Altmann et al. are much larger compared to other variable importance measures. 

2.1.5 Variable Selection Procedures in Random Forest 

Though a main benefit of RF is that it may be used for high dimensional data or 

datasets with many predictors, inclusion of a large number of predictors is not ideal for 

clinical applications where time-efficient predictions are necessary. Variable selection is 

critical when developing classification models since it can potentially reduce noise and 

improve computational efficiency. There is an essential link between variable importance 

measures and variable selection. The various importance measures reviewed in the 

previous section could each be used to develop variable selection procedures.  

A standard RF variable selection procedure is developed by Diaz-Uriarte and De Andres, 

which uses the ranks of the permutation importance for each variable to eliminate the 
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least important variables [42]. Compared to linear discriminant analysis and support 

vector machines, the accuracy of the RF with the variable selection procedure is similar. 

A limitation of the method is that variables selected are not unique, meaning that the 

procedure may select different groups of variables each time it is employed which all lead 

to similar overall prediction error rates. However, this method remains a useful tool to 

ease the burden of data collection, which is particularly important in medical prediction 

modeling. A major strength of this procedure is that the number of variables to be 

included in the final model does not need to be determined a priori; the method will 

eliminate unimportant variables successively until a solution based on user-inputted 

parameters is obtained. Authors produce an R package called varSelRF which 

implements the variable selection tool [42]. 

Many studies have investigated the use of RF to select important variables in 

microarray datasets. Tang et al. compare RF and logistic regression for identifying genes 

and haplotypes which are predictive of rheumatoid arthritis, and claim that more research 

is needed to investigate the usefulness of RF [49]. Yang and Gu analyze variable 

importance using RF and Bayesian networks for genome-wide association study data, and 

conclude that RF predicts the categorical outcome with higher accuracy compared to 

Bayesian networks [74]. However, the authors highlight a major limitation of RF, in 

contrast to the Bayesian networks: the possible inability of RF to identify underlying 

causal relationships. In other words, RFs offer higher prediction accuracy but may fail to 

identify known risk factors for the outcome. This is a limitation of several methods and is 

based on the study design. Rodenburg et al. use RF permutation importance to identify 

variables which are then inputted into self-organizing maps for assessment of genes [75]. 
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While this method correctly identifies biological processes of interest according to the 

authors, it is unclear if this combination of RF and other statistical models would result in 

better prediction or identification of variable relationships in settings other than 

microarrays.  

There are many different methods for variable selection within the RF framework, 

and thus far, there is no consensus on the optimal method for identifying the most 

important variables. Current literature suggests that a commonly used method is that of 

Diaz-Uriarte and De Andres, but further exploration of how the method performs for 

various datasets is warranted.  

2.1.6 Summary of Classification Methods for Non-Clustered Data 

In this section, parametric, nonparametric and machine learning methods for 

classification are presented, with emphasis on tree and forest modeling. We focus on 

CART and RF since they have high generalizability and accuracy compared to other 

classification techniques for a variety of datasets comprised of both continuous and 

categorical features. Characteristics of RF, including variable importance measures, 

variable selection procedures, and imputation mechanisms, are discussed in detail for 

data which contain predictors collected at a single time point.  

2.2 Classification Methods for Clustered and Longitudinal Data 

Often in research settings, variables (both outcomes and predictors) are collected 

serially over time, creating a repeated measures or longitudinal dataset. The additional 

data collected for observations of the same patient over time results in a correlation 

structure since outcomes are dependent. A more general term for this is called a 

clustering variable, in which outcomes are correlated within a group structure. For 
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example, patients treated from the same doctor may be considered a clustering variable 

since there may be dependencies between patients treated by the same person. Clustered 

outcomes should be modeled properly to accurately model the variance structure. In this 

section, methods for developing classification models for longitudinal and clustered 

datasets are discussed, with emphasis on tree and forest frameworks.  

The most commonly used method for predicting categorical clustered and 

longitudinal outcomes is generalized linear mixed modeling (GLMM). A mixed model is 

developed, often using fixed effects for covariates collected at a single time point and 

random effects to account for the longitudinal measures within a subject or within a 

clustering variable. Users must select a mean model and covariance model based on 

measures such as the Akaike information criterion or Bayesian information criterion, 

along with an appropriate link function, depending on the categorical form of the 

outcome (e.g. binary, multinomial, ordinal, etc.) [76, 77]. Though GLMMs are frequently 

used for a variety of studies, a limitation of the framework is the user must specify 

interactions and if there is a nonlinear relationship between predictors and outcome 

through the link function, which is not always straightforward. Another drawback of 

GLMMs is the lack of an automated procedure for selecting the covariance structure, 

which often leads to subjective decisions about the optimal form. Additionally, GLMMs 

may have convergence issues or may be difficult to implement for high dimensional 

datasets (e.g. with more than 30 predictor variables).   

Other methods for modeling clustered outcomes include linear and quadratic 

discriminant analysis, support vector machines, and neural networks; however, we refrain 

from further discussion of these methods due to limitations presented in Section 2.1.  The 
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remainder of this section focuses on advances in decision tree and RF procedures for 

classification of clustered and longitudinal data.  

2.2.1 Decision Trees for Clustered and Longitudinal Outcomes 

There are several methods for developing decision trees for continuous and 

ordinal outcomes with clustered outcome variables. One of the first researchers to explore 

this type of methodology is Segal (1992) [14]. Two splitting functions are described: one 

which focuses on the mean structure with the covariance being treated as a nuisance and 

one in which the covariance structure is the primary interest. The latter uses a likelihood 

ratio test for the equality of covariance matrices to determine a split, assuming 

multivariate normality of predictor variables. The classic missing data mechanism of 

using surrogate splits is extended for the framework of repeated measurements.  Time-

varying covariates are used in the method: a regression model containing time as a 

covariate is compiled for each variable, and slopes and intercepts are used by the 

regression tree algorithm. However, the methodology may only be used for continuous or 

ordinal outcomes. Zhang and Ye provide a method for producing decision trees for 

longitudinal data where the outcome is ordinal [78]. Each response is converted into 

binary indicators and trees are developed using these; thus, interpretability is challenging 

and computing time is large due to the difficulty of the splitting function used at each 

node. 

Various alternative methods for choosing variable splits for decision trees with 

clustered outcomes are suggested within the literature. Abdolell et al. provide another 

mechanism for developing trees for continuous clustered outcomes [7]. Likelihood ratio 

statistics from mixed models are used to choose variable splits. This work augments that 
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of Segal [14] since variable importance is calculated using a permutation test, along with 

bootstrap confidence intervals for variable cut points. A SAS macro is provided by the 

authors which implements the method.  Another method for multivariate decision trees is 

developed by De’Ath which may be implemented for continuous outcome data using the 

R package mvpart [8]. This method may also be used for clustering since the splitting 

mechanism separates groups which behave similarly. Yu and Lambert propose two 

alternative methods for multivariate decision trees [16]. The first method involves fitting 

spline curves for individuals with longitudinal data and uses the estimated coefficients as 

the continuous outcome in regression tree models. The second reduces the dimensionality 

of the data using principal components and develops a regression tree using loadings 

from the first few components. The main issue with these approaches is the lack of direct 

interpretability. Additionally, the methods are not proved to be accurate compared to 

existing methods, and variable selection bias was not discussed.  

Some researchers are investigating the use of generalized estimating equations 

(GEEs) to find optimal variable splits within decision trees for clustered datasets. For 

example, Keon Lee uses GEEs to find the best variable and optimal splitting point based 

on residuals for each node [11]. This method allows for any type of clustered outcome 

data, including binary, multinomial, and count data. However, the GEE tree technique 

does not allow for predictions of new observations, and it can only be implemented when 

outcomes are of the same type. Dine et al. overcome the limitation of Keon Lee’s GEE 

model by developing a tree algorithm which may be used for clustered responses of 

differing types [9]. A likelihood-based approach is used as a variable splitting function. A 

main objective is to develop a single tree which could be used for predicting multiple 
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outcomes to be used as an exploratory tool. Like the Keon Lee model  [11], the 

multivariate trees for mixed outcomes cannot be used for prediction.  

The methods for clustered decision trees discussed in the previous paragraphs all 

use the CART algorithm. Several researchers investigate alternative decision tree 

algorithms which aim to reduce the bias in variable selection inherent in CART models. 

For instance, Lee and Shih discuss ways to implement multivariate decision trees in an 

unbiased manner, in which a conditional independence test is used to select variables at 

each node [79]. This variation on traditional CART is implemented to minimize the 

selection bias of continuous variables, while in the setting of clustered outcomes.  It is an 

extension of decision tree algorithms called QUEST and CRUISE [37]. Hsiao and Shih 

implement a chi-squared test for conditional independence on the residual signs for 

grouped covariate values [80]. However, this splitting function may be inadequate if 

covariate groups effects are not all associated in the same direction as the outcome of 

interest (i.e. if the tails of a distribution are associated with one outcome and the middle 

of the distribution is associated with another). Eo and Cho [81] suggest using residuals 

from mixed effects models to determine variable splits, which is the approach in GUIDE 

trees by Loh and Zheng [13]. The method allows for interpretation of variable trends over 

time, can handle datasets which have imbalanced outcomes, and reduces computation 

time compared to methods which use exhaustive searches for all variables to determine 

splits.  

Combining the unbiased variable selection of an alternative decision tree 

algorithm called GUIDE [13] and splitting on residuals as in the method proposed by Eo 

and Cho [81], work by Loh and Zheng [13] demonstrates that multivariate GUIDE 
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achieves similar prediction accuracy compared to mvpart [8] and GEE trees [11]. 

However, multivariate GUIDE does not suffer a selection bias toward continuous 

variables which is inherent to mvpart. A limitation of this method is that users must 

define intervals which divide continuous variables into several categories which will be 

tested to select the splitting variable at a node, and there is no automated way to 

determine this parameter. Software to implement GUIDE and multivariate GUIDE is 

available on the author’s website (http://www.stat.wisc.edu/~loh/guide.html).  

A promising novel method proposed by Sela for continuous outcome prediction is 

called random effects expectation-maximization (RE-EM) trees, in which an algorithm 

similar to expectation-maximization is used iteratively to obtain a prediction model [15]. 

The method can be implemented using any type of tree method (e.g. CART, GUIDE, 

CRUISE, etc.) in conjunction with linear mixed effects modeling to account for 

clustering within the data. RE-EM trees can predict future observations for subjects 

within the original dataset or new subjects. Diagnostic plots must be assessed to 

determine if assumptions about the random effects model are reasonable. Authors use 

surrogate splits for missing data, which may not be optimal since this method does not 

consider data from other time points which may be non-missing. Variable importance and 

variable selection methods are not presented for the method, and there is an issue with 

interpretability since the tree and the mixed model are compiled separately. This means 

that it is not possible to assess time-varying covariates. 

Loh  summarizes tree based methods for classification and regression outcomes, 

and details methods developed for longitudinal and clustered data [37]. Several problems 

within decision tree research are discussed as avenues for future work, namely: how to 
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handle missing data, how to incorporate time-varying covariates for longitudinal data, 

allowing for splits on linear or nonlinear combinations of variables for nodes within trees, 

and maximizing computational efficiency in the age of big data. Ciampi [82] provides a 

discussion based on the literature review from Loh [37], suggesting various other future 

research topics within the decision tree framework, such as developing Bayesian tree 

methods and allowing for “soft” nodes in which a hierarchy of variables is determined by 

experts which is implemented in the decision tree.  

2.2.2 Random Forests for Clustered and Longitudinal Data 

Though there are myriad methodologies for decision tree development for 

clustered datasets for continuous and ordinal outcomes, few studies have explored 

implementation of ensembles of trees in this setting. In this section, methods for 

developing RFs for longitudinal and clustered datasets for continuous outcomes are 

presented.  

One approach to building an ensemble framework for clustered datasets is simply 

to aggregate predictions from multiple decision trees using methodology described in the 

previous section. Segal and Xiao [83] construct an ensemble of trees described in Segal’s 

work [14] using a continuous outcome. A tutorial is provided for analysis of a continuous 

outcome, including analysis of accuracy, important variables identified by the RF, and 

proximities of variables. However, the sampling scheme for each tree is not updated to 

reflect the clustered nature of observations, nor is the computation of other RF features 

(e.g. variable importance measures, proximities, margins, etc.). While this study provides 

a simple way to aggregate results from many decision trees, consideration of methods 

which may more sufficiently use the clustered data structure is recommendable.  
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Karpievitch et al. develop a method called RF++, which performs subject-level 

bootstrapping then aggregates predictions from the same subject [84]. This is motivated 

by a dataset which had a small sample size relative to the number of predictors, where the 

majority of the variables are not associated with the continuous outcome of interest. The 

authors demonstrate through simulation that for data of this form, typical RF performed 

as well as the novel RF method which accounted for the clustering among observations. 

However, the results suggest that the typical RF underestimates error rates, so authors 

recommend that a test dataset be used to obtain an unbiased estimate for error. 

A promising RF methodology for longitudinal data within the current literature is 

presented by Larocque [12] and Hajjem et al. [10, 17]. Larocque introduces the following 

methodologies: mixed effects regression tree (MERT), generalized mixed effects 

regression tree (GMERT), mixed effects random forest (MERF), and generalized mixed 

effects random forest (GMERF) [12]. The main idea of these methods is to incorporate 

mixed effects within the tree framework to account for the correlation structure within the 

data, using an expectation-maximization algorithm described by Wu and Zhang [18] to 

develop the prediction model. The algorithm functions as follows. First a model is fit for 

the fixed portion of the response variable. Next bootstrap samples from the training 

dataset are used to build the forest of trees and outcomes are updated based on random 

effects, the variance for the error term, and the variance for the random effects. These 

steps are iterated until the model converges. Twelve simulated scenarios are investigated 

using continuous outcomes, and the new methodology performs as well or better than 

traditional trees and forests. Though GMERT and GMERF methodology are described, 
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no simulations or data applications are presented, and there is no available software to 

implement these methods.  

Hajjem et al. [10] extends the work of Laroque [12] by allowing for specification 

of the covariance structure between observations within a cluster for continuous outcome 

prediction. The method is also beneficial due to its ability to handle different numbers of 

observations within clusters (unbalanced clusters) and its flexibility for various types of 

covariates (observation- or cluster-level). Simulation results indicate that MERT 

performs well even if the random effects within the model are incorrectly specified. 

MERT offers a reduction in predicted mean squared error and tree size, making it both 

more accurate and easy to interpret compared to traditional tree models. Another study by 

Hajjem et al. further demonstrates the benefits of using MERT and MERF over standard 

RF, regression trees, linear mixed effects models, and linear models through simulations, 

demonstrating that traditional RF is not appropriate for clustered data [17]. MERF 

performs best when datasets had lower amounts of random noise, and the amount of 

correlation between predictor variables did not impact the relative improvement of 

MERF over other alternative models.  

Thus far, the MERF methodology largely focuses on evaluation of accuracy for 

modeling continuous outcomes with various types of datasets (e.g. containing outliers, 

unbalanced categorical variables, and different amounts of correlation within 

observations). Authors claim that results would be similar for categorical outcomes [10, 

17], but no formal simulation or data applications have been published investigating the 

use of GMERT or GMERF for outcomes which are not continuous.  
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2.2.3 Summary of Classification Methods for Clustered and Longitudinal Data 

Several methods for modeling continuous outcomes with clustered and 

longitudinal data are presented, with emphasis on decision tree and RF frameworks. A 

multitude of longitudinal decision trees using various algorithms (CART and others) are 

presented, but none are developed for modeling categorical outcomes. Akin to the setting 

of data collected at a single time point, ensembles of trees are sometimes preferable since 

they may offer better performance for complex datasets. The main method of employing 

RF for clustered data, called MERF and GMERF, is introduced by Laroque and evaluated 

thoroughly for continuous outcomes by Hajjem et al. However, further work is warranted 

to develop and assess the decision tree and RF methodology for clustered categorical 

outcomes.  
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3 METHODS FOR SPECIFIC AIMS 

3.1 Specific Aim 1: To develop a CART method for clustered and longitudinal 

binary outcomes using an iterative procedure to combine CART and mixed effect 

models 

3.1.1 Introduction 

Clustered binary outcomes are frequently encountered in clinical research. 

Correlation within datasets may result from variables representing subject clusters, such 

as medical centers or family groups. Another type of clustered outcome results from 

longitudinal or repeated measures studies, where each patient represents a cluster. For 

example, a longitudinal study may collect repeated measurements of outcomes to 

evaluate disease prognosis (e.g. poor versus good outcome), diagnosis or disease relapse 

(e.g. disease versus disease-free), or other endpoints (e.g. re-admitted or not re-admitted 

to the hospital). Outcomes collected on the same patient at multiple time points are 

almost always dependent on one another. This within-subject correlation should be 

considered because failing to account for correlation results in a loss of estimation 

efficiency.  

Generalized linear mixed models (GLMMs) are typically employed for modeling 

clustered and longitudinal outcomes, but suffer limitations for some datasets. For 

example, GLMMs cannot be implemented in the setting of high dimensional data, when 

there are more predictor variables than observations. Modern datasets, particularly in the 

setting of genetic medical research, often have thousands of predictors and only several 

hundred observations, thus posing a significant challenge for traditional GLMMs for 
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modeling clustered outcomes. Additionally, interactions between predictor variables 

should be selected a priori to be included in GLMM modeling.  However, knowledge 

about interactions between predictors is often lacking in practice, especially in complex 

clinical settings considering many personal, familial, and environmental factors. The 

GLMM framework also requires users to specify if there is a nonlinear relationship 

between predictors and outcome through the link function. Though specification of 

nonlinear relationships and interaction terms is not impossible, it often presents a 

challenge in the GLMM framework since there is not a universal method for making 

these decisions about modeling.  

In this paper, we propose an alternative method that provides greater flexibility 

for complex datasets called Binary Mixed Model (BiMM) tree, which combines decision 

tree methodology with GLMM. Decision tree methodology can be implemented to 

develop prediction models which can be used in the setting of high dimensional data. 

Also, decision trees do not assume a linear relationship between predictor variables and 

outcome. Interactions between predictor variables are also naturally modeled within the 

decision tree framework without prior knowledge. Thus, decision trees offer a flexible 

framework for developing prediction models. In the BiMM tree method, we incorporate 

results from decision trees within mixed models to adjust for clustered and longitudinal 

outcomes. A Bayesian implementation of GLMM is used to avoid issues with 

convergence and quasi- or completely separated datasets with binary outcomes.  

A specific motivating example dataset for the novel methodology in this paper is 

a longitudinal registry dataset of acute liver failure (ALF) patients (clinicaltrials.gov ID: 

NCT00518440). ALF is a rare and devastating condition characterized by rapid onset of 
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severe liver damage, encephalopathy (altered mental status) and coagulopathy (impaired 

blood clotting), with approximately 25% of patients requiring a liver transplant and 

approximately 30% of patients dying during the acute phase [85]. Complexities of the 

ALF registry data, including skewed distributions of predictors with many extreme 

values, nonlinear predictors of outcome, and a relatively high dimensional dataset, make 

it difficult to employ GLMMs for predicting outcomes.  

The chapter is structured as follows. In Section 3.1.2, we present background 

information about decision tree modeling in general and tree models for longitudinal and 

clustered continuous outcomes. In Section 3.1.3, we introduce the BiMM tree method for 

predicting longitudinal and clustered binary outcomes and in Section 3.1.4 we describe 

the motivating ALF registry in detail. We compare the BiMM tree method performance 

to several other methods with a simulation study in Sections 3.1.5 and 3.1.6. Finally, in 

Section 3.1.7 we discuss implications of our study, limitations, and avenues for further 

research. 

3.1.2 Background 

A decision tree framework is utilized for the novel BiMM tree method because it 

offers several advantages compared to traditional models such as GLMMs. There are 

many different decision tree methods available, and we implement our BiMM tree 

method with the classification and regression tree (CART) framework, a commonly used 

methodology developed by Breiman  [1]. CART does not require specification of non-

linear relationships or interaction terms, and offers simple and intuitive interpretation of 

predictor variables. Moreover, CART provides an alternative method for developing 

prediction models when traditional models are not feasible (e.g. if the number of 
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predictor variables is greater than the number of observations). For these reasons, CART 

can sometimes better predict outcomes compared to other procedures such as 

discriminant analysis and logistic regression for data captured at a single time point [6]. 

In spite of this flexibility, few decision tree methods exist for modeling clustered 

categorical endpoints. The R package party can be used to implement CART models if 

two predictor variables are correlated, but it does not adjust for longitudinal and clustered 

measurements of the same outcome variable [19]. There are some techniques which 

circumvent the issue of adjusting for longitudinal and clustered outcomes, such as 

summarizing variables (e.g. using averages or most frequent categorical values) or using 

data from only a single time point (e.g. admission values); however, these methods have 

a marked loss of information since available data is summarized or partially used.  

Several methods have been proposed to modify CART models for longitudinal 

and clustered continuous outcomes [7-16]. Hajjem [8] and Sela [15] develop similar 

methods for implementing CART models for longitudinal and clustered data with 

continuous outcomes. These methods incorporate mixed effects within the tree 

framework to account for the clustered structure within the data, using an algorithm 

analogous to expectation-maximization described by Wu and Zhang [18]. The main idea 

in the Sela RE-EM tree [15] and Hajjem mixed effects regression tree [8] algorithms is to 

dissociate the fixed and cluster-level components within the modeling framework. First, a 

CART with all predictors as fixed effects is fitted with the assumption that the random 

effects for the clusters are known. Next, a linear mixed model is fitted using the estimated 

fixed effects from the CART and the random cluster effects are estimated which account 

for correlation induced by clustered variables with the assumption that the fixed effects 
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are known. Finally, the continuous outcome is updated based on the linear mixed model 

using an additive effect in which the estimated random cluster effect is added to the 

original continuous outcome. The algorithm continues to iterate between CART 

(estimating CART assuming that mixed effects are known), linear mixed models 

(estimating mixed model assuming that fixed CART effects are known), and updating the 

outcome in a framework similar to the expectation-maximization algorithm [18]. The 

algorithms continue iteratively until convergence is satisfied, which is based on the 

change in the likelihood from the mixed model being less than a specified value.  

While the framework for clustered CART modeling has been developed for continuous 

outcomes, adjusting the algorithm for clustered categorical outcomes is non-trivial. For 

continuous endpoints, the outcomes are updated based on random effects from the linear 

mixed model using an additive effect. For categorical outcomes, the optimal method for 

adjusting outcomes is unclear because a random effect cannot simply be added. 

3.1.3 BiMM Tree Method 

The BiMM tree method iterates between developing CART models using all 

predictors and then using information from the CART model within a Bayesian GLMM 

to adjust for the clustered structure of the outcome. Consistent with the continuous 

methods for clustered decision trees, we implement an algorithm similar to the 

expectation-maximization algorithm, in which the fixed (decision tree) effects are 

dissociated from the random (cluster-level) effects. While developing the CART model, 

it is assumed that the random effects are known, and while developing the Bayesian 

GLMM, it is assumed that the fixed components are known. The BiMM tree method may 

be considered as an extension of GLMMs where the fixed covariates are not assumed to 
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be linearly associated with the link function of the outcome and interactions do not need 

to be pre-specified. The traditional GLMM for binary outcomes has the form 

logitሺݕ௜௧ሻ ൌ ࢼ࢚࢏ࢄ ൅ ܼ௜௧ܾ௜௧, 

where ݕ௜௧ is the binary outcome for cluster i = 1,…,M for longitudinal measurements 

t=1,…, ௜ܶ, logit() is the logistic link function, 	࢚࢏ࢄ is a matrix of fixed covariates for 

cluster i for longitudinal measurement t, ࢼ is a vector of fitted coefficients for the fixed 

covariates, 	ܼ௜௧ is the clustered covariate for cluster i for longitudinal measurement t, and 

ܾ௜௧ is the fitted random effect for cluster i for longitudinal measurement t. Note that 

GLMMs may be fitted when the cluster sizes differ (e.g. if there are different numbers of 

longitudinal measurements for each cluster). 

Within the BiMM tree method, the linear constraint is relaxed and interaction 

coefficients do not need to be specified. The GLMM portion of the BiMM method has 

the form 

logitሺݕ௜௧ሻ ൌ CARTሺ࢚࢏ࢄሻࢼ ൅ ܼ௜௧ܾ௜௧. 

CARTሺ࢚࢏ࢄሻ is represented within the GLMM as indicator variables reflecting membership 

of each longitudinal observation t for cluster i in terminal nodes within the CART model. 

Terminal nodes are at the bottom of CART models and provide an outcome prediction for 

each subject’s observation. Figure 1 provides an example CART model with terminal 

Nodes 1, 3, 5 and 6. Thus, the terminal nodes of CART provide a method for determining 

similar groups of observations [1] which may be included within the GLMM portion of 

the BiMM method. In this example, CARTሺ࢚࢏ࢄሻ would contain indicator variables for  
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Figure 3.1: An example decision tree and the process used to generate data for the simulation study 

being in Node 1, Node 3, and Node 5. It is not necessary to include the indicator variable 

for the last terminal node, Node 6, because this would be redundant information within 

the GLMM. This is consistent with traditional models, where one includes one less 

indicator variables than the number of categories in the regression framework.  

Implementation of GLMMs is more challenging compared to standard linear 

mixed models employed for continuous outcomes. A consideration within the generalized 

model setting for categorical outcomes is that an iterative procedure (e.g. iterative 

reweighted least squares or Newton Raphson) must be used to compute random effects of 

clustered variables for GLMMs. GLMMs can have computational issues with model 

convergence or with inversion of large matrices, particularly when data are high 

dimensional, which makes GLMM fitting challenging [20]. Also, if data are quasi-
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separated or completely separated, meaning that one or a combination of variables 

perfectly predicts the outcome, traditional implementations of GLMMs cannot be used 

[21, 22].  

To address these challenges, we propose an algorithm that integrates CART and a 

Bayesian implementation of GLMM. There are several benefits to employing a Bayesian 

implementation of the GLMM instead of the traditional GLMM in our algorithm. First, 

Bayesian computation of GLMMs produce similar parameter estimates to that of 

frequentist GLMMs when uninformative prior distributions are used; however, weakly 

informative prior distributions can be used as a solution to separated or quasi-separated 

datasets [21]. Therefore, Bayesian implementation of the GLMM in the BiMM tree 

method offers more flexibility compared to frequentist GLMMs. Second, there are 

efficient methods for applying Bayesian GLMMs (e.g. integrated nested Laplace 

approximation implemented in the R package INLA [86] and maximum a posteriori 

estimation implemented in the R package blme [87, 88]) easily applied on open source 

software which offer similar computation time to frequentist GLMMs. Finally, 

employing the Bayesian GLMM avoids convergence issues with traditional GLMMs 

using the R package lme4 [20, 89]. 

The Bayesian GLMM within the BiMM tree method considers uninformative 

priors for the fixed effects and random effect covariance parameters using Normal and 

Wishart distributions respectively. An unstructured covariance matrix is employed within 

the Bayesian GLMM. After the random effects for subjects are fitted with the Bayesian 

GLMM, the original outcome variable is updated using results from the CART and 

GLMM, which we define as the target outcome variable. A split function which divides 
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the observations into two groups is used to create a binary target outcome variable for 

each iteration since a simple additive effect does not result in a binary measure.   

Specifically, the BiMM tree algorithm is as follows: 

1. Initialize the CART and GLMM:
a. Fit a CART using ݕ௜௧ as the outcome for fixed predictors (࢚࢏ࢄ) and

develop J-1 indicator variables for the j = 1, …, J terminal nodes of
clusters i = 1,…,M for longitudinal measurements t=1,…, ௜ܶ:

௜௧ݕ൫ܫ ∈ ݀݋݊ ௝݁൯ ൌ 1	if	ݕ௜௧	is	in	terminal	node	݆ 
௜௧ݕ൫ܫ ∈ ݀݋݊ ௝݁൯ ൌ 0	if	ݕ௜௧	is	not	in	terminal	node	݆ 

Define CARTሺ࢚࢏ࢄሻ as the matrix of the J-1 indicator variables for cluster i 
at longitudinal measure t. 

b. Fit a Bayesian GLMM using ݕ௜௧ as the outcome, including ܴܶܣܥሺ࢚࢏ࢄሻ and
clustered variable (ܼ௜௧) to obtain fitted values for the random effect (ܾ௜௧ሻ:

logitሺݕ௜௧ሻ ൌ CARTሺ࢚࢏ࢄሻࢼ ൅ ܼ௜௧ܾ௜௧. 
c. Average predicted probabilities from the CART (denoted pr஼஺ோ்ሺ࢚࢏ࢄሻ)

and GLMM (denoted prீ௅ெெሺ࢚࢏ࢄ, ܼ௜௧ሻ) for each measurement t within
cluster i:

௜௧ݍ ൌ ሺpr஼஺ோ்ሺ࢚࢏ࢄሻ ൅ prீ௅ெெሺ࢚࢏ࢄ, ܼ௜௧ሻሻ/2 
2. Iterate through the following steps until convergence is satisfied:

a. Determine the target outcome (ݕ௜௧
∗ ) by adding the average predicted

probability (ݍ௜௧) from the original outcome (ݕ௜௧) and applying a split
function h() to make ݕ௜௧

∗  a binary value:

௜௧ݕ
∗ ൌ hሺݕ௜௧ ൅  ௜௧ሻݍ

b. Repeat steps 1a-c using ݕ௜௧
∗  as the outcome until the change in the

posterior log likelihood from the Bayesian GLMM is less than a specified
tolerance value.

To summarize, the BiMM tree method begins by initializing the CART and 

GLMM models to obtain a predicted probability for each observation within the clusters. 

First, a CART model is developed using the binary outcome and all predictors assuming 

that the random effects are known, and indicator variables for the terminal nodes from the 
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CART are developed. These indicators for the CART terminal nodes (assumed to be 

known), as well as random effect variables, are then used in the Bayesian GLMM to 

account for longitudinal or clustered outcomes. The predicted probabilities from the 

CART model and the GLMM model are averaged because the goal of the algorithm is to 

combine population-level effects arising from the CART with cluster-level effects arising 

from the GLMM. We do not simply use the probabilities from the GLMM, which 

inherently consider the population-level effects, because the CART portion of the method 

is used for making new predictions and thus was the focus of model updating. The use of 

predicted probabilities from only the GLMM is investigated within our simulation study, 

and results in slightly worse model performance in terms of prediction accuracy (data not 

shown). The target outcome is updated using a split function which creates a binary 

outcome based on the sum of the original binary outcome and the average of the 

predicted probabilities from the CART and GLMM. The algorithm then continues 

iteratively fitting the fixed effects (from the CART) and random effects (from the 

Bayesian GLMM), updating the target outcome at each iteration, until the change in the 

posterior log likelihood is smaller than a specified value. Predictions for observations 

included within the model development dataset are made using the CART (population-

level) and random (observation-level) components. For observations not included within 

the model development dataset, predictions are made using the CART (population-level) 

component only.  

There are several different split functions (denoted hሺݕ௜௧ ൅  ௜௧ሻ) which may beݍ

used to create the new iteration of the binary target outcome (ݕ௜௧
∗ 	). We use a function 
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of	ݕ௜௧ ൅  ௜௧ to update the target outcome to account for both the original outcome and theݍ

average predicted probability from the CART and GLMM models for the specific 

observation t within the cluster i. Before introducing the split functions, it is necessary to 

understand the distribution of ݕ௜௧ ൅  ௜௧ is a binary value, it iseither 0 or 1, andݕ ௜௧. Sinceݍ

௜௧ݕ ௜௧ is a probability which is between 0 and 1. Therefore, value ofݍ ൅  ௜௧ is between 0ݍ

and 2. We present three options for the split function which may be employed based on 

the overall goal of the prediction model. The first split function maximizes model 

sensitivity, the second split function maximizes model specificity, and the third split 

function equally weights sensitivity and specificity for updating the target outcome 

vector. Now, the split function which maximizes sensitivity uses a threshold (0 ൏ ݇ଵ ൏

1) to update the target outcome:

hଵሺݕ௜௧ ൅ ௜௧ሻݍ ൌ ቄ1	if	ݕ௜௧ ൅ ௜௧ݍ ൐ ݇ଵ
0	otherwise

Thus, using hଵሺݕ௜௧ ൅  ௜௧ሻ, binary outcomes of 0 can be updated to be 1, but outcomes ofݍ

1 cannot be updated to be 0. This provides a mechanism for maximizing the sensitivity. 

Similarly, a split function which maximizes specificity may be employed using a 

threshold (1 ൏ ݇ଶ ൏ 2) to update the target outcome: 

hଶሺݕ௜௧ ൅ ௜௧ሻݍ ൌ ቄ0	if	ݕ௜௧ ൅ ௜௧ݍ ൏ ݇ଶ
1	otherwise

Using hଶሺݕ௜௧ ൅  ௜௧ሻ, binary outcomes of 1 can be updated to be 0, but outcomes of 0ݍ

cannot be updated to be 1. This provides a mechanism for maximizing the specificity. A 

final, more general, split function which does not favor sensitivity or specificity updates 

the target outcome using the following method: 
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hଷሺݕ௜௧ ൅ ௜௧ሻݍ ൌ ൞

0	if	ݕ௜௧ ൅ ௜௧ݍ ൏ 0.5	
1	if	ݕ௜௧ ൅ ௜௧ݍ ൐ 1.5

1	with	probability	ݍ௜௧
0	otherwise	

 

Using hଷሺݕ௜௧ ൅  ௜௧ሻ, if the prediction from the current iteration of the BiMM methodݍ

agrees with the original binary outcome (i.e. if ݕ௜௧ ൅ ௜௧ݍ ൏ 0.5 or if ݕ௜௧ ൅ ௜௧ݍ ൐ 1.5) then 

the target outcome is the same as the original binary outcome. Otherwise, the target 

outcome is updated to be 1 with probability ݍ௜௧, and 0 with probability 1 െ  ,௜௧. Thereforeݍ

original values of 0 can be updated to 1 and original values of 1 can be updated to 0. 

An example of the four possible scenarios of an iteration within the BiMM 

method is depicted within Table 3.1, with ݇ଵ ൌ 0.5 and ݇ଶ ൌ 1.5 for observation t within 

cluster i. Using the split function hଵሺݕ௜௧ ൅  changes (௜௧ݕ) ௜௧ሻ, the original binary outcomeݍ

from a 0 to a 1 in Scenario B, which will increase the sensitivity since the next iteration 

of the BiMM method will contain more values of 1 within the target outcome. Likewise, 

using the split function hଶሺݕ௜௧ ൅  changes from a 1 (௜௧ݕ) ௜௧ሻ, the original binary outcomeݍ

to a 0 in Scenario C, which will increase the specificity since the next iteration of the 

BiMM method will contain more values of 0 within the target outcome. Using hଷሺݕ௜௧ ൅

 ௜௧ሻ, the target outcomes are updated in Scenarios B and C based on the strength of theݍ

predicted probability from the BiMM iteration. In all split functions, if the original binary 

outcome agrees with the predicted probability from the BiMM iteration (i.e. in Scenarios 

A and D), then the target outcome is the original outcome.   
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Table 3.1: Example scenarios for split functions within the BiMM Tree method 

Scenario ݕ௜௧ ݍ௜௧ ݕ௜௧ ൅ ௜௧ݕ ௜௧ݍ
∗ = hଵሺݕ௜௧ ൅ ௜௧ሻݍ ௜௧ݕ

∗ = hଶሺݕ௜௧ ൅ ௜௧ሻݍ ௜௧ݕ
∗ = hଷሺݕ௜௧ ൅  ௜௧ሻݍ

A 0 0 < ݍ௜௧ < 0.5 0 < ݕ௜௧ ൅ ௜௧< 0.5ݍ 0 0 0 
B 0 0.5 < ݍ௜௧ < 1 0.5< ݕ௜௧ ൅ ௜௧, 0 otherwiseݍ ௜௧< 1 1 0 1 with probabilityݍ
C 1 0 < ݍ௜௧ < 0.5 1 < ݕ௜௧ ൅ ௜௧< 1.5ݍ 1 0 1 with probability ݍ௜௧, 0 otherwise
D 1 0.5 < ݍ௜௧	< 1 1.5 < ݕ௜௧ ൅ ௜௧< 1ݍ 1 1 1 
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BiMM trees for this study are computed using R software version 3.1.2 [90]. 

CART models are implemented using the R package rpart [91]. Default settings are used 

within the CART models, but we require that the minimum terminal node size be at least 

10% of the development dataset so that node indicators within the Bayesian GLMM 

contain adequate data for fitting fixed effects. Bayesian GLMMs within the BiMM 

method are implemented using the R package blme [87, 88], again with all default 

settings. Thus, uninformative prior distributions are used for both fixed (Normal prior 

distribution) and random effects (Wishart prior distribution for the unstructured 

covariance matrix of clustered variables). However, alternative prior distributions may be 

applied if separation or convergence issues arise.  

3.1.4 Data Description 

ALF occurs in approximately 2,000 patients in the United States each year, with 

about half of the cases attributed to acetaminophen overdose [85]. A critical goal of the 

ALF Study Group is to predict the likelihood of poor outcomes of acetaminophen-

induced ALF patients which may be used both on hospital admission and post-hospital 

admission [92]. The ALF Study Group registry consists of over 2,700 patients with a 

multitude of clinical data (e.g. laboratory values, treatments, complications, etc.) 

collected daily for up to seven days following enrollment unless a patient is transplanted, 

discharged from the hospital or dies. To date, most prognosis prediction models for ALF 

patients use variables collected at a single baseline time point (e.g. King’s College 

Criteria and Clichy Criteria [26, 27]). Many patients may remain alive for longer periods 

beyond the initial insult because of advances in intensive care unit management [93, 94]. 

Thus, there is a need for a prediction model which may be used to determine prognosis of 
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acetaminophen-induced ALF patients (poor or favorable outcome) each day which can 

aid clinicians in management of patients during the first week of hospitalization. We 

define a poor outcome as having coma grade of III or IV and favorable outcome as 

having a coma grade of 0, I or II.  

The ALF registry dataset contains many clinical predictor variables which may be 

used in modeling outcome. A few fixed predictor variables included within the registry 

are gender, ethnicity, and age. Some examples of continuous predictor variables collected 

daily for the first week in the hospital include aspartate aminotransferase (AST), alanine 

aminotransferase (ALT), creatinine, bilirubin and international normalized ratio (INR). 

Categorical variables collected daily include treatments and clinical measurements such 

as mechanical ventilation, pressor use, and renal replacement therapy.  

3.1.5 Simulation Study Design 

To assess the predictive performance of the proposed BiMM tree method, we 

conduct a simulation study based on the real motivating dataset, the ALF Study Group 

registry. We simulate data from the ALF registry for several reasons. First, the 

complexity of the ALF dataset allows comparing of novel and traditional methodologies 

in realistic settings. Additionally, the ALF dataset contains multiple continuous predictors 

which are not normally distributed and several categorical variables, so our simulated 

ALF data provides various types of predictors which are consistent with data that arises 

from real-world scenarios. A final reason we simulate data based on the real ALF dataset 

is that a correlation structure between repeated measures on the same person is not 

imposed, so we can evaluate the performance of proposed methodology with a real 

observed correlation structure within the ALF data.    
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We construct a dataset from which we sample simulation data by selecting all 

data from acetaminophen-induced ALF patients within the registry (N=1064) and 

imputing all missing predictor data using an imputation method [95] for multilevel data 

to preserve the original correlation structure between predictor variables within the 

dataset. Thus, the simulated datasets contain 1064 patients with complete data for seven 

days (three fixed predictors and eight longitudinal predictors). We use two data 

generating processes for the fixed portion of the outcome: a tree structure and a linear 

structure. For both processes, variables related to the outcome include INR, creatinine, 

and ventilator use, which is consistent with clinical literature [92, 96]. The other five 

longitudinal variables and the three fixed predictors are included within the simulation 

datasets as noise variables. The tree data generating process is depicted within Figure 3.1, 

which is read like a CART (i.e. begin at Node 0 and follow the arrow corresponding to 

the predictor variable values until a terminal node is reached). Nodes 1, 3 and 5 represent 

favorable outcome for the subject on the specific day, whereas Node 6 represents poor 

outcome for the subject on the specific day. The equation for the linear data generating 

process is: 

logit(ݎ݋݋݌	݁݉݋ܿݐݑ݋௜௧)= -2.3+1.4*ln(ܴܰܫ௜௧)+0.6*݁݊݅݊݅ݐܽ݁ݎܥ௜௧+2.1*I(ܸ݁݊ݎ݋ݐ݈ܽ݅ݐ௜௧) 

where I(ܸ݁݊ݎ݋ݐ݈ܽ݅ݐ௜௧)  is 1 if patient i is on a ventilator on the specific day t, and is 0 

otherwise. Thus, high INR and creatinine and being on a ventilator are associated with 

higher likelihood of poor outcomes, consistent with clinical literature [96].  

Small and large random effects are added to the fixed portion of the outcome to 

create a within-subject correlation structure. The small random effect is generated for 

each subject from a normal distribution centered at zero with standard deviation of 0.1, 
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whereas the large random effect is generated for each subject from a normal distribution 

centered at zero with standard deviation of 0.5. To derive the outcome of observations at 

every time point, the fixed portion (from the tree or linear data generating process) is 

added to the random effect, and a cut point is used to create the binary outcome. We used 

a threshold to create an unbalanced outcome, with approximately one-third of the 

observations having poor outcome and two-thirds having favorable outcome for each 

simulated dataset.  

Using the simulated datasets described in the previous paragraphs based on the 

ALF registry, we compare the performance of several models: CART (which ignores 

clustering within the data), Bayesian GLMM, BiMM tree with one iteration (i.e. only 

Step 1 in the algorithm is performed), and BiMM tree algorithm with more than one 

iteration. We use hଵሺݕ௜௧ ൅  ௜௧ሻ as our split function for updating the target outcome withݍ

a threshold (݇ଵ) of 0.5 because clinicians often prefer to develop prediction models 

maximized for sensitivity to identify patients at highest risk of poor outcomes. For 

comparison, we also compile BiMM trees using hଷሺݕ௜௧ ൅ ௜௧ሻ with ݇ଵݍ ൌ 0.5 and 

݇ଶ ൌ 1.5. All models are fit using all predictors in the data (i.e. both those associated 

with outcome and those that were noise variables). We produce models for BiMM trees 

with one iteration (denoted BiMM Tree 1) and with multiple iterations (denoted BiMM 

Tree H1 and BiMM Tree H3 for the respective split functions hଵሺݕ௜௧ ൅ ௜௧ݕ௜௧ሻ and hଷሺݍ ൅

 ௜௧ሻ) to assess if iterating between fixed and random effects results in increasedݍ

prediction accuracy. Models are compiled for 1000 simulation runs. Sample sizes 

(number of subjects) for training datasets used in model development are 100, 250 and 
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500. All test datasets consist of 500 new subjects not included within the training dataset.

The numbers of repeated measurements of outcomes in our simulation study are 2, 4 and 

7.  

All simulations are conducted using R software version 3.1.2 [90]. To implement 

the CART models, the R package rpart is used with default settings [91]. To implement 

the Bayesian GLMMs, the R package blme is used with default settings so that prior 

distributions for parameters are uninformative [87, 88]. 

3.1.6 Simulation Study Results 

Since the main objective in this study is to develop methodology for predicting 

new observations, we assess the prediction (test set) accuracy of the models, defined as 

the number of correct predictions divided by the total number of predictions made. 

Prediction accuracy is presented within Figure 3.2 for the sample size of 100. Overall, the 

BiMM trees with one iteration or more than one iteration have higher accuracy compared 

to CART and Bayesian GLMM when the random effect is large, regardless of whether 

the data are generated using a tree or linear structure. When the random effect is small, 

the accuracy distributions overlap, with the CART models generally having slightly 

higher accuracy compared to the BiMM trees. With a linear data generating process and 

small random effect, the CART and Bayesian GLMM have similar predictive accuracy, 

whereas with a tree data generating process and small random effect, the Bayesian 

GLMM has the lowest prediction accuracy. The Bayesian GLMM also has the lowest 

prediction accuracy for the tree data generating process with a large random effect. The 

BiMM tree models with one iteration and with multiple iterations generally have similar 
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predictive accuracies for each of the scenarios. Similar results were obtained for the 

sample sizes of 250 and 500 (Appendix 1 Figures 1 and 2).  

Figure 3.2: Simulated prediction (test set) accuracy of models for N=100 patients 

Most BiMM iterative trees converge in two iterations regardless of the split 

function, and in rare cases convergence is reached in three or four iterations. Table 3.2 

contains the median (interquartile range) estimates of prediction accuracy of the test 

dataset for each simulation scenario for CART, Bayesian GLMM, BiMM tree with one 
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Table 3.2: Median Prediction (Test set) Accuracy (Interquartile Range) for Simulated Datasets 

Model 
Repeated 
Outcomes 

N=100 N=250 
Linear DGP Tree DGP Linear DGP Tree DGP 

Small RE Large RE Small RE Large RE Small RE Large RE Small RE Large RE 

CART 

2 
0.913  

(0.890,0.925) 
0.678 

(0.651.0.699) 
0.963 

(0.950,0.971) 
0.769 

(0.745,0.791) 
0.929 

(0.920,0.937) 
0.706 

(0.690,0.722) 
0.970 

(0.965,0.975) 
0.796 

(0.780,0.812) 

4 
0.933 

(0.922,0.940) 
0.679 

(0.659,0.699) 
0.973 

(0.966,0.978) 
0.805 

(0.788,0.821) 
0.942 

(0.937,0.947) 
0.721 

(0.707,0.733) 
0.975 

(0.970,0.979) 
0.830 

(0.818,0.843) 

7 
0.941 

(0.935,0.947) 
0.697 

(0.680,0.714) 
0.977 

(0.972,0.981) 
0.828 

(0.814,0.842) 
0.946 

(0.942,0.950) 
0.732 

(0.720,0.743) 
0.979 

(0.975,0.982) 
0.853 

(0.840,0.863) 

Bayesian 
GLMM 

2 
0.924 

(0.914,0.933) 
0.715 

(0.700,0.730) 
0.820 

(0.805,0.835) 
0.709 

(0.691,0.723) 
0.939 

(0.933,0.944) 
0.731 

(0.718,0.745) 
0.836 

(0.826,0.847) 
0.722 

(0.708,0.733) 

4 
0.922 

(0.915,0.928) 
0.704 

(0.689,0.716) 
0.805 

(0.795,0.814) 
0.728 

(0.717,0.738) 
0.930, 

(0.926,0.934) 
0.717 

(0.704,0.729) 
0.812 

(0.804,0.820) 
0.735 

(0.724,0.744) 

7 
0.917 

(0.912,0.921) 
0.695 

(0.682,0.707) 
0.805 

(0.796,0.812) 
0.750 

(0.741,0.760) 
0.921 

(0.917,0.925) 
0.707 

(0.696,0.717) 
0.808 

(0.801,0.814) 
0.755 

(0.746,0.763) 

BiMM 
Tree 1  

Iteration 

2 
0.849 

(0.833,0.868) 
0.827 

(0.776,0.852) 
0.916 

(0.897,0.927) 
0.836 

(0.782,0.902) 
0.850 

(0.838,0.866) 
0.850 

(0.830,0.873) 
0.921 

(0.914,0.929) 
0.911 

(0.880,0.923) 

4 
0.845 

(0.822,0.860) 
0.815 

(0.780,0.849) 
0.917 

(0.881,0.952) 
0.901 

(0.854,0.956) 
0.850 

(0.835,0.862) 
0.837 

(0.807,0.862) 
0.942 

(0.888,0.959) 
0.947 

(0.894,0.964) 

7 
0.881 

(0.869,0.891) 
0.837 

(0.806,0.864) 
0.902 

(0.892,0.913) 
0.905 

(0.862,0.920) 
0.887 

(0.878,0.894) 
0.860 

(0.837,0.889) 
0.905 

(0.895,0.914) 
0.907 

(0.864,0.914) 

BiMM 
Tree H1 

Algorithm 

2 
0.852 

(0.832,0.876) 
0.840 

(0.813,0.854) 
0.910 

(0.842,0.924) 
0.809 

(0.757,0.870) 
0.856 

(0.842,0.874) 
0.847 

(0.836,0.861) 
0.918 

(0.904,0.925) 
0.858 

(0.819,0.916) 

4 
0.844 

(0.823,0.857) 
0.806 

(0.790,0.840) 
0.882 

(0.868,0.925) 
0.871 

(0.817,0.934) 
0.847 

(0.830,0.860) 
0.820 

(0.800,0.850) 
0.887 

(0.873,0.947) 
0.882 

(0.855,0.952) 

7 
0.879 

(0.862,0.891) 
0.835 

(0.814,0.847) 
0.899 

(0.890,0.911) 
0.891 

(0.801,0.910) 
0.887 

(0.876,0.894) 
0.842 

(0.832,0.852) 
0.905 

(0.894,0.913) 
0.897 

(0.853,0.909) 

BiMM 
Tree H3 

Algorithm 

2 
0.849 

(0.834,0.867) 
0.838 

(0.804,0.852) 
0.913 

(0.850,0.924) 
0.834 

(0.775,0.909) 
0.850 

(0.839,0.865) 
0.846 

(0.835,0.857) 
0.920 

(0.912,0.928) 
0.908 

(0.830,0.923) 

4 
0.843 

(0.822,0.857) 
0.803 

(0.788,0.833) 
0.881 

(0.868,0.938) 
0.874 

(0.848,0.943) 
0.848 

(0.832,0.861) 
0.807 

(0.793,0.842) 
0.881 

(0.871,0.949) 
0.879 

(0.860,0.953) 

7 
0.879 

(0.852,0.891) 
0.833 

(0.805,0.845) 
0.895 

(0.887,0.905) 
0.891 

(0.805,0.909) 
0.886 

(0.877,0.894) 
0.840 

(0.831,0.849) 
0.899 

(0.890,0.909) 
0.895 

(0.785,0.907) 
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Model 
Repeated 
Outcomes 

N=500 
Linear DGP Tree DGP 

Small RE Large RE Small RE Large RE 

CART 

2 
0.942 

(0.936,0.948) 
0.732 

(0.718,0.745) 
0.971 

(0.965,0.975) 
0.821 

(0.806,0.832) 

4 
0.945 

(0.941,0.950) 
0.735 

(0.724,0.745) 
0.975 

(0.971,0.980) 
0.844 

(0.833,0.853) 

7 
0.947 

(0.944,0.951) 
0.740 

(0.729,0.750) 
0.979 

(0.975,0.982) 
0.859 

(0.849,0.867) 

Bayesian  
GLMM 

2 
0.943 

(0.938,0.948) 
0.737 

(0.723,0.748) 
0.842 

(0.833,0.851) 
0.725 

(0.714,0.737) 

4 
0.932 

(0.928,0.936) 
0.721 

(0.710,0.732) 
0.814 

(0.808,0.821) 
0.736 

(0.727,0.746) 

7 
0.923 

(0.919,0.926) 
0.710 

(0.699,0.721) 
0.809 

(0.803,0.814) 
0.756 

(0.748,0.765) 

BiMM 
Tree 1  

Iteration 

2 
0.850 

(0.840,0.863) 
0.856 

(0.840,0.886) 
0.920 

(0.915,0.926) 
0.917 

(0.907,0.925) 

4 
0.849 

(0.838,0.862) 
0.841 

(0.813,0.865) 
0.952 

(0.891,0.960) 
0.953 

(0.900,0.963) 

7 
0.890 

(0.884,0.895) 
0.867 

(0.843,0.890) 
0.905 

(0.897,0.913) 
0.906 

(0.858,0.913) 

BiMM 
Tree H1 

Algorithm 

2 
0.859 

(0.845,0.874) 
0.851 

(0.841,0.866) 
0.918 

(0.909,0.924) 
0.852 

(0.822,0.917) 

4 
0.847 

(0.832,0.860) 
0.816 

(0.796,0.852) 
0.886 

(0.874,0.901) 
0.878 

(0.851,0.904) 

7 
0.890 

(0.884,0.895) 
0.843 

(0.836,0.851) 
0.905 

(0.896,0.912) 
0.896 

(0.725,0.907) 

BiMM 
Tree H3 

Algorithm 

2 
0.850 

(0.840,0.863) 
0.848 

(0.838,0.859) 
0.920 

(0.914,0.926) 
0.915 

(0.852,0.923) 

4 
0.848 

(0.836,0.861) 
0.805 

(0.793,0.839) 
0.879 

(0.869,0.891) 
0.877 

(0.862,0.894) 

7 
0.890 

(0.884,0.895) 
0.842 

(0.835,0.849) 
0.890 

(0.891,0.910) 
0.895 

(0.776,0.904) 
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iteration, and BiMM tree algorithm with more than one iteration. Interquartile ranges of 

prediction accuracy for the models in the different scenarios are relatively tight around 

the median estimates, indicating that the distribution of prediction accuracy for models 

does not vary greatly over the simulation runs. Across 2, 4 and 7 repeated measurements 

for the models and scenarios, prediction accuracy is similar, except for the tree data 

generating process with a large random effect, where slight gains in accuracy are 

achieved with increasing number of repeated measurements. In general, the prediction 

accuracy estimates are similar for sample sizes of 100, 250 and 500, with slight 

improvements in accuracy for BiMM models with larger sample sizes.  

In addition to assessing the predictive accuracy of models, we present the 

difference between training and test accuracy for models in the simulated scenarios to 

measure the amount of overfitting in models for sample size of 100 (Figure 3.3). Within 

this plot, large values of the difference between the training and test datasets indicate that 

the accuracy of the training dataset is larger than the accuracy of the test dataset. For 

small random effects, CARTs, Bayesian GLMMs, BiMM trees with one iteration, and 

BiMM trees updated with hଷሺݕ௜௧ ൅  ௜௧ሻ have minimal overfitting, since the differenceݍ

between training and test set accuracy is small. However, for small random effects, 

BiMM trees with multiple iterations updated with hଵሺݕ௜௧ ൅  have larger differences in	௜௧ሻݍ

accuracy, suggesting the models may have overfit the training data. When random effects 

are large, the CART models tend to overfit the training data the most for both data 

generating processes. For the tree data generating process with a large random effect, the 

Bayesian GLMM overfits the data more than the BiMM trees, but this is only a slight  
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Figure 3.3: Simulated difference in training and test set accuracy of models for N=100 patients 

difference. Regardless of the data generating process, the BiMM trees overfit the training 

data the least. As the number of repeated measurements increase, model overfitting 

slightly decreases for large random effect datasets, whereas model overfitting remains 
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similar for datasets with small random effects. The performance of each model in terms 

of overfitting is similar for the sample sizes of 250 and 500; however, the amount of 

overfitting is slightly less with the larger sample sizes for datasets with large random 

effects (Appendix 1 Figures 3 and 4).  

In general, BiMM trees have high predictive accuracy for scenarios when there is 

a large clustering effect or when the data generating process follows a tree structure. For 

the simulated scenarios generated for a small random effect, BiMM trees with one 

iteration and BiMM trees with multiple iterations with the split function hଷሺݕ௜௧ ൅  ௜௧ሻݍ

tend to overfit the data less than BiMM trees using multiple iterations with the split 

function	hଵሺݕ௜௧ ൅  .௜௧ሻݍ

3.1.7 Discussion 

Overall, the BiMM tree framework may offer advantages compared to CARTs 

and Bayesian GLMMs. The main benefit of BiMM tree compared to CART is that it can 

account for clustered outcomes in modeling so that the assumption of independent 

observations is not violated. BiMM trees do not require specification of nonlinear 

relationships or interaction terms and can be implemented for high dimensional datasets. 

A strength of BiMM tree is that nonlinear forms of predictors and interactions between 

predictors are developed by the method based on the data. The computation time of 

GLMMs and BiMM trees are similar, yet BiMM trees may offer higher prediction 

accuracy for certain situations (when the underlying structure of the data is a tree form 

and when there is a large clustered effect for the outcomes). A final strength of BiMM 

tree methodology is that missing values in predictor data is naturally handled using 
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surrogate splits (using other non-missing variables) within the CART portion of the 

algorithm; thus, observations with missing predictor data can still be included within 

BiMM models. GLMMs only use complete cases within datasets, so missing values 

would need to be imputed (filled in) within the GLMM setting in order to use the entire 

dataset. The BiMM tree method does not require missing data to be imputed prior to 

model development. 

A major distinction of the BiMM tree framework compared to other decision tree 

methods for longitudinal and clustered outcomes within the literature [7-16] is the 

Bayesian implementation of GLMMs. For continuous outcomes, there are fewer issues 

with GLMM convergence because estimates may be computed directly; however, with 

categorical outcomes complete or quasi-separation may pose a challenge to GLMM 

fitting. The default priors specified in the BiMM tree method are uninformative, but if 

convergence issues arise, weakly informative priors may be used for estimating the 

random effects [21].  

BiMM tree provides a flexible, data-driven predictive modeling framework for 

longitudinal and clustered binary outcomes. Our simulation study demonstrates that 

BiMM tree may be advantageous compared to CART which ignore clustered outcomes 

and Bayesian GLMM when predictors are not linearly related to the outcome through the 

link function and when the random effect of the clustered variable is large. Though 

standard CART models can have high predictive accuracy if random effects are small, 

failing to account for large clustering effects causes a sizeable decrease in prediction 

accuracy in our simulations. While Bayesian GLMM can be used to adjust for clustering 

within the data, model misspecification may reduce prediction accuracy (e.g. not 
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including a significant interaction term or specifying an incorrect nonlinear relationship 

between predictor and outcome). This is evident in our simulation study, where BiMM 

tree models have higher prediction accuracy compared to Bayesian GLMMs if the data 

has a tree structure or if there is a large clustering effect between outcomes. One possible 

reason that the Bayesian GLMMs did not perform well for simulated data in this study is 

that some of the continuous predictor variables have skewed distributions, and extreme 

values may have adversely affected the GLMM parameter estimates.  

The BiMM trees with one iteration generally have similar prediction accuracy 

compared to BiMM trees with more than one iteration within our simulation study. While 

the training dataset accuracies for the BiMM trees with more than one iteration are higher 

than the BiMM trees with only one iteration, the multiple iteration method with the split 

function which maximizes sensitivity produces overfitted models which do not predict 

well for test datasets if the effect of clustering within subjects is small. BiMM trees which 

iterate between fixed and random effects have slightly higher computation time and offer 

minimal increases in prediction accuracy, suggesting that BiMM trees with one iteration 

may be sufficient. It is possible that real-world datasets are more complex than our 

simulated datasets, though, so multiple iterations may be necessary in some situations. 

However, one may easily assess this by compiling both BiMM tree models with one 

iteration and with multiple iterations and comparing the posterior log likelihoods.  

Another interesting result from the simulation study is that the prediction 

accuracy of models remained similar whether models were developed using 2, 4 or 7 

repeated measurements. We expected to see increases in prediction accuracy with 

increases in the number of repeated measurements. However, the simulated dataset for 



68 

our study is created based on the real ALF Study Group registry, so this result may be 

because the clustering effect for repeated outcomes does not change whether 2, 4 or 7 

measurements are included. Though a simulated dataset could have been constructed to 

induce a specific correlation structure for repeated observations (e.g. autoregressive 

structure), we wanted the data simulation to resemble our motivating dataset as closely as 

possible. Our simulated dataset based on the real ALF registry also allows us to assess 

how the models performed when certain aspects of the data make modeling challenging 

(e.g. collinear predictors, predictors with skewed distributions with extreme values, and 

complex interactions between predictors). A future study could assess the performance of 

BiMM tree methodology for more complex simulated scenarios, such as a high 

dimensional dataset or a dataset containing nonlinear predictors and high-order 

interactions.   

The main objective of this study is to develop a flexible framework for 

constructing prediction models for binary outcomes. BiMM tree methodology offers 

comparable or higher prediction accuracy to other models and may be considered an 

alternative to using GLMM for complex datasets. Future work could investigate the use 

of alternative implementations of decision tree algorithms within the BiMM tree 

framework for modeling longitudinal and clustered binary outcomes (e.g. C4.5, GUIDE, 

QUEST, CRUISE, BART and bartMachine [37, 97, 98]).  

An R package for implementing BiMM tree methodology is being developed and 

will be available on the Comprehensive R Archive Network. An R program 

implementing BiMM tree methodology is available in Appendix 2. 
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3.2 Specific Aim 2: To develop a RF method for clustered and longitudinal binary 

outcomes using an iterative procedure to combine RF and mixed effect models 

3.2.1 Introduction 

Often in research settings, measurements of binary outcomes are clustered within 

a group which results in a correlation structure. For example, repeated measurements of 

outcomes may be collected for patients over time within a clinical study to evaluate 

disease prognosis (e.g. poor versus good outcome), diagnosis or disease relapse (e.g. 

disease versus disease-free), or other endpoints (e.g. re-admitted versus not re-admitted to 

the hospital). In longitudinal or repeated measurements studies, each patient represents a 

cluster. Another example of a cluster is a hospital or study center because outcomes for 

patients at the same location may be correlated. Within the setting of clustered data, a 

common goal is to develop prediction models that determine the probability of an event 

of interest given a set of prognostic factors and cluster groups. Statistical models should 

account for within-cluster correlation when it is present in a dataset. 

Common statistical methods for developing prediction models for clustered and 

longitudinal binary outcomes have limitations. Generalized linear mixed models 

(GLMMs) typically employed for datasets with clustered outcomes cannot be 

implemented for high dimensional datasets, when the number of predictors is larger than 

the number of observations. Another limitation of GLMMs is that users must specify 

interactions among predictors and nonlinear relationships between predictors and 

outcome, which is not always straightforward. In Aim 1 of this dissertation, we propose a 

more flexible, data-driven framework called Binary Mixed Model (BiMM) tree, which 
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combines decision tree and GLMM within a unified framework. BiMM tree addresses 

many of the limitations of GLMMs: it can be employed for high dimensional datasets and 

naturally handles interactions among predictors and nonlinear relationships of predictors 

with outcomes. For these reasons, BiMM tree demonstrates higher prediction accuracy 

than standard GLMMs for datasets with a large clustering effect; however, decision tree 

methodologies such as BiMM tree, can be unstable, meaning that changes in predictor 

variables considered in modeling and changes in the observations (e.g. deleting or adding 

an observation) can result in very different models. Stability, as well as prediction 

accuracy, can often be improved by developing many decision trees and aggregating 

results within an ensemble method (e.g. random forest (RF)[4]).  

In this paper, we propose an extension of BiMM tree called BiMM forest, which 

combines RF methodology with GLMM. RF can be implemented to develop prediction 

models which can be used in the setting of high dimensional data. Also, RF naturally 

handles nonlinear relationships between predictors and outcome, as well as interactions 

among predictor variables, without user specification of these relationships. Thus, RF 

provides a flexible framework for developing prediction models which offers superior 

prediction accuracy compared to standard parametric models and machine learning 

models for datasets without clustering effects [99]. In the BiMM forest method, we 

incorporate results from RF within mixed models to adjust for clustered and longitudinal 

outcomes.  

A specific motivating example dataset for the novel BiMM forest methodology is 

a longitudinal registry dataset of acute liver failure (ALF) patients (clinicaltrials.gov ID: 

NCT00518440). ALF is a rare and devastating condition characterized by rapid onset of 
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severe liver damage, encephalopathy (altered mental status) and coagulopathy (impaired 

blood clotting). Approximately 25% of patients require a liver transplant and 30% of 

patients die during the acute phase [85]. The ALF Study Group registry dataset is 

complex, including skewed distributions of predictors with many extreme values, 

nonlinear predictors of outcome, and multi-way interactions among predictor variables. 

Also, it is a relatively high dimensional dataset, which poses a challenge in developing 

prediction models.  

The chapter is structured as follows. In Section 3.2.2, we present background 

information about random forest modeling in general and forest models for longitudinal 

and clustered continuous outcomes. In Section 3.2.3, we introduce the BiMM forest 

method for predicting longitudinal and clustered binary outcomes. We compare the 

BiMM forest method performance to several other methods with a simulation study in 

Sections 3.2.4 and 3.2.5. Finally, in Section 3.2.6 we discuss implications of our study, 

limitations, and avenues for further research. 

3.2.2 Background 

A RF framework is implemented for the novel BiMM forest method because it 

offers several advantages compared to traditional GLMMs. There are many different 

ensemble methods available, and we implement our BiMM forest method with the RF 

framework, a commonly used methodology developed by Breiman [4]. RF does not 

require specification of nonlinear relationships or interaction terms, and offers 

information about the relative importance of predictor variables. Moreover, RF provides 

an alternative method for developing prediction models when traditional models are not 

feasible (e.g. if the number of predictor variables is greater than the number of 
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observations). While decision tree methods are sometimes unstable, aggregation of tree 

models within the random forest setting generally offers improved stability. This means 

that small changes within the data or variables included will not result in substantially 

different predictions from the random forest model. For these reasons, RF can often 

better predict outcomes compared to other procedures such as logistic regression, 

classification and regression trees, and support vector machines for data captured at a 

single time point [99]. 

In spite of this flexibility, few RF methods exist for modeling clustered 

categorical endpoints. The R package party can be used to implement random forest 

models if two predictor variables are correlated, but it does not adjust for longitudinal and 

clustered measurements of the same outcome variable [19]. There are some techniques 

which circumvent the issue of adjusting for longitudinal and clustered outcomes, such as 

summarizing variables (e.g. using averages or most frequent categorical values) or using 

data from only a single time point (e.g. admission values); however, these methods have 

a marked loss of information since available data is summarized or partially used.  

Several methods have been proposed to modify decision tree and RF models for 

longitudinal and clustered continuous outcomes [7-16]. Hajjem [10] and Sela [15] 

develop similar methods for implementing models for longitudinal and clustered data 

with continuous outcomes. These methods incorporate mixed effects within the tree 

framework to account for clustering effects, using an algorithm analogous to expectation-

maximization described by Wu and Zhang [18]. Hajjem [17] extends the decision tree 

method to the RF setting for clustered and longitudinal continuous outcomes.  
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Aside from these decision tree and RF methods for clustered continuous 

outcomes, a decision tree method for clustered and longitudinal binary outcomes called 

BiMM tree in Aim 1 of this dissertation. Using a similar framework to continuous 

outcome methods by Hajjem [10, 17] and Sela [15], BiMM tree combines classification 

and regression tree methodology [1] with GLMMs. While the framework for clustered 

decision tree modeling has been developed for binary outcomes, adjusting the algorithm 

for the RF setting is non-trivial. In the BiMM tree method, indicator variables for the 

terminal nodes of the decision tree are used within the GLMM. For a RF model, several 

hundred decision trees are developed. Thus, simply using indicator variables for terminal 

nodes within the GLMM would not be possible because there would likely be more 

indicator variables than observations (i.e. high dimensional data), and it would not be 

possible to develop the GLMM. In order to address these challenges, in this paper, we 

propose the BiMM Forest, which will be discussed in detail in the next section. 

3.2.3 BiMM Forest Method 

The BiMM forest method iterates between developing RF models using all 

predictors and then using information from the RF model within a Bayesian GLMM to 

account for the clustered structure of the outcome. Consistent with the continuous 

methods for clustered decision trees and the BiMM tree framework, we implement an 

algorithm similar to the expectation-maximization algorithm, in which the fixed (forest) 

effects are dissociated from the random (cluster-level) effects. While developing the RF 

model, it is assumed that the random effects are known, and while developing the 

Bayesian GLMM, it is assumed that the fixed components are known. The BiMM forest 

method may be considered as an extension of GLMMs where the fixed covariates are not 
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assumed to be linearly associated with the link function of the outcome and interactions 

do not need to be pre-specified. The traditional GLMM for binary outcomes has the form 

logitሺݕ௜௧ሻ ൌ ࢼ࢚࢏ࢄ ൅ ܼ௜௧ܾ௜௧, 

where ݕ௜௧ is the binary outcome for cluster i = 1,…,M for longitudinal measurements 

t=1,…, ௜ܶ, logit() is the logistic link function, 	࢚࢏ࢄ is a matrix of fixed covariates for 

cluster i for longitudinal measurement t, ࢼ is a vector of coefficients for the fixed 

covariates, 	ܼ௜௧ is the clustered covariate for cluster i for longitudinal measurement t, and 

ܾ௜௧ is the random effect for cluster i for longitudinal measurement t. Note that GLMMs 

may be fitted when the cluster sizes differ (e.g. if there are different numbers of 

longitudinal measurements for each cluster). 

Within the BiMM forest method, the linear constraint is relaxed and interaction 

coefficients do not need to be specified. The GLMM portion of the BiMM method has 

the form 

logitሺݕ௜௧ሻ ൌ RFሺ࢚࢏ࢄሻߚ ൅ ܼ௜௧ܾ௜௧. 

RFሺ࢚࢏ࢄሻ ൌ ሺRFሺࢄ૚૚ሻ…RF൫ࢄ૚ࢀ૚൯	RFሺࢄ૛૚ሻ…RF൫ࢄ૛ࢀ૛൯… 	RFሺࡹࢄ૚ሻ…RF൫ࡵࢀࡹࢄ൯ሻ′ is 

represented within the GLMM as the predicted probability of each longitudinal 

observation t=1,…, ௜ܶ for cluster i=1,…,M. ߚ is the coefficient for the vector RFሺ࢚࢏ࢄሻ. We 

used the predicted probability from the RF model to incorporate covariate effects within 

the GLMM model which adjusts for dependent observations within clusters.  

Implementation of GLMMs is more challenging compared to standard linear 

mixed models employed for continuous outcomes. A consideration within the generalized 

model setting for categorical outcomes is that an iterative procedure (e.g. iterative 
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reweighted least squares or Newton Raphson) must be used to compute random effects of 

clustered variables for GLMMs. GLMMs can have computational issues with model 

convergence or with inversion of large matrices, particularly when data are high 

dimensional, which makes GLMM fitting challenging [20]. Also, if data are quasi-

separated or completely separated, meaning that one or a combination of variables 

perfectly predicts the outcome, traditional implementations of GLMMs cannot be used 

[21, 22].  

To address these challenges, we propose an algorithm that integrates RF and a 

Bayesian implementation of GLMM [88]. There are benefits to employing a Bayesian 

implementation of the GLMM instead of the traditional GLMM in our algorithm. First, 

Bayesian computation of GLMMs produce similar parameter estimates to that of 

frequentist GLMMs when uninformative prior distributions are used. Second, employing 

the Bayesian GLMM avoids convergence issues with traditional GLMMs, e.g. using the 

R package lme4 [20, 89]. Finally, there are efficient methods for applying Bayesian 

GLMMs (e.g. integrated nested Laplace approximation implemented in the R package 

INLA [86] and maximum a posteriori estimation implemented in the R package blme [87, 

88]) easily applied on open source software which offer similar computation time to 

frequentist GLMMs. 

The Bayesian GLMM within the BiMM forest method considers uninformative 

priors for the fixed effect and random effect covariance parameters using Normal and 

Wishart distributions respectively. An unstructured covariance matrix is employed within 

the Bayesian GLMM. After the random effects for subjects are fitted with the Bayesian 

GLMM, the original outcome variable is updated using results from the RF and GLMM, 
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which we define as the target outcome variable. A split function which divides the 

observations into two groups is used to create a binary target outcome variable for each 

iteration since a simple additive effect does not result in a binary measure.   

Specifically, the BiMM forest algorithm is as follows: 

3. Initialize the RF and GLMM:
a. Fit a RF using ݕ௜௧ as the outcome for fixed predictors (࢚࢏ࢄ) and calculate

predicted probabilities for clusters i = 1,…,M for longitudinal
measurements t=1,…, ௜ܶ. Define RFሺ࢚࢏ࢄሻ as the predicted probability from
the RF for cluster i at longitudinal measure t.

b. Fit a Bayesian GLMM using ݕ௜௧ as the outcome, including RFሺ࢚࢏ࢄሻ and
clustered variable (ܼ௜௧) to obtain fitted values for the random effect (ܾ௜௧ሻ:

logitሺݕ௜௧ሻ ൌ RFሺ࢚࢏ࢄሻࢼ ൅ ܼ௜௧ܾ௜௧. 
c. Average predicted probabilities from the RF and GLMM (denoted

prீ௅ெெሺ࢚࢏ࢄ, ܼ௜௧ሻ) for each measurement t within cluster i:
௜௧ݍ ൌ ሺRFሺ࢚࢏ࢄሻ 	൅ prீ௅ெெሺ࢚࢏ࢄ, ܼ௜௧ሻሻ/2 

4. Iterate through the following steps until convergence is satisfied:
a. Determine the target outcome (ݕ௜௧

∗ ) by adding the average predicted
probability (ݍ௜௧) from the original outcome (ݕ௜௧) and applying a split
function h() to make ݕ௜௧

∗  a binary value:

௜௧ݕ
∗ ൌ hሺݕ௜௧ ൅  ௜௧ሻݍ

b. Repeat steps 1a-c using ݕ௜௧
∗  as the outcome until the change in the

posterior log likelihood from the Bayesian GLMM is less than a specified
tolerance value.

In this algorithm, in the step 1c, the predicted probabilities from the RF model and 

the GLMM model are averaged because the goal of the algorithm is to combine 

population-level effects arising from the RF with cluster-level effects arising from the 

GLMM. Predictions for observations included within the model development dataset are 

made using the forest (population-level) and GLMM (observation-level) components. For 
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observations not included within the model development dataset, predictions are made 

using the forest (population-level) component only. 

We propose different split functions (denoted hሺݕ௜௧ ൅  ௜௧ሻ) which may be used toݍ

create the new iteration of the binary target outcome (ݕ௜௧
∗ 	) in the BiMM forest method. 

We use a function of	ݕ௜௧ ൅  ௜௧ to update the target outcome to account for both theݍ

original outcome and the average predicted probability from the RF and GLMM models 

for the specific observation t within the cluster i. Since ݕ௜௧ is a binary value, it is either 0 

or 1, and ݍ௜௧ is a probability which is between 0 and 1. Therefore, the value of ݕ௜௧ ൅  ௜௧ isݍ

between 0 and 2. We present three options for the split function which may be employed 

based on the overall goal of the prediction model and note that users may define 

alternative split functions. The first split function maximizes sensitivity uses a threshold 

(0 ൏ ݇ଵ ൏ 1) to update the target outcome: 

hଵሺݕ௜௧ ൅ ௜௧ሻݍ ൌ ቄ1	if	ݕ௜௧ ൅ ௜௧ݍ ൐ ݇ଵ
0	otherwise

Thus, using hଵሺݕ௜௧ ൅  ௜௧ሻ, binary outcomes of 0 can be updated to be 1, but outcomes ofݍ

1 cannot be updated to be 0, providing a mechanism for maximizing the sensitivity. 

Similarly, the second split function maximizes specificity by employing a threshold (1 

൏ ݇ଶ ൏ 2) to update the target outcome: 

hଶሺݕ௜௧ ൅ ௜௧ሻݍ ൌ ቄ0	if	ݕ௜௧ ൅ ௜௧ݍ ൏ ݇ଶ
1	otherwise

Using hଶሺݕ௜௧ ൅  ௜௧ሻ, binary outcomes of 1 can be updated to be 0, but outcomes of 0ݍ

cannot be updated to be 1, providing a mechanism for maximizing the specificity. A 
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final, more general, split function which does not favor sensitivity or specificity updates 

the target outcome using the following method: 

hଷሺݕ௜௧ ൅ ௜௧ሻݍ ൌ ൞

0	if	ݕ௜௧ ൅ ௜௧ݍ ൏ 0.5	
1	if	ݕ௜௧ ൅ ௜௧ݍ ൐ 1.5

1	with	probability	ݍ௜௧
0	with	probability	1 െ ௜௧ݍ

 

Using hଷሺݕ௜௧ ൅  ௜௧ሻ, if the prediction from the current iteration of the BiMM methodݍ

agrees with the original binary outcome (i.e. if ݕ௜௧ ൅ ௜௧ݍ ൏ 0.5 or if ݕ௜௧ ൅ ௜௧ݍ ൐ 1.5) then 

the target outcome is the same as the original binary outcome. Otherwise, the target 

outcome is updated to be 1 with probability ݍ௜௧, and 0 with probability 1 െ  ,௜௧. Thereforeݍ

original values of 0 can be updated to 1 and original values of 1 can be updated to 0. 

BiMM forests for this study are computed using R software version 3.1.2 [90]. RF 

models are implemented using the R package randomForest [52] with default settings. 

Bayesian GLMMs within the BiMM method are implemented using the R package blme 

[87, 88], again with all default settings. Thus, uninformative prior distributions are used 

for both fixed (Normal prior distribution) and random effects (Wishart prior distribution 

for the unstructured covariance matrix of clustered variables). However, alternative prior 

distributions may be applied if separation or convergence issues arise. 

3.2.4 Simulation Study Design 

To assess the predictive performance of the proposed BiMM forest method, we 

conduct a simulation study based on the real motivating dataset, the ALF Study Group 

registry. Similar to the simulation within Aim 1, we construct a dataset from which we 

sample simulation data by selecting all data from acetaminophen-induced ALF patients 

within the registry (N=1064) and imputing all missing predictor data using an imputation 
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method [95] for multilevel data to preserve the original correlation structure between 

predictor variables within the dataset. Thus, the simulated datasets contain 1064 patients 

with complete data for seven days (three fixed predictors and eight longitudinal 

predictors). We use three data generating processes for the fixed portion of the outcome: 

a tree structure, a linear structure, and a complex structure. Variables related to the 

outcome include INR, creatinine, and ventilator use, which is consistent with clinical 

literature [92, 96]. The other five longitudinal variables and the three fixed predictors are 

included within the simulation datasets as noise variables. The tree data generating 

process is depicted within Figure 3.1, which is read like a decision tree (i.e. begin at Node 

0 and follow the arrow corresponding to the predictor variable values until a terminal 

node is reached). Nodes 1, 3 and 5 represent favorable outcome for the subject on the 

specific day, whereas Node 6 represents poor outcome for the subject on the specific day. 

The equation for the linear data generating process is: 

logit(ݎ݋݋݌	݁݉݋ܿݐݑ݋௜௧)= -2.3+1.4*ln(ܴܰܫ௜௧)+0.6*݁݊݅݊݅ݐܽ݁ݎܥ௜௧+2.1*I(ܸ݁݊ݎ݋ݐ݈ܽ݅ݐ௜௧) 

where I(ܸ݁݊ݎ݋ݐ݈ܽ݅ݐ௜௧)  is 1 if patient i is on a ventilator on the specific day t, and is 0 

otherwise. Thus, high INR and creatinine and being on a ventilator are associated with 

higher likelihood of poor outcomes, consistent with clinical literature [96]. For the 

complex structure data generating processes, we develop outcomes based on five unique 

decision trees. Tree 1 generates outcome based on INR, creatinine and ventilator use; 

Tree 2 uses pressor use, creatinine and bilirubin; Tree 3 uses ventilator use, pressor use, 

and age; Tree 4 uses INR, creatinine and ventilator use; and Tree 5 uses bilirubin, ALT 

and ventilator use. Also, we include nuisance variables: sex, ethnicity and AST. The 

variable for age is included to derive the binary outcome, but is intentionally omitted 
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from model development within the simulation to represent an unmeasured predictor 

which is significantly related to outcome.  

Small and large random effects are added to the fixed portion of the outcome to 

create a within-subject correlation structure. The small random effect is generated for 

each subject from a normal distribution centered at zero with standard deviation of 0.1, 

whereas the large random effect is generated for each subject from a normal distribution 

centered at zero with standard deviation of 0.5. To derive the observed outcome at every 

time point, the fixed portion (from the tree, linear, or complex data generating process) is 

added to the random effect, and a cut point is used to create the binary outcome. We used 

a threshold to create an unbalanced outcome, with approximately one-third of the 

observations having poor outcome and two-thirds having favorable outcome for each 

simulated dataset.  

Using the simulated datasets described in the previous paragraphs based on the 

ALF registry, we compare the performance of several models: standard RF (ignoring 

clustering within the data), Bayesian GLMM, BiMM tree with one iteration, BiMM 

forest with one iteration (i.e. only Step 1 in the algorithm is performed), and BiMM forest 

with updating functions. We produce models for standard RF, BiMM forest with one 

iteration (denoted BiMM RF 1) and with multiple iterations (denoted BiMM RF H1 and 

BiMM RF H3 for the respective split functions hଵሺݕ௜௧ ൅ ௜௧ݕ௜௧ሻ and hଷሺݍ ൅  ௜௧ሻ) to assessݍ

if iterating between fixed and random effects results in increased prediction accuracy. We 

use hଵሺݕ௜௧ ൅  ௜௧ሻ as our split function for updating the target outcome with a thresholdݍ

(݇ଵ) of 0.5 because clinicians often prefer to develop prediction models maximized for 
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sensitivity to identify patients at highest risk of poor outcomes. For comparison, we also 

compile BiMM forest using hଷሺݕ௜௧ ൅ ௜௧ሻ with ݇ଵݍ ൌ 0.5 and ݇ଶ ൌ 1.5. We specify 

BiMM forest model convergence when the change in the posterior log likelihood between 

iterations is less than 0.1. All models are fit using all predictors in the data (i.e. both those 

associated with outcome and those that were noise variables). Models are compiled for 

1000 simulation runs. Sample sizes (number of subjects) for training datasets used in 

model development are 100 and 500. All test datasets consist of 500 new subjects not 

included within the training dataset. The number of repeated outcome measurements in 

our simulation study are 2, 4 and 7. All simulations are conducted using R software 

version 3.1.2 [90].  

3.2.5 Simulation Study Results 

Since the main objective in this study is to develop methodology for predicting 

new observations, we assess the prediction (test set) accuracy of the models, defined as 

the number of correct predictions divided by the total number of predictions made. 

Median prediction accuracy is presented in Figure 3.4 for the sample size of 100 for the 

different scenarios. Overall, the BiMM forest with one iteration and standard RF have 

among the highest accuracy compared to BiMM tree, Bayesian GLMM and BiMM forest 

with updating functions employed. Note that the prediction accuracy statistics for the 

standard RF and BiMM forest with one iteration are identical because they use the exact 

same random forest model to make predictions for test datasets. For the small random 

effect and the linear data generating process, the BiMM tree performs slightly worse than 

competing models; however, BiMM forest with one iteration and BiMM tree have 
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Figure 3.4: Simulated prediction (test set) accuracy of models for N=100 patients 

higher prediction accuracy compared to the Bayesian GLMM and BiMM forest with 

multiple iterations when there is a large random effect (i.e. when there is a large amount 

of correlation within clusters). The Bayesian GLMM has the lowest prediction accuracy 

for the tree data generating process, regardless of the random effect size. In the tree data 
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generating scenario with a small random effect, the BiMM forest methods generally have 

similar prediction accuracy, which is slightly higher compared to the BiMM tree for 4 

and 7 repeated measurements. The BiMM forest with one iteration and BiMM tree 

methods have similar prediction accuracy for the tree data generating process with a large 

random effect, which is slightly higher compared to the BiMM forest with multiple 

iterations. 

For the complex data generating process with a small random effect, the BiMM 

forest with one iteration has the highest prediction accuracy, although all methods have 

fairly similar performance across the 2, 4 and 7 repeated measurements. With a large 

random effect and complex data generating process, the BiMM forest one iteration 

method has the highest prediction accuracy, followed closely behind by the BiMM tree 

with one iteration. The Bayesian GLMM and BiMM forest with multiple iterations 

perform similarly in this scenario, all with lower prediction accuracy compared to the 

BiMM tree and BiMM forest with one iteration. In general, the BiMM forest with one 

iteration and BiMM tree methods have the highest prediction accuracy, with the BiMM 

forest performing slightly better than the BiMM tree when there is a small amount of 

within-cluster correlation and when there is a complex data generating process.  Similar 

results were obtained for the sample size of 500 (Appendix Figure 5), with slight 

increases in prediction accuracy for the BiMM forest method compared to the BiMM tree 

for the linear and complex data generating process with a large clustering effect. 

Aside from the median prediction accuracy, we were also interested in describing 

the accuracy distributions for the simulated scenarios. Table 3.3 contains the median 

(interquartile range) estimates of prediction accuracy of the test dataset for each 
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Table 3.3: Median Prediction Accuracy (Interquartile Range) for Test set of Simulated Datasets 

Model 
Repeated 
Outcomes 

N=100 
Linear DGP Tree DGP Complex DGP 

Small RE Large RE Small RE Large RE Small RE Large RE 

BiMM 
Tree 

2 
0.849 

(0.833,0.868) 
0.827 

(0.776,0.852) 
0.916 

(0.897,0.927) 
0.836 

(0.782,0.902) 
0.815 

(0.794,0.854) 
0.778 

(0.734,0.808) 

4 
0.845 

(0.822,0.860) 
0.815 

(0.780,0.849) 
0.917 

(0.881,0.952) 
0.901 

(0.854,0.956) 
0.830 

(0.798,0.849) 
0.792 

(0.770,0.814) 

7 
0.881 

(0.869,0.891) 
0.837 

(0.806,0.864) 
0.902 

(0.892,0.913) 
0.905 

(0.862,0.920) 
0.829 

(0.808,0.839) 
0.764 

(0.749,0.774) 

Bayesian 
GLMM 

2 
0.924 

(0.914,0.933) 
0.715 

(0.700,0.730) 
0.820 

(0.805,0.835) 
0.709 

(0.691,0.723) 
0.849 

(0.835,0.860) 
0.653 

(0.639,0.668) 

4 
0.922 

(0.915,0.928) 
0.704 

(0.689,0.716) 
0.805 

(0.795,0.814) 
0.728 

(0.717,0.738) 
0.840 

(0.830,0.849) 
0.660 

(0.649,0.672) 

7 
0.917 

(0.912,0.921) 
0.695 

(0.682,0.707) 
0.805 

(0.796,0.812) 
0.750 

(0.741,0.760) 
0.831 

(0.823,0.838) 
0.664 

(0.655,0.672) 

BiMM 
RF 1 &  

Standard RF 

2 
0.919 

(0.907,0.928) 
0.847 

(0.827,0.864) 
0.954 

(0.939,0.965) 
0.850 

(0.819,0.882) 
0.884 

(0.875,0.892) 
0.797 

(0.772,0.817) 

4 
0.937 

(0.930,0.943) 
0.839 

(0.818,0.861) 
0.960 

(0.956,0.973) 
0.881 

(0.854,0.901) 
0.884 

(0.878,0.890) 
0.808 

(0.793,0.823) 

7 
0.944 

(0.940,0.948) 
0.847 

(0.827,0.867) 
0.974 

(0.967,0.977) 
0.910 

(0.883,0.928) 
0.885 

(0.880,0.891) 
0.817 

(0.805,0.828) 

BiMM 
RF H1 

2 
0.915 

(0.900,0.926) 
0.710 

(0.693,0.725) 
0.957 

(0.925,0.971) 
0.785 

(0.769,0.814) 
0.864 

(0.850,0.875) 
0.625 

(0.596,0.650) 

4 
0.935 

(0.928,0.942) 
0.695 

(0.678,0.711) 
0.968 

(0.965,0.972) 
0.825 

(0.811,0.836) 
0.864 

(0.854,0.872) 
0.628 

(0.608,0.647) 

7 
0.942 

(0.936,0.946) 
0.699 

(0.679,0.713) 
0.977 

(0.975,0.980) 
0.850 

(0.839,0.854) 
0.866 

(0.859,0.873) 
0.631 

(0.615,0.646) 

BiMM 
RF H3 

2 
0.911 

(0.891,0.924) 
0.703 

(0.675,0.721) 
0.888 

(0.879,0.896) 
0.775 

(0.752,0.804) 
0.859 

(0.832,0.872) 
0.612 

(0.571,0.642) 

4 
0.933 

(0.919,0.940) 
0.689 

(0.663,0.706) 
0.968 

(0.965,0.968) 
0.823 

(0.807,0.834) 
0.856 

(0.830,0.868) 
0.615 

(0.576,0.639) 

7 
0.939 

(0.931,0.945) 
0.691 

(0.663,0.710) 
0.978 

(0.974,0.981) 
0.847 

(0.831,0.853) 
0.859 

(0.825,0.869) 
0.620 

(0.586,0.639) 
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Model 
Repeated 
Outcomes 

N=500 
Linear DGP Tree DGP Complex DGP 

Small RE Large RE Small RE Large RE Small RE Large RE 

BiMM 
Tree 

2 
0.850 

(0.840,0.863) 
0.856 

(0.840,0.886) 
0.920 

(0.915,0.926) 
0.917 

(0.907,0.925) 
0.810 

(0.793,0.860) 
0.808 

(0.790,0.853) 

4 
0.849 

(0.838,0.862) 
0.841 

(0.813,0.865) 
0.952 

(0.891,0.960) 
0.953 

(0.900,0.963) 
0.839 

(0.801,0.850) 
0.817 

(0.793,0.848) 

7 
0.890 

(0.884,0.895) 
0.867 

(0.843,0.890) 
0.905 

(0.897,0.913) 
0.906 

(0.858,0.913) 
0.839 

(0.834,0.844) 
0.822 

(0.803,0.838) 

Bayesian 
GLMM 

2 
0.943 

(0.938,0.948) 
0.737 

(0.723,0.748) 
0.842 

(0.833,0.851) 
0.725 

(0.714,0.737) 
0.864 

(0.857,0.871) 
0.681 

(0.669,0.693) 

4 
0.932 

(0.928,0.936) 
0.721 

(0.710,0.732) 
0.814 

(0.808,0.821) 
0.736 

(0.727,0.746) 
0.850 

(0.844,0.856) 
0.677 

(0.669,0.686) 

7 
0.923 

(0.919,0.926) 
0.710 

(0.699,0.721) 
0.809 

(0.803,0.814) 
0.756 

(0.748,0.765) 
0.838 

(0.833,0.844) 
0.673 

(0.667,0.680) 

BiMM 
RF 1 &  

Standard RF 

2 
0.947 

(0.942,0.952) 
0.890 

(0.878,0.900) 
0.969 

(0.964,0.974) 
0.920 

(0.906,0.933) 
0.904 

(0.898,0.910) 
0.841 

(0.829,0.854) 

4 
0.947 

(0.943,0.951) 
0.888 

(0.877,0.898) 
0.974 

(0.970,0.978) 
0.937 

(0.926,0.947) 
0.903 

(0.898,0.908) 
0.845 

(0.837,0.854) 

7 
0.951 

(0.948,0.954) 
0.893 

(0.883,0.902) 
0.978 

(0.975,0.981) 
0.949 

(0.940,0.956) 
0.907 

(0.902,0.911) 
0.846 

(0.838,0.853) 

BiMM 
RF H1 

2 
0.944 

(0.939,0.951) 
0.731 

(0.719,0.744) 
0.970 

(0.965,0.974) 
0.826 

(0.815,0.835) 
0.880 

(0.872,0.889) 
0.646 

(0.630,0.663) 

4 
0.944 

(0.939,0.948) 
0.725 

(0.714,0.736) 
0.975 

(0.971,0.979) 
0.844 

(0.834,0.853) 
0.879 

(0.872,0.885) 
0.645 

(0.632,0.656) 

7 
0.945 

(0.941,0.949) 
0.727 

(0.717,0.737) 
0.979 

(0.976,0.982) 
0.858 

(0.849,0.866) 
0.883 

(0.877,0.890) 
0.642 

(0.632,0.651) 

BiMM 
RF H3 

2 
0.942 

(0.932,0.949) 
0.727 

(0.710,0.740) 
0.970 

(0.964,0.974) 
0.824 

(0.812,0.834) 
0.873 

(0.855,0.884) 
0.636 

(0.607,0.655) 

4 
0.941 

(0.933,0.946) 
0.721 

(0.705,0.732) 
0.975 

(0.971,0.979) 
0.843 

(0.833,0.852) 
0.871 

(0.845,0.881) 
0.635 

(0.601,0.651) 

7 
0.942 

(0.934,0.947) 
0.723 

(0.708,0.733) 
0.979 

(0.976,0.982) 
0.858 

(0.846,0.866) 
0.876 

(0.837,0.885) 
0.633 

(0.604,0.646) 
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simulation scenario. Interquartile ranges of prediction accuracy for the models in the 

different scenarios are relatively tight around the median estimates, indicating that the 

distribution of prediction accuracy for models does not vary greatly over the simulation 

runs. Across 2, 4 and 7 repeated measurements for the models and scenarios, prediction 

accuracy is similar, except for the tree data generating process with a large random effect, 

where slight gains in accuracy are achieved with increasing number of repeated 

measurements. In general, the prediction accuracy estimates are similar for sample sizes 

of 100 and 500, with slight improvements in accuracy for BiMM tree and BiMM forest 

models with the larger sample size. 

In addition to assessing the predictive accuracy of models, we present the 

difference between training and test accuracy for models in the simulated scenarios to 

measure the amount of overfitting in models for sample size of 100 (Figure 3.5). Within 

this plot, large values of the difference between the training and test datasets indicate that 

the accuracy of the training dataset is larger than the accuracy of the test dataset. Patterns 

are similar across the linear, tree and complex data generating processes in terms of the 

difference between training and test dataset accuracies. In general, for small random 

effects, all models have small differences between the training and test datasets, 

indicating that models do not overfit the data. When random effects are large, BiMM 

forest with multiple iterations have the largest difference in accuracy, indicating these 

models overfit the training data the most. In all three data generating processes with a 

large random effect, the BiMM forest with one iteration has the least amount of 

overfitting. These plots highlight the differences between the standard random forest and 

BiMM forest methods because while these two methods have identical test set 
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 Figure 3.5: Simulated difference in training and test set accuracy of models for N=100 patients 

predictions, they have different training dataset predictions. The standard random forest 

method tended to overfit the training data more than the BiMM forest method. Similar 

results are observed for the sample size of 500 (Appendix 1 Figure 6).  
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We also assess the rate of convergence of the BiMM forest models which employ 

updating functions (Table 3.4). Regardless of the data generating process and sample 

size, the number of iterations within the BiMM forest algorithm increases as the number 

of repeated outcomes increases. The number of iterations remained similar for different 

data generating processes with the same number of repeated measurements.  

In general, BiMM forest with one iteration consistently has among the highest 

predictive accuracy across all simulated scenarios. Specifically, BiMM forest with one 

iteration and BiMM tree tend to perform best when there is a large amount of within-

cluster correlation. BiMM forest with one iteration offers improvement in accuracy  

compared to BiMM tree in the scenarios where there is a small amount of within-cluster 

correlation or if there is a large amount of within-cluster correlation and the data is 

generated by a complex process. Additionally, BiMM forest with one iteration has the 

lowest amount of overfitting within our simulated scenarios with a large random effect. 

BiMM forest using updating functions tends to converge in 6 iterations for two repeated 

outcomes, 8 to 10 iterations for four repeated outcomes, and 12 iterations for seven 

repeated outcomes within the simulation study. 

3.2.6 Discussion 

Overall, the BiMM tree and BiMM forest framework may offer advantages 

compared to RF and Bayesian GLMMs. The main benefit of BiMM methods compared 

to standard RF is that it can account for clustered outcomes in modeling so that the 

assumption of independent observations is not violated. BiMM tree and BiMM forest do 

not require specification of nonlinear relationships or interaction terms and can be 

implemented for high dimensional datasets. A strength of BiMM methodology is that 
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Table 3.4: BiMM forest Median Number of Iterations (Interquartile Range) for Updating Function H1 and H3 models 

N Model 
Repeated 
Outcomes

Linear DGP Tree DGP Complex DGP 
Small RE Large RE Small RE Large RE Small RE Large RE

100 

BiMM 
RF H1 

2 6 (4,9) 6 (4,7) 6 (4,9) 6 (4,7) 6 (4,9) 6 (4,7) 
4 10 (7,15) 8 (6,11) 10 (7,15) 8 (6,11) 10 (7,15) 8 (6,11) 
7 12 (9,18) 11 (8,15) 12 (9,18) 11 (8,15) 12 (9,18) 11 (8,15) 

BiMM 
RF H3 

2 6 (5,9) 6 (4,8) 6 (5,9) 6 (4,8) 6 (5,9) 6 (4,8) 
4 10 (7,15) 8 (6,11) 10 (7,15) 8 (6,11) 10 (7,15) 8 (6,11) 
7 12 (9,18) 11 (8,16) 12 (9,18) 11 (8,16) 12 (9,18) 11 (8,16) 

500 

BiMM 
RF H1 

2 6 (4,9) 6 (4,7) 6 (4,9) 6 (4,7) 6 (4,9) 6 (4,7) 
4 10 (7,15) 8 (6,11) 10 (7,15) 8 (6,11) 10 (7,15) 8 (6,11) 
7 12 (9,18) 11 (8,16) 12 (9,18) 11 (8,16) 12 (9,18) 11 (8,16) 

BiMM 
RF H3 

2 6 (5,9) 6 (4,8) 6 (5,9) 6 (4,8) 6 (5,9) 6 (4,8) 
4 10 (7,15) 8 (6,11) 10 (7,15) 8 (6,11) 10 (7,15) 8 (6,11) 
7 12 (9,18) 11 (8,16) 12 (9,18) 11 (8,16) 12 (9,18) 11 (8,16) 
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nonlinear forms of predictors and interactions between predictors are developed by the 

method based on the data. The computation time of GLMMs, BiMM tree and BiMM 

forest with one iteration are similar, yet the BiMM methods may offer higher prediction 

accuracy. BiMM forest may have higher prediction accuracy compared to BiMM tree for 

complex datasets. BiMM forest provides a flexible, data-driven predictive modeling 

framework for longitudinal and clustered binary outcomes.  

Our simulation study demonstrates that BiMM forest may be advantageous 

compared to Bayesian GLMM when predictors are not linearly related to the outcome 

through the link function and when the random effect of the clustered variable is large. 

While Bayesian GLMM can be used to adjust for clustering within the data, model 

misspecification may reduce prediction accuracy (e.g. not including a significant 

interaction term or specifying an incorrect nonlinear relationship between predictor and 

outcome). One possible reason that the Bayesian GLMMs did not perform well for 

simulated data in this study is that some of the continuous predictor variables have 

skewed distributions, and extreme values may have adversely affected the GLMM 

parameter estimates.  

The BiMM forest with one iteration generally has higher prediction accuracy 

compared to BiMM forest with more than one iteration for simulated data scenarios. The 

multiple iteration method BiMM forest using a split function produces overfitted models 

which do not predict well for test datasets if there is a large amount of within-cluster 

correlation. BiMM forest models which iterate between fixed and random effects have 

significantly higher computation time and offer minimal increases in prediction accuracy, 

suggesting that BiMM forest with one iteration may be sufficient. It is possible that real-
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world datasets are more complex than our simulated datasets, though, so multiple 

iterations may be necessary in some situations. However, one may easily assess this by 

compiling BiMM forest models with one iteration and with multiple iterations and 

comparing the posterior log likelihoods.  

BiMM forest with one iteration has the same predictive capabilities of standard 

RF for test datasets because predictions are made from the same RF model. However, 

BiMM forest with one iteration has an additional step of using the random forest results 

within a Bayesian GLMM to account for clustered outcomes. Standard RF does not 

adjust for correlated outcomes within clusters, so although predictions are identical for 

the two models, standard RF is not accurately representing the underlying correlation 

structure within the data. This is evident within the plots displaying the difference 

between the training and test dataset accuracy for simulated scenarios with large within-

cluster correlations, in which the standard RF tends to overfit the training data whereas 

the BiMM forest did not.  

It is somewhat surprising that the predictive performance of BiMM tree and 

BiMM forest with one iteration are similar for the linear and tree data generating 

processes when there is a large clustering effect. However, the BiMM forest with one 

iteration has higher prediction accuracy than the BiMM tree for simulated scenarios with 

a small amount of within-cluster correlation. Additionally, the BiMM forest with one 

iteration had slightly higher prediction accuracy compared to the BiMM tree for the 

complex data generating process, which makes sense because this data was generated 

using a forest structure. In almost all of the simulated scenarios, BiMM forest has 
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substantially higher prediction accuracy compared to GLMM, the standard method for 

clustered binary outcomes.   

The main objective of this study is to provide a RF framework for developing 

prediction models for clustered and longitudinal binary outcomes. BiMM forest 

methodology offers comparable or higher prediction accuracy to other models and may 

be considered an alternative to using GLMM for complex datasets. Future work could 

investigate methods for assessing variable importance within clusters, as well as methods 

for performing variable selection to develop parsimonious prediction models.  

An R package for implementing BiMM forest methodology is being developed 

and will be available on the Comprehensive R Archive Network. R code to implement 

BiMM forest methodology is available in Appendix 2.  
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3.3 Specific Aim 3: To develop a prediction model for daily outcomes of 

acetaminophen-induced acute liver failure patients 

3.3.1 Introduction 

Acetaminophen (APAP) is the most common cause of acute liver failure (ALF) in 

Europe and North America [100, 101]. Injury and recovery follow a hyper-acute pattern, 

in which maximum hepatocyte destruction is complete by 72 hours following a one-time 

ingestion, with potential recovery equally swift. Despite reasonable post-transplant 

outcomes, liver transplantation (LT) for acetaminophen-induced acute liver failure 

(APAP-ALF) often presents significant challenges in management due to the rapidity and 

severity of illness, the potential for recovery without LT and the presence of complex 

psychosocial issues in most patients [102, 103]. Data from the NIH-funded Acute Liver 

Failure Study Group (ALFSG) shows that approximately 25% of APAP patients are 

listed for LT and less than 10% receive LT [104]. Current data suggest that APAP 

recovery for many patients is determined by 3-4 days following onset of illness [105]. 

With advances in intensive care unit (ICU) management such as continuous renal 

replacement therapy (RRT) and neuroprotective strategies, many patients who would 

otherwise have succumbed may remain alive for longer periods well beyond the initial 

insult [93, 94].  

Several prognosis models are available for predicting survival in ALF, but few are 

developed using daily measures of outcome with post-admission data. While the King’s 

College Criteria (KCC) [27] has been validated on admission, prediction of outcome at 

later time points appears less accurate [106] when hepatic dysfunction would be 
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characterized primarily by immunosuppression rather than multi-organ failure [93]. 

Numerous studies have shown relatively poor sensitivity of the KCC APAP criteria, 

ranging between 25% and 76%, meaning that many patients who did not meet criteria 

had poor outcomes during the incident hospitalization [101, 107-109]. Conversely, low 

specificity implies that some patients may have a good outcome despite meeting KCC 

and potentially could undergo unnecessary LT [108, 110]. Aside from KCC, the Acute 

Liver Failure Study Group Prognostic Index (ALFSG-PI) [96] has been evaluated for 

predicting 21-day transplant-free survival at admission and post-admission time points. 

However, a limitation of the ALFSG-PI is that only admission data are used to develop 

the model rather than longitudinal data. Speiser et al. [111] provide post-admission 

prognosis models using decision tree methodology, but these are developed using 

summary statistics from post-admission data rather than including data from each day. 

The use of summary statistics across multiple days of data for patients may have resulted 

in a loss of information, so models may not achieve optimal accuracy.  

The primary aim of this study is to explore the use of binary mixed model 

(BiMM) tree and BiMM forest methodologies to determine prognosis for use at 

admission (early) and post-admission (days 2-7) in APAP-ALF patients. BiMM tree 

(Aim 1) provides a decision tree framework for developing prediction models for 

longitudinal outcomes using binary splits on variables which can be read like a flow 

chart. Decision trees are popular in diverse medical fields [2, 3], and BiMM tree models 

offer an intuitive method for predicting longitudinal measures of outcome, using 

processes familiar to clinicians (e.g. “high” versus “low” values of a predictor). Though 

decision tree methods such as BiMM tree provide a simple, intuitive method for 
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obtaining predictions, accuracy of models can often be improved using an ensemble, or 

collection, of decision trees (e.g. random forest (RF) [4]). Therefore, we also employ 

BiMM forest (Aim 2), a RF method for developing prediction models for longitudinal 

binary outcomes. We hypothesize that BiMM models will have similar or modestly 

higher predictive accuracy, sensitivity, and specificity compared to traditional 

generalized linear mixed models (GLMMs).  

3.3.2 Materials and Methods 

Study Design 

Data from 1042 APAP-ALF patients enrolled within the ALFSG database from 

January 1998 to February 2016 (25 sites overall, 14 currently active; see 

acknowledgements) are used in this retrospective cohort study. The authors’ Institutional 

Review Board (IRB)/Health research ethics boards of all enrolling US ALFSG sites have 

approved all research and all clinical investigation has been conducted according to the 

principles expressed in the Declaration of Helsinki. Consent/assent is obtained from all 

patients/their next of kin for collection of data in the ALFSG registry. Patient records are 

anonymized and de-identified prior to use in this analysis. Participants who are medically 

competent provide written informed consent to participate in this study. In cases when 

patients are unable to provide written consent (critical illness, hepatic encephalopathy) 

written assent is obtained by the next of kin. Upon regaining capacity, patients are given 

the option to withdraw written consent. In those cases, data are not included in the 

registry. Health research ethics boards/ Institutional review boards at all sites of the 

ALFSG have approved this consent procedure. 
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Participants  

ALFSG registry eligibility criteria include: a) hepatic encephalopathy of any 

degree; b) evidence of moderately severe coagulopathy (international normalized ratio 

(INR) greater than or equal to 1.5); c) presumed acute illness onset of less than 26 weeks; 

and d) no cirrhosis [112]. For this study, only patients within the ALFSG registry with 

primary diagnoses of APAP determined by the site investigator are eligible.  

Operational Definitions 

Hepatic encephalopathy (HE) grade is defined using the West Haven Criteria 

(summarized); grade 1: any alteration in mentation, grade 2: being somnolent or 

obtunded but easily rousable or presence of asterixis, grade 3: being rousable with 

difficulty and, grade 4: unresponsive to deep pain [113]. In this study we defined ‘low 

coma grade’ as grade 1 or 2 and ‘high coma grade’ as grade 3 or 4. For evaluating the 

predictive performance of the models, specificity is the proportion of correctly predicted 

poor outcomes and sensitivity is the proportion of correctly predicted good outcomes.  

Variables 

The primary outcome of interest is binary: low coma grade versus high coma 

grade, which is collected daily for the first seven days following study admission until 

patients die, receive a LT, or are discharged/transferred from the hospital. We define 

‘good outcome’ as low coma grade, and ‘poor outcome’ as high coma grade. We consider 

several variables collected at one time point, as well as daily variables, for developing 

prediction models. Variables collected only on admission include gender, ethnicity and 

age. Daily variables considered for prediction modeling include AST, ALT, phosphate, 

lactate, platelets, bilirubin, ammonia, creatinine, INR, pressor use, and RRT.  
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Statistical Methods 

All models are constructed using a training dataset (525 patients and 2253 

observations) and are assessed using a test dataset (517 patients and 2208 observations). 

Training and test data are randomly split such that daily measurements for each patient 

appear only in one of the datasets. Analyses are completed using SAS Version 9.3 (SAS 

Institute, Cary, NC) and R software [114]. Patient characteristics are presented as mean 

(standard deviation (SD)) or N percent and compared using t-tests and binomial tests 

using the R package tableone [115]. P-values adjusted for longitudinal measures within 

the daily dataset are computed using standard GLMM methodology. We develop the 

following models: classification and regression tree (CART), RF, frequentist GLMM, 

Bayesian GLMM, BiMM tree, and BiMM forest. We note that the first two methods 

(CART and RF) do not adjust for longitudinal outcomes, whereas the other methods 

account for longitudinal outcomes. R packages employed to develop models include: 

rpart [91], randomForest [52], lme4 [89] and blme [87]. Because some of the methods 

should be employed with a complete dataset (i.e. RF, GLMMs and BiMM forest), we 

also develop models using an imputed dataset. For simplicity, we use the rfImpute 

function within the randomForest R package to impute missing predictor values [52]. 

Models are assessed in terms of overall accuracy, sensitivity and specificity for training 

and test datasets using binomial estimates and confidence intervals. Area under the 

receiver operating curve (AUROC) is determined using the R package ROCR [116]. 

Our primary focus of this study is to compare novel BiMM tree and BiMM forest 

to traditional methods (GLMMs and standard tree/forest models). BiMM tree (Aim 1) 

and BiMM forest (Aim 2) are machine learning algorithms which may be applied to 
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develop accurate prediction models for complex datasets (e.g. containing many 

predictors, interactions among predictors, and predictors with extreme values) which 

have clustered and longitudinal endpoints. Statistical models should account for data of 

this structure because values of a variable collected for a patient at many time points are 

correlated, creating groups called clusters. In addition to having clustered and 

longitudinal outcomes, some datasets (e.g. ALFSG registry data) contain complexities 

which make developing prediction models challenging using traditional methodology. 

For example, GLMMs may be suboptimal if datasets contain nonlinear predictors of 

outcome or complex interactions among predictors which are not specified correctly. 

BiMM tree and BiMM forest provide data-driven methods for developing prediction 

models which do not require the user to specify nonlinear associations or interaction 

terms. Compared to standard CART and RF, BiMM methods are more appropriate for 

longitudinal data since they incorporate clustering effects. Based on data simulations 

(Aim 2), BiMM forest may provide higher accuracy compared to BiMM tree; however, 

BiMM tree is simpler to use in practice than BiMM forest, which requires an application 

to obtain predictions. In this study, we compare accuracy and other performance statistics 

for traditional mixed models, novel BiMM models and standard CART and RF 

methodology.  

3.3.3 Results 

Patient Characteristics  

Demographic and clinical characteristics of patients are displayed in Table 3.5 by 

outcome status for admission and all daily data. Of the 1042 patients, the mean age is 
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Table 3.5: Patient Characteristics: Mean (SD) or N (%) 

Type of 
Variable Variable 

Admission Data 
(N=1042 observations) 

All Daily Data 
(T=4461 observations) 

N 

Poor Outcome 
Mean (SD) or 
Number (%) 

Good Outcome  
Mean (SD) or 
Number (%) P-value T 

Poor Outcome 
Mean (SD) or 
Number (%) 

Good Outcome  
Mean (SD) or 
Number (%) P-value

Collected at 
one time 

Female 1042 443 (81.7) 348 (69.6) <0.001 
Non-Hispanic 1040 504 (93.3) 472 (94.4) 0.558 
Age 1042 39.11 (12.68) 36.19 (12.74) <0.001 

Collected at 
days 1-7 

ALT 1029 4049.11 (3149.08) 5173.12 (3921.35) <0.001 4292 2359.43 (2538.94) 2687.80 (3078.94) 0.087 
AST 1029 5013.51 (5015.01) 5703.38 (5634.56) 0.038 4319 2230.88 (3621.64) 2126.72 (3869.71) 0.427 
Bilirubin 1026 5.64 (4.94) 5.02 (4.88) 0.043 4295 8.27 (6.48) 6.38 (6.00) <0.001 
Creatinine 1036 3.02 (7.86) 2.12 (1.91) 0.013 4360 2.70 (4.24) 2.31 (2.29) <0.001 
Phosphate 921 3.15 (2.13) 2.72 (1.71) 0.001 2499 3.32 (4.43) 3.40 (7.41) 0.587 
Lactate 191 1.28 (3.07) 2.00 (3.70) 0.149 816 2.31 (3.89) 4.43 (4.48) <0.001 
Platelets 1029 136.66 (89.19) 208.34 (96.37) 0.235 4316 104.05 (69.76) 137.15 (68.46) <0.001 
Ammonia 393 149.43 (117.36) 122.19 (134.28) 0.033 1088 115.95 (90.95) 93.40 (99.85) 0.002 
INR 1019 3.67 (2.77) 3.76 (2.59) 0.621 4236 3.15 (15.19) 2.57 (2.90) 0.012 
MV 1042 471 (86.9) 86 (17.2) <0.001 4456 2057 (88.4) 450 (21.1) <0.001 
Pressors 1042 188 (34.7) 46 (9.2) <0.001 4456 734 (31.5) 147 (6.9) <0.001 
RRT 1042 134 (24.7) 44 (8.8) <0.001 4456 663 (28.5) 243 (11.4) <0.001 
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significantly higher for patients with poor outcome compared to patients with good 

outcome on admission (39 versus 36). There are significantly more females with poor 

outcome compared to good outcome (82% versus 70%). There are no significant 

differences in ethnicity between the outcome groups. Upon study admission day, patients 

with poor outcome have significantly lower ALT, lower AST, higher bilirubin, higher 

creatinine, higher phosphate, and higher ammonia compared to those with good outcome. 

The poor outcome group also has a higher percentage of patients being treated with MV, 

pressors, and RRT. In total, there are 4461 observations of data collected for the 1042 

patients. On days 1-7 there are respectively 1042, 875, 704, 571, 488, 423, and 358 

patients with data available. Patients have an average of approximately four days of data. 

The right panel of Table 3.5 displays clinical characteristics of patients, with p-values 

adjusted for repeated measurements. Aside from ALT, AST and phosphate, all predictors 

differ significantly by outcome group.  

Patients are randomly assigned to be in either the training dataset or test dataset 

for model development, regardless of the number of daily measurements of data. Table 

3.6 displays demographic and clinical characteristics of patients for each dataset. There 

are no significant differences of predictor variables between the test and training datasets, 

aside from RRT use, which is slightly higher in the test dataset compared to the training 

dataset.  

Original Dataset Models  

We develop CART, Frequentist GLMM, Bayesian GLMM, and BiMM tree 

models using the original training dataset. RF and BiMM forest require all missing data 

to be imputed prior to modeling, so these models could not be developed using the 
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Table 3.6: Comparing Training and Test Datasets 

Type of 
Variable Variable 

All Daily Data 
(T=4461 observations from N=1042 patients) 

T 

Training Data 
Mean (SD) or 
Number (%) 

Test Data 
Mean (SD) or 
Number (%) P-value

Collected at 
one time 

Female 1042 399 (76.0) 392 (75.8) 1.000 
Non-Hispanic 1040 490 (93.5) 486 (94.2) 0.746 

Age 1042 38.17 (12.78) 37.24 (12.79) 0.242 

Collected at 
days 1-7 

ALT 4292 2589.47 (2846.02) 2443.30 (2782.92) 0.089 
AST 4319 2298.40 (3989.40) 2061.22 (3470.36) 0.037 

Bilirubin 4295 7.20 (6.02) 7.52 (6.61) 0.101 
Creatinine 4360 2.54 (3.76) 2.49 (3.13) 0.653 
Phosphate 2499 3.51 (7.79) 3.21 (3.48) 0.221 

Lactate 816 3.53 (4.36) 3.44 (4.36) 0.755 
Platelets 4316 113.17 (69.70) 126.30 (67.82) 0.365 

Ammonia 1088 107.52 (90.83) 104.23 (99.92) 0.572 
INR 4236 3.03 (15.54) 2.72 (2.99) 0.367 
MV 4456 1281 (56.9) 1226 (55.6) 0.415 

Pressors 4456 446 (19.8) 435 (19.7) 0.985 
RRT 4456 414 (18.4) 492 (22.3) 0.001 

Poor Outcome 4461 1086 (48.2) 1043 (47.2) 0.538 

original (unimputed) dataset which contains missing predictor values. Diagrams for the 

CART and BiMM tree are displayed within Figure 3.6. If the logic statement is true, then 

one follows the left branch, and if the logic statement is false, one follows the right 

branch. For binary predictors (e.g. pressors), 1 indicates that the patient is on the 

treatment and 0 indicates that the patient is not on the treatment. The CART uses seven 

variables and eight nodes in order to obtain predictions of outcome, whereas the BiMM 

tree uses three variables and three nodes. The models are identical up until the fourth 

node, in which the BiMM tree has a terminal node, but the CART continues to use AST 

and additional variables.   

Accuracy, sensitivity and specificity for the original training and test dataset 

models are presented within Table 3.7. The BiMM tree model has the highest training  
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Figure 3.6: Original Dataset Tree Diagrams (1=low coma grade/good outcome, 0=high coma grade/bad outcome) 
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Table 3.7: Accuracy Statistics for Models  

Original Dataset 

Method 

Training Data 
T=2253 observations 

Test Data 
T=2208 observations 

T Accuracy Sensitivity Specificity M Accuracy Sensitivity Specificity 

CART 2253 
0.702 

(0.683,0.721) 
0.683 

(0.655,0.710) 
0.723 

(0.695,0.749) 
2208 

0.639 
(0.619,0.660) 

0.613 
(0.584,0.641) 

0.669 
(0.640,0.698) 

Frequentist GLMM 127 
0.417 

(0.330,0.508) 
0.312 

(0.211,0.427) 
0.580 

(0.432,0.718) 
138 

0.630 
(0.544,0.711) 

0.551 
(0.426,0.671) 

0.710 
(0.588,0.813) 

Bayesian GLMM 127 
0.417 

(0.330,0.508) 
0.312 

(0.211,0.427) 
0.580 

(0.432,0.718) 
138 

0.638 
(0.552,0.718) 

0.536 
(0.412,0.657) 

0.739 
(0.619,0.837) 

BiMM Tree 2253 
0.907 

(0.894,0.918) 
1.000 

(0.997,1.000) 
0.820 

(0.797,0.842) 
2208 

0.630 
(0.610,0.651) 

0.530 
(0.499,0.561) 

0.720 
(0.693,0.746) 

Imputed Dataset 

Method 

Training Data 
T=2253 observations 

Test Data 
T=2208 observations 

T Accuracy Sensitivity Specificity T Accuracy Sensitivity Specificity 

CART 2253 
0.730 

(0.711,0.748) 
0.787 

(0.763,0.811) 
0.668 

(0.639,0.696) 
2208 

0.653 
(0.633,0.673) 

0.762 
(0.737,0.786) 

0.531 
(0.500,0.562) 

RF 2253 
0.757 

(0.739,0.775) 
0.799 

(0.775,0.822) 
0.712 

(0.684,0.739) 
2208 

0.688 
(0.668,0.707) 

0.743 
(0.717,0.768) 

0.626 
(0.596,0.656) 

Frequentist GLMM 2253 
0.869 

(0.854,0.882) 
0.886 

(0.866,0.904) 
0.850 

(0.827,0.871) 
2208 

0.686 
(0.666,0.705) 

0.724 
(0.697,0.749) 

0.643 
(0.613,0.672) 

Bayesian GLMM 2253 
0.868 

(0.853,0.881) 
0.888 

(0.868,0.905) 
0.846 

(0.823,0.867) 
2208 

0.686 
(0.666,0.705) 

0.724 
(0.697,0.749) 

0.644 
(0.614,0.673) 

BiMM Tree 2253 
0.920 

(0.908,0.931) 
1.000 

(0.997,1.000) 
0.845 

(0.823,0.865) 
2208 

0.653 
(0.632,0.672) 

0.669 
(0.640,0.698) 

0.638 
(0.609,0.655) 

BiMM forest 2253 
0.872 

(0.857,0.855) 
0.868 

(0.848,0.887) 
0.876 

(0.854,0.895) 
2208 

0.688 
(0.668,0.707) 

0.743 
(0.717,0.768) 

0.626 
(0.596,0.656) 
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dataset accuracy compared to other models, along with the highest sensitivity and 

specificity. The Frequentist and Bayesian GLMM models make identical predictions for 

the training dataset. For the test dataset, all models have similar prediction accuracy of 

approximately 63%, though the breakdown of sensitivity and specificity is different 

comparing the models. The GLMMs and BiMM tree have slightly higher specificity 

compared to CART, which balance out the sensitivity and specificity more than the other 

models. A drawback of the GLMM models is that only observations with non-missing 

values for all variables could be used in modeling, so that a substantial portion of 

outcomes could not be obtained. The CART and BiMM tree methods can handle missing 

predictor data, so predictions are obtained for all observations within the original, 

unimputed training and test datasets.  

Imputed Dataset Models  

In order to compare all models, we use an imputed dataset to predict daily 

outcomes of ALF patients. Figure 3.7 displays the CART and BiMM tree models, along 

with the variable importance plot from the RF. The CART and BiMM tree models look 

fairly similar, though the CART includes four additional nodes compared to the BiMM 

tree. Again, the CART model uses more predictors compared to the BiMM tree, which 

uses only three predictors. Within the RF variable importance plot, the most important 

predictors appear at the top and the least important predictors appear at the bottom. The 

RF identifies lactate as the most important predictor of daily outcome, followed by 

ammonia and ALT. The least important predictors of outcome are sex and ethnicity, 

consistent with clinical literature. Partial dependence plots are examined to assess the  

relationship between important predictors and outcome. Lactate greater than 6 mmol/L
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Figure 3.7: Imputed Dataset Diagrams (1=low coma grade/good outcome, 0=high coma grade/bad outcome) 
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and ALT greater than 5000 IU/L are associated with higher odds of poor outcome (Figure 

3.8).  

Accuracy, sensitivity and specificity for the imputed dataset models are presented 

within Table 3.7. Similar to the original dataset results, the BiMM tree model has the 

highest training dataset accuracy compared to other models, along with the highest 

sensitivity. The Frequentist and Bayesian GLMM models make very similar predictions 

for the training dataset. Models which adjusted for longitudinal outcomes (i.e. GLMMs 

and BiMM methods) have higher performance statistics for the training dataset compared 

to models which did not adjust for longitudinal outcomes (i.e. CART and RF). For the 

test dataset, the standard RF, GLMMS, and BiMM forest have similar prediction 

accuracy of approximately 69%. All models have higher sensitivity than specificity for 

the test dataset.  

Area Under the Receiver Operating Curve  

In addition to comparing accuracy, sensitivity and specificity, we compare models 

for original data and imputed training and test datasets using ROC plots (Figure 3.9). For 

the original training dataset, the BiMM tree model clearly has the best AUC, which was 

0.907, followed by CART with 0.735 and the GLMM methods with 0.417.  Thus, the 

BiMM tree has the best model fit for the complete training dataset. For the imputed 

training dataset, the BiMM forest has the highest AUC (0.952), followed closely behind 

by Frequentist GLMM (0.941), Bayesian GLMM (0.940) and BiMM tree (0.921). RF and 

CART have lower AUC (0.829 and 0.770 respectively) compared to the other methods, 

which adjust for longitudinal outcomes. Overall, the BiMM forest has the highest AUC, 

indicating best model fit for the imputed training dataset.  
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Figure 3.8: Partial Dependence Plots for Lactate and ALT 
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Figure 3.9: Receiver Operating Curve (ROC) Plots for Original Dataset Models and Imputed Dataset Models 
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For the original test dataset, the BiMM tree has the best AUC of 0.697, followed 

by CART with 0.682 and GLMM methods with 0.603. For the imputed test dataset, the 

BiMM forest and RF have the highest AUCs (0.749), followed by Frequentist GLMM 

(0.707), Bayesian GLMM (0.708), BiMM tree (0.707) and CART (0.698).  

3.3.4 Discussion 

Key Results 

BiMM tree and BiMM forest models provide prediction models developed 

specifically for APAP-ALF patients which can be used at hospital admission and during 

in-patient hospitalization using daily outcomes. Models are developed using a training 

dataset and evaluated using a validation dataset for both original unimputed data and 

imputed data with missing values filled in. The prediction (test dataset) accuracy of the 

models with the original dataset are similar, around 63%. The BiMM tree has 

significantly higher training dataset accuracy compared to the standard CART, which 

does not account for clustered outcomes. The CART model is also more complex 

compared to the BiMM tree because it includes more predictor variables. Moreover, the 

CART splits may not be consistent with observations in clinical practice. For example, 

the fourth node, which splits AST < 6058 indicates that high AST is associated with high 

coma grade, may be counterintuitive because high AST is typically associated with poor 

survival. Additionally, AST is not typically a laboratory variable which is considered to 

be predictive of outcome based on current prediction models [27, 96]. On the other hand, 

the BiMM tree is clinically relevant, in which poor daily outcomes are associated with 

pressor use, high bilirubin, and high creatinine. A benefit of the BiMM tree method 

compared to the Frequentist GLMM and Bayesian GLMM is that all data, regardless of 
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missing values, can be evaluated, whereas only observations with non-missing values of 

all predictors could be included for the GLMMs.  

To compare the prediction models using all observations, we additionally develop 

models using an imputed dataset. The standard CART and RF have the lowest training 

dataset accuracy, which makes sense because these models do not account for clustering 

in the outcomes. Consistent with the original dataset model, CART with the imputed 

dataset is more complex and disagrees with clinical observation because the first node 

identifies high lactate and high ALT as predictors of good outcome. The BiMM tree has a 

similar structure to the CART, which is not consistent with clinical observations of 

outcome. These models, which are contrary to clinical presentation of patients, highlight 

the danger of imputing missing values, particularly when there is a large percentage of 

missing data (e.g. lactate in this dataset which is missing 82% of values). Although it has 

a large amount of missing data, we considered lactate in prediction modeling because it 

has been identified as an important predictor of outcome in ALF [109]. While the CART 

and BiMM tree models do not make clinical sense, the BiMM forest is able to identify 

that high lactate and high ALT is associated with poor outcomes in APAP ALF patients. 

For the imputed dataset, the BiMM forest offers test set accuracy of 69%, training set 

accuracy of 87% and training set AUC of 0.952. The GLMM models have similar 

training and test dataset accuracy to the BiMM forest, with slightly lower AUCs.  

Overall, the model which offers good predictive ability, is consistent with clinical 

practice, and is easy to use for obtaining predictions is the BiMM tree with the original 

dataset. While the prediction accuracy was slightly lower than the competing models, we 

believe it is the best model because it is simple to use in practice at the bedside for 
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predicting daily outcomes and it is consistent with what is seen in the clinical 

presentation of APAP-ALF patients. Compared to the GLMM models, the BiMM tree is 

easier to use because it requires only three variables within a user-friendly flow chart 

which does not require calculation or an application. Additionally, interpretation is 

simpler for the BiMM tree compared to the GLMMs because there is no need for 

understanding odds ratios or regression parameter estimates. We advise against using 

models developed with the imputed dataset because there is a substantial amount of 

missing data for some predictor variables, and resulting models may not be consistent 

with clinical practice. A benefit of the BiMM tree method is that it can handle missing 

data without the need for imputation. The BiMM forest is another viable option for daily 

predictions with clinically meaningful associations between predictors and outcome; 

however, an online application would need to be developed so that predictions could be 

obtained for new patients. 

Comparison with Previous Studies 

In this study, a mechanism for predicting daily outcomes during the first week of 

hospitalization is developed, which is novel since most prognostic models are constructed 

using hospital admission data and are not meant for use over time. Direct comparison of 

performance characteristics of models presented in this paper with current clinical 

prediction models is not possible because different outcome variables are used. In the 

current study, we use daily measures of high versus low coma grade, whereas most 

prediction models in the clinical literature use survival at a fixed time point. However, 

some similar clinical variables are used between models presented in this study and 

current clinical models. The BiMM tree developed with original data uses similar 
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predictors as other prognosis models in the clinical literature: KCC includes creatinine 

[27], model for end stage liver disease (MELD) includes creatinine and bilirubin [117], 

and ALFSG-PI includes pressor use and bilirubin [96]. CART models for the prediction 

of 21-day survival produced using aggregated post-admission data in a previous study use 

MELD, ventilator use, and lactate [111]; thus, decision tree models considering 

longitudinal data in the present study are quite different from those which do not use 

daily data. A key difference between these studies is the outcome was defined in different 

ways: the Speiser et. al. CART models use 21-day survival as the outcome of interest 

[111], and we use high versus low coma grade in this study. The BiMM tree for daily 

outcomes provides a method for obtaining predictions using a simple flow chart, whereas 

MELD and ALFSG-PI require the use of an application or calculation of scores. We use a 

daily measurement of outcome to develop prediction models rather than an outcome for a 

single time point because disease progression can change on a daily basis in the ALF 

setting. It is of clinical interest to obtain predictions of outcome which fluctuate over time 

rather than obtaining a single prediction for several weeks in advance to help clinicians 

develop management plans for ALF patients (e.g. whether to list a patient for a liver 

transplant).  

Limitations 

Though BiMM tree offers an alternative to current prognosis criteria, there are 

some limitations of this study which should be considered. First, data used to develop and 

assess new models are from the North-American ALFSG registry, so models may not be 

appropriate for populations elsewhere where transplant decisions may vary. Given the 

orphan status of ALF, it is difficult to find robust external datasets that have many 
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patients with serially collected clinical features. However, models are created using 

internal validation (test dataset) to address the issue of generalizability. Therefore, it is 

hypothesized that the BiMM tree model should perform well with other populations of 

APAP-ALF patients.  The BiMM forest offers among the highest of prediction accuracies 

of the models; however, a limitation is that an online application is required for obtaining 

predictions in practice and interpretability is not as straight-forward as the decision tree 

models.  

An important consideration in this study is that the models handle missing data in 

different ways, and it is challenging to compare all models regardless of missing data. A 

benefit of BiMM tree is that it can handle large amounts of missing data, whereas 

GLMMs and BiMM forest need complete data, which requires imputation of missing 

values. Because there is a large amount of missing data in some of the predictors (e.g. 

lactate and ammonia), models produced with the imputed data may not be appropriate. 

This is evident in the resulting models, which are not consistent with clinical observations 

in practice. This is the main reason we recommend use of the BiMM tree prediction 

model produced with the original unimputed dataset, even though it had slightly lower 

prediction accuracy than some of the other models. Given these limitations, it would be 

beneficial to use external datasets to validate the BiMM tree model developed in this 

study. Additionally, future incorporation of biomarkers of hepatic regeneration may 

improve upon models for prognosticating ALF. 
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3.3.5 Conclusions 

Several models are produced for determining daily outcomes of APAP-ALF 

patients which can be used during the course of hospitalization. Offering a simple, 

accurate, and clinically consistent method for assessing high versus low coma grade, 

BiMM tree provides a prediction model developed for daily outcome measurements. Data 

from the ALFSG registry suggests that the BiMM tree prediction model offers good 

prediction accuracy (63%) and overall performance (AUC 0.907), but additional datasets 

should be used to externally validate these findings. 
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4 CONCLUSION 

BiMM tree and BiMM forest methodology for clustered and longitudinal binary 

outcomes extends decision tree and RF to account for groupings within a dataset. ALF 

models to predict daily outcomes for acetaminophen patients are presented which will 

help clinicians determine the probability of poor outcomes throughout hospitalization. 

Innovative methods developed in this study are available using software for a commonly 

used statistical computing program, called R (Appendix 2). This offers researchers a 

freely available and easily implemented code which can be used to apply the novel 

methods. We are currently developing an R package which will be available on the 

comprehensive R archive network website. Many clinical datasets contain clustered 

binary endpoints, so providing rigorously assessed tree and forest mechanisms for this 

setting is a significant contribution to the field of biostatistics. The clustered CART and 

RF methods for continuous outcomes published by Hajjem [10, 12, 17] and Sela [15] are 

often cited in the literature, and the R software package by Sela has over 4,000 

downloads in 2015. However, the RF method for continuous outcomes by Hajjem lacks 

freely available software for implementation, and the software for Sela’s method for 

continuous outcomes only uses a single tree (not forest) framework. This suggests that 

our BiMM tree and forest methodology for modeling binary outcomes with 

accompanying software will be a significant contribution to machine learning literature.     

Commonly in clinical settings, many variables are collected over time with the 

aim of developing a prediction model for binary outcomes. CART and RF are used in 

several clinical settings, and remain promising modeling tools which often offer high 
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accuracy rates and ease of interpretability for datasets where variables are not clustered 

[5, 47, 118]. The newly proposed BiMM tree and forest methodology provides accurate, 

efficient, interpretable and widely applicable prediction models for diverse clinical and 

other fields. Specific to the ALF setting, there is a need for bedside tools to aid in 

predicting daily clinical events of interest in an acute setting.  The BiMM tree and forest 

models developed in this study have been evaluated by clinical experts to ensure 

plausibility of results and ease of use at the bedside. Model results can be used in practice 

to aid in clinical decisions (i.e. developing patient management plans and deciding to list 

for liver transplant) during the first week of hospitalization, which may improve 

outcomes for ALF patients. 

There are several avenues of future work which can be investigated within the 

BiMM forest framework. Despite its improvement in accuracy of prediction models, the 

BiMM forest framework does not provide a method for determining the relative 

importance of predictors within clusters or a method for selecting optimal predictors to be 

used in a simpler model. In clinical prediction modeling, an interest is to understand the 

relationship between predictors and outcome, and to determine the most important 

predictors that should be included in a final, simpler model. Many complex datasets have 

hundreds of predictors (e.g. the ALFSG registry), so reducing the number of predictors 

within a model is an essential part of developing models which can be easily and readily 

used at the bedside. A future study could investigate a BiMM forest method to quantify 

the importance of predictors within clusters and to identify optimal predictors to be 

included within a model. 
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Aside from variable importance and variable selection, another avenue of future 

research within the BiMM forest framework is to develop a method for imputing missing 

data. Though standard RF offers an unbiased imputation method, there is no forest 

method available for imputing missing data in the presence of clustered and longitudinal 

outcomes. Many clinical datasets contain missing values of predictor variables, especially 

when data are repeatedly collected over time because patients may become lost to follow 

up or may not attend certain visits. A future study could propose a novel imputation 

method for BiMM forest based on the framework for the default imputation procedure 

used in the rfImpute function of the open source RF software R package randomForest 

[52].  

Many medical tools may be developed using novel BiMM tree and forest 

methodology, including prognosis models (e.g. predicting specific categorical outcomes), 

diagnostic models (e.g. determining whether or not a patient has a disease or condition), 

disease prediction models (e.g. examining risk factors of disease and determining if a 

person has a disease or not), treatment or therapy models (e.g. assessing the effectiveness 

of treatments on categorical patient outcomes), screening models (e.g. identifying 

patients at highest risk of developing a disease), and hospital models (e.g. estimating 

whether or not a patient will be readmitted). Thus, innovative BiMM tree and forest 

methods developed in this dissertation can be applied in diverse medical research settings 

to provide accurate and efficient prediction models for clustered and longitudinal binary 

outcomes.   
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APPENDIX 1: Supplementary Figures 

Figure 1: Simulated prediction (test set) accuracy of models for N=250 patients  



126 

Figure 2: Simulated prediction (test set) accuracy of models for N=500 patients 
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Figure 3: Simulated difference in training and test set accuracy of models for N=250 patients 
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Figure 4: Simulated difference in training and test set accuracy of models for N=500 patients 
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Figure 5: Simulated prediction (test set) accuracy of models for N=500 patients  
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Figure 6: Simulated difference in training and test set accuracy of models for N=500 patients 
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APPENDIX 2: R code for BiMM tree and BiMM forest functions 

#load libraries 
library(rpart) 
library(blme) 
library(randomForest) 

############################################################################### 
#variable names 
#traindata: name of the training dataset 
#testdata: name of the test dataset 
#formula: formula for fixed variables with binary outcome 

#example:
comagradelow1~Sex+Ethnicity+Age+ALT+AST+Bilirubin+Creat+Phosphate+Lactate+plate
lets+ammonia 

+inr+pressors+rrt
#random: name of the random clustering variable 

############################################################################### 
#BiMM tree with one iteration 
BiMMtree1<-function(traindata,testdata,formula,random){ 

#initialize parameters
minsize=round(length(traindata[,1])/10,0)
data=traindata
initialRandomEffects=rep(0,length(data[,1]))
ErrorTolerance=0.001
MaxIterations=1000
tree.control=rpart.control(minbucket=minsize)
#parse formula
Predictors<-paste(attr(terms(formula),"term.labels"),collapse="+")
TargetName<-formula[[2]]
Target<-data[,toString(TargetName)]
#set up variables for loop 
ContinueCondition<-TRUE
iterations<-0
#initial values
AdjustedTarget<-as.numeric(Target)-initialRandomEffects
oldlik<- -Inf
# Make a new data frame to include all the new variables 
newdata <- data 

#run 1 iteration of algorithm 
newdata[,"AdjustedTarget"] <- AdjustedTarget
iterations <- iterations+1
#build tree
tree <- rpart(formula(paste(c("AdjustedTarget",

Predictors),collapse = "~")),  
data = data, method = "class", control = tree.control) 

## Estimate New Random Effects and Errors using BLMER 
# Get variables that identify the node for each observation 
data[,"nodeInd"] <- 0
data["nodeInd"] <- tree$where
# Fit linear model with nodes as predictors (we use the original 

target so likelihoods are comparable) 
# Check that the fitted tree has at least two nodes. 

if(min(tree$where)==max(tree$where)){ 
lmefit <- 

tryCatch(bglmer(formula(c(paste(paste(c(toString(TargetName),1), collapse="~"), 
"+(1|random)",sep=""))),  
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data=data,family=binomial,control=glmerControl(optCtrl=list(maxfun=20000)
)),error=function(cond)"skip") 

} else {
 lmefit <- 

tryCatch(bglmer(formula(c(paste(paste(c(toString(TargetName),"as.factor(nodeInd
)"), collapse="~"), "+(1|random)",sep=""))),  

data=data,
family=binomial,control=glmerControl(optimizer="bobyqa",optCtrl=list(maxfun=200
00000000))),error=function(cond)"skip") 

 } 

#if GLMM did not converge, return NA's for accuracy statistics 
if(class(lmefit)[1]=="character"){

#return train and test confusion matrices 
return(list(

c(NA,NA,NA,NA),
c(NA,NA,NA,NA),
NA

))
}
else if(!(class(lmefit)[1]=="character")){

#train dataset predictions
train.preds.ave<- AdjustedTarget
train.preds<-predict(tree,traindata,type="class")
#test dataset predictions
test.preds<-predict(tree,testdata,type="class")
#format table to make sure it always has 4 entries, even if it is 

only 2 by 1 (0's in other spots) 
t1<-table(data$comagradelow,train.preds.ave)
t4<-table(testdata$comagradelow,test.preds)
#code if table for train or test data if all predictions are for 

same group 
if(ncol(t1)==1 & train.preds.ave[1]==1){

t1<-c(0,0,t1[1,1],t1[2,1])
}
else if(ncol(t1)==1 & train.preds.ave[1]==0){ 

t1<-c(t1[1,1],t1[2,1],0,0)
}
if(ncol(t4)==1 & test.preds[1]==1){

t4<-c(0,0,t4[1,1],t4[2,1])
}
else if(ncol(t4)==1 & test.preds[1]==0){ 

t4<-c(t4[1,1],t4[2,1],0,0)
}
#return train and test confusion matrices, # iterations 
return(list(

c(t1),
c(t4),
iterations

))    
}    

} 
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############################################################################### 
#BiMM forest with one iteration 
#note: requires training and test data with no missing values 

BiMMforest1<-function(traindata,testdata,formula,random,seed){ 
#set up variables for Bimm method 
data=traindata1
initialRandomEffects=rep(0,length(data[,1]))
ErrorTolerance=0.006
MaxIterations=1000
#parse formula
Predictors<-paste(attr(terms(formula),"term.labels"),collapse="+")
TargetName<-formula[[2]]
Target<-data[,toString(TargetName)]
#set up variables for loop 
ContinueCondition<-TRUE
iterations<-0
#initial values
AdjustedTarget<-as.numeric(Target)-initialRandomEffects
oldlik<- -Inf
# Make a new data frame to include all the new variables 
newdata <- data 

#compile one iteration of the BiMM forest algorithm 
newdata[,"AdjustedTarget"] <- AdjustedTarget
iterations <- iterations+1
#build tree
set.seed(seed)
forest <- randomForest(formula(paste(c("factor(AdjustedTarget)",

Predictors),collapse = "~")),  
data = data, method = "class") 

forestprob<-predict(forest,type="prob")[,2]
## Estimate New Random Effects and Errors using GLMER 
options(warn=-1) 
lmefit <-

tryCatch(bglmer(formula(c(paste(paste(c(toString(TargetName),"forestprob"), 
collapse="~"), "+(1|random)",sep=""))),  

data=data,family=binomial,control=glmerControl(optCtrl=list(maxfun=20000)
)),error=function(cond)"skip") 

#if GLMM did not converge, produce NAs for accuracy statistics 
if(class(lmefit)[1]=="character"){

#return train and test confusion matrices 
return(list(

c(NA,NA,NA,NA),
c(NA,NA,NA,NA),
NA

))
}
else if(!(class(lmefit)[1]=="character")){

test.preds<-predict(forest,testdata1)
traindata1<-cbind(traindata1,random)
train.preds<-

ifelse(predict(lmefit,traindata1,type="response")<.5,0,1) 
#format table to make sure it always has 4 entries, even if it is 

only 2 by 1 (0's in other spots) 
t1<-table(traindata1$comagradelow1,train.preds)
t4<-table(testdata1$comagradelow1,test.preds)
if(ncol(t1)==1 & train.preds[1]==1){
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t1<-c(0,0,t1[1,1],t1[2,1])
}
else if(ncol(t1)==1 & train.preds[1]==0){ 

t1<-c(t1[1,1],t1[2,1],0,0)
}
if(ncol(t4)==1 & test.preds[1]==1){

t4<-c(0,0,t4[1,1],t4[2,1])
}
else if(ncol(t4)==1 & test.preds[1]==0){ 

t4<-c(t4[1,1],t4[2,1],0,0)
}

#return train and test confusion matrices, # iterations 
return(list(

c(t1),
c(t4),
iterations

))    
}    

} 
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############################################################################### 
#BiMM tree with H1 updates 

BiMMtreeH1<-function(traindata,testdata,formula,random,seed){ 
#set up variables for Bimm method 
data=traindata1
initialRandomEffects=rep(0,length(data[,1]))
ErrorTolerance=0.006
MaxIterations=1000
#parse formula
Predictors<-paste(attr(terms(formula),"term.labels"),collapse="+")
TargetName<-formula[[2]]
Target<-data[,toString(TargetName)]
#set up variables for loop 
ContinueCondition<-TRUE
iterations<-0
#initial values
AdjustedTarget<-as.numeric(Target)-initialRandomEffects
oldlik<- -Inf
# Make a new data frame to include all the new variables 
newdata <- data 

while(ContinueCondition){
# Current values of variables 
newdata[,"AdjustedTarget"] <- AdjustedTarget
iterations <- iterations+1
#build tree
tree <- rpart(formula(paste(c("AdjustedTarget",

Predictors),collapse = "~")),  
data = data, method = "class", control = tree.control) 

## Estimate New Random Effects and Errors using BLMER 
# Get variables that identify the node for each observation 
data[,"nodeInd"] <- 0
data["nodeInd"] <- tree$where
# Fit linear model with nodes as predictors (we use the original 

target so likelihoods are comparable) 
# Check that the fitted tree has at least two nodes. 

if(min(tree$where)==max(tree$where)){ 
lmefit <- 

tryCatch(bglmer(formula(c(paste(paste(c(toString(TargetName),1), collapse="~"), 
"+(1|random)",sep=""))),  

data=data,family=binomial,control=glmerControl(optCtrl=list(maxfun=20000)
)),error=function(cond)"skip") 

} else {
 lmefit <- 

tryCatch(bglmer(formula(c(paste(paste(c(toString(TargetName),"as.factor(nodeInd
)"), collapse="~"), "+(1|random)",sep=""))),  

data=data,
family=binomial,control=glmerControl(optimizer="bobyqa",optCtrl=list(maxfun=200
00000000))),error=function(cond)"skip") 

 } 
# Get the likelihood to check on convergence 
if(!(class(lmefit)[1]=="character")){

newlik <- logLik(lmefit)
ContinueCondition <- (newlik-oldlik>ErrorTolerance &

iterations < MaxIterations) 
oldlik <- newlik
# Extract random effects to make the new adjusted target 
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logit<-predict(tree,type="prob")[,2]
logit2<-

exp(predict(lmefit,re.form=NA))/(1+exp(predict(lmefit,re.form=NA))) #population 
level effects 

AllEffects <- (logit+logit2)/2 #average them 
#split function h1
AdjustedTarget <- ifelse(as.numeric(AdjustedTarget) +

AllEffects>.5,1,0)
}
else{ ContinueCondition<-FALSE }

}

if(class(lmefit)[1]=="character"){
#return train and test confusion matrices 
return(list(

c(NA,NA,NA,NA),
c(NA,NA,NA,NA),
NA

))
}
else if(!(class(lmefit)[1]=="character")){

#average effects
train.preds.ave<- AdjustedTarget
#test dataset predictions-same for all 3 updating methods for the 

1 iteration model 
test.preds<-predict(tree,testdata,type="class")
#format table to make sure it always has 4 entries, even if it is 

only 2 by 1 (0's in other spots) 
t1<-table(data$ys,train.preds.ave)
t4<-table(testdata$ys,test.preds)
if(ncol(t1)==1 & train.preds.ave[1]==1){

t1<-c(0,0,t1[1,1],t1[2,1])
}
else if(ncol(t1)==1 & train.preds.ave[1]==0){ 

t1<-c(t1[1,1],t1[2,1],0,0)
}
if(ncol(t4)==1 & test.preds[1]==1){

t4<-c(0,0,t4[1,1],t4[2,1])
}
else if(ncol(t4)==1 & test.preds[1]==0){ 

t4<-c(t4[1,1],t4[2,1],0,0)
}
#return train and test confusion matrices 
return(list(

c(t1),
c(t4),
iterations

))    
}    

} 
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############################################################################### 
#BiMM tree with H3 updates 

BiMMtreeH3<-function(traindata,testdata,formula,random,seed){ 
#set up variables for Bimm method 
data=traindata1
initialRandomEffects=rep(0,length(data[,1]))
ErrorTolerance=0.006
MaxIterations=1000
#parse formula
Predictors<-paste(attr(terms(formula),"term.labels"),collapse="+")
TargetName<-formula[[2]]
Target<-data[,toString(TargetName)]
#set up variables for loop 
ContinueCondition<-TRUE
iterations<-0
#initial values
AdjustedTarget<-as.numeric(Target)-initialRandomEffects
oldlik<- -Inf
# Make a new data frame to include all the new variables 
newdata <- data 

while(ContinueCondition){
# Current values of variables 
newdata[,"AdjustedTarget"] <- AdjustedTarget
iterations <- iterations+1
#build tree
tree <- rpart(formula(paste(c("AdjustedTarget",

Predictors),collapse = "~")),  
data = data, method = "class", control = tree.control) 

## Estimate New Random Effects and Errors using BLMER 
# Get variables that identify the node for each observation 
data[,"nodeInd"] <- 0
data["nodeInd"] <- tree$where
# Fit linear model with nodes as predictors (we use the original 

target so likelihoods are comparable) 
# Check that the fitted tree has at least two nodes. 

if(min(tree$where)==max(tree$where)){ 
lmefit <- 

tryCatch(bglmer(formula(c(paste(paste(c(toString(TargetName),1), collapse="~"), 
"+(1|random)",sep=""))),  

data=data,family=binomial,control=glmerControl(optCtrl=list(maxfun=20000)
)),error=function(cond)"skip") 

} else {
 lmefit <- 

tryCatch(bglmer(formula(c(paste(paste(c(toString(TargetName),"as.factor(nodeInd
)"), collapse="~"), "+(1|random)",sep=""))),  

data=data,
family=binomial,control=glmerControl(optimizer="bobyqa",optCtrl=list(maxfun=200
00000000))),error=function(cond)"skip") 

 } 
# Get the likelihood to check on convergence 
if(!(class(lmefit)[1]=="character")){

newlik <- logLik(lmefit)
ContinueCondition <- (newlik-oldlik>ErrorTolerance &

iterations < MaxIterations) 
oldlik <- newlik
# Extract random effects to make the new adjusted target 
logit<-predict(tree,type="prob")[,2]
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logit2<-
exp(predict(lmefit,re.form=NA))/(1+exp(predict(lmefit,re.form=NA))) #population 
level effects 

AllEffects <- (logit+logit2)/2 #average them 
#AdjustedTarget <- ifelse(as.numeric(AdjustedTarget) +

AllEffects>.5,1,0) 
#new split function h3
for(k in 1:length(AllEffects)){

if(as.numeric(AdjustedTarget[k])+AllEffects[k]<.5){AdjustedTarget[k]=0}
else

if(as.numeric(AdjustedTarget[k])+AllEffects[k]>1.5){AdjustedTarget[k]=1} 
else{

#generate random probability coin flip based
on AllEffects (q notation in paper) 

AdjustedTarget[k]<-rbinom(1,1,AllEffects[k])
}

}
}
else{ ContinueCondition<-FALSE }

}

if(class(lmefit)[1]=="character"){
#return train and test confusion matrices 
return(list(

c(NA,NA,NA,NA),
c(NA,NA,NA,NA),
NA

))
}
else if(!(class(lmefit)[1]=="character")){

#average effects
train.preds.ave<- AdjustedTarget
#test dataset predictions-same for all 3 updating methods for the 

1 iteration model 
test.preds<-predict(tree,testdata,type="class")
#format table to make sure it always has 4 entries, even if it is 

only 2 by 1 (0's in other spots) 
t1<-table(data$ys,train.preds.ave)
t4<-table(testdata$ys,test.preds)
if(ncol(t1)==1 & train.preds.ave[1]==1){

t1<-c(0,0,t1[1,1],t1[2,1])
}
else if(ncol(t1)==1 & train.preds.ave[1]==0){ 

t1<-c(t1[1,1],t1[2,1],0,0)
}
if(ncol(t4)==1 & test.preds[1]==1){

t4<-c(0,0,t4[1,1],t4[2,1])
}
else if(ncol(t4)==1 & test.preds[1]==0){ 

t4<-c(t4[1,1],t4[2,1],0,0)
}
#return train and test confusion matrices, # iterations 
return(list(

c(t1),
c(t4),
iterations

))    
}    

} 
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############################################################################### 
#BiMM forest with H1 updates 

BiMMforestH1<-function(traindata,testdata,formula,random,seed){ 
#set up variables for Bimm method 
data=traindata1
initialRandomEffects=rep(0,length(data[,1]))
ErrorTolerance=0.006
MaxIterations=1000
#parse formula
Predictors<-paste(attr(terms(formula),"term.labels"),collapse="+")
TargetName<-formula[[2]]
Target<-data[,toString(TargetName)]
#set up variables for loop 
ContinueCondition<-TRUE
iterations<-0
#initial values
AdjustedTarget<-as.numeric(Target)-initialRandomEffects
oldlik<- -Inf
# Make a new data frame to include all the new variables 
newdata <- data 
shouldpredict=TRUE

while(ContinueCondition){
# Current values of variables 
newdata[,"AdjustedTarget"] <- AdjustedTarget
iterations <- iterations+1
#build tree
set.seed(seed)
forest <- randomForest(formula(paste(c("factor(AdjustedTarget)",

Predictors),collapse = "~")),  
data = data, method = "class") 

forestprob<-predict(forest,type="prob")[,2]
## Estimate New Random Effects and Errors using BLMER 
lmefit <- 

tryCatch(bglmer(formula(c(paste(paste(c(toString(TargetName),"forestprob"), 
collapse="~"), "+(1|random)",sep=""))),  

data=data,family=binomial,control=glmerControl(optCtrl=list(maxfun=20000)
)),error=function(cond)"skip") 

# Get the likelihood to check on convergence 
if(!(class(lmefit)[1]=="character")){

newlik <- logLik(lmefit)
ContinueCondition <- (abs(newlik-oldlik)>ErrorTolerance &

iterations < MaxIterations) 
oldlik <- newlik
# Extract random effects to make the new adjusted target 
logit<-forestprob
logit2<-

exp(predict(lmefit,re.form=NA))/(1+exp(predict(lmefit,re.form=NA))) #population 
level effects 

AllEffects <- (logit+logit2)/2 #average them 
#h1 update
AdjustedTarget <- ifelse(as.numeric(Target) + AllEffects-

1>.5,1,0) 

}
else{ ContinueCondition<-FALSE }
#if all of the binary outcomes are the same then get out of loop 
if(min(AdjustedTarget)==max(AdjustedTarget)){
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ContinueCondition<-FALSE
shouldpredict=FALSE

}
}

if(class(lmefit)[1]=="character" | shouldpredict==FALSE){ 
#return train and test confusion matrices 
return(list(

c(NA,NA,NA,NA),
c(NA,NA,NA,NA),
NA,
NA

))
}
else if(!(class(lmefit)[1]=="character")){

#predictions
test.preds<-predict(forest,testdata)
traindata1<-cbind(traindata,random)
train.preds<-

ifelse(predict(lmefit,traindata1,type="response")<.5,0,1) 
#format table to make sure it always has 4 entries, even if it is 

only 2 by 1 (0's in other spots) 
t1<-table(traindata$ys,train.preds)
t4<-table(testdata$ys,test.preds)
if(ncol(t1)==1 & train.preds[1]==1){

t1<-c(0,0,t1[1,1],t1[2,1])
}
else if(ncol(t1)==1 & train.preds[1]==0){ 

t1<-c(t1[1,1],t1[2,1],0,0)
}
if(ncol(t4)==1 & test.preds[1]==1){

t4<-c(0,0,t4[1,1],t4[2,1])
}
else if(ncol(t4)==1 & test.preds[1]==0){ 

t4<-c(t4[1,1],t4[2,1],0,0)
}

#return train and test confusion matrices, # iterations, and RF 
OOBER 

return(list(
c(t1),
c(t4),
iterations,
mean(forest$err.rate[,1])

))    
}    

} 
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############################################################################### 
#BiMM forest with H3 updates 

BiMMforestH3<-function(traindata,testdata,formula,random,seed){ 
#set up variables for Bimm method 
data=traindata1
initialRandomEffects=rep(0,length(data[,1]))
ErrorTolerance=0.006
MaxIterations=1000
#parse formula
Predictors<-paste(attr(terms(formula),"term.labels"),collapse="+")
TargetName<-formula[[2]]
Target<-data[,toString(TargetName)]
#set up variables for loop 
ContinueCondition<-TRUE
iterations<-0
#initial values
AdjustedTarget<-as.numeric(Target)-initialRandomEffects
oldlik<- -Inf
# Make a new data frame to include all the new variables 
newdata <- data 
shouldpredict=TRUE

while(ContinueCondition){
# Current values of variables 
newdata[,"AdjustedTarget"] <- AdjustedTarget
iterations <- iterations+1
#build tree
set.seed(seed)
forest <- randomForest(formula(paste(c("factor(AdjustedTarget)",

Predictors),collapse = "~")),  
data = data, method = "class") 

forestprob<-predict(forest,type="prob")[,2]
## Estimate New Random Effects and Errors using BLMER 
lmefit <- 

tryCatch(bglmer(formula(c(paste(paste(c(toString(TargetName),"forestprob"), 
collapse="~"), "+(1|random)",sep=""))),  

data=data,family=binomial,control=glmerControl(optCtrl=list(maxfun=20000)
)),error=function(cond)"skip") 

# Get the likelihood to check on convergence 
if(!(class(lmefit)[1]=="character")){

newlik <- logLik(lmefit)
ContinueCondition <- (abs(newlik-oldlik)>ErrorTolerance &

iterations < MaxIterations) 
oldlik <- newlik
# Extract random effects to make the new adjusted target 
logit<-forestprob
logit2<-

exp(predict(lmefit,re.form=NA))/(1+exp(predict(lmefit,re.form=NA))) #population 
level effects 

AllEffects <- (logit+logit2)/2 #average them 
#split function h3
for(k in 1:length(AllEffects)){

if(as.numeric(Target[k])+AllEffects[k]-
1<.5){AdjustedTarget[k]=0} 

else if(as.numeric(Target[k])+AllEffects[k]-
1>1.5){AdjustedTarget[k]=1}

else{
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#generate random probability coin flip based
on AllEffects (q notation in paper) 

set.seed(seed)
AdjustedTarget[k]<-rbinom(1,1,AllEffects[k])

}
}

}
else{ ContinueCondition<-FALSE }
#if all of the binary outcomes are the same then get out of loop 
if(min(AdjustedTarget)==max(AdjustedTarget)){

ContinueCondition<-FALSE
shouldpredict=FALSE

}
}

if(class(lmefit)[1]=="character" | shouldpredict==FALSE){ 
#return train and test confusion matrices 
return(list(

c(NA,NA,NA,NA),
c(NA,NA,NA,NA),
NA,
NA

))
}
else if(!(class(lmefit)[1]=="character")){

#predictions
test.preds<-predict(forest,testdata)
traindata1<-cbind(traindata,random)
train.preds<-

ifelse(predict(lmefit,traindata1,type="response")<.5,0,1) 
#format table to make sure it always has 4 entries, even if it is 

only 2 by 1 (0's in other spots) 
t1<-table(traindata1$ys,train.preds)
t4<-table(testdata$ys,test.preds)
if(ncol(t1)==1 & train.preds[1]==1){

t1<-c(0,0,t1[1,1],t1[2,1])
}
else if(ncol(t1)==1 & train.preds[1]==0){ 

t1<-c(t1[1,1],t1[2,1],0,0)
}
if(ncol(t4)==1 & test.preds[1]==1){

t4<-c(0,0,t4[1,1],t4[2,1])
}
else if(ncol(t4)==1 & test.preds[1]==0){ 

t4<-c(t4[1,1],t4[2,1],0,0)
}
#return train and test confusion matrices, # iterations, and RF 

OOBER 
return(list(

c(t1),
c(t4),
iterations,
mean(forest$err.rate[,1])

))    
}    

} 
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