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Abstract 

CHRISTY CASSARLY. Multistate Markov Models for Ordinal Functional Outcomes of 

Acute Onset Disease: Application in Acute Stroke Therapy Trials. (Under the direction of 

RENEE’ HEBERT MARTIN and YUKO Y. PALESCH)   

 The modified Rankin Scale (mRS), a seven-point ordinal scale ranging from no 

symptoms to death, is the most commonly used outcome measures in acute stroke therapy 

trials. Often, one visit is chosen for the primary analysis, and the scale is dichotomized 

leading to loss of information. Recently, alternative methods for analyzing the mRS have 

been explored. In addition, acute onset conditions require immediate attention and 

treatment, posing a challenge to assess baseline outcome measures for clinical trials. 

Thus, the mRS is not obtainable at baseline. Much of the progression or recovery 

experienced by a patient suffering from an acute onset disease is expected to occur early 

on. Moreover, typically, the goal of a treatment or therapeutic action is improvement in 

patient health compared to their baseline measure. To accurately quantify improvement, a 

measure of the outcome at baseline is ideal. This dissertation first explores the feasibility 

of multistate Markov models for the analysis of the mRS which allow for the full ordinal 

scale as well as the repeated measures data to be incorporated. The operating 

characteristics (type I error and power) of the multistate Markov model are compared 

with those from repeated logistic regression. Next, a framework is developed to predict 

and incorporate the latent baseline mRS score in a piecewise-constant multistate model. 

The last part of this work applies the piecewise-constant latent baseline model to real 
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acute stroke trial data and compares the results with alternative methods for analysis of 

the mRS. 
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1 Introduction and Significance 

1.1 Overview and Specific Aims 

Ordinal response outcomes are often used in clinical trials. However, rather than 

analyzing the full ordinal scale, many trials choose to dichotomize the primary outcome. 

Although models used for dichotomous outcomes are easier to implement and tend to 

produce summary statistics with more clinically meaningful interpretations, 

dichotomization can result in a loss of statistical power [1]. Additionally, in trials where 

long-term follow-up is planned, the outcome is collected at multiple visits. Despite the 

availability of the repeated measures, many trials focus the primary analysis on the data 

from one visit, ignoring the additional outcome data. 

 One example of a therapeutic area that collects an ordinal outcome at multiple 

visits in clinical trials is acute stroke therapy. For many such trials, the modified Rankin 

Scale (mRS) score at 90 days post-randomization is used as the primary outcome 

measure [2]. The mRS is a seven-point ordinal scale that ranges from 0 (no symptoms) to 

6 (dead) and measures functional independence of stroke patients. It is commonly 

dichotomized to test the primary hypotheses of interest. 

 An emphasis has been placed on exploring alternative analytic methods for the 

analysis of mRS outcome data from acute stroke trials in recent years. Results indicate 

that the original structure of the scale needs to be maintained in analysis as much as 

possible [1, 3]. A number of alternative methods that preserve the ordinality of the mRS 

have been proposed. However, these methods have not been widely accepted in practice.  
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 The ultimate goal of a treatment or therapeutic action is to improve patient health 

compared to their baseline measure at presentation, immediately following an event. To 

accurately quantify improvement, a measure of the outcome at baseline would be ideal. 

Conditions with sudden onset, such as stroke, require immediate attention and treatment, 

posing a challenge to assess baseline outcome measures for clinical trials. Thus, the mRS 

is not obtainable at baseline making the quantification of “improvement” very 

challenging. 

 The multistate Markov model (MSMM) in continuous-time analyzes ordinal data 

and has been used to model the course of many diseases [4]. These models are 

advantageous in clinical applications where a disease process naturally moves through 

increasing stages of severity [4]. The feasibility of MSMMs for analysis of the mRS has 

not been previously considered. The mRS has more disease states (here, the seven levels 

of the scale) than most clinical applications of MSMMs. Most of the subjects that 

transition to a different state experience adjacent-state transitions, with only a few non-

adjacent state transitions. The combination of these two issues leads to a data structure, 

henceforth referred to as sparsely populated ordinal data, where small cell counts are 

observed for transitions to non-adjacent states. Currently, there is little information 

available regarding the appropriateness of MSMMs for sparsely populated ordinal 

outcomes.  

 This dissertation aims to address the issues presented here, and the specific aims 

of this research are as follows: 
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1. To explore the operating characteristics (type I error and power) of MSMMs 

compared with repeated logistic regression used to analyze sparsely populated 

repeated measures ordinal data.  

2. To develop a MSMM approach with piecewise-constant transition intensities that 

incorporates a latent baseline state. 

3. Analyze acute stroke therapy trial data using the methods developed in Aim 2 and 

compare the results with those from alternative methods previously suggested for 

the analysis of the mRS. 

 Realization of these aims will achieve the following: (1) feasibility of MSMMs 

for sparsely populated ordinal data will be demonstrated through investigation of sample 

size needed to achieve adequate power; (2) validity will be demonstrated through 

simulation studies where type I error is preserved; (3) efficiency of inclusion of the 

baseline mRS in the MSMM will be demonstrated; and (4) efficiency of the MSMM as 

compared with other methods for ordinal outcome data will be shown. 

1.2 Motivation and Clinical Relevance 

Each year, approximately 795,000 people have a stroke, 87% of which are ischemic [5]. 

Most randomized trials in acute stroke neuroprotection treatment have failed to show 

efficacy [3]. Several explanations have been proposed to describe the lack of positive 

trials in stroke, including heterogeneity in stroke pathophysiology, poor methodological 

and statistical standards, and incomplete preclinical testing [6]. One is poor study design 

and statistical methods, specifically, the analysis of the primary outcome [1]. The models 

that exist to fit dichotomous and continuous outcomes are easier to implement and tend to 
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produce summary statistics with more clinically meaningful interpretations. However, 

analysis of ordinal response outcomes are less straightforward. Thus, traditionally, many 

trials have dichotomized the ordinal mRS (Table 1.1) into success, scores of 0 or 1 (or 0 

to 2), or failure, scores greater than 1 (or 2), for the primary analysis, often collected at 90 

days post-randomization [7]. 

Table 1.1. Modified Rankin Scale. 

Score Description 

0 No symptoms at all 

1 
No significant disability despite symptoms; able to carry out all usual duties and 

activities 

2 
Slight disability; unable to carry out all previous activities but able to look after 

own affairs without assistance 

3 Moderate disability requiring some help, but able to walk without assistance 

4 
Moderately severe disability; unable to walk without assistance and unable to 

attend to own bodily needs without assistance 

5 
Severe disability; bedridden, incontinent, and requiring constant nursing care and 

attention 

6 Dead 

 

 Some patients with severe stroke may never have the potential to achieve a 

“success” as defined by the dichotomy because they are so severely disabled at baseline. 

Patients with minor strokes may achieve a successful score more easily than those who 

are more disabled at baseline [8]. Thus, the prognostic heterogeneity of subjects does not 

allow for potential equal contribution to the treatment effect estimation for all subjects 

[9]. In general, ignoring these differences and dichotomizing the ordinal scale reduces 

statistical power [1]. Any reduction in power may result in failure to find a clinically 

meaningful treatment effect. In addition, the recovery and outcomes of subjects following 

a stroke realistically lie on a continuum. Categorical analysis of the ordinal scale provides 
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a more comprehensive quantification of the process than the analysis of the dichotomized 

scale [10]. 

 An additional drawback of the traditional analysis - dichotomization of the 90 day 

ordinal outcome - is the lack of use of available longitudinal data. Many acute ischemic 

trials assess and collect the mRS score at discharge and/or at 30 days from randomization 

and also at periodic intervals through 12 months, if long-term follow-up is planned in the 

trial. However, the longitudinal data are rarely used in the primary analysis. A more 

comprehensive clinical understanding of the treatment effect on outcome after a stroke 

may be better described using repeated measures analysis if improvement or worsening is 

expected beyond the 90 day primary outcome [11]. 

 Recently, an emphasis has been placed on exploring alternative outcomes as well 

as other analytic methods for the analysis of mRS data from acute stroke trials 

(continuous analysis- t-test, linear regression; ordinal analysis- shift analysis, 

proportional odds model, partial proportional odds model, adjacent categories logit 

model; sliding dichotomy; utility weighted mRS; repeated measures analysis). The 

literature indicates that the mRS should be analyzed in such a way that maintains the 

original structure of the scale as much as possible [1, 3]. Alternative analytic strategies 

proposed for analysis of the mRS have not been widely accepted in practice. These 

strategies are reviewed in depth in the following section. 

MSMMs are proposed to analyze the longitudinal mRS scores. An example of the 

typical structure of the observed transition matrices for the mRS over time is provided in 

Table 1.2. In this example, mRS outcome data from a mock acute stroke trial of 1,000 

subjects are observed for four follow-up visits to illustrate the structure of sparsely 
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populated ordinal data. The transitions that occur from one visit to the next are presented 

in each of the matrices.  

 

Table 1.2: mRS Transition Example. 
 
  

mRS at Time 2 
 

  
0 1 2 3 4 5 6 Total 

m
R

S
 a

t 
T

im
e 

1
 

0 84 20 5 1 0 0 0 110 
1 45 79 17 2 1 0 1 145 
2 12 50 56 15 8 6 1 148 
3 2 25 46 63 17 3 0 156 
4 1 2 23 77 89 23 5 220 
5 0 0 2 7 41 48 22 120 
6 0 0 0 0 0 0 101 101 

 
Total 144 176 149 165 156 80 130 1000 

          
  

mRS at Time 3 
 

  
0 1 2 3 4 5 6 Total 

m
R

S
 a

t 
T

im
e 

2
 

0 108 26 5 3 1 1 0 144 
1 38 123 12 2 0 1 0 176 
2 9 31 86 18 2 1 2 149 
3 3 5 32 116 8 1 0 165 
4 0 1 4 34 102 13 2 156 
5 0 0 0 2 18 45 15 80 
6 0 0 0 0 0 0 130 130 

 
Total 158 186 139 175 131 62 149 1000 

          
  

mRS at Time 4 
 

  
0 1 2 3 4 5 6 Total 

m
R

S
 a

t 
T

im
e 

3
 

0 126 27 4 0 1 0 0 158 
1 21 146 14 4 1 0 0 186 
2 5 26 93 12 2 1 0 139 
3 0 4 28 129 11 1 2 175 
4 0 2 0 25 94 7 3 131 
5 0 0 0 1 10 34 17 62 
6 0 0 0 0 0 0 149 149 

 
Total 152 205 139 171 119 43 171 1000 
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In this example it is clear that the majority of subjects actually stay in the same 

state from one time period to the next as shown by the largest numbers along the main 

diagonal. The second largest numbers are to adjacent states and very few to non-adjacent 

states. For example, 79 of the 145 subjects that had mRS = 1 at Time 1 also had mRS = 1 

at Time 2. Only 17 of the 145 subjects with mRS = 1 at Time 1 transitioned to mRS = 2 

at Time 2. This is an example of an adjacent-state transition, one where a subject moves 

from one state (mRS = 1) to an adjacent state (mRS = 2). The other adjacent-state 

transition for mRS = 1 is the transition to mRS = 0. Throughout the table, a majority of 

observations are of subjects that remain in the same state, or have the same mRS score 

from one time to the next. Most of the subjects that transition to a different state 

experience adjacent-state transitions, with only a few non-adjacent state transitions.  

 In order to assess the application of the MSMM and number of states modeled, a 

literature review was conducted. Using the following keywords: multistate, Markov, 

panel, clinical, application, continuous-time, and excluding the following words: 

piecewise, non-homogeneous, inhomogeneous, semi-Markov, hidden Markov and 

random effects, a total of 40 articles were identified. An article was excluded if (a) the 

content was actually theoretical and there was no application, (b) it was a review with no 

new content, (c) multistate models were referenced, flagging it for review but the models 

were not actually fit, or (d) the models were actually discrete-time. Of the remaining 26 

articles, 25 fit models to data with five or fewer states and two fit models to data with six 

states [12-36]. One publication used a six-state model to analyze a dataset with much 

more data than is typically collected in acute stroke trials- approximately 5,000 patients 
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[37]. Thus, the feasibility of MSMM for analysis of sparsely populated ordinal data with 

a large number of states is unclear. 

 Currently, there is little information available regarding the appropriateness of 

MSMMs for sparsely populated ordinal outcomes with a large number of possible health 

states, as observed in longitudinal mRS data from acute stroke trials. In this dissertation, 

feasibility and operating characteristics of MSMMs applied to sparsely populated ordinal 

data are examined. In addition, a method is proposed to incorporate the latent baseline 

mRS score in longitudinal MSMMs. The mRS is unavailable at baseline and the 

aforementioned analytic techniques used for mRS data have adjusted for baseline severity 

using the National Institutes of Health Stroke Scale (NIHSS), a score that ranges from 0 

(no neurological deficit) to 42. Inclusion of the latent baseline mRS predicted using the 

baseline NIHSS and other baseline covariates in a MSMM could improve statistical 

efficiency to detect a significant treatment effect.  

1.2.1 Motivating Examples 

Data from two randomized double-blind, placebo-controlled acute stroke therapy trials 

are considered. The NINDS tissue plasminogen activator (t-PA) trial was designed to 

compare t-PA versus placebo in patients with acute ischemic stroke. The trial had two 

parts. Part 1 tested whether patients treated with t-PA had early improvement, as 

compared with those that were given placebo [38]. Part 2 was designed to determine 

whether there was a consistent and persuasive difference between the groups tested using 

four outcomes (Barthel Index, mRS, Glasgow Outcome Scale, and NIHSS) at 90 days 

modeled as a Global Test Score [39]. The Barthel Index is an index of independence that 



9 

scores the ability of patients to care for themselves [40]. Patients that can perform all 

assessed activities with complete independence are given a score of 100. The Glasgow 

outcome scale is a global assessment of function that ranges from 1 indicating good 

recovery to 5, death [41]. In order to be considered for inclusion for enrollment, there had 

to be deficiency measureable by the NIHSS. A total of 624 subjects were enrolled (291 in 

Part 1 and 333 in Part2), 312 in each group [38]. In Part 1, a benefit was observed for 

patients treated with t-PA in all four outcome measures. The primary analysis in Part 2, 

using generalized estimating equations, showed a significant global test score for the four 

outcomes [39]. Clinical and demographic characteristics can be found in the original 

paper [38]. 

 The Albumin in Acute Stroke (ALIAS) trial was a two part trial designed to 

compare 25% human serum albumin (ALB) and saline in patients with acute ischemic 

stroke. Part 1 consisted of two separate, concurrently implemented trials designed to 

assess whether ALB therapy improved neuroprotection beyond standard of care in two 

cohorts of patients [42]. One cohort consisted of subjects that received standard 

thrombolytic therapy (intravenous t-PA, intra-arterial t-PA, endovascular mechanical 

thrombolysis or a combination of intravenous and endovascular treatment) and the other 

was subjects who were not thrombolysed. Part 1 was suspended for safety reasons after 

434 subjects (207 albumin and 217 saline) were enrolled. More patients died in the first 

30 days in the ALB group than the placebo group and deaths were increased in patients 

older than 83 years and patients that received excessive intravenous fluids. The study 

design for Part 2 was modified based on the safety findings in Part 1. The primary 

endpoint was a composite outcome defined as a NIHSS 0-1 and/or mRS 0-1 at 90 days 



10 

from randomization. Only patients with a baseline NIHSS of 6 or above were eligible for 

enrollment in the trial. Part 2 was stopped early for futility after 841 subjects were 

randomized (422 to albumin and 419 to saline). Clinical and demographic characteristics 

are described elsewhere [43].  
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2 Background 

2.1 Previous Analytic Methods for Ordinal Outcomes 

In this section, alternative analytic approaches to dichotomized analysis for the mRS are 

explored. A summary of all of the methods is provided in Table 2.1.  

2.1.1 Continuous Analysis 

In general, analysis of continuous variables with the t-test and linear regression is 

straightforward and produces clinically intuitive summary statistics. When these methods 

are applied to ordinal scales, the results are less interpretable. Non-integer values from an 

ordinal scale do not have a clear meaning when they are considered to be continuous. 

When compared to ordinal analysis, continuous analysis has been shown to have 

comparable power; however, the normality assumption is not met in most studies of 

stroke outcome [3]. In order to consider an ordinal outcome to be continuous, the sample 

size must be large enough for the normal approximation to be valid. Even in large 

datasets, the mRS is skewed and there are no recommendations on how to normalize it.  

2.1.2 Shift Analysis 

The Cochran-Mantel Haenszel (CMH) shift test, or the van Elteren test, can be used to 

analyze the distribution of ordinal data [7]. This test can show whether a treatment causes 

a significant favorable shift toward better outcome. Shift analysis can account for ordered 

categories, has no distributional assumptions and is easy to implement. However, it is not 

feasible for large scale clinical trials with non-simple randomization schemes as it only 

allows for a limited number of covariates. Logistic regression can be used in conjunction 
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with the shift analysis to provide an estimate of treatment effect because there is not an 

associated odds ratio (OR) or effect size produced from the CMH test [44].  

2.1.3 Ordinal Analyses 

The proportional odds model (POM) assumes an identical effect of the predictors for 

each cumulative probability [45]. In other words, the OR comparing treatment to placebo 

in patients with mRS of 0 versus 1-6 is assumed to be the same as the OR for mRS of 0-1 

versus 2-6, and so on. If the proportional odds assumption holds, statistical power can be 

increased compared to analysis using a strict dichotomy. If the assumption fails, this 

analysis could mask important effects at one end of the ordinal outcome [46]. The score 

test for assessing the proportional odds assumption is anticonservative and DeSantis and 

colleagues illustrated the lack of power of the score test using the data from the NINDS t-

PA trial [46]. The score test failed to reject the assumption of proportional odds (p = 

0.06); however, a plot of the cumulative log odds of each mRS score for each treatment 

group indicated that the assumption may be inappropriate.  

The partial proportional odds model (PPOM) can be used when the proportional 

odds assumption does not hold [46]. In general, there are two types of PPOMs, an 

unconstrained and a constrained model [47]. The unconstrained PPOM produces cut-off 

point-specific odds ratios. Alternatively, if a pattern is expected in the cut-off point-

specific odds ratio, for example a linear trend, constraints could be placed on the 

parameter to obtain an appropriate fit. A linear trend occurs when the violation of the 

proportional odds assumption is in one direction. This model includes an additional 

parameter that allows for the ORs to increase proportional to the outcome scale. One 
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drawback of this model is that it could require a larger sample size to be adequately 

powered. 

The adjacent categories logit model (ACAT) is another logistic regression model 

that does not require the proportional odds assumption. These models utilize single-

category probabilities rather than cumulative probabilities [45]. Rather than effects that 

refer to the entire response scale in the POM, the ACAT effects refer to the effect of a 

predictor on the response in any two adjacent categories. As with the PPOM, the ACAT 

model may require a larger sample size to be adequately powered to detect a treatment 

effect. 

2.1.4 Sliding Dichotomy Analysis 

The sliding dichotomy (or the more generalized sliding trichotomy or tetrachotomy) 

allows for the definition of success to vary based on patient-specific baseline prognostic 

variables while maintaining a dichotomized outcome [48]. Re-analysis of acute stroke 

therapy trials uses pre-specified cut-points for prognosis group definition based on the 

NIHSS score [49]. The sliding dichotomy can be used to define “mild”, “moderate”, and 

“severe” stroke using the baseline NIHSS score and defines “success” for each of the 

three groups. One example is to define favorable outcome as mRS = 0 for mild strokes, 

mRS = 0-1 for moderate strokes and mRS = 0-2 for severe strokes. Since baseline 

severity is such a strong predictor of outcome in stroke patients, this baseline severity 

adjusted approach has been considered for use over the traditional dichotomy [48]. 

 Some simulation studies have shown that the utilization of the sliding dichotomy 

provides higher sensitivity to detect true treatment effects [50]. For example, when the 
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probability of favorable outcome is high (greater than 0.5), the sliding dichotomy 

provides higher power [9]. This is not a general result; however, as other studies have 

determined that the traditional dichotomy is more powerful than the sliding dichotomy in 

most situations [51]. When the probabilities of favorable outcome are lower, the 

traditional dichotomy is more powerful [9]. 

 While the sliding dichotomy has the potential to be a powerful tool in some 

settings, it also has limitations. Determining the number of prognostic groups to use is not 

an obvious decision and can be difficult to justify. In addition, determining how to choose 

the cut points for the different groups can be a difficult task. Although using three groups 

(mild, moderate and severe) is used in the literature [48], methods used to determine 

severity cut points vary and need to be verified. Poor selection of the number of groups 

and cut points could result in a loss of power. In addition, while the sliding dichotomy 

allows for a baseline severity adjusted outcome, it still ignores any non- “success” 

transition from one mRS score to another even though each mRS category (except 5 to 6) 

represents a clinically meaningful difference in health state [52]. 

2.1.5 Utility-Weighted mRS 

A recently proposed approach to transform the mRS into a patient-centered outcome 

measure is the utility-weighted mRS (UW-mRS) [53]. The chosen patient-centered 

outcome measure, utility, is the desirability of a specific health outcome to a patient [54]. 

Utility weights for each level of the mRS were derived by averaging values derived in 

two prior studies. The first study mapped mRS scores to the European Quality of Life 

Scale (EQ-5D) in transient ischemic attack survivors from a population-based study in 
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Great Britain [55]. The second study derived weights using the methodology of the 

World Health Organization Global Burden of Disease Project [56]. Using the utility 

weights is straightforward, and the UW-mRS is analyzed using continuous analysis. 

Although this method is easy to implement and may provide greater statistical power, it is 

based on only two populations and may not be generalizable to other populations. In 

addition, the utility values are limited with respect to interpretation compared to other 

methods. 

2.1.6 Longitudinal Analysis  

Generalized estimating equations (GEE) can be used to estimate parameters for outcomes 

collected at multiple time points [57]. This approach allows for covariate adjustment 

while incorporating within-patient correlation. GEE analysis has been used to analyze the 

repeated measures of the mRS [11, 58]. Analysis of the longitudinal dichotomized 

outcomes yields clinically meaningful odds ratios. However, as the models increase in 

complexity, computational issues may arise.   
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Table 2.1. Summary of statistics obtained from each type of analysis of the mRS. 

Method Statistic(s) Interpretation  Strengths Limitations 

Logistic 

regression 

Odds ratio 

(OR) 

The odds of good outcome in 

the treatment group versus 

placebo 

 Easy to apply 

 Easy to interpret 

 Clinically intuitive 

 Can result in a loss of power 

 Requires prespecification of expected 

treatment distribution 

Linear 

regression 

Difference 

of means 

Improvement of the average 

mRS score in patients that 

received treatment 

 Easy to apply 

 

 No straightforward interpretation 

 Normality assumption is often not met 

with no recommendations for normalizing 

Shift analysis 

(CMH test) 

Probability 

value  

 

The treatment group shifted in a 

favorable direction toward a 

better mRS score versus 

placebo 

 Easy to apply 

 Accounts for ordered categories 

 No distributional assumptions 

 Accommodates a limited number of 

covariates 

 Not clinically intuitive- no effect size or 

odds ratio 

POM Summary 

OR 

The odds of a lower mRS the 

treatment group versus placebo 
 Easy to apply 

 Clinically meaningful summary 

odds ratio 

 May yield biased estimate if proportional 

odds assumption is not met 

 Anticonservative score test 

PPOM ORs for six 

dichotomies 

of mRS 

Treatment has a significant 

benefit for certain definitions of 

good outcome 

 Does not require proportional 

odds assumption 

 Less straightforward summary odds ratios 

 Can require a larger sample size to be 

adequately powered 

ACAT  ORs for six 

adjacent 

categories  

The treatment group is more 

likely to have smaller mRS for 

certain adjacent mRS scores  

 Does not require proportional 

odds assumption 

 Can require a larger sample size to be 

adequately powered 

 

Logistic 

regression of 

sliding 

dichotomy 

OR The odds of good outcome 

(defined by baseline severity) 

in the treatment group versus 

placebo 

 Easy to apply 

 Easy to interpret 

 Clinically intuitive 

 Less power in some scenarios 

 Choosing groups and cut-points poorly 

leads to loss of power 

Linear 

regression of 

UW-mRS 

Difference 

of mean 

utility scores 

Improvement of the average 

utility score in patients that 

received treatment 

 Easy to apply 

 Can increase power 

 May not be generalizable to other studies 

 Limited interpretability 

 

Repeated 

measures GEE 

(dichotomized) 

OR The odds of good outcome over 

the 12-month period in the 

treatment group versus placebo 

 Utilizes all longitudinal data 

 Clinically meaningful odds ratio 

 

 More complicated modeling 

 May have computational difficulties 

MSMM Hazard 

ratios for 

each 

allowable 

transition 

The hazard (instantaneous risk) 

of transitioning from one mRS 

state to another in the treatment 

group versus placebo  

 Utilizes full ordinal scale 

 Utilizes all longitudinal data 

 Estimates transition rates for 

progression and recovery  

 Difficulty in estimating sample size 

 Computationally intensive 
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2.2  Multistate Markov Models 

2.2.1 General Multistate Markov Models 

MSMMs are an alternative approach to analyze repeated measures data with an ordinal 

outcome. These types of models describe how a process moves between states over time, 

which is desirable in the description of disease processes that naturally move through 

increasing stages of severity [59]. MSMMs can provide a better clinical understanding of 

the disease process since the information from the entire course of the disease is used to 

estimate the parameters of the model. These models have been used in numerous clinical 

applications including: multiple sclerosis [60], periodontal disease [61], alcoholism [62], 

and psychiatry [63]. 

 Figure 2.1 represents a general MSMM with four states. The arrows indicate that 

a transition can occur between any two states. The model estimates parameters describing 

each of the allowable transitions.  

 

Figure 2.1:  General four-state MSMM. 
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 The use of MSMMs requires that the Markov property holds for the observed 

data. Consider a system with a finite state-space {1,2,3,..., }I , where I  represents 

the number of states. Let ( )X s t  be a discrete random variable that indicates the state 

occupied by the system at time s t . Let ( )F { ( ) : }X s X v v s  which denotes all 

information pertaining to the history of X  up to time s  [64]. A series of observations 

has the Markov property if the conditional distribution of ( )X s t given ( )FX s , satisfies 

    ( )( ) | F , ( ) ( ) | ( ) ( , ), ,X s ijP X s t j X s i P X s t j X s i p s t i j           (2.1) 

In other words, the present state depends only on the immediately preceding observation 

and not on the ones that precede it.  

 MSMMs may be defined for both discrete time and continuous. Although the 

course of disease is a continuous process, clinical trials often only collect data at 

intermittent follow-up visits. In the context of stroke, the exact time of progression or 

recovery, or change of state, of disease is not observed. Data of this type, representative 

of a continuous process yet observed at discrete time points, is referred to as panel data 

[65]. Both discrete and continuous time MSMMs can be used to describe panel data. In 

many acute stroke trials, the mRS is collected at follow-up visits that are not evenly 

spaced. In such instances, continuous time models are appropriate. A continuous model 

for panel data can only be used in cases where the sampling times are considered to be 

non-informative [66]. An example of non-informative sampling is a fixed observation 

scheme, where the interval of follow-up is specified in advance. However if observations 

are not fixed or random and are self-selected by the subject (informative), this modeling 
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technique is not appropriate without properly adjusting for the additional information 

[66]. For instance, these models cannot be used in a scenario where observations occur 

when a subject visits a doctor because they are in poor-condition. A model that 

incorporates the information from the sampling times must be used for this type of self-

selected follow-up outcome data. In acute stroke trials, the follow-up visits are usually 

specified in advance and are non-informative so continuous modeling is appropriate. 

 A common assumption of continuous-time MSMMs is that of homogeneity, 

where transition probabilities remain constant over time. When homogeneity is assumed, 

the transition probabilities, ( )ijp t , are defined as  

 ( ) { ( ) | ( ) } { ( ) | (0) }ijp t P X s t j X s i P X t j X i        . (2.2) 

Since this expression does not depend on s , the transition from state i  to state j on a 

time interval of length t  has the same probability at any time. The ( )ijp t  are elements of 

the transition probability matrix, ( )tP . 

In order to construct continuous time Markov chains, the amount of time the 

process will remain in a state, i  must be determined. Suppose (0)X i  and let i
T  

represent the amount of time a process stays in i  after entering. To derive the distribution 

of i
T  , let , 0s t  and consider 
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Pr{ | }

Pr{ ( ) for [0, ] | ( )  for [0, ]}

Pr{ ( ) for [ , ] | ( )  for [0, ]}

Pr{ ( ) for [ , ] | ( ) } (Markov property)

Pr{ ( ) for [0, ] | (0) } (time homogeneity)

Pr{

i iT s t T s

X r i r s t X r i r s

X r i r s s t X r i r s

X r i r s s t X s i

X r i r t X i

T

  

     

     

    

   

 }.i t

 

Thus 
i

T  satisfies the memoryless property and follows the exponential distribution.  

 The movement of a subject between states is described by ij , the transition 

intensities: 

 
0

( ( ) | (0) )
lim , forij
t

P X t j X i
i j

t






 
   . (2.3) 

The intensities represent the instantaneous rate of moving from state i  to state j i  and 

form the generator matrix, Λ , whose rows sum to zero and the diagonal entries are 

ii ij
j i

 


  .  

 In each of the continuous time Markov chain constructions only the local behavior 

of the process is known. To determine the global behavior of the process, Kolmogorov 

differential equations to solve for the terms  

 ( ) Pr{ ( ) | (0) }ijp t X t j X i   . 

These are a system of ordinary differential equations describing the probabilities ( )ijp t . 

Two sets of Kolmogorov equations exist, forward and backward differential equations. 

The forward differential equations are used when the interest is to understand a process at 
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a future time. Backward differential equations are used to describe what happened at a 

previous time given that a process has a certain state in the future. Using the Chapman-

Kolmogorov equation, 

 
1

( , ) ( , ) ( , t), whereik ij jk

j

p t p p t     




     (2.4) 

the forward differential equations are derived as follows [67]: 
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Using the fact that 
1,

( ) ( , )
k

j j i

i i j 
 

   the generator matrix of the Markov chain, ijA , is 

defined as follows 
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 1
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( , ), if 
( , ), if 

k

jij

i j i ji i j
A
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.  

The Kolmogorov equations can then be rewritten in terms of the generator matrix: 

 

1,

1,

1

( ) ( ) ( ) ( , )

( ) ( )

( )

( ( ) A)

'( ) ( ) .

k

ij iy

y y j

k

ij jj iy yj

y y j

k

iy yj

y

ij

p t j p t y j

p t A p t A

p t A

P t

P t P t A

 
 

 



 

 











   

Finally, the system of equations can be solved 

 ( ) (0) tA tAP t P e e    

where 
tAe  is the matrix exponential and (0)P  is the identity matrix. The matrix 

exponential is defined by 

 
0 !

tA t A
e

 

 





  [59]. (2.5) 

For simple models ( )P t  can be calculated in terms of A  algebraically. In more complex 

cases, the Kolmogorov equations define a system of equations that cannot be solved 

analytically. If the eigenvalues of A  are distinct, eigen-decomposition can be used to 

calculate ( )P t  [68]. 
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 Let B  be a diagonal matrix consisting of the eigenvalues and C  be a matrix with 

corresponding eigenvectors as the columns. If distinct eigenvalues exist, C  can be 

inverted and 1A CBC , and 

 
1

1 1

0 0

( )

! !
tA tBt CBC t B

e C C Ce C
   

  

 
 

 

 
  
 

     [67]. (2.6) 

The model parameters are estimated using maximum likelihood estimation with 

numerical optimization. Once the parameters are estimated, the likelihood can be 

calculated. 

 Suppose X  is observed over 0 1 2 ... Mt t t t    . Let 0 1 2, , , ..., Mi i i i be the 

observed states over these time points. Then, the associated likelihood function is 

 

1
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1

0 0 1

0 0 0 1

0 0 1
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(X ) ( | )
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j i
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  (2.7) 

Using equations (2.5) in (2.7), the likelihood reduces to 
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  , (2.8) 
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where 0iP  is the initial probability that the process is at 0i . For a series of observations 

0,...,
zznzx x  at times 0,...,

zznzt t  for patients 1,...z N , with covariate vectors i
p  and 

model parameters   , the log-likelihood is  

 
( 1) ( 1)

1 1

( ) log( ( , ;p , ))
z

i i

nN

x x i i i

z

l p t t 
 

 

  [59]. (2.9) 

 Application of MSMMs requires the user to consider which transitions can 

realistically occur in continuous time. When the states represent levels of disease severity 

it is assumed that in order for a subject to travel from one state to a non-adjacent state, the 

subject also had to travel through the intermediate states [59]. For example, if a transition 

from state 3 to state 1 is observed, it is assumed that the subject traveled through state 2 

at some point as well. Thus, in these applications, a reduced transition intensity matrix 

where non-adjacent state intensities are fixed to equal zero should be assumed, with the 

exception of transitions to death. If a state represents death it is called an absorbing state 

since transitions from death cannot occur. Figure 2.2 displays a general continuous 

MSMM for panel data where the states represent disease severity and state k is death. The 

same methods for parameter estimation from the general model apply for this reduced 

model.  
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Figure 2.2:  General MSMM for disease severity. 

 

2.2.2 Piecewise-constant Multistate Markov Models 

In the case of ischemic stroke occurrence and treatment, patients can get better or worse 

very quickly during the acute phase immediately after occurrence. For this reason, the 

time homogeneity assumption is expected to fail for the first transition, from the 

predicted baseline to the first observed outcome which typically occurs at one week or 

one month post stroke onset. Therefore, the assumption of homogeneity is relaxed and a 

non-homogeneous model is considered. 

  The MSMM for panel data can be extended to accommodate piecewise-constant 

intensity matrices for the non-homogeneous case [59]. Here, the transition probability 

functions are dependent on s , and the transition matrix function is ( , ) ( ( , ))ijs t p s tP . 

The transition intensity functions are now defined by 
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0

( (t ) | (t) )
( ) lim , , ,ij

t

P X t j X i
t i j S i j

t






  
   .  (2.10) 

The time-homogeneity assumption can be tested by using a likelihood ratio test to 

compare the time-homogenous model to piecewise-constant models with different cutoff 

times. 

2.2.3 Predictors 

The effect of a predictor, specifically treatment, is incorporated into the model as 

transition intensity functions [69]. Let z be a vector of observed predictors then 

 ( ; ) ( )exp( ' ( )), ( ) 0ij ij ij ijt z t z t t       (2.11) 

where ( )ij t  is the parameter vector associated with the predictor vector z  in the 

transition between states i  and j  in time t . The transitional rates are represented by

( ; )ij t z  at time t  for the patients with vector z . 

2.2.4 Application of MSMMs to the mRS 

mRS data collected from acute stroke trials is used to demonstrate the aforementioned 

MSMM methodology. Although MSMMs have been used to describe a number of 

disease processes [60-63, 70], currently literature is lacking applications of these models 

on data with a larger, i.e. more than four, number of states. With disease represented as 

seven states the mRS is a good example of where the application can be expanded. Also 

the mRS is collected at discrete time points, the disease process itself is not discrete, thus 

it is an example of panel data. Two acute stroke clinical trials are used in this application, 
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the NINDS t-PA trial and the ALIAS trial. In the NINDS t-PA trial, the observations 

occurred at 7-10 days, 90 days, 180 days, and 360 days [38]. The mRS was collected at 

30 days, 90 days, 180 days, 270 days, and 360 days for ALIAS [43]. Because the 

observations are not evenly spaced a discrete model is not appropriate, and a continuous-

time MSMM is used. 

 The states of this model represent the seven levels of the ordinal mRS scale. The 

nature of the mRS and the follow-up schedule lead to a sparsely populated matrix of 

observed transitions. Tables 2.2 and 2.3 show the state tables of the frequency of 

transitions for NINDS t-PA and ALIAS, respectively. The rows represent the state to 

which a subject begins, and the columns represent the state into which the subject 

transitions. These tables include all transitions over the course of follow up. For example, 

for the NINDS t-PA trial, there were 196 observations where the mRS for a subject was 0 

for two consecutive time points (including from 7-10 days to 90 days, 90 days to 180 

days and 180 days to 360 days). 

As previously described, a large proportion of the observed pairs of the mRS are 

for subjects that do not transition and remain in the same state. The transitions that do 

occur are largely adjacent state transitions. Though non-adjacent state transitions are 

observed, it is assumed that a subject passed through the intermediate states; the 

transitions were not captured because the mRS was observed at discrete times. This data 

structure is unlike data in published applications of MSMMs. First, most other models 

have only three or four states; here, there are seven. Second, the frequencies for many of 
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the transitions are sparse. The feasibility of MSMMs for this type of data needs to be 

determined.  

Table 2.2. Frequency of mRS Transitions in NINDS t-PA.  

 
0 1 2 3 4 5 6 

0 196 46 4 0 1 0 1 

1 62 224 23 4 4 1 5 

2 6 53 73 20 4 0 7 

3 6 21 48 137 9 3 6 

4 3 18 23 78 156 21 28 

5 0 2 2 14 53 79 75 

 

Table 2.3. Frequency of mRS Transitions in ALIAS.  

 
0 1 2 3 4 5 6 

0 524 98 13 6 3 1 2 

1 158 542 85 19 4 0 2 

2 31 175 432 53 7 1 3 

3 7 48 150 417 43 4 5 

4 1 7 28 136 391 37 9 

5 0 1 0 7 60 100 23 

 

In order to determine the feasibility of MSMMs for analysis of sparsely populated 

ordinal data, the operating characteristics of MSMMs are compared with repeated logistic 

regression in Chapter 3 of this dissertation. Once the feasibility is assessed, a MSMM 

approach with piecewise-constant transition intensities incorporating a latent baseline 

state is developed in Chapter 4. Finally, in Chapter 5, the methods developed in Chapter 4 

are applied to acute stroke therapy trial data and are compared with results from the 

alternative methods previously described. 
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Abstract 

Ordinal outcomes collected at multiple follow-up visits are common in clinical trials. 

Sometimes, one visit is chosen for the primary analysis and the scale is dichotomized 

amounting to loss of information. Multistate Markov models describe how a process 

moves between states over time. Here, simulation studies are performed to investigate the 

type I error and power characteristics of multistate Markov models for panel data with 

limited non-adjacent state transitions. The results suggest that the multistate Markov 

models preserve the type I error and adequate power is achieved with modest sample 

sizes for panel data with limited non-adjacent state transitions. 
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3.1 Introduction 

Most randomized trials in acute stroke neuroprotection treatment have failed to show 

efficacy for new interventions [3]. Mergenthaler and Meisel (2012) provide several 

explanations to describe the lack of positive trials in stroke including heterogeneity in 

stroke pathophysiology and incomplete preclinical testing [6]. Two of the explanations 

cited by the Optimising Analysis of Stroke Trials Collaboration are inadequate study 

designs and inappropriate statistical methods, specifically the analysis of the primary 

outcome [1]. 

 The modified Rankin Scale (mRS) score at 90 days post-randomization is a 

commonly used primary outcome measure in Phase III clinical trials of acute stroke 

therapy [2]. The mRS is a seven-point ordinal scale that measures degree of disability of 

stroke patients (Table 3.1).  

Table 3.1. Modified Rankin Scale. 

Score Description 

0 No symptoms at all 

1 
No significant disability despite symptoms; able to carry out all usual duties and 

activities 

2 
Slight disability; unable to carry out all previous activities but able to look after 

own affairs without assistance 

3 Moderate disability requiring some help, but able to walk without assistance 

4 
Moderately severe disability; unable to walk without assistance and unable to 

attend to own bodily needs without assistance 

5 
Severe disability; bedridden, incontinent, and requiring constant nursing care and 

attention 

6 Dead 

 

 Analyzing the mRS as an ordinal scale has only recently gained acceptance [1, 3, 

46]. Many trials have chosen to dichotomize the mRS into success, scores of 0 or 1 (or 0 
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to 2), or failure, scores greater than 1 (or 2), for the primary analysis [7]. Though models 

used for dichotomous outcomes are easier to implement and some prefer the clinically 

meaningful interpretations, dichotomization can result in a loss of statistical power [1]. It 

is intuitive that some patients with severe stroke may never have the potential to achieve 

a success as defined by the dichotomy. Thus, the prognostic heterogeneity of subjects 

does not allow for potential equal contribution to the estimation of the treatment effect for 

all subjects [9].  

 Recently, an emphasis has been placed on exploring alternate analytic methods 

for the mRS outcome data from acute stroke trials. Results indicate that the mRS should 

be analyzed in such a way that maintains the original structure of the scale as much as 

possible [1, 3]. Linear regression and analysis of variance have been suggested to analyze 

the mRS scale as a continuous variable. Although results from these models are generally 

intuitive, the application to the mRS leads to summary statistics that will not have a clear 

interpretation. Non-integer values from an ordinal scale do not have a clear meaning 

when they are treated as continuous.  

 Another popular alternative method for mRS outcome data is sliding dichotomy 

analysis. The sliding dichotomy method allows for the definition of success to vary based 

on patient-specific baseline prognostic variables while maintaining a dichotomized 

outcome [48]. Commonly, re-analysis of acute stroke trial data using the sliding 

dichotomy defines pre-specified cut-points for prognostic group inclusion based on the 

National Institutes of Health Stroke Scale (NIHSS) score [49]. The mRS is unavailable 

immediately after randomization so models of acute stroke trial data often adjust for 
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baseline severity using the NIHSS, a score that ranges from 0 (no neurological deficit) to 

42. Often, three prognostic groups are defined using the baseline NIHSS for the sliding 

dichotomy as ‘mild’, ‘moderate’, and ‘severe’ and the definition for ‘success’ differs for 

each group. One example is to define favorable outcome as mRS = 0 for mild strokes, 

mRS = 0-1 for moderate strokes and mRS = 0-2 for severe strokes. Since baseline 

severity is a strong predictor of outcome in stroke patients, this baseline severity adjusted 

approach has been considered for use over the traditional dichotomy.  

 While the sliding dichotomy has the potential to be a powerful tool in some 

settings, it has limitations. Some simulation studies have shown that the utilization of the 

sliding dichotomy provides higher sensitivity to detect true treatment effects [50]. For 

example, when the probability of favorable outcome is high (greater than 0.5), the sliding 

dichotomy provides higher power [9]. This is not a general result; however, as other 

studies have shown that the traditional dichotomy is more powerful than the sliding 

dichotomy in many situations [51]. When the probability of favorable outcome is lower, 

the traditional dichotomy is more powerful [9]. In addition, determining the number of 

prognostic groups to use is not an obvious decision and can be difficult to justify. 

Moreover, determining how to choose the cut points for the different groups can be a 

difficult task. Although the use of three groups (mild, moderate and severe) is common in 

the literature, methods used to determine severity cut points vary and need to be verified 

[48]. Poor selection of the number of prognostic groups and cut points could result in a 

loss of power. Furthermore, while the sliding dichotomy allows for a baseline severity 

adjusted outcome, it still ignores any non-‘success’ transition from one mRS score to 
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another even though each mRS category (except 5 to 6) represents a clinically 

meaningful difference in health state [52]. The recovery and outcome of subjects 

following a stroke realistically lies on a continuum. Ordinal analysis of the mRS scores 

can provide a more complete understanding of this process than analysis of the 

dichotomized scale [10].  

 Recently, methods using the full ordinal scale have been demonstrated [3, 46, 71]. 

The proportional odds model is a cumulative logistic regression model that has been 

proposed for analysis of mRS outcome data, Use of this model requires the assumption of 

proportional odds- the odds ratio comparing treatment to control in subjects with mRS = 

0 versus 1-6 is the same as the odds ratio for mRS = 0-1 versus 2-6, and so on. In data 

where the proportional odds assumption does not hold, shift analysis, an assumption-free 

ordinal test, can be used [7]. Shift analysis can be performed using the van Elteren test, 

an extension of the two-sample Wilcoxon rank-sum test. Though shift analysis does not 

require assumptions, it does not produce a summary statistic which is often desired by 

clinicians. Alternatively, in cases where the proportional odds assumption is 

unreasonable, the partial proportional odds model or adjacent categories logit model can 

be used. The partial proportional odds model includes an additional term to allow for the 

odds ratios to increase proportional to the outcome scale [46]. The adjacent categories 

logit model calculates odds ratios for each adjacent category of response in relation to 

covariates. Both of these models are more flexible than the proportional odds model but 

lack a single summary statistic. 
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 An additional drawback of focusing the primary outcome on the 90-day time 

point is the lack of use of available longitudinal data. Many acute stroke trials collect the 

mRS at discharge and/or at 30 days from randomization and also at periodic intervals 

through 12 months, if long-term follow-up is planned. The longitudinal data are not often 

used in the primary analysis. Repeated measures analysis, which incorporates outcome 

data from all follow-up visits, may provide a more comprehensive clinical understanding 

of the treatment effect on outcome after a stroke [11].  

Table 3.2. mRS transition example. 

 
  

mRS at time 2 
 

  
0 1 2 3 4 5 6 Total 

m
R

S
 a

t 
ti

m
e 

1
 

0 84 20 5 1 0 0 0 110 

1 45 79 17 2 1 0 1 145 

2 12 50 56 15 8 6 1 148 

3 2 25 46 63 17 3 0 156 

4 1 2 23 77 89 23 5 220 

5 0 0 2 7 41 48 22 120 

6 0 0 0 0 0 0 101 101 

 
Total 144 176 149 165 156 80 130 1000 

          
  

mRS at time 3 
 

  
0 1 2 3 4 5 6 Total 

m
R

S
 a

t 
ti

m
e 

2
 

0 108 26 5 3 1 1 0 144 

1 38 123 12 2 0 1 0 176 

2 9 31 86 18 2 1 2 149 

3 3 5 32 116 8 1 0 165 

4 0 1 4 34 102 13 2 156 

5 0 0 0 2 18 45 15 80 

6 0 0 0 0 0 0 130 130 

 
Total 158 186 139 175 131 62 149 1000 

 

 In this article, a novel approach using multistate Markov modeling is proposed for 

the mRS scores. Multistate Markov modeling incorporates the longitudinal ordinal data 
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and provides clinically relevant summary statistics to describe treatment effect. The mRS 

has more disease ‘states’ (here, the seven levels of the ordinal response) than many 

previously considered clinical applications of multistate Markov models. An example of 

the typical data structure of the observed mRS could be illustrated in Table 3.2. In this 

example, mRS outcome data from a mock acute stroke trial of 1,000 subjects was created 

for three follow-up visits. The ‘transition’ from one state to another that occurred from 

one visit to the next is described in Table 3.2. For example, 79 of the 145 subjects that 

had mRS = 1 at time 1 also had mRS = 1 at time 2. Only 17 of the 145 subjects with mRS 

= 1 at time 1 transitioned to mRS = 2 at time 2. This is an example of an ‘adjacent-state’ 

transition. Throughout the table, a majority of the observations are instances where the 

subjects remained in the same state, or had the same mRS score from one time to the 

next. Most of the subjects that transitioned to a different state display adjacent-state 

transitions, with a limited number of non-adjacent state transitions.   

 A literature review conducted of an online database yielded a total of 40 articles 

using the following keywords: multistate, Markov, panel, clinical, application, 

continuous-time, and the following excluded words: piecewise, non homogeneous, 

nonhomogeneous, inhomogeneous, semi Markov, hidden, random effects. An article was 

excluded if (a) the content was actually theoretical and there was no application, (b) it 

was a review with no new content, (c) multistate models were referenced, flagging it for 

review but the models were not actually fit, or (d) the models were actually discrete-time. 

Of the remaining 26 articles, 25 fit models to data with five or fewer states and two fit 

models to data with six states [12-36]. One publication used a six-state model to analyze 
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a dataset with much more data than is typically collected in acute stroke trials- 

approximately 5,000 patients [37].  

 The multistate Markov model is introduced in Section 3.2. The main focus of the 

paper is to approximate the power and type I error probabilities for multistate Markov 

models of data structures similar to the longitudinal mRS outcomes observed in acute 

stroke trials. In Section 3.2, continuous-time multistate Markov models are defined and 

the simulation scenarios for estimation of the operating characteristics of these models 

are described. In Section 3.3, the type I error probabilities and power are approximated 

for varying design elements and power of the multistate models is compared with that of 

repeated measures logistic regression. In Section 3.4, the findings are summarized and 

discussed. 

3.2 Methods 

Multistate Markov modeling is an alternative approach to analyze repeated measures data 

with an ordinal outcome. The multistate Markov model describes how a process moves 

between states over time, which is desirable in the description of disease processes that 

naturally move through increasing stages of severity [4]. Subjects can improve and 

worsen over the course of follow-up and these movements back and forth between 

disease states are all incorporated in the estimation of the model. Multistate Markov 

models can provide a better clinical understanding of the disease process since the 

information from the entire course of the disease is used to estimate the parameters of the 

model. These models have been used in numerous clinical applications including: 

multiple sclerosis [60, 70], periodontal disease [61], alcoholism [62], and psychiatry [63]. 
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This approach has not been used before for mRS data and therefore, in this article a 

simulation study is performed to examine the operating characteristics of the proposed 

approach. 

3.2.1 Multistate Markov Models 

The use of multistate Markov modeling requires that the Markov property holds for the 

observed data. Consider a stochastic process with a finite state-space {1,2,3,... }S I , 

where I  represents the number of states in the model. Let ( )X s  be the state occupied at 

time s . The series of observations has the Markov property if the conditional distribution 

of ( )X s t , given 
( )F { ( ) : }X s X v v s  , where 

( )FX s
 denotes all of the information 

pertaining to the history of X  up to time s [64], satisfies 

    ( )Pr ( ) | F , ( ) Pr ( ) | ( ) ( , ), ,X s ijX s t j X s i X s t j X s i p s t i j I         .  (3.1) 

In other words, a Markov process is one such that the conditional probability distribution 

of the state of a process at a given time is dependent only on the immediately preceding 

observation and not on the earlier ones.   

 Markov models may be defined for discrete time as well as continuous. Although 

the course of disease is a continuous process, clinical trials often only collect data at 

intermittent follow-up visits. In the context of stroke, the exact time of progression or 

recovery, or change of state, of disease is not observed. Data of this type, representative 

of a continuous process that is only observed at discrete time points, is known as panel 

data [72]. Both discrete and continuous time multistate Markov models can be used to 

describe panel data. If the sampling times are equally spaced, a continuous model that has 
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been adapted for panel data is preferred over a discrete model [68]. In many acute stroke 

trials, the mRS is collected at follow-up visits that are not evenly spaced. In such 

instances, continuous time models are appropriate. A continuous model for panel data can 

only be used in cases where the sampling times are considered to be non-informative [4]. 

An example of non-informative sampling is a fixed observation scheme, where the 

interval of follow-up is specified in advance. However if observations are not fixed or 

random and are self-selected by the subject (informative), this modeling technique is not 

appropriate without properly adjusting for the additional information [4]. For instance, 

these models cannot be used in a scenario where observations occur when a subject visits 

a doctor because they are in poor-condition. A model that incorporates the information 

from the sampling times must be used for this type of self-selected follow-up outcome 

data. In acute stroke trials, the follow-up visits are usually specified in advance and are 

non-informative so continuous modeling is appropriate. 

 A common assumption when fitting continuous-time Markov models is the time-

homogeneity assumption. This is the assumption that the transition probabilities remain 

constant over time. When time-homogeneity is assumed, the probability that the next 

move of the process is from state i  to state j  can be written, 

 { ( ) | ( ) } { ( ) | (0)} ( )ijP X s t j X s i P X t j X p t      .  (3.2) 

Thus, the probabilities only depend on the length of the time interval, t . The ( )ijp t  are 

elements of the transition probability matrix, P(t) . The 
th( , )i j  entry of P(t)  is the 

probability of being in state j  given the starting state is i  after a time interval of t  .  
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 The movement of a subject between states is described by 
ij , the transition 

intensities:  

 
0

( ( ) | (0) )
limij
t

P X t j X i

t






 
 .  (3.3) 

The intensities represent the instantaneous rate of moving from state i  to state j i . The 

intensities form the generator matrix, Λ , whose rows sum to zero and the diagonal 

entries are ii ij

j i

 


  . P(t)  can be solved by taking a matrix exponential of Λ  scaled 

by the time interval, 

 
0 !

k k

k

t
e

k





 tΛ Λ
P(t)   (3.4) 

where kΛ  is the k
th

 power of the generator matrix Λ .    

 Suppose now that we observe X  over 1 2 ... Mt t t   . Let 1 2, , ..., Mi i i be the 

observed states over these time points. Then, the associated likelihood function is  

 
11 1 1( ) ( | )

j j

M

t j t j

j i

P X i P X i X i
 



    

 
11 1 0 1( ) ( | )

j j

M

t t j j

j i

P X i P X i X i
 



      

 
11 1 1( ) ( )

j j

M

i i j j

j i

P X i P t t
 



   . (3.5) 

  

Using (3.4) and (3.5), the likelihood is therefore 
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   (3.6) 

where 
1i

P  is the initial probability that the process is at 1i .  

 The effects of covariates can also be investigated by modeling the intensity as a 

function of the variables of interest, z(t) . The transition intensity matrix elements 
ij  are 

replaced by 

   
'

(0) ij

ij ij e


 
z(t)

z t   (3.7) 

where (0)

ij  represent the baseline intensities (without covariates) and ij  are the effect of 

covariates on the transition from state i  to state j [4]. To determine the significance of 

a covariate, a likelihood ratio test is used to compare nested models. In Section 3.3, the 

model including treatment is compared to a model without treatment. Thus, the resulting 

intensities are 

 
( )(0) ij z t

ij ij e


    (3.8) 

where (0)
ij  represent the intensities without the covariate and ( )z t  is the treatment 

assignment (0 for control and 1 for treatment) for subject n . Thus, the null and 

alternative hypotheses for the test of the effect of treatment are  

0

1

: 0  for all ,

: 0  for some , .

ij

ij

H i j

H i j








 

The null hypothesis will be rejected using the asymptotic distribution of 0 12ln( / )L L  

where 0L  is the maximum value of the likelihood of the reduced model and 1L  is the 



 

43 

 

maximum value of the likelihood of the full model. For large n , this asymptotic 

distribution is a 2  with k  degrees of freedom, where k  is the difference in the 

number of parameters in the two models. 

 The difficult part in this process is obtaining the maximum likelihood estimates. 

Often methods such as Newton-Raphson can cause issues because the computation of the 

second derivative can be costly in terms of time. Additionally, if the Hessian matrix is 

non-negative definite away from the optimum, slow or non-convergence may occur. To 

avoid this, other approaches have been proposed. The Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method is used to maximize the likelihood with analytic gradients and 

can be used with or without analytic first derivatives [4, 68]. The BFGS algorithm 

approximates Newton’s iterative method for finding the roots of differentiable functions 

[73]. In this algorithm, the Hessian matrix of second derivatives is not evaluated directly. 

Instead, it approximates the Hessian using gradients. If too many transitions are 

considered with not enough data in a multistate model, the maximum likelihood estimate 

could lie on boundary of the parameter space (when one or more transition intensities 

equal 0). If this occurs, the maximum likelihood estimate may be inconsistent since 

asymptotic theory requires the assumption that the true parameter value lies away from 

the boundary.  

 It is important to consider which transitions can realistically occur in continuous 

time. When the states represent levels of disease severity it is assumed that in order for a 

subject to travel from one state to a non-adjacent state, the subject also had to travel 

through the intermediate states. Thus, in this application of these models, a reduced 
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transition intensity matrix where non-adjacent state transition intensities are fixed to 

equal zero should be assumed. The exception is with mRS = 6, we assume that death can 

occur from any state and transitions cannot occur out of it because it is an absorbing state. 

The allowable transitions are displayed in Figure 3.1.  

 

Figure 3.1: Multistate model for panel observed mRS data. 

3.2.2 Simulation Scenarios 

In this section, the procedures for examining the operating characteristics of multistate 

Markov models under a variety of conditions are described. First, whether or not the 

multistate Markov model preserves the type I error probability is examined through 

simulations. Next, given the type I error probability, the desired power is examined for 

two clinically relevant scenarios, each with two sets of follow-up trajectories for each of 

the models. The power of the multistate Markov model is compared with that of repeated 

logistic regression. The motivating example of this simulation study is the limited non- 

adjacent state transitions observed in mRS data. The simulation scenarios are generated 

such that the assigned transition probabilities mimic real acute stroke trial as closely as 
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possible. Data from three different phase III acute stroke trials were considered when 

assigning transition probabilities. 

 The first trial used is the National Institute of Neurologic Disorders and Stroke 

(NINDS) tissue-Plasminogen Activator (t-PA) study [38]. The NINDS t-PA trial 

compared t-PA versus placebo in subjects with acute ischemic stroke. The primary 

analysis showed a significant global test score for four (Barthel Index, mRS, Glasgow 

Outcome Scale, and NIHSS) outcomes as well as for the mRS alone [39]. To further 

illustrate the structure of acute stroke trial data, the mRS scores for the control and 

treatment groups are displayed in Sankey plots in Figures 3.2 and 3.3 [74], respectively. 

The Sankey plots allow for a visualization of changes within each treatment group over 

time. The longitudinal bar chart shows the percentage of subjects with each mRS score at 

each follow-up visit. In addition, the wavy lines between each bar, the links, describe the 

change in the number of subjects in each state, over time. A thick line indicates that a 

large number of subjects transition between two states. Note that as illustrated in Table 

3.2 with the mock data, the percentage of transitions that occur between non-adjacent 

states is small.  

 The other two trials considered for data generation were the albumin in acute 

stroke (ALIAS) II trial and the Interventional Management of Stroke (IMS) III trial [43, 

75]. ALIAS II was designed to compare 25% human serum albumin and saline in patients 

with acute ischemic stroke. IMS III was designed to compare intravenous t-PA plus an 

intra-arterial device therapy and/or additional intra-arterial t-PA versus t-PA alone. Both 

ALIAS II and IMS III were stopped early for futility. 
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Figure 3.2: Sankey plot of NINDS t-pa control group subjects over time. 

 
Figure 3.3: Sankey plot of NINDS t-pa treatment group subjects over time.  
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 For each of the previously mentioned trials, the observed transition counts for 

each follow-up visit are combined in one table to calculate aggregate observed transition 

probabilities. To illustrate, data in Table 3.2 would be combined in an aggregate table 

with 192 (84 + 108) instances where a subject stayed in state 0 out of the total 254 (110 + 

144) instances where a subject started in state 0. Thus, for example, the observed 

aggregate transition probability of remaining in state 0 is 0.76 (192/254), in the mock 

trial. These observed transition probability matrices are calculated for each study to 

illustrate the structure for mRS outcome data from acute stroke trials. As previously 

mentioned, the notable characteristic of the mRS outcome data from these trials is the 

limited number of non-adjacent state transitions. 

 To evaluate power, data are generated under the alternative hypothesis that a 

treatment effect exists. In each multistate Markov model, multiple parameters describe a 

single covariate effect. Therefore, there are many ways in which a significant treatment 

effect could exist. In order to simplify, we consider two different clinically relevant 

scenarios. The first scenario considers a case where only one of the assigned transition 

probabilities differs between the control and treatment groups. For this set of simulations, 

the transition probabilities are assigned such that they are all the same for both groups 

except for the transition from mRS = 3 to mRS = 2 (as well as the transition from mRS = 

2 to 1, mRS = 2 to 0, and mRS = 1 to 0, as the intermediate transitions may not be 

observed). The second scenario for sample size estimation is one where the treatment 

effect exists in all transitions. The positive transitions are assigned higher probabilities in 
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the treatment group, making them more likely. The negative transitions are assigned a 

larger probability in the control group. 

 It is likely that other ordinal scales collected over time have a longitudinal 

structure similar to the mRS, where non-adjacent state transitions are sparse. In order to 

consider scales with differing numbers of states, we used the data generated to mimic the 

mRS described above and collapsed the estimated transition probability matrices to create 

six-, five-, and four-state models. The method in which the states are aggregated is 

described in Table 3.3.  

Table 3.3. Simulation scenarios for power. 

  Number of subjects per group 

States Visits One differing transition All differing transitions 

7 3 400, 500, 600, 800, 1000 300, 400, 500, 600, 800, 1000 

 6 200, 300, 400, 500, 600 125, 150, 175, 200, 300, 400 

6 3 400, 500, 600, 800, 1000 300, 400, 500, 600, 800, 1000 

 6 150, 200, 300, 400, 500, 600 125, 150, 175, 200, 300, 400 

5 3 300, 400, 500, 600, 800, 1000 200, 300, 400, 500, 600, 800, 1000 

 6 100, 150, 200, 300, 400, 500, 600 75, 100, 125, 150, 175, 200, 300, 

400 

4 3 200, 300, 400, 500, 600, 800, 1000 200, 300, 400, 500, 600, 800, 1000 

 6 100, 150, 200, 300, 400, 500, 600 50, 75, 100, 125, 150, 175, 200, 

300, 400 

3 3 200, 300, 400, 500, 600, 800, 1000 200, 300, 400, 500, 600, 800, 1000 

 6 100, 150, 200, 300, 400, 500, 600 50, 75, 100, 125, 150, 175, 200, 

300, 400 

 

 In practice, collapsing states is a decision that should be made with caution. For 

example, if there is clinical evidence that two health states are not distinct, it may be 

acceptable to combine them. If two health states are aggregated that are vastly different 

there could be a loss of power. In order to illustrate this point, for the 5-state (and 

subsequently the 4-state) model, mRS = 2 and mRS = 3 are aggregated. In the scenario 
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where only the transition from mRS = 3 to mRS = 2 differs, there is an expected loss in 

power for these aggregated models. Thus, in the case where only one transition differs, an 

additional scenario was considered where mRS = 2 and mRS = 3 are not combined, 

referred to as the 5-state* model.  

 The probabilities used to assign outcome trajectories are listed in Appendices 3A-

3C. Using these probabilities, the data generation includes the following steps: 

1. Generate a sample of treatment assignments from a random uniform(0, 1) 

distribution where the probability that the thm  subject is assigned to treatment is 

0.5. 

2. Generate random uniform variables for all t . 

3. Assign a state for 0t   using the probabilities described in the appendices. 

4. For each 0t   use the probabilities to assign a state conditional on the state 

occupied at 1t  . 

 To determine the type I error, data are generated under the null hypothesis of no 

treatment effect. The simulation scenarios for estimation of type I error include differing 

number of states and increasing sample size per group, starting at 200. 

 The simulation studies for power are repeated for each set of simulation 

parameters (Table 3.4) allowing the number of subjects in each treatment group to vary, 

as well as the number of follow-up visits (three or six visits). Each set of simulations is 

carried out using 1,000 runs. For each set of parameters the sample size is set to observe 

approximately 80% power. The type I error for the multistate Markov model is set to the 
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observed value from the previously described simulations. The resulting power is 

compared to that of the repeated logistic regression model.  

Table 3.4. Modified Rankin Scale inclusion categories. 

Symbol Model mRS Scores 

 7 state mRS 0, mRS 1, mRS 2, mRS 3, mRS4, mRS 5, mRS 6 

 6 state mRS 0, mRS 1, mRS 2, mRS 3, mRS4, mRS 5-6 

 5 state mRS 0, mRS 1, mRS 2, mRS 3, mRS 4-6 

 4 state mRS 0, mRS 1, mRS 2-3, mRS 4-6 

 3 state mRS 0-1, mRS 2-3, mRS 4-6 

 

 The data used were simulated using SAS 9.4 statistical software. SAS 9.4 was 

also used to run the Generalized Estimating Equation models for repeated measures 

logistic regression with PROC GENMOD. The Markov models were fitted in R statistical 

software version 3.3.0 using the ‘msm’ package for multistate Markov models [4]. 

3.3 Results 

In this section, the behavior of the type I error and power is evaluated. The simulation 

results of the type I error are displayed in Figure 3.4. For the application considered, with 

data structured similar to the three acute stroke trials described in Section 3.2, the type I 

error probability is preserved for all of the multistate Markov models. In order to examine 

whether the chi-square approximation of the likelihood ratio test is appropriate for 

comparing the nested models, p-values under the appropriate chi-square distribution were 

obtained and are shown in Appendix 3D. The p-values appear to be approximately 

uniform and the test-statistic sampling distribution approximates the chi-square 

distributions quite adequately. 
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Figure 3.4: Graph of approximated type I error probabilities for models with three follow-up visits based on 

1,000 simulations. 

 

 For considering power we need to set alternative hypotheses. There are many 

potential alternative hypotheses so we consider two scenarios that are clinically relevant. 

In the first scenario, transition probabilities are assigned such that the only difference 

between treatment groups is in the transition from mRS = 3 to mRS = 2. The results with 

three and six follow-up visits are displayed in Figures 3.5a and 3.5b, respectively. The 

transition probabilities assigned for these simulations are presented in Appendix 3B. The 

results indicate that for a seven-state model with three follow-up visits, approximately 

500 subjects are needed in each group to obtain 80% power. There is a marginal increase 

in power when states mRS = 4 and mRS = 5 are combined in the six-state model. When 

mRS = 2 and mRS = 3 are combined for the original five-state model we see an extreme 
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decrease in power. This is expected because the model was misspecified. The only 

difference between treatment groups was in the transition from mRS = 3 to mRS = 2 so 

when these two states are combined, there are virtually no differences to detect. The same 

phenomenon is observed in the four-state model because the difference is still lost from 

aggregating mRS = 2 and mRS = 3. If we consider the fact that the difference lies 

between those two states and instead collapse mRS = 0 and mRS = 1 in the alternative 

five-state model (5*) then we see another marginal increase in power. The observed 

increases in power are expected because there are no differences in the two groups in the 

aggregated states and there are fewer parameters to estimate in the model.  

 Figure 3.5b displays the approximated power in the scenario where only the 

transition from mRS = 3 to mRS = 2 differs, now with six follow-up visits instead of 

three. The results for the models with six follow-up visits are similar to those in the 

models with three follow-up visits, except that the power is significantly increased. The 

power for the seven-, six- and five-state* model are all very similar. Each of these models 

requires approximately 150 subjects in each group to obtain 80% power. When mRS = 2 

and mRS = 3 are combined in the five-state model (and subsequently in the four-state 

model), there is an extreme loss of power, as previously observed.  

 The results of the power simulations in the second scenario, where the treatment 

effect exists for all transitions, are displayed in Figures 3.5c and 3.5d. The assumed 

transition probabilities are described in Appendix 3C. The approximate power for the 

three follow-up visit case is displayed in Figure 3.5c. In the six- and seven- state model, 

the iteration to obtain the estimates do not converge for sample sizes as small as 200. 
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There are negligible differences in power between each of the models. Since there are 

differences in all transitions, there will be some loss of power by aggregating states. 

However, there is a gain in power with fewer parameters in a reduced model. These two 

facts lead to very minimal change in power. For any given model with three follow-up 

visits in this scenario, approximately 600 subjects are needed per group to attain 80% 

power. 

 

Figure 3.5: Graph of approximated power based on 1,000 simulations. 

 

 Figure 3.5d displays the approximated power where all assumed transition 

probabilities differ between groups and the number of follow-up visits is increased from 

three to six. As observed in the first scenario, the results from the models with six follow-
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up visits are similar to those from the models with three follow-up visits, with a 

significant increase in power. The increase in power is expected since there are twice as 

many observation per subject contributing to the estimation of the model parameters. In 

this case, approximately 250 subjects are needed per group to reach 80% power. 

Table 3.5. Comparison of power for models with three follow-up visits. 

    

Multistate Markov models 

Scenario 

N per 

group 

Logistic 

regression 

van 

Elteren 7-state 6-state 5-state 4-state 3-state 

2 to 1 only 200 0.257 0.117 - - - 0.206 0.256 

 

300 0.371 0.138 - - 0.544 0.283 0.349 

 

400 0.469 0.193 0.635 0.663 0.670 0.381 0.468 

 

500 0.573 0.222 0.753 0.771 0.787 0.499 0.544 

 

600 0.646 0.224 0.837 0.848 0.870 0.567 0.626 

 

800 0.743 0.267 0.926 0.939 0.956 0.703 0.760 

 

1000 0.853 0.334 0.974 0.981 0.989 0.815 0.868 

         All shifts 200 0.735 0.741 - - 0.405 0.358 0.470 

 

300 0.893 0.898 0.582 0.629 0.563 0.508 0.643 

 

400 0.960 0.970 0.694 0.763 0.723 0.615 0.765 

 

500 0.988 0.983 0.811 0.863 0.811 0.733 0.879 

 

600 0.996 0.997 0.875 0.943 0.897 0.814 0.933 

 

800 1.000 1.000 0.961 0.982 0.971 0.911 0.977 

 

1000 1.000 1.000 0.989 0.998 0.990 0.975 0.996 

 

 The approximated power from the models displayed in Figure 3.5 is compared 

with that from repeated logistic regression in Tables 3.5 and 3.6. Table 3.5 lists the power 

for the models with three follow-up visits and Table 3.6 lists the power for the models 

with six follow-up visits. Repeated logistic regression was performed using the 

dichotomized mRS scores, where scores of 0 or 1 were defined as successes and scores 

greater than 1 were defined as failures.  
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Table 3.6. Comparison of power for models with six follow-up visits. 

    

Multistate Markov models 

Scenario 

N per 

group 

Logistic 

regression 

van 

Elteren 7-state 6-state 5-state 4-state 3-state 

2 to 1 only 100 0.119 0.075 - - 0.474 0.288 0.321 

 

150 0.188 0.098 - 0.622 0.629 0.417 0.463 

 

200 0.257 0.117 0.732 0.734 0.776 0.546 0.578 

 

300 0.371 0.138 0.871 0.889 0.920 0.714 0.784 

 

400 0.469 0.193 0.957 0.961 0.967 0.860 0.906 

 

500 0.573 0.222 0.983 0.990 0.991 0.936 0.947 

 

600 0.646 0.224 0.994 0.992 1.000 0.997 0.982 

         All shifts 50 0.246 0.241 - - - 0.210 0.326 

 

75 0.350 0.357 - - 0.419 0.358 0.485 

 

100 0.463 0.476 - - 0.540 0.434 0.584 

 

125 0.523 0.519 0.579 0.673 0.659 0.521 0.725 

 

150 0.602 0.642 0.688 0.754 0.732 0.598 0.806 

 

175 0.687 0.690 0.735 0.827 0.794 0.662 0.867 

 

200 0.735 0.741 0.809 0.901 0.847 0.751 0.915 

 

300 0.893 0.898 0.945 0.975 0.968 0.906 0.984 

 

400 0.960 0.970 0.985 0.994 0.992 0.981 0.997 

 

 When only one assigned transition probability differs between groups, in correctly 

specified models, the multistate Markov model requires significantly fewer subjects than 

the repeated logistic regression model to be adequately powered. When the multistate 

model is misspecified, the repeated logistic regression is more powerful. When all 

assumed transition probabilities differ between groups, the repeated logistic regression 

requires fewer subjects per group to reach 80% power. When there are three follow-up 

visits, the repeated logistic regression model only requires about 300 subjects per group 

to be adequately powered, compared to 600 in the multistate model. In the six follow-up 
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visit case, approximately 150 subjects are needed per group compared to 250 in the 

multistate Markov model. 

3.4  Summary and Discussion 

The mRS, one of the most commonly used outcome measures in acute stroke trials, is 

ordinal but is often dichotomized for analysis. The loss of information from 

dichotomizing the ordinal variable was examined in this article. In addition, despite the 

availability of multiple mRS scores over time in many trials, a single measurement is 

often chosen for primary analysis. The additional information available from the 

longitudinal data could add further efficiency to the analysis. Multistate Markov 

modeling is presented here as an alternative analytic approach for ordinal outcomes 

collected longitudinally. The multistate Markov model describes how a process moves 

between states over time, which is desirable because it lends itself to clinically relevant 

interpretations.  

 In this paper, we have considered time-homogenous continuous Markov 

multistate models for mRS outcome data observed in phase III acute stroke trials. 

Simulations demonstrated that the desired type I error probability is preserved for the 

likelihood ratio test comparing a multistate Markov model including treatment to one 

without. Power was examined for two different clinically relevant scenarios. The two 

scenarios represented two diverse instances where a treatment effect exists. In the first 

scenario all of the assigned transition probabilities were the same for the two treatment 

groups except the transition from mRS = 3 to mRS = 2. The assigned treatment 
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probabilities in the second scenario differed between the groups for all transitions, 

representing a positive treatment effect for all shifts. 

 The key findings of the simulation studies could be summarized as follows: 

 When the only difference between the treatment groups in assigned transition 

probabilities is from mRS = 3 to mRS =2,  

o misspecification of the five-state (and four-state) multistate model 

drastically decreases power as this masks the only difference between 

groups, the transition from mRS = 3 to mRS = 2  

o the multistate model yielding the highest power is the 5-state* model 

where mRS = 4 and mRS = 5 are combined, as well as mRS = 0 and mRS 

= 1 

o power is not drastically different for the seven- six- or five-state* Markov 

model 

o the multistate model, when correctly specified, is more powerful than 

repeated logistic regression 

 When all assigned transition probabilities differ between groups, 

o power is essentially equal for all four multistate Markov models 

considered 

o the repeated logistic regression models are more powerful than the 

multistate Markov models 

 For both scenarios, and all combinations of states considered, increasing the 

number of follow-up visits from three to six drastically increased power. 
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 We considered a case where two distinct states were combined to examine the 

effects of misspecification. It is important to note that for a process that is truly Markov 

on I  states, a reduced-state model will not satisfy the Markov property [76]. The 

sojourn time will be non-exponential for the merged states and bias can be expected 

through the misspecification. This highlights the importance of correctly specifying 

models when using the multistate Markov approach. A modified version of Akaike’s 

criterion could aid in model selection [77].  

 We conclude that multistate Markov modeling can be a more efficient approach to 

analysis of mRS data from acute stroke trials. There are situations where dichotomization 

might not lose efficiency and may be more powerful than the multistate Markov model. 

Depending on the observed data structure, either technique could be more powerful. In 

every model, however, increasing the number of follow-up visits from three to six 

dramatically improved the power to detect a treatment difference.  

 A limitation of this study is the computational intensity required to run the 

simulations. For the scenarios with a larger number of states, the time required to 

complete the simulations was lengthy. Because of the time these simulations take, each 

was only repeated 1,000 times. Larger simulation studies, say with 10,000 runs rather 

than 1,000, would improve the precision on the estimates of the operating characteristics. 

A second limitation of this study is the lack of effect size measurement. In order to 

quantify an effect size, we would need to be able to define what outcome would be of 

interest. For example, some previous studies have considered a 10% difference in 

proportion of good outcome, where good outcome is defined by a dichotomized mRS 
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scale. Quantification of the effect is not straightforward when using Markov multistate 

modeling. This is a practical question to consider in the future.  

 A future direction of this work could be to compare the results of multistate 

Markov modeling to repeated cumulative logistic regression. At the time of submission 

the authors could not find any publications where longitudinal proportional odds models 

or adjacent categories logit models were applied to mRS data. Interesting issues arise 

about how to handle the proportional odds assumption and how to compare models when 

the assumption fails. This may be a useful extension of the analysis of longitudinal mRS 

data.   
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3.5 Appendices 

Appendix 3A: assumed transition probabilities for type I error simulations 

 

In this appendix, we present Tables 3.1A-3.4A, which show the probabilities used to 

determine the trajectories for the subjects in the type I error simulation study. 

Table 3.1A. Assumed transition probabilities for the seven-state model. 

 Probabilities for time = 1 

 0 1 2 3 4 5 6 

 0.1000 0.1200 0.1300 0.1500 0.2300 0.1400 0.1300 

 

Conditional Transition Probabilities for time > 1 

 0 1 2 3 4 5 6 

0 0.8000 0.1700 0.0200 0.0050 0.0030 0.0010 0.0010 

1 0.2000 0.6800 0.0800 0.0200 0.0100 0.0050 0.0050 

2 0.0500 0.2800 0.5400 0.1100 0.0100 0.0010 0.0090 

3 0.0200 0.0800 0.2200 0.6000 0.0600 0.0050 0.0150 

4 0.0050 0.0150 0.0600 0.2300 0.6000 0.0700 0.0200 

5 0.0005 0.0070 0.0075 0.0450 0.2800 0.4800 0.1800 

 

Table 3.2A. Assumed transition probabilities for  

the six-state model. 

 Probabilities for time = 1 

 0 1 2 3 4/5 6 

 0.100 0.120 0.130 0.150 0.370 0.130 

       

Conditional Transition Probabilities for time > 1 

 0 1 2 3 4/5 6 

0 0.800 0.170 0.020 0.005 0.004 0.001 

1 0.200 0.680 0.080 0.020 0.015 0.005 

2 0.050 0.280 0.540 0.110 0.011 0.009 

3 0.020 0.080 0.220 0.600 0.065 0.015 

4/5 0.003 0.011 0.034 0.138 0.714 0.100 
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Table 3.3A. Assumed transition probabilities for  

the five-state model. 

 Probabilities for time = 1 

 0 1 2/3 4/5 6 

 0.100 0.120 0.280 0.370 0.130 

      

Conditional Transition Probabilities for time > 1 

 0 1 2/3 4/5 6 

0 0.800 0.170 0.025 0.004 0.001 

1 0.200 0.680 0.100 0.015 0.005 

2/3 0.035 0.180 0.735 0.038 0.012 

4/5 0.003 0.011 0.172 0.714 0.100 

 

Table 3.4A. Assumed transition probabilities for  

the four-state model. 

 Probabilities for time = 1 

 0/1 2/3 4/5 6 

 0.220 0.280 0.370 0.130 

 

Conditional Transition Probabilities for time > 1 

 0/1 2/3 4/5 6 

0/1 0.924 0.063 0.010 0.003 

2/3 0.215 0.735 0.038 0.012 

4/5 0.014 0.172 0.714 0.100 
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Appendix 3B: assumed transition probabilities for the scenario with only one differing assumed transition  

 

In this appendix, we present Tables 3.1B-3.4B, which show the probabilities used to determine the trajectories for the subjects 

in the simulation study to approximate power when the treatment effect exists for only one transition (from mRS = 3 to mRS = 

2).  

 

Table 3.1B. Assumed transition probabilities for the seven-state model. 

 Probabilities for time = 1 (control) 

 0 1 2 3 4 5 6 

 0.110 (0.090) 0.130 (0.110) 0.150 (0.110) 0.110 (0.190) 0.230 (0.230) 0.140 (0.140) 0.130 (0.130) 

 

Conditional transition probabilities for time > 1 (control) 

 0 1 2 3 4 5 6 

0 0.800 (0.800) 0.170 (0.170) 0.020 (0.020) 0.005 (0.005) 0.003 (0.003) 0.001 (0.001) 0.001 (0.001) 

1 0.200 (0.200) 0.680 (0.680) 0.080 (0.080) 0.020 (0.020) 0.010 (0.010) 0.005 (0.005) 0.005 (0.005) 

2 0.050 (0.050) 0.280 (0.280) 0.540 (0.540) 0.110 (0.110) 0.010 (0.010) 0.001 (0.001) 0.009 (0.009) 

3 0.030 (0.010) 0.110 (0.050) 0.300 (0.140) 0.480 (0.720) 0.060 (0.060) 0.005 (0.005) 0.015 (0.015) 

4 0.005 (0.005) 0.015 (0.015) 0.060 (0.060) 0.230 (0.230) 0.600 (0.600) 0.070 (0.070) 0.020 (0.020) 

5 .0005 (.0005) 0.007 (0.007) .0075 (.0075) 0.045 (0.045) 0.280 (0.280) 0.480 (0.480) 0.180 (0.180) 
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Table 3.2B. Assumed transition probabilities for the six-state model. 

 Probabilities for time = 1 (control) 

 0 1 2 3 4/5 6 

 0.110 (0.090) 0.130 (0.110) 0.150 (0.110) 0.110 (0.190) 0.370 (0.370) 0.130 (0.130) 

 

Conditional transition probabilities for time > 1 (control) 

 0 1 2 3 4/5 6 

0 0.800 (0.800) 0.170 (0.170) 0.020 (0.020) 0.005 (0.005) 0.004 (0.004) 0.001 (0.001) 

1 0.200 (0.200) 0.680 (0.680) 0.080 (0.080) 0.020 (0.020) 0.015 (0.015) 0.005 (0.005) 

2 0.050 (0.050) 0.280 (0.280) 0.540 (0.540) 0.110 (0.110) 0.011 (0.011) 0.009 (0.009) 

3 0.030 (0.010) 0.110 (0.050) 0.300 (0.140) 0.480 (0.720) 0.065 (0.065) 0.015 (0.015) 

4/5 0.003 (0.003) 0.011 (0.011) 0.034 (0.034) 0.138 (0.138) 0.714 (0.714) 0.100 (0.100) 

 

 

Table 3.3B. Assumed transition probabilities for the five-state model. 

 Probabilities for time = 1 (control) 

 0 1 2/3 4/5 6 

 0.110 (0.090) 0.130 (0.110) 0.260 (.300) 0.370 (.370) 0.130 (0.130) 

 

Conditional transition probabilities for time > 1 (control) 

 0 1 2/3 4/5 6 

0 0.800 (0.800) 0.170 (0.170) 0.025 (0.025) 0.004 (0.004) 0.001 (0.001) 

1 0.200 (0.200) 0.680 (0.680) 0.100 (0.100) 0.015 (0.015) 0.005 (0.005) 

2/3 0.040 (0.030) 0.195 (0.165) 0.715 (0.755) 0.038 (0.038) 0.012 (0.012) 

4/5 0.003 (0.003) 0.011 (0.011) 0.172 (0.172) 0.714 (0.714) 0.100 (0.100) 
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Table 3.4B. Assumed transition probabilities for the four-state model. 

 Probabilities for time = 1 (control) 

 0/1 2/3 4/5 6 

 0.120 (0.100) 0.150 (0.120) 0.230 (0.280) 0.500 (0.500) 

 

Conditional transition probabilities for time > 1 (control) 

 0/1 2/3 4/5 6 

0/1 0.924 (0.924) 0.063 (0.063) 0.010 (0.010) 0.003 (0.003) 

2/3 0.235 (0.195) 0.715 (0.755) 0.038 (0.038) 0.012 (0.012) 

4/5 0.014 (0.014) 0.172 (0.172) 0.714 (0.714) 0.100 (0.100) 
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Appendix 3C: assumed transition probabilities for scenario with global treatment effect\ 

 

In this appendix, we present Tables 3.1C-3.4C, which show the probabilities used to determine the trajectories for the subjects 

in the simulation study to approximate power when the treatment effect exists for all transitions. 

Table 3.1C. Assumed transition probabilities for the seven-state model. 

 Probabilities for time = 1 (control) 

 0 1 2 3 4 5 6 

 0.150 (0.100) 0.150 (0.100) 0.140 (0.100) 0.100 (0.150) 0.200 (0.250) 0.200 (0.230) 0.050 (0.070) 

 

Conditional transition probabilities for time > 1 (control) 

 0 1 2 3 4 5 6 

0 0.800 (0.720) 0.186 (0.230) 0.010 (0.042) 0.001 (0.002) 0.001 (0.002) 0.001 (0.002) 0.001 (0.002) 

1 0.200 (0.160) 0.693 (0.676) 0.080 (0.120) 0.001 (0.002) 0.005 (0.010) 0.001 (0.002) 0.020 (0.030) 

2 0.050 (0.030) 0.280 (0.220) 0.509 (0.528) 0.100 (0.140) 0.020 (0.030) 0.001 (0.002) 0.040 (0.050) 

3 0.020 (0.010) 0.130 (0.080) 0.230 (0.200) 0.560 (0.620) 0.040 (0.050) 0.010 (0.020) 0.010 (0.020) 

4 0.010 (0.005) 0.030 (0.020) 0.060 (0.050) 0.250 (0.200) 0.510 (0.565) 0.070 (0.080) 0.070 (0.080) 

5 0.002 (0.001) 0.010 (0.005) 0.010 (0.005) 0.070 (0.050) 0.250 (0.200) 0.408 (0.439) 0.250 (0.300) 
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Table 3.2C. Assumed transition probabilities for the six-state model. 

 Probabilities for time = 1 (control) 

 0 1 2 3 4/5 6 

 0.150 (0.100) 0.150 (0.100) 0.140 (0.100) 0.100 (0.150) 0.400 (0.480) 0.060 (0.070) 

 

Conditional transition probabilities for time > 1 (control) 

 0 1 2 3 4/5 6 

0 0.800 (0.720) 0.186 (0.230) 0.010 (0.042) 0.001 (0.002) 0.002 (0.004) 0.001 (0.002) 

1 0.200 (0.160) 0.693 (0.676) 0.080 (0.120) 0.001 (0.002) 0.006 (0.012) 0.020 (0.030) 

2 0.050 (0.030) 0.280 (0.220) 0.509 (0.528) 0.100 (0.140) 0.021 (0.032) 0.040 (0.050) 

3 0.020 (0.010) 0.130 (0.080) 0.230 (0.200) 0.560 (0.620) 0.050 (0.070) 0.010 (0.020) 

4/5 0.006 (0.003) 0.020 (0.013) 0.035 (0.028) 0.160 (0.125) 0.619 (0.641) 0.160 (0.190) 

 

 

Table 3.3C. Assumed transition probabilities for the five-state model. 

 Probabilities for time = 1 (control) 

 0 1 2/3 4/5 6 

 0.150 (0.100) 0.150 (0.100) 0.240 (0.250) 0.400 (0.480) 0.060 (0.070) 

 

Conditional transition probabilities for time > 1 (control) 

 0 1 2/3 4/5 6 

0 0.800 (0.720) 0.186 (0.230) 0.011 (0.044) 0.002 (0.004) 0.001 (0.002) 

1 0.200 (0.160) 0.693 (0.676) 0.081 (0.122) 0.006 (0.012) 0.020 (0.030) 

2/3 0.035 (0.020) 0.205 (0.150) 0.700 (0.745) 0.035 (0.050) 0.025 (0.035) 

4/5 0.006 (0.003) 0.020 (0.013) 0.195 (0.153) 0.619 (0.641) 0.160 (0.190) 
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Table 3.4C. Assumed transition probabilities for the four-state model. 

 Probabilities for time = 1 (control) 

 0/1 2/3 4/5 6 

 0.300 (0.200) 0.240 (0.250) 0.400 (0.480) 0.060 (0.070) 

 

Conditional transition probabilities for time > 1 (control) 

 0/1 2/3 4/5 6 

0/1 0.939 (0.893) 0.046 (0.083) 0.004 (0.008) 0.011 (0.016) 

2/3 0.240 (0.170) 0.700 (0.745) 0.035 (0.050) 0.025 (0.035) 

4/5 0.026 (0.016) 0.195 (0.153) 0.619 (0.641) 0.160 (0.190) 
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Appendix 3D: plots of p-values and test-statistics from type I error simulation study 

 

In this appendix, we present Figures 3.1D and 3.2D, which display the distribution of the 

p-values and test-statistics from the likelihood ratio tests from the type I error simulation 

study. 

 

 

Figure 3.1D. Distribution of p-values from the likelihood ratio tests calculated in the type I error simulation 

study. 
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Figure 3.2D. Distribution of test-statistics from the likelihood ratio tests calculated in the type I error 

simulation study. 
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Abstract 

In clinical trials, longitudinally assessed ordinal outcomes are commonly dichotomized 

and only the final measure is used for primary analysis, partly for ease of clinical 

interpretation. Dichotomization of the ordinal scale and failure to utilize the repeated 

measures can reduce statistical power. Additionally, in a certain emergent settings, the 

same measure cannot be assessed at baseline prior to treatment. For such a data set, a 

piecewise-constant multistate Markov model that incorporates a latent model for the 

unobserved baseline measure is proposed. These models can be useful in analyzing 

disease history data and are advantageous in clinical applications where a disease process 

naturally moves through increasing stages of severity. Two examples are provided using 
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acute stroke clinical trials data. Conclusions drawn in this paper are consistent with those 

from the primary analysis for treatment effect in both of the motivating examples. Use of 

these models allows for a more refined examination of treatment effect and describes the 

movement between health states from baseline to follow-up visits which may provide 

more clinical insight into the treatment effect. 

Keywords 

longitudinal ordinal outcome; piecewise multistate models; panel data; modified Rankin 

Scale 
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4.1 Introduction 

Outcomes on an ordinal scale is quite common in clinical trials [78]. It is also common in 

these trials to analyze the data using a dichotomized version of the ordinal measure. For 

instance, in treatments of acute stroke, often the modified Rankin Scale (mRS) is used as 

the primary outcome. The mRS measures functional ability using a 7-point ordinal scale 

(Table 4.1). Although, mRS is measured on this 7-point scale, for testing primary 

hypotheses of interest, it is commonly dichotomized either by collapsing into {0,1}  vs 

{2,3,4,5,6} or {0,1,2}  vs {3,4,5,6} . Loss of information, when such ordinal outcomes 

are collapsed into a dichotomy, has been studied and shown to result in reduction of 

statistical power [79]. In stroke trials, alternative analytic methods on the observed 

ordinal scale are gaining attention [1].  

Table 4.1. Modified Rankin Scale. 

Score Description 

0 No symptoms at all 

1 
No significant disability despite symptoms; able to carry out all usual duties and 

activities 

2 
Slight disability; unable to carry out all previous activities but able to look after 

own affairs without assistance 

3 Moderate disability requiring some help, but able to walk without assistance 

4 
Moderately severe disability; unable to walk without assistance and unable to 

attend to own bodily needs without assistance 

5 
Severe disability; bedridden, incontinent, and requiring constant nursing care 

and attention 

6 Dead 

 

 Another common approach in most longitudinal trials that measure mRS over 

time, is to use only the final measure made at 90 days, ignoring the earlier measurements 
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because the outcome status at 90 days is considered to be the only measurement of 

clinical relevance. Moreover, typically, the ultimate goal of a treatment or therapeutic 

action is to achieve improvement in patient health compared to their baseline measure. To 

accurately quantify improvement, a measure of the outcome at baseline would be ideal. 

Conditions with sudden onset, such as traumatic brain injury, stroke and status epilepticus 

often require immediate attention and treatment, posing a challenge to assess baseline 

outcome measures for clinical trials that may also lack practical meaning based on patient 

status. Specific to acute stroke trials the mRS is not obtainable at baseline [80]. The 

current method of addressing this is to adjust for the severity of the condition (disease) at 

baseline.  

 In this manuscript a continuous-time non-homogeneous Markov process is 

proposed as an alternative to study the evolution of acute onset diseases. Of specific 

interest is exploration of potential differences in transition rates between two treatment 

groups. Using this method, it is possible to analyze treatment effects in the observed 

ordinal scale and incorporate data measured longitudinally. In addition, after treatment, 

since much of the progression or recovery experienced by acute ischemic stroke patients 

is expected to occur early, on a method for predicting the baseline mRS state is proposed 

[81]. This baseline mRS may then be utilized in a model that more fully characterizes the 

evolution of disease over time. 

 The paper is organized as follows. Two motivating examples of large acute stroke 

therapy trials are described in Section 4.2. Homogeneous and piecewise-constant 

multistate Markov models (MSMMs) are introduced. In Section 4.3, the baseline 
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estimation procedure is described and demonstrated and piecewise-constant MSMMs 

using the estimated baseline scores for the motivating examples are fit. Concluding 

remarks are presented in Section 4.4. 

4.2 Methods 

Methods are developed and motivated through two phase III acute stroke therapy trials, 

namely the National Institute of Neurologic Disorders and Stroke tissue plasminogen 

activator (NINDS tPA) Stroke Study Part 2 [38] and the Albumin in Acute Stroke 

(ALIAS) Trial [82].  

 The NINDS tPA Stroke Study Part 2 was designed to compare intravenous tPA 

versus placebo in subjects with acute ischemic stroke using a global test statistic [38]. 

The global test statistic simultaneously tested for treatment effect in four correlated 

outcomes (mRS, Barthel Index, Glasgow outcome scale and National Institutes of Health 

Stroke Scale). The Barthel Index is a simple index of independence that scores the ability 

of patients to care for themselves [40]. Patients that can perform all activities assessed 

with complete independence are given a score of 100. The Glasgow outcome scale is a 

global assessment of function that ranges from 1 indicating good recovery to 5, death 

[41]. The National Institutes of Health Stroke Scale (NIHSS) is a 42-point scale that 

measures neurologic deficit where 0 indicates normal function [83].  

 A total of 624 patients were enrolled in NINDS tPA, with 312 in each treatment 

group. The primary analysis showed a significant global test score for the four 

dichotomized outcomes as well as for the dichotomized mRS alone at 90 days [39]. In 
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addition to the primary outcome assessment at 90 days, the mRS was collected at 7-10 

days, 180 days and 360 days from randomization for each subject.  

 The ALIAS Trial was designed to compare 25% human serum albumin and saline 

in patients with acute ischemic stroke [82]. Part 1 of the trial was suspended after 

enrolling 434 subjects due to safety concerns of albumin [84]. Part 2 of the trial was 

slightly redesigned with unblinded safety analysis and enrolled 841 subjects. The analysis 

of both Parts 1 and 2, as well as the two combined, showed a lack of treatment effect on 

primary and secondary outcomes, including the dichotomized mRS at 90 days [85]. In 

addition to the primary outcome assessment at 90 days, the mRS was also collected at 30 

days, 180 days, 270 days and 360 days from randomization for each subject. 

4.2.1 Multistate Markov Models 

MSMMs in continuous-time has been used to model the course of many diseases [4]. The 

MSMMs incorporate longitudinal ordinal data and can provide clinically relevant 

summary statistics to describe covariate effects, including sojourn times and transition 

rates. These models are advantageous in clinical applications, where a disease process 

naturally moves through increasing stages of severity [4]. Homogeneous continuous-time 

MSMMs, where the transition rates are assumed to be constant over time, have been used 

to analyze various diseases [86-88].  

 The assumption of homogeneity is not always realistic. With acute onset diseases, 

the rapid nature of onset and intervention likely characterize a process that changes 

quickly early on and tapers off after the initial acute recovery stage. The transition rates 

of the remainder of the longitudinal disease process, after the initial burst of rapid 
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movement post-baseline, are likely to differ from those observed in the acute phase. In 

this case, a non-homogeneous model with piecewise constant intensity rates can be used.  

 Multistate Markov modeling requires that the Markov property holds for the 

observed data. Consider a system with a finite state-space {1,2,3,..., }I , where I  

represents the number of states. Let ( )X s t  be a discrete random variable that indicates 

the state occupied by the system at time s t . Let 
( )F { ( ) : }X s X v v s  which denotes all 

information pertaining to the history of X  up to time s  [64]. The series of observations 

has the Markov property if the conditional distribution of ( )X s t given 
( )FX s

, satisfies 

    ( )( ) | F , ( ) ( ) | ( ) ( , ), ,X s ijP X s t j X s i P X s t j X s i p s t i j         .  (4.1) 

In other words, the present state depends only on the immediately preceding observation 

and not on the ones before it. In the context of clinical trials, the state of the system is the 

health state of one individual.  

 Though the ordinal outcome in acute therapy clinical trials is observed at discrete 

times, the disease process is continuous, where progression or recovery can occur at any 

time. Continuous-time MSMMs can analyze this type of data, known as panel data, as 

long as the sampling times are considered to be noninformative [4]. In the clinical trial 

setting where the observation scheme is fixed in advance, this assumption is valid. If, 

however, a subject visited a clinic because of a change in symptoms and the outcome was 

collected, the sampling time would be informative and could bias inference. These 

continuous-time MSMMs are flexible enough to model panel data with noninformative 
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sampling times but also include exact time of death, which is commonly observed in 

clinical trials. 

 A common assumption of continuous-time MSMMs is that of homogeneity, 

where transition probabilities remain constant over time. When homogeneity is assumed, 

the transition probabilities, ( )ijp t , are defined as 

 ( ) { ( ) | ( ) } { ( ) | (0) }ijp t P X s t j X s i P X t j X i       .  (4.2) 

Since this expression does not depend on s , the transition from state i  to state j on a 

time interval of length t  has the same probability at any time. The ( )ijp t  are elements of 

the transition probability matrix, ( )tP . 

 The movement of a subject between states is described by 
ij , the transition 

intensities: 

 
0

( ( ) | (0) )
lim , forij
t

P X t j X i
i j

t






 
  .  (4.3) 

The intensities represent the instantaneous rate of moving from state i  to state j i  and 

form the generator matrix, Λ , whose rows sum to zero and the diagonal entries are 

ii ij

j i

 


  . The transition probability matrix ( )tP  can be solved by taking a matrix 

exponential of Λ  scaled by the time interval, 

 
0

( )
!

k k

k

t
t e

k





 tΛ Λ
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where kΛ  is the k
th

 power of the generator matrix Λ .  
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 Suppose X  is observed over 0 1 2 ... Mt t t t    . Let 0 1 2, , , ..., Mi i i i be the 

observed states over these time points. Then, the associated likelihood function is 
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Using equations (4.4) in (4.5), the likelihood reduces to 
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 ,  (4.6) 

where 0iP  is the initial probability that the process is at 0i . 

4.2.2 Piecewise-constant Multistate Markov Models 

In the case of ischemic stroke occurrence and treatment, subjects can get better or worse 

very quickly. For this reason, the time homogeneity assumption is expected to fail for the 

first transition, from the estimated baseline to the first observed outcome. Therefore, 

assumption of homogeneity is relaxed and a non-homogeneous model is considered. 

  The MSMM for panel data can be extended to accommodate piecewise-constant 

intensity matrices for the non-homogeneous case [59]. Here, the transition probability 

functions are dependent on s  and the transition matrix function is ( , ) ( ( , ))ijs t p s tP . The 

transition intensity functions are now defined by 
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0

( (t ) | (t) )
( ) lim , , ,ij

t

P X t j X i
t i j S i j

t






  
   .  (4.7) 

The time-homogeneity assumption can be tested by using a likelihood ratio test to 

compare the time-homogenous model to piecewise-constant models with different cutoff 

times. 

 The effect of a covariate, specifically treatment, is incorporated into the model as 

transition intensity functions [69]. Let z be a vector of observed covariates then 

 ( ; ) ( )exp( ' ( )), ( ) 0ij ij ij ijt z t z t t       (4.8) 

where ( )ij t  is the parameter vector associated with the covariate vector z  in the 

transition between states i  and j  in time t . The transitional rates are represented by

( ; )ij t z  at time t  for the subjects with vector z . 

4.2.3 Latent Baseline Estimation 

To consider the full evolution of ischemic stroke over time, an estimated baseline 

functional outcome is needed because baseline mRS is not obtainable in the acute setting. 

While functional outcome is not available at baseline, many other measures that are 

correlated with functionality are available. An estimation procedure using baseline 

characteristics known to be highly correlated with the mRS was developed. 

 As a preliminary step, to summarize information from numerous baseline 

measurements considered clinically relevant for functional outcome in ischemic stroke 

patients, data reduction was performed using a Principal Components Analysis (PCA). 

The items included in the PCA were age, baseline glucose, time from stroke onset to 
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randomization, the Alberta Stroke Program Early CT score (ASPECTS), and NIHSS. 

Age and time from stroke onset to randomization are two very well established predictors 

of outcome in acute stroke. Another baseline characteristic associated with poor outcome 

is “stress” hyperglycemia [89]. This hyperglycemia can be quantified using acute post-

stroke glucose levels. The ASPECTS is also a strong prognostic indicator of outcome 

[90], which is a 10-point quantitative topographic CT scan score, where a normal scan 

receives a score of 10 [91]. For each defined region of the brain, a point is subtracted if 

there is evidence of ischemic change. The NIHSS is commonly used to measure baseline 

stroke severity. The individual items of the scale are presented in Appendix 4A. Baseline 

NIHSS is known to strongly predict outcome in acute stroke therapy trials [92]. Although 

total score is typically used for indicating stroke severity, each item of the scale was used 

in the PCA individually in order to more efficiently assess the contribution of each facet 

of the scale.  

 After reducing the data to fewer PCA’s sextiles (six categories because the 

seventh category, namely mRS = 6 corresponds to death) based on the joint distributions 

of the PCA’s will be used to define the baseline states of the individuals. Then the 

MSMM likelihood ratio tests will be used to compare treatment effects. However, in this 

likelihood ratio test, the uncertainty of the estimated baseline states has to be considered. 

This is achieved through bootstrap approach, using which an empirical distribution was 

derived to determine the p-values. The steps used in this non-parametric bootstrap 

approach are as follows: 

1. Sample with replacement from the original dataset 1,000 times. 
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2. Use the baseline estimation procedure from the original data on each of the 1,000 

bootstrapped samples (fixing the number of significant components as well as the 

variables used in each of the component score calculation). 

3. Fit the piecewise MSMM to each resample and obtain the test statistic. 

4. Compare the original test statistic to the new bootstrap distribution, made up of 

the 1,000 test statistics from the bootstrap samples.  

5. The bootstrap p-value is calculated by finding the proportion of bootstrap samples 

in which the test statistics is larger than or equal to the one calculated from the 

original sample. 

4.3 Results 

Detailed descriptions of the PCA for each trial are presented in Appendix 4B. For both 

NINDS tPA and ALIAS, most of the variability was adequately explained by the first two 

components. Thus, component scores were calculated for Components 1 and 2 for each 

trial. Larger values on the component scores were expected to be associated with worse 

functional outcome. To assign the baseline mRS state, each of the component scores were 

divided into sextiles with equal probability. In Figure 4.1, the joint distribution of the two 

discretized scores are shown were used to assign values of mRS = 0 to mRS = 5 with 

equal probability (subjects cannot be dead at baseline, so no one was assigned an mRS = 

6). There is uncertainty in the assignment of baseline states which needs to be accounted 

for in the hypothesis tests comparing treatments. 

 In the NINDS tPA trial, several subjects either did not have available CT scans or 

the scans were not of sufficient quality to obtain ASPECTS (16/624). Scores for the 
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second component could not be calculated and subsequently the baseline mRS could not 

be estimated. These subjects were not excluded from the analysis unless they died in the 

first week of follow-up, leaving them with only one observed mRS score (5/624). 

Therefore, the total number of subjects included in the MSMM was 619, where 320 were 

randomized to receive tPA and 323 to receive placebo.  

 

Figure 4.1: Baseline mRS score from summed standardized component scores for: (a) NINDS tPA and (b) 

ALIAS. 

4.3.1 The Longitudinal Data 

 In the ALIAS Trial, a small number of subjects withdrew consent or were lost-to 

follow-up prior to the 30 day visit and had only one observation available, the estimated 

baseline mRS (17/1275). Excluding these subjects, a total of 1258 were included in the 

MSMM, where 628 were randomized to receive albumin and 630 to receive placebo. In 
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Appendix 4C, baseline characteristics of the 17 excluded subjects are summarized 

alongside those of the subjects that were not excluded. No notable differences exist 

between the groups and thus the exclusion of these subjects should be inconsequential in 

the analysis.   

4.3.2 Development of MSMM for the NINDS tPA Study and ALIAS 

In order to analyze panel data with continuous-time Markov chains it is important to 

consider which transitions can realistically occur in continuous time. When states 

represent severity it is assumed that in order for a subject to transition from one state to 

another non-adjacent state they also transition through the intermediate states. Thus, a 

reduced transition intensity matrix should be estimated, where non-adjacent state 

transitions are fixed to equal zero. The exception is when a state represents death. The 

reality is that a subject can die from any state.  

 In practice, if there is not enough information from the data, on a certain transition 

rate, more transition intensities may need to be set to zero [4]. State tables display counts 

of the pairs of transitions between states in successive observation times and summarize 

them in frequency tables of previous state against current state. These state tables can be 

used to identify counts that are too few to model. 

 The state table of all aggregate transtions from the NINDS tPA data (baseline to 

360 days) is displayed in Table 4.2. Even though it is possible for subjects to die from 

any state, it is highly unlikely to occur from states 1, 2, 3 or 4. This is not surprising as 

subjects are only observed over the course of one year. The relatively healthy subjects 

have a low risk of death. Therefore more constraints are required for this model. When 
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the table is stratified by time for the piecewise model and again by treatment, the 

frequency of death from the healthier states (1, 2, 3 and 4) is too small to estimate the 

transition intensities. As a result, the original model was modified to no longer allow 

death from any state. Constraints were imposed such that death was only allowable from 

states 5 and 6.  

Table 4.2. NINDS tPA state table. 

 

To (state j) 

 

1 2 3 4 5 6 7 Total 

From (state i) 

        1 206 52 9 3 5 0 2 277 

2 87 245 39 12 23 7 8 421 

3 23 73 85 35 32 14 10 272 

4 13 41 62 148 52 25 10 351 

5 11 26 27 84 187 53 41 429 

6 4 8 7 25 83 142 83 352 

Total 344 445 229 307 382 241 154 2102 

 

 Similarly, when the state table was examined for ALIAS, small counts were 

observed for death from states 1, 2 and 3. The reduced allowable transition matrix for 

ALIAS fixed the intensities from these states to death to equal 0, only allowing the 

intensities from 4, 5 and 6 to death to be estimated. 

4.3.3 Analysis of the NINDS tPA Study and ALIAS 

The entries of the transition intensity matrices were estimated by applying the maximum-

likelihood method and accounting for the two constant intervals partitioned at time 

.333t   (representative of 7-10 days on a month-long interval) in the NINDS tPA trial 

and time 1t   (representative of 30 days) in ALIAS. Analysis was performed using the 

msm package in R using the Broyden-Fletcher-Goldfarb-Shanno method [4]. 
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 For the NINDS tPA trial, using a likelihood ratio test to compare the piecewise 

model including treatment (-2LL = 6251) to one without treatment (-2LL = 6282), the 

model with treatment was preferred, indicating a statistically significant treatment effect 

on the transition rates (p = 0.002, df = 12). It is interesting to note that in models 

excluding estimated baseline mRS, the comparison of a model with treatment (-2LL = 

4033) adjusting for baseline NIHSS to one without treatment (-2LL = 4053) failed to 

detect a statistically significant treatment effect (p = 0.053, df = 12). 

 In ALIAS, using a likelihood ratio test to compare the piecewise model including 

treatment (-2LL = 12730) to one without (-2LL = 12745), the reduced model was 

preferred, indicating no significant treatment effect on the transition rates (p = 0.29, df = 

13), confirming the results from the primary analysis of the trial [43]. 

 For NINDS tPA, after comparing the empirical distribution to the observed test 

statistic of 31.18, the p-value from the bootstrap procedure was 0.04 which is larger than 

the observed p-value of 0.002 but still indicative of a significant treatment effect. For 

ALIAS, the p-value calculated from the bootstrap procedure, where the test statistic from 

the analysis of the original sample was 15.25, was 0.49 which is also larger than the 

observed p-value of 0.29 but results in the same conclusion that there is no a significant 

treatment effect.  

 Table 4.3 shows the transition intensities estimated in the piecewise-constant 

model for the NINDS tPA Stroke Study. Transition rates differ between the placebo and 

tPA groups. The differences between groups can also be presented using hazard ratios 



 

86 

 

(Table 4.4). A hazard ratio greater than one indicates that the rate of transition is higher in 

the treatment group. 

 The only statistically significant hazard ratio was from state 2 to state 3 (HR = 

0.51). This can be interpreted as the most significant impact of tPA is to reduce the 

hazard of transitioning from mRS = 1 to mRS = 2. The other hazard ratios, although not 

statistically significant, suggest a trend of tPA reducing the hazard of negative transitions. 

Table 4.3. Maximum-likelihood estimates of transition rates among states. 

 Placebo tPA 

Transition 0 ≤ t ≤ 0.333 t > 0.333 0 ≤ t ≤ 0.333 t > 0.333 

12 10.83 (2.36, 49.71) 0.09 (0.06, 0.14) 7.91 (1.89, 33.06) 0.07 (0.05, 0.09) 

23 19.30 (6.07, 61.37) 0.09 (0.06, 0.15) 9.75 (3.15, 30.22) 0.05 (0.03, 0.07) 

34 12.84 (6.53, 25.28) 0.19 (0.12, 0.32) 16.59 (7.09, 38.86) 0.25 (0.14, 0.44) 

45 24.03 (10.50, 54.98) 0.12 (0.08, 0.19) 16.07 (6.71, 38.50) 0.08 (0.05, 0.13) 

56 2.97 (1.92, 4.59) 0.05 (0.04, 0.10) 2.63 (1.70, 4.07) 0.05 (0.03, 0.09) 

57 0.48 (0.27, 0.86) 0.05 (0.04, 0.07) 0.46 (0.26, 0.83) 0.05 (0.03, 0.07) 

67 0.50 (0.28, 0.88) 0.12 (0.09, 0.18) 0.60 (0.35, 1.02) 0.15 (0.10, 0.21) 

21 7.53 (1.64, 34.55) 0.08 (0.05, 0.11) 7.54 (1.85, 30.72) 0.08 (0.06, 0.10) 

32 18.06 (5.49, 59.44) 0.23 (0.16, 0.32) 20.59 (6.43, 65.91) 0.26 (0.18, 0.36) 

43 14.15 (6.74, 29.71) 0.22 (0.15, 0.32) 14.06 (6.09, 32.46) 0.22 (0.15, 0.33) 

54 6.29 (2.59, 15.26) 0.20 (0.15, 0.27) 6.86 (2.86, 16.46) 0.22 (0.16, 0.30) 

65 3.08 (2.01, 4.72) 0.23 (0.17, 0.32) 2.46 (1.61, 3.77) 0.18 (0.13, 0.26) 

 

Table 4.4. Hazard ratios (95% CI). 

12 0.73 (0.43, 1.23) 

23 0.51 (0.28, 0.90) 

34 1.29 (0.66, 2.52) 

45 0.67 (0.38, 1.17) 

56 0.88 (0.53, 1.48) 

57 0.96 (0.55, 1.66) 

67 1.20 (0.75, 1.92) 

21 1.00 (0.62, 1.62) 

32 1.14 (0.71, 1.83) 

43 0.99 (0.59, 1.68) 

54 1.09 (0.72, 1.65) 

65 0.80 (0.52, 1.23) 
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4.4 Summary and Discussion 

Dichotomization of ordinal outcomes is common but results in a loss of information and 

can reduce statistical power. Some patients with severe disability at baseline may never 

have the potential to achieve success as defined by the dichotomy. Thus, the prognostic 

heterogeneity of subjects does not allow for potential equal contribution to the estimation 

of treatment effect for all subjects with a dichotomized outcome [9]. 

 A number of alternative methods for ordinal outcome data have received attention 

in recent years [93]. Linear regression and analysis of variance have been suggested 

where the ordinal outcome is treated as a continuous variable. Summary statistics from 

these models do not have straightforward interpretations because non-integer values from 

ordinal scales do not have a clear meaning. 

 A number of ordinal analyses have also been suggested. Ordinal logistic 

regression, under the assumption of proportional odds, assumes an identical effect of the 

predictors for each cumulative probability [45]. If the proportional odds assumption 

holds, statistical power can be increased as compared to analysis using a strict dichotomy. 

The score test for assessing the proportional odds assumption, however, is 

anticonservative. If the assumption fails, this analysis could mask important effects at one 

end of the ordinal outcome [46]. The partial proportional odds model relaxes this 

assumption and includes a term that allows the odds ratios to increase proportional to the 

outcome scale [46]. Alternatively, the cumulative logit model allows for the calculation 

of odds ratios for each adjacent category of response in relation to covariates and does 

not require the proportional odds assumption [45]. One drawback of both the partial 
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proportional odds and cumulative logit models is that they can require a larger sample 

size to be adequately powered. 

 The sliding dichotomy is another alternative method for the analysis of ordinal 

outcomes. It allows for the definition of success to vary based on patient-specific baseline 

prognostic variables while maintaining a dichotomized outcome, however, there are no 

guidelines for selection of number of prognostic groups nor cut points for those groups 

[48]. Poor selection of these groups could lead to a reduction in power. Furthermore, 

while the sliding dichotomy allows for baseline severity adjusted outcome, it still ignores 

any non-successful transitions [94].  

 The Cochran-Mantel Haenszel (CMH) shift test can also be used to analyze the 

distribution of ordinal data [7]. This test can show whether a treatment causes a 

significant shift toward good outcome. Shift analysis can account for ordered categories, 

has no distributional assumptions and is easy to implement. However, it is not feasible for 

large scale clinical trials with non-simple randomization schemes because it can only 

accommodate a limited number of covariates. There are also no summary statistics that 

appeal to a clinical audience so proportional odds logistic regression is often used in 

conjunction with the CMH test to provide an estimate of treatment effect [44]. In 

addition, shift analysis assumes that a treatment effect exists only in one direction, where 

only benefit is considered, not harm.  

 An approach to transform the mRS into a patient-centered outcome measure was 

recently proposed [53]. The chosen patient-centered outcome measure was utility, which 

is the desirability of a specific health outcome to a patient [54]. The utility weights were 
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derived for each level of the mRS by averaging utility values derived in two studies, 

using two different methods. Analysis using the utility weights is straightforward as the 

weights have already been defined and the utility-weighted mRS is analyzed using a t 

test. Though this method is easy to implement and provides greater statistical power, it is 

based on only two populations and may not be representative of patients in other 

locations. In addition, the utility values do not have as clear of an interpretation as some 

other analysis methods. 

 None of the previously mentioned methods utilize the repeated measures even 

though outcome is collected over time. In fact, a literature search for repeated measures 

analysis of acute stroke trial data only returned one article where a generalized estimating 

equations approach was used for repeated measures analysis [11]. This approach only 

considered the dichotomized outcomes from the NINDS tPA study. The work presented 

here is the first known study of the repeated measures acute stroke therapy data using the 

ordinal scale. 

 The results presented in this manuscript are the first to estimate a missing baseline 

ordinal outcome for use in a MSMM. In the case of ischemic stroke occurrence and 

treatment much of the progression or recovery experienced by a patient is expected to 

occur early. Functional outcome measures are not suitable at baseline and as a result, 

functional changes over time from baseline cannot be measured. Therefore, latent 

estimation the functional baseline was warranted, allowing for inclusion of an 

informative transition from baseline to first follow-up to be included in a longitudinal 

model.  
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 Using the longitudinal data, including the estimated baseline, this work showed 

that there are differences in the rate of transitions between the treatment and placebo 

groups in the NINDS tPA trial, confirming the results of the primary analysis while 

allowing for examination of the effect on all adjacent-state transitions. The ability to 

estimate the intensities for all adjacent-state transitions allowed for examination of the 

most significant effect of treatment. Specifically, it was determined that the most 

significant impact of tPA is reduction the hazard of transitioning from mRS = 1 to mRS = 

2. In addition, the conclusion of no treatment effect in the ALIAS Trial data was also 

consistent with the primary analysis from that trial.  

 In the MSMM of the NINDS tPA data, where the estimated baseline was not 

included and the model adjusted for baseline NIHSS instead, as is done in most other 

types of analysis of the mRS, the effect of treatment was only marginally significant. 

Thus, it seems as though inclusion of the estimated baseline mRS improved the ability to 

detect a treatment effect. It is hypothesized that the inclusion of the latently estimated 

baseline mRS is improves the model because of the acute nature of ischemic stroke 

therapy and the expected early recovery and disease progression directly following 

treatment. 

 The MSMM can incorporate longitudinal ordinal data and provide clinically 

interpretable summary statistics to describe covariate effects on all transition rates and 

sojourn times. Estimation of transition rates can describe treatment effect in a much finer 

gradient than modeling collapsed ordinal scale allowing for a more comprehensive 

understanding of differences in the effect of treatment. The MSMM also allows for 
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specific hypotheses to be tested-- for example a likelihood ratio test could be used to test 

whether the effect of treatment is the same for all forward transitions and backward 

transitions [59]. 

 Another benefit of these models is the potentially decreased sample size needed to 

detect a treatment effect. A previous simulation study indicated that the power of 

MSMMs applied to acute onset clinical trial data was significantly increased when the 

number of follow-up visits was increased [93]. Future trials could collect the ordinal 

outcome more frequently over the course of follow-up, increasing the power to detect 

differences using this modeling technique. 

 A limitation of MSMMs is that they are computationally intensive, especially 

when using bootstrapping to obtain the bootstrap empirical distribution. In addition, use 

of these models requires a priori decisions about the transitions that can realistically 

occur, which may be a data driven decision. Interpretation of the full model could 

potentially be overwhelming, as there are many parameters that describe the effect of one 

covariate; however, the model also allows for testing whether the effect of a covariate is 

the same for certain transitions, which could reduce the number of parameters. The 

flexibility to estimate the full or reduced model allows a number of clinical questions to 

be answered using one approach. 

 Future directions could include more complex methods for baseline estimation. 

For example, a Bayesian PCA could be used in alternative baseline estimation procedure. 

This method could potentially address the uncertainty of the assigned baseline scores via 

extraction of the posterior distributions for the component scores [95]. In addition, the 
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methods presented for estimation could be extended to cases where more than two 

components were used in the estimation procedure. 
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4.5 Appendices 

Appendix 4A: modified NIHSS summary 

In this appendix, Table 4.1A is presented, which shows the 15 items of the NIHSS. The 

form for recording the data contains detailed instructions for use of the scale. 
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Table 4.1A. The Modified National Institutes of Health Stroke Scale 

Summary. 

1A Level of Consciousness 

 

0 = Alert 

1 = Not alert, obtunded 

3 = Unresponsive 

1B 

 

LOC Questions 0 = Answers both correctly 

1 = Answers one correctly 

2 = Answers neither correctly 

1C 

 

LOC Commands 0 = Performs both tasks correctly 

1 = Performs one task correctly 

2 = Performs neither task 

2 

 

Best Gaze 0 = Normal 

1 = Partial gaze palsy 

2 = Total gaze palsy 

3 

 

Visual 0 = No visual loss 

1 = Partial hemianopia 

2 = Complete hemianopia 

3 = Bilateral hemianopia  

4 Facial Palsy 

 

0 = Normal 

1 = Minor paralysis 

2 = Partial paralysis  

3 = Complete paralysis 

5 Motor Arm 

a. Left 

b. Right 

 

0 = No drift 

1 = Drift before 10 seconds 

2 = Falls before 10 seconds 

3 = No effort against gravity 

4 = No movement 

6 Motor Leg 

c. Left 

d. Right 

 

0 = No drift 

1 = Drift before 10 seconds 

2 = Falls before 10 seconds 

3 = No effort against gravity 

4 = No movement 

7 

 

Limb Ataxia 0 = Absent 

1 = Present in one limb 

2 = Present in two limbs 

8 

 

Sensory 0 = Normal 

1 = Mild to moderate sensory loss 

2 = Severe to total sensory loss 

9 Best Language 

 

0 = No aphasia, normal 

1 = Mild to moderate aphasia 

2 = Severe aphasia 

3 = Mute or global aphasia 

10 

 

Dysarthria 0 = Normal 

1 = Mild to moderate 

2 = Severe 

11 Extinction and Inattention (Neglect) 

 

0 = No abnormality 

1 = Mild 

2 = Severe 
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Appendix 4B: data reduction using principal component analysis 

When applied to a set of variables, PCA can group correlated variables into a smaller set 

of composite variables (principal components). The resulting linear combinations of 

variables account for as much variability in the data as possible and can be used to 

calculate component scores. A number of methods exist for computation of component 

scores. Non-refined methods are simple, easy to compute and easy to interpret, while 

refined methods are more complex and exact [96]. Refined computation methods are 

generally less stable across samples; hence, a non-refined method is implemented for the 

motivating data sets. Of the non-refined methods, the summation of standardized 

variables is preferred when the standard deviations of the raw data vary widely, as was 

found in the NINDS tPA and ALIAS data. 

 PCA was used to group measures of severity (individual items of the NIHSS) and 

other baseline variables known to be associated with functional ability (age, baseline 

glucose, time from stroke onset to randomization and ASPECTS score) into components 

and calculate component scores. For the analysis using PCA, variables were reformatted 

so that the direction of effect was consistent across all candidate variable and 

standardized scales were used. Component scores from PCA are more intuitive if the 

expected relationship with the variables and outcome is in the same direction. For 

example, increased age increases the risk of a negative outcome. All of the variables 

included in the PCA are positively correlated with bad outcome except ASPECTS. A 

smaller ASPECTS is predictive of negative outcome. For interpretation, the direction of 

the ASPECTS scale was reformatted such that 10 represented the worst and 0 normal.  
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Figure 4.1B. Scree plot of eigenvalues from PCA of baseline variables from: (a) NINDS tPA and (b) 

ALIAS. 

 

 In the process of determining the number of components to retain from the PCA 

analysis, the eigenvalues of the correlation matrix were visually assessed using scree 

plots (Figure 4.1B). From this illustration it can be seen that the line flattens after the 

second component in the scree plot for both NINDS tPA (a) and ALIAS (b) and thus the 

first two components were found to adequately explain most of the variability. In order to 
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assess how strongly the components and variables are related, the component loadings for 

retained components were examined. Component loadings can be interpreted as the 

correlation between an observed variable and a component. A general rule of thumb 

deems components with loadings of at least |.4| highly explanatory [97]. 

  The loadings for the first two components are displayed in Table 4.1B. Based on 

the criteria outlined above, baseline glucose, time from onset to randomization, and 

individual NIHSS items Q1A and Q07 were not included in the component score 

calculation for NINDS tPA. Age, baseline glucose, time from onset to randomization, and 

individual NIHSS items Q07 and Q10 were not included in the component score 

calculation for ALIAS. 

Table 4.1B. Factor loadings on components based on PCA. 

 NINDS tPA 

Components 

ALIAS 

Components 

 1 2 1 2 

Age 0.15 -0.03 0.16 0.13 

Baseline glucose 0.10 -0.04 0.06 -0.02 

Stroke onset to randomization -0.08 -0.06 0.03 -0.04 

NIHSS item     

Q1A – Level of Consciousness (LOC) 0.38 0.39 0.32 0.42 

Q1B – LOC Questions 0.78 -0.18 0.80 -0.01 

Q1C – LOC Commands 0.75 -0.01 0.78 0.14 

Q02 – Best Gaze 0.37 0.66 0.20 0.71 

Q03 – Visual  0.36 0.61 0.25 0.64 

Q04 – Facial Palsy 0.22 0.50 0.01 0.48 

Q5A – Motor Arm Left -0.39 0.77 -0.63 0.58 

Q5B – Motor Arm Right 0.84 -0.20 0.82 -0.01 

Q6A – Motor Leg Left -0.25 0.74 -0.53 0.56 

Q6B – Motor Leg Right 0.80 -0.11 0.76 0.03 

Q07 – Limb Ataxia -0.20 -0.21 -0.15 -0.24 

Q08 – Sensory 0.20 0.60 -0.02 0.54 

Q09 – Best Language 0.86 -0.19 0.87 -0.03 

Q10 – Dysarthria 0.60 0.04 0.35 0.22 

Q11 – Extinction and Inattention 0.15 0.70 -0.09 0.68 

ASPECTS 0.15 0.49 0.15 0.48 
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 Each of the variables deemed important with the cutoff of >|.4| on the first two 

components were standardized to range [0, 1]. The standardized values of variables that 

loaded high on each component were summed to calculate the component scores as 

follows: 

 NINDS tPA Component Score 1 =  

 Q1B + Q1C + Q5B + Q6B + Q09 + Q10  

 NINDS tPA Component Score 2 =  

 Q02 + Q03 + Q04 + Q5A + Q6A + Q08 + Q11 + ASPECTS 

 ALIAS Component Score 1 =  

 Q1B + Q1C + Q5B + Q6B + Q09  

 ALIAS Component Score 2 =  

 Q1A + Q02 + Q03 + Q04 + Q5A + Q6A + Q08 + Q11 + ASPECTS.  

These component scores were then used in the main manuscript to assign baseline mRS 

state. 
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Appendix 4C: baseline characteristics of ALIAS subjects included and excluded 

from MSMM analysis 

In this appendix, Table 4.1C is presented with baseline characteristics of the 17 ALIAS 

subjects excluded from the analysis because of withdrawn consent or lost-to-follow-up 

prior to the 30 day visit in combination with all mRS scores missing post-baseline. 

Table 4.1C. Baseline Characteristics of the Subjects. 

Characteristic Included 

(N = 1258) 

Excluded 

(N = 17) 

Age [mean (SD)] 66.1 (13.6) 62.6 (15.3) 

Male sex [n (%)] 674 (53.6) 10 (58.8) 

 

 

 

Race  

[n (%)]  

White 969 (77.0) 13 (76.5) 

Black 197 (15.7) 3 (17.7) 

Asian 60 (4.8) 0 (0.0) 

American Indian/Alaska Native/First 

Nations People 

7 (0.6) 0 (0.0) 

Native Hawaiian or Pacific islander 3 (0.2) 0 (0.0) 

Multiple, Other, or Unknown 1 (0.1) 0 (0.0) 

 

Ethnic  

group  

[n (%)] 

Non-Hispanic/Latino 1147 (91.2) 15 (88.2) 

Hispanic/Latino 60 (4.8) 2 (11.8) 

Unknown 51 (4.1) 0 (0.0) 

 

 

 

Medical  

history 

[n (%)] 

Hypertension 911 (72.4) 10 (58.8) 

Atrial fibrillation 257 (20.4) 2 (11.8) 

Past congestive heart failure 55 (4.4) 1 (5.9) 

Past myocardial infarction 155 (12.3) 5 (29.4) 

Past stroke 238 (18.9) 6 (35.3) 

Past transient ischaemic attack 157 (12.5) 2 (11.8) 

Diabetes mellitus 261 (20.8) 4 (23.5) 

Hyperlipidemia 554 (44.0) 8 (47.1) 

Peripheral vascular disease 75 (6.0) 1 (5.9) 

 

Baseline NIHSS score [median, (inter-quartile range)]  11 (8 - 17) 9 (7 – 13) 

Baseline 

ASPECTS 

score  

Baseline ASPECTS > 7 [n/N, (%)] 932/1238 (75.3) 15/16 (93.8) 

 

Clinical 

findings 

[mean (SD)] 

Systolic blood pressure, mm Hg  156.9 (29.0) 157.3 (31.3) 

Plasma glucose, mmol/L 7.4 (3.2) 7.9 (3.3) 

Creatinine, µmol/L 90.2 (25.9) 92.7 (27.4) 
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Abstract 

Background and Purpose – Historically, ordinal measures of functional outcome have 

been dichotomized for the primary analysis in trials of acute stroke therapy. A number of 

alternative methods to analyze the ordinal scales have been proposed, with an emphasis 

on maintaining the ordinal structure as much as possible. In addition, despite the 

availability of longitudinal outcome data in many trials, the primary analysis consists of a 

single endpoint. Inclusion of information about the course of disease progression allows 

for a more complete understanding of the treatment effect.  

Methods – Multistate Markov modeling, which allows for the full ordinal scale to be 

analyzed longitudinally, is compared with previously suggested analytic techniques for 
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the ordinal modified Rankin Scale (dichotomous-logistic regression; continuous-linear 

regression; ordinal- shift analysis, proportional odds model, partial proportional odds 

model, adjacent categories logit model; sliding dichotomy; utility weights; repeated 

measures). Each of the methods is used to re-analyze the National Institute of 

Neurological Diseases and Stroke tissue plasminogen activator study.  

Results – All methods detected a statistically significant treatment effect except the 

multistate Markov model without predicted baseline (p=0.053). The multistate Markov 

model allows for a more refined examination of treatment effect and describes the 

movement between modified Rankin Scale states over time which may provide more 

clinical insight into the treatment effect. 

Conclusions – Multistate Markov models are feasible and desirable in describing 

treatment effect in acute stroke therapy trials. Future trials could increase power to detect 

a treatment effect using these models by collecting the outcome more frequently. 

Keywords 

acute stroke; outcomes; randomized controlled trials; statistical analysis 
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5.1 Introduction 

A number of potential explanations for the failure of most acute stroke therapy trials to 

show efficacy have been discussed, including differences in preclinical and clinical 

models, inappropriate inclusion criteria, and poor methodological and statistical standards 

[6]. Specifically, there has been a recent emphasis on exploring alternative outcomes and 

analytic methods for stroke therapy trials.  

The modified Rankin Scale (mRS) is the most commonly chosen primary 

outcome measure in clinical trials of acute stroke therapy [2]. Despite the ordinality of 

the outcome measure, many trials have dichotomized the mRS for the primary analysis 

[7]. In general, ignoring these differences and dichotomizing does not allow for 

examination of the treatment effect at finer gradients of the scale and can result in a loss 

of statistical power [1]. Any reduction in power may result in failure to find a clinically 

meaningful treatment effect during analysis of the data. The mRS should be analyzed in 

such a way that maintains the original structure of the scale as much as possible, using 

continuous or ordinal approaches [1, 3]. 

 A number of alternative methods have been proposed to improve the analysis of 

the mRS. Some trials have analyzed the mRS as a continuous outcome, utilizing t-tests or 

linear regression [71]. Other trials have used the Cochran-Mantel Haenszel (CMH) shift 

test to analyze the distribution of the mRS, where the primary outcome is a favorable 

shift toward better functional outcome [7]. Ordinal logistic regression has also been 

proposed and applied in re-analysis of stroke trial data [46]. The proportional odds model 

(POM) has been used but the test for the proportional odds assumption is not well-
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powered. In cases where the assumption was not justifiable, the partial proportion odds 

model (PPOM) or the adjacent categories logit (ACAT) has been used [46]. A popular 

alternative to continuous, ordinal and strict dichotomous analysis is responder analysis or 

the sliding dichotomy, where the definition of success is allowed to vary depending on 

baseline severity [48]. Most recently, a utility weighted mRS (UW-mRS) was derived to 

provide a patient centered metric of the degree of benefit or harm of a treatment that can 

be analyzed with a t-test or linear regression [53, 98]. 

 A drawback of the outcome measures and analytic strategies listed above is that 

each analyzes data from a single endpoint, commonly the 90 day outcome, for the 

primary analysis despite the availability of repeated response measures collected over the 

course of longitudinal follow-up. Inclusion of information about the course of disease 

progression, using the longitudinal data, allows for a more comprehensive understanding 

of the benefit of a treatment [99]. None of the previously mentioned methods have 

utilized the repeated measures data. A literature search for repeated measures analysis of 

acute stroke trial data returned only two articles where a generalized estimating equations 

approach was used for repeated measures analysis of the mRS [11, 58]. 

 Most recently, the Multistate Markov model (MSMM) was proposed for analysis 

of the mRS [93, 100]. The MSMM analyzes repeated measures data with ordinal 

outcomes. These types of models describe how a subject moves between a series of 

disease states over time, which is desirable in the description of disease processes that 

naturally move through increasing stages of severity [59]. Results suggest that the 

MSMM can be a more efficient approach than dichotomized methods used to analyze the 
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mRS data in some scenarios [93]. MSMMs can provide a better clinical understanding of 

the disease process since the information from the entire course of the disease is used to 

estimate the parameters of the model. 

 The purpose of this article is to demonstrate the MSMM as an approach for 

analysis of the mRS. The MSMM and the alternative methods listed above will be used to 

re-analyze the National Institute of Neurological Disorders and Stroke (NINDS) tissue 

plasminogen activator (t-PA) trial data. The results from each of the analytical analysis 

approaches will be compared with the results using the MSMM approach. 

5.2 Materials and Methods 

5.2.1 Trial Data 

The seminal NINDS t-PA trial showed a consistently significant effect of t-PA using a 

global test of four outcomes (Barthel Index, mRS, Glasgow Outcome Scale and NIHSS) 

in the analysis of the primary outcome at 90 days post-stroke [39]. In addition to the 90 

day primary outcome assessment, the mRS was also collected at 7-10 days, 180 days and 

360 days from randomization.  

 Acute stroke requires immediate attention and treatment, posing a challenge to 

assess baseline outcome measures for clinical trials. Thus, the mRS is not obtainable at 

baseline and most often analysis is adjusted for baseline severity using the NIHSS [80]. 

Much of the progression or recovery experienced by a patient suffering from an acute 

onset disease is expected to occur early on. Moreover, typically, the goal of a treatment or 

therapeutic action is improvement in patient health compared to their baseline measure. 

To accurately quantify improvement, a measure of the outcome at baseline is ideal.  
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 A prediction procedure using principal component analysis (PCA) for data 

reduction of baseline variables known to be correlated with functional ability was 

previously described [100]. Briefly, PCA is a statistical data reduction method that, when 

applied to a large set of variables, can group correlated variables into a smaller set of 

important composite variables, or components. The PCA grouped measures of severity 

(individual items of the NIHSS) and other baseline variables known to be associated with 

functional ability (age, baseline glucose, time from stroke onset to randomization and the 

Alberta Stroke Program Early CT score) into components to calculate component scores. 

The resulting component scores were used to assign the latent baseline mRS score and 

thus creating a comparable baseline mRS for analysis purposes. 

5.2.2 Multistate Markov Models 

In this paper, continuous-time MSMMs are used to describe the progression and recovery 

between mRS levels, or the disease states, over time. The main assumption of the 

MSMM is that the probabilities governing the transition between states only depend on 

the current state occupied by an individual, and not on previous disease history.  

 Death (mRS = 6) is known as an absorbing state because transitions out of this 

state cannot occur and mRS scores of 0 to 5 are examples of transient states, where 

transitions are allowed between the states. The data from the NINDS t-PA trial were 

observed at arbitrary times that were specified in advance so exact times of state 

transitions are unknown. Data of this type, observations of a continuous process at 

discrete times, are called panel data. Because the underlying disease process is 

continuous, where progression or recovery can happen at any time, it is assumed that in 
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order for a subject to transition from one state to a non-adjacent state they also transition 

through the intermediate states [4]. Thus, the general MSMM for panel data only 

estimates adjacent state transitions and transitions to death from any state. The allowable 

transitions between transient and absorbing states for the general model of the mRS are 

illustrated in Figure 5.1, where arrows indicate the allowed transitions between states. 

 MSMMs of panel data are governed by transition intensities that depend on time 

and individual level or time-dependent covariates. The transition intensities represent the 

instantaneous risk of transition between two mRS scores. Commonly, the transition 

intensities are assumed to be constant over time but this is often an unrealistic 

assumption. If the assumption fails, a model with piecewise-constant transition intensities 

can be used. This allows for the transition intensity matrices to change at breakpoints, 

remaining constant between the breakpoints. In addition to transition intensities, 

transition probabilities can also be estimated based on the observed transition rates using 

maximum likelihood estimation [4]. When modeling covariates in a MSMM, hazard 

ratios can be estimated that correspond to the effect of a covariate on the transition 

intensities. 

 

 
Figure 5.1. General MSMM for panel observed mRS data. 
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 Likelihood ratio test (LRT) statistics are used to compare nested MSMMs. A 

reduced model is nested in a more complex model if all of the terms in the smaller model 

occur in the larger model. If two nested models are compared and the test is significant, 

then the more complex model fits the data better than the reduced model. LRTs are used 

to determine the significance of covariates and to compare models with constant 

transition intensities to ones with piecewise-constant intensities. 

5.2.3 Statistical Analysis and Assumptions 

For analyses using a fixed dichotomy, favorable outcome was defined as mRS ≤ 1, as 

was done in the primary paper [38]. The PPOM includes an additional term using a 

second parameter that allows for the ORs to increase proportional to the outcome scale. 

This PPOM, the restricted PPOM, is used when there is a linear deviation from the 

proportional odds assumption required for the POM, which is true of the NINDS t-PA 

data [46]. For the sliding dichotomy analysis, favorable outcome was defined to be 

consistent with previous re-analysis of the NINDS t-PA data where mRS = 0 for subjects 

with mild stroke (NIHSS < 7), mRS ≤ 1 for subjects with moderate stroke (NIHSS = 8-

14) and mRS ≤ 2 (NIHSS > 14) [101]. The UW-mRS values were derived by averaging 

patient centered and person-tradeoff studies and are reported by Chaisinanunkul et al 

[53]. 

 The ACAT and MSMMs were fit in R statistical software version 3.3.0 using the 

VGAM and msm packages, respectively. All other analysis was completed in SAS 9.4. 

When appropriate, analyses were adjusted for baseline NIHSS, which is known to be 

highly predictive of outcome [92]. The model using responder analysis as well as the 
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MSMM with predicted baseline mRS did not include baseline NIHSS because baseline 

severity is already accounted for. The shift analysis was also not adjusted for baseline 

severity as the test does not accommodate continuous covariates. Shift analysis for the 

NINDS t-PA data was previously repeated for different stratifications of the NIHSS and 

the results are reported elsewhere [7]. 

5.3 Results 

The analysis presented in this section is based on 619 subjects that had mRS scores 

recorded at 90 days. The raw 90 day mRS outcome distributions for the placebo and t-PA 

groups are presented in Table 5.1. There are slight differences in the results presented in 

this section compared with other re-analyses of the trial because the raw observed values 

are used rather than the intent to treat imputation.  

Table 5.1. NINDS t-PA 90 day mRS Counts (%). 

 
0 1 2 3 4 5 6 

Tota

l 

Control 
33 

(5.3) 
50 (8.1) 

37 

(6.0) 

45 

(7.3) 

61 

(9.9) 

21 

(3.4) 

63 

(10.2) 
310 

Treatmen

t 

57 

(9.2) 

74 

(12.0) 

23 

(3.7) 

40 

(6.5) 

42 

(6.8) 

19 

(3.1) 
54 (8.7) 309 

Total 90 124 60 85 103 40 117 
 

 

 Figures 5.2 and 5.3 display mRS scores over time for the control and t-PA groups, 

respectively. These plots, called Sankey plots, show the percentage of subjects with each 

mRS score at each follow-up visit as well as the change in the number of subjects with 

each score over time [74]. The longitudinal bar chart shows the percentage of subjects 

with each mRS score at each visit. The bands connecting the bars, or the links, represent  
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Figure 5.2. Sankey plot of NINDS t-PA control group subjects mRS scores over time. 

 

 
Figure 5.3. Sankey plot of NINDS t-PA treatment group subjects mRS scores over time. 
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the change in the number of subjects in each state, over time. A thicker link is indicative 

of more subjects transitioning between the two states. In the 90 day mRS alone, there are 

differences between the groups across the entire ordinal scale that are ignored in a 

traditional dichotomized analysis. The use of one follow-up visit also results in a loss of 

information as there are differences in the distribution of the mRS as well as the 

transition rates over the entire follow-up period. Additionally, the inclusion of the 

predicted baseline mRS allows one to observe the differences in the transition rates 

between treatment groups in the crucial window immediately following randomization 

and during the acute treatment phase. All of these differences can be measured and 

described using MSMMs and are not accounted for using other ordinal data analysis 

methods. 

 In the general MSMM (Figure 5.1), some of the parameters estimated were close 

to zero. Specifically, the transition intensities to death from mRS = {0,1,2,3}  were all 

very small. When there is not enough information from the data on certain transition 

rates, more intensities may need to be set to zero [4]. Thus, the general model was 

reduced, no longer allowing death from any state. Constraints were imposed such that 

death is only allowable from mRS = 4 or mRS = 5. 

 The results from all methods are presented in Table 5.2. The results are consistent 

with previously reported re-analyses of the NINDS t-PA data with minor, insignificant 

differences in estimates due to the adjustment for the NIHSS and the use of the raw mRS 

data versus intent to treat [11, 46, 53, 94, 102]. Table 5.3 presents a review of the 

interpretation of the summary statistics obtained from each of the methods of analysis.  
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Table 5.2. Results from previously used methods for analysis of the mRS. 

Method Outcome Measure Summary Statistic  (95% CI) p 

Logistic regression mRS at 90 d (0-1 vs. 2-

6) 

OR = 2.04 (1.39, 2.99) 0.0003 

Linear regression mRS at 90 d 

(continuous) 

Diff. in means = 

0.50 

- 0.0073 

Shift analysis mRS at 90 d - - 0.0017 

POM mRS at 90 d OR = 1.41 (1.01, 1.81) 0.0172 

PPOM  

(linear trend) 

mRS at 90 d 

1-6 vs. 0 

2-6 vs. 0-1 

3-6 vs. 0-2 

4-6 vs. 0-3 

5-6 vs. 0-4 

6 vs. 0-5 

OR = 

1.88 

1.67  

1.48  

1.31  

1.16  

1.03  

  

(1.14, 2.61) 

(1.12, 2.21) 

(1.05, 1.90) 

(0.93, 1.69) 

(0.77, 1.55) 

(0.61, 1.45) 

0.0017 

ACAT mRS at 90 d 

1 vs. 0 

2 vs. 1 

3 vs. 2 

4 vs. 3 

5 vs. 4 

6 vs. 5 

OR = 

1.12  

2.35 

0.70  

1.30 

0.79  

1.08  

 

(0.64, 1.97) 

(1.25, 4.44) 

(0.36, 1.38) 

(0.73, 2.32) 

(0.38, 1.66)  

(0.52, 2.21) 

0.0163 

Logistic regression 

of sliding 

dichotomy 

mRS at 90 d (0 if NIHSS 

is 1-7, 0-1 if 8-14 and 0-

2 if >14) 

OR = 1.61 (1.13, 2.28) 0.0080 

Linear regression 

of UW-mRS 

UW-mRS at 90d Diff. in means = 

0.08 

- 0.0175 

Repeated measures 

GEE 

mRS at 7-10, 90, 180 

and 360 d (0-1 vs. 2-6) 

OR = 1.89 (1.36, 2.63) 0.0002 

Repeated measures 

GEE (with 

baseline) 

Predicted mRS at 

baseline and mRS at 7-

10, 90, 180 and 360 d 

(0-1 vs. 2-6) 

OR = 1.78 (1.33, 2.38) 0.0001 

MSMM 

(without baseline) 

mRS at 7-10, 90, 180 

and 360 d 

01 

12 

23 

34 

45 

46 

56 

10 

21 

32 

43 

54 

Hazard Ratio =  

 

0.72 

0.46 

3.04 

0.71 

0.90 

0.98 

1.69 

0.99 

1.03 

1.58 

0.99 

0.58 

 

 

(0.40, 1.30) 

(0.23, 0.93) 

(0.98, 9.41) 

(0.34, 1.49) 

(0.36, 2.23) 

(0.50, 1.91) 

(0.97, 2.95) 

(0.60, 1.64) 

(0.63, 1.70) 

(0.64, 3.92) 

(0.64, 1.53) 

(0.32, 1.05) 

0.0533 
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Piecewise MSMM 

(with baseline) 

Predicted mRS at 

baseline and mRS 7-10, 

90, 180 and 360 d 

01 

12 

23 

34 

45 

46 

56 

10 

21 

32 

43 

54 

Hazard Ratio = 

 

 

0.73 

0.51 

1.29 

0.67 

0.88 

0.96 

1.20 

1.00 

1.14 

0.99 

1.09 

0.80 

 

 

 

(0.43, 1.23) 

(0.28, 0.90) 

(0.66, 2.52) 

(0.38, 1.17) 

(0.53, 1.48) 

(0.55, 1.66) 

(0.75, 1.92) 

(0.62, 1.62) 

(0.71, 1.83) 

(0.59, 1.68) 

(0.72, 1.65) 

(0.52, 1.23) 

0.0018 

 

The results of the MSMM are presented as hazard ratios that estimate the effect of the 

covariate on transition intensities. A hazard ratio above one signifies a positive 

association between treatment and the rate of transition, whereas a hazard ratio of one 

implies no effect. 

 In the MSMM with baseline mRS, treatment with t-PA significantly reduced the 

transition intensity between mRS = 1 and mRS = 2 with a hazard ratio of 0.51 (95% CI: 

0.28, 0.90). None of the other hazard ratios were significantly different from one. This 

finding is consistent with the results of the ACAT model where the only significant OR is 

the one comparing mRS category 2 to mRS category 1. The conclusion drawn from the 

ACAT is that the most relevant impact of t-PA is to reduce the odds of observing a 

category 2 versus a category 1 at 90 days [46]. The results from the MSMM allow for a 

more refined conclusion- the most relevant impact of t-PA is to reduce the hazard of 

transitioning from mRS category 1 to mRS category 2. Therefore, the t-PA is more 

protective of worsening from category 1 rather than promoting improvement from 

category 2, which is a distinction that cannot be made from the ACAT results. 
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Table 5.3. Summary of statistics obtained from each type of analysis of the mRS. 

Method Statistic(s) Interpretation  

Logistic regression OR The odds of good outcome in the 

treatment group versus placebo 

Linear regression Difference of means Improvement of the average mRS score 

in patients that received treatment 

Shift analysis Probability value  

(no effect size or OR) 

The treatment group shifted in a 

favorable direction toward a better mRS 

score versus placebo 

POM Summary odds ratio The odds of a lower mRS the treatment 

group versus placebo 

PPOM ORs for six possible 

dichotomizations of 

mRS 

Treatment has a significant benefit for 

certain definitions of good outcome 

ACAT  ORs the six adjacent 

categories of response 

The treatment group is more likely to 

have smaller mRS for certain adjacent 

mRS scores  

Logistic regression 

of sliding 

dichotomy 

OR  The odds of good outcome (defined by 

baseline severity) in the treatment group 

versus placebo 

Linear regression of 

UW-mRS 

Difference of mean 

utility scores 

Improvement of the average utility 

score in patients that received treatment 

Repeated measures 

GEE 

(dichotomized) 

OR The odds of good outcome over the 12-

month period in the treatment group 

versus placebo 

MSMM Hazard ratios for each 

allowable transition 

The hazard (instantaneous risk) of 

transitioning from one mRS state to 

another in the treatment group versus 

placebo  

 

5.4 Discussion 

It is not realistic to choose one analytic method that is most appropriate for the mRS for 

all studies because the efficiency varies depending on the expected distribution of the 

treatment effect [3]. In general, ordinal approaches are more efficient when treatment 

effects are distributed over the entire outcome range or when the distribution of treatment 

effect could not be prespecified [3]. Therefore, it is important to know what the expected 
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result of intervention is in the design and sample size calculation stage of a trial. In 

comparison, dichotomous approaches are more efficient than ordinal approaches when 

treatment effects cluster at single-state transitions and can be specified in advance [102]. 

However, it is uncommon for clustering to be predictable. If the clustering cannot be 

predicted, an ordinal approach should be used. 

 In this paper, the dichotomized methods were found to be most statistically 

efficient with respect to power for the NINDS t-PA trial, and inclusion of predicted 

baseline mRS improved the ability to detect a treatment effect in the repeated measures 

analysis. The treatment effect clustered at the transition from mRS category 1 to mRS 

category 2. If limited information were available in the planning stages for this trial to 

confidently predict that the treatment effect would be clustered at that transition, it would 

have been worthwhile to consider an ordinal approach. Acute stroke trials are challenging 

to conduct as there are few centers that can recruit many patients in the early time 

window required for treatment [2]. Because of the low recruitment rate and cost 

associated with conducting acute stroke trials, inefficient statistical tests must be avoided 

to protect from being underpowered.  

 Of the approaches that do not rely on the strict dichotomy, the PPOM and MSMM 

with predicted baseline were the most efficient. The PPOM and MSMM were found to be 

more efficient than linear regression, responder analysis, shift analysis and the UW-mRS 

for analysis of the NINDS t-PA data. The PPOM is represented by ORs for the six 

possible dichotomizations of the mRS. The first three ORs are significantly different 
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from one indicating that treatment has a significant benefit whether 0, 0-1 or 0-2 is 

defined as good outcome.  

 Construction of MSMMs provides a more comprehensive view of the disease 

process and allow for exploration of how covariates affect the movement of the process. 

The obvious benefit to using the MSMM is the ability to handle progression and recovery 

simultaneously by estimating transition rates for both. Because of this, the MSMM allows 

for identification of where the treatment effect has the greater impact. Here the effect of 

treatment was greatest in reducing the hazard of transitioning from mRS category 1 to 

mRS category 2. A more clear understanding of the effect of treatment could also be 

beneficial in identifying characteristics of subjects that are more likely to benefit or 

experience harm from a therapy.  

 Another benefit of MSMMs is the potential for decreased sample size. The power 

of MSMMs applied to acute onset clinical trial data was shown to increase significantly 

when the number of follow-up visits was increased [93]. Future trials could collect the 

mRS more frequently, increasing the power to detect differences using this modeling 

technique. This would be a more cost-effective than recruiting more subjects to increase 

power as the telephone assessment of stroke disability with the mRS is reliable in 

comparison with a face-to-face assessment [103]. 

 The MSMM results in a more comprehensive understanding of treatment effect; 

however it also increases the difficultly to determine the sample size to adequately power 

a study using this analysis. Without a summary statistic of effect size, the implementation 

of these models in the analysis of the primary outcome in trials requires quite a bit of 
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foresight on the expected distribution of the effect of a therapy or treatment. However, 

once the distribution of expected treatment effect has been specified simulation-based 

power analysis for these models is straightforward. Another limitation of MSMMs is the 

increasingly computationally intensive nature as covariates and time-varying intensities 

are added to the models. 

 Future directions of this research may include development of a software package 

to automate the baseline mRS prediction. The package could include more complex 

methods for estimation, potentially Bayesian PCA. Another feature of the package could 

be assistance with data manipulation required to use the msm package in R to fit the 

MSMMs (eg. wide to long format and incorporating exact time of death). In addition, a 

package could be developed to streamline the simulation-based power analyses.  
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6 Overall Discussion 

6.1 Specific Aims Revisited 

The aims of this dissertation are: 

1. To explore the operating characteristics (type I error and power) of MSMMs 

compared with repeated logistic regression used to analyze sparsely populated 

repeated measures ordinal data.  

2. To develop a MSMM approach with piecewise-constant transition intensities that 

incorporates a latent baseline state. 

3. Analyze acute stroke therapy trial data using the methods developed in Aim 2 and 

compare the results with those from alternative methods previously suggested for 

the analysis of the mRS. 

6.2 Summary and Conclusions 

This work focuses on the use of MSMMs to analyze sparsely populated and 

longitudinally collected ordinal data. The mRS score from acute stroke therapy trials was 

the motivating example. To determine whether MSMMs were feasible as an analytic 

method for sparsely populated ordinal data, the operating characteristics are investigated 

using simulation studies in Aim 1. Results indicate that MSMMs can be a more efficient 

approach than repeated measures logistic regression to analyze sparsely populated ordinal 

data. There are also situations where dichotomization might not lose efficiency and may 

be more powerful than the MSMM. Depending on the observed data structure and 

treatment effect distribution, either method could be more powerful. Results also show 
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that increasing the number of follow-up visits can dramatically improve power to detect a 

treatment difference. Thus, we recommend that future acute stroke therapy trials collect 

the mRS more frequently, increasing power to detect treatment group differences. 

Increasing the frequency of outcome collection could be more cost-effective than 

recruiting more subjects since the telephone assessment of the mRS is as reliable as the 

face-to-face assessment [103]. 

 Given that the MSMM is an approach that could realistically analyze sparsely 

populated ordinal data, a latent baseline estimation procedure is developed in Aim 2. 

Methods that analyze only one time point have traditionally adjusted for baseline severity 

using the NIHSS score because the mRS score is not available at baseline. When 

modeling data longitudinally, the transition from baseline to first follow-up is important 

because much of the progression or recovery experienced by a patient suffering from an 

acute onset disease is expected to occur early on. Inclusion of the latent baseline in a 

piecewise-constant MSMM improves efficiency to detect a treatment effect as compared 

to the MSMM without baseline that adjusted for baseline NIHSS. 

 In the application to the NINDS t-PA trial in Aim 3, the MSMM with baseline has 

proven to be an efficient method of analysis, as compared to many of the other popular 

methods for the mRS. While dichotomized analysis is the most powerful for this 

particular data set, for most trials, prediction of the clustering of treatment effect a priori 

is not realistic. If the treatment effect clustering is predicted incorrectly, the dichotomized 

statistical test becomes inefficient. For trials where the treatment effect is expected to be 

distributed over the entire range of the outcome or when the clustering cannot be 
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predicted, methods that analyze the full ordinal scale should be used [3]. The MSMM 

with estimated baseline is comparable in efficiency to the PPOM and the two methods 

outperform the other ordinal methods. The MSMM allows for direct identification of 

where the treatment effect is most significant and the PPOM does not. 

 The goal of this dissertation is to lay the foundation for the use of MSMMs in 

practice to analyze ordinal data, specifically data from acute stroke therapy trials. We 

conclude, from the example presented, that the MSMM with latent baseline mRS is as 

efficient, if not more, than other methods currently used to analyze acute stroke therapy 

trial data. A limitation of this work is that comparison of efficiency of other methods is 

only done for data from one trial. The “best” method for analysis of the mRS will change 

depending on the distribution of the treatment effect. Thus, future work should consider 

data from other trials to better understand the comparative efficiency of the MSMM.  

 This work supports the use of MSMMs for acute stroke therapy trial but 

immediate implementation of these models for the primary analysis of new studies is 

likely not feasible because of lack of readily available software to design a study that uses 

MSMM analysis. The MSMM is a great tool to identify the finer details of the treatment 

effect but the complexity of the model makes determination of sample size needed to be 

adequately powered to detect a treatment effect difficult. Future work would explore how 

to appropriately power a new study using MSMM. Without a summary statistic of effect 

size, the implementation of these models in the analysis of the primary outcome in trials 

requires foresight on the expected distribution of the effect of a therapy or treatment. 
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However, once the distribution of expected treatment effect has been specified 

simulation-based power analysis for these models is straightforward.  

 Additional future directions of this research include development of a software 

package to automate the baseline mRS estimation. Another feature of the package could 

be assistance with data manipulation required to use the msm package in R to fit the 

MSMMs. Finally, the package could also contain functions to streamline the simulation-

based power analysis that was used in Aim 1.  



 

121 

 

List of References 

1. The Optimising Analysis of Stroke Trials (OAST) Collaboration. Can We 

Improve the Statistical Analysis of Stroke Trials? Statistical Reanalysis of 

Functional Outcomes in Stroke Trials. Stroke 2007; 38(6): pp 1911-1915, DOI 

10.1161/strokeaha.106.474080. 

2. Saver JL. Optimal End Points for Acute Stroke Therapy Trials: Best Ways to 

Measure Treatment Effects of Drugs and Devices. Stroke 2011; 42(8): pp 2356-

2362, DOI 10.1161/strokeaha.111.619122. 

3. Bath PMW, Lees KR, Schellinger PD, et al. Statistical Analysis of the Primary 

Outcome in Acute Stroke Trials. Stroke 2012; 43(4): pp 1171-1178, DOI 

10.1161/strokeaha.111.641456. 

4. Jackson C. Multi-State Models for Panel Data: The msm Package for R. J Stat 

Softw 2011; 38(8): pp 28, DOI 10.18637/jss.v038.i08. 

5. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart Disease and Stroke Statistics—

2012 Update. A Report From the American Heart Association 2012; 125(1): pp 

e2-e220, DOI 10.1161/CIR.0b013e31823ac046. 

6. Mergenthaler P, Meisel A. Do Stroke Models Model Stroke? Dis Model Mech 

2012; 5(6): pp 718-725, DOI 10.1242/dmm.010033. 

7. Savitz SI, Lew R, Bluhmki E, et al. Shift Analysis Versus Dichotomization of the 

Modified Rankin Scale Outcome Scores in the NINDS and ECASS-II Trials. 

Stroke 2007; 38(12): pp 3205-3212, DOI 10.1161/strokeaha.107.489351. 



 

122 

 

8. Keller DM. IMS-III: Endovascular Terapy Benefits Severe Stroke, 2014. 

http://www.medscape.com/viewarticle/834005. 

9. Price M, Hertzberg V, Wright DW. Does the sliding dichotomy result in higher 

powered clinical trials for stroke and traumatic brain injury research? Clinical 

Trials 2013; 10(6): pp 924-934, DOI 10.1177/1740774512458601. 

10. Committee for Proprietary Medicinal Products. Points to Consider on Clinical 

Investigation of Medicinal Products for the Treatment of Acute Stroke. The 

European Agency for the Evaluation of Medicinal Products 2001. 

11. Feng W, Vasquez G, Suri MFK, et al. Repeated-Measures Analysis of the 

National Institute of Neurological Disorders and Stroke rt-PA Stroke Trial. J 

Stroke Cerebrovasc Dis 2011; 20(3): pp 241-246, DOI 

10.1016/j.jstrokecerebrovasdis.2010.01.003. 

12. Aalen OO. Armitage lecture 2010: Understanding treatment effects: the value of 

integrating longitudinal data and survival analysis. Stat Med 2012; 31(18): pp 

1903-1917, DOI 10.1002/sim.5324. 

13. Alessandrino EP, Della Porta MG, Malcovati L, et al. Optimal timing of 

allogeneic hematopoietic stem cell transplantation in patients with 

myelodysplastic syndrome. American Journal of Hematology 2013; 88(7): pp 

581-588, DOI 10.1002/ajh.23458. 

14. Allen EJ, Farewell VT. Pragmatic Analysis of Longitudinal Data on Disease 

Activity in Systemic Lupus Erythematosus. Communications in Statistics- Theory 

and Methods 2009; 38(18): pp 3369-3388, DOI 10.1080/03610920902972335. 



 

123 

 

15. Batina NG, Crnich CJ, Anderson DF, et al. Models to predict prevalence and 

transition dynamics of methicillin-resistant Staphylococcus aureus in community 

nursing homes American Journal of Infection Control 2016; 5(1): pp 507-514, 

DOI 10.1016/j.ajic.2015.10.042. 

16. Cao Q, Postmus D, Hillege HL, et al. Probability Elicitation to Inform Early 

Health Economic Evaluations of New Medical Technologies: A Case Study in 

Heart Failure Disease Management. Value in Health 2013; 16(4): pp 529-536, 

DOI 10.1016/j.jval.2013.02.008  

17. Chauvel O, Lacombe K, Bonnard P, et al. Risk factors for acute liver enzyme 

abnormalities in HIV-hepatitis B virus-coinfected patients on antiretroviral 

therapy. Antiviral Therapy 2007; 12(7): pp 1115-1126. 

18. Chui M. Nonparametric Simultaneous Modelling of Operative Mortality and 

Long-Term Survival after Coronary Artery Bypass Surgery. Simon Fraser 

University 2002, DOI 1541561615. 

19. Combescure C, Chanez P, Daures J-P, et al. Assessment of variations in control of 

asthma over time. Eur Respir J 2003; 22: pp 298-304, DOI 

10.1183/09031936.03.00081102. 

20. Elbasha EE, Szucs T, Chaudhary MA, et al. Cost-effectiveness of Raltegravir in 

Antiretroviral Treatment-Experienced HIV-1–Infected Patients in Switzerland. 

HIV Clinical Trials 2009; 10(4): pp 233-253, DOI 10.1310/hct1004-233. 

21. Gangnon RE, Lee KE, Klein BK, et al. Effect of the y402h variant in the 

complement factor h gene on the incidence and progression of age-related 



 

124 

 

macular degeneration: Results from multistate models applied to the beaver dam 

eye study. Archives of Ophthalmology 2012; 130(9): pp 1169-1176, DOI 

10.1001/archophthalmol.2012.693. 

22. Garcia ME, Lee A, Neuhaus J, et al. Diabetes Mellitus as a Risk Factor for 

Development of Depressive Symptoms in a Population-Based Cohort of Older 

Mexican Americans. Journal of the American Geriatrics Society 2016; 64(3): pp 

619-624, DOI 10.1111/jgs.14019. 

23. Haeussler K, van den Hout A, Baio G. A dynamic Bayesian Markov model for 

health economic evaluations of interventions against infectious diseases. Cornell 

University Library 2016. 

24. Hanly JG, Su L, Urowitz MB, et al. A Longitudinal Analysis of Outcomes of 

Lupus Nephritis in an International Inception Cohort Using a Multistate Model 

Approach. Arthritis & Rheumatology 2016; 68(8): pp 1932-1944, DOI 

10.1002/art.39674. 

25. Jackson DJ, Evans MD, Gangnon RE, et al. Evidence for a Causal Relationship 

between Allergic Sensitization and Rhinovirus Wheezing in Early Life. American 

Journal of Respiratory and Critical Care Medicine 2012; 185(3): pp 281-285, 

DOI 10.1164/rccm.201104-0660OC. 

26. Jambarsang S, Baghban AA, Nazari SSH, et al. Effect of baseline CD4 count on 

efficacy of highly-active antiretroviral therapy for HIV patients. International 

Journal of Biology, Pharmacy and Allied Sciences 2015; e4(11): pp 700-713. 



 

125 

 

27. Joutard X, Paraponaris A, Teyssier LS, et al. Continuous-Time Markov Model for 

Transitions Between Employment and Non-Employment: The Impact of a Cancer 

Diagnosis. Annals of Economics and Statistics 2012; (107/108): pp 239-265, DOI 

10.2307/23646578. 

28. Liu W-J, Lee L-T, Yen M-F, et al. Assessing progression and efficacy of 

treatment for diabetic retinopathy following the proliferative pathway to 

blindness: implication for diabetic retionpathy screeing in Taiwan. Diabetic 

Medicine 2003; 20(9): pp 727-733, DOI 10.1046/j.1464-5491.2003.01019.x. 

29. Ndumbi P, Gillis J, Raboud JM, et al. Clinical implications of altered T-cell 

homeostasis in treated HIV patients enrolled in a large observational cohort. AIDS 

2013; 27(18): pp 2863-2872, DOI 10.1097/01.aids.0000432471.84497. 

30. Nunez J, Nunez E, Bayes-Genis A, et al. Long-term serial kinetics of N-terminal 

pro B-type natriuretic peptide and carbohydrate antigen 125 for mortality risk 

prediction following acute heart failure. European Heart Journal: Acute 

Cardiovascular Care 2016, DOI 10.1177/2048872616649757. 

31. Raiche M, Hebert R, Dubois M-F, et al. Yearly transitions of disability profiles in 

older people living at home. Archieves of Gerontology and Geriatrics 2012; 

55(2): pp 399-405, DOI 10.1016/j.archger.2011.12.007. 

32. Raiche M, Hebert R, Dubois M-F, et al. Covariates of Disability-Profile 

Transitions in Older People Living at Home. Journal of Biosciences and 

Medicines 2014; 2(3): pp 25-36, DOI 10.4236/jbm.2014.23005. 



 

126 

 

33. Rodriguez-Girondo M, de Una-Alvarez J. A nonparametric test for Markovianity 

in the illness-death model. Stat Med 2012; 31(30): pp 4416-4427, DOI 

10.1002/sim.5619. 

34. Saint-Pierre P, Bourdain A, Chanez P, et al. Are overweight asthmatics more 

difficult to control? Allergy 2006; 61(1): pp 79-84, DOI 10.1111/j.1398-

9995.2005.00953. 

35. Tung T-H, Chen S-J, Shih H-C, et al. Assessing the Natural Course of Diabetic 

Retinopathy: A Population-Based Study in Kinmen, Taiwan. Opthalmic 

Epidemiology 2006; 13(5): pp 327-333, DOI 10.1080/09286580600826637. 

36. Zhang S-K, Kang L-N, Chang IJ, et al. The Natural History of Cervical Cancer in 

Chinese Women: Results from an 11-Year Follow-Up Study in China Using a 

Multistate Model Cancer Epidemiol Biomarkers Prev 2014; 23(7): pp 1298-1305, 

DOI 10.1158/1055-9965. 

37. Gangnon RE, Lee K, E, Klein BEK, et al. Misclassification can explain most 

apparent regression of age-related macular degeneration: results from multistate 

models with misclassification. Invest Opthalmol Vis Sci 2014; 55: pp 1780-1786, 

DOI 10.1167/iovs.13-12375. 

38. The National Institute of Neurological Disorders Stroke rt-PA Stroke Study 

Group. Tissue Plasminogen Activator for Acute Ischemic Stroke. N Engl J Med 

1995; 333(24): pp 1581-1588, DOI 10.1056/nejm199512143332401. 

39. Tilley BC, Marler J, Geller NL, et al. Use of a Global Test for Multiple Outcomes 

in Stroke Trials With Application to the National Institute of Neurological 



 

127 

 

Disorders and Stroke t-PA Stroke Trial. Stroke 1996; 27(11): pp 2136-2142, DOI 

10.1161/01.str.27.11.2136. 

40. Mahoney FI, Barthel DW. Functional evaluation: the Barthel index. Md State Med 

J 1965; 14: pp 61-65. 

41. Jennett B, Bond M. Assessment of outcome after severe brain damage. Lancet 

1975; 305: pp 480-484. 

42. Ginsberg MD, Palesch YY, Martin RH, et al. The Albumin in Acute Stroke 

(ALIAS) Multicenter Clinical Trial. Stroke 2011; 42(1): pp 119-127, DOI 

10.1161/strokeaha.110.596072. 

43. Ginsberg MD, Palesch YY, Hill MD, et al. High-dose albumin treatment for acute 

ischaemic stroke (ALIAS) part 2: a randomised, double-blind, phase 3, placebo-

controlled trial. The Lancet Neurology 2013; 12(11): pp 1049-1058, DOI 

10.1016/S1474-4422(13)70223-0. 

44. Lees KR, Davalos A, Davis SM, et al. Additional Outcomes and Subgroup 

Analyses of NXY-059 for Acute Ischemic Stroke in the SAINT I Trial. Stroke 

2006; 37(12): pp 2970-2978, DOI 10.1161/01.str.0000249410.91473.44. 

45. Agresti A. Modelling ordered categorical data: recent advances and future 

challenges. Stat Med 1999; 18(17-18): pp 2191-2207. 

46. DeSantis SM, Lazaridis C, Palesch Y, et al. Regression Analysis of Ordinal 

Stroke Clinical Trial Outcomes: An Application to the NINDS t-PA Trial. Int J 

Stroke 2014; 9(2): pp 226-231, DOI 10.1111/ijs.12052. 



 

128 

 

47. Lall R, Campbell MJ, Walters SJ, et al. A review of ordinal regression models 

applied on health-related quality of life assessments. Stat Methods Med Res 2002; 

11(1): pp 49-67, DOI 10.1191/0962280202sm271ra. 

48. Garofolo KM, Yeatts SD, Ramakrishnan V, et al. The effect of covariate 

adjustment for baseline severity in acute stroke clinical trials with responder 

analysis outcomes. Trials 2013; 14: pp 98-98, DOI 10.1186/1745-6215-14-98. 

49. Garofolo KM. The Analysis of Acute Stroke Clinical Trials with Responder 

Analysis Outcomes. Medical University of South Carolina 2012. 

50. Young FB, Lees KR, Weir CJ. Improving Trial Power Through use of Prognosis-

Adjusted End Points. Stroke 2005; 36(3): pp 597-601, DOI 

10.1161/01.str.0000154856.42135.85. 

51. Price M. Issues in Causal Inference and Applications to Public Health. Emory 

2009. 

52. Lees KR, Bath PMW, Schellinger PD, et al. Contemporary Outcome Measures in 

Acute Stroke Research: Choice of Primary Outcome Measure. Stroke 2012; 

43(4): pp 1163-1170, DOI 10.1161/strokeaha.111.641423. 

53. Chaisinanunkul N, Adeoye O, Lewis RJ, et al. Adopting a Patient-Centered 

Approach to Primary Outcome Analysis of Acute Stroke Trials Using a Utility-

Weighted Modified Rankin Scale. Stroke 2015; 46(8): pp 2238-2243, DOI 

10.1161/strokeaha.114.008547. 

54. Feeny D. Response to Lenert and Kaplan: A Utility Approach to the Assessment 

of Health-Related Quality of Life. Medical Care 2000; 38(9): pp 151-154. 



 

129 

 

55. Rivero-Arias O, Ouellet M, Gray A, et al. Mapping the Modified Rankin Scale 

(mRS) Measurement into the Generic EuroQol (EQ-5D) Health Outcome. 

Medical Decision Making 2010; 30(3): pp 341-354, DOI 

10.1177/0272989X09349961. 

56. Hong K-S, Saver JL. Quantifying the Value of Stroke Disability Outcomes. 

Stroke 2009; 40(12): pp 3828-3833, DOI 10.1161/strokeaha.109.561365. 

57. Yang B. Analyzing Ordinal Repeated Measures Data Using SAS®. Eli Lilly and 

Company 2006. 

58. Palesch YY, Yeatts SD, Tomsick TA, et al. Twelve-Month Clinical and Quality-

of-Life Outcomes in the Interventional Management of Stroke III Trial. Stroke 

2015; 46(5): pp 1321-1327, DOI 10.1161/strokeaha.115.009180. 

59. Jackson C. Multi-state modelling with R: the msm package. MRC Biostatistics 

Unit: Cambridge, U.K., 2016. 

60. Gani R, Nixon RM, Hughes S, et al. Estimating the rates of disability progression 

in people with active relapsing-remitting multiple sclerosis. Journal of Medical 

Economics 2007; 10(2): pp 79-89, DOI 10.3111/200710079089. 

61. Mdala I, Olsen I, Haffajee AD, et al. Comparing clinical attachment level and 

pocket depth for predicting periodontal disease progression in healthy sites of 

patients with chronic periodontis using multi-state Markov models. J Clin 

Periodontol 2014; 41(9): pp 837-845, DOI 10.1111/jcpe.12278. 



 

130 

 

62. Shirley KE, Small DS, Lynch KG, et al. Hidden Markov Models for Alcoholism 

Treatment Trial Data. The Annals of Applied Statistics 2010; 4(1): pp 366-395, 

DOI 10.1214/09-aoas282. 

63. Gharoodi ZR, Ganjali M, Berridge D. A Transition Model for Ordinal Response 

Data with Random Dropout: An Application to the Fluvoxamine Data. J 

Biopharm Stat 2009; 19(4): pp 658-671, DOI 10.1080/10543400902964100. 

64. Chiang CL. An Introduction to Stochastic Processes and Their Applications. 

Robert E. Krieger Publishing Co.: New York, 1980. 

65. Titman AC. Model diagnostics in multi-state models of biological systems. In 

Model diagnostics in multi-state models of biological systems, Editor (ed)^(eds). 

Fitzwilliam College: City, 2007. 

66. Jackson CH. Multi-state models for panel data: the msm package for R. Journal 

of Statistical Software 2011; 38(8): pp 1-29. 

67. Anderson DF. Continuous Time Markov Chains, 2011. 

http://www.math.wisc.edu/~anderson/605F11/Notes/StochBioChapter6.pdf. 

68. Kalbfleisch JD, Lawless JF. The Analysis of Panel Data Under a Markov 

Assumption. J Am Stat Assoc 1985; 80(392): pp 863-871. 

69. Pérez-Ocón R, Ruiz-Castro JE, Gámiz-Pérez ML. Non-homogeneous Markov 

models in the analysis of survival after breast cancer. Journal of the Royal 

Statistical Society: Series C (Applied Statistics) 2001; 50(1): pp 111-124, DOI 

10.1111/1467-9876.00223. 



 

131 

 

70. Mandel M, Mercier F, Exkert B, et al. Estimating Time to Disease Progression 

Comparing Transition Models and Survival Models- an Analysis of Multiple 

Sclerosis Data. Biometrics 2013; 69(1): pp 225-234, DOI 10.1111/biom.12002. 

71. Nunn A, Bath PMW, Gray LJ. Analysis of the Modified Rankin Scale in 

Randomised Controlled Trials of Acute Ischaemic Stroke: A Systematic Review. 

Stroke Res Treat 2016, DOI 10.1155/2016/9482876. 

72. Titman AC. Model diagnostics in multi-state models of biological systems. 

Fitzwilliam College 2007. 

73. Dai Y-H. A Perfect Example for the BFGS Method. State Key Laboratory of 

Scientific and Engineering Computing 1997. 

74. Rosanbalm S. Getting Sankey with Bar Charts. PharmaSUG 2015. 

75. Broderick JP, Palesch YY, Demchuk AM, et al. Endovascular Therapy after 

Intravenous t-PA versus t-PA Alone for Stroke. N Engl J Med 2013; 368(10): pp 

893-903, DOI 10.1056/NEJMoa1214300. 

76. Regnier ED, Shechter SM. State-space size considerations for disease-

progresssion models. Stat Med 2013; 32(22): pp 3862-3880, DOI 

10.1002/sim.5808. 

77. Thom HH, Jackson CH, Commenges D, et al. State Selection in Markov Models 

for Panel Data with Application to Psoriatic Arthritis. Stat Med 2015; 34(16): pp 

2456-2475, DOI 10.1002/sim.6460. 



 

132 

 

78. Roozenbeek B, Lingsma HF, Perel P, et al. The added value of ordinal analysis in 

clinical trials: an example in traumatic brain injury. Critical Care 2011; 15(3), 

DOI 10.1186/cc10240. 

79. Sankey SS, Weissfeld LA. A study of the effect of dichotomizing ordinal data 

upon modeling. Communications in Statistics - Simulation and Computation 

1998; 27(4): pp 871-887, DOI 10.1080/03610919808813515. 

80. Bruno A, Saha C, Williams LS. Percent Change on the National Institutes of 

Health Stroke Scale: A Useful Acute Stroke Outcome Measure. J Stroke 

Cerebrovasc Dis 2009; 18(1): pp 56-59, DOI 

10.1016/j.jstrokecerebrovasdis.2008.09.002. 

81. Alexandrov AV, Demchuk AM, Felberg RA, et al. High Rate of Complete 

Recanalization and Dramatic Clinical Recovery During tPA Infusion When 

Continuously Monitored With 2-MHz Transcranial Doppler Monitoring. Stroke 

2000; 31(3): pp 610-614, DOI 10.1161/01.str.31.3.610. 

82. Ginsberg MD, Palesch YY, Hill MD. The ALIAS (ALbumin In Acute Stroke) 

Phase III randomized multicentre clinical trial: design and progress report. 

Biochemical Society Transactions 2006; 34(6): pp 1323-1326, DOI 

10.1042/bst0341323. 

83. Lyden P, Brott T, Tilley B, et al. Improved reliability of the NIH Stroke Scale 

using video training. Stroke 1994; 25: pp 2220-2226. 



 

133 

 

84. Hill MD, Martin RH, Palesch YY, et al. The Albumin in Acute Stroke Part 1 

Trial. An Exploratory Efficacy Analysis 2011; 42(6): pp 1621-1625, DOI 

10.1161/strokeaha.110.610980. 

85. Martin RH, Yeatts SD, Hill MD, et al. ALIAS (Albumin in Acute Ischemic 

Stroke) Trials. Analysis of the Combined Data From Parts 1 and 2 2016; 47(9): 

pp 2355-2359, DOI 10.1161/strokeaha.116.012825. 

86. Aalen OO, Farewell V, De Angelis D, et al. A Markov model for HIV disease 

progression including the effect of HIV diagnosis and treatment: application to 

AIDS prediction in England and Wales. Stat Med 1997; 16(19): pp 2191-2210. 

87. Keiding N, Klein JP, Horowitz MM. Multi-state models and outcome prediction 

in bone marrow transplantation. Statistics in Medicine 2001; 20(12): pp 1871-

1885, DOI 10.1002/sim.810. 

88. Marshall G, Jones RH. Multi-state models and diabetic retinopathy. Statistics in 

Medicine 1995; 14(18): pp 1975-1983, DOI 10.1002/sim.4780141804. 

89. Capes SE, Hunt D, Malmberg K, et al. Stress Hyperglycemia and Prognosis of 

Stroke in Nondiabetic and Diabetic Patients. A Systematic Overview 2001; 

32(10): pp 2426-2432, DOI 10.1161/hs1001.096194. 

90. Hill MD, Demchuk AM, Goyal M, et al. Alberta Stroke Program Early Computed 

Tomography Score to Select Patients for Endovascular Treatment. Interventional 

Management of Stroke (IMS)-III Trial 2014; 45(2): pp 444-449, DOI 

10.1161/strokeaha.113.003580. 



 

134 

 

91. Pexman JHW, Barber PA, Hill MD, et al. Use of the Alberta Stroke Program 

Early CT Score (ASPECTS) for Assessing CT Scans in Patients with Acute 

Stroke. American Journal of Neuroradiology 2001; 22(8): pp 1534-1542. 

92. Adams HP, Davis PH, Leira EC, et al. Baseline NIH Stroke Scale score strongly 

predicts outcome after stroke: A report of the Trial of Org 10172 in Acute Stroke 

Treatment (TOAST). Neurology 1999; 53(1): pp 126, DOI 10.1212/wnl.53.1.126. 

93. Cassarly C, Martin RH, Chimowitz M, et al. Assessing type I error and power of 

multistate Markov models for panel data-A simulation study. Commun Stat Simul 

Comput 2016, DOI 10.1080/03610918.2016.1222425. 

94. Saver JL. Novel End Point Analytic Techniques and Interpreting Shifts Across the 

Entire Range of Outcome Scales in Acute Stroke Trials. Stroke 2007; 38(11): pp 

3055-3062, DOI 10.1161/strokeaha.107.488536. 

95. Smycka J, Keil P. Bayesian PCA, 2015. http://www.petrkeil.com/?p=2316. 

96. DiStefano C, Zhu M, Mindrila D. Understanding and Using Factor Scores: 

Considerations for the Applied Researcher. Practical Assessment, Research & 

Evaluation 2009; 14(20). 

97. Stevens JP. Applied Multivariate Statistics for the Social Sciences (5 edn). Taylor 

& Francis Group: New York, NY, 2009. 

98. Goyal M, Menon BK, van Zwam WH, et al. Endovascular thrombectomy after 

large-vessel ischaemic stroke: a meta-analysis of individual patient data from five 

randomised trials. The Lancet 2016; 387(10029): pp 1723-1731, DOI 

10.1016/S0140-6736(16)00163-X. 



 

135 

 

99. Goldie FC, Fulton RL, Dawson J, et al. Exploration of time-course combinations 

of outcome scales for use in a global test of stroke recovery. Int J Stroke 2014; 

9(6): pp 755-758, DOI 10.1111/ijs.12131. 

100. Cassarly C, Martin RH, Chimowitz M, et al. Treatment effect on ordinal 

functional outcome using piecewise multistate Markov model with unobservable 

baseline: An application to the modified Rankin Scale Stat Med 2016; [UNDER 

REVIEW]. 

101. Saver JL, Yafeh B. Confirmation of tPA Treatment Effect by Baseline Severity-

Adjusted End Point Reanalysis of the NINDS-tPA Stroke Trials. Stroke 2007; 

38(2): pp 414-416, DOI 10.1161/01.STR.0000254580.39297.3c. 

102. Saver JL, Gornbein J. Treatment effects for which shift or binary analyses are 

advantageous in acute stroke trials. Neurology 2009; 72(15): pp 1310-1315, DOI 

10.1212/01.wnl.0000341308.73506.b7. 

103. Savio K, Pietra GLD, Oddone E, et al. Reliability of the modified Rankin Scale 

applied by telephone. Neurology International 2013; 5(1): pp e2, DOI 

10.4081/ni.2013.e2. 

 


	Multistate Markov Models for Ordinal Functional Outcomes of Acute Onset Disease: Application in Acute Stroke Therapy Trials
	Recommended Citation

	tmp.1601473683.pdf.a84ru

