Medical University of South Carolina **MEDICA**

MUSC Theses and Dissertations

2017

A Quantitative Review of Costs: Heart Failure Patients Before and After Implementation of an Integrated Practice Unit Model at University of Utah Health

Dayle E. Benson Medical University of South Carolina

Follow this and additional works at: https://medica-musc.researchcommons.org/theses

Recommended Citation

Benson, Dayle E., "A Quantitative Review of Costs: Heart Failure Patients Before and After Implementation of an Integrated Practice Unit Model at University of Utah Health" (2017). MUSC Theses and Dissertations. 351.

https://medica-musc.researchcommons.org/theses/351

This Dissertation is brought to you for free and open access by MEDICA. It has been accepted for inclusion in MUSC Theses and Dissertations by an authorized administrator of MEDICA. For more information, please contact medica@musc.edu.

A QUANTITATIVE REVIEW OF COSTS: HEART FAILURE PATIENTS BEFORE AND AFTER IMPLEMENTATION OF AN INTEGRATED PRACTICE UNIT MODEL AT UNIVERSITY OF UTAH HEALTH

BY

Dayle E. Benson

A doctoral project submitted to the faculty of the Medical University of South Carolina in partial fulfillment of the requirements for the degree Doctor of Health Administration in the College of Health Professions

© Dayle Benson 2017 All rights reserved

A QUANTITATIVE REVIEW OF COSTS: HEART FAILURE PATIENTS BEFORE AND AFTER IMPLEMENTATION OF AN INTEGRATED PRACTICE UNIT MODEL AT UNIVERSITY OF UTAH HEALTH

BY

Dayle E. Benson

Approved by:

Chair, Project Committee

5/22/ Date

Jillian B. Harvey, Ph. D.

Abby Swanson Kazley, Ph.D.

Date

3/30/

Member, Project Committee

Member, Project Committee

Dean, College of Health Professions

Rachel Hess, M.D., M.S.

Date

Acknowledgements

What a gift to be able to study health care, and my own organization from such a scholarly and objective view point. Few are as fortunate to work hand in glove with these brilliant minds that are transforming the delivery of health care. I am forever grateful for the opportunity, encouragement, and inexhaustible collegiality of my colleagues at University of Utah Health.

I would like to thank my family, Scott, Mallory and Slater for the freedom to pursue new knowledge and this doctorate degree. More importantly, thank you for listening to the rants, celebrating the wins, proofing my writing, and sending all those thumbs up and positive emoji's. I would not be as successful, if it were not for you. I love you!

There is no doubt that I have the best, most supportive Dissertation Review Committee. Thank you, Dr. Abby Katz, for your continuous encouragement and spot on advice throughout as Chair. Dr. Jillian Harvey, I am tremendously honored that you would serve on this Committee during a time of tremendous change in the DHA program and your career. Also, thank you, Dr. Rachel Hess, for your mentorship and support as we try to improve the value of health care at University of Utah Health and beyond. You are a wise and inspiring role model.

Lastly, there are several colleagues that without their expertise and assistance, this research would not be possible. I would like to acknowledge the support of the University of Utah Heart Failure leadership team for their willingness to recognize and promote research that leads to improvements in the value of patient care. Specific thanks and appreciation to Cary Martin and Jaewhan Kim who helped craft the data set and conduct the statistical analyses in the most scientifically rigorous fashion. I am grateful for your encouragement, support, and insight throughout.

Abstract of Doctoral Project Presented to the Executive Doctoral Program in Health Administration & Leadership Medical University of South Carolina In Partial Fulfillment of the Requirements for the Degree of Doctor of Health Administration

A QUANTITATIVE REVIEW OF COSTS: HEART FAILURE PATIENTS BEFORE AND AFTER IMPLEMENTATION OF AN INTEGRATED PRACTICE UNIT MODEL AT UNIVERSITY OF UTAH HEALTH

By

Dayle E. Benson

Chairperson: Abby Swanson Kazley, Ph.D. Committee: Jillian Harvey, Ph.D. Rachel Hess, M.D., M.S.

Knowing the cost of delivering patient care is a mandatory first step as health care leaders are tasked with reducing the cost of US health care. The Integrated Practice Unit (IPU) model espoused by Michal Porter is a patient centered organizational framework whose tenets support value driven care. University of Utah Health has developed a proprietary costing model that gives them the ability to measure both costs and outcomes at the patient, provider, or in this research case, IPU program level.

An interrupted time series (ITS) study design methodology is used to evaluate whether there has been an immediate effect on HF patient costs and related indicators post implementation of the HF IPU. The ITS pre/post analyses show an overall declining trend in total HF costs, total HF technical costs, total HF professional costs, HF costs (total, surgical and non-surgical), admissions, ED visits, and mean LOS. While VAD costs dropped initially, they began to increase in the post intervention period. HF readmissions remained flat across the preand post periods. Statistically significant and declining trends were observed in HF surgical, and non-surgical cost trends. While not all trends were statistically significant, they may be deemed financially or clinically significant and worth further study.

Table of Contents

	Acknowledgements	iii
	Abstract	iv
	Table of Contents	v
	List of Figures	vi
	List of Tables	vii
I.	INTRODUCTION	1
	Background and Need	2
	Problem Statement	3
	Objective of Study	5
	Research Questions	
	Hypotheses	6
	Integrated Practice Unit Model at UUHC	
	Population	
	Transplant	
	Ventricular Assisted Device	
	Other Heart Failure	
	Summary	15
II.	LITERATURE SEARCH	
	Literature Search Method	
	Value Based Health Care	
	Integrated Care Delivery and Other Transformative Practice Models	
	Significance of Heart Failure Costs	
	Understanding the Cost Side of the Value Equation	
	Value Driven Outcomes	
	Cost to Charge Ratio	
	Time Driven Activity-Based Costing Summary	
	Summary	
III.	METHODOLOGY	
	Study Design	
	Hypotheses	
	Population and Sample	
	Definition of Variables	
	Data Set Description and Structure	
	Data Analysis	
	Limitations	37
IV.	RESULTS	
	Population Characteristics	39
	Data Analysis	41
	Total Heart Failure Cost Per Patient	42

Page

Heart Failure Technical Cost Per Patient	
Heart Failure Professional Cost Per Patient	
Heart Failure Costs – HF Patients Only	
Heart Failure Costs – Surgical and Non-surgical	
Heart Failure Ventricular Assisted Device Cost	
Heart Failure Transplant Cost	
Heart Failure Admissions	
Heart Failure Emergency Department Visits	
Heart Failure Readmissions	
Heart Failure Mean Length of Stay	
V. DISCUSSION	
Discussion of Results	
Discussion of Results Conclusions	
Discussion of Results	
Discussion of Results Conclusions Future Study	
Discussion of Results Conclusions Future Study Summary	

List of Tables

Table 1.	Value Driven Outcomes Approach to Assigning Direct Cost	25
Table 2.	U of U Health Cost Outcome Variables	34
Table 3.	HF Readmission Inclusion 2x2 Box	34
Table 4.	Summary of Population Characteristics Aggregated by Month	40

List of Figures

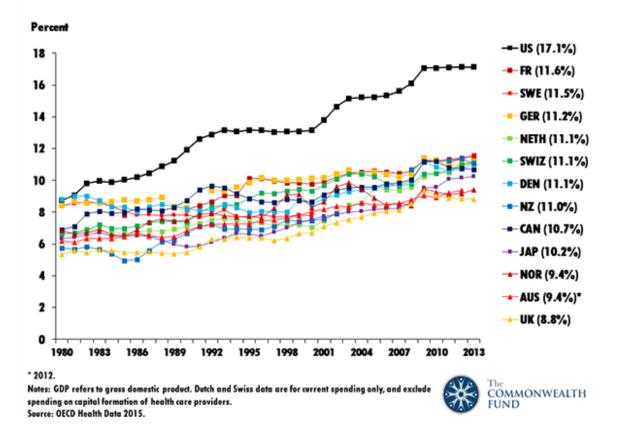
Figure 1.	US Health Care Spending Trends	2
Figure 2.	Projection of Total Costs for HF Patients in the United States	3
Figure 3.	Rising Risk of HF Mortality with Repeat Hospitalizations	4
Figure 4.	Characteristics Essential for IPUs at U of U Health	11
Figure 5.	U or U Health HF Population Sample Counts	33
Figure 6.	HF Population Data Structure Example	35

List of Graphs

Graph 1. HF Cost Per Patient (All) Normalized and Adjusted Trends	42
Graph 2. HF Technical Cost Per Patient Normalized and Adjusted Trends	43
Graph 3. HF Professional Cost Per Patient Normalized and Adjusted Trends	43
Graph 4. HF Cost Normalized and Adjusted Trends	44
Graph 5. HF Cost Surgical Normalized and Adjusted Trends	45
Graph 6. HF Cost Nonsurgical Normalized and Adjusted Trends	46
Graph 7. HF VAD Cost Normalized and Adjusted Trends	47
Graph 8. HF Admissions Per 1000 Patients	48
Graph 9. HF ED Visits Per 1000 Patients	49
Graph 10. HF Readmission Rate	50
Graph 11. HF Mean Length of Stay	51

A Quantitative Review of Costs: Heart Failure Patients Before and After Implementation of an Integrated Practice Unit Model at University of Utah Health

CHAPTER 1 INTRODUCTION


Novel models of health care delivery and partnerships, such as Accountable Care Organizations (ACOs), bundled payment programs, and other integrated practice models, have sprung up nationwide; however, we do not know their impact on health care costs or in improving the health of a population. As health system leaders and providers strive to deliver high-value care, we need to better understand, collect, and share patient cost and outcome data (Porter, 2009).

The University of Utah Health system is one of a handful in the nation with a data system that can track actual patient costs and quality outcomes, including both hospital and professional expenses (Lee et al., 2016). The University of Utah Health (U of U Health) team can quantify internal cost trends and evaluate the impact of interventions on the cost of patient care using a value-driven outcomes (VDO) costing model. Due to this unique ability, this research study includes a quantitative analysis of a program evaluation of the Heart Failure (HF) Integrated Practice Unit (IPU) delivery model at U of U Health, and compares differences in length of stay (LOS), hospital admissions, hospital re-admissions and average patient costs for heart failure patients admitted to the U of U Health before and after the implementation of the IPU. Specifically, the research will explore if sharing patient cost and related outcome data with clinicians has an impact on reducing those costs associated with the treatment of heart failure patients.

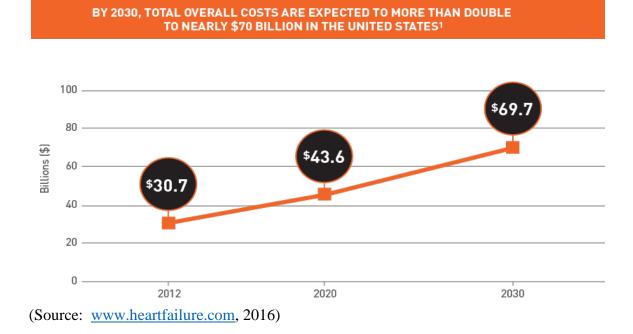
Background and Need for Study

Knowing the cost of delivering patient care is a mandatory first step as health care leaders are tasked with reducing the cost of US health care. Health spending in the US is projected to increase on average 5.8 percent annually for the period 2014 – 2024, and represents 19.6 percent of the gross domestic product (GDP) in 2014 (Keehan, Cuckler, Sisko, & Madison et al., 2015). US health care spending as a percent of GDP is significantly higher than other developed countries as shown in Figure 1 (The Commonwealth Fund, 2016).

Figure 1. US Health Care Spending Trends

Health Care Spending as a Percentage of GDP, 1980–2013

The Affordable Care Act (ACA) highlights the imperative to reduce the cost of


health care in the US, and challenges health care leaders to experiment with new models

of health care delivery that improve the value of patient care. To evaluate these new models of care and payment methods, clinicians and hospital organizations must understand the actual costs and outcomes for individual patients with specific clinical conditions (Lee et al., 2016). The research outlined in this proposal will examine cost and cost related outcome trends in targeted heart failure patients.

Problem Statement

The Center for Medicare and Medicaid Services (CMS) has targeted heart failure patients and their related health care expenses as a potential opportunity to reduce national health care costs. In 2009, the estimated cost of treating heart failure patients in the US was greater than \$30 billion, and costs are expected to more-than-double in 15 years, as illustrated in Figure 2 (Bogaev, 2010; Voigt et al., 2014; "What is the cost…", 2016).

Figure 2. Projection of Total Overall Costs for HF Patients in the United States

Acute heart failure (HF) is one of the most common reasons for overall hospital admissions in the United States (US), and the largest cause of readmissions for both medical and surgical patients (Sperry, B., Ruiz, G., & Najjar, S., 2014). One in four HF patients are readmitted within 30 days of discharge (Bogaev, 2010). With each hospitalization, the risk of HF mortality increases, as shown in Figure 3 ("What is the cost...", 2016). The high costs associated with the HF population make it ripe for experimenting with care delivery models that reduce cost and improve or maintain quality standards of care (Sperry, B., Ruiz, G., & Najjar, S., 2014).

Figure 3. Rising Risk of HF Mortality with Repeat Hospitalization

(Source: <u>www.heartfailure.com</u>, 2016)

This research study describes IPUs as a strategic redesign of how HF patients are managed within U of U Health, and quantifies the early impact on health care costs and other clinical outcomes. IPUs are defined using Michael Porter's definition as a dedicated, multidisciplinary, team-based approach that focuses on comprehensive care for the patient's condition. The primary goal is to provide the highest value of care to the patient, with value being defined as quality and patient satisfaction over cost (Porter & Lee, 2013).

Objective of the Study

The University of Utah Health system is one of the few health care systems with a data system that tracks patient costs and quality outcomes for both hospital and professional expenses. That data is being shared with clinicians for further input on ways to streamline costs and improve care (Appleby, 2014). This research study uses archival data to compare U of U Health resource use and measure HF patient costs, observed to expected length of stay (LOS), hospital admissions, hospital readmissions within 30 days, and emergency department (ED) visits before and after IPU implementation. Heart failure patients will be categorized into the following population segments to improve comparability: Transplant, Ventricular Assisted Device (VAD), and Other Heart Failure patients. The study objective is to measure the association of the HF IPU implementation with HF patient costs and related hospital cost indicators. The findings will help clinical teams identify what processes need to be in place to measure the effectiveness of patient care for a targeted population.

Research Questions

This study compares resource use and measures cost for U of U Health HF patients before and after implementation of an IPU business model using archival data. The following questions have been addressed and will help inform administrators and clinicians as to how to measure and compare patient cost data and related hospital cost indicators.

Research question number 1. Do HF patients post IPU implementation have improved quality outcomes, such as shorter length of stay, and fewer HF hospital readmissions than HF patients pre IPU?

Research question number 2. Do HF patients post IPU implementation have fewer ED visits than HF patients pre IPU?

Research question number 3. Do HF patients post IPU have lower average heart failure attributable cost-per-patient than patients pre IPU?

Hypotheses

The following research hypotheses will be examined. It is likely that the fidelity in which the IPU was implemented and the time frames being examined will influence early findings and conclusions.

Hypothesis H1. HF patient costs at U of U Health will begin to decline post IPU implementation.

Hypothesis H2. HF admissions, readmissions, observed/expected LOS, and ED visits will decline post IPU implementation.

Rationale for hypotheses. The above hypotheses are based off the following central tenets of an IPU:

- 1. An IPU is organized around a medical condition or a set of closely related conditions.
- 2. Care is delivered by a dedicated, multidisciplinary team of clinicians who devote a significant portion of their time to the medical condition.

- 3. Providers view themselves as part of a common organizational unit (IPU).
- The team takes responsibility for the full cycle of care for the condition, encompassing outpatient, inpatient, rehabilitative care, and supporting services (such as social work, behavioral health, and nutrition).
- 5. Patient education, engagement, and follow-up are integrated into care.
- 6. The unit has a single administrative and scheduling structure.
- 7. A physician team captain or a clinical care manager (or both) oversees each patient's care process.
- 8. The team measures outcomes, costs, and processes for each patient using a common measurement platform.
- 9. The providers on the team meet formally and informally on a regular basis to discuss patients, processes, and results.
- 10. Joint accountability is accepted for outcomes and costs (Porter & Lee, 2013)

If these components of an IPU truly exist and incentives are aligned to improve outcomes and cost, then HF costs should decline as clinical teams strive to maximize patient value. Note that this study is a quantitative analysis of an IPU program evaluation specifically measuring the impact on actual patient costs at U of U Health. While other components of Porter and Lee's (2013) IPU model may be referenced and described, they will not be integral to the study.

The Integrated Practice Unit (IPU) Model at University of Utah Health

Beginning July 1, 2015, U of U Health implemented a HF IPU model similar in structure and purpose as Porter and Lee's IPU prototype referenced in their iconic article, "The Strategy that will Fix Health Care" (2013). The purpose was to improve the value

of care for this very large, costly HF population. This effort was considered a pilot, or experiment, with the intent to measure the impact of engaging clinical teams more directly in managing HF patient costs and outcomes by aligning care team governance, clinical goals, and financial incentives. One must understand the HF IPU model at the U of U Health to appreciate the context of this study's research question, and whether the implementation of an IPU model has led to a reduction of clinical costs. The following section contains a comparison of the U of U Health IPU framework to those tenets espoused by Porter and Lee, which serve as the rationale for the hypotheses. Porter and Lee's tenets are in bold.

It is important to note that the multidisciplinary team was comprised of stage C and D heart failure cardiologists and surgeons, and does not include other cardiology providers, primary care, rehabilitation or post discharge care. As such, the IPU team does not take complete responsibility for the full cycle of care for HF conditions as noted in number 4. This discrepancy in the model may have an influence on the study's outcomes.

1. An IPU is organized around a medical condition or a set of closely related conditions. The HF IPU at U of U Health has been defined to include specific eligibility criteria and includes a consistent methodology for identifying patients at the beginning of their care. It is organized around the patients' use of a multidisciplinary team focused on improving the care and health of HF patients in an expanded cycle of care.

2. Care is delivered by a dedicated, multidisciplinary team of clinicians who devote a significant portion of their time to the medical condition. Care delivery and management of the U of U Health HF population includes all patients who access a

dedicated, multidisciplinary care team for HF. There are existing care pathways, protocols, and care delivery processes in place.

3. Providers view themselves as part of a common organizational unit (IPU).

The HF pilot is exclusive to a dedicated clinician team based on diagnosis and primary physician provider. A multidisciplinary governance team comprised of HF cardiologists, surgeons, nurses, midlevel, administration, and decision support staff meet regularly to discuss costs, clinical outcomes, and care processes. This team holds the decision rights for managerial decisions and is accountable for improving the value of patient care.

4. The team takes responsibility for the full cycle of care for the condition, encompassing outpatient, inpatient, rehabilitative care, and supporting services (such as, social work, behavioral health and nutrition). To date, the HF IPU manages only patient care that occurs at U of U Health. This approach includes many of the patient's care needs, but has yet to incorporate those services, providers, or caregivers in other institutions outside of the U of U Health.

5. Patient education, engagement, and follow-up are integrated into care. This criterion is met for all patients who pursue follow up and education within the U of U Health.

6. The unit has a single administrative and scheduling structure. A dedicated team of administrators including physicians, nurses, management, schedulers, and decision support are focused on improving value for HF patients.

7. A physician team captain or a clinical care manager (or both) oversees each patient's care process. The division chiefs of cardiology and cardiovascular services in

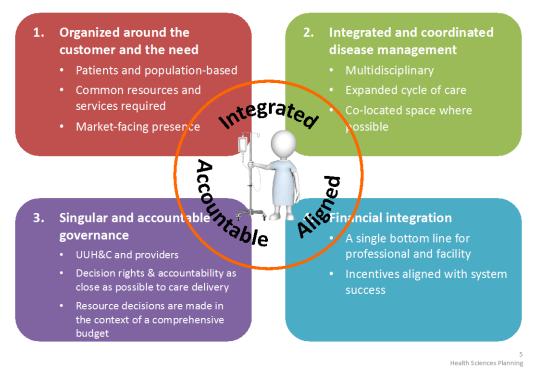
9

conjunction with the administrative and care teams oversee the HF patient care processes, many of which are documented in the electronic medical record.

8. The team measures outcomes, costs, and processes for each patient using a common measurement platform. The team measures the following outcomes, costs and volume indicators for all HF patients admitted to the U of U Health:

- Observed/expected (O/E) morbidity and mortality
- New patient visits and scheduling lags
- Patient satisfaction
- Average total HF attributable costs (inpatient, outpatient, and professional)
- Admissions
- Emergency department (ED) HF visits
- Readmissions within 30 days of HF admission
- Inpatient HF market share
- HF IPU contribution margin
- Patient Reported Outcomes compliance
- HF Patient encounter total cost of care (hospital and professional using the VDO tool)

To date, systems are not in place to measure the longitudinal cost of care for patients, or those costs that occur outside of the U of U Health.


9. The providers on the team meet formally and informally on a regular basis

to discuss patients, processes, and results. The HF IPU team meets twice a month to review metrics and discuss opportunities for care process improvement.

10. Joint accountability is accepted for outcomes and costs. A single bottom line has been established for professional and facility costs with incentives in place to align improved contribution margin performance (Porter & Lee, 2013).

Figure 4 illustrates the essential characteristics for IPUs at U of U Health.

Figure 4. Characteristics Essential for IPUs at U of U Health

What IPU characteristics are essential?

(Source: U of U Health Strategic Planning, 2015)

Lastly, a financial framework has been established at U of U Health to include a minimum set of features required to align incentives around value. The economic model must provide sufficient financial incentives to the IPU when success is achieved, and be structured in a manner that allows for the evaluation and feasibility of the IPU financial framework for both the health system and the IPU (Stephen Petersen, personal interview, September 2015).

Population

The study population has been defined to meet the following criteria:

- Those patients whose initial HF encounter is organized around a patient's medical condition and includes an inpatient or outpatient HF diagnosis that is seen by one of the following HF physicians at U of U Health: five HF cardiologists, two cardiac surgeons, and supporting fellows and advanced practitioners. This team is highly functional and advanced at direct patient care and achieving goals.
- Once identified, any costs in subsequent HF encounters by this patient group will be contained in the costing analysis.

The above HF population sample results in approximately 3,288 unique patients and 53,000 visits over a three-year period (U of U Health Decision Support, 2016). The patient population data as defined will be segmented into three HF sub-populations and compared over a two-year period beginning July 1, 2014. The following codes were used to designate a transplant, VAD, or other HF type of visit and includes both professional and technical coding.

Transplant

CPT Codes

CPT Code	CPT Code Description	
33935	Heart-lung transplant with recipient cardiectomy-pnumec	
33945	Heart transplant with/without recipient cardiectomy	

ICD Procedure	ICD Procedure Description	
02YA0Z0	Transplantation of Heart, Allogeneic, Open Approach	
02YA0Z1	Transplantation of Heart, Syngeneic, Open Approach	
37.51	HEART TRANSPLANTATION	
02YA0Z2	Transplantation of Heart, Zooplastic, Open Approach	

OR ICD Procedure Codes

Ventricular Assisted Device (VAD)

ICD Procedure Codes			
ICD Procedure	re ICD Procedure Description		
02HA0RS	02HA0RS Insert of Bivent Ext Heart Assist into Heart, Open Approach		
02HA0RZ	Insertion of Ext Heart Assist into Heart, Open Approach		
02HA3RS	Insert of Bivent Ext Heart Assist into Heart, Perc Approach		
02HA3RZ	Insertion of Ext Heart Assist into Heart, Perc Approach		
02HA4RZ	Insertion of Ext Heart Assist into Heart, Perc Endo Approach		
	Replacement of Right Ventricle with Synth Sub, Open		
02RK0JZ	Approach		
	Replacement of Left Ventricle with Synth Sub, Open		
02RL0JZ	Approach		
02WA0JZ	Revision of Synthetic Substitute in Heart, Open Approach		
02WA0QZ	Revision of Implant Heart Assist in Heart, Open Approach		
02WA0RZ	Revision of Ext Heart Assist in Heart, Open Approach		
02WA3QZ	Revision of Implant Heart Assist in Heart, Perc Approach		
02WA3RZ	Revision of Ext Heart Assist in Heart, Perc Approach		
02WA4QZ	Revise of Implant Heart Assist in Heart, Perc Endo Approach		
02WA4RZ	Revision of Ext Heart Assist in Heart, Perc Endo Approach		
27.52	IMPLNT TOTAL INT BIVENTRICULAR HEART		
37.52	REPLCMT SYS		
37.53	REPL/REPAIR THORACIC UNIT TOTAL REPL HEART SYS		
37.54	REPL/REPR OTH IMPL CMPNT TOT REPL HEART SYS		
	IMPLANTATON HEART & CIRCULATORY ASSIST		
37.6	SYSTEMS		
	IMPLANT/INSERT BIVENTRICULAR EXT HRT ASSIST		
37.6	SYS		
	INSERTION TEMP NON-IMPLANTABLE ECC ASSIST		
37.62	DEVICE		
37.63	REPAIR OF HEART ASSIST SYSTEM		
37.65	IMPLANT SINGLE VENT EC EXT HEART ASSIST SYS		
27 66	INSERTION OF IMPLANTABLE HEART ASSIST SYSTEM		
37.66 37.68	INSERTION PERQ EXTERNAL HEART ASSIST DEVICE		
39.65	EXTRACORPOREAL MEMBRANE OXYGENATION		
5A02116	Assist with Cardiac Output using Other Pump, Intermittent		
JA02110	Assist with Cardiac Output using Other Pump, interimitent		
5A02216	Continuous		
5A0221D	Assist with Cardiac Output using Impeller Pump, Continuous		
5A15223	Extracorporeal Membrane Oxygenation, Continuous		
51115225	Continuous		

ICD Procedure Codes

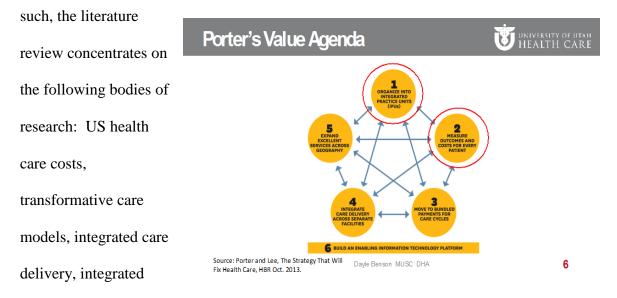
OR CPT Codes

ORCFICOUES	
CPT CODE	CPT CODE DESC
0048T	IMPLTJ VENTR ASSIST DEV XTRCORP PRQ T-SEPTAL
33946	ECMO/ECLS INITIATION VENO-VENOUS
33947	ECMO/ECLS INITIATION VENO-ARTERIAL
	ECMO/ECLS DAILY MANAGEMENT EACH DAY
33948	VENO-VENOUS
	ECMO/ECLS DAILY MANAGEMENT EA DAY VENO-
33949	ARTERIAL
	ECMO/ECLS INSJ OF PRPH CANNULA 6 YRS&OLDER
33952	PERQ
	ECMO/ECLS INSJ OF PRPH CANNULA 6 YRS&OLDER
33954	
	ECMO/ECLS INSJ OF CENTRAL CANNULA 6 YRS &
33956	
	ECMO/ECLS REPOS PERPH CANNULA PRQ 6 YRS &
33958	
	ECMO/ECLS REPOS PERPH CANNULA OPEN 6 YRS &
33962	OLDER
	ECMO/ECLS ECLS REPOS CENTRAL CNULA 6YRS &
33964	
	INSJ VENTRIC ASSIST DEV XTRCORP SINGLE
33975	
	INSJ VENTRIC ASSIST DEV XTRCORP
33976	BIVENTRICULAR
33979	INSJ VENTR ASSIST DEV IMPLTABLE ICORP 1 VNTRC
33981	RPLCMT XTRCORP VAD 1/BIVENTR PUMP 1/EA PUMP
	PLCMT VAD PMP IMPLTBL ICORP 1 VENTR W/O
33982	BYPASS
	RPLCMT VAD PMP IMPLTBL ICORP 1 VNTR
33983	W/BYPASS
	INSERT LEFT HEART VENT BY THORACIC INC
33988	ECMO/ECLS
33990	INSJ PERQ VAD W/IMAGING ARTERY ACCESS ONLY
	INSJ PERQ VAD TRNSPTAL W/IMAGE ART&VENOUS
33991	ACCESS

Other Heart Failure

Includes all visits and associated codes when there were no codes for either

transplants or VADs as defined and the visit fit the population sample definition. Lastly,


cost indicators are segmented and trended for both HF surgical and HF non-surgical in order to more closely align patient type with outcomes.

Summary

Conditions have never been more favorable for structural redesign and examination of innovative care delivery models focused on improving the value of health care. The results of this program evaluation will add to the body of research knowledge on the design of IPUs and their subsequent impact on costs, as well as inform health care leaders of the challenges and lessons learned in managing a specific population, aligning incentives and costs, identifying and measuring outcomes, and developing analytical tools that support a more integrated, longitudinal treatment approach to improving patients' health.

CHAPTER II REVIEW OF THE LITERATURE

There is very little scientific research specific to studying the outcomes of Porter and Lee's IPU model; however, there is much to be learned about its fundamental components, one of which is measuring outcomes and costs for every patient (Porter & Lee, 2013). This study focuses primarily on a quantitative analysis of HF costs and related hospital cost indicators post implementation of a similar IPU business model. As

practice units, common hospital costing methodologies, and interrupted time series studies in a post study.

Literature Search Method

The literature search began with an exploration of the more recent works in the PubMed database through the Eccles Health Sciences Library at the University of Utah. The search focused primarily on years 1996 to current, since IPUs and value based health care are relatively recent topics. The search site is integrated so that information in other databases can be identified; thereby, incorporating literature from EBSCO Business Source Premier, Scopus and other more business related search sites. Since much of economist Michael Porter's value driven care and IPU work has been published in the Harvard Business Review, Google Scholar's search engine was used to collect those relevant articles. Key search words included health care costs, integrated care, heart failure, integrated practice units, heart failure costs, hospital costing models, value driven outcomes, cost to charge ratios, time driven activity-based costing, Michael Porter, interrupted time series, and segmented regression analysis in various combinations.

Electronically accessible documents were downloaded when available, and abstracts were obtained. The literature collected also included key peer reviewed reference articles, which were often added to the body of literature. All searches were completed in August through November 2016 resulting in the discovery of approximately 80 articles and references relevant to this study. In addition, other opportune information was obtained from various expert websites, such as CMS.gov, and through expert content received during personal interviews. The remainder of this section summarizes the significant findings and subsequent learnings from this comprehensive literature search.

Value Based Health Care

There is overwhelming evidence that an opportunity exists to improve the value of health care in the US (DiSesa & Kaiser, 2015; IOM, 2001; James, 2007; Kohn, Corrigan, & Donaldson, 1999; Wennberg, 1999). To facilitate improved cost control, quality and access, US health care delivery is moving from a primarily fee-for-service payment delivery into various integrated, risk based models, such as accountable care organizations (ACOs), patient centered medical homes (PCMHs), bundled payments for a defined service, and integrated practice units (IPUs) (Herzingler, Schleicher, & Mullangi, 2016). The Department of Health and Human Services (HHS) is focusing its energies on using incentives to motivate higher value care, tying reimbursement through alternative payment models that reward value, and paying greater attention to population health and coordination of care across settings (Burwell, 2015).

In the transition from volume to value focus, health system leaders and providers will need to develop different care team models focused on the patients' continuum of care and service needs. This is a significant change in the medical culture and the traditional one on one relationship between the provider and patient. Physician leadership is essential to be effective at reorganizing and executing under this new order. (Porter and Teisberg, 2007; Herzlinger, Schleicher, & Mullangi, 2016; Weisenberg, 2016).

In addition to the cost, quality, and patient experience tenets of value based care and the "Triple Aim" routinely referenced in the literature, the Institute for Health Care Improvement in a seven-year study of the "Triple Aim" identified three main elements for successful population management: identifying the relevant population, creating a governance structure, and articulating a clear purpose for the work. These foundational beliefs are consistent with Porter & Lee's central tenets of an IPU in achieving high value for the patient (Whittington, Nolan, Lewis & Torres, 2015; Porter, 2010).

Another important aspect of successful value based care is aligning incentives and funds flow mechanisms to support effective patient care coordination. Health care funds flow and financial partnership arrangements are complex, and beyond the scope of this study; however, it remains essential that organizations understand their true patient costs to distribute revenues or share in savings associated with high value patient care (Bird, Reney, & Ross, 2015).

18

All the above has led to an unprecedented interest in innovative, integrated

delivery models focused on improving patient value and lowering US health care costs.

Integrated Care Delivery and Other Transformative Practice Models

Why an IPU?

- Aligned accountability for the patient experience
- Patient Centered organize around the patient, not providers
- Value increase quality of care, decrease costs
- Integrated financial model aligns risks and rewards of patient centeredness and value

At the core of this proposed value transformation is changing the way clinicians are organized to deliver care and the importance of physicians engaging with their patients in this effort (Porter & Lee, 2013). Several health care systems have

experimented with IPU models including MD Anderson, Cleveland Clinic and others. MD Anderson in Texas organizes patient care around the type of cancer being treated, with all the applicable specialties collocated in a dedicated practice facility. The Cleveland Clinic has organized IPUs in cardiac and eye care (Porter & Teisberg, 2006).

To understand the impact of these models, it is essential to be able to measure both risk adjusted, clinical outcomes and actual care delivery costs over a defined period. A fundamental conceptual framework espoused by Porter is that improving clinical outcomes results in reduced costs. However, most health care systems and physicians do not have a good understanding of their actual health care delivery costs for a patient population, nor do they have incentives to improve value (Algorithms for Innovation, 2013; Kaplan & Porter, 2011; Porter & Teisberg, 2007). A common theme in the literature is the temptation to look at only the quality or outcomes side of the value equation (Pollock, 2008).

In a recent systematic review on integrated models of health care delivery, the authors (Mitchell et al., 2015) note an urgent need for future research and quantitative study of complex, chronic disease delivery models, and their impact on outcomes, quality of life and resource effectiveness. Most of the literature and study to date highlight advances in care delivery processes, such as communications and interdisciplinary team work, and focuses on improvement in clinical outcomes (Bogaev, 2010; Mitchell, et al., 2015). Researchers reinforce the importance of coordination between health professionals and better integration of treatment with preventative, rehabilitation and disease management, which is believed will lead to improved clinical outcomes and cost (McKay and Wieck, 2014; Porter & Teisberg, 2007). However, there continues to be a strong need for research studies that measure both clinical outcomes and their associated costs; the current state of available cost information is abysmal (Porter & Teisberg, 2007).

Considering reimbursement changes and readmission penalties emphasizing care across the continuum, several systems have developed multidisciplinary, care coordination models that they hope will help manage costs and improve patient health. As example, Parkview Heart Institute developed a three-phased approach to reduce readmissions that included 1) improving inpatient care and transitioning the patient post discharge, optimizing the use of tele-management services, and working with primary care physicians to promote early interventions and avoid admissions. Their efforts

20

showed significant reductions in readmission, length of stay, and HF mortality (Advisory Board, 2012).

MD Anderson has also experimented with value based care and implementing an IPU model for the treatment of cancer disease specific clusters or multidisciplinary care centers. In their experience, researchers note that much better measurements of outcomes and true costs are critically needed (Porter & Teisberg, 2006).

Others are also developing innovative approaches around managing the increasing burden of chronic diseases, such as diabetes, cancer, and cardiovascular disease. These programs are very much in their infancy and face significant barriers around patient data sharing, payment mechanisms that are not aligned with the delivery of value based care, and a cultural mindset based on a history of professional autonomy in clinical practice (Dunbar-Rees, Panch, & Dancy, 2013).

Significance of Heart Failure Costs

HF has a major effect on patients' health status, whether it be symptom burden, functional status, or quality of life. Not only is it expensive, but it remains the leading cause of disability, hospitalization and death in the US (Bekelman, et al., 2015). There have been numerous studies experimenting with heart failure care delivery models focused on the HF population. The National Health Service (NHS) in 2013 published its Cardiovascular Disease Outcomes Strategy with the primary recommendation to clinically manage cardiovascular disease as a single grouping of conditions to improve patient outcomes, coordination of care, and reduce costs (Dunbar-Rees, Panch, & Dancy, 2014). The Texas Heart Institute in 2010 sponsored a white paper highlighting measures, such as communicating, evaluating from a business perspective, aligning physicians and hospitals, and enhancing support services, to ensure VAD therapy was affordable and accessible (Bogaev, 2010). Parkview Heart Institute in 2011 developed a multidisciplinary project to coordinate heart failure care and reduce associated readmission by improving inpatient care and the post discharge process, optimizing telemanagement in continuum of care and working with primary care physicians to prevent care (Advisory Board, 2012). These are just a few examples of recent studies that hoped to contribute knowledge towards improving the value of care for heart failure patients. However, there is still not clear consensus as to what interventions demonstrate improved health status or lead to sustainable reductions in cost.

In a large collaborative, researchers explored the effectiveness of a patient centered disease management (PCDM) intervention to improve the health of HF patients. Unfortunately, this multisite randomize trial did not demonstrate improved patient health status and patient costs were not analyzed (Bekelman, et al., 2015).

Episode based payments or bundled payments are at the forefront of national discussion on combating rising health care costs. In August 2016, CMS announced the addition of Acute Myocardial Infarction (AMI) and Coronary Artery Bypass Graft (CABG) to Medicare's bundled payment programs (CMS, 2016). While this bundle is not directly related to HF patients, cardiovascular care is an arena in which bundled payments may become increasingly visible and be most impactful. An interesting debate is emerging as to whether bundled payment approaches are just another form of silo care around a disease condition, such as Geisinger's focused factory delivery model, versus an integrated approach that leads to real improvement in patient value. Early evidence on the impact of bundled payments on health care costs remains inconclusive. In addition,

there is very little evidence based research in the literature to support these alternative payment models (Shih, Chen & Nallamothu, 2015).

Understanding the Cost Side of the Value Equation

Determining value in health care as defined as outcomes over unit costs is dependent upon accurately capturing and measuring those unit costs (Kaplan et al., 2014). Accurately assigning costs is challenging and approaches vary depending on stakeholder perspectives, such as the health care system, payer, patient or society (Lee et al, 2016). To access profitability under existing payment systems, most organizations use one of three costing methodologies: ratio of cost to charges (RCC), relative value unit (RVU) or the activity based costing (ABC). Some of these costing methods have proven to be more reliable than others; however, their external reliability is limited due to each organizations' unique cost structure (West, Balas, & West, 1996).

Management accounting in health care has experienced somewhat of an evolution from estimated cost determination models to those that are focused on creation of value (Esmalifalak, Albin, & Behzadpoor, 2014). For these reasons, understanding the costing methodologies, and their strengths and weaknesses becomes an integral component of this research analysis. Any research model's usefulness is largely predicated upon the reliability of its output (Esmalifalak, Albin, & Behzadpoor, 2014).

Accurate cost measurement in health care is challenging because a patient's treatment involves so many different types of resources. To measure true costs, these shared resource costs need to be attributed to each patient based on their actual resource use (Kaplan & Porter, 2011; Porter, 2010). This literature search seeks to understand and compare popular and proven hospital costing models, including the Value Driven

Outcomes (VDO) costing model used at U of U Health, the Cost to Charge ratio method (RCC), and Time Driven Activity – Based costing method (TDABC).

Value Driven Outcomes. A pragmatic, modular and extensible software framework is used to capture and allocate clinical care costs to individual patient encounters. This Value Driven Outcomes (VDO) software was developed by U of U Health, and has been shown to accurately reflect organizational cost accounting, as well as support the measurement of quality, outcome and value (Kawamoto, et al., 2015). The software is built on existing organizational cost measurement and analytical capabilities to establish robust analytics for improving outcomes relative to costs. A key component of the methodology is creating a timely process for reporting and analysis of patient centered cost and outcomes data (Kip Williams, personal interview, 2014). The ability to quantify costs at the individual patient level is necessary in transforming health care from episodic, volume oriented care to patient centered, value based care (Lee et al., 2016).

The scope of VDO costs include actual inpatient and outpatient costs for both the facility and the professional expenses; therefore, it is crucial that physician leadership understand the data methodology. The facility costing is derived from clinical data sources and billing data, which is based off acquisition and utilization costs whenever available. The costing models applied include actual, time based, and equal distribution costing methodologies depending on the output being measured. In summary, it is a fully absorbed costing process that is reconciled to the organization's general ledger. The VDO approach to assigning direct costs is contained in Table 1. (Lee et al., 2016).

Table 1. Value-Driven Outcomes Approach to Assigning Direct Cost for a Given Area		
Area of Cost	Sources of Cost Data	Method of Cost Assignment
Facility utilization ¹	All facility-paid general ledger expenses for operating a clinical unit where patients can be located (e.g., emergency department, cardiology inpatient ward, family medicine clinic), including nursing, space, and equipment costs	For inpatient units, time the patient spent on the unit; for outpatient clinics, average facility expenses for a visit to that clinic
Imaging ²	All facility-paid general ledger expenses for operating an imaging unit (e.g., magnetic resonance imaging unit, computed tomography unit), including equipment, space, and technician costs	Time-based for patient use
Laboratory testing ³	Existing contracts	Actual patient use
Therapy services	All facility-paid general ledger expenses associated with operating a therapy service (e.g., respiratory therapy, physical therapy), including personnel and equipment costs	Patient use of services as identified from billing charges
Medications administered ³	Acquisition costs	Actual patient use
Supplies	Acquisition costs	Actual patient use
Professional services	Physician human resource costs for clinical care, as well as other general ledger clinical expenses paid by physicians and their representatives (e.g., medical assistant costs paid by medical group), grouped by unit (e.g., cardiology)	wRVU billing by physician

Table 1. VDO Approach to Assigning Costs

Abbreviation: wRVU, work relative value unit.

¹Costs related to maintenance, renovation, and new construction are considered indirect costs and are not included in the direct costs.

²General ledger expenses for clinical units refer to all expenses recorded in the organization's complete record of financial transactions.

³Outpatient laboratory, pharmacy (medications administered), and imaging costs include only that care delivered at the University of Utah.

A detailed description of the VDO methodology, including sample reports, can be found in the *Journal of American Medical Informatics* as referenced (Kawamoto, 2013).

The strength of the VDO methodology is that it allows for comprehensive study of both sides of the value equation – cost and quality outcomes – and includes facility and professional costs at the patient, episode of care, and even provider levels. The tool can be used in quality improvement, clinical outcome, and cost effectiveness studies to help understand practice variability and clinical cost effectiveness. The primary limitation is that it is proprietary to University of Utah Health and has not yet been replicated elsewhere (Kawamoto, 2013).

Cost to Charge Ratio. Historically, many health care leaders and managerial decision makers have estimated hospital costs by using RCCs applied to a unit of service. While this methodology may work well when examining average costs across a diagnosis related group (DRG) or other broad units of service, it has not proven to be a good methodology for determining costs associated with a particular patient. This is because there is too much variability in costs within departments, and patients consume resources across many different departments, which then exacerbates the error of the averages used in RCCs. Hence, the level of granularity for cost analysis is precisely affected by how an organization captures utilization (Cary Martin, U of U Health, personal interview).

Shwartz, Young and Siegrist collected and studied cost data on seven hospitals comparing Relative Value Unit (RVU) based costing with RCCs. There was a high correlation between the two methodologies in comparing individual patient costs. However, their study showed that 30% of the DRGs had an error greater than 10% using RCC estimated costs compared to RVU estimated costs (1995). In another study of a Midwest renal clinic, researchers found RCCs to be the least accurate measure of cost when compared to RVU and ABC models (West, Balas, & West, 1996). These small inquiries exemplify the need for further study and exploration of accurate costing models in health systems. While RCC may not be the most accurate costing method, it could be helpful when comparing to external information where other common cost collection metrics are not available.

Time Driven Activity – Based Costing (TDABC). Health care economists at Harvard Business School developed this novel costing strategy in order to more accurately estimate true cost. TDABC relies on managerial cost estimates of resources utilized in each encounter, product or patient using multiple time drivers that can be applied more precisely than traditional activity based costing. The TDABC model was developed to help health care leaders and managers understand clinical costs and identify ways to improve value in an era of shared risk for costs (Kaplan, 2015) (West & Balas, 1995).

As example, Cleveland Clinic partnered with the Harvard Business School to determine whether the TDABC methodology would improve the accuracy of costs, enhance value opportunities, and help drive improvements in practice for heart valve procedures. They compared the TDABC design to their current RVU cost allocation methodology in evaluating the strengths and weaknesses of each. The researchers found that the TDABC enabled them to gain additional insights into their costing technique, and improve clinical processes (Donovan, Hopkins, Kimmel, Koberna & Montie, 2014). TDABC has been shown to be a useful tool to measure costs and value in clinical care. Knowing and understanding actual health care costs for an episode of care is becoming increasingly important for health care leaders, as the financial risk for health care shifts more to the providers (Kaplan, 2015). Contrasting VDO costs with those found in other costing methodologies may provide useful insights and perhaps improve the external reliability of this study.

Summary

In conclusion, conditions have never been more favorable for structural redesign and examination of innovative care delivery models focused on improving the value of health care. Integral to improving value is measuring and understanding actual costs at the individual, patient level. The IPU is a patient centered organizational framework whose tenets support population health for specific conditions, and value driven care. One of the central precepts of the IPU is that the team measures outcomes, costs and processes using a common measurement platform. To date, there are very few health systems that can measure actual patient care delivery costs that include both hospital and professional expenses for inpatient and outpatient care.

U of U Health has developed a proprietary costing model that gives them the ability to measure both costs and outcomes at the patient, provider, program, or in this research case, IPU level. Hence, the results of this quantitative analysis of a HF IPU program evaluation will add to the body of research knowledge on the design of IPUs and their subsequent impact on costs, as well as inform health care leaders of the challenges and lessons learned in managing a specific population, aligning incentives and costs, and developing analytical tools that support a more integrated, longitudinal treatment approach to improving patients' health.

CHAPTER III METHODOLOGY

Study Design

The design of the study is a quantitative analysis of a program evaluation using archival data from University of Utah Health. An interrupted time series (ITS) study design methodology is used to evaluate whether there has been an immediate effect on HF patient costs post implementation of the HF IPU. The ITS is one of the strongest, quasi – experimental approaches for evaluating the effects of population level health interventions that are implemented at a point in time. One of the most common quasi – experimental design approaches is the Comparison Group Pretest/Posttest design. The ITS pre/posttest design is often used to test statistical change in an outcome rate in the time periods before and after implementation of a program designed to change the outcome (Wagner, Soumerai, Zhang, & Ross – Degan, 2002; Bernal, Cummins, & Gasparrini, 2016).

Statistical modeling using regression analysis assures that post study HF patients have similar severity and match. Multivariable statistical modeling controls for differences in patient characteristics. Segmented regression analyses are then used to evaluate whether the observed changes reflect random variation or a true change (Shi, 2008; Penfold & Zhang, 2013; Fretheim & Tomic, 2015).

The strengths of the ITS design include its wide applicability in evaluating the effectiveness of interventions absent a randomized control study, the ability to study outcomes data using population level data, clear graphical or visual representation of the data and results, and use of statistical control processes to correct for changes that might

have occurred without the intervention (Penfold & Zhang, 2013; Fretheim & Tomic, 2015).

The ITS study design limitations include the short-term view of outcomes, which may not reflect the full potential or impact of the program, and an assumption of linearity when longer term changes may not be linear. The segmented regression analysis approach aggregates individual level data, and does not necessarily reflect individual level characteristics or covariates (Wagner, Soumerai, Zhang, & Ross – Degan, 2002; Jaewhan Kim, personal interview, 2016). To minimize these limitations, the research design enforces statistical regression models, consistency in methods, and employs other controls to improve external validity.

Hypotheses

A retrospective, quantitative analysis of an IPU program evaluation using archival data from U of U Health will be conducted to analyze its impact on HF costs. An uncontrolled, pre and post, longitudinal, and observational study design was implemented to measure costs from 2014-2016. An interrupted time series (ITS) regression with a design methodology was used with aggregated outcome variables to evaluate whether there was an immediate effect on HF patient costs/utilization post implementation of the HF IPU.

$$Y_t = \alpha + \beta_1 T + \beta_2 X_t + \beta_3 (T * X_t)$$

, where Y is the outcome at time t, α is the baseline level in the outcome at T=0, β_1 represents a coefficient related to changes in the outcome over time, T is the time variable indicating time since the study starts, X_t is an indicator variable (0 before intervention and 1 after intervention), β_2 is a coefficient indicating the level change after intervention, $T * X_t$ is an interaction variable, and β_3 indicates the slope change after intervention (Bernal, Cummins & Gasparrini, 2016).

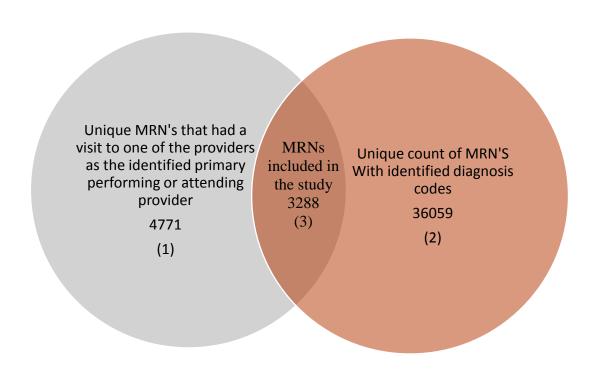
This research study compared U of U Health resource use and measured HF patient inpatient costs, observed to expected length of stay (LOS), hospital admissions, hospital readmissions within 30 days, and Emergency Department (ED) visits before and after IPU implementation using archival data. Heart failure patients were categorized into the following population segments to improve comparability: Transplant, Ventricular Assisted Device (VAD), and Other Heart Failure patients. Analyzing HF patients as a single group blends episode of care and population health data for those patients who received care at U of U Health (James Fang, personal interview, February 14, 2017).

The primary aim of this study was to address the following research questions in order to inform administrators and clinicians as to how to measure and compare patient cost data and related hospital cost indicators.

Research question number 1. Do HF patients post IPU implementation have improved quality outcomes, such as shorter length of stay, and fewer hospital admissions and readmissions than patients pre IPU?

Research question number 2. Do HF patients post IPU implementation have fewer ED visits than HF patients pre IPU?

Research question number 3. Do HF patients post IPU have lower average heart failure attributable cost-per-patient than patients pre IPU?


These questions helped to inform the following hypotheses:

Hypothesis H1. HF patient costs at U of U Health will decline post IPU implementation.

Hypothesis H2. HF admissions, readmissions, observed/expected LOS, and ED visits will decline post IPU implementation.

Population and Sample

All Advanced HF patients meeting the following criteria were included in both the post study samples: A patient who 1) identified with an initial HF diagnosis encounter either as an inpatient or outpatient in the U of U Health system and was treated by specific cardiology and cardiovascular providers, and 2) any subsequent HF encounters incurred by this patient group for the fiscal years 2014 – 2016. The U of U Health fiscal year is July 1 – June 30th. The diagnostic codes for inclusion are outlined in Appendix A. In addition, the patient population count is illustrated in Figure 5 (U of U Health Enterprise Data Warehouse, 2016.

1 -Contains a list of all distinct Medical Record numbers (MRNs) where patient was seen by a designated provider. The designation was applied to 8 different providers and the discharge date needed to have occurred after or equal to July 1, 2012.

2 – Contains a list of distinct MRNs where patient received a specifically defined diagnosis code either from technical or professional billing, and the discharge date needed to have occurred after or equal to July 1, 2012.

3 – Contains a list of distinct MRNs where patient belonged to the list of defined diagnosis codes and was seen by one of the designated providers to include in the dataset.

De-identified patient data was used. The Medical University of South Carolina

(MUSC) and University of Utah Institutional Review Boards (IRBs) classified the study

as non-human subjects research.

Definition of Variables

A definition of cost outcome variables is contained in Table 2. These variables

were collected for all subgroups of the HF population: Transplants, VADs and Other HF

patients, excluding Veteran Administration patients, using the U of U Health VDO

costing model. HF readmission inclusion criteria are illustrated in the 2 x 2 box in Table

3.

Table 2.	. U of U Health Cost Outcome Variables	
----------	--	--

Cost Indicators	Definition				
	VDO Model				
Cost Per Procedure:	Sum of total direct costs divided by the total				
Transplants and VADs	count of transplants or VADs				
Inpatient Average Discharge	Sum of total direct cost divided by the total count				
Costs: Other HF	of inpatient visits for HF patients only				
Observed to expected (O/E)	Sum of observed LOS divided by expected LOS				
Length of Stay (LOS):	for all inpatient visits; expected LOS determined				
Transplants, VADs and Other	by Vizient* clinical database				
HF					
HF Volume: Transplant, VAD,	Counts of total number of discharged transplants,				
and Other HF	VAD procedures, and HF new patient visits				
	(NPVS)				
ED Visit Counts: Transplants,	Count of number of ED visits, regardless of last				
VADs, and Other HF	discharge date				
HF 30 Day Readmission Rates:	Sum of the number of Vizient* 30 day readmits				
Transplants, VADS, and Other	divided by the number of inpatient discharges				
HF					

*Vizient is the clinical benchmarking database used by most academic medical centers and defines 30-day all cause readmission rates for adult, non-OB patients as the percentage of patients within certain service lines who return to the hospital for any reason within 30 days of discharge from the prior (index) admission (U of U Health Decision Support, 2016)

Table 3. HF Readmission Inclusion 2 x 2 Box

	HF Readmits	Non – HF Readmits
HF Admits	\checkmark	\checkmark
Non – HF Admits	\checkmark	×

The predictor variable was the implementation of the IPU business model as previously defined beginning July 1, 2015. Other independent variables collected and included in the descriptive statistics and regression analyses include age at admission, deidentified medical record number, gender, race and ethnicity, zip code, block group, ICD-10, CPT, ICD Procedure Codes, DRG, date of service, severity index (CMI) and Hierarchical Clinical Categorization (HCCs). A complete list of variables, codes and corresponding queries are contained in Appendix B.

Data Set Description and Structure

A finer data structure in long format was used to model the ITS regression analysis. A data set sample with corresponding variables and properties is illustrated in Figure 6.

	cpi_cost	cpi_tech_c~t	cpi_prof_c~t	er	admit	readmit	year_month~s	index_year~h	time	max_total_pt	tota	Variables	
1	398.5913	71.81921	326.7721				1287	2015m7	-12	581		Name	Label
2	390.2599	390.2599	9				1036	2015=7	-11	608		cpi_cost	
3	0	0	0				795	2015m7	-10	615		cpi_tech_cost	
4	97.94199	.4851224	97.45687				1539	2015=7	-9	678		cpi_prot_cost	
5	253.9299	116.6087	137.3213		•		936	2015=7	-8	599		admit	
					•	•						🖬 readmit	
6	2394.638	2394,638	9		•		386	2015m7	-7	625	-	year_month_ob	
7	12.69038	12.69038	9		•		1173	2015m7	-6	625	-	index_year_mor	th
8	184.0157	54.97452	129.0411				1689	2015m7	-5	694		d time max_total_pt	total number of pts in
9	1.489964	1.489964	0				53	2015m7	-4	727		total_visit	total number of pts in
0	12.69038	12.69038	9				1220	2015m7	-3	712		sum_cost	
1	379.9716	122.0434	257.9281			24	1724	2015=7	-2	700		Inpt_cost	
2	164.2557	76.28614	87.96951			2.9	894	2015=7	-1	711		outpt_cost	
3	177.3262	33.14912	144.1771				1505	2015m7	0	748		 sum_inpt_cost sum_outpt_cost 	
4	121.8585	106.1162	15.74224		•		788	2015m7	1	721	-	total ed pt	total number of pts wi
											-	total_inpt_pt	total number of pts wi
5	504.1729	504.1729	9				1622	2015=7	2	783		a mean ace	
6	248.752	77.90968	170.8423	•	•	•	1451	2015m7	3	631		(Q*	
7	272.3551	77.90968	194.4454			<u>.</u>	800	2015=7	4	610		Properties	(4)
8	.0719293	.0719293	9				976	2015m7	5	616		Variables Name	pi_cost
9	.08	.08	8		· · ·		1165	2015m7	6	577		Label	pi_cost
0	239.05	143.43	95.62				709	2015m7	7	619			loat
1	211.96	75.82	136.14				730	2015=7	8	667		Format 1 Value label	69.0g
2	.03	.03	0				4	2015=7	9	621		Notes	
				•		•						♥Data ▶ Filename	Dayle HF Dataset V4-ITS analy
3	153.76	18.3	135.46				784	2015=7	10	663		Labei	vayle HF Wataset V4-ITS analys
4	195.29	75.82	119.47				457	2015=7	11	639		Notes	
													76
													7.12K
												Memory 6	54M
												Sorted by 1	ime
												-	
ŝ													

Figure 6. HF Population Data Structure Example (Screenshot)

The data comes from multiple health care information systems and was obtained from the U of U Health enterprise data warehouse (EDW). All patient data was de-identified using surrogate identification numbers. Cost data was adjusted annually for inflation using the medical consumer price index (CPI) and will be presented in 2016 dollars (Bureau of Labor Statistics, 2016). A finer data structure in long format was used in preparing the data for regression analysis using Stata version 14.0 (StataCorp).

Data Analysis

The ITS regression analysis identifies and compares cost and outcome data one year prior implementation of the HF IPU, and one-year post implementation using data collected from July 1, 2014 through June 30, 2015 as the timeframe before implementation, and July 1, 2015 through June 30, 2016 as the data collection period post implementation of the HF IPU. The data was set up in a long file format where each row is one time point per subject, or in this case per visit (Grace-Martin, 2016). Both professional and technical costs were aggregated based on primary visit. Missing values were excluded where there were either invalid visit numbers or duplicate visits.

In addition, outliers were adjusted to remove those representing the top .10 percent of all HF patient costs including VADs and Transplants. Stata version 14.0 (StataCorp) was used for the analysis whereby results are interpreted as follows:

_t = the slope of the cost variable before intervention

x0 = the change in cost immediately after the intervention

 $_x$ t0 = the difference in slope of the cost between the pre and post intervention A p-value ≤ 0.05 will be interpreted as statistically significant not correcting for multiple comparisons. Cumby – Huizinga actest for autocorrelation was completed on all pre/post data comparisons and was not statistically significant in all cases (Baum & Schaffer, 2013).

All cost data trends are normalized and adjusted for mean age, percent male, percent white, and the mean CCI in the regression analysis. Cost data was normalized or indexed based on the following equation and scaled to a range of (0,1) (Grus, 2015):

Normalized cost = (cost – minimum cost)/ (maximum cost – minimum cost) A detailed description of the data set and statistical queries can be found in Appendices D and E.

Limitations

Key limitations of the study include the relatively short term view of outcomes, whereby the IPU model and related systems may not have reached its full power to show the true impact on cost or cost trends. Also, there is very little external reliability since the study includes archival data from just one hospital and compares average costs using a proprietary costing model (Shi, 2008; Rachel Hess, U of U Health, personal interview, 2016). However, in a quasi-experimental design such as this, an interrupted time series (ITS) with segmented regression analysis is one of the strongest research designs used to examine the impact on a population from programmatic interventions implemented at a point in time (Wagner, Soumerai, Zhang, & Ross – Degan, 2002; Bernal, Cummins, & Gasparrini, 2016).

In addition, there are inherent limitations in the ITS methodologies, including but not limited to, over-dispersion of time series data, autocorrelation, seasonal trends, and time varying confounders (Bernal, Cummins, & Gasparrini, 2016). Much of this will be controlled through statistical analysis. Lastly, results could be due to confounding factors or spurious events; and therefore, are not causal but correlated effects. There is also possible instrumentation and researcher bias that may influence the results and conclusions (Shi, 2008).

CHAPTER IV RESULTS

The ITS pre/post analyses show overall declining trends in total HF costs, total HF technical costs, total HF professional costs, HF costs (total, surgical and nonsurgical), admissions, ED visits, and mean LOS. While VAD costs dropped initially, they began to increase in the post intervention period. HF readmissions remained flat across the pre and post periods. HF surgical and non-surgical costs have seen statistically significant declines post implementation of the HF IPU. While most of the other trends are not statistically significant, they are trending in the right direction and might become statistically significant over time.

Population Characteristics

As previously defined in the methodology chapter, the population includes all advanced HF patients meeting the following criteria: a patient who 1) identified with an initial HF diagnosis encounter either as an inpatient or outpatient in the U of U Health system and was treated by select cardiology and cardiovascular providers, and 2) any subsequent HF encounters incurred by this patient group for the fiscal years 2015 – 2016. Fiscal year 2014 data was eliminated due to inconsistencies in the data collection methodology with the other years, resulting in fewer number of patients studied. Other population characteristics obtained included age, gender, race, and the Charleston Comorbidity index. A complete list of the data set and associated variables is contained in Appendix D.

Based on their coefficient of variations, there was less than a five percent variance across aggregated monthly patient characteristics in mean age, percent male, percent white, and mean CCI; therefore, the study did not test for statistical significance. On average, there were approximately 656 patients and 1,521 visits each month. The average aggregate monthly patient age was 63 years old, 66 percent of the patients were male (44 percent female), 86 percent of the patients were white (14 percent other), and the average clinical severity index was 5.13. A summary of the data set aggregated by month is listed in Table 4.

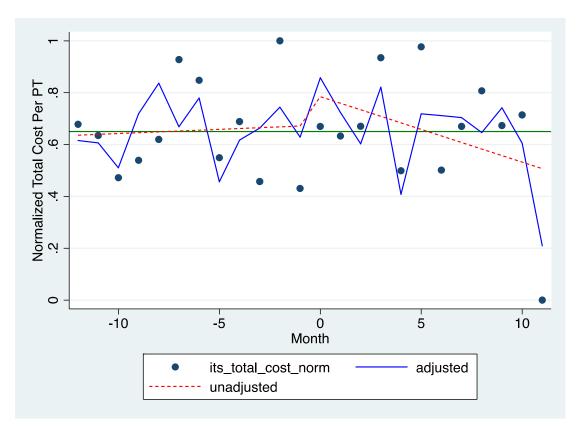
	Total			Percent	Percent	
Months	Patients	Visits	Age	Male	White	Avg CCI
-12	580	1340	63.00	67.24	86.72	5.10
-11	608	1390	63.00	66.61	86.02	5.14
-10	612	1382	63.00	65.20	86.27	4.95
-9	676	1652	64.00	63.46	87.43	4.99
-8	597	1317	63.00	64.99	85.59	5.28
-7	624	1510	64.00	63.94	87.02	5.03
-6	624	1506	64.00	64.74	86.70	5.21
-5	694	1616	63.00	67.15	87.03	4.98
-4	724	1822	63.00	64.09	84.94	5.15
-3	711	1649	63.00	64.56	86.08	5.10
-2	699	1679	64.00	64.66	86.98	5.17
-1	711	1751	64.00	66.81	87.48	5.17
0	748	1820	64.00	64.30	86.23	5.17
1	721	1706	64.00	65.05	85.71	5.17
2	782	1887	63.00	66.75	86.57	4.98
3	630	1408	63.00	64.76	85.40	5.15
4	610	1326	62.00	67.54	83.61	5.10
5	614	1409	62.00	68.57	83.88	5.38
6	576	1219	61.00	67.01	83.51	5.21
7	618	1341	62.00	66.83	84.63	5.17
8	666	1585	62.00	67.57	84.83	5.14
9	620	1409	61.00	69.03	85.81	5.10
10	663	1391	61.00	67.12	83.56	5.12
11	639	1386	62.00	70.74	83.41	5.15
Average	656	1521	62.83	66.20	85.64	5.13

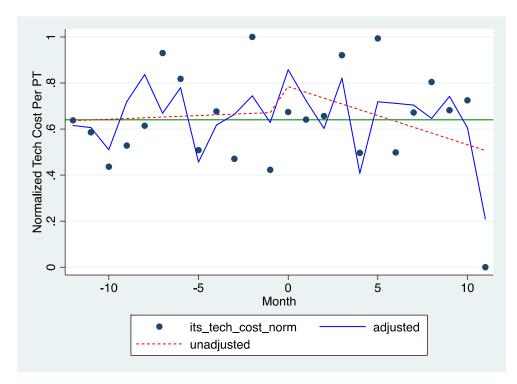
 Table 4. Summary of Population Characteristics Aggregated by Month Tables 1-2

	Norm	Norm	Norm	Avg	ED Visits	Admits	Readmits
	Total	Tech	Prof				
Months	Cost	Cost	Cost	LOS	1000	1000	1000
-12	0.68	0.64	0.90	8.29	17.24	162.07	0.16
-11	0.63	0.59	0.91	8.65	18.09	171.05	0.18
-10	0.47	0.44	0.67	9.07	21.24	130.72	0.15
-9	0.54	0.53	0.59	7.72	13.31	159.76	0.31
-8	0.62	0.61	0.63	8.06	21.78	139.03	0.16
-7	0.93	0.93	0.88	9.08	22.44	169.87	0.26
-6	0.85	0.82	1.00	9.29	28.85	171.47	0.21
-5	0.55	0.51	0.78	8.22	28.82	162.82	0.22
-4	0.69	0.68	0.74	10.04	27.62	132.60	0.11
-3	0.46	0.47	0.36	7.69	30.94	126.58	0.19
-2	1.00	1.00	0.96	9.33	21.46	171.67	0.21
-1	0.43	0.42	0.46	8.09	15.47	143.46	0.19
0	0.67	0.67	0.62	8.64	12.03	140.37	0.19
1	0.63	0.64	0.56	9.21	22.19	141.47	0.21
2	0.67	0.66	0.73	9.48	34.53	154.73	0.18
3	0.93	0.92	0.98	8.93	12.70	160.32	0.16
4	0.50	0.50	0.50	6.59	11.48	165.57	0.21
5	0.98	0.99	0.84	10.10	16.29	154.72	0.19
6	0.50	0.50	0.50	7.05	17.36	161.46	0.22
7	0.67	0.67	0.63	8.71	14.56	155.34	0.17
8	0.81	0.80	0.80	6.75	10.51	168.17	0.16
9	0.67	0.68	0.60	8.14	20.97	143.55	0.24
10	0.71	0.72	0.62	8.79	16.59	131.22	0.22
11	0.00	0.00	0.00	5.72	21.91	118.94	0.18
Average	0.65	0.64	0.68	8.40	19.93	151.54	0.19

Summary Table 2

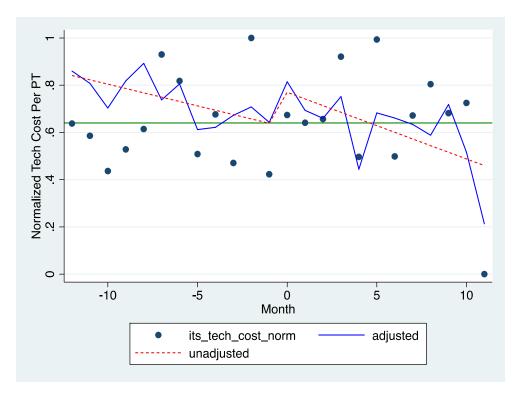
Data Analysis

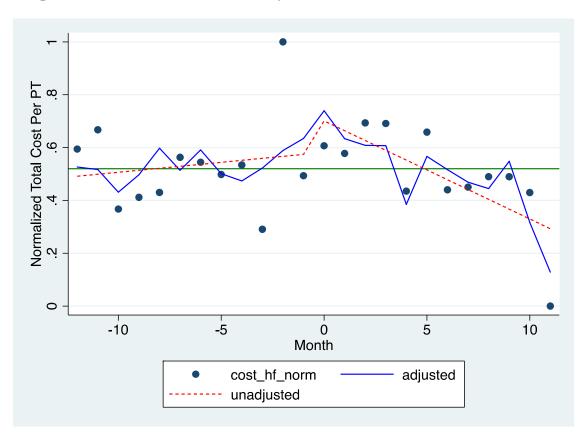

The remainder of this section illustrates trends for each of the cost and outcome variables studied. Study results and related detail are organized within the context of the hypotheses. All ITS regression tables with autocorrelation analysis are contained in Appendix E.


Hypothesis H₁. HF patient costs at U of U Health will begin to decline post IPU implementation.

Total Heart Failure Cost Per Patient (All HF, VAD, and Transplant)

There was a 21% initial increase in costs post IPU implementation followed by a 1% increase in cost slope between the pre and post intervention time periods, which is not statistically significant with a p-value of .712. This similar pattern in cost trend occurred in both technical and professional fees with p-values of .706 and .759 respectively, as illustrated in Graphs 1 - 3.

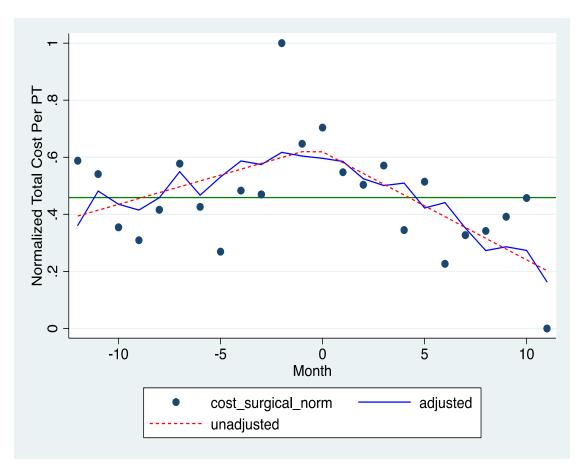

Graph 1. HF Cost Per Patient (All) Normalized and Adjusted Trends

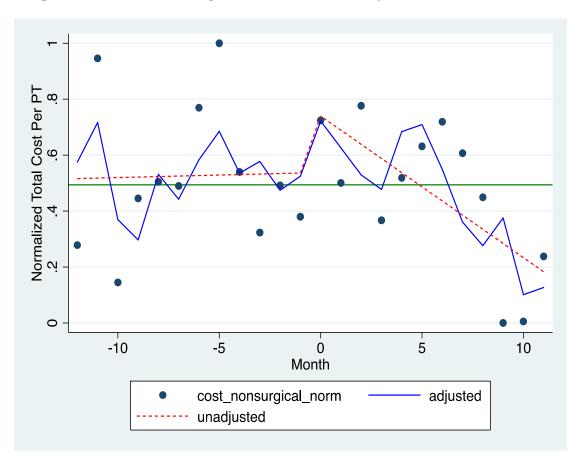

Graph 2. HF Technical Cost Per Patient (All) Normalized and Adjusted Trends

Graph 3. HF Professional Cost Per Patient (All) Normalized and Adjusted Trends

Heart Failure Costs – HF Patients Only

Costs for HF patients only, excluding VADs and Transplants, increased 23% post implementation of the IPU and declined in slope by 3% between the post time periods. The change in slope is not statistically significant for these HF patients with a p-value of .096 (Graph 4).

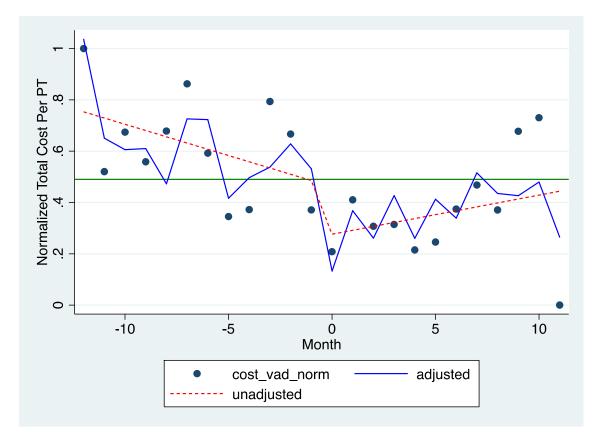




Heart Failure Cost – Surgical and Nonsurgical

There are statistically significant changes when the population cost data is segmented by surgical and non-surgical patients. Heart failure cost for surgical patients show an initial decline (3%) in costs post implementation of the IPU followed by a statistically significant downward trend (p-value .041) of 6% in slope between the pre and post intervention periods. This trend is especially strong in the post intervention time period with a p-value of .005. Nonsurgical HF costs are also on the decline with a statistically significant reduction in the post intervention time period (p-value .025) as illustrated in Graphs 5 and 6.

Graph 5. HF Cost – Surgical Normalized and Adjusted Trends

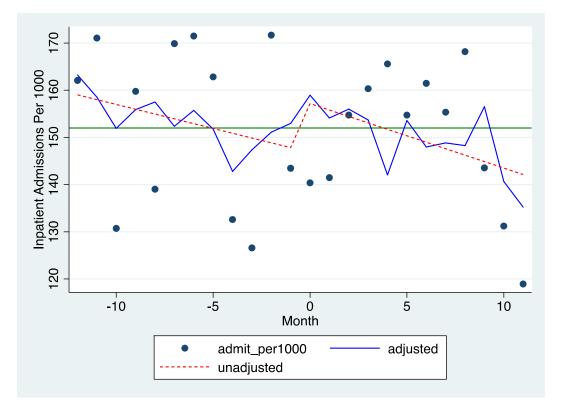


Graph 6. HF Cost – Nonsurgical Normalized and Adjusted Trends

HF Ventricular Assisted Device (VAD) Cost

HF VAD costs experienced an initial drop of 23% post implementation of the HF IPU, and a slight increase of 4% in slope between the pre and post intervention period. The slope change was not statistically significant with a p-value of .097 (Graph 7).

Graph 7. HF VAD Cost Normalized and Adjusted Trends

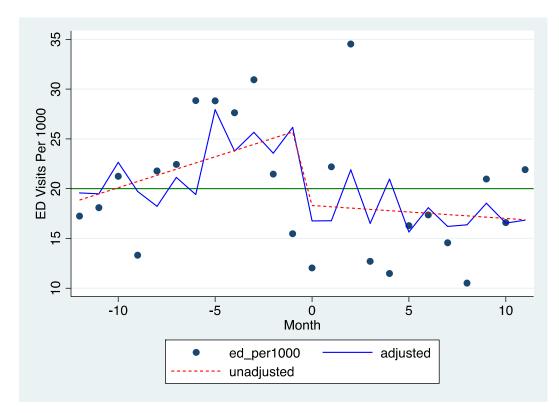

HF Transplant Cost

After normalizing and adjusting for outliers, there were not enough HF Transplant patients to measure statistical significance.

Hypothesis H₂. HF admissions, ED visits, readmissions, and observed/expected LOS will decline post IPU implementation.

HF Admissions

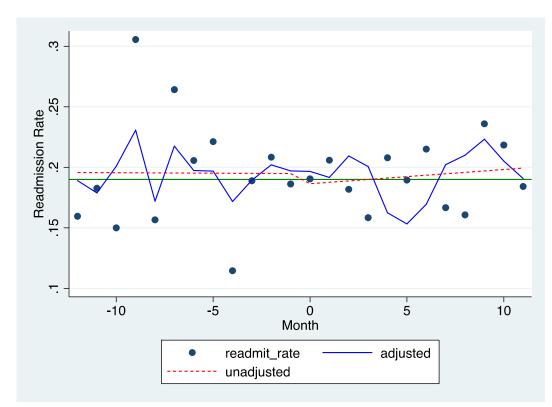
Admissions per 1000 patients increased in the post period by 15.7 with a slope increase of .29 between the pre and post periods, reflecting little change in admission patterns. Change in admissions were not statistically significant with a p-value of .930 (Graph 8).


Graph 8. HF Admissions Per 1000 Patients Adjusted Trends

HF Emergency Department Visits

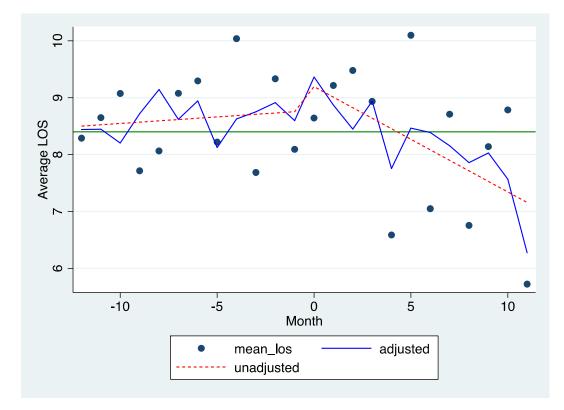
Emergency Department (ED) visits per 1000 patients have declined post

implementation of the IPU by -8.61 with a slope decline of -.1.75


between the pre and post periods. This trend is not statistically significant with a p-value of .259 (Graph 9). However, the decline in visits is remarkable and appears to have been sustainable over the post period.

Graph 9. HF ED Visits Per 1000 Patients Adjusted Trends

HF Readmissions


Heart failure all cause readmission rates dropped .005 post IPU implementation with a slope change of .008 between the pre and post periods. Trends are not statistically significant with a p-value of .383. In addition, there appears to be less variability in readmission patterns post implementation of the IPU model (Graph 10).

Graph 10. HF Readmission Rate Adjusted Trends

HF Mean Length of Stay

HF mean length of stay increased post implementation .69 with a slope decline of -.12 between pre and post periods. This decline is not statistically significant with a p-value of .515 (Graph 11).

Graph 11. HF Mean Length of Stay

CHAPTER V

DISCUSSION

Discussion of Results

Implementation of the HF IPU model in and of itself did not have a statistically significant impact on total HF costs; however, when costs were broken down into HF Surgical and Non-surgical patients, there were statistically significant declines in costs. Other cost indicators such as mean LOS, ED visits, technical, and professional cost trends were also on the decline, yet not statistically significant.

In some cases, however, the declining trends may be financially or clinically significant. It is important to note the difference between statistical significance and clinical significance. The p-values represent the probability that the results were due to some level of chance. It does not measure the treatment effect or significance of the change. One measure may be more statistically significant than another; however, the magnitude of change may be greater or less. ITS graphs allow the researchers to observe the level of change while also testing for statistical significance in trying to determine if the results are robust enough to be clinically significant (P values, 2016).

This research had similar outcomes to another study published in JAMA measuring the association of this same value driven outcomes tool with cost reduction and improvement in health outcomes. The researchers concluded that identifying variability in costs and quality outcomes and sharing this data with physicians may help in improving care (Lee, et al., 2016). While both studies are unique to University of Utah Health, other costing methodologies that incorporate patient level cost data could be used to track change over time. The ability to identify and monitor actual health care delivery costs is a critical component of improving the value of health care (Lee et al., 2016; Porter & Lee, 2013).

The Integrated Time Series (ITS) regression analysis and design approach is perhaps the most generalizable aspect of this research. This methodology can be extended to incorporate other interventions; and more importantly, be applied to other quality improvement initiatives in measuring the impact of an intervention on cost and/or quality outcomes. ITS is a simple, persuasive tool used to evaluate the impact of a change or intervention on an outcome for a specific population of individuals. It is especially useful when a randomized control study is not possible, or perhaps even unethical (Penfold & Zhang, 2013).

If we do see a change in cost, what is driving it? Do you need an IPU model to improve patient costs and outcomes? The study does not answer these questions directly; however, in order to study a population, practice patterns, or cost and quality data, there needs to be a physician-led team that is motivated to improve patient value, and accountable for performance defined by measurable outcomes. Identifying variability in care often requires external review by value engineers or process improvement experts. The tenets of Porter and Lee's IPU model as well as the other integrated care approaches reinforce these principles (Mitchell, et al., 2015; McKay and Wieck, 2014; Bogaev, 2010; Porter & Teisberg, 2007).

In subsequent dialogue with the HF IPU leadership, participants noted challenges such as the ability to obtain reliable data, variability in patient mix, identification of meaningful process improvements, clinical team coordination, episode of care verses longitudinal care coordination, budgetary and other more cultural issues. As one leader stated, "Committee driven implementation is slow. There is much work to be done translating ideas from the board room to the bedside." Also important were discussions about how best to build the academic and research components into the IPU model. (James Fang, personal interview, 2017).

Some of the advantages cited by the HF IPU leadership team included improved organizational alignment and service integration, creation of more formal goals, focus on patient-centered care and clinical care pathways, and development of a framework for patient reported outcomes measures to support future research. Future IPU opportunities were noted, such as extending the IPU to the entire service line, creating more actionable data, developing and monitoring "perfect care" indices for patient procedures, implementing heart failure discharge interventions to further reduce readmissions, and improving the heart failure care pathway from primary care through more home-based care. Lastly, suggestions for change within the IPU model encompassed the need for a dedicated budget and support staff, broader operational representation with a population health approach, and more efficient decision making power (U of U Health HF IPU Leadership, personal interviews, 2017).

Conclusions

There were several lessons learned or additional conclusions drawn from this study, including the following:

• Segmenting the analysis by patient type is important in understanding true cost variation. By aggregating all HF patient costs, statistically significant differences are masked by the data.

- Extending the time period of both the post periods, will increase the power of the study results (Bernal, Cummins, & Gasparrini, 2016). The initial research plan was to use two years one year post; however, the integrity of the FY14 costing data was questionable.
- Moving the post period out six months or more may impact results, since with any new program implementation there is often a learning curve or ramp up in the beginning before real change can occur.
- Focusing on changes in practice that reduce technical costs, such as supplies, operating room time and diagnostic tests will have the greatest impact on costs.
 Total HF cost and total HF technical cost trends and slope change are almost identical. Total HF professional costs did not appear to have a significant impact on total cost as illustrated in the differences observed in the pre intervention period.
- Understanding the Hawthorne effect whereby providers are changing their behavior based on new knowledge, different incentives, or just the fact that they are being studied is important given that there were no significant changes in practice or providers noted over the post periods (Shuttleworth, 2016).
- Rewarding the same fee for service driven care even in an IPU model does not necessarily incentivize population health approaches to care; rather it supports continuous improvement in both volumes and quality.
- Measuring episode of care costs and even other related costs within the same health care delivery system is a start; however, we need access to patient data sources from other facilities and over different time periods to understand true

population health costs. Currently, this level of reliable data sharing is nonexistent. Therefore, most cost studies are from the perspective of established payer databases and not based on actual patient care delivery costs.

Future Study

There are plenty of opportunities for future cost studies both within University of Utah Health and beyond. Internally, researchers may choose to extend the study time period to test whether the change is truly linear and sustainable. Layering in other interventions that might further impact cost and patient outcomes would strengthen the power of the study. Comparing this population of HF patients in the IPU to another similar cohort outside of the IPU would also enhance the study's validity.

Combining quality outcomes research, such as patient mortality and other HF related patient outcome indicators, with this type of cost analysis would add to the understanding of value-based outcomes research and potential study methodologies.

Incorporating patient reported outcomes and examining the correlation between these reported outcomes and cost would lend to the body of comparative effectiveness research, and bring a unique cost perspective to traditionally more clinically oriented outcomes studies.

In addition, the costing methodology using ITS regression analysis can be refined and applied to other services to track interventions across disease types, and serve as a model for standardizing the impact of costs across the organization. Studying the financial integration and alignment of incentives within the IPU model and its operational structure may also shed additional light on motivations behind changes in cost. Externally, the research could be expanded to include a broader HF population through collaborations with other cardiologists and primary care physicians. Careful attention would need to be given to defining the population, and obtaining a consistent data set for comparison.

Analyzing payer costs for those HF patients treated at University of Utah Health versus other health systems utilizing data from an all payer data base or Medicare may be another useful comparison. It would be interesting to see if payer costs correlate with actual patient care delivery costs.

Summary

Knowing the cost of delivering patient care is a mandatory first step as health care leaders are tasked with reducing the cost of US health care. The Center for Medicare and Medicaid Services (CMS) has targeted heart failure patients and their related health care expenses as a potential opportunity to reduce national health care costs. In 2009, the estimated cost of treating heart failure patients in the US was greater than \$30 billion, and costs are expected to more-than-double in 15 years.

Conditions have never been more favorable for structural redesign and examination of innovative care delivery models focused on improving the value of health care. Integral to improving value is measuring and understanding actual costs at the individual patient level. The IPU is a patient-centered organizational framework whose principles support population health for specific conditions and value-driven care. To date, there are very few health systems that can measure actual patient care delivery costs that include both hospital and professional expenses for inpatient and outpatient care. U of U Health has developed a proprietary costing model that gives them the ability to measure both costs and outcomes at the patient, provider, program, or in this research case, IPU level.

The design of the study is a quantitative analysis of a program evaluation using archival data from U of U Health. An interrupted time series (ITS) study design methodology is used to evaluate whether there has been an immediate effect on HF patient costs post implementation of the HF IPU. The ITS is one of the strongest, quasiexperimental approaches for evaluating the effects of population level health interventions that are implemented at a point in time. The ITS pre/posttest design is often used to test statistical change in an outcome rate in the time periods before and after implementation of a program designed to change the outcome (Wagner, Soumerai, Zhang, & Ross-Degan, 2002; Bernal, Cummins, & Gasparrini, 2016).

The ITS pre/post analyses show an overall declining trend in total HF costs, total HF technical costs, total HF professional costs, HF costs (total, surgical and nonsurgical), admissions, ED visits, and mean LOS. While VAD costs dropped initially, it began to increase in the post intervention period. HF readmissions remained flat across the pre and post periods. Statistically significant and declining trends were observed in HF surgical, and non-surgical cost trends. While some trends were not statistically significant, they may be deemed financially or clinically significant and worth further study.

There are plenty of opportunities for additional research. The results of this quantitative analysis of a HF IPU program adds to the body of research knowledge on the design of IPUs and their subsequent impact on costs, as well as informs health care leaders of the challenges and lessons learned in managing a specific population, aligning

58

incentives and costs, and developing analytical tools that support a more integrated,

longitudinal treatment approach to improving patients' health.

REFERENCES

- Advisory Board (2012). Developing a multidisciplinary heart failure treatment model at Parkview Heart Institute. Retrieved August 19, 2016, from <u>https://www.advisory.com/research/cardiovascular-roundtable/cardiovascular-</u> <u>rounds/2012/01/developing-a-multidisciplinary-heart-failure-treatment-model-at-</u> <u>parkview-heart-institute</u>
- Algorithms for Innovation (2013). How can we control our costs? Retrieved August 16, 2016, from <u>http://healthsciences.utah.edu/innovation/algorithms/2013/two</u>
- Appleby, J. (2014). Utah hospitals try the unthinkable: Get a grip on costs. USA Today. Retrieved August 19, 2016, from

http://www.usatoday.com/story/news/nation/2014/06/28/utah-hospitals-cost-ofmedical-care/11416353/

- Baum, C. F. & Schaffer, M. E. (2013). A general approach to testing for autocorrelation.
 UK Stata Users Group Meeting. Retrieved January 5, 2017 from http://repec.org/usug2013/baumschaffer.uk13.pdf
- Bekelman, D. B., Plomondon, M. E., Carey, E. P., Sullivan, M. D., Nelson, K. M., Hattler, B. ... Rumsfeld, J. S. (2015). Primary results of the patient – centered disease management (PCDM) for heart failure study. *JAMA Internal Medicine*, (175)5, 725-732.
- Bernal, J. L., Cummins, S., & Gasparrini, A. (2016). Interrupted time series regression for the evaluation of public health interventions: a tutorial. *International Journal* of Epidemiology, 1-8. doi: 10.1093/ije/dyw098

- Bird, K., Reney, M., & Ross, R. (2015). Funds flow in an era of healthcare transformation. *Healthcare Financial Management*. Retrieved August 23, 2016, from <u>https://www.hfma.org/Content.aspx?id=43628</u>
- Bogaev, R. C., (2010). Cost considerations in the treatment of heart failure. *Texas Heart Institute Journal*, 37(5), 557-558.

Bureau of Labor Statistics (2016). Retrieved November 1, 2016 from <u>http://data.bls.gov/timeseries/CUUR0000SAM?output_view=pct_12mths</u>

- Burwell, S. (2015). Setting value-based payment goals HHS efforts to improve U.S. health care. *New England Journal of Medicine*, *372*(10), 897-899.
- CMS (2015). Bundled payments for care improvement (BPCI) initiative: general information. *CMS.gov.* Retrieved August 16, 2016, from https://innovation.cms.gov/initiatives/bundled-payments/
- CMS (2016). Notice of proposed rulemaking for bundled payment models for highquality coordinated cardiac and hip fracture care. *CMS.gov.* Retrieved August 16, 2016 from <u>https://www.cms.gov/Newsroom/MediaReleaseDatabase/Fact-</u> <u>sheets/2016-Fact-sheets-items/2016-07-25.html</u>
- DiSesa, V. J., & Kaiser, L. R. (2015). What's in a name? The necessary transformation of the academic medical center in the era of population health and accountable care. *Academic Medicine*, 90(7). doi: 10.1097/ACM.00000000000749
- Donovan, C. J., Hopkins, M., Kimmel, B. M., Koberna, S. & Montie, C. A. (2014). How Cleveland Clinic used TDABC to improve value. *Healthcare Financial Management*. Retrieved August 23, 2016, from http://www.hfma.org/Content.aspx?id=22967

- Dunbar-Rees, R., Panch, T., & Dancy, M. (2013). From volume to value? Can a value based approach help deliver the ambitious aims of the NHS cardiovascular disease outcomes strategy? *Heart, 100*, 827-832. doi: 10.1136/heartjnl-2013-305269
- Esmalifalak, H., Albin, M. S., & Behzadpoor, M. (2014). A comparative study on the activity based costing systems: traditional, fuzzy and Monte Carlo approaches. *Health Policy Technology*, 4, 58-67. Retrieved August 23, 2016, from <u>http://dx.doi.org/10.1016/j.hlpt.2014.10.010</u>
- Fink, A. (2005). Evaluation Fundamentals: Insights into outcomes, effectiveness, and quality of health programs. Thousand Oaks, CA: Sage Publications, Inc.
- Fretheim, A. & Tomic, O. (2015). Statistical process control and interrupted time series: a golden opportunity for impact evaluation in quality improvement. *BMJ Quality and Safety*, 24, 748-752. doi: 10.1136/bmjqs-2014-003756
- Grace-Martin, K., 2016. The wide and long data format for repeated measures data. Retrieved November 3, 2016, from <u>http://www.theanalysisfactor.com/wide-and-long-data/</u>
- Grus, J., 2015. Data Science from Scratch. Sebastopol, CA: O'Reilly
- Herzingler, R. E., Schleicher, S. M., & Mullangi, A. (2016). Health care delivery innovations that integrate care. Yes! But integrating what? *JAMA*, *315*(11), 110-1110. doi: 10.1001/jama.2016.0505
- Institute of Medicine (2001). Crossing the Quality Chasm: A New Health System for the 21st Century. Washington, DC: National Academy Press

- James, B. C. (2007). Managing clinical process: doing well by doing good [slide show]. Salt Lake City, Utah: Health Care Delivery Research Intermountain Healthcare. Retrieved August 19, 2016, from <u>https://www.mdanderson.org/education-and-research/resources-for-professionals/clinical-tools-and-resources/clinical-safety-and-effectiveness-educational-program/selected-lectures/csetraining-managing-clinical-processes.pdf</u>
- Kaplan, R. S., & Porter, M. E. (2011). How to solve the cost crisis in health care? *Harvard Business Review*. Retrieved August 16, 2016, from <u>https://hbr.org/2011/09/how-to-solve-the-cost-crisis-in-health-care</u>
- Kaplan, A. L., Agarwal, N., Setlur, N. P., Tan, H. J., Niedzwiecki, D. McLaughlin, N. ...
 Saigal, C. S. (2014). Measuring the cost of care in benign prostatic pyperplasia using time-driven activity-based costing (TDABC). *Healthcare, 3*, 43-48.
 Retrieved August 25, 2016, from <u>http://dx.doi.org/10.1016/j.hjdsi.2014.09.007</u>
- Kawamoto, K., Martin, C. J., Williams, K., Tu, M. C., Park, C. G., Hunter, C., . . . Lee,
 V. S. (2014). Value Driven Outcomes (VDO): a pragmatic, modular, and
 extensible software framework for understanding and improving health care costs
 and outcomes. *Journal of the American Medical Informatics Association*. doi:
 10.1136/amiajnl-2013-002511
- Keehan, S. P., Cuckler, G. A., Sisko, A. M., Madison, A. J., Smith, S. D., Stone, D. A.,
 ...Lizonitz., J. M. (2015). National health expenditure projections, 2014 2024:
 spending growth faster than recent trends. *Health Affairs*, 34(8), 1407-1417.
- Kohn, K. T., Corrigan, J. M., & Donaldson, M. S. (1999). To Err is Human: Building a Safer Health System. Washington, DC: National Academy Press

- Lee, V. S., Kawamoto, K., Hess, R., Park, C., Young, J., Hunter, C., …Pendleton, R. C. (2016). Implementation of a value-driven outcomes program to identify high variability in clinical costs and outcomes and association with reduced cost and improved quality. *JAMA*, *316*(10), 1061-1072. doi: 10.1001/jama.2016.12226
- McKay, C., & Wieck, K. L. (2014). Evaluation of a collaborative care model for hospitalized patients. *Nursing Economics*, 32(5), 248-254.
- Mitchell, G. K., Burridge, L., Zhang, J., Donald, M., Scott I. A., Dart, J., & Jackson, C.
 L. (2015). Systematic review of integrated models of health care delivered at the primary secondary interface: how effective is it and what determines effectiveness? *Australian Journal of Primary Health*, 21, 391-408.
- N.A. (2016). P values, statistical significance and clinical significance. Retrieved January 17, 2016 from <u>https://www.uws.edu/wp-</u>

content/uploads/2013/10/P_Values_Statistical_Sig_Clinical_Sig.pdf

- N.A. (2016). Quasi experimental research designs. Retrieved August 29, 2016, from http://web.csulb.edu/~msaintg/ppa696/696quasi.htm
- N.A. (2016). What is the cost of heart failure on the economy? Retrieved September 11, 2016, from <u>http://www.heartfailure.com/hcp/heart-failure-cost.jsp</u>
- Paulus, R. A., Davis, K., & Steele, G. D. (2008). Continuous innovation in health care:
 implications of the Geisinger experience. *Health Affairs*, (27)5, 1235-1245. doi: 10.1377/hlthaff.27.5.1235
- Penfold, R. B., & Zhang, F. (2013). Use of interrupted time series analysis in evaluating health care quality improvements. *Academic Pediatrics*, 13(6), 38-44

- Pollock, R. E. (2008). Value based health care: the MD Anderson experience. *Transactions of the ... Meeting of the American Surgical Association, 126*, 151-157.
- Porter, M. E. (2009). A strategy for health care reform toward a value based system. *New England Journal of Medicine*, 361(2), 109-112. doi:10.1056/NEJMp0904131
- Porter, M. E. (2010). What is value in health care? *The New England Journal of Medicine*, 363(26).
- Porter, M. E., & Lee, T. H. (2013). The strategy that will fix health care. *Harvard Business Review*. Retrieved August 16, 2016, from <u>https://hbr.org/2013/10/the-strategy-that-will-fix-health-care</u>
- Porter, M. E. & Teisberg, E. O. (2006). *Redefining Health Care*. Boston, MA: Harvard Business School Press.
- Porter, M. E., & Teisberg, E. O. (2007). How physicians can change the future of health care. *JAMA*, (297)10, 1103-1111. doi: 10.1001/jama.297.10.1103
- Shi, L. (2008). *Health Services Research Methods*, 2nd Edition. Clifton Park, NY: Delmar Cengage Learning
- Shuttleworth, M., (2016). Hawthorne Effect. Retrieved January 16, 2016 from https://explorable.com/hawthorne-effect
- Shwartz, M., Young, D. W., & Siegrist, R. (1995/96). The ratio of costs to charges: how good a basis for estimating costs? *Inquiry*, 32(4), 476-481. Retrieved August 27, 2016, from <u>http://www.jstor.org/stable/29772585</u>

Sperry, B. W., Ruiz, G., & Najjar, S. S. (2014). Hospital readmission in heart failure, a novel analysis of a longstanding problem. *Heart Failure Reviews*, 20(3), 251-258.

The Commonwealth Fund (2016). Health care spending as a percentage of GDP, 1980 – 2013. Retrieved September 17, 2016 from <u>http://www.commonwealthfund.org/interactives-and-data/chart-cart/issue-</u> <u>brief/us-health-care-global-perspectives-oecd/health-care-spending-as-a-</u> <u>percentage-of-gdp</u>

University of Utah Health Care (2016). Proprietary information.

- Voigt, J., John, M. S., Taylor, A., Krucoff, M., Reynolds, M. R., & Gibson, M. (2014). A reevaluation of the costs of heart failure and its implications for allocation of health resources in the United States. *Clinical Cardiology*, 37(5), 312-321.
- Wagner, A. K., Soumerai, S. B., Zhang, F., & Ross-Degnan, D. (2002). Segmented regression analysis of interrupted time series in medication use research. *Journal* of Clinical Pharmacy and Therapeutics, 27, 299-309.
- Wennberg, J. E., & Cooper, M. M. (1999). The Dartmouth Atlas of Health Care in the United States. Chicago, IL: American Hospital Association Press
- West, T. D., Balas, E. A., & West D. A. (1996). Contrasting RCC, RVU, and ABC for managed care decisions. A case study compares three widely used costing methods and finds one superior. *Healthcare Financial Management*, 50(8), 54-61.

Whittington, J. W., Nolan, K., Lewis, N., & Torres, T. (2015). Pursuing the triple aim: the first 7 years. *Milbank Quarterly*, 93(2), 263-300. doi: 10.1111/1468-0009.12122

Wiesenberg, K. (2016). A new order of health care delivery, implementing a population health strategy through service line care continuums. *MGMA Connection*.
Retrieved August 19, 2016 from <u>http://www.mgma.com/practice-</u> resources/mgma-connection-plus/mgma-connection/2016/march-2016/a-neworder-of-healthcare-delivery-implementing-a-population-health-strategythrough-service-line-ca

APPENDIX A

Diagnosis Codes Used to Define HF Patient Population

Diagnosis Code	Diagnosis Code Description
428.9	UNSPECIFIED HEART FAILURE
745.2	TETRALOGY OF FALLOT
V43.21	ORGAN/TISSUE REPL OTH MEANS HRT ASSIST DEVICE
428.22	CHRONIC SYSTOLIC HEART FAILURE
402.91	HYPERTENSIVE HEART DISEASE UNSPEC W/HEART FAIL
398.91	RHEUMATIC HEART FAILURE
428.41	ACUTE COMBINED SYSTOLIC&DIASTOLIC HEART FAILURE
I50.31	ACUTE DIASTOLIC CONGESTIVE HEART FAILURE
Z95.3	PRESENCE OF XENOGENIC HEART VALVE
090.3	PERIPARTUM CARDIOMYOPATHY
I40.0	INFECTIVE MYOCARDITIS
Z48.22	ENCOUNTER AFTERCARE FOLLOWING KIDNEY TRANSPLANT
Z48.23	ENCOUNTER AFTERCARE FOLLOWING LIVER TRANSPLANT
D86.84	SARCOID PYELONEPHRITIS
Z48.290	ENCOUNTER AFTERCARE FLW BONE MARROW TRANSPLANT
I50.40	UNSPECIFIED COMBINED SYSTOLIC & DIASTOLIC CHF
T81.11XA	POSTPROCEDURAL CARDIOGENIC SHOCK INITIAL ENC
I25.750	ATHEROSCLER NATV COR ART TPLNT HRT W/UNSTABLE AP
276.69	OTHER FLUID OVERLOAD
428.42	CHRONIC COMB SYSTOLIC&DIASTOLIC HEART FAILURE
746.7	HYPOPLASTIC LEFT HEART SYNDROME
277.39	OTHER AMYLOIDOSIS
422.91	IDIOPATHIC MYOCARDITIS
404.13	HTN HEART & CKD BEN W/HF & CKD STAGE V/ESRD
E87.70	FLUID OVERLOAD UNSPECIFIED
I51.81	TAKOTSUBO SYNDROME
I11.0	HYPERTENSIVE HEART DISEASE WITH HEART FAILURE
Z95.4	PRESENCE OF OTHER HEART-VALVE REPLACEMENT
E85.4	ORGAN-LIMITED AMYLOIDOSIS
Z48.21	ENCOUNTER AFTERCARE FOLLOWING HEART TRANSPLANT
B25.9	CYTOMEGALOVIRAL DISEASE UNSPECIFIED
B25.0	CYTOMEGALOVIRAL PNEUMONITIS
T86.22	HEART TRANSPLANT FAILURE
E85.2	HEREDOFAMILIAL AMYLOIDOSIS UNSPECIFIED
I40.1	ISOLATED MYOCARDITIS
J18.2	HYPOSTATIC PNEUMONIA UNSPECIFIED ORGANISM

	ENCOUNTER AFTERCARE FOLLOW HEART-LUNG
Z48.280	TRANSPLANT
T86.31	HEART-LUNG TRANSPLANT REJECTION
423.2	CONSTRICTIVE PERICARDITIS
V42.1	CAR PSGR INJ COLL 2/3-WHL MOTOR VEH NONTRAF ACC
V42.1	HEART REPLACED BY TRANSPLANT
425.11	HYPERTROPHIC OBSTRUCTIVE CARDIOMYOPATHY
428.32	CHRONIC DIASTOLIC HEART FAILURE
996.83	COMPLICATIONS OF TRANSPLANTED HEART
428.1	LEFT HEART FAILURE
404.11	HTN HRT & CKD BEN W/HF & W/CKD STAGE I-IV/UNS
R57.0	CARDIOGENIC SHOCK
Q23.4	HYPOPLASTIC LEFT HEART SYNDROME
I42.1	OBSTRUCTIVE HYPERTROPHIC CARDIOMYOPATHY
I50.30	UNSPECIFIED DIASTOLIC CONGESTIVE HEART FAILURE
D86.81	SARCOID MENINGITIS
I40.9	ACUTE MYOCARDITIS UNSPECIFIED
B25.1	CYTOMEGALOVIRAL HEPATITS
V58.44	AFTERCARE FOLLOWING ORGAN TRANSPLANT
514	PULMONARY CONGESTION AND HYPOSTASIS
425.5	ALCOHOLIC CARDIOMYOPATHY
428.21	ACUTE SYSTOLIC HEART FAILURE
429.83	TAKOTSUBO SYNDROME
428.43	ACUTE CHRONIC COMB SYSTOLIC&DIASTOLIC HEART FAIL
B25.8	OTHER CYTOMEGALOVIRAL DISEASES
I50.22	CHRONIC SYSTOLIC CONGESTIVE HEART FAILURE
J81.1	CHRONIC PULMONARY EDEMA
I13.0	HTN HEART & CKD W/HF & CKD STAGE 1-4 OR UNS CKD
I51.7	CARDIOMEGALY
I42.0	DILATED CARDIOMYOPATHY
I09.81	RHEUMATIC HEART FAILURE
Z95.811	PRESENCE OF HEART ASSIST DEVICE
I42.8	OTHER CARDIOMYOPATHIES
Z48.288	ENCOUNTER AFTERCARE FLW MULTI ORGAN TRANSPLANT
I42.7	CARDIOMYOPATHY DUE TO DRUG AND EXTERNAL AGENT
T86.20	UNSPECIFIED COMPLICATION OF HEART TRANSPLANT
I42.4	ENDOCARDIAL FIBROELASTOSIS
B25.2	CYTOMEGALOVIRAL PANCREATITIS
D86.3	SARCOIDOSIS OF SKIN
E85.1	NEUROPATHIC HEREDOFAMILIAL AMYLOIDOSIS
425.4	OTHER PRIMARY CARDIOMYOPATHIES

V42.2	HEART VALVE REPLACED BY TRANSPLANT
789.59	OTHER ASCITES
V43.21	PERSON OUTSIDE CAR INJURED COLL SUV NONTRAF ACC
428.31	ACUTE DIASTOLIC HEART FAILURE
150.20	UNSPECIFIED SYSTOLIC CONGESTIVE HEART FAILURE
150.33	ACUTE ON CHRON DIASTOLIC CONGESTIV HEART FAILURE
D86.0	SARCOIDOSIS OF LUNG
I13.2	HTN HEART & CKD W/HF W/STAGE 5 CKD OR ESRD
I50.43	ACUTE ON CHRONIC COMB SYSTOLIC & DIASTOLIC CHF
D86.89	SARCOIDOSIS OF OTHER SITES
I42.2	OTHER HYPERTROPHIC CARDIOMYOPATHY
D86.85	SARCOID MYOCARDITIS
I31.1	CHRONIC CONSTRICTIVE PERICARDITIS
T86.23	HEART TRANSPLANT INFECTION
T86.39	OTHER COMPLICATIONS OF HEART-LUNG TRANSPLANT
429.3	CARDIOMEGALY
425.3	ENDOCARDIAL FIBROELASTOSIS
414.06	COR ATHEROSLERO COR ART TRANSPLANTED HEART
R18.8	OTHER ASCITES
150.9	HEART FAILURE UNSPECIFIED
D86.9	SARCOIDOSIS UNSPECIFIED
I50.1	LEFT VENTRICULAR FAILURE
150.23	ACUTE CHRON SYSTOLIC HEART FAILURE
150.32	CHRONIC DIASTOLIC CONGESTIVE HEART FAILURE
Q20.3	DISCORDANT VENTRICULOARTERIAL CONNECTION
T86.290	CARDIAC ALLOGRAFT VASCULOPATHY
Z48.298	ENCOUNTER AFTERCARE FOLLOW OTH ORGAN TRANSPLANT
D86.1	SARCOIDOSIS OF LYMPH NODES
425.18	OTHER HYPERTROPHIC CARDIOMYOPATHY
V87.46	PERSONAL HISTORY OF IMMUNOSUPPRESSION THERAPY
428.23	ACUTE ON CHRONIC SYSTOLIC HEART FAILURE
785.51	CARDIOGENIC SHOCK
674.54	PERIPARTUM CARDIOMYOPATHY POSTPARTUM COND/COMP
428	HEART FAILURE
I50.21	ACUTE SYSTOLIC CONGESTIVE HEART FAILURE
E87.79	OTHER FLUID OVERLOAD
I50.41	ACUTE COMBINED SYSTOLIC AND DIASTOLIC CHF
Q21.3	TETRALOGY OF FALLOT
Z94.1	HEART TRANSPLANT STATUS
E85.3	SECONDARY SYSTEMIC AMYLOIDOSIS
D86.83	SARCOID IRIDOCYCLITIS

A QUANTITATIVE REVIEW OF COSTS

T86.21	HEART TRANSPLANT REJECTION
T86.298	OTHER COMPLICATIONS OF HEART TRANSPLANT
Z94.3	HEART AND LUNGS TRANSPLANT STATUS
D86.87	SARCOID MYOSITIS
I25.759	ATHEROSCLEROSIS NATV COR ART TPLNT HRT W/UNS AP
425.9	UNSPECIFIED SECONDARY CARDIOMYOPATHY
135	SARCOIDOSIS
V42.2	PERS OUTSIDE CAR INJ COLL 2/3-WHL MV NONTRAF ACC
428.33	ACUTE ON CHRONIC DIASTOLIC HEART FAILURE
998.01	POSTOPERATIVE SHOCK CARDIOGENIC
I42.9	CARDIOMYOPATHY UNSPECIFIED
I50.42	CHRONIC COMBINED SYSTOLIC AND DIASTOLIC CHF
I42.6	ALCOHOLIC CARDIOMYOPATHY
I51.4	MYOCARDITIS UNSPECIFIED
I25.811	ATHEROSCLEROSIS NATIVE COR ART TPLNT HRT W/O AP
Z92.25	PERSONAL HISTORY OF IMMUNOSUPRESSION THERAPY
E85.9	AMYLOIDOSIS UNSPECIFIED
E85.8	OTHER AMYLOIDOSIS
I42.5	OTHER RESTRICTIVE CARDIOMYOPATHY
D86.86	SARCOID ARTHROPATHY
Z48.24	ENCOUNTER AFTERCARE FOLLOWING LUNG TRANSPLANT
D86.2	SARCOIDOSIS OF LUNG W/SARCOIDOSIS OF LYMPH NODES

(Source: U of U Health, EDW, October 2016)

APPENDIX B

HF Patient Population Independent Data Codes and Queries (July 1, 2013 – June

30, 2016)

Visit Codes:

V. VISIT_NO .PRM.VISIT NO AS PRIMARY_VISIT_NO ,REPROV.PERFORMING CONTACT DWID ,P.PAT_ID AS PATIENT_MRN ,P. BIRTH_DATE LOC.UNIT TYPE CODE ,PMATTD.PROV EXTERNAL NAME ,PMATTD.DIVISION ,GNDR.CODE AS GENDER ,GNDR.D GENDER DESC AS GENDER DESC ,RCE.CODE AS RACE RCE.D RACE DESC AS RACE DESC ETHNC.CODE AS ETHNICITY ,ETHNC.D_ETHNICITY_DESC AS ETHNICITY_DESC PC.CODE AS PAT CLASS ,PC.D_PAT_CLASS_DESC AS PAT_CLASS_DESC ,P.ZIP ,V.ADM_DATE V.DSCH_DATE DBP.MIN ADM DATE ,VDC.CCI_SCORE AS CHARLSON_COMORBIDITY_INDEX

Diagnosis Codes:

,DX1.CODE AS DX1_CODE ,DX1.D ICD DX DESC AS DX1 CODE DESC ,DX2.CODE AS DX2_CODE ,DX2.D ICD DX DESC AS DX2 CODE DESC DX3.CODE AS DX3 CODE ,DX3.D ICD DX DESC AS DX3 CODE DESC DX4.CODE AS DX4 CODE ,DX4.D ICD DX DESC AS DX4 CODE DESC DX5.CODE AS DX5 CODE ,DX5.D ICD DX DESC AS DX5 CODE DESC ,DX6.CODE AS DX6_CODE ,DX6.D ICD DX DESC AS DX6 CODE DESC ,DX7.CODE AS DX7_CODE ,DX7.D ICD DX DESC AS DX7 CODE DESC DX8.CODE AS DX8 CODE DX8.D ICD DX DESC AS DX8 CODE DESC ,DX9.CODE AS DX9_CODE ,DX9.D_ICD_DX_DESC AS DX9_CODE_DESC ,DX10.CODE AS DX10_CODE ,DX10.D_ICD_DX_DESC AS DX10_CODE_DESC

ICD Procedure Codes:

,PX1.CODE AS PX1 CODE ,PX1.D_ICD_PX_DESC AS PX1_CODE_DESC PM1.PROV EXTERNAL NAME AS PX1 PROVIDER ,PX2.CODE AS PX2 CODE ,PX2.D_ICD_PX_DESC AS PX2_CODE_DESC ,PM2.PROV EXTERNAL NAME AS PX2 PROVIDER PX3.CODE AS PX3 CODE PX3.D ICD PX DESC AS PX3 CODE DESC ,PM3.PROV EXTERNAL NAME AS PX3 PROVIDER ,PX4.CODE AS PX4_CODE ,PX4.D ICD PX DESC AS PX4 CODE DESC ,PM4.PROV_EXTERNAL_NAME AS PX4_PROVIDER .PX5.CODE AS PX5_CODE ,PX5.D_ICD_PX_DESC AS PX5_CODE_DESC ,PM5.PROV_EXTERNAL_NAME AS PX5_PROVIDER PX6.CODE AS PX6 CODE ,PX6.D ICD PX DESC AS PX6 CODE DESC ,PM6.PROV EXTERNAL NAME AS PX6 PROVIDER ,PX7.CODE AS PX7 CODE ,PX7.D_ICD_PX_DESC AS PX7_CODE_DESC ,PM7.PROV EXTERNAL NAME AS PX7 PROVIDER ,PX8.CODE AS PX8 CODE PX8.D ICD PX DESC AS PX8 CODE DESC ,PM8.PROV EXTERNAL NAME AS PX8 PROVIDER ,PX9.CODE AS PX9 CODE .PX9.D ICD PX DESC AS PX9_CODE_DESC ,PM9.PROV_EXTERNAL_NAME AS PX9_PROVIDER .PX10.CODE AS PX10 CODE PX10.D ICD PX DESC AS PX10 CODE DESC ,PM10.PROV EXTERNAL NAME AS PX10 PROVIDER

CPT Codes:

,CPT1.CODE AS CPT1_CODE ,CPT1.D_CPT_HCPC_DESC AS CPT1_CODE_DESC ,CPT2.CODE AS CPT2_CODE ,CPT2.D_CPT_HCPC_DESC AS ,CPT3.CODE AS CPT3_CODE ,CPT3.D_CPT_HCPC_DESC AS CPT3_CODE_DESC ,CPT04.CODE AS CPT4_CODE ,CPT04.D_CPT_HCPC_DESC AS CPT4_CODE_DESC ,CPT5.CODE AS CPT5_CODE ,CPT5.D_CPT_HCPC_DESC AS CPT5_CODE_DESC ,CPT6.CODE AS CPT6_CODE ,CPT6.D_CPT_HCPC_DESC AS CPT6_CODE_DESC ,CPT7.CODE AS CPT7_CODE ,CPT7.D_CPT_HCPC_DESC AS CPT7_CODE_DESC ,CPT8.CODE AS CPT8_CODE ,CPT8.D_CPT_HCPC_DESC AS CPT8_CODE_DESC ,CPT9.CODE AS CPT9_CODE ,CPT9.D_CPT_HCPC_DESC AS CPT9_CODE_DESC ,CPT10.CODE AS CPT10_CODE ,CPT10.D_CPT_HCPC_DESC AS CPT10_CODE_DESC

Imaging, Supplies, Pharmacy, Facility, and Professional Cost Queries:

,ROUND(CLC.IMAGING_DIR_COST_AMT + SUPPLY_DIR_COST_AMT + PHARMACY_DIR_COST_AMT +

LAB_DIR_COST_AMT + OTHER_SRVC_DIR_COST_AMT + FACILITY_UTIL_DIR_AMT + PROF_DEPT_STAFE_COST_AMT + PROF_PROVIDER_COST

PROF_DEPT_STAFF_COST_AMT + PROF_PROVIDER_COST_AMT + PROF_NON_PERSONNEL_COST_AMT +

IMPLANT_DIR_COST_AMT + LAB_MNGMNT_DIR_COST_AMT + INSTITUTIONAL_DIR_COST_AMT, 2) AS TOTAL_DIR_COST

(Source: U of U Health EDW, October 2016)

APPENDIX C

All Syntax Data Definitions and Queries using Stata 14.0

***All patients

*total cost

tsset time

itsa its_total_cost_norm pc_male pc_white mean_cci mean_age, single trperiod(0) lag(1)

figure posttrend

actest, lag(5)

ge adjusted=_s_its_total_cost_norm_pred

drop _t _x0 _x_t0 _s_its_total_cost_norm_pred

itsa its_total_cost_norm, single trperiod(0) lag(1) figure posttrend

actest, lag(5)

ge unadjusted=_s_its_total_cost_norm_pred

drop _t _x0 _x_t0 _s_its_total_cost_norm_pred

twoway (scatter its_total_cost_norm time) (line adjusted time, lcolor(blue)) (line unadjusted time, lcolor(red) lpattern(shortdash)), yline(0.65, lcolor(green)) /// ytitle(Normalized Total Cost Per PT) xtitle(Month) drop adjusted unadjusted

*total tech cost

tsset time

itsa its_tech_cost_norm pc_male pc_white mean_cci mean_age, single trperiod(0) lag(1) figure posttrend actest, lag(5)

ge adjusted=_s_its_tech_cost_norm_pred

drop _t _x0 _x_t0 _s_its_tech_cost_norm_pred

itsa its_tech_cost_norm, single trperiod(0) lag(1) figure posttrend

actest, lag(5)

ge unadjusted=_s_its_tech_cost_norm_pred

drop _t _x0 _x_t0 _s_its_tech_cost_norm_pred

twoway (scatter its_tech_cost_norm time) (line adjusted time, lcolor(blue)) (line unadjusted time, lcolor(red) lpattern(shortdash)), yline(0.64, lcolor(green)) /// ytitle(Normalized Tech Cost Per PT) xtitle(Month) drop adjusted unadjusted

*total prof cost

tsset time

itsa its_prof_cost_norm pc_male pc_white mean_cci mean_age, single trperiod(0) lag(1) figure posttrend actest, lag(5)

 $ge \ adjusted = _s_its_prof_cost_norm_pred$

drop _t _x0 _x_t0 _s_its_prof_cost_norm_pred

its its_prof_cost_norm , single trperiod(0) lag(1) figure posttrend

actest, lag(5)

ge unadjusted=_s_its_prof_cost_norm_pred

drop _t _x0 _x_t0 _s_its_prof_cost_norm_pred

twoway (scatter its_prof_cost_norm time) (line adjusted time, lcolor(blue)) (line

unadjusted time, lcolor(red) lpattern(shortdash)), yline(0.68, lcolor(green)) ///

ytitle(Normalized professional Cost Per PT) xtitle(Month)

drop adjusted unadjusted

*ED per 1000

tsset time

itsa ed_per1000 pc_male pc_white mean_cci mean_age, single trperiod(0) lag(1) figure posttrend

actest, lag(5)

ge adjusted= _s_ed_per1000_pred

drop _t _x0 _x_t0 _s_ed_per1000_pred

itsa ed_per1000, single trperiod(0) lag(1) figure posttrend

actest, lag(5)

ge unadjusted= _s_ed_per1000_pred

drop _t _x0 _x_t0 _s_ed_per1000_pred

A QUANTITATIVE REVIEW OF COSTS

twoway (scatter ed_per1000 time) (line adjusted time, lcolor(blue)) (line unadjusted time,

lcolor(red) lpattern(shortdash)), yline(20, lcolor(green)) ///

ytitle(ED Visits Per 1000) xtitle(Month)

drop adjusted unadjusted

*admit per 1000

tsset time

itsa admit_per1000 pc_male pc_white mean_cci mean_age, single trperiod(0) lag(1)

figure posttrend

actest, lag(5)

ge adjusted=_s_admit_per1000_pred

drop _t _x0 _x_t0 _s_admit_per1000_pred

itsa admit_per1000, single trperiod(0) lag(1) figure posttrend

actest, lag(5)

ge unadjusted=_s_admit_per1000_pred

drop _t _x0 _x_t0 _s_admit_per1000_pred

twoway (scatter admit_per1000 time) (line adjusted time, lcolor(blue)) (line unadjusted time, lcolor(red) lpattern(shortdash)), yline(152, lcolor(green)) /// ytitle(Inpatient Admissions Per 1000) xtitle(Month) drop adjusted unadjusted *readmit per 1000

tsset time

itsa readmit_rate pc_male pc_white mean_cci mean_age, single trperiod(0) lag(1) figure posttrend

actest, lag(5)

ge adjusted=_s_readmit_rate_pred

drop _t _x0 _x_t0 _s_readmit_rate_pred

itsa readmit_rate, single trperiod(0) lag(1) figure posttrend

actest, lag(5)

ge unadjusted=_s_readmit_rate_pred

drop _t _x0 _x_t0 _s_readmit_rate_pred

twoway (scatter readmit_rate time) (line adjusted time, lcolor(blue)) (line unadjusted time, lcolor(red) lpattern(shortdash)), yline(0.19, lcolor(green)) /// ytitle(Readmission Rate) xtitle(Month) drop adjusted unadjusted

*average LOS

tsset time

itsa mean_los pc_male pc_white mean_cci mean_age, single trperiod(0) lag(1) figure posttrend

actest, lag(5)

ge adjusted=_s_mean_los_pred

drop _t _x0 _x_t0 _s_mean_los_pred

itsa mean_los, single trperiod(0) lag(1) figure posttrend

actest, lag(5)

ge unadjusted=_s_mean_los_pred

drop _t _x0 _x_t0 _s_mean_los_pred

twoway (scatter mean_los time) (line adjusted time, lcolor(blue)) (line unadjusted time,

lcolor(red) lpattern(shortdash)), yline(8.4, lcolor(green)) ///

ytitle(Average LOS) xtitle(Month)

drop adjusted unadjusted

subsets*

*VAD

tsset time

itsa cost_vad_norm pc_male pc_white mean_cci mean_age, single trperiod(0) lag(1)

figure posttrend

actest, lag(5)

ge adjusted=_s_cost_vad_norm_pred

drop _t _x0 _x_t0 _s_cost_vad_norm_pred

itsa cost_vad_norm, single trperiod(0) lag(1) figure posttrend

```
actest, lag(5)
```

ge unadjusted=_s_cost_vad_norm_pred

drop _t _x0 _x_t0 _s_cost_vad_norm_pred

twoway (scatter cost_vad_norm time) (line adjusted time, lcolor(blue)) (line unadjusted

time, lcolor(red) lpattern(shortdash)), yline(0.49, lcolor(green)) ///

ytitle(Normalized Total Cost Per PT) xtitle(Month)

drop adjusted unadjusted

*HF

tsset time

itsa cost_hf_norm pc_male pc_white mean_cci mean_age, single trperiod(0) lag(1)

figure posttrend

actest, lag(5)

ge adjusted=_s_cost_hf_norm_pred

drop _t _x0 _x_t0 _s_cost_hf_norm_pred

itsa cost_hf_norm, single trperiod(0) lag(1) figure posttrend

actest, lag(5)

ge unadjusted=_s_cost_hf_norm_pred

drop _t _x0 _x_t0 _s_cost_hf_norm_pred

A QUANTITATIVE REVIEW OF COSTS

twoway (scatter cost_hf_norm time) (line adjusted time, lcolor(blue)) (line unadjusted time, lcolor(red) lpattern(shortdash)), yline(0.52, lcolor(green)) /// ytitle(Normalized Total Cost Per PT) xtitle(Month) drop adjusted unadjusted

*HF-surgical

tsset time

itsa cost_surgical_norm pc_male pc_white mean_cci mean_age, single trperiod(0) lag(1)
figure posttrend
actest, lag(5)
ge adjusted=_s_cost_surgical_norm_pred

drop _t _x0 _x_t0 _s_cost_surgical_norm_pred

itsa cost_surgical_norm, single trperiod(0) lag(1) figure posttrend

actest, lag(5)

ge unadjusted=_s_cost_surgical_norm_pred

drop _t _x0 _x_t0 _s_cost_surgical_norm_pred

twoway (scatter cost_surgical_norm time) (line adjusted time, lcolor(blue)) (line unadjusted time, lcolor(red) lpattern(shortdash)), yline(0.459, lcolor(green)) /// ytitle(Normalized Total Cost Per PT) xtitle(Month) drop adjusted unadjusted *HF-nonsurgical

tsset time

itsa cost_nonsurgical_norm pc_male pc_white mean_cci mean_age, single trperiod(0)

lag(1) figure posttrend

actest, lag(5)

ge adjusted=_s_cost_nonsurgical_norm_pred

drop _t _x0 _x_t0 _s_cost_nonsurgical_norm_pred

itsa cost_nonsurgical_norm, single trperiod(0) lag(1) figure posttrend

actest, lag(5)

ge unadjusted=_s_cost_nonsurgical_norm_pred

drop _t _x0 _x_t0 _s_cost_nonsurgical_norm_pred

twoway (scatter cost_nonsurgical_norm time) (line adjusted time, lcolor(blue)) (line unadjusted time, lcolor(red) lpattern(shortdash)), yline(0.4937, lcolor(green)) /// ytitle(Normalized Total Cost Per PT) xtitle(Month) drop adjusted unadjusted

APPENDIX D

ITS Regression Analysis Data Set

Time	Number of	Total	Average	0.(0.(Average
	Total			%	%	
n Months	Patients	Visits	Age	Male	White	CCI
-12	580	1340	63.00	67.24	86.72	5.10
-11	608	1390	63.00	66.61	86.02	5.14
-10	612	1382	63.00	65.20	86.27	4.95
-9	676	1652	64.00	63.46	87.43	4.99
-8	597	1317	63.00	64.99	85.59	5.28
-7	624	1510	64.00	63.94	87.02	5.03
-6	624	1506	64.00	64.74	86.70	5.21
-5	694	1616	63.00	67.15	87.03	4.98
-4	724	1822	63.00	64.09	84.94	5.15
-3	711	1649	63.00	64.56	86.08	5.10
-2	699	1679	64.00	64.66	86.98	5.17
-1	711	1751	64.00	66.81	87.48	5.17
0	748	1820	64.00	64.30	86.23	5.17
1	721	1706	64.00	65.05	85.71	5.17
2	782	1887	63.00	66.75	86.57	4.98
3	630	1408	63.00	64.76	85.40	5.15
4	610	1326	62.00	67.54	83.61	5.10
5	614	1409	62.00	68.57	83.88	5.38
6	576	1219	61.00	67.01	83.51	5.21
7	618	1341	62.00	66.83	84.63	5.17
8	666	1585	62.00	67.57	84.83	5.14
9	620	1409	61.00	69.03	85.81	5.10
10	663	1391	61.00	67.12	83.56	5.12
11	639	1386	62.00	70.74	83.41	5.15
	15747	36501	62.83	66.20	85.64	5.13

*	Norm	Norm	Norm		ED		
Time	alized	alized	alized	Avg	Visits	Admits	Readmits
	Total	Tech	Prof	U		Per	
in Months	Cost	Cost	Cost	LOS	Per 1000	1000	Per 1000
-12	0.68	0.64	0.90	8.29	17.24	162.07	0.16
-11	0.63	0.59	0.91	8.65	18.09	171.05	0.18
-10	0.47	0.44	0.67	9.07	21.24	130.72	0.15
-9	0.54	0.53	0.59	7.72	13.31	159.76	0.31
-8	0.62	0.61	0.63	8.06	21.78	139.03	0.16
-7	0.93	0.93	0.88	9.08	22.44	169.87	0.26
-6	0.85	0.82	1.00	9.29	28.85	171.47	0.21
-5	0.55	0.51	0.78	8.22	28.82	162.82	0.22
-4	0.69	0.68	0.74	10.04	27.62	132.60	0.11
-3	0.46	0.47	0.36	7.69	30.94	126.58	0.19
-2	1.00	1.00	0.96	9.33	21.46	171.67	0.21
-1	0.43	0.42	0.46	8.09	15.47	143.46	0.19
0	0.67	0.67	0.62	8.64	12.03	140.37	0.19
1	0.63	0.64	0.56	9.21	22.19	141.47	0.21
2	0.67	0.66	0.73	9.48	34.53	154.73	0.18
3	0.93	0.92	0.98	8.93	12.70	160.32	0.16
4	0.50	0.50	0.50	6.59	11.48	165.57	0.21
5	0.98	0.99	0.84	10.10	16.29	154.72	0.19
6	0.50	0.50	0.50	7.05	17.36	161.46	0.22
7	0.67	0.67	0.63	8.71	14.56	155.34	0.17
8	0.81	0.80	0.80	6.75	10.51	168.17	0.16
9	0.67	0.68	0.60	8.14	20.97	143.55	0.24
10	0.71	0.72	0.62	8.79	16.59	131.22	0.22
11	0.00	0.00	0.00	5.72	21.91	118.94	0.18
	0.65	0.64	0.68	8.40	19.93	151.54	0.19

ITS Regression Analysis Data Set

APPENDIX E

ITS Regression Analysis Detail

Normalized and Adjusted Total HF Cost

. itsa its_total_cost_norm pc_male pc_white mean_cci mean_age, single trperiod(0) l

> ag(1) figure posttrend

time variable: time, -12 to 11

delta: 1 unit

Regression with Newey-West standard errors Number of obs = 24

maximum lag: 1 F(7, 16) = 2.62

Prob > F = 0.0522

| Newey-West

its_total_~m | Coef. Std. Err. t P>|t| [95% Conf. Interval]

86

Postintervention Linear Trend: 0

Treated: $b[_t]+b[_x_t0]$

			Std. Err. t		_		_	
Treated	0.00)41	0.0253 0.160	0 0.874	19 -	0.0497	0.0578	
Cumby-Huizinga test for autocorrelation (Breusch-Godfrey) H0: variable is MA process up to order q HA: serial correlation present at specified lags >q								
H0: q=0 (H0: q=0 (serially uncorrelated) H0: q=specified lag-1 HA: s.c. present at range specified HA: s.c. present at lag specified							
-			p-val lag			-		
			0.2773 1					
1 - 2	1.884	2	0.3899 2	0.123	1	0.7257		
1 - 3	3.476	3	0.3239 3	0.505	1	0.4772		
1 - 4	8.360	4	0.0792 4	3.391	1	0.0655		
1 - 5	8.360	5	0.1375 5	2.065	1*	0.1507		

Normalized and Adjusted HF Technical Costs

itsa its_tech_cost_norm pc_male pc_white mean_cci mean_age, single trperiod(0) lag(1

>) figure posttrend

time variable: time, -12 to 11

delta: 1 unit

Regression with Newey-West standard errors Number of obs = 24 maximum lag: 1 F(7, 16) = 3.39

Prob > F = 0.0206

| Newey-West

its_tech_c~m | Coef. Std. Err. t P>|t| [95% Conf. Interval]

 pc_male | -.0862635
 .0391301
 -2.20
 0.042
 -.1692155
 -.0033115

 pc_white | .1416851
 .0465157
 3.05
 0.008
 .0430762
 .2402939

 mean_cci | 1.331886
 .4902058
 2.72
 0.015
 .292696
 2.371076

 mean_age | -.1261176
 .1049957
 -1.20
 0.247
 -.3486986
 .0964634

 _t | -.0052261
 .0116497
 -0.45
 0.660
 -.0299224
 .0194702

 _x0 | .2041695
 .1101865
 1.85
 0.082
 -.0294154
 .4377543

 _x_t0 | .0121568
 .0316548
 0.38
 0.706
 -.0549485
 .0792621

 _cons | -4.766756
 7.262495
 -0.66
 0.521
 -20.16256
 10.62905

Postintervention Linear Trend: 0

Treated: $b[_t]+b[_x_t0]$

Linear Tre	·					-		_
Treated								
Cumby-Huizinga test for autocorrelation (Breusch-Godfrey) H0: variable is MA process up to order q HA: serial correlation present at specified lags >q								
на: sena		-		-	-	-		
H0: q=0 (serially	uncor	related)	1	H0: q=sp	ecifie	ed lag-1	
HA: s.c. p	present a	t rang	ge specifi	ed	HA: s.c.	prese	ent at lag	g specified
lags	chi2	df	p-val]	lag	chi2	df	p-val	
1 - 1								
1 - 2	2.324	2	0.3129	2	0.166	1	0.6841	
1 - 3	3.622	3	0.3053	3	0.267	1	0.6051	
1 - 4	8.617	4	0.0714	4	3.306	1	0.0690	1
1 - 5	8.624	5	0.1250	5	2.057	1*	0.151	5

Normalized and Adjusted HF Professional Costs

itsa its_prof_cost_norm pc_male pc_white mean_cci mean_age, single trperiod(0) lag(1

>) figure posttrend

time variable: time, -12 to 11

delta: 1 unit

Regression with Newey-West standard errors Number of obs = 24 F(7, 16) =maximum lag: 1 1.66 $Prob > F \qquad = \quad 0.1905$ _____ | Newey-West its_prof_c~m | Coef. Std. Err. t P>|t| [95% Conf. Interval] pc_male | -.0483567 .0392867 -1.23 0.236 -.1316409 .0349275 pc_white | .1321997 .0535278 2.47 0.025 .0187259 .2456735 mean_cci | .9765595 .4812447 2.03 0.059 -.0436338 1.996753 mean_age | -.1263904 .1111147 -1.14 0.272 -.3619429 .1091622 _t | -.0252181 .0155628 -1.62 0.125 -.0582096 .0077735 _x0 | .2421771 .1495381 1.62 0.125 -.0748296 .5591838 _x_t0 | .0114289 .0366845 0.31 0.759 -.0663386 .0891965 _cons | -4.374606 7.537823 -0.58 0.570 -20.35408 11.60486

Postintervention Linear Trend: 0

Treated: $b[_t]+b[_x_t0]$

.....

Linear Trend | Coeff Std. Err. t P>|t| [95% Conf. Interval]

	I							
			0.0259 -0.532					
Cumby-Huizinga test for autocorrelation (Breusch-Godfrey) H0: variable is MA process up to order q HA: serial correlation present at specified lags >q								
H0: q=0 (serially uncorrelated) H0: q=specified lag-1 HA: s.c. present at range specified HA: s.c. present at lag specified								
- .			p-val lag			-		
			0.6606 1	·				
			0.7989 2					
1 - 3	5.275	3	0.1527 3	3.416	1	0.0646		
1 - 4	7.931	4	0.0941 4	1.812	1	0.1782		
1 - 5	8.338	5	0.1385 5	1.841	1*	0.1748	3	

Normalized and Adjusted HF Cost

its cost_hf_norm pc_male pc_white mean_cci mean_age, single trperiod(0) lag(1) fig

> ure posttrend

time variable: time, -12 to 11

delta: 1 unit

cost_hf_norm | Coef. Std. Err. t P>|t| [95% Conf. Interval]

pc_male | -.0179709 .0247662 -0.73 0.479 -.0704728 .034531 pc_white | .1279522 .0390098 3.28 0.005 .0452551 .2106494 mean_cci | .8054308 .3764444 2.14 0.048 .0074044 1.603457 mean_age | -.1140815 .0696877 -1.64 0.121 -.2618127 .0336498 _t | .0006367 .0127914 0.05 0.961 -.0264799 .0277533 _x0 | .2297607 .1168394 1.97 0.067 -.0179277 .4774492 _x_t0 | -.0336032 .0189763 -1.77 0.096 -.0738311 .0066248 _cons | -6.259923 5.891737 -1.06 0.304 -18.74985 6.230001

Postintervention Linear Trend: 0

Treated: $b[_t]+b[_x_t0]$

Cumby-Hu	Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)							
H0: variat	ole is MA	A pro	cess up to order	' q				
	HA: serial correlation present at specified lags >q							
H0: q=0 (serially uncorrelated) H0: q=specified lag-1 HA: s.c. present at range specified HA: s.c. present at lag specified								
-			p-val lag			-		
1 - 1	4.839	1	0.0278 1	4.839	1	0.0278		
1 - 2	5.121	2	0.0773 2	0.007	1	0.9336		
1 - 3	5.885	3	0.1173 3	0.301	1	0.5835		
1 - 4	7.393	4	0.1165 4	0.312	1	0.5763		
1 - 5	8.381	5	0.1365 5	1.319	1*	0.2508		

Normalized and Adjusted HF Surgical Costs

itsa cost_surgical_norm pc_male pc_white mean_cci mean_age, single trperiod(0) lag(1

>) figure posttrend

time variable: time, -12 to 11

delta: 1 unit

Regression with Newey-West	Numbe	er of obs	=	24	
maximum lag: 1	F(7,	16) =	2.17		
	Prob > F =	0.0947	1		

Newey-West

 $cost_surgi~m$ | Coef. Std. Err. t P>|t| [95% Conf. Interval]

pc_male | -.0011555 .007438 -0.16 0.878 -.0169235 .0146124 pc_white | .0009533 .0140324 0.07 0.947 -.0287941 .0307007 mean_cci | -.0212267 .1091551 -0.19 0.848 -.2526252 .2101718 mean_age | -.0243314 .0296652 -0.82 0.424 -.0872189 .038556 _t | .025299 .0232981 1.09 0.294 -.0240908 .0746889 _x0 | -.0349692 .1740704 -0.20 0.843 -.4039819 .3340435 _x_t0 | -.0678776 .0305108 -2.22 0.041 -.1325575 -.0031977 _cons | 1.92134 1.526902 1.26 0.226 -1.315548 5.158229

Postintervention Linear Trend: 0

Treated: $b[_t]+b[_x_t0]$

Linear Trend | Coeff Std. Err. t P>|t| [95% Conf. Interval]

Treated | -0.0426 0.0131 -3.2494 0.0050 -0.0704 -0.0148

Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)

H0: variable is MA process up to order q

HA: serial correlation present at specified lags >q

A QUANTITATIVE REVIEW OF COSTS

H0: q=0 (serially uncorrelated) | H0: q=specified lag-1

HA: s.c. present at range specified | HA: s.c. present at lag specified

-			p-val lag			-
			0.9831 1	·		
1 - 2	0.034	2	0.9831 2	0.033	1	0.8569
1 - 3	4.940	3	0.1762 3	4.577	1	0.0324
1 - 4	7.155	4	0.1279 4	0.537	1	0.4636
1 - 5	8.042	5	0.1540 5	1.212	1	0.2710

Normalized and Adjusted HF Non-Surgical Costs

itsa cost_nonsurgical_norm pc_male pc_white mean_cci mean_age, single trperiod(0) la

> g(1) figure posttrend

time variable: time, -12 to 11

delta: 1 unit

Regression with Newey-West standard errorsNumber of obs=24maximum lag: 1F(7, 16) = 5.01Prob > F=0.0037------|Newey-Westcost_nonsu~m |Coef.Std. Err.tP > |t|[95% Conf. Interval]

 pc_male |
 .0609993
 .0378871
 1.61
 0.127
 -.0193176
 .1413163

 pc_white |
 .0435495
 .1037644
 0.42
 0.680
 -.1764212
 .2635202

 mean_cci |
 .5176415
 .4847526
 1.07
 0.301
 -.5099881
 1.545271

 mean_age |
 -.1232884
 .1191868
 -1.03
 0.316
 -.3759532
 .1293764

 _t |
 .0009418
 .017463
 0.05
 0.958
 -.036078
 .0379617

 _x0 |
 .2536298
 .1519112
 1.67
 0.114
 -.0684075
 .5756672

 _x_t0 |
 -.0969052
 .039319
 -2.46
 0.025
 -.1802578
 -.0135525

 _cons |
 -1.997992
 6.995061
 -0.29
 0.779
 -16.82686
 12.83087

Postintervention Linear Trend: 0

Treated: $b[_t]+b[_x_t0]$

Linear Trend | Coeff Std. Err. t P>|t| [95% Conf. Interval]

Treated | -0.0960 0.0283 -3.3877 0.0038 -0.1560 -0.0359

Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)

H0: variable is MA process up to order q

HA: serial correlation present at specified lags >q

H0: q=0 (serially uncorrelated) | H0: q=specified lag-1

HA: s.c. present at range specified | HA: s.c. present at lag specified

lags | chi2 df p-val | lag | chi2 df p-val

Į.				·	
1 - 1	0.319	1	0.5721 1	0.319	1 0.5721
1 - 2	1.034	2	0.5964 2	0.436	1 0.5091
1 - 3	7.148	3	0.0673 3	5.184	1 0.0228
1 - 4	11.498	4	0.0215 4	0.146	1* 0.7020
1 - 5	11.965	5	0.0353 5	0.003	1 0.9531

Normalized and Adjusted VAD Costs

itsa cost_vad_norm pc_male pc_white mean_cci mean_age, single trperiod(0) lag(1) fi > gure posttrend time variable: time, -12 to 11 delta: 1 unit Regression with Newey-West standard errors Number of obs = 24 maximum lag: 1 F(7, 16) = 15.00

Prob > F = 0.0000

| Newey-West

 $cost_vad_n \sim m \mid$ Coef. Std. Err. t P>|t| [95% Conf. Interval]

______+_____

pc_male | -.0014634 .0019724 -0.74 0.469 -.0056448 .0027179 pc_white | -.0014577 .0022058 -0.66 0.518 -.0061338 .0032183 mean_cci | .0758805 .0234349 3.24 0.005 .0262007 .1255602 mean_age | -.002439 .0060729 -0.40 0.693 -.0153129 .0104349

_t 0177346 .0122969 -1.44 0.169043803 .0083337							
$\ x0 \mid2272358 \ .1304271 \ -1.74 \ 0.101 \5037288 \ .0492572$							
$\label{eq:constraint} x_t0 \mid .0376478 \ .0213525 \ 1.76 \ 0.097 \0076175 \ .0829131$							
_cons .7122748 .19632 3.63 0.002 .296095 1.128455							
Postintervention Linear Trend: 0 Treated: _b[_t]+_b[_x_t0]							
Linear Trend Coeff Std. Err. t P> t [95% Conf. Interval]							
Treated 0.0199 0.0173 1.1523 0.2661 -0.0167 0.0565							
Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)							
H0: variable is MA process up to order q HA: serial correlation present at specified lags >q							
H0: q=0 (serially uncorrelated) H0: q=specified lag-1							
HA: s.c. present at range specified HA: s.c. present at lag specified							
lags chi2 df p-val lag chi2 df p-val							
1 - 1 0.377 1 0.5390 1 0.377 1 0.5390							
1 - 2 4.101 2 0.1287 2 4.027 1 0.0448							

A QUANTITATIVE REVIEW OF COSTS

1 - 3	4.939	3	0.1763 3	0.314	1 0.5753
1 - 4	5.810	4	0.2138 4	0.035	1 0.8507
1 - 5	6.070	5	0.2995 5	0.141	1* 0.7075

ED Visits Per 1000

itsa ed_per1000 pc_male pc_white mean_cci mean_age, single trperiod(0) lag(1) figure posttrend

time variable: time, -12 to 11

delta: 1 unit

Regression with Newey-West standard errors Number of obs = 24 maximum lag: 1 F(7, 16) = 2.00

Prob > F = 0.1190

Newey-West

ed_per1000 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

pc_male | .8503709 1.233565 0.69 0.500 -1.76467 3.465412 pc_white | -.3517546 2.340592 -0.15 0.882 -5.313588 4.610079 mean_cci | -19.17529 20.29494 -0.94 0.359 -62.19866 23.84807 mean_age | -1.341422 2.51351 -0.53 0.601 -6.669826 3.986982 _t | .8942306 .6333252 1.41 0.177 -.4483589 2.23682 _x0 | -8.611562 6.379412 -1.35 0.196 -22.13531 4.912187 _x_t0 | -1.751865 1.497513 -1.17 0.259 -4.926449 1.42272

_cons | 174.3749 295.7684 0.59 0.564 -452.6262 801.376 _____ Postintervention Linear Trend: 0 Treated: $b[_t]+b[_x_t0]$ _____ Linear Trend | Coeff Std. Err. t P>|t| [95% Conf. Interval] Treated | -0.8576 1.0977 -0.7813 0.4460 -3.1847 1.4695 _____ . actest, lag(5)Cumby-Huizinga test for autocorrelation (Breusch-Godfrey) H0: variable is MA process up to order q HA: serial correlation present at specified lags >q _____ H0: q=0 (serially uncorrelated) | H0: q=specified lag-1 HA: s.c. present at range specified | HA: s.c. present at lag specified lags | chi2 df p-val | lag | chi2 df p-val 1 - 1 | 1.154 1 0.2827 | 1 | 1.154 1 0.2827 1 - 2 | 5.043 2 0.0803 | 2 | 3.482 1 0.0620 1 - 3 | 8.392 3 0.0386 | 3 | 3.926 1 0.0475 1 - 4 | 8.522 4 0.0742 | 4 | 0.302 1 0.5828

A QUANTITATIVE REVIEW OF COSTS

1 - 5 | 12.187 5 0.0323 | 5 | 0.042 1 0.8367

Test allows predetermined regressors/instruments

Test requires conditional homoskedasticity

. ge adjusted= _s_ed_per1000_pred

. drop _t _x0 _x_t0 _s_ed_per1000_pred

Admissions Per 1000

itsa admit_per1000 pc_male pc_white mean_cci mean_age, single trperiod(0) lag(1)

figure posttrend

time variable: time, -12 to 11

delta: 1 unit

Regression with Newey-West standard errors Number of obs = 24 maximum lag: 1 F(7, 16) = 0.52Prob > F = 0.8103

| Newey-West

admit_ $p\sim1000$ | Coef. Std. Err. t P>|t| [95% Conf. Interval]

pc_male | -.1235779 2.511661 -0.05 0.961 -5.448062 5.200906 pc_white | 7.00518 6.412629 1.09 0.291 -6.588986 20.59935

Postintervention Linear Trend: 0

Treated: $b[_t]+b[_x_t0]$

Linear Trend | Coeff Std. Err. t P>|t| [95% Conf. Interval]

-----+-----+

Treated | -0.9884 2.7224 -0.3631 0.7213 -6.7597 4.7829

. actest, lag(5)

Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)

H0: variable is MA process up to order q

HA: serial correlation present at specified lags >q

H0: q=0 (serially uncorrelated) | H0: q=specified lag-1

HA: s.c. present at range specified | HA: s.c. present at lag specified

lags | chi2 df p-val | lag | chi2 df p-val

1 - 1	0.001	1	0.9765 1	0.001	1	0.9765
1 - 2	0.082	2	0.9599 2	0.080	1	0.7776
1 - 3	3.895	3	0.2730 3	3.863	1	0.0494
1 - 4	3.910	4	0.4183 4	0.046	1	0.8303
1 - 5	4.520	5	0.4772 5	0.118	1	0.7315

Test allows predetermined regressors/instruments

Test requires conditional homoskedasticity

. ge adjusted=_s_admit_per1000_pred

. drop _t _x0 _x_t0 _s_admit_per1000_pred

Readmits Per 1000

itsa readmit_rate pc_male pc_white mean_cci mean_age, single trperiod(0) lag(1) figure posttrend

time variable: time, -12 to 11

delta: 1 unit

Regression with Newey-West standard errors Number of obs = 24

maximum lag: 1 F(7, 16) = 0.58

Prob > F = 0.7588

| Newey-West

readmit_rate | Coef. Std. Err. t P>|t| [95% Conf. Interval]

pc_male 0058888 .0080034 -0.74 0.4730228553 .0110	0776
pc_white .0160214 .0139683 1.15 0.2680135901 .0456	5329
mean_cci 0547663 .0935184 -0.59 0.5662530164 .143	34838
mean_age .0034991 .0149554 0.23 0.818028205 .0352	2032
_t 0005907 .0026267 -0.22 0.825006159 .0049776	6
_x0 .005454 .027001 0.20 0.8420517857 .062693	7
_x_t0 .0081468 .0090746 0.90 0.3830110904 .02738	841
_cons 7448158 1.4998 -0.50 0.626 -3.92425 2.43461	9

-----+------+

Postintervention Linear Trend: 0

Treated: $b[_t]+b[_x_t0]$

Linear Trend | Coeff Std. Err. t P>|t| [95% Conf. Interval]

Treated | 0.0076 0.0073 1.0285 0.3190 -0.0080 0.0231

```
. actest, lag(5)
```

Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)

H0: variable is MA process up to order q

HA: serial correlation present at specified lags >q

H0: q=0 (serially uncorrelated) | H0: q=specified lag-1

HA: s.c. present at range specified | HA: s.c. present at lag specified

lags	chi2	df	p-val lag	chi2	
			0.2808 1	·	
1 - 2	1.163	2	0.5590 2	0.001	1 0.9726
1 - 3	5.623	3	0.1315 3	3.947	1 0.0470
1 - 4	5.683	4	0.2241 4	0.370	1* 0.5428
1 - 5	8.327	5	0.1391 5	0.539	1 0.4630

Test allows predetermined regressors/instruments

Test requires conditional homoskedasticity

* Eigenvalues adjusted to make matrix positive semidefinite

. ge adjusted=_s_readmit_rate_pred

. drop _t _x0 _x_t0 _s_readmit_rate_pred

Mean LOS

itsa mean_los pc_male pc_white mean_cci mean_age, single trperiod(0) lag(1) figure

posttrend

time variable: time, -12 to 11

delta: 1 unit

 Regression with Newey-West standard errors
 Number of obs
 =
 24

 maximum lag: 1
 F(7, 16) = 2.61

 Prob > F
 =
 0.0532

 ------ Newey-West

 mean_los |
 Coef.
 Std. Err.
 t
 P>|t|
 [95% Conf. Interval]

 ------ ------

 pc_male |
 -.2270253
 .1899313
 -1.20
 0.249
 -.6296615
 .175611

 pc_white |
 .370852
 .3211162
 1.15
 0.265
 -.3098839
 1.051588

mean_cci | 3.534379 3.549748 1.00 0.334 -3.990751 11.05951
mean_age | -.4097409 .4059074 -1.01 0.328 -1.270226 .4507444
_t | -.0045016 .0640854 -0.07 0.945 -.1403565 .1313534
_x0 | .6685449 .6366554 1.05 0.309 -.6811041 2.018194
_x_t0 | -.1168599 .175714 -0.67 0.515 -.489357 .2556371
_cons | -.674593 50.2011 -0.01 0.989 -107.0962 105.747

Postintervention Linear Trend: 0

Treated: $b[_t]+b[_x_t0]$

. actest, lag(5)

Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)

H0: variable is MA process up to order q

HA: serial correlation present at specified lags >q

H0: q=0 (serially uncorrelated) | H0: q=specified lag-1 HA: s.c. present at range specified | HA: s.c. present at lag specified lags | chi2 df p-val | lag | chi2 df p-val 1 - 1 | 5.582 | 1 | 0.0182 | 1 | 5.582 | 1 | 0.01821 - 2 | 7.493 | 2 | 0.0236 | 2 | | 0.009 | 1 | 0.92511 - 3 | 9.153 | 3 | 0.0273 | 3 | | 0.002 | 1 | 0.96691 - 4 | | 10.286 | 4 | 0.0359 | 4 | | 0.693 | 1 | 0.40531 - 5 | | 11.183 | 5 | 0.0479 | 5 | | 0.111 | 1 | 0.7390

Test allows predetermined regressors/instruments

Test requires conditional homoskedasticity

- . ge adjusted=_s_mean_los_pred
- . drop _t _x0 _x_t0 _s_mean_los_pred