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Abstract

Motivated by recent work exploring cluster-level confounding in multilevel obser-

vational data, we develop methods speci�cally addressing geographic confounding,

which occurs when measured or potentially unmeasured confounding factors vary by

geographic location. Accounting for this source of confounding achieves spatially-

balanced global estimates of the treatment e�ect of interest, allowing researchers to

compare individuals as if they were residentially similar and leading to policy de-

cisions that bene�t patients and areas most in need. This dissertation consists of

three aims: 1. To develop a hierarchical spatial doubly robust estimator in propensity

score analysis framework; 2. To develop spatial propensity score matching methods

for hierarchical data; 3. To apply spatial propensity score matching to more complex

analyses of spatially varying, zero-in�ated outcomes. Each of these aims strives to

explore the issue of geographic confounding and contribute to its resolution. Aim

1 seeks to build upon multilevel propensity score methods through augmentation of

modeling with spatial random e�ects to create a spatially balanced estimator that

is demonstrated in simulation to exhibit favorable performance under various sam-

ple sizes and levels of spatial heterogeneity. Aim 2 seeks to develop methods in a
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propensity score matching framework, allowing for a more complete understanding

of geographic confounding remediation techniques and extensions to additional ap-

plications. Finally, as modeling non-binary, spatially varying outcomes can prove

challenging, Aim 3 seeks to incorporate spatial matching to alleviate geographic im-

balance to allow for a minimally confounded analysis. We apply the spatial matching

approach to the analysis of zero-in�ated count outcomes.
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Chapter 1

Literature Review

1.1 Causal Inference and the Potential Outcomes

Framework

Evidence-based medicine seeks to incorporate cutting edge research in clinical deci-

sions between a patient and a care-provider [1]. In order to contribute strong and

convincing �evidence� of clinical bene�t, researchers must strive to be able to at-

tribute observed endpoint di�erences in outcome to the given treatment. If patient-

or system-level di�erences related to the outcome exist between treatment groups,

confounding may occur and it thus becomes challenging to determine with con�-

dence that it was speci�cally the treatment that elicited, or caused, the e�ect. It is

this desire to assert causal inference that has elevated randomized controlled trials

(RCTs) to the top of the study evaluation pyramid, considering evidence generated

from studies with this design more sound and convincing than evidence generated
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from other study designs, thus designating RCTs the �gold standard� of health out-

comes research [2]. Randomization seeks to eliminate selection bias. Along with the

concurrent nature of the control group, randomization ensures the balance of covari-

ates, some of which are unmeasured [3]. It has even been stated that randomization

is the only method to control for imbalance with respect to measured and unmea-

sured factors [4]. Although issues such as bias should be addressed early in the study

design phase and continue to be revisited through analysis, they are often overlooked

in RCTs due to the con�dence the community has in the study design. For example,

in the acclaimed NINDS Tissue Plasminogen Activator for Acute Ischemic Stroke

trial, di�erences in baseline stroke severity between treatment groups prevailed de-

spite randomization [5]. Beyond the context of RCTs, there exist treatments that

are inherently implausible, impossible or unethical to randomize, but that may be

examined in observational studies. It is in observational studies that we must revisit

the issue of confounding.

The potential outcomes framework put forth by Rubin [6] provides the theoretical

foundation of contemporary causal inference. In the setting of clinical trials, let Z

denote a binary treatment assignment. Each individual is assumed to have two

potential outcomes: Y1 and Y0. If Z = 1, then Y1 is observed and Y0 is unobserved,

while if Z = 0, then Y0 is observed and Y1 is unobserved. [6] The observed response

Y can be expressed by Y = ZY1 + (1 − Z)Y0, yielding Y = Y1 when Z = 1 and

Y = Y0 when Z = 0. The average treatment e�ect (ATE) is de�ned as ∆ =

E(Y1) − E(Y0), and, since in a randomized controlled trial the treatment groups

are in theory balanced with respect to all but treatment assignment, (Y1, Y0) are
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stochastically independent of treatment assignment. In essence, those who did not

receive treatment can serve as the counterfactual observation for those who did, and

vice versa.

The average treatment e�ect on the treated (ATT) is an alternative estimand of

interest and can be de�ned as ∆ATT = E(Y1 − Y0|Z = 1). Note the condition on

treatment indicator Z = 1 in the case of the ATT that was not present in that of

the ATE. Informally, the ATT is the di�erence in outcome between those who were

treated and those who were not for those who actually participated in treatment [7].

In observational studies, it may be more appropriate to discuss �exposure� rather

than �treatment� groups; in any case, these groups are not guaranteed to be balanced

on a set of covariates that are also associated with the outcome Y and hence the issue

of confounding arises. When we address confounding and can reasonably infer no

unmeasured confounding is present, we may assume that (Y1, Y0) are conditionally

independent of treatment assignment Z given a vector of covariates X, expressed as

(Y1, Y0)⊥⊥Z|X = x [8].

In the special case where the group designation is an immutable characteristic

such as race, it is important to note that the causal inference framework may not

be appropriate since it is impossible to conceive a potential outcome corresponding

to an alternative race designation. In this setting, Li et al. [9] propose using the

average controlled di�erence (ACD) as a descriptive estimand analogous to the ATE.

The ACD is de�ned as ∆ = EX [E(Y |X = x, Z = 1)− E(Y |X = x, Z = 0)], where

the outer expectation is taken with respect to the distribution of covariates X in

the entire population and x is an observed realization of the random variable X.
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The ACD can be viewed as a weighted sum of the expected group di�erences formed

within each stratum of X. Under the assumption of no unmeasured confounding, ∆

represents a controlled population-average di�erence between the two groups.

The ultimate decision among estimating the ATE, ACD or ATT has much to do

with clinical and epidemiological questions of interest; however, statistical consider-

ation must also be attended to. Interpretation of results should coincide with the

estimand the data and analysis support.

Estimation of causal inference has assumptions that include no unmeasured con-

founding, a positive probability of each individual to receive treatment, and the stable

unit treatment variable assumption (SUTVA) [10]. SUTVA assumes that treatment

e�ect is uniform and that the treatment of one subject does not a�ect the outcome

of another. Schwartz et al. [11] reiterate Little and Rubin's [12] classic example of

psychotherapy: SUTVA could be violated if the e�ectiveness of the therapy varied

among levels of expertise of the therapist or willingness of the patient to participate.

Furthermore, SUTVA could be violated if a treated patient shared his insight with

other patients, thus a�ecting their outcomes. SUTVA may also be violated in multi-

level settings where it is likely that clusters of individuals interact in a way that may

confer bene�t or harm to a �neighbor� of the treated individual despite that neighbor

not having been exposed to treatment himself.
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1.2 Propensity Score Analysis

1.2.1 Overview

Propensity score analysis [8] (PSA) lends methodology to address confounding and

under appropriately addressed assumptions, allows the researcher to make causal

inferences in observational studies. The propensity score e(x) = Pr(Z = 1|X = x),

is the conditional probability of exposure given a set of covariates X under the

assumption of strong ignorability, i.e. the positivity condition 0 < e(x) < 1 and

no unmeasured confounding. Variable selection for the propensity score model (1.1)

is debated in the literature but tends to incorporate baseline covariates, potential

confounders and true confounders [2] but should not include any factor that could

have been a�ected by treatment assignment (post-treatment) [13]. It has been shown

that there is minimal detriment when including variables not strongly associated with

exposure and a small impact in increased variance estimates when including variables

not strongly associated with the outcome. It is suggested that analysts suppress

traditional concerns about collinearity and err on the side of inclusion to satisfy

the condition of no unmeasured confounding [13]. Propensity scores are commonly

generated from logistic regression [7]:

logit(ei) = logit[e(xi)] = logit[Pr(Zi = 1|Xi = xi)] = xTi β, i = 1, . . . , n. (1.1)

Furthermore, it has been shown that the propensity score acts as a balancing score

to achieve conditional independence of treatment assignment Z as noted above. [8]
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Once generated from a model of the form of equation (1.1), propensity scores can be

used in various settings to achieve this balance.

1.2.2 Methods

1.2.2.1 Inverse Probability of Treatment Weighting

Propensity score weighting, commonly referred to as inverse probability of treatment

weighting (IPTW), assigns propensity score based weights to individuals in a sam-

ple, thus creating a new sample in which covariates are balanced between exposure

groups. Weights are assigned by

wi =
Zi
êi

+
(1− Zi)
1− êi

(1.2)

and therefore an IPTW estimator of the ATE [14] is given by

∆̂IPTW = n−1
n∑
i=1

[
ZiYi
êi
− (1− Zi)Yi

1− êi

]
(1.3)

where êi denotes the estimated propensity score for subject i.

Issues in accuracy and stability may arise when estimated propensity scores ap-

proach 0 or 1. Stabilizing weights [15] have been suggested as a remedy to this issue

but limit the analyst to estimating the ATT, which is not numerically equivalent to

the ATE in non-randomized studies. Additionally, issues of misspeci�cation of the

propensity score model may deter con�dence in the estimation of the ATE. If the esti-

mated propensity score is not equal to the true propensity score, the aforementioned

13



formula (1.3) will not necessarily estimate ∆ [16]. As a remedy, however, an aug-

mentation of this formula leads to a semi-parametric doubly robust (DR) estimator

[17] of the form

∆̂DR =
1

N

n∑
i=1

∆̂i

∆̂i =

[
ZiYi
êi
− (Zi − êi)Ŷi1

êi

]
−

[
(1− Zi)Yi

1− êi
+

(Zi − êi)Ŷi0
1− êi

]
. (1.4)

This DR estimator provides a safeguard and has been shown to be a consistent

estimator of the ATE if either the propensity score model or a model for the outcome

is correctly speci�ed. Ŷi1 and Ŷi0 are predictions of the potential outcomes under

treatment and control, respectively, generated from a regression model of Y on Z

and X. It should be noted that in the case of Z = 1, Ŷi0 is counterfactual and is not

observed while in the case of Z = 0, Ŷi1 is counterfactual and is not observed. The

estimator ∆̂DR can be conceptualized as a di�erence in means µ̂1− µ̂0 or a di�erence

in proportions p̂1 − p̂0, i.e. a risk di�erence.

When the risk di�erence is of interest, the estimator ∆̂DR = p̂1 − p̂0 where p̂1

estimates E(Y1) and p̂0 estimates E(Y0). In the case of p̂1, and similarly following for

the case of p̂0, p̂1 estimates the following expression where the �postulated� propensity

score model is expressed e(X, β) and the �postulated� outcome regression model is

denoted m1(X, α1) [16].

E
[

ZY
e(X,β)

− Z−e(X,β)
e(X,β)

m1(X, α1)
]

14



= E
[

ZY1
e(X,β)

− Z−e(X,β)
e(X,β)

m1(X, α1)
]

= E
[
Y1 + Z−e(X,β)

e(X,β)
(Y1 −m1(X, α1))

]

= E(Y1) + E
[
Z−e(X,β)
e(X,β)

(Y1 −m1(X, α1))
]

and therefore p̂1 unbiasedly estimates E(Y1) when E
[
Z−e(X,β)
e(X,β)

(Y1 −m1(X, α1))
]

=

0.

When the propensity score model is correct and strong ignorability holds, i.e.

e(X, β) = e(X) = E(Z|X) = E(Z|Y1,X), but the outcome model is misspeci�ed,

it can be shown that E
[
Z−e(X,β)
e(X,β)

(Y1 − Yij1)
]

= 0 through the following set of equa-

tions:

E
[
Z−e(X)
e(X)

(Y1 −m1(X, α1))
]

= E
(
E
[
Z−e(X)
e(X)

(Y1 −m1(X, α1))|Y1,X
])

= E
(

(Y1 −m1(X, α1))E
[
Z−e(X)
e(X)

|Y1,X
])

= E
(

(Y1 −m1(X, α1))
E(Z|Y1,X)−e(X)

e(X)

)

= E
(

(Y1 −m1(X, α1))
E(Z|X)−e(X)

e(X)

)
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= E
(

(Y1 −m1(X, α1))
e(X)−e(X)

e(X)

)
= 0

When the outcome model is correct and unconfoundedness holds, i.e. m1(X, α1) =

E(Y |Z = 1, X) = E(Y1|X), but the propensity score model is misspeci�ed, it can

once again be demonstrated that E
[
Z−e(X,β)
e(X,β)

(Y1 − Yij1)
]

= 0, as follows:

E
[
Z−e(X,β)
e(X,β)

(Y1 − E(Y |Z = 1,X))
]

= E
([

Z−e(X,β)
e(X,β)

(Y1 − E(Y |Z = 1,X))|Z,X
])

= E
(
Z−e(X,β)
e(X,β)

E [(Y1 − E(Y |Z = 1,X))|Z,X]
)

= E
(
Z−e(X,β)
e(X,β)

(E(Y1|Z,X)− E(Y |Z = 1,X))
)

= E
(
Z−e(X,β)
e(X,β)

(E(Y1|X)− E(Y1|X))
)

= 0

Using similar arguments, it can be shown that p̂0 unbiasedly estimates E(Y0) un-

der strong ignorability [16]. It should be noted that when the propensity score and

outcome regression models are both misspeci�ed, the DR estimator o�ers no protec-

tion and the estimates derived from such equations are not likely to be unbiased.

A large-sample approximate standard error of ∆̂DR is

s2 =
1

n2

n∑
i=1

(∆̂i − ∆̂DR)2. (1.5)
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Bootstrapping can also be employed to derive the standard error and surrounding

con�dence interval.

1.2.2.2 Propensity Score Matching

Propensity score matching is a technique that forms matched pairs between exposed

and unexposed subjects based on the similarity of their estimated propensity scores

[2, 8, 18]. As in all PSA, matching techniques require the analyst to �rst decide

on the form of the propensity score model and the variables to be included in the

model. After propensity scores have been generated, the analyst must then make

decisions on the matching strategy: the uniqueness of pairs, number of controls to be

matched to each exposed individual, the matching variable itself (propensity score,

logit of propensity score, etc.), and the rules for designating acceptable matches. In

terms of acceptable match designation, Austin [2] recommends a caliper width equal

to 0.2 times the standard deviation of the logit of the propensity score as a valuable

compromise between preserving match quality and minimizing mean square error

(MSE) of the treatment e�ect.

Nearest neighbor k:1 matching [19] is implemented by matching treated subjects

with k controls, although k = 1 may be most popular. This method results in a

balanced sample if the propensity score is correctly speci�ed; however, many controls

may be discarded, resulting in a drastically reduced sample size and restricting the

analyst to estimating the ATT [13]. Matching without replacement marries the

treated and control subjects and precludes the control from further matches, while

matching with replacement allows the control subject to be eligible for participation
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in a new pair. Another distinction is �greedy� versus �optimal� matching. Greedy

nearest neighbor matching may appear to be short-sighted as it is only concerned with

the treated subject's best match without considering future matches, while optimal

matching minimizes the di�erence in propensity scores in the overall sample, [20]

although there is no strong indication that optimal matching is universally superior

at producing well-matched groups [13].

Optimal full matching [21] is a special case of subclassi�cation and may alleviate

concerns regarding reduction in sample size. Full matching divides the sample into

matched groups that contain at least one treated subject and any positive number

of controls [22]. This method provides the analyst with a strategy to estimate the

ATE in addition to the ATT.

The ATE, as described in detail in the earlier section concerning confounding,

deserves further attention as its speci�c interpretation should not be con�ated with

that of the ATT. Based on the amount of overlap in the propensity scores of the

treatment and control groups (i.e. common support), it may not be feasible to

calculate the ATE even in a full matching setting. When the ratio of control:treated

subjects is high, the technique of k:1 matching allows the analyst to construct the

ATT; however, if the ratio is low, full matching may be necessary [13].

1.2.2.3 Assessing Balance

Propensity score methods should produce a well-balanced weighted or matched sam-

ple. Once propensity scores have been generated via equation (1.1) and decisions

have been made with respect to its utility, assessment in balance can be achieved by
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the calculation of the standardized di�erence for means and proportions, respectively

[2].

dmean =
(x̄treatment − x̄control)√

(s2treatment+s
2
control)

2

(1.6)

dproportion =
(p̂treatment − p̂control)√

(p̂treatment(1−p̂treatment)+p̂control(1−p̂control)
2

(1.7)

Although commonly and inaccurately reported with test statistics and associated

p-values, balance assessment is limited to sample-level description and should not be

subject to �uctuations due to sample size reduction, hence the appropriateness of

the standardized di�erence [23].

Balance of individual-level covariates may not be su�cient to remedy confounding

if patients are clustered and measured or unmeasured confounders are associated with

exposure at the cluster-level [9, 24].

1.2.3 PSA for Multi-Level Data

The DR estimator has recently been extended to multilevel data [9] where data is

comprised of (Yij, Zij, Xij) for the jth subject in the ith cluster:

∆̂DR =
1

N

n∑
i=1

ni∑
j=1

∆̂ij

∆̂ij =

[
ZijYij
êij

− (Zij − êij)Ŷij1
êij

]
−

[
(1− Zij)Yij

1− êij
+

(Zij − êij)Ŷij0
1− êij

]
(1.8)
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In this formula (1.8), êij denotes the propensity score for the (ij)th individual and

N =
∑
ni where ni indicates the sample size of cluster i. As before, generalized linear

mixed models are used to estimate eij, Yij0 and Yij1; however, in this case random

e�ects are incorporated to represent between-cluster heterogeneity and account for

unobserved cluster-level confounders. The results of extensive simulations by Li et

al. signal the necessity to incorporate cluster level information in PSA.

Furthermore, Arpino and Mealli have recently extended propensity score match-

ing to the multilevel setting [25]. In their work, they demonstrate that ignoring

cluster assignment has deleterious e�ects when estimating the ATT.

1.3 Using Spatial Propensity Scores to Address Ge-

ographic Confounding

1.3.1 Geographic Confounding

Geographic confounding occurs when measured or unmeasured confounding factors

vary by geographic location. Regional factors that contribute to geographic con-

founding are those associated with the exposure and associated with the outcome

independently of the exposure and may include access to resources, community sup-

port, and policy in�uence among others. In observational studies, exposed individu-

als may be di�erentially geographically distributed compared to unexposed individ-

uals. Ignoring this imbalance could lead to biased estimates of the treatment e�ect

of interest.
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1.3.2 Existing Spatial PSA Methods

Chagas et al. have developed a spatial propensity score matching method to address

regional di�erences in sugarcane production in Brazil [26]. This work adopts a parsi-

monious approach in estimating the spatial propensity score, justi�ed by sensitivity

analysis. The method incorporates spatial information via spatial autocorrelation

(SAC), spatial autoregressive (SAR) and spatial error models (SEMs). Additionally,

the researchers explore spatial metrics such as distance to prominent landmark and

an indicator for high density production. This work concludes that including spatial

information is crucial to reduce bias.

Bayesian spatial-propensity score matching (BS-PSM) has recently been intro-

duced by Gonzales et al. [27] as an extension of the regional-level spatial propensity

score matching proposed by Chagas et al. BS-PSM maintains the goal of addressing

uncertainty in the propensity score. Methods to address this uncertainty were pre-

viously explored in a non-spatial setting [28, 29, 30, 31]; however, Gonzales seeks to

use Bayesian methods for proper standard error adjustment in a spatial setting. Uti-

lizing spatial probit models to construct propensity score estimates, the authors then

form matches based on a nearest neighbor algorithm that imposes a distance caliper

(spatial caliper matching (SCM)) or neighbor requirement (spatial radius matching

(SRM)) to avoid bad matches. Among the matched sample, a spatial average treat-

ment e�ect (SATE) is estimated. Lastly, methods are applied to an application of

the e�ect of micro�nance in Bolivia.

These studies illustrate advances in PSA to incorporate spatial information; how-

ever, they conduct region-level analyses, failing to exploit valuable information at the
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subject-level.
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Chapter 2

Proposed Methodology

2.1 Overview

Building upon the recent work in multilevel and spatial PSA, we propose hierarchical

spatial PSA to address geographic confounding, which occurs when measured or

unmeasured confounding factors vary by geographic location. Patient-level covariates

such as age, demographics, and comorbidities are traditional suspects in confounding;

however, moreover, exposed individuals may in fact live in di�erent regions than

unexposed individuals.

Propensity score methods can be extended to the hierarchical spatial setting by

incorporating spatial random e�ects into the propensity score and outcome models:

logit(eij) = logit[Pr(Zij = 1|Xij = xij, φ1i)] = xTijβ + φ1i, (2.1)

where φ1i is the spatial random e�ect for region i. Similarly, a logistic spatial model
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for a binary outcome is expressed as

logit[Pr(Yij = 1|Zij = zij,Xij = xij, φ2i)] = xTijγ + zijα + φ2i, (2.2)

where φ2i denotes the spatial random e�ect for region i in the outcome model. To al-

low for maximal spatial smoothing, we assign the random e�ects φ1i and φ2i intrinsic

conditional autoregressive (ICAR) priors [32] that take the conditional form

φi | φ−i, σ2 ∼ N

(
1

mi

∑
h∼i

φh, σ
2/mi

)
, (2.3)

where h ∼ i indicates that region h is geographically adjacent to county i, mi is the

number of neighbors, and σ2 is the conditional variance of φi given the remaining spa-

tial e�ects, φ−i. By way of this smooth spatial process modeling, we acknowledge and

exploit the tendency of neighboring regions to be more similar than non-neighbors

in terms of access to resources, regional policies and environmental conditions. Ad-

ditionally, we allow for the estimation of region-level e�ects even when data in that

region is sparse due to the allowance of �borrowing� information across adjacent

regions.

Following Brook's Lemma [33], the joint distribution for φ = (φ1, ..., φn)T is given

by

π(φ | σ2) ∝ exp

(
− 1

2σ2
φTQφ

)
, (2.4)

whereQ = M−A is a spatial structure matrix of rank n−1, withM = diag(m1, . . . ,mn)

and A representing an n × n adjacency matrix with aii = 0, aih = 1 if i ∼ h, and
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aih = 0 otherwise. When a �xed intercept is included in the model, a sum-to-zero

constraint must be applied to φ to ensure an identi�able model.

Models 2.1 and 2.2 can now be used to construct a spatial version of the multi-

level DR estimator suggested by Li et al. [9]. Such an extension would yield a global

DR estimate between geographically balanced exposure groups. We could now as-

sume ignorability of group assignment conditional on both observed individual-level

covariates and spatial e�ect φ1i. Alternatively, Model 2.1 can be used to generate

propensity scores to be used in the setting of propensity score matching, creating a

spatially balanced matched sample to be analyzed. Subsequently, Model 2.2 can be

constructed using the matched sample, and an estimate of the risk di�erence could

be derived using standardization.

In the case where the outcome of interest is not binary, a more complex spatial

model may need to be adopted. Spatial matching can nevertheless be employed to

ensure both patient-level and geographic balance in the resulting matched sample. It

is then possible to derive a minimally biased e�ect estimate from the outcome model

of choice.

2.2 Motivating Example

2.2.1 Background

Racial disparities in health outcomes persist even today despite decades of focus

on deciphering the underlying causes [34]. For example, evidence consistently shows

that racial minorities have a higher prevalence of diabetes, poorer diabetes outcomes,
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higher risk of complications, and higher mortality rates compared to non-Hispanic

whites [35, 36, 37]. While these disparities can be partially attributed to individual-

level factors such as age, sex, marital status, and comorbidities [38, 39], there has

been no so-called �silver bullet�. It is plausible that many factors contribute modestly

to observed disparities. More recent work has focused on the community, demon-

strating that access to healthy food outlets and the availability of community health

resources may also play a role [40, 41]. Therefore, incorporating geographically vary-

ing community factors in racial disparities analysis is important; however, some of

these factors may be unmeasured due to lack of data availability or to their concep-

tual nature. Additionally, �race� is both an immutable characteristic and a socially

and historically charged construct that has implications beyond phenotypic and bio-

logical characteristics. While the analysis of racial disparities must be sensitive and

comprehensive and any conclusion drawn with restraint, researchers should not be

dissuaded from seeking valuable knowledge that could help target vulnerable indi-

viduals.

2.2.2 Data Description

In order to study racial disparities in glycemic control, we obtain data for veterans

with type 2 diabetes. Our analysis is based on a sample of 64,022 non-Hispanic Black

(NHB) and non-Hispanic White (NHW) veterans with residential addresses in Al-

abama, Georgia or South Carolina in �scal year (FY) 2014. Geographic boundaries

are de�ned by the US Census county-level adjacency matrix irrespective of state

membership [42]. This matrix contains n = 272 counties and 1528 pairwise adja-
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cencies. In order to ascertain the severity of the disparity, we de�ne poor glycemic

control as indication of one or more hemoglobin A1c (HbA1c) measurements ≥ 8 in

FY 2014. Within-county sample sizes range from 5 to 2,409, with a median of 108.

Ten of the 272 counties in the study region have no NHB veterans. Overall, 36.5%

of individuals in the study exhibit poor glycemic control (40.8% for NHBs, 33.2% for

NHWs). We are able to identify potential patient-level confounders and can utilize

indicated county of residence to incorporate geographic information.

To study the disparity in receiving diabetes education visits among type 2 diabetic

veterans with poor glycemic control, we identify a sample of 20,636 NHB (n = 9, 277)

and NHW (n = 11, 359) patients with a measure of HbA1c ≥ 8 in FY 2014. Once

again, we restrict the sample to those veterans with residential addresses in Alabama,

Georgia or South Carolina and utilize the same county-level adjacency matrix as in

the study of poor glycemic control. Overall, approximately 13% of the patients in

the sample receive a diabetes care visit following indication of poor control (15.0%

for NHBs, 11.2% for NHWs).

Lastly, in order to assess the disparity in the number of inpatient days within

the VA health care system, we identify veterans with type 2 diabetes and use their

medical records to calculate the number of days spent as an inpatient in a VA facility

in FY 2014. The data consist of observations for 23,533 NHB (n = 9, 695) and NHW

(n = 13, 838) veterans with type 2 diabetes living in Georgia, Alabama and South

Carolina in 2014. As the scope of the aforementioned studies in racial disparities

among type 2 diabetic veterans has been restricted to the southeastern United States,

we continue to use this geographic region and its associated county-level adjacency
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matrix for this �nal study.

2.3 Speci�c Aims

The following section describes the structure of this research: it is contained in three

separate but contiguous aims. Each aim is designed to stand alone while also com-

plementing the other two. Uniquely, each aim will address an unanswered gap in the

current literature, and cohesively, all three provide health researchers with a method

to address geographic confounding with proof of concept in simulation, demonstra-

tion in application, and extension to current and innovative analysis methodology.

2.3.1 Aim 1

• To demonstrate the detriment of ignoring geographic confounding in causal

inference by conducting simulation studies that reveal the bias, coverage, and

root mean square error of estimates derived from exclusively subject-level mod-

els that do not account for geographic cluster

• To develop a method to ameliorate the aforementioned detriment by incor-

porating spatial random e�ects in the propensity score model stage and the

outcome model stage of propensity score analysis and constructing a spatial

doubly robust weighted estimator

• To examine the properties and performance of the novel methodology by con-

ducting simulation studies that elucidate the bias, coverage, and root mean
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square error of the spatial doubly robust weighted estimator under various

degrees of spatial heterogeneity and per-region sample size

• To apply the methodology to a clinically relevant application by analyzing

racial disparities in glycemic control, for which a balanced comparison between

groups is desired, and examining the incremental e�ects of doubly robust esti-

mation and spatial doubly robust estimation compared to an unadjusted esti-

mate

2.3.2 Aim 2

• To develop methodology to incorporate spatial random e�ects in a propensity

score matching framework

• To examine the performance of e�ect estimation in the spatially matched sam-

ples by conducting simulation studies under various degrees of spatial hetero-

geneity and per-region sample size

• To evaluate the e�ects of the inclusion of an outcome model for further regres-

sion adjustment compared to an unadjusted e�ect estimate

• To apply the methodology to a clinically relevant application by analyzing

racial disparities in the receipt of diabetes education visits for which the ATT

is the desired e�ect estimate and examining the incremental e�ects of estima-

tion among a non-spatially matched sample and a spatially matched sample

compared to an unadjusted estimate
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2.3.3 Aim 3

• To demonstrate the utility of spatial propensity score matching in alternative

analyses

• To utilize the methodology and conclusions developed in the prior aims to

analyze a zero-in�ated count outcome

• To combine spatial propensity score matching with a spatial negative binomial

hurdle outcome model to derive a well-balanced, minimally biased estimate of

clinically relevant ATTs
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Abstract: Motivated by a study exploring di�erences in glycemic control between
non-Hispanic black and non-Hispanic white veterans with type 2 diabetes, we aim to
address a type of confounding that arises in spatially referenced observational studies.
Speci�cally, we develop a spatial doubly robust (DR) propensity score estimator to
reduce bias associated with geographic confounding, which occurs when measured or
unmeasured confounding factors vary by geographic location, leading to imbalanced
group comparisons. We augment the DR estimator with spatial random e�ects, which
are assigned conditionally autoregressive priors to improve inferences by borrowing
information across neighboring geographic regions. Through a series of simulations,
we show that ignoring spatial variation results in increased absolute bias and mean
squared error, while the spatial DR estimator performs well under various levels
of spatial heterogeneity and moderate sample sizes. In the motivating application,
we construct three global estimates of the risk di�erence between race groups: an
unadjusted estimate, a DR estimate that adjusts only for patient-level information,
and a hierarchical spatial DR estimate. Results indicate a gradual reduction in the
risk di�erence at each stage, with the inclusion of spatial random e�ects providing a
20% reduction compared to an estimate that ignores spatial heterogeneity. Smoothed
maps indicate poor glycemic control across Alabama and southern Georgia, areas
comprising the so-called �stroke belt�. These results suggest the need for community-
speci�c interventions to target diabetes in geographic areas of greatest need.
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3.1 Introduction

Diabetes is the seventh leading cause of death in the United States and is associated

with a number of adverse health outcomes, including stroke, heart disease, kidney

failure, and amputation [43]. Evidence consistently shows that racial minorities have

a higher prevalence of diabetes, poorer diabetes outcomes, higher risk of complica-

tions, and higher mortality rates compared to non-Hispanic whites [35, 36, 37]. These

disparities are explained in part by individual-level factors such as age, sex, marital

status, and comorbidities [38, 39]. However, recent work has found that geograph-

ically varying community characteristics, such as access to healthy food outlets or

the availability of community health resources, may also play a role [40, 41]. Given

that racial disparity studies are inherently observational, it is critical to account for

multiple sources of confounding, both at individual and neighborhood levels, in order

to make comparisons between balanced race groups. This is especially relevant in di-

abetes research, as numerous recent studies have demonstrated associations between

spatially varying confounding factors such as community environment and diabetes

outcomes [44]. To obtain unbiased estimates of racial di�erences, it is necessary to

account not only for individual-level confounding, but also geographic confounding,

which occurs when the confounding factors, whether observed or unobserved, vary

by geographic locations that share resources. The goal of this paper is to extend

recent methods for multilevel causal inference to obtain minimally biased estimates

of racial disparities in the presence of geographic confounding.

Propensity score analysis [8] (PSA) o�ers a principled approach to causal in-

ference in observational studies, and has gained increasing traction in health dis-
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parities studies in recent years [9, 45]. PSA is a multi-stage estimation strategy in

which a propensity score model is �rst used to estimate the conditional probability

of group assignment (i.e, the propensity score) given a set of covariates. The esti-

mated propensity scores are then used to balance the groups according to important

characteristics. Finally, an outcome model is �t in order to make balanced group

comparisons. Common balancing methods include matching, strati�cation and in-

verse probability weighting. The balancing property of the propensity score ensures

similar covariate distributions across groups under mild assumptions, allowing for a

minimally confounded outcome analysis [2]. A particularly attractive weight-based

estimator is the �doubly robust� (DR) estimator [46], which is a consistent estima-

tor of the average treatment e�ect when either the propensity score model or the

outcome model is correctly speci�ed. Because racial identity is an immutable char-

acteristic for which we desire a balanced comparison, the term �average controlled

di�erence� is commonly used to denote the estimand of interest in racial disparity

studies [9].

The central aim of this paper is to develop a spatial DR estimator that minimizes

bias in the presence of observed and potentially unobserved geographic confounding.

While there has been some recent work incorporating spatial information into PSA

[26, 27, 47, 48], these methods have been limited to non-clustered data in which the

response variable is a region-level proportion. Arpino and Mealli [25] and Li et al. [9]

recently introduced PSA approaches for multilevel data. They �t propensity score

and outcome models that included random e�ects to account for unobserved cluster-

level confounding. Li et al. [9] additionally compared weighted estimators derived

34



from �xed and random e�ects models to demonstrate the bene�t of incorporating

cluster-level random e�ects in PSA, as well as the protective properties of the DR

estimator. However, their approach did not incorporate spatial information.

Here, we propose a spatial DR estimator that incorporates available informa-

tion at both the individual and region levels. We introduce a set of spatial random

e�ects to account for variation due to unobserved geographic confounders. The

random e�ects are assigned conditionally autoregressive (CAR) prior distributions

that promote localized spatial smoothing by borrowing information from surround-

ing geographic areas. We adopt maximum likelihood (ML) as our initial estimation

approach when �tting the spatial propensity score and outcome models. However,

because ML-based numerical integration routines become unstable as the dimen-

sion of the random e�ects increases, we explore two alternative estimation methods:

penalized quasi-likelihood and Bayesian inference. We conduct detailed simulation

studies to compare the inferential properties of the three estimation methods under

varying degrees of spatial heterogeneity. Finally, we apply the method to a study

examining racial disparities in glycemic control among veterans with type 2 diabetes

residing in the southeastern United States.

3.2 Spatial Propensity Score Analysis

3.2.1 Overview of Propensity Score Weighting Methods

We begin by brie�y reviewing the inferential properties of PSA as outlined in Rosen-

baum and Rubin [8] and summarized more recently in Lunceford and Davidian [14].
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Let Z denote a group indicator taking values 0 or 1. In the context of clinical trials,

Z commonly represents an assigned treatment group (e.g., Z = 1 if treated and 0 if

control), while in epidemiologic settings, Z typically denotes a manipulable exposure

group. In principle, Z can take more than two values, but since our focus in this

paper is to estimate di�erences between only two groups, we assume throughout that

Z is dichotomous. According to the causal framework outlined by Rubin [6], each

individual is assumed to have two potential outcomes (Y1, Y0), where Y1 and Y0 de-

note the (potentially counterfactual) outcomes under Z = 1 and Z = 0, respectively.

The observed response, Y , is given by Y = ZY1 + (1−Z)Y0, so that Y = Y1 if Z = 1

and Y = Y0 otherwise. A common causal estimand of interest is the population

average treatment e�ect (ATE), de�ned as ∆ = E(Y1)−E(Y0). Because we observe

only one of (Y1, Y0), unbiased estimation of the ATE, ∆, requires that we instead

estimate the average e�ect conditional on observed treatment assignment, that is,

∆∗ = E(Y1|Z = 1)− E(Y0|Z = 0).

In randomized controlled trials, the treatment groups are balanced with respect

to relevant covariates, ensuring that the potential outcomes (Y1, Y0) are stochasti-

cally independent of the treatment assignment Z. In this case, ∆∗ = ∆, and the

observed treatment di�erence ∆∗ serves as a suitable target for causal inference. In

observational studies, however, the groups are not guaranteed to be balanced, and in

this case we cannot conclude that ∆∗ = ∆. Nevertheless, it may be reasonable to as-

sume that (Y1, Y0) are conditionally independent of Z given a vector of covariatesX.

This is commonly referred to as the �no unmeasured confounding� assumption [8].

Under this assumption, the ATE can be identi�ed from the observed data (Y, Z,X)
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through the equation

∆ = E(Y1)− E(Y0) (3.1)

= EX [E(Y1|X = x)− E(Y0|X = x)]

= EX [E(Y1|X = x, Z = 1)− E(Y0|X = x, Z = 0)]

= EX [E(Y |X = x, Z = 1)− E(Y |X = x, Z = 0)],

where the outer expectation is taken with respect to the distribution of covariates

X in the entire population and x is an observed realization of the random variable

X. The third line of equation (3.1) follows from the conditional independence of

(Y1, Y0) and Z under no unmeasured confounding, and the last line follows from the

fact that Yk = Y if Z = k (k = 0, 1). Consequently, causal inference regarding the

ATE can be made using the observed data.

When the �treatment� variable is an immutable characteristic such as race, the

potential outcomes framework is not strictly applicable, since there is no well-de�ned

potential outcome corresponding to an alternative race designation. This precludes

formal causal inference in the context of racial disparity studies. In this setting,

Li et al. [9] propose using the average controlled di�erence (ACD) as a descriptive

estimand analogous to the ATE, where the ACD is de�ned as

∆ = EX [E(Y |X = x, Z = 1)− E(Y |X = x, Z = 0)]. (3.2)

Because the latter expression is identical to the last line of equation (3.1), we use ∆
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throughout to denote either the ATE and ACD. However, the former is a causal es-

timand, whereas the latter is a purely descriptive one. When there is no unmeasured

confounding, the ACD represents a population-average di�erence between two fully

adjusted comparison groups. Although our focus here is on the ACD, the methods

described below can equally apply to settings where the ATE is a more natural target

of inference.

Under unconfoundedness, propensity score methods can be used to derive unbi-

ased estimators of the ATE or ACD in observational studies. The propensity score,

e(x) = Pr(Z = 1|X = x), is the conditional probability of exposure given X, where

the so-called �overlap� condition, 0 < e(x) < 1, is assumed to hold. Rosenbaum and

Rubin [8] established that e(x) functions as a balancing score such that

∆ = E

[
ZY

e(x)
− (1− Z)Y

1− e(x)

]
, (3.3)

when both the overlap and unconfoundedness assumptions hold. Hence, an unbiased,

Horvitz-Thompson type [49] estimator can be obtained by correctly specifying a

propensity score model. The propensity scores are typically estimated using a logistic

regression model of the form

logit(ei) = logit[e(xi)] = logit[Pr(Zi = 1|Xi = xi)] = xTi β, i = 1, . . . , n. (3.4)

If model (3.4) is correctly speci�ed, an unbiased, inverse-probability weight (IPW)

38



estimator of the ACD is given by

∆̂IPW = n−1
n∑
i=1

[
ZiYi
êi
− (1− Zi)Yi

1− êi

]
, (3.5)

where êi denotes the estimated propensity score for subject i. To guard against

misspeci�cation of the propensity score model, Robins et al.[17] developed a semi-

parametric doubly robust (DR) estimator of the form

∆̂DR =
1

n

n∑
i=1

∆̂i

∆̂i =

[
ZiYi
êi
− (Zi − êi)Ŷi1

êi

]
−

[
(1− Zi)Yi

1− êi
+

(Zi − êi)Ŷi0
1− êi

]
, (3.6)

where Ŷi1 and Ŷi0 are predicted outcomes obtained by regressing Y on X and Z,

the former including the regression coe�cient for Z and the latter excluding it. The

doubly robust property derives from the fact that expression (3.6) is a consistent

estimator of ∆ if either the propensity model or the outcome model is correctly

speci�ed. The large-sample approximate variance of ∆̂DR is given by

s2 =
1

n2

n∑
i=1

(∆̂i − ∆̂DR)2. (3.7)

Alternatively, bootstrapping by resampling with replacement can be used to estimate

the standard error and associated con�dence intervals.
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3.2.2 A Doubly Robust Estimator for Hierarchical Spatial

Data

Li et al. [9] recently extended the DR estimator to the multilevel setting, where

(Yij, Zij,Xij) denote the data for the j-th subject in cluster i. Li et al. propose the

following hierarchical DR estimator of the ACD:

∆̂DR =
1

N

n∑
i=1

ni∑
j=1

∆̂ij

∆̂ij =

[
ZijYij
êij

− (Zij − êij)Ŷij1
êij

]
−

[
(1− Zij)Yij

1− êij
+

(Zij − êij)Ŷij0
1− êij

]
, (3.8)

where eij denotes the propensity score for the (ij)-th individual, N =
∑n

i=1 ni, and

ni is the sample size of the i-th cluster. Generalized linear mixed models are used

to estimate eij, Yij0, and Yij1, with the random e�ects accommodating between-

cluster heterogeneity and accounting for smoothly varying, unobserved cluster-level

confounders. Using simulation studies, Li et al. demonstrate that incorporating

the random e�ects yields improved inferences over models that ignore cluster-level

variation or treat the cluster indicators as �xed e�ects. Analogous to equation (3.7),

the large-sample variance estimator of ∆̂DR is given by

s2 =
1

N2

n∑
i=1

ni∑
j=1

(∆̂ij − ∆̂DR)2. (3.9)

The multilevel estimator proposed by Li et al. is readily extended to the spatial

setting by augmenting the propensity score and outcome models with spatial random
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e�ects, resulting in a spatial version of the DR estimator given in equation (3.8).

Turning to our motivating application, let Yij denote the presence of poor glycemic

control for the j-th individual residing in the i-th county, let Zij denote an indicator

variable taking a value of 1 if the individual is non-Hispanic black (NHB) and 0 if

non-Hispanic white (NHW), and let xij represent a set of patient-level covariates.

The spatial propensity score model is given by

logit(eij) = logit[Pr(Zij = 1|Xij = xij, φ1i)] = xTijβ + φ1i, (3.10)

where φ1i is the spatial random e�ect for county i. Similarly, the spatial outcome

model is expressed as

logit[Pr(Yij = 1|Zij = zij,Xij = xij, φ2i)] = xTijγ + zijα + φ2i, (3.11)

where φ2i denotes the spatial random e�ect for county i in the outcome model. The

spatial random e�ects can represent geographic variability in health care access,

availability of community outreach and medical education programs, or access to

other resources that may be associated with both race and diabetes management. To

encourage maximal spatial smoothing, we assign each of the random e�ects φ1i and

φ2i an intrinsic conditional autoregressive (ICAR) prior [32] that takes the conditional

form

φki | φk(−i), σ2
k ∼ N

(
1

mi

∑
h∼i

φkh, σ
2
k/mi

)
, k = 1, 2, (3.12)

where h ∼ i indicates that county h is a geographic neighbor of county i, mi is
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the number of neighbors, and, for model k, σ2
k is the conditional variance of φki

given the remaining spatial e�ects, φk(−i). Modeling between-county heterogeneity

via a smooth spatial process is bene�cial for two reasons. First, it recognizes the

inherent tendency for neighboring regions to share health resources or experience

similar environmental pressures that can lead to poor health outcomes. Second, it

improves estimation of region-level e�ects by borrowing information from neighboring

areas, thus reducing uncertainty in estimating the propensity scores and predicting

the potential outcomes used to derive the spatial DR estimator.

Following Brook's Lemma [33], the joint distribution for φk = (φk1, . . . , φkn)T is

given by

π(φk | σ2
k) ∝ exp

(
− 1

2σ2
k

φTkQφk

)
, k = 1, 2, (3.13)

whereQ = M−A is a spatial structure matrix of rank n−1, withM = diag(m1, . . . ,mn)

and A representing an n × n adjacency matrix with aii = 0, aih = 1 if i ∼ h, and

aih = 0 otherwise. When a �xed intercept is included in the model, a sum-to-zero

constraint must be applied to φk to ensure an identi�able model.

3.2.3 Model Fitting and Inference

Because the DR estimator is a frequentist estimator, we adopt maximum likeli-

hood as our default estimation approach. Maximum likelihood for models (3.10)

and (3.11) can be easily implemented using o�-the-shelf software such as SAS PROC

GLIMMIX [50]. Maximum likelihood is selected by specifying the METHOD=QUAD op-

tion, which combines adaptive Gauss-Hermite quadrature for numerical integration

with Newton-Raphson routines for maximization. The spatial covariance matrix is
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introduced by �rst computing the Moore-Penrose generalized inverse of the structure

matrix Q in expression (4.4), and then incorporating this as part of a user-de�ned

covariance matrix in PROC GLIMMIX. Details can be found in Rasmussen [51]. The

Moore-Penrose inverse is unique and serves the dual purpose of imposing the iden-

ti�ability restriction
∑n

i=1 φi = 0. Although adaptive quadrature tends to work well

for low-dimensional random e�ects models (e.g., random intercept models), it be-

comes computationally burdensome as the dimension of the random e�ects grows,

since an increasing number of quadrature points is required to accurately estimate

the multivariate random e�ect distribution. For example, adaptive quadrature can

pose challenges for models that include spatially varying covariates.

To address this potential limitation, we consider two computationally tractable

estimation strategies: penalized quasi-likelihood (PQL) and Bayesian inference. PQL

[52, 53] is an iterative estimation procedure achieved through Taylor series expansions

of the response about current estimates of the �xed and random e�ects [54]. The

expansion yields a �pseudo-response� that is linear in the model parameters. A linear

mixed model is then �t to the pseudo-response using restricted maximum likelihood,

thus avoiding computationally challenging numerical integration routines. PQL for

the spatial propensity score and outcome models can be �t in PROC GLIMMIX using the

default METHOD=RSPL option for restricted pseudo-maximum likelihood estimation.

Finally, we consider Bayesian estimation, the most common inferential approach

for �tting spatial CAR models. Here, the propensity score and outcome models are

estimated separately using approximate Bayesian methods. The propensity score eij

is estimated using the posterior mean of the linear predictors from the propensity
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score model given in equation (3.10). Likewise, the potential outcomes Ŷij1 and Ŷij0

are estimated (or, more accurately, �predicted�) using the posterior mean linear pre-

dictors from the outcome model, the former including the posterior mean for α in

equation (3.11) and the latter excluding it. The resulting estimates and predictions

are fed into the spatial DR estimator for �nal inferences. In this context, the Bayesian

approach should be viewed simply as an alternative way to estimate the propensity

score eij and predict the potential outcomes Yij0 and Yij1 when forming the DR es-

timator. The DR estimator itself is a large-sample frequentist estimator, and hence

our overall inferential approach should once again be regarded as frequentist. By

�tting separate propensity score and outcome models, we avoid the so-called �feed-

back� issue that can arise when the models are �tted jointly under a fully Bayesian

approach [55]. For our application, we adopt the e�cient integrated nested Laplace

approximation (INLA) proposed by Rue et al. [56]. INLA uses a Laplace approx-

imation to estimate the joint posterior of the model parameters, yielding improved

computational capacity over standard Markov chain Monte Carlo routines. This

method can be easily implemented in the R package INLA (www.r-inla.org), where

the Besag option is used to specify the ICAR prior. As a default, we assign weakly

informative N(0, 1e5) priors to �xed e�ects and Ga(1, 5e-05) priors for the spatial

precision (i.e., inverse variance) terms, where Ga(a, b) denotes a gamma distribution

with shape parameter a and rate parameter b. To investigate sensitivity to prior

speci�cation, in our case study we consider alternate priors per the recommendation

of Carroll et al. [57] for the regression coe�cients and spatial variances. Alternative

prior speci�cations are discussed in Section 3.4.
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3.3 Simulation Study

3.3.1 Data Description

To examine the performance of the proposed spatial DR estimator, we conduct a

series of simulation studies. The goals were to 1) examine the inferential properties

(e.g., bias, 95% coverage) of the proposed spatial DR estimator under varying sample

sizes and degrees of spatial heterogeneity; 2) explore the impact of ignoring spatial

heterogeneity during model �tting; and 3) compare the performance of the three

estimation strategies described in the previous section. Additionally, we conducted a

sub-study to assess the ability of the spatial DR estimator to capture the true ACD

when important spatially varying covariates were ignored during model �tting. To

emulate the geographic structure in our application, we used the US Census county-

level adjacency matrix for South Carolina, Georgia, and Alabama [42]. This matrix

contains n = 272 counties and 1528 pairwise adjacencies. For the primary study, we

generated 100 datasets from the following propensity score and outcome models:

logit[Pr(Zij = 1|Xij = xij, φ1i)] = β0 + xijβ1 + φ1i (3.14)

logit[Pr(Yij = 1|Zij = zij, Xij = xij, φ2i)] = γ0 + xijγ1 + zijα + φ2i, (3.15)

i = 1, . . . , 272; j = 1, . . . , ni,

where Xij was simulated according to a N(5, 2) distribution; the �xed e�ect coe�-

cients were set at β0 = 0.25, β1 = -0.15, γ0 = 0.35, γ1 = -0.50, and α = 0.90; ni

was allowed to take on three values: 25, 50, and 100; and φ1i and φ2i were simulated
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from ICAR models given in equation (4.4) with σ2
φ1 and σ

2
φ2 each taking values 1, 4,

and 9 to represent increasing degrees of spatial variation. These parameter values

yielded an average risk di�erence of approximately 0.10, which follows the existing

literature on disparities in glycemic control [58]. We also examined scenarios where

both of the above models excluded spatial e�ects, in order to examine the behavior

of the spatial DR estimator when the data exhibited no spatial heterogeneity.

To accomplish the aim of our sub-study, we augmented the models in equations

(3.14) and (3.16) to include a county-level covariate generated according to a N(10, 3)

distribution and an additional spatially smoothed county-level covariate simulated

according to the ICAR model given in equation (4.4), with σ2 = 2 and coe�cients β2

= -0.1 and β3 = 0.1 for the respective spatially varying covariates in the propensity

score model and γ2 = 0.3 and γ3 = -0.3 for the respective spatially varying covari-

ates in the outcome model. Spatial variances for φ1i and φ2i were each set to the

intermediate level of 4.

3.3.2 Results

Table 3.1 summarizes the performance of the spatial DR estimator when the data

were generated according to the random intercept propensity score and outcome

models given in equations (3.14) and (3.16). Rows indicate the varying levels of

spatial heterogeneity (σ2
φ) and sample sizes (ni) used to generate the data, including

the case where the simulated data contained no spatial heterogeneity (σ2
φ = 0).

Columns delineate the mean absolute bias, RMSE, and 95% coverage of the estimated

ACDs under the three estimation strategies.
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Several trends emerge from the simulations. First, when the generated data

contained no spatial heterogeneity, the spatial DR estimator performed well, with

negligible bias, low RMSE, and near nominal coverage. For example, when ni =

100 and maximum likelihood estimation was used, the bias under the spatial DR

estimator was 0.003, with 95% coverage equal to 0.97. These trends continued even

as the sample size decreased. Under ni = 25, for instance, the bias ranged from 0.007

to 0.008 across the three estimation approaches.

Second, as the spatial heterogeneity in the data increased, the spatial DR estima-

tor continued to perform well, whereas the non-spatial estimator displayed increas-

ingly poor performance. For example, under maximum likelihood, the 95% coverage

for the spatial model was 0.96 when ni = 100 and σ2
φ = 1, and 0.92 when ni = 100

and σ2
φ = 9. In contrast, the non-spatial models showed poor coverage whenever

spatial heterogeneity was present. For example, with ni = 100, the coverage under

maximum likelihood for the non-spatial estimator decreased from 0.57 when σ2
φ = 1

and to 0.16 when σ2
φ = 9. As sample size decreased, bias and RMSE of the spatial

DR estimator increased but remained favorable, particularly in contrast to the non-

spatial DR estimator. The coverage of the DR estimator also remained near nominal

levels as ni decreased, except in the most extreme scenario in which ni = 25 and

σ2
φ = 9, where the coverage under maximum likelihood fell to 0.85. However, this

was vastly higher than the 0.24 coverage observed for the non-spatial estimator.

Table 3.2 demonstrates the doubly robust property of the spatial DR estimator.

As in Table 3.1, rows delineate varying degrees of spatial heterogeneity and county

sample sizes. Columns indicate which of the two models, the propensity score or
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the outcome model, was misspeci�ed by excluding a spatial random intercept. In

general, correctly specifying either the spatial propensity score or outcome model

resulted in low bias and RMSE, con�rming the doubly robust property of the pro-

posed estimator. Not surprisingly, as the spatial heterogeneity increased to extreme

levels (e.g., σ2
φ = 9), misspecifying one of the models led to modest increases in

bias and RMSE. These increases were more prominent when the outcome model

was misspeci�ed, a result consistent with previous work suggesting more deleterious

consequences for misspecifying the outcome model rather than the propensity score

model in hierarchical settings [9].

Across all scenarios, the three estimation strategies yielded similar results, sug-

gesting that any of the three approaches can be adopted in practice. However, if a

secondary aim is to explore spatial heterogeneity in the outcome model, our expe-

rience suggests that INLA yields smoother and indeed more accurate predictions of

spatial e�ects (e.g., φ2i in equation (3.11)) than the other two estimation methods.

Thus, if a subsequent goal is spatial prediction, as in our application, we recommend

working with INLA throughout, or, alternatively, using a frequentist procedure to es-

timate the ACD and Bayesian methods for spatial prediction in subsequent analyses

involving the outcome model.

Table 3.3 presents results of the sub-study using INLA to estimate the propensity

score and outcome models. The goal of the sub-study was to assess the ability of

the proposed spatial doubly robust estimator to capture the true ACD when relevant

county-level covariates were left out of the analysis. The non-spatial analysis ignored

space entirely, whereas the intermediate spatial analysis included a spatial random
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e�ect in both the propensity score and outcome models yet treated the spatially

varying covariates as unmeasured. The benchmark analysis �t the true models that

included both the spatial random e�ects and the spatially varying county-level covari-

ates. As Table 3.3 indicates, the non-spatial analysis performed poorly, whereas the

spatial analysis that included only random intercepts retained favorable properties

across all scenarios, including low bias, low RMSE and near-nominal coverage. As

expected, we observed good performance under the benchmark analysis that included

the �xed county-level covariates in addition to the spatial intercepts. Overall, there

does not appear to be much di�erence between the spatial and benchmark models.

These results support the use of the proposed spatial DR estimator, as it appears

to capture the true risk di�erence even when county-level �xed e�ects are ignored

during model �tting. As it is not uncommon for these covariates to be unavailable

to the analyst, the spatial DR estimator provides a practically useful strategy to

account for unmeasured geographic confounding.

3.4 Analysis of Racial Disparities in Glycemic Con-

trol

Our work was motivated by a study examining racial disparities in glycemic control

among veterans with type 2 diabetes. The goal of the study was two-fold: �rst,

to estimate racial disparities in poor glycemic control while accounting for relevant

patient information and spatial variation; and second, to identify counties with high

rates of poor glycemic control across the study region. Our analysis was based on
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Table 3.3: Results for the sub-study: Mean bias, RMSE, and 95% coverage of the
non-spatial, spatial, and �benchmark� doubly robust estimators under various sample
sizes. The spatial DR estimator included a spatial random intercept in the propen-
sity score and outcome models but ignored the spatially varying covariates. The
benchmark DR estimator incorporated the spatially varying covariates in addition
to the spatial random intercept in the propensity score and outcome models.

Non-spatial Spatial Benchmark

Sample size Bias RMSE Coverage Bias RMSE Coverage Bias RMSE Coverage
ni = 100 0.032 0.044 24 0.006 0.011 90 0.006 0.013 91
ni = 50 0.034 0.049 31 0.007 0.008 93 0.006 0.008 93
ni = 25 0.031 0.046 47 0.010 0.020 88 0.010 0.018 85

a sample of 64 022 NHB and NHW veterans with residential addresses in Alabama,

Georgia or South Carolina. Poor glycemic control was de�ned as having at least one

hemoglobin A1c (HbA1c) measurement ≥ 8 in �scal year 2014. Study details have

been reported elsewhere [59]; here, we summarize key features of the data. Within-

county sample sizes ranged from 5 to 2409, with a median of 108. Ten of the 272

counties in the study region had no NHB veterans. This does not pose a problem for

estimating the county-level spatial e�ects, since the smoothing property of the ICAR

prior provides the necessary shrinkage to ensure reliable county-speci�c estimates.

Overall, 36.5% of individuals in the study exhibited poor glycemic control (40.8%

for NHBs, 33.2% for NHWs). Table 3.4 displays the variables that were included

in the propensity score and outcome models. These variables include demographic

information and comorbidities that have been shown to be associated with poor

glycemic control [38].

In order to visualize geographic di�erences in racial distribution and poor glycemic

control, we aggregated the data to the county level and constructed unadjusted maps

of raw percents of NHBs and poor glycemic control by county (Figure 3.1, �rst col-
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umn). Additionally, we assembled maps of local indicators of spatial association

(LISA) to identify clusters and outliers of high and low percent NHBs and uncon-

trolled HbA1c (Figure 3.1, second column). Using local Moran's I tests with an α

level of 0.10, we classi�ed counties into four types: �high-high� clusters, de�ned as

counties with signi�cantly high rates of NHBs (top row) or uncontrolled HbA1c (bot-

tom row) surrounded by other counties with signi�cantly elevated rates of these vari-

ables; �high-low� outliers, de�ned as counties with signi�cantly high rates of NHBs

or uncontrolled HbA1c surrounded by neighboring counties with signi�cantly low

rates; and �low-high� outliers and �low-low� clusters, which were de�ned analogously.

All other counties exhibited non-signi�cant spatial e�ects. The results indicate dis-

tinct geographical patterns in racial distribution and poor glycemic control. There

are several clusters with high percentages of NHB veterans, primarily in South Car-

olina, western Georgia, and central Alabama (Figure 3.1, top row). Many of these

same areas also exhibited above-average uncontrolled HbA1c (Figure 3.1, bottom

row), particularly western portions of Georgia and Alabama. In contrast, counties

in northern Georgia exhibited below-average percents of NHB veterans and uncon-

trolled HbA1c. These patterns point to potential associations between residential

location, race, and poor glycemic control, suggesting that geographic confounding

may be present in this study. Spearman's correlation between percent NHBs and

percent uncontrolled HbA1c across the counties was 0.224 (p-value = 0.0002), fur-

ther supporting this conclusion.

Next, we compared the covariate balance between NHB and NHW veterans

in unweighted, non-spatial propensity score weighted, and spatial propensity score
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Figure 3.1: Unadjusted percents and local indicators of spatial association (LISA)
for NHB and poor glycemic control. Top left: Unadjusted percent NHB; Top Right:
NHB LISA; Bottom Left: Unadjusted percent poor glycemic control; Bottom Right:
Poor glycemic control LISA.

weighted samples. To construct the non-spatially weighted sample, we �t a logistic

propensity score model that included only the �xed patient-level covariates described

in Table 3.4. To construct the spatially weighted sample, we �t a logistic propensity

score model that included these same covariates as well a spatial intercept. We then

used the subject-speci�c weights to form weighted means and proportions across the

covariates [60]. Standardized di�erences were used to compare the covariate distri-

butions across the two race groups [2]. We also derived county-speci�c weighted

proportions of NHB and NHW veterans and mapped the distribution of the un-
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weighted, non-spatially weighted and spatially weighted proportions. If the spatial

propensity score model is adequately speci�ed, the weighted covariate distributions

and spatial patterns should be similar across race groups.

The results are presented in Table 3.4 and Figure 3.2. As Table 3.4 indicates, the

weighted samples showed vastly improved balance compared to the unweighted sam-

ple, suggesting a well-speci�ed propensity score model at the patient level. Figure

3.2 shows the spatial distribution of NHB and NHW veterans under the unweighted,

non-spatially weighted and spatially weighted samples. In both the unweighted and

non-spatially weighted samples, the spatial distribution of NHB and NHW veterans

varied substantially. For example, a larger proportion of NHB veterans lived in cen-

tral Georgia and central and western Alabama, whereas a larger proportion of NHW

veterans lived in northern Alabama and Georgia. This spatial imbalance is not sur-

prising since the spatially unweighted samples fail to account for di�erences in the

spatial distribution of the two race groups. After spatial weighting, the spatial distri-

bution of NHB veterans more closely resembled that of NHW veterans (unweighted

Spearman correlation between race groups = 0.602, non-spatially weighted Spearman

correlation = 0.629, and spatially weighted Spearman correlation = 0.996). These

results highlight the need to balance on both individual- and county-level factors

when groups di�er with respect to both sets of characteristics.

Next, we derived three estimates of the global average controlled risk di�erence

between NHBs and NHWs: an unadjusted estimate, and non-spatial DR estimate,

and spatial DR estimate. To construct the non-spatial estimate, we �t propensity

score and outcome models that included only the �xed covariates described in Table
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Table 3.4: Balance of covariates between NHB and NHW veterans in unweighted,
non-spatially weighted, and spatially weighted samples; �Stand. Di�.� denotes the
absolute value of the standardized di�erence.

Unweighted Non-spatially Weighted Spatially Weighted

Variable NHB NHW Stand. Di�. NHB NHW Stand. Di�. NHB NHW Stand. Di�.
Age 64.21 69.96 0.596 68.20 67.51 0.066 68.04 67.40 0.062
Male 93.21 97.59 0.210 96.11 95.37 0.037 96.03 95.08 0.046
Service Percent ≥ 50 46.74 36.31 0.213 41.18 40.96 0.004 40.36 40.98 0.013
Married 54.86 68.49 0.283 58.00 65.93 0.164 58.02 64.69 0.137
Urban 70.31 52.15 0.379 58.57 59.47 0.018 59.95 59.50 0.009
Substance Abuse 10.52 4.43 0.233 6.83 6.80 0.001 6.85 6.84 0.000
Anemia 3.60 3.16 0.024 3.75 3.30 0.024 3.63 3.29 0.019
Cancer 2.79 2.92 0.008 3.17 2.78 0.023 2.98 2.72 0.016
Cerebrovascular Disease 4.16 3.83 0.017 4.20 3.92 0.014 4.15 3.92 0.012
Congestive Heart Failure 8.50 9.34 0.029 9.41 8.94 0.016 9.30 8.83 0.016
Cardiovascular Disease 9.14 16.26 0.215 13.89 13.23 0.019 13.82 13.26 0.016
Depression 34.68 26.24 0.184 31.11 31.04 0.002 30.76 31.14 0.008
Hypertension 87.12 82.24 0.136 84.36 83.66 0.019 83.73 83.45 0.008
Liver Disease 3.95 2.92 0.057 3.44 3.26 0.010 3.47 3.19 0.016
Lung Conditions 12.62 18.21 0.155 16.62 15.82 0.022 16.50 15.83 0.018
Electrolyte Diseases 6.15 4.47 0.075 5.46 5.19 0.012 5.18 5.18 0.000
Obesity 23.73 20.33 0.082 21.66 21.55 0.003 21.59 21.46 0.003
Psychoses 7.54 3.41 0.182 5.21 5.15 0.003 5.20 5.15 0.002
Peripheral Vascular Disease 6.78 8.80 0.075 8.62 7.90 0.026 8.68 7.77 0.033
Other Disease 21.39 16.28 0.131 18.75 18.25 0.013 18.19 18.23 0.001

3.4. Given our dual aims of estimating the ACD and conducting subsequent spatial

analysis of uncontrolled HbA1c, we adopted a Bayesian approach for inference. All

models were �t in INLA, �rst using the default priors discussed in Section 2.3. As

a sensitivity check, we re�t the models using alternative priors, such as the proper

CAR, the Besag, York and Mollie (BYM) prior [32], and ICAR priors with Ga(1, 1)

and Ga(1, 0.5) precisions. In each case, we obtained results nearly identical to our

default ICAR prior. Additionally, we computed bootstrap standard errors for both

the non-spatial and spatial DR estimators by resampling with replacement from the

original dataset to create 100 new datasets of size 64 022. These samples provided an

estimate of the sampling distribution of the DR estimators. The bootstrap standard

errors were then formed by computing the standard deviation for each estimator
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Figure 3.2: Balance of spatial distribution between NHB and NHW veterans in
unweighted (top row), non-spatially weighted (middle row) and spatially weighted
(bottom row) samples
.

across the samples. For both the non-spatial and spatial DR estimators, we found

that the bootstrap standard errors were nearly identical to those for the large-sample

approximation given in equation (3.9). We therefore report the large-sample standard
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Table 3.5: Estimated risk di�erences and 95% credible intervals (CrI) in percent
uncontrolled HbA1c under various models.

Model Risk Di�erence 95% CrI % Reduction

Unadjusted 0.076 (0.068, 0.083) n/a
Non-spatial DR 0.020 (0.011, 0.029) 74
Spatial DR 0.016 (0.005, 0.027) 20

errors in Table 3.5.

Table 3.5 presents the three estimates of the average risk di�erence between

NHBs and NHWs. In our sample, 40.8% of NHB veterans experienced poor HbA1c

control compared to 33.2% for NHWs, for an observed sample risk di�erence of 0.076.

When individual-level factors in Table 3.4 were included, the resulting marginal

risk di�erence decreased from 0.076 to 0.020 (95% interval: [0.011, 0.029]), for a

74% decrease. After including a spatial random e�ect in both stages of the PSA,

we observed a further 20% decrease in the risk di�erence for a �nal estimate of

∆̂DR = 0.016 (95% interval: [0.005, 0.027]). Thus, failing to incorporate spatial

variation would have overestimated the true risk di�erence in HbA1c control. These

results are consistent with previous studies that have found modest reductions in

race disparities after accounting for geographic factors [61].

Once a global estimate of the risk di�erence was established, the second goal of

our analysis was to examine spatial variation in the risk of uncontrolled A1c after

accounting for potential confounders including race. This secondary aim shifts our

focus from estimating a global disparity to identifying hotspots of elevated risk of

poor glycemic control after controlling for important patient-level covariates. While

we strongly recommend using the spatial DR estimator to address geographic con-
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Figure 3.3: Spatial random e�ects by county and corresponding signi�cance assessed
via 95% credible interval (e.g., �High� if interval entirely positive, �Low� if entirely
negative)

founding in estimating the overall race disparity, spatial random e�ect predictions

from a well-constructed outcome model alone can lend investigators valuable infor-

mation in allocating resources and targeting communities. Figure 3.3 displays the

�tted spatial random e�ects and indicates signi�cant spatial e�ects, assessed in terms

of the 95% credible intervals of the random e�ect estimates. If the interval was en-

tirely positive, the county was designated as �high signi�cant� and if the interval

was entirely negative, the county was designated as �low signi�cant�. The results

indicate a cluster of counties with high e�ects stretching from central Georgia to

Alabama, an area historically encompassed by the �stroke belt� [62]. In contrast,

many counties in South Carolina were identi�ed as �low signi�cant�, indicating ad-

equate glycemic control. Interestingly, some counties showed signi�cant e�ects only

after covariate adjustment, e.g., in the southwestern corner of Alabama. As these

counties are designated �low signi�cant�, they demonstrate that once patient-level

factors are accounted for, they have signi�cantly improved HbA1c control compared
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to surrounding areas. This suggests that the unadjusted di�erences observed in Fig-

ure 3.1 can be explained in part by the demographic make-up these counties. These

�ndings point to the need for community-based and locally-tailored interventions in

areas of highest need, particularly along the stroke belt.

3.5 Discussion

We have proposed a spatial DR estimator to estimate a minimally biased average

controlled risk di�erence among race/ethnicity groups in health disparity studies.

The spatial DR estimator is an augmentation of the well-established DR estima-

tor and extends recent work in multilevel DR estimation to the spatial setting. To

construct the estimator, we introduced spatial random e�ects into the propensity

score and outcome models to account for spatial variation due to potential unmea-

sured geographic confounders. The spatial e�ects were assigned CAR priors that

promote local spatial smoothing to improve small-area estimation. For statistical

inference, we considered both Bayesian and frequentist estimation methods that can

be implemented in freely available software such as R or SAS. In the case of Bayesian

estimation, we separated the propensity score and outcome models to avoid feedback

[55] between the models. We instead used the predictions from the separate models

to construct an appropriate DR estimator, which was in turn used to estimate the

global ACD.

Through a series of simulation studies, we explored the performance of the spa-

tial DR estimator under varying degrees of spatial heterogeneity and sample size.
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When the true generating model incorporated geographic confounding, the spatial

DR estimator consistently demonstrated lower bias, lower RMSE, and more reliable

coverage than its non-spatial counterpart. Conversely, when the true generating

model excluded geographic confounding, the spatial DR estimator performed on par

with its correctly speci�ed non-spatial counterpart. In our sub-study, we introduced

county-level covariates that were subsequently omitted during model �tting. The

results demonstrated that the spatial DR estimator provided unbiased estimates and

retained near optimal coverage in the absence of the covariates. This suggests that by

incorporating spatial random e�ects into the estimation process, the spatial DR esti-

mator can alleviate omitted-variable bias at the cluster level. Together, these results

point to the bene�t of spatial DR estimator in correcting for geographic confounding

in health disparities studies.

Our application explored the impact of geographic confounding in racial dispari-

ties among a sample of diabetic veterans residing in the southeastern United States.

After demonstrating improvement in balance in the propensity score weighted sam-

ple, we constructed three estimates of the racial disparity in uncontrolled HbA1c:

an unadjusted estimate, a DR-based estimate that adjusted only for individual-level

factors, and a spatial DR estimate that adjusted for county-level e�ects. Our results

suggest that adjustment for geographic confounding bias is essential to obtaining an

accurate estimate of the global risk di�erence across large spatial regions. In par-

ticular, we found a 20% reduction in the health disparity after adjusting for spatial

e�ects. This reduction is consistent with other studies that incorporate geographic

information in racial disparities work [61] and may point to di�erences in access to
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care at the community level. The secondary aim of this study identi�ed areas of

poor glycemic control in central Alabama and Georgia and relatively good control in

coastal South Carolina after controlling for patient characteristics. As a whole, this

information can help community stakeholders direct attention, resources, and policy

e�orts in a cost-e�ective manner to ameliorate diabetes-related disparities.

Throughout the paper, we have used the term �geographic confounding� to de-

scribe cluster-level spatial heterogeneity that is associated with both race designa-

tion and health outcomes. We have deliberately adopted this nomenclature to avoid

confusion with the more commonly used term �spatial confounding,� which in the

spatial literature is used to describe a type of collinearity that arises between Gaus-

sian process random e�ects and spatially patterned cluster-level covariates, X. As

Hodges and Reich [63] demonstrate, spatial collinearity can lead to biased estimates

of the �xed e�ect parameters when the spatial e�ects and �xed covariates compete

for overlapping information. To address this issue, they propose a restricted spatial

regression that constrains the spatial e�ects to the orthogonal complement of X.

We have taken a fundamentally di�erent approach by separating the estimation and

modeling stages of spatial PSA. By adopting a two-stage PSA approach, we shift the

focus from estimation of regression coe�cients to prediction of potential outcomes,

i.e., Ŷij1 and Ŷij0 in equation (3.8). We then use the DR estimator for controlled

descriptive comparisons. Thus, the spatial random e�ects serve only to improve the

propensity score and outcome predictions that feed into the DR estimator, rather

than to remove bias in the race e�ect estimate, α̂, in outcome model (3.11). As such,

we are less concerned with correctly partitioning the spatial e�ect into �xed and
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random components than with accurately predicting propensity scores and potential

outcomes using all available spatial information. This goal is supported by previous

literature suggesting that collinearity itself is not a primary concern in PSA as long

as the predicted propensity scores yield balanced group comparisons [13].

On a more practical note, many authors de�ne �health disparity� as a social con-

struct encompassing historic, geographic and system-level injustices that engender

health di�erences between race groups [64]. Viewed in this way, it may be inappro-

priate to control for geographic confounding when estimating health disparities, as

this would remove part of the disparity e�ect. Our aim has not been to re-de�ne

what constitutes a disparity, but rather to obtain a fully adjusted estimate of the

risk di�erence in glycemic control across race groups. In other words, we wish to

make comparisons between racial groups that reside in similar geographic areas. By

comparing unadjusted, partially adjusted, and fully adjusted risk di�erences, as we

did in Table 3.5, investigators can disentangle the factors that contribute to racial

disparities, a goal of recent disparity studies [65].

Future work might accommodate multiple exposure categories, taking advantage

of recent methods for causal inference among multiple treatment groups [66]. The

proposed method could also be adapted to handle propensity score matching or

strati�cation. More broadly, the approach could be embedded within a larger spatial

causal inference framework, to investigate spatially varying treatment e�ects, i.e.,

a �space-by-race� interaction, spatially varying selection bias, or spatial mediation

e�ects. Finally, the work presented here could be applied to other population health

settings, such as studies involving telehealth or spatially varying environmental ex-
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posures.
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Abstract: We introduce a spatial propensity score matching method to account
for �geographic confounding�, which occurs when the confounding factors, whether
observed or unobserved, vary by geographic region. We augment the propensity
score and outcome models with spatial random e�ects, which are assigned condi-
tionally autoregressive priors to improve inferences by borrowing information across
neighboring geographic regions. Through a series of simulations, we show that ignor-
ing spatial heterogeneity results in increased absolute bias and mean squared error,
whereas incorporating spatial random e�ects improves inferences whether the treat-
ment e�ect is estimated with or without further regression adjustment in the model
for the outcome. We apply this approach to a study exploring racial disparities in
diabetes specialty care between non-Hispanic black and non-Hispanic white veterans.
We construct multiple global estimates of the risk di�erence in diabetes care: a crude
unadjusted estimate, an estimate based solely on patient-level matching, and an esti-
mate that incorporates both patient and spatial information. The crude unadjusted
estimate suggests that specialty care is more prevalent among non-Hispanic blacks,
while patient-level matching indicates that it is less prevalent. Hierarchical spatial
matching supports the latter conclusion, with a further increase in the magnitude
of the disparity. These results highlight the importance of accounting for spatial
heterogeneity in propensity score analysis, and suggest the need for clinical care and
management strategies that are culturally sensitive and racially inclusive.
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4.1 Introduction

Type 2 diabetes is the seventh leading cause of death in the United States (CDC,

2014) and disproportionately a�ects US military veterans [67]. Not only is diabetes

more prevalent among veterans [68], but veterans also experience higher comorbidity

rates and increased risk of complications than the non-veteran population [69, 70].

The Department of Veterans A�airs (VA) has recently taken steps to address access

to care through improved specialty care and emerging telehealth technologies [71].

Nevertheless, veterans continue to face a number of barriers to disease management,

including wait times, geographic isolation from care facilities, and insu�cient infor-

mation regarding available health resources [72]. Thus, there is an ongoing need for

improved disease management e�orts within the VA to help veterans manage their

diabetes through healthy diets, regular exercise, and proper medication adherence

[73].

At the same time, evidence shows that racial minorities have a higher prevalence

of diabetes [35], poorer diabetes outcomes [36], and higher mortality rates compared

to non-Hispanic whites [37]. These disparities are explained in part by individual

demographics, such as age, sex and marital status [38, 39]. However, patient demo-

graphics may explain only one piece of the puzzle. Recent work examining diabetes

care found that after accounting for both patient characteristics and facility-level

factors, the disparity between non-Hispanic white and non-Hispanic black veter-

ans in LDL cholesterol testing actually increased, with non-Hispanic blacks having

lower rates of appropriate LDL management [74]. Studies have also shown that care

providers may experience �clinical inertia�, whereby a provider fails to respond to a
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patient's need for intensi�ed treatment [75]. Indeed, a recent VA study demonstrated

widespread clinical inertia in the treatment of veterans with diabetes [76]. Just as

personal barriers to disease management may disproportionately a�ect racial minori-

ties [36, 77], clinical inertia is also thought to be exacerbated for racial minorities

whose care providers may have misleading perceptions regarding racial and ethnic

minorities' attitudes toward treatment [78]. As a result, ongoing studies are needed

to accurately quantify the extent of racial disparities in diabetes care, and to identify

strategies for improved disease management.

Because racial disparity studies are inherently observational, it is necessary to

account for multiple sources of confounding, both at individual and community lev-

els, in order to obtain minimally biased estimates of race disparities. In particular,

it is necessary to account not only for individual-level confounding, but also geo-

graphic confounding, which occurs when confounding factors, whether observed or

unobserved, vary by geographic location. Here, we use the term �confounding� some-

what broadly to denote a general distortion of the true relationship between race

and diabetes-related health outcomes [79]. Depending on the problem at hand, geo-

graphic location may act as a common cause of exposure and outcome � and hence as

a true confounder � or as a mediator lying on the causal pathway between exposure

and outcome. From a statistical standpoint, the two can be handled similarly, as

long as the goal is to estimate the adjusted or �direct� e�ect of exposure on outcome.

This is frequently the case in health disparities studies, as policymakers often wish

to quantify the direct relationship between race and health outcomes. In the spe-

cial case of geographic confounding, the goal is to appropriately account for spatial

68



variation when estimating the extent of racial disparities.

In this paper, we seek to understand how racial minorities engage with the health

care system compared to a group of individuals who di�er from these patients only

in racial identity. Propensity score analysis (PSA) o�ers a principled approach to ad-

dressing this problem. Speci�cally, PSA enables estimation of the average treatment

e�ect among the treated (ATT), yielding a minimally confounded response to the

question �What would the experience of a racial minority have been if the individual

were not in this racial group?�. The ATT is of particular interest in racial disparity

studies, since interventions arising from these studies are typically designed to im-

prove care for speci�c race groups rather than the population as a whole. Propensity

score matching and weighting are two common approaches to PSA, and both can

provide unbiased estimates of the ATT. However, propensity score weighting can

often result in unstable weights and large variances under extreme propensity score

estimates [13]. Matching, on the other hand, o�ers an intuitive approach to forming

a control group that is similar to the treatment group across all factors included in

the propensity score model. In fact, matching has been found to perform as well as

if not marginally superior to weighting in achieving covariate balance [80].

While there is some previous work on propensity score matching in the context

of multilevel data [25] and aggregate (region-level) spatial data [26, 47, 27, 48], there

does not currently exist an integrative approach that allows spatial information to

augment patient-level information through a hierarchical data structure. We there-

fore propose a hierarchical spatial propensity score matching framework to address

geographic confounding when the ATT is the desired target of inference. While re-
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cent work suggests bene�ts to within-cluster matching [81], this recommendation is

not easily extended to the spatial setting. Spatial clusters such as counties may have

very small sample sizes and may not function independently of one another in terms

of policy and resources.

To address these limitations, we augment traditional propensity score analysis

with spatial random e�ects to account for variation due to unobserved geographic

confounders. The random e�ects are assigned conditionally autoregressive prior dis-

tributions that promote localized spatial smoothing by borrowing information from

surrounding geographic areas. This information sharing is critical to improving small

area estimation. It also re�ects our intuition that neighboring areas share resources

and should therefore behave similarly with respect to diabetes-related health out-

comes. We explore the performance of this method in simulation studies under vary-

ing degrees of spatial heterogeneity and sample size. We also conduct simulations to

assess whether the outcome variable should be modeled via unadjusted or adjusted

regression, helping to shed light on the current debate on this topic. We apply our

methods to an analysis of diabetes care and education visits within the Veterans

Health Administration. Because the VA is the largest integrated health care system

in the United States, its health care decisions and policies are far-reaching; moreover,

VA patients represent a �sentinel population� in health care, signaling needs of the

more general public population [34]. We show that addressing geographic confound-

ing yields improved e�ect estimates of racial disparities, which can in turn help guide

policy decisions by motivating clinical care teams to engage patients, monitor dia-

betes management, and design racially and culturally sensitive strategies to alleviate
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disparities within the VA and beyond.

4.2 Spatial Propensity Score Analysis

4.2.1 Overview of Propensity Score Matching Methods

We begin by brie�y reviewing the inferential properties of PSA as outlined in Rosen-

baum and Rubin [8] and summarized more recently in Lunceford and Davidian [14].

Let Z denote a group indicator taking values 0 or 1. In theory, Z can represent an

assigned treatment group (e.g., Z = 1 if treated and 0 if control) or a manipula-

ble exposure group. As we present our work in the context of racial disparities, we

acknowledge that race is not a manipulable exposure; however, health care system

engagement and treatment of individuals of di�erent racial groups is manipulable

and should be the target of intervention should a disparity exist. For further discus-

sion regarding perceptions of immutable characteristics within the causal framework,

see Greiner and Rubin [82] and Davis et al. [83].

According to the causal framework outlined by Rubin (1974), each individual

is assumed to have two potential outcomes (Y1, Y0), where Y1 and Y0 denote the

(potentially counterfactual) outcomes under Z = 1 and Z = 0, respectively. The

observed response, Y , is given by Y = ZY1 + (1 − Z)Y0, so that Y = Y1 if Z = 1

and Y = Y0 otherwise. The causal estimand of interest depends on the clinical

question at hand. Common choices are the population average treatment e�ect

(ATE), de�ned as ∆ATE = E(Y1) − E(Y0), or the population average treatment

e�ect on the treated (ATT), de�ned as ∆ATT = E(Y1 − Y0|Z = 1). The former
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provides a causal comparison between the treated and the entire control population,

while the latter provides a causal comparison restricted to the treated population.

The ATT is often desired in program evaluation or when the treatment is not likely

to be targeted universally, as is the case in our motivating study.

Under unconfoundedness, propensity score methods can be used to derive unbi-

ased estimators of the ATE or ATT in observational studies. The propensity score,

e(x) = Pr(Z = 1|X = x), is the conditional probability of exposure given covari-

ates X, where the so-called �overlap� condition, 0 < e(x) < 1, is assumed to hold.

Propensity score matching is a technique that forms matched pairs between exposed

and unexposed subjects based on the similarity of their estimated propensity scores

[8, 18, 2]. As is true across all propensity score methods, matching techniques re-

quire the analyst to �rst decide on the form of the propensity score model (typically

a logistic regression model) and the variables to be included in the model. After

propensity scores have been generated, the analyst must �rst make decisions on the

matching strategy: greedy or optimal algorithms, matching with or without replace-

ment, the matching variable itself (e.g., propensity score or the logit of propensity

score), and the rules for designating acceptable matches. Because the focus of this

work is to address geographic confounding through the use of spatial random e�ects,

our analysis strives to incorporate well evidenced propensity score methods that lend

themselves to otherwise straightforward inference.

Greedy algorithms create nearest-neighbor best pair matches by iteratively choos-

ing an individual in the treatment group, �nding the control with the most similar

propensity score and removing that pair from the selection process. Thus, greedy
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matching does not revisit matches once they are formed. Recent work has shown that

greedy algorithms perform similarly to other matching procedures in their ability to

form well-balanced groups [13]. Matching with replacement allows a control unit to

be used in more than one pair match, whereas without replacement restricts a control

to participation in only one matched pair. Matching with replacement can yield a

suitable matched sample; however, a matched sample based on very few in�uential

control units can lead to in�ated variance estimates [7]. Therefore, some researchers

recommend matching without replacement, which has been found to perform as well

as matching with replacement but avoids analytic complexity and the variance pit-

fall [20]. In terms of acceptable match designation, Austin [2] recommends a caliper

width equal to 0.2 times the standard deviation of the logit of the propensity score

as a valuable compromise between preserving match quality and minimizing mean

square error (MSE) of the treatment e�ect. Given the above recommendations, we

adopt a nearest neighbor algorithm that matches individuals without replacement

based on the logit of the propensity score and a caliper of 0.2 times the standard

deviation. These choices yield a sample of treated individuals and a well-matched

control group that is a subset of the entire control population, naturally allowing

for estimation of the ATT. Finally, some authors recommend �tting an adjusted re-

gression model to the outcome to address any residual imbalance between exposure

groups [13], while others advocate for an unadjusted model [2]. Given this ongoing

debate [84], we consider both approaches in our simulations studies to determine the

preferred method in the context of spatial PSA.
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4.2.2 Multi-level Spatial Matching

PSA has been recently extended to the hierarchical data setting in which individ-

uals are nested within clusters such as health care plan [9]. Arpino and Mealli

[25] in particular have proposed propensity score matching methods for hierarchical

data that incorporate random e�ects into the propensity score model when within-

cluster matching is not feasible. They demonstrate that random e�ects are capable

of capturing unmeasured heterogeneity that occurs when cluster-level confounders

are omitted in PSA.

The multilevel matching estimator proposed by Arpino and Mealli [25] is readily

extended to the spatial setting by augmenting the propensity score model with spatial

random e�ects. Turning to our motivating application, let Yij be an indicator variable

taking the value 1 if the j-th patient residing in the i-th county receives a specialty

care visit, let Zij be an indicator taking the value 1 if the patient is non-Hispanic

black (NHB) and 0 if non-Hispanic white (NHW), and let xij represent a set of

observed patient- and county-level covariates. The spatial propensity score model is

given by

logit(eij) = logit[Pr(Zij = 1|Xij = xij, φ1i)] = xTijβ + φ1i, (4.1)

where φ1i is the spatial random e�ect for county i. The spatial e�ect φ1i accounts

for unmeasured county-level factors associated with race, and circumvents the need

to match within county, which is infeasible in the case of small cluster sizes.

Once the propensity scores are estimated, we match each NHB patient to a cor-

responding NHW patient to form a matched sample. The R package Matching [85]
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allows for direct input of the desired matching variable, is �exible enough to ac-

commodate various strategies, and has been used in multilevel matching [81]. After

matching, we can estimate the ATT by performing unadjusted regression analysis.

Alternatively, Stuart [13] recommends �tting an adjusted outcome model that can

address residual imbalance across the groups with respect to important covariates

and space. To �t the adjusted outcome model, we again incorporate a spatial random

e�ect into our binary outcome model

logit[Pr(Yij = 1|Zij = zij,Xij = xij, φ2i)] = xTijγ + zijα + φ2i, (4.2)

where φ2i denotes the spatial random e�ect for county i in the outcome model. The

spatial random e�ects can represent geographic variability in health care access,

availability of community outreach and medical education programs, or access to

other resources associated with diabetes management. To investigate the impact of

adjusted regression on the outcome in spatial settings, we pursue both unadjusted

and adjusted estimates as part of our simulation study.

To encourage maximal spatial smoothing, we assign the random e�ects φ1i and

φ2i independent intrinsic conditional autoregressive (ICAR) priors [32]. Let k = 1

denote the propensity score model and k = 2 denote the outcome model. The ICAR

prior for φki takes the conditional form

φki | φk(−i), σ2
k ∼ N

(
1

mi

∑
h∼i

φkh, σ
2
k/mi

)
, k = 1, 2, (4.3)

where h ∼ i indicates that county h is a geographic neighbor of county i, mi is
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the number of neighbors, and, for model k, σ2
k is the conditional variance of φki

given the remaining spatial e�ects, φk(−i). Following Brook's Lemma [33], the joint

distribution for φk = (φk1, . . . , φkn)T is given by

π(φk | σ2
k) ∝ exp

(
− 1

2σ2
k

φTkQφk

)
, k = 1, 2, (4.4)

whereQ = M−A is a spatial structure matrix of rank n−1, withM = diag(m1, . . . ,mn)

and A representing an n × n adjacency matrix with aii = 0, aih = 1 if i ∼ h, and

aih = 0 otherwise. When a �xed intercept is included in the model, a sum-to-zero

constraint must be applied to φk to ensure an identi�able model.

The ICAR prior is appealing because it imposes spatial smoothing, re�ecting the

intuition that adjacent spatial units are more similar in terms of access to health

care, resources and policies than non-neighbors. Moreover, by promoting localized

spatial smoothing and information sharing from surrounding geographic areas, the

ICAR prior reduces uncertainty in estimating the propensity scores and, in turn, the

ATT.

4.2.3 Model Fitting and Inference

For our case study, we adopt a Bayesian model �tting approach and assign prior

distributions to all model parameters. As a default, we assign weakly informative

N(0, 1e5) priors to �xed e�ects and Ga(1, 5e-05) priors for the spatial precision terms,

where Ga(a, b) denotes a gamma distribution with shape parameter a and rate pa-

rameter b. We �t the propensity score and outcome models separately, thus avoiding
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the so-called �feedback� issue that can arise when the models are �t jointly under a

fully Bayesian approach [31]. We use approximate Bayesian methods for posterior in-

ference. Speci�cally, we adopt the e�cient integrated nested Laplace approximation

(INLA) proposed by Rue et al. [56]. INLA uses a Laplace approximation to esti-

mate the joint posterior of the model parameters, yielding improved computational

capabilities over standard Markov chain Monte Carlo routines. This method can

be readily implemented in the R package INLA (www.r-inla.org), where the Besag

option is used to specify the ICAR prior. The posterior means of the propensity

scores are then used to match individuals.

In our application, we match individuals without replacement using the logit of

the estimated propensity score with a caliper of 0.2 times the standard deviation

as recommended by Austin [2]. We consider both unadjusted and adjusted outcome

models when estimating the ATT. For both the unadjusted and the adjusted outcome

models, we compute a �standardized� risk di�erence �rst by assuming each patient

is NHB and, second, by assuming each patient is NHW. The di�erence provides

an estimate of the ATT. In order to construct a credible interval (CrI) around this

estimate, we used the inla.posterior.sample function within R-INLA to obtain

1000 Monte Carlo draws from the approximate posterior distribution. The mean of

the risk di�erence across the 1000 samples is reported as the estimated ATT, and

the corresponding the 95% CrI is derived from the 2.5 and 97.5 percentiles.
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4.3 Simulation Study

4.3.1 Data Description

In order to assess the properties of hierarchical spatial matching, we conducted two

simulation studies. The goal of the �rst study was to quantify the impact of ignoring

true spatial heterogeneity when estimating propensity scores, to measure the perfor-

mance of the proposed spatial PSA methodology under various reasonable true-data

scenarios, and to suggest options within readily available software to achieve a min-

imally biased estimate of the ATT. The goal of the second study was to assess how

well the proposed method accounts for omitted variable bias.

To mirror the spatial structure of our application, for both studies we generated

patient-level data clustered at the county level across the southeastern United States.

To emulate the geographic structure in our application, we used the US Census

county-level adjacency matrix for South Carolina, Georgia, and Alabama [42]. This

matrix contains n = 272 counties and 1528 pairwise adjacencies. For the �rst study,

we generated 100 datasets with treatment assignment and outcome according to the

following propensity score and outcome models:

logit[Pr(Zij = 1|Xij = xij, φ1i)] = β0 + xTijβ + φ1i (4.5)

logit[Pr(Yij = 1|Zij = zij,Xij = xij, φ2i)] = γ0 + xTijγ + zijα + φ2i, (4.6)

where i = 1, . . . , 272, j = 1, . . . , ni and xij is a 5× 1 vector comprising patient-level

covariates generated from the following distributions: N(5,2), N(0,1), Bernoulli(0.4),
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Bernoulli(0.2), Bernoulli(0.05). The �xed e�ect coe�cients were set at β0 = 0.25

and β = {−0.15,−0.2, 0.5, 0.6,−0.3}, γ0 = 0.25, γ = {−0.75, 0.1, .5, .15,−0.40},

and α = 0.60; ni was allowed to vary (ni = 25, 50) to re�ect sample sizes similar

to those in the application; φ1i and φ2i were simulated from ICAR models given in

equation (4.4) with σ2 = {0, 3, 6} representing varying degrees of spatial variation.

The case where σ2 = 0 corresponded to the scenario in which geographic confounding

was not present.

For the second simulation, we evaluated the performance of spatial PSA when

relevant county-level predictors were omitted from the analysis. We augmented the

models in equations (4.5) and (4.6) with two county-level covariates, the �rst gener-

ated from a N(10,3) distribution and the second simulated according to the ICAR

model given in equation (4.4) with σ2 = 2. The regression coe�cients for the two

covariates were set to −0.10 and 0.1 for the propensity score model and to 0.3 and

−0.3 for the outcome model. The spatial variances for φ1i and φ2i were set to 3 to

mimic the estimates in our application. We then �t the propensity score and out-

come models ignoring these covariates in order to assess the impact of the omitted

variables on the ATT estimate.

4.3.2 Results

Table 4.1 summarizes the results of the �rst simulation study. This table presents

measures of performance of spatial propensity score matching under varying degrees

of spatial variation and sample sizes. Rows indicate the sample size and spatial vari-

ance values; columns indicate whether the estimate was derived from an unadjusted
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Table 4.1: Results for simulation study 1: Mean bias, RMSE, and 95% coverage
of the risk di�erence under various sample sizes and spatial variances (rows) and
estimation methods (columns). σ2

φ = 0 represents no spatial variation

Unadjusted Adjusted
Non-spatial Spatial Non-spatial Spatial

σ2
φ = 0
ni = 25 0.007 0.008 96 0.007 0.009 88 0.007 0.008 94 0.007 0.009 90
ni = 50 0.005 0.007 88 0.006 0.008 87 0.006 0.007 87 0.007 0.008 85
σ2
φ = 3
ni = 25 0.014 0.018 65 0.011 0.013 89 0.014 0.018 62 0.009 0.011 90
ni = 50 0.013 0.017 53 0.008 0.009 87 0.014 0.018 49 0.006 0.007 92
σ2
φ = 6
ni = 25 0.021 0.027 51 0.011 0.014 92 0.022 0.028 46 0.009 0.011 92
ni = 50 0.021 0.029 42 0.010 0.013 77 0.021 0.029 37 0.006 0.008 92

model that included an indicator for race only or an adjusted model that included

patient covariates with and without an additional spatial random e�ect. Within each

strategy, columns further indicate whether spatial random e�ects were incorporated

in the analysis. Explicitly, �Unadjusted, Non-Spatial� implies that the propensity

score model included only individual-level covariates, while the outcome model in-

cluded only a indicator for race; �Unadjusted, Spatial� implies that the propensity

score model included both individual-level covariates and a spatial random e�ect,

while the outcome model included only race; �Adjusted, Non-spatial� implies that

the propensity score and outcome models ignored space but included individual-level

covariates; and �Adjusted, Spatial� implies that with �t a fully adjusted spatial model

for both the propensity score and outcome models.

Several trends are apparent in Table 4.1. First, ignoring geographic confounding

and utilizing only patient-level measures is detrimental. We observe poor perfor-
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mance of the non-spatial analyses as the bias and RMSE are increased while the cov-

erage is decreased. Secondly, regression adjustment appears to yield smaller bias and

RMSE than unadjusted analysis and typically better coverage when spatial analyses

are performed. For example, when σ2
φ = 3 and ni = 50 and space is ignored, cover-

age is 53% and 49% in the unadjusted and adjusted analyses, respectively. However,

when spatial PSA is conducted for the same data, we observe near-nominal coverage,

with the additional adjustment in the outcome model yielding a slightly better result

than the unadjusted outcome analysis (92% versus 90%). Lastly, in the case of no

true spatial heterogeneity, conducting spatial analysis does not appear to be highly

detrimental, as it contributes no additional bias. For instance, when σ2
φ = 0 and

ni = 50, non-spatial and spatial analyses yielded nearly identical coverage probabili-

ties. We observe similar trends in measures of bias and RMSE. These results suggest

that incorporating spatial random e�ects into the propensity score model and the

adjusted outcome model yields favorable results when spatial variation is present and

does not yield negative consequences when the data exhibit no spatial heterogeneity.

Table 4.2 presents results of the second study using INLA to estimate the propen-

sity score and outcome models. The goal of the second study was to assess the ability

of the proposed spatial matching framework to capture the true ATT when relevant

county-level covariates were left out of the analysis. The non-spatial analyses ignored

space entirely and �t either an unadjusted model for the outcome or a non-spatial,

covariate adjusted outcome model. The spatial analyses incorporated a spatial ran-

dom e�ect in the propensity score model and �t either an unadjusted model for the

outcome or a spatial and patient-level adjusted model for the outcome. As Table
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Table 4.2: Results for simulation study 2: Mean bias, RMSE, and 95% coverage of the
risk di�erence under various sample sizes (rows) and estimation methods (columns)
with a �xed spatial variation (σ2

φ = 3)

Unadjusted Adjusted
Non-spatial Spatial Non-spatial Spatial

ni = 25 0.018 0.027 76 0.012 0.016 94 0.018 0.027 71 0.010 0.013 94
ni = 50 0.019 0.025 77 0.009 0.011 94 0.015 0.021 67 0.008 0.010 94

4.2 indicates, the non-spatial analysis performed poorly, whereas the spatial analy-

ses retained favorable properties across all scenarios, including low bias, low RMSE

and near-nominal coverage. These results support the use of the proposed spatial

matching framework, as it appears to capture the true risk di�erence even when

county-level �xed e�ects are ignored during model �tting. As it is not uncommon

for these covariates to be unavailable to the analyst, spatial matching provides a

practical strategy to account for unmeasured geographic confounding. Together, the

results of the simulation studies demonstrate that spatial propensity score matching

through the inclusion of spatial random e�ects addresses geographic confounding and

outperforms analyses that include only patient-level covariates.

4.4 Analysis of Racial Disparities in Diabetes Care

and Management

We conducted an analysis to examine the direct association between race and the

likelihood of a diabetes care visit in 2014. Our sample consisted of 20,636 NHB

(n = 9, 277) and NHW (n = 11, 359) veterans with uncontrolled type 2 diabetes
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living in Georgia, Alabama and South Carolina. Uncontrolled type 2 diabetes was

de�ned as HbA1c ≥ 8 at the start of 2014. Table 4.3 displays the patient-level

variables that were included in the propensity score and adjusted outcome models.

Approximately 13% of the patients had a diabetes care visit following indication of

poor control (15.0% for NHBs, 11.2% for NHWs).

Figure 4.1: Unadjusted percent of veterans with uncontrolled diabetes who are NHB
(left) and unadjusted percent of veterans with uncontrolled diabetes who received a
diabetes care education visit (right)

Figure 4.1 displays the per-county percents of NHB veterans and veterans with

diabetes care visits. The maps suggest that the percent of NHB veterans and the

percent of veterans with diabetes care visits exhibit spatial variation, with clustering

around areas in western Alabama, Atlanta, Georgia and coastal South Carolina.

In order to assess the covariate balance between NHB and NHW veterans in the

original and spatial propensity score matched samples, we estimated the di�erence

in means or proportions in each of the samples. To construct the spatially matched

sample, we �t a logistic propensity score model that included the patient-level co-
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Table 4.3: Balance of covariates between NHB and NHW veterans in pre-matched
and post-matched samples; �Stand. Di�.� denotes the absolute value of the stan-
dardized di�erence

Pre-match Post-match

Variable NHB NHW Stand. Di�. NHB NHW Stand. Di�.
Age 62.00 67.49 0.573 64.52 64.49 0.003
Female 7.43 2.67 0.219 7.38 6.83 0.021
Service Percent ≥ 50 45.97 39.41 0.133 45.95 48.20 0.045
Married 52.83 65.79 0.266 52.88 57.84 0.099
Substance Abuse 11.04 4.46 0.248 10.99 10.51 0.015
Cerebrovascular Disease 3.58 3.24 0.019 3.57 3.69 0.006
Congestive Heart Failure 8.58 11.07 0.084 8.58 8.69 0.004
Cardiovascular Disease 8.46 15.64 0.222 8.47 8.89 0.015
Depression 35.94 31.55 0.093 35.92 36.11 0.004
Hypertension 88.41 84.44 0.116 88.42 86.65 0.054
Obesity 27.23 25.87 0.031 27.23 27.71 0.011
Psychoses 6.83 3.81 0.135 6.82 7.09 0.011
Homeless 0.91 0.18 0.099 0.86 0.99 0.014

variates described in Table 4.3 and a spatial intercept term. Matching was based

on the logit of the estimated propensity score and a caliper of 0.2 times the stan-

dard deviation of the logit is imposed in order to ensure a well-matched sample. We

observed a decrease in the standardized di�erence across the patient-level covari-

ates in the spatially matched sample. However, some standardized di�erences were

still sizable; for example, the standardized di�erence for �married� is close to 0.10,

which would be considered the threshold for negligible di�erence. We were therefore

motivated to consider regression adjustment in the outcome model to address any

residual imbalance.

Figure 4.2 displays the spatial distribution of NHB and NHW veterans in the

unmatched and spatially matched samples. The spatial distribution of NHB and
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Figure 4.2: Balance of spatial distribution between NHB and NHW veterans in
unmatched (top row), and spatially matched (bottom row) samples
.

NHW veterans varied in the unmatched sample, implying that NHBs and NHWs were

concentrated in di�erent areas. While a high percent of both NHB and NHW veterans

live in urban areas such as Atlanta, NHW veterans alone appear to be concentrated in

northern Georgia, where only 0.00% to 0.043% of NHB veterans reside (lightest shade

on the map). This spatial imbalance is ameliorated once a spatially matched sample

is created. In the spatially matched sample, the distribution of NHW veterans (the

�controls�) more closely mimics the nearly unchanged distribution of NHB veterans

85



(the �treated�), indicating that we have selected geographically well-matched controls.

To assess the performance of the proposed spatial PSA, we �t �ve models. We

�rst examined the observed sample risk di�erence in diabetes care between NHB and

NHW (�unadjusted� analysis). Next, we performed a non-spatial analysis that in-

cluded patient covariates in the propensity score model, but not in the outcome model

(�Patient I� analysis). Third, we replicated the patient covariates in the propensity

score model and additionally �t a covariate adjusted logistic regression model for the

outcome (�Patient II� analysis). Fourth, we �t a model that included an additional

spatial random e�ect in the propensity score model, while the outcome model was

left unadjusted (�Spatial I� analysis). Finally, we conducted a fully adjusted spatial

PSA that included patient-level covariates and spatial random e�ects in both models

(�Spatial II� analysis). We used the estimated coe�cients from the model to form a

standardized estimate of the risk di�erence. The reported 95% CrI was constructed

using the 2.5 and 97.5 percentiles of the sample distribution of risk di�erences.

Results of this stepwise analysis are presented in Table 4.4. The unadjusted risk

di�erence indicates that NHB veterans with uncontrolled diabetes have a greater

probability of receiving diabetes care and education (risk di�erence = 0.038, 95%

CrI = [0.029, 0.047]). This result is somewhat counterintuitive in light of recent

studies on care management, which have found that NHBs are less likely to receive

intensi�ed treatment [78]. However, NHB veterans included in this analysis were

more likely to be obese, female, and have a higher rate of service connected disability

(Table 4.3). The imbalance in these factors may explain the positive direction of the

disparity. Once we matched on patient level factors (�Patient I�), the risk di�erence
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reversed direction (-0.021, 95% CrI = [-0.031, -0.011]), indicating that NHB veterans

with uncontrolled diabetes have a lower probability of receiving specialized care and

education. With further covariate adjustment in the outcome model (�Patient II�),

the risk di�erence decreased slightly (-0.027, 95% CrI = [-0.038, -0.016]) but was

similar to the estimate from the matched sample unadjusted model. Because the

percent of NHB veterans and the percent of veterans receiving care visits by county

appear to exhibit spatial variation, it is likely that when geography is ignored, the

true disparity is not fully revealed, as NHBs may be more likely to live in areas with

high rates of care visits. When spatial random intercepts were included in the analysis

and the matched sample was geographically balanced, we observed an increase in

the magnitude of the disparity. In the unadjusted spatial analysis (�Spatial I�), the

estimated risk di�erence was -0.057 (95% CrI = [-0.068, -0.046]). In the adjusted

spatial analysis (�Spatial II�), the estimated risk di�erence was -0.071 (95% CrI =

[-0.085, -0.057]), suggesting a 7 percentage point di�erence in the receipt of diabetes

care between NHBs and NHWs. While in general agreement with the e�ect estimate

from the unadjusted spatial analysis in the matched sample, the e�ect estimate from

further regression adjustment indicates a more marked racial disparity, providing

strong evidence for the incorporation of spatial random e�ects in both the propensity

score and outcome models.
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Table 4.4: Estimated risk di�erences in the racial disparity of diabetic care visits un-
der modeling strategies. Negative values indicate that NHBs have a lower estimated
risk of receiving a diabetic care visit. Unadjusted: observed sample risk di�erence.
Patient I: covariate-adjusted propensity model, unadjusted outcome model. Pa-
tient II: covariate-adjusted propensity score and outcome models. Spatial I: spatial
propensity score model, unadjusted outcome model. Spatial II: spatial propensity
score and outcome models.

Model Risk Di�erence 95% CrI

Unadjusted 0.038 (0.029, 0.047)
Patient I -0.021 (-0.031, -0.011)
Patient II -0.027 (-0.038, -0.016)
Spatial I -0.057 (-0.068, -0.046)
Spatial II -0.071 (-0.085, -0.057)

4.5 Discussion

We have proposed a spatial propensity score matching framework to estimate the

ATT among racial groups in studies examining disparities in health management

and system engagement. To account for unmeasured geographic confounding, we

incorporated spatial random e�ects into the propensity score model and, in the case

of further regression adjustment, into the outcome model as well. These spatial ef-

fects can represent geographic confounders such as proximity to health care facility,

access to resources, and community support and education. The spatial e�ects were

assigned CAR priors that promote local spatial smoothing and are able to improve es-

timation in areas with sparse data. We adopted a Bayesian inferential approach, but

�t the propensity score and outcome models separately to avoid potential feedback

concerns that arise from joint estimation [31]. By implementing Bayesian estimation

within R-INLA, we used readily available, free software that can be utilized in a

multitude of studies across many health care data platforms.
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In simulation, we examined the performance of the proposed spatial propensity

score matching framework under varying degrees of spatial variation and sample

size. Under true geographic confounding, spatial matching outperformed matching

that failed to incorporate spatial information. Spatial matching demonstrated de-

creased bias and RMSE and improved coverage compared to non-spatial matching.

This result was true whether the ATT was estimated by unadjusted regression in

the matched sample or further covariate and spatial adjustment was employed. In

general, regression adjustment to address residual imbalance led to lower bias and

RMSE. When true geographic confounders were ignored in the analysis, and only

a spatial random intercept was included in the modeling, spatial matching o�ered

reasonably low bias and RMSE and nearly nominal coverage, suggesting that the

proposed method can alleviate bias due to omitted spatially varying confounders. In

contrast, the non-spatial analysis performed very poorly. This supports the need to

address geographic confounding in studies of racial disparities.

Our application explored the impact of geographic confounding in racial dispar-

ities among veterans with uncontrolled diabetes in the southeastern United States.

We reported an unadjusted estimate of the ATT, a patient-level matched estimate, a

spatially matched estimate, and a spatially matched estimate that further addressed

imbalance through an adjusted regression model. The crude unadjusted estimate

suggested that NHB veterans with uncontrolled diabetes may have a higher risk of

receiving a specialty care visit; however, once patient-level factors were balanced, we

saw this association reverse. Furthermore, once we additionally balanced on space,

the disparity in diabetes care visits became more pronounced, with NHB veterans
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having a lower probability of receiving a specialty care visit to address their uncon-

trolled diabetes.

These �ndings have important policy implications for mitigating disparities in

diabetes management and for improving patient engagement with the health care

system. First, policymakers can target intervention to identify, engage and maintain

patients who are in need of intensi�ed treatment. Vulnerable populations who are

less likely to seek specialized care may need to be recruited in local, well-trusted

community settings [86, 87, 88]. These patients may also bene�t from care navi-

gators or patient advocates in a complex care setting [89]. Clinician training can

also be tailored to address issues such as �clinical inertia� and the conduct of cultur-

ally sensitive consultations [90]. Lastly, disease management media and instruction

pamphlets can encourage patients to seek guidance and agency of their clinical care.

These policy e�orts can help the VA achieve its stated mission to �champion advance-

ment of health equity and reduction of health disparities for disadvantaged Veterans�

as outlined in its recent Health Equity Action Plan [91].

Future work could adapt spatial propensity score methodology to strati�cation

or a combination of propensity score methods. Furthermore, the proposed meth-

ods could be extended to accommodate time-varying treatments or broader types of

outcomes, such as count, survival or multivariate outcomes. Lastly, the work pre-

sented here could be applied to numerous other public health applications, such as

studies addressing the implementation of telemedicine or spatially varying outreach

programs.
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5.1 Introduction

It is estimated that between 12 and 14 percent of Americans have type 2 diabetes,

with a heavier burden among non-white racial minorities [92]. Patients with type

2 diabetes experience more common and lengthier inpatient hospital stays and are

more likely to die in the hospital than their non-diabetic counterparts [93]. In fact,

inpatient stays are the highest medical expenditure among type 2 diabetics, account-

ing for 43% of the 256 billion dollars spent annually [94]. Promisingly, the number
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of days Americans spend in the hospital has been decreasing over time. However,

for ethnic and racial minorities, this trend may actually represent short but frequent

health care system encounters of poor-quality, insu�cient care [95]. It is still un-

clear how observed decreases in inpatient days di�erentially a�ect racial minorities

even after disease management initiatives to reduce inpatient encounters have been

enacted [96].

There are a number of factors that may contribute to disparities in inpatient hos-

pital stays. Barriers to access of inpatient services may vary at both individual and

facility levels. Di�erences in comorbidity burden or �nancial obligation in payment

for services may account for some of the racial di�erences that have been reported

[97]. Patient-provider relationships and patient advocacy can also in�uence hospital-

izations and the number of days patients spend in the hospital [96]. Furthermore, the

use of inpatient services has been shown to vary geographically. For example, recent

studies have shown that after socioeconomic status and disease burden is controlled

for, areas with higher hospital capacity tend to have higher hospitalization rates [98].

Even in a relatively homogeneous patient population such as veterans receiving care

within the Veterans Health Administration (VHA), geographic variation in inpatient

utilization persists [99].

In this paper, we are interested in understanding racial di�erences in the risk of

hospitalization and the number of inpatient days among veterans with type 2 diabetes

after accounting for potential confounding factors. Propensity score matching o�ers

a principled approach to addressing the issue of confounding and enables estimation

of the average treatment e�ect among the treated (ATT), yielding a minimally con-
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founded response to the question �What would the experience of a racial minority

have been if the individual were not in this racial group?�. The ATT is often of in-

terest in health disparities studies as interventions typically target the at-risk group

rather than the population as a whole. Because community factors such as accessi-

bility to health care facilities and availability of disease management resources can

exacerbate health disparities, it is critical to account for not only patient-level con-

founding but also geographic confounding, which occurs when confounding factors

vary spatially. In previous work, we have shown that incorporating spatial random

e�ects into the propensity score model can yield a matched sample balanced on the

distribution of racial groups across geographical regions. This in turn minimizes the

bias in estimating the ATT among the matched sample [100].

Once a matched sample is generated, �tting a model for the outcome can address

any residual imbalance and may yield improved e�ect estimates [100, 13]. The speci-

�cation of the outcome model is �exible and allows analysts to tailor it to the speci�c

research question at hand. Two-part hurdle models [101] have been utilized in studies

examining racial disparities in inpatient stays [96], as they allow researchers to ad-

dress questions regarding both the risk of hospitalization and the number of inpatient

days while accounting for zero-in�ation in the count response. Hurdle models are

two-part mixture models comprising a binary component that models (in our case)

the probability of hospitalization, and a truncated count component that models the

number of days in the hospital among those who are hospitalized. The truncated

negative binomial distribution is an attractive choice for the count model as it allows

for overdispersion relative to the Poisson assumption that the variance is equal to
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the mean. The negative binomial hurdle model can easily be extended to the spatial

setting by incorporating spatial e�ects into both the binary and count components

of the model. The resulting model can be �t within a Bayesian framework using

standard software such as R-INLA [56].

In this work, we combine methods in spatial propensity score matching and hi-

erarchical spatial hurdle models to achieve minimally biased estimates of the racial

disparity in the risk of hospitalization and the mean number of inpatient days. We

conduct a simulation study to assess the performance of spatial propensity score

analysis in combination with the spatial hurdle model under unknown geographic

confounders. We apply these methods to an analysis of the e�ect of race on hospi-

talization and inpatient days among type 2 diabetic veterans receiving care within

the VHA in the southeastern United States in the 2014 �scal year. As the VHA

is concerned with reducing hospitalizations and inpatient days while simultaneously

maintaining quality care, it is important to understand di�erences in health care ser-

vices between non-Hispanic whites and racial minorities. Furthermore, as patients

receiving care within the VHA are often considered a �sentinel� population, the re-

sults of this study may indicate areas in need of attention in the general population

[34].
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5.2 Methods

5.2.1 Spatial Propensity Score Analysis

We begin by �rst addressing the inferential properties and model speci�cation of the

propensity score and extensions that incorporate a spatial random e�ect to address

geographic confounding. Let Z denote a race group indicator taking the value 1 if

a patient is non-Hispanic black (NHB) and 0 if non-Hispanic white (NHW). While

race itself is not a manipulable characteristic, the experience of di�erent racial groups

within the health care system is manipulable and should be the target of intervention

if an analysis demonstrates a disparity.

In the context of the causal framework outlined by Rubin [6], each individual is

assumed to have two potential outcomes (Y (1), Y (0)), where Y (1) and Y (0) denote the

(potentially counterfactual) outcomes under Z = 1 and Z = 0, respectively. The

observed response, Y , is given by Y = ZY (1) +(1−Z)Y (0), so that Y = Y (1) if Z = 1

and Y = Y (0) otherwise. The population ATT is the average di�erence between the

potential outcomes among �treated� patients, formally de�ned as ∆ATT = E(Y (1) −

Y (0)|Z = 1). The ATT is often desired in program evaluation or when the treatment

is not likely to be targeted universally, as is the case in our motivating study.

Under unconfoundedness, propensity score methods can be used to derive unbi-

ased estimators of the ATT in observational studies. The propensity score, e(x) =

Pr(Z = 1|X = x), is the conditional probability of exposure given covariates X,

where the so-called �overlap� condition, 0 < e(x) < 1, is assumed to hold. Propensity

score matching is a technique that forms matched pairs between exposed and unex-
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posed subjects based on the similarity of their estimated propensity scores [2, 8, 18].

Recent work has explored the use of propensity score analysis in the hierarchical

setting, where patients are nested within clusters such as health care plans or hospi-

tals [25, 9, 81]. Arpino and Mealli [25] proposed propensity score matching methods

for hierarchical data that incorporate random e�ects into the propensity score model.

In the hierarchical spatial setting, we augment the propensity score model with spa-

tial random e�ects. The spatial e�ects are then assigned distributions that account

for spatial correlation and promote smoothing across spatial units. More concretely,

let Zij denote an indicator variable taking the value 1 if the jth patient in the ith

county is non-Hispanic black (NHB) and 0 if non-Hispanic white (NHW), and let

xij represent a set of observed patient-level covariates. The spatial propensity score

model is given by

logit(eij) = logit[Pr(Zij = 1|Xij = xij, φ1i)] = xTijα+ φ1i, (5.1)

where φ1i is the spatial random e�ect for county i. The spatial e�ect φ1i accounts for

unmeasured county-level factors associated with race, and circumvents the need to

match within county, which may be infeasible in the case of small cluster sizes [81].

By matching on the spatial propensity scores, investigators can achieve balance

across patient factors and geographical distribution between NHB and NHW pa-

tients. Once the matched sample is constructed, a variety of outcome models speci�c

to the research question at hand can be employed. Adjusted outcome models can be

used to address any residual imbalance between exposure groups [13] and have been

shown in simulation to be bene�cial to unbiased estimation of the ATT [100].

97



5.2.2 Two Part Spatial Hurdle Models

Our motivating study of inpatient hospitalization practices poses a set of unique

analytic challenges. First, approximately 71% of the patients in the sample were

not hospitalized in 2014, resulting in substantial zero-in�ation. Furthermore, among

those who were hospitalized, there was a wide range of counts of inpatient days.

In order to capture both zero-in�ation for patients who do not experience a hospi-

talization and overdispersion of inpatient days among patients who do experience

a hospitalization, we propose a negative binomial hurdle outcome model. A hurdle

model [101] is a two-part mixture model consisting of a point mass at zero followed by

a zero-truncated count distribution for the positive observations. The choice of count

distribution can vary, but the negative binomial distribution is attractive because it

accounts for overdispersion in the counts.

Let Y represent the number of inpatient days in a �scal year. The probabil-

ity of experiencing a hospitalization (i.e., any positive number of inpatient days)

is expressed as Pr(Y > 0) = π where 0 < π < 1. For y = 1, 2, ..., the proba-

bility that Y = y is given by Pr(Y = y) = πp(y;µ,r)
1−p(0;µ,r) , where p(y;µ, r) denotes the

probability distribution function of a negative binomial distribution with mean µ

and overdispersion parameter r, and p(0;µ, r) denotes the negative binomial dis-

tribution evaluated at 0. The mean count among hospitalized patients is given by

E(Y |Y > 0) = ν = µ
1−p(0;µ,r) , while the overall all mean among hospitalized and

non-hospitalized patients is E(Y ) = πµ
1−p(0;µ,r) . The variance of the negative binomial

hurdle model is V (Y ) = ν(ν − µ) + πτ2

1−p(0;µ,r) where τ
2 = µ(1 + µ/r) is the variance

of the negative binomial distribution.
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Turning to our case study, let Yij denote the number of inpatient days for the

jth patient in the ith county. In this context, the negative binomial hurdle model is

expressed as

Pr(Yij = yij | xij, zij, φi, µij, r) = (1− πij)1(yij=0) + πijTNegBin(yij;µij, r)1(yij>0)

= (1− πij)1(yij=0) +

[
πij

1− ( r
µij+r

)r
Γ(yij + r)

Γ(r)yij!

×
(

µij
µij + r

)yij ( r

µij + r

)r ]
1(yij>0), r > 0,(5.2)

where πij = Pr(Yij > 0) is the probability of hospitalization and TNegBin(yij;µij, r)

is a truncated negative binomial distribution with parameters µij and r. We model

πij and µij as

logit(πij) = xTijβ + zijγ + φ2i

ln(µij) = xTijγ + zijθ + φ3i, (5.3)

where zij is a binary indicator for race and, as in Equation 5.1, xij represent a set

of patient-level covariates and φ2i and φ3i are spatial random e�ects.

To encourage maximal spatial smoothing, we assign the random e�ects φ1i, φ2i,

and φ3i independent intrinsic conditional autoregressive (ICAR) priors [32]. Let

k = 1 denote the propensity score model, k = 2 denote the outcome model for the

risk of hospitalization, and k = 3 denote the outcome model for the mean number
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of inpatient days. The ICAR prior for φki takes the conditional form

φki | φk(−i), σ2
k ∼ N

(
1

mi

∑
h∼i

φkh, σ
2
k/mi

)
, k = 1, 2, 3, (5.4)

where h ∼ i indicates that county h is a geographic neighbor of county i, mi is

the number of neighbors, and, for model k, σ2
k is the conditional variance of φki

given the remaining spatial e�ects, φk(−i). Following Brook's Lemma [33], the joint

distribution for φk = (φk1, . . . , φkn)T is given by

π(φk | σ2
k) ∝ exp

(
− 1

2σ2
k

φTkQφk

)
, k = 1, 2, 3, (5.5)

whereQ = M−A is a spatial structure matrix of rank n−1, withM = diag(m1, . . . ,mn)

and A representing an n × n adjacency matrix with aii = 0, aih = 1 if i ∼ h, and

aih = 0 otherwise. When a �xed intercept is included in the model, a sum-to-zero

constraint must be applied to φk to ensure an identi�able model.

The ICAR prior is appealing because it imposes spatial smoothing, re�ecting the

intuition that adjacent spatial units are more similar in terms of access to health

care, resources and policies than non-neighbors. Moreover, by promoting localized

spatial smoothing and information sharing from surrounding geographic areas, the

ICAR prior reduces uncertainty in estimating the propensity scores and, in turn, the

ATT.
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5.2.3 Treatment E�ect Estimation

Because our outcome analysis involves a two-part model, we can estimate an ATT

for each part of the model. Furthermore, it is possible to combine results from both

models in order to estimate an ATT across the entire population of hospitalized and

non-hospitalized patients. The three ATTs are more formally de�ned as

∆1 = E(Y
(1)
1 − Y (0)

1 | Z = 1) (5.6)

∆2 = E(Y (1) − Y (0) | Z = 1, Y > 0) (5.7)

∆3 = E(Y (1) − Y (0) | Z = 1). (5.8)

where

Y1 =


1, if Y > 0

0, otherwise

is a binary indicator of hospital admission (i.e., at least one inpatient day). Equation

(5.6) yields the ATT of the racial disparity in the risk of hospitalization. Equation

(5.7) yields the ATT of racial di�erences in the mean number of inpatient days among

those who were hospitalized. Lastly, equation (5.8) yields the ATT of the disparity in

the mean number of inpatient days among the entire susceptible population (those

who had a hospitalization and those who did not). Each of the ATTs can be of

practical interest depending on the clinical or public health question at hand.
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5.3 Model Fitting

In this work, we adopt a Bayesian model �tting approach and assign prior distribu-

tions to all model parameters. As a default, we assign weakly informative N(0, 1e5)

priors to �xed e�ects and, to ensure robust precision estimates, specify Ga(1, 0.5)

priors for the spatial precision terms, where Ga(a, b) denotes a gamma distribution

with shape parameter a and rate parameter b. We �t the propensity score and

outcome models separately, thus avoiding the so-called �feedback� issue that can

arise when the models are �t jointly under a fully Bayesian approach [55]. We use

approximate Bayesian methods for posterior inference. Speci�cally, we adopt the ef-

�cient integrated nested Laplace approximation (INLA) proposed by Rue et al. [56].

INLA uses a Laplace approximation to estimate the joint posterior of the model pa-

rameters, yielding improved computational capabilities over standard Markov chain

Monte Carlo routines. This method can be readily implemented in the R package

INLA (www.r-inla.org), where the Besag option is used to specify the ICAR prior.

The posterior means of the propensity scores are then used to match individuals.

We match individuals without replacement using the logit of the estimated propen-

sity score with a caliper of 0.2 times the standard deviation as recommended by

Austin [2] using the R package Matching [85]. Once a matched sample is constructed,

we �t spatial hurdle models. Because INLA does not have a built-in option for �tting

hurdle models, we adapt the work of Quiroz et al. [102] by constructing an N × 2

matrix of values indicating a hospitalization and the number of visits for each patient

where N is the total number of observations. We then jointly �t a binomial model

to the binary portion, i.e. any inpatient days, and a zero-in�ated negative binomial
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model to the number of visits, where missing values are imposed for those who were

not admitted. The zero-in�ated negative binomial with missing values forces INLA

to �t a zero-truncated negative binomial which, combined with the binomial model

for any inpatient days, yields a negative binomial hurdle model. We construct an

estimate of each of the three ATTs using �standardization�, a technique that allows

us to marginalize across the population by estimating the predicted responses, Y (0)
ij

and Y (1)
ij , under the observed and counterfactual racial group. In order to construct

a credible interval (CrI) around this estimate, we use the inla.posterior.sample

function within R-INLA to obtain 1000 Monte Carlo draws from the approximate

posterior distribution. The mean of the three estimates across the 1000 samples is

reported as the estimated ATT, and the corresponding 95% CrI is derived from the

2.5 and 97.5 percentiles.

5.4 Simulation Study

5.4.1 Data Description

In order to assess the properties of spatial propensity score matching with spatial

hurdle outcome modeling, we conducted a simulation study. The goal of this study

was to assess how well the proposed method accounts for omitted variable bias,

namely when geographic confounders related to both the exposure and outcome of

interest are unknown or unmeasured and thus are not included in the propensity

score or outcome model.

To mirror the spatial structure of our application, we generated patient-level
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data clustered at the county level across the southeastern United States. To emulate

the geographic structure in our application, we used the US Census county-level

adjacency matrix for South Carolina, Georgia, and Alabama (U.S. Census Bureau,

2014) This matrix contains n = 272 counties and 1, 528 pairwise adjacencies. We

generated 100 datasets with treatment assignment and outcome according to the

following propensity score (Equation 5.9) and outcome models (Equations 5.10 and

5.11):

logit(eij) = logit[Pr(Zij = 1|Xij = xij, Vi = vi, φ1i)] = α0 + xijα1 + viα2 + φ1i (5.9)

logit(πij) = logit[Pr(Y1ij = 1|Zij = zij, Xij = xij, Vi = vi, φ2i)] = β0 + xijβ1

+zijβ2 + viβ3 + φ2i

(5.10)

ln(µij) = ln[E(Y |Zij = zij, Xij = xij, Vi = vi, φ3i, Yij > 0)] = γ0 + xijγ1

+zijγ2 + viγ3 + φ3i

(5.11)

where i = 1, . . . , 272, j = 1, . . . , ni, xij is a patient-level covariate generated from

a Bernoulli(0.05) distribution and Vi is a county-level covariate generated from a

N(10,3) distribution. The �xed e�ect coe�cients were set at α0 = 0.2, α1 -1.5, α2 =

-0.1, β0 = -1.0, β1 = 0.5, β2 = -0.3, β3 = 0.1, γ0 = 1, γ1 = -0.5, γ2 = 0.3, and γ3 =

0.1; ni was set to 100; φ1i, φ2i, and φ3i were simulated from ICAR models given in

Equation (5.5) with σ2 = 1 to mimic the spatial variation observed in the case study.
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5.4.2 Results

Table 5.1 presents results of the simulation study. The goal of this study was to as-

sess the ability of the proposed spatial propensity score matching and spatial hurdle

model to capture the true ATTs compared to �tting only a spatial hurdle outcome

model without matching when relevant county-level covariates were left out of the

analysis. As Table 5.1 indicates, �tting only an outcome model resulted in poor per-

formance, whereas �tting the propensity score and outcome model yielded lower bias

and RMSE and reasonable coverage. For example, when estimating ∆2, the mean

di�erence in inpatient days among those who were hospitalized, �tting a propensity

score model in addition to the outcome model resulted in 94% coverage compared to

54% coverage when only an outcome model was �t. Misspeci�cation of the model for

the mean count is especially detrimental, as both the coe�cients and the overdisper-

sion parameter may be a�ected, potentially leading to extreme counts. The results

of this simulation study support the use of spatial propensity score matching prior

to �tting the spatial hurdle model as it appears to capture the true risk di�erence

even when county-level �xed e�ects are ignored during model �tting. As it is not

uncommon for these covariates to be unavailable to the analyst, spatial matching

provides a practical strategy to account for unmeasured geographic confounding.
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Table 5.1: Results of the simulation study: Mean absolute bias, RMSE, and 95%
coverage of the three ATTs (Equations (5.6) - (5.8)) when (left) only an outcome
model is �t and (right) a propensity score (PS) and outcome are �t under an omitted
spatial covariate scenario

Outcome Model Only PS + Outcome Model

ATT Bias RMSE Coverage Bias RMSE Coverage
∆1 0.007 0.010 90 0.007 0.009 91
∆2 0.311 0.396 54 0.159 0.304 94
∆3 0.118 0.165 80 0.111 0.149 87

5.5 Analysis of Racial Disparities in Hospitalization

and Inpatient Days

5.5.1 Data Description

The data consist of 23,533 veterans (9, 695 NHB; 13, 838 NHW) with type 2 diabetes

living in Georgia, Alabama and South Carolina in 2014. This geographic region

of 272 counties had a mean county sample size of n = 86.5 (range: 1 to 1, 385).

Figure 5.1 displays the per-county percent of NHB veterans, percent of veterans

who experience a hospitalization, the mean number of inpatient days among those

with a hospitalization, and the mean number of inpatient days across all patients.

These maps suggest spatial variation in racial clustering and hospitalization patterns.

Approximately 29.0% of the patients experienced a hospitalization in 2014 (31.3% for

NHBs, 28.3% for NHWs). Among those who experienced a hospitalization, the mean

number of inpatient days was 3.9 (4.9 for NHBs, 3.6 for NHWs). Across all patients

� i.e., those with and without a hospitalization � the mean number of inpatient days

was 1.1 (1.3 for NHBs, 1.0 for NHWs).
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Figure 5.1: Percent of patients who are NHB (top left), percent hospitalization (top
right), mean number of inpatient days among those who were hospitalized (bottom
left), and mean number of inpatients days in the entire sample comprising hospital-
ized and non-hospitalized patients (bottom right)

5.5.2 Analysis and Results

We �rst �t a logistic propensity score model that included patient-level covariates

for age, sex, service connected disability and comorbidity burden as well as a county-

level spatial random e�ect. Accounting for comorbidity burden is critical, as this

allows us to compare hospitalization patterns among patients with similar disease

pro�le. We then matched patients based on the logit of the estimated propensity

score and a caliper of 0.2 times the standard deviation of the logit. The caliper

discarded n = 2, 687 NHB patient observations due to poor matches, thus ensuring
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a well-balanced sample. In the matched sample, 29.71% of patients (NHB: 30.5%,

NHW: 28.9%) experienced a hospitalization. Among those hospitalized, the mean

number of inpatient days was 4.0; across the entire matched sample, the mean number

of inpatient days was 1.2 days (range: 0 to 86 days). While NHB patients in the

original sample were, on average, younger, had a greater service connected disability,

were more likely to be female, and experienced a greater comorbidity burden, we saw

balance across these patient features in the matched sample.

Figure 5.2: Spatial distribution (percent of racial group living in the county) between
NHB and NHW veterans in unmatched (top row), and spatially matched (bottom
row) samples

.

Figure 5.2 displays the spatial distribution of NHB and NHW veterans in the
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unmatched and spatially matched samples. The spatial distribution of NHB and

NHW veterans varied in the unmatched sample, implying that NHBs and NHWs

were concentrated in di�erent areas. While a high percent of both NHB and NHW

veterans live in urban areas such as Atlanta, NHW veterans alone appear to be

concentrated in northern Georgia, where only 0.00% to 0.03% of NHB veterans reside

(lightest shade on the map). This spatial imbalance was eliminated once a spatially

matched sample is created. In the spatially matched sample, the distribution of NHW

veterans (the �controls�) more closely mimics the nearly unchanged distribution of

NHB veterans (the �treated�), indicating that we have selected geographically well-

matched controls.

Once a well-balanced sample was constructed, we �t the spatial negative binomial

hurdle model with the same patient-level covariates and a spatial random e�ect.

We then used the estimated coe�cients from the two parts of the model to form a

standardized estimate of the di�erence in the risk of hospitalization, the mean number

of inpatient days among patients with a hospitalization, and the mean number of

inpatient days across all patients. The reported 95% CrI was constructed using

the 2.5 and 97.5 percentiles of the sample distribution of risk and mean di�erences.

Estimates of the three ATTs are reported in Table 5.2. Negative estimates indicate

that NHB veterans have a lower probability of hospitalization or mean number of

inpatient days while positive estimates indicate the opposite.

The results in Table 5.2 indicate that the di�erence in the risk of hospitalization

between NHB and NHW patients is 1.5 percentage points, with NHB patients having

a lower risk of experiencing a hospitalization (-0.015, 95% CrI = [-0.028, -0.001]).
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Table 5.2: Estimated ATTs in the racial disparity of the risk of hospitalization (∆1),
mean number of inpatient days among those hospitalized (∆2), and mean number of
inpatient days across the entire patient population (hospitalized and non-hospitalized
patients) (∆3)

ATT Estimate 95% CrI

∆1 -0.015 (-0.028, -0.001)
∆2 0.431 (-0.214, 1.138)
∆3 0.112 (-0.219, 0.476)

Conversely, NHB patients who are hospitalized spend on average approximately one

half day longer in the hospital than NHW patients (0.431 days, 95% CrI = [-0.214,

1.138]). While the 95% posterior interval does include 0, the posterior probability

that ∆2>0 was 0.84, providing moderate evidence of an increase in the mean number

of inpatient days for NHB veterans. Lastly, we observe a slight increase in the

mean number of inpatient days among NHBs compared to NHWs across the entire

population, i.e. those who were and were not hospitalized (0.112 days, 95% CrI =

[-0.219, 0.476]).

In a similar analysis that excluded spatial random e�ects, we observed a notable

di�erence in the estimate of the mean number of inpatient days among those who

had been hospitalized: the estimated ATT was 0.678 days (95% CrI = [0.187, 1.200].

Thus, ignoring geographic confounding would result in a potentially misleading es-

timate suggesting that hospitalized NHB veterans have a large, highly signi�cant

increase in length of stay compared to their NHW counterparts. This result em-

phasizes the need to control for geographic confounding and indicates that part of

the racial disparity in the number of inpatient days observed in the literature can

be attributed to racial minorities living in areas with facilities that have di�erential
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hospitalization patterns in comparison to facilities in predominantly white areas.

5.6 Discussion

We have combined recent work in spatial propensity score matching and spatial hur-

dle models for hierarchical data to understand racial di�erences in hospitalization and

inpatient days. To conduct this type of analysis, we utilized spatial random e�ects in

the propensity score and outcome models to account for spatial variation due to po-

tential unmeasured geographic confounders. The spatial e�ects were assigned CAR

priors that promote local spatial smoothing to improve small-area estimation. We

performed this work within the Bayesian modeling framework in R-INLA, software

that is free and readily accessible to researchers.

In simulation, we explored the impact of �tting only the outcome portion of the

analysis versus two-stage propensity score and outcome modeling in the presence

of unknown geographic confounding. We observed favorable performance of the

two-stage modeling across the estimation of the three ATTs: the risk di�erence in

hospitalization, the mean number of inpatient days among those hospitalized, and

the mean number of inpatient days overall. The analysis that included only an

outcome model performed particularly poorly in the estimation of the mean number

of inpatient days. These results indicate that �rst using spatial propensity score

matching to create a balanced sample and then �tting a spatial hurdle model for

the outcome is a reasonable approach when true geographic confounders may be

unmeasured or unknown.
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Our application study explored racial di�erences in hospitalization and inpatient

days among a sample of diabetic veterans residing in the southeastern United States.

We achieved both patient-level covariate balance and spatial balance in the matched

sample and proceeded with the spatial hurdle outcome model to estimate the three

ATTs of interest. The small but statistically signi�cant estimate for the risk di�er-

ence in hospitalization between NHBs and NHWs indicated that after accounting for

patients characteristics and geographic residence, NHB patients may be less likely to

be hospitalized. While the estimate for the mean di�erence in inpatient days among

those who were hospitalized was not statistically signi�cant, potentially related to

the small sample size of hospitalized individuals, it did suggest that hospitalized NHB

patients on average spend a half day longer in the hospital compared to hospitalized

NHW patients. However, ignoring geographic confounding would have led to a po-

tential overestimate of the disparity. These results could have implications in cost

and patient wellness. Future interventions may target barriers to patient-provider

communication concerning hospitalizations or aim to identify regions with issues in

inpatient resource access due to limited facilities or workforce. Clinical programs

that target disease management and outpatient treatment should be inclusive of

racial minorities in order to achieve goals of reducing hospitalizations and extended

inpatient stays among a chronic disease population such as type 2 diabetics.

Future work might explore longitudinal trends in hospitalization and inpatient

stays between NHB and NHW patients. Additionally, as this work is restricted to

hospitalizations within the VHA, additional database resources may be explored to

understand racial di�erences among the broader patient population who may be
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receiving inpatient care, namely emergency or trauma care, at local or specialized

hospitals outside of the VHA.
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Chapter 6

Conclusions of Research

6.1 Summary

In summary, this dissertation has proposed methodology to address geographic con-

founding, which occurs when measured or unmeasured confounding factors vary spa-

tially, through the augmentation of the propensity score model with a spatial ran-

dom e�ect. This work has proposed methods in both propensity score weighting and

propensity score matching. In simulation, it has been shown that ignoring space in

the presence of true geographic confounding has detrimental e�ects on bias, RMSE

and coverage. Furthermore, in the case of propensity score matching, �tting a spatial

outcome model in addition to a spatial propensity score model improves estimation

of the ATT while �tting a spatial propensity score model in addition to a spatial

outcome model achieves better estimates and coverage in the presence of unknown

spatial confounders compared to a spatial outcome model alone. This work has been
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applied to a diabetic cohort of veterans receiving care within the VHA in �scal year

2014. In the application studies, we have analyzed the e�ect of race on glycemic

control, diabetes education and care, and hospitalization practices. We have seen

that addressing geographic confounding can result in a reduction or ampli�cation

of the estimate of a disparity and that conducting spatial propensity score analysis

can elucidate information about disparities that traditional propensity score analysis

would miss.

6.2 Implications

This research provides a meaningful intersection of recent work in multilevel propen-

sity score analysis and spatial propensity score analysis. It allows researchers to

address geographic confounding while preserving patient-level data. Additionally,

it complements existing methods in exploratory spatial data analysis and allows an

analyst to construct a global, minimally biased e�ect estimate of interest. With

proper elucidation regarding the complexities and nuances, the proposed method-

ology can be applied to studies across a spectrum of public health issues, namely:

racial disparities, spatially varying exposures, and program evaluation.

6.3 Limitations and Extensions

While this research aims to address confounding that occurs due to geographic dif-

ferences, it is not intended to promote geographic relocation as a solution to narrow

di�erences between exposed and unexposed groups of individuals; rather, it provides
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indication that targeting geographic regions of need may be bene�cial and can com-

plement e�orts to target vulnerable exposure groups. It is fair to recognize that geo-

graphic boundaries are often arbitrary and may not represent ideal or homogeneous

regions of comparison. Lastly, it has been noted that di�erences between individuals

reporting a county of residence and those for whom this information is missing may

be present and should be explored, especially when making generalizations from the

results of studies that require geographic information as inclusion criteria. This work

can be extended to space-time outcome models or space-by-exposure interactions.
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