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ABSTRACT 

Computing unbiased parameter estimates from a distribution using a sample with observations 

appearing below a lower limit of detection (LLOD) can be challenging. Frequently, LLOD 

observations are excluded from calculations for parameter estimates, or the LLOD observations 

are replaced with arbitrary values (LLOD, LLOD/2, LLOD/√2) prior to the calculations. Despite 

the frequent use of these simple approaches, the approaches are known to provide biased 

parameter estimates. Alternative approaches include implementing a left truncation or left 

censoring approach. In the first dissertation aim, we will explore and establish a general 

theoretical relationship between accurately estimating parameters under left truncated and left 

censored models. Estimation methods under both models require iterative algorithms. The left 

truncation approach is applied through an Expectation-Maximization (EM) algorithm. While the 

left censoring approach is implemented by the Newton-Raphson method. We conclude in the 

first aim that the left truncation and left censoring approaches yielded equivalent parameter 

estimates. Computationally, we favored the left truncation approach that is implemented through 

an EM algorithm.  The left truncation approach for estimating parameters is utilized in the 

remaining aims. In the second aim of this dissertation, we propose an EM algorithm for 

estimating parameters from a normal distribution when there are multiple LLOD values present. 

The third aim includes solutions to an EM algorithm for estimating bivariate normal distribution 

parameters.  In the third aim, the data under the left truncation approach can be categorized into 

24 scenarios. The construction of the EM algorithm includes the scenarios. All dissertation aims 

are motivated by toxicology and serology data collected in the Systemic Lupus Erythematosus in 

Gullah Health study.  
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1. INTRODUCTION 

1.1. Lower Limit of Detection Definition and Related Statistical Classifications 

Data below a lower limit of detection (LLOD)  and lower limit of quantitation (LLOQ)  

frequently occur in laboratory and environmental pollutant settings when the concentration of an 

analyte is below the level at which an analytical tool can reliably measure.1 In order to explicitly 

define LLOD and LLOQ, the limit of blank (LOB) must first be defined.  The LOB is the 

maximum detectable signal of an analyte produced by a laboratory tool in repeated samples of a 

serum that does not contain any of the analyte of interest.1 In other words, there may be a 

positive quantitative measurement from a sample despite the analyte of interest being absent 

from the sample. The LLOD is the lowest level at which a measured analyte can be considered to 

be recognizably different from the LOB level.1,2 The LLOQ  is defined as the lowest “level at 

which measurements have sufficient precision for quantitative determination.”3 Several methods 

have been proposed to estimate the LLOD and LLOQ values in situations where the limits 

themselves are unknown.2,4 It is plausible for the LLOD and LLOQ to occur at the same value, 

but typically the LLOD is smaller than the LLOQ.1 Since LLOD and LLOQ values can be 

equivalent, similar statistical approaches are used to analyze data with observations appearing 

below a LLOD and a LLOQ. Therefore, in this dissertation, the phrase LLOD will describe both 

LLOD and LLOQ methods because both limits can be the same. 

 

When a LLOD exists, the observations above the LLOD are considered to be fully observed. The 

fully observed data are classified as being from a left truncated distribution or observations 

below the LLOD value are classified as left censored observations. A left truncation value is 

required for both data classifications. The left truncation value is the LLOD value when it is 
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known, or it may be estimated when the proportion below the LLOD is known. A left truncated 

distribution is a distribution that has a support restricted by a lower bound at the LLOD value. In 

the left censoring framework, observations below the LLOD are considered censored. Also, it is 

assumed that none of the observations above the LLOD are censored.  

 

This dissertation will propose novel methods that are applicable to data with observations that 

are below LLOD. The remaining of the first chapter will unify the current left truncation and left 

censoring methods and address gaps in the current literature related to dissertation objectives. 

Lastly, the data motivation and specific aims of this dissertation are stated.  

 

1.2. Current Left Truncation and Left Censoring Literature Related to Dissertation 

Two main approaches for analyzing data with below the LLOD observations are based on the 

two data classifications mentioned above: left truncation and left censoring. Statisticians 

typically make a preference to use one of the two approaches, and then use the selected approach 

through the use of an iterative algorithm to estimate parameters from the underlying (non-

truncated) distribution. However, it does not appear that anyone has provided a formal proof that 

demonstrates the similarities of both approaches for estimating parameters from the underlying 

distribution. The first objective of this dissertation is to provide a parallel between the two 

approaches when there is one left truncation value. 

 

The majority of the existing statistical literature on left truncation and left censoring approaches 

focus on one left truncation value in a single random variable. A commonly used continuous left 

truncated distribution for data with observations below the LLOD is the left truncated normal 
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distribution. The MLEs of the parameters from the left truncated normal distribution have been 

established under various constraints such as whether or not the left truncation value is known.5-7 

A normal distribution with left censored observations is often considered for continuous left 

censored methods. MLEs of parameters from a normal distribution with right censored 

observations were first constructed by Gupta in 1952.8 Shortly following Gupta’s approach, 

MLEs of parameters from a normal distribution with left censored observations were identified 

by Cohen.9 These initial researchers, however, did not examine multiple truncation values 

appearing on one side of a distribution.  

 

The second dissertation objective is devoted to providing an estimation method for parameters 

from a normal distribution, which is the underlying distribution, when the sample data is from a 

left truncated normal distribution with multiple distinct left truncation values. This estimation 

method will benefit studies involving chemical concentrations and biomarker assays in which 

datasets may consist of observations that have been generated over time with multiple LLOD 

values.10,11 LLOD values can vary throughout time for some equipment, even within a 24 hour 

period, due to the calibration and detection sensitivity of the laboratory analytical tools.12,13 

Therefore, combining datasets from data collected at different times can result in a dataset with 

multiple LLOD values for a single variable.11,14 The terms doubly and multiply truncated 

describes situations with two or more truncation values, respectively, occurring simultaneously 

in a variable.5,15,16 The normal distribution with left censored observations has a theoretical MLE 

framework that includes doubly and multiply left truncation values in a single random 

variable.15-17 However, doubly and multiply truncation values are not included in the left 

truncated framework for estimating parameters from a normal distribution.  
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The third dissertation objective addresses an estimation method for parameters from an 

underlying multivariate normal (MVN) distribution in the presence of one distinct left truncation 

value for each of the univariate components of the MVN random variable. Current left censored 

statistical approaches for estimating parameters from a multivariate normal distribution have 

been extended to include variables with at least one left truncation value, but continuous 

truncated multivariate statistical approaches have not. For example, Haiying and colleagues 

(2011) developed a multiple imputation method based on a left censored likelihood to estimate 

the parameters of a multivariate normal distribution when an observed sample includes a LLOD 

value for each variable.18  Similarly, Hoffman and Johnson (2011, 2015) proposed a censored 

likelihood with unstructured covariance parameters and a censored pseudo-likelihood to account 

for left truncation values while estimating MLEs of parameters of multivariate normal and log-

normal distributions.19,20   

 

1.3. Motivating Example 

This dissertation will explore statistical methods to account for continuous data with 

observations that are below the LLOD. The motivation of this dissertation is the Systemic Lupus 

Erythematosus in Gullah Health (SLEIGH) study. The objective of the SLEIGH study is to 

assess environmental and genetic factors in the progression of autoimmunity.21 SLEIGH 

included a toxicology and serology component in which contaminant concentrations for 13 

perfluorinated chemicals (PFCs) and 8 polybrominated diphenyl ethers (PBDEs) were measured 

in the serum of 86 participants with systemic lupus erythematosus (SLE) and 139 control 

participants. Exposure to PFCs and PBDEs have been shown to have adverse health effects such 
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as disruption of hormone systems and delayed cognitive development.22-25 The amounts of PFCs 

and PBDEs present in the study participants’ serum samples were measured in the chemistry 

laboratory at the Wadsworth Center of the New York State Department of Health. The wet 

weight of the PFCs and PBDEs were measured on a continuous scale in nanogram/gram (ng/g). 

Additional information regarding the quality control and assurance of the serum samples have 

been previously published.26  The serum samples were collected once from study participants, 

but not all of the serum samples were measured in the laboratory at the same time. The serum 

samples were measured in multiple batches which resulted in more than one LLOD value for 

most of the PFC and PBDE variables.  

 

Table 1 below describes how two contaminants, perfluorodecanoic acid (PFDA) and 

perfluorohexane sulfonate (PFHxS), were recorded in the SLEIGH study for the first batch of 

data. The LLOD value for PFDA was 0.03 ng/g, and for PFHxS, the LLOD value was 0.14 ng/g. 

Observations for PFDA and PFHxS could be both be below the LLOD value (e.g. Participant ID 

1) or both fully observed (e.g. Participant ID 4). Either contaminant could be below the LLOD 

value while the other contaminant was fully observed (e.g. Participant IDs 2 and 3). 

Table 1 Contaminants PFDA and PFHxS Data for One Batch 

Pseudo Study 

Participant ID 

Batch PFDA PFHxS 

1 1 <0.03 <0.14 

2 1 <0.03 0.24 

3 1 1.14 <0.14 

4 1 0.97 0.94 

 

 



14 

 

Table 2 illustrates PFDA and PFHxS data from two separate batches. By examining solely one 

contaminant variable such as PFDA, one will notice that PFDA had two LLOD values. The first 

batch LLOD value was 0.03 ng/g, while the second batch LLOD value was 0.10 ng/g. There 

were eight situations in which the below the LLOD observations could occur in the SLEIGH 

study when considering two contaminant variables together such as PFDA and PFHxS. For any 

given study participant, the eight situations were 1) the PFDA and PFHxS observations for batch 

1 were both below their respective LLODs, 2) the PFDA observation was below its batch 1 

LLOD, and the PFHxS observation was fully measured in the first batch, 3) the PFDA 

observation was fully measured in batch 1, and the PFHxS observation was below its batch 1 

LLOD, 4) the PFDA and PFHxS observations in the first batch were both fully measured, 5) the 

PFDA and PFHxS observations for batch 2 were both below their respective LLODs, 6) the 

PFDA observation was below its batch 2 LLOD, and the PFHxS observation was fully measured 

in the second batch, 7) the PFDA observation was fully measured in batch 2, and the PFHxS 

observation was below its batch 2 LLOD, and 8) the PFDA and PFHxS observations in the 

second batch were both fully measured. 

 

Table 2 Contaminants PFDA and PFHxS Data with Two Batches 

Pseudo Study 

Participant ID 

Batch PFDA PFHxS 

1 1 <0.03 <0.14 

2 1 <0.03 0.24 

3 1 1.14 <0.14 

4 1 0.97 0.94 

5 2 <0.10 <0.16 

6 2 <0.10 1.01 

7 2 0.78 <0.16 

8 2 0.34 0.22 
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1.4. Specific Aims 

The presence of LLOD values in the contaminant variables from the SLEIGH study allows the 

data to be an ideal dataset for developing estimation methods for underlying (non-truncated) 

distribution parameters. Aims of the dissertation are as follows. 

 

1. Establish the equivalence of left truncation and left censoring framework for applications 

involving limits of detection.  

 

2. Develop a method for estimating the mean and variance of a single normal random variable 

with multiple lower limits of detection arising from different batches (i.e. one variable with 

multiple batches). 

 

 

3. Develop an approach for estimating the mean and covariance matrices for multivariate 

normal random variables, with each marginal distribution having one lower limit of detection 

arising from a single batch (i.e. multiple variables with one batch). 

 

The chapters related to the dissertation aims are written as individual manuscripts, and sections 

of the chapters reiterate the introduction and descriptions of literature on existing statistical 

approaches. The second chapter of this dissertation reviews literature related to truncated 

distributions and distributions with censored observations. The third chapter describes the first 

aim and establishes a parallel between left truncation and left censoring methods. The fourth 

chapter focuses on the second aim that includes estimation methods of parameters from a 
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univariate normal distribution when multiple left truncation values are present. The fifth chapter 

examines the third aim which is an estimation methods of multiple continuous variables with a 

single left truncation value for each variable. Results from simulations and an application to data 

from the SLEIGH study are presented. The sixth chapter summarizes the procedures related to 

the aims and outlines future research topics that would extend the current work.  
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2. REVIEW OF LITERATURE 

2.1. Underlying Distributional Parameter Estimates from a Sample with LLOD Observations 

 

Formulas for estimating underlying distributional parameters (such as a sample mean and 

variance) exclude LLOD observations from the calculation because the LLOD observations are 

considered to be missing data. This approach is known as a complete case analysis. Statisticians 

have shown that complete case analysis lead to biased parameter estimates.27,28 In particular, the 

formulas will overestimate the true mean and underestimate the true variance when there are 

below LLOD observations. 

 

A common method to computationally account for LLOD observations while estimating 

parameters from an underlying distribution is to apply a replacement method. For the 

replacement method, LLOD observations are replaced with the LLOD value itself, LLOD/√2, or 

LLOD/2.29-37 Several organizations and government agencies have provided guidance for 

computing the LLOD value if the value is not specified by a laboratory instrument.2,38 The 

United States Environmental Protection Agency recommends these replacement methods when 

15% or less of the observations are below LLOD.34 It has been shown that replacing the below 

LLOD value with the LLOD value itself, LLOD/√2, or LLOD/2 can lead to inaccurate 

inferences about the parameter estimate.29,35  

 

Approaches listed in statistical literature as alternatives to the complete case analysis and 

replacement method are either to classify the data above the LLOD value as data following a left 

truncated distribution or to classify the observations below the LLOD value as left censored 



18 

 

observations. A left truncated distribution is a distribution that has a support restricted to a lower 

bound at the LLOD value. In the left censoring framework, any observation below the fixed 

LLOD value is censored. There are not any closed-form solutions for obtaining maximum 

likelihood estimators (MLEs) of parameters from an underlying (non-truncated) distribution 

when truncation or censoring is present.6 Therefore, imputation methods or iterative algorithms 

must be joined with left truncation or left censoring methods in order to estimate the underlying 

distributional parameters.  

 

Imputation methods to handle LLOD observations often include regression models such as the 

Tobit model or a quantile regression model.39-47  For data with LLOD observations, the Tobit 

model is a type of censored regression model that accounts for the LLOD observations to be 

between zero and the LLOD value while adjusting for the variance.40,47-49 Quantile regression 

expresses the outcome variable as a quantile such as the median (i.e. 50th percentile). Quantiles 

depend on the rank of the outcome variable rather than the exact value of the observations in a 

sample.40 Since the exact value of an LLOD observation is unknown, expressing the outcome as 

a quantile can be ideal for estimating a parameter using a sample with LLOD observations. 

 

Frequent iterative algorithms combined with left truncation and left censoring methods are the 

Newton-Raphson method and expectation-maximization (EM) algorithm. In general, the 

Newton-Raphson method and EM algorithm can efficiently compute MLEs of parameters from 

an underlying distribution when a sample contains missing observations.50,51 LLOD observations 

are included in the context of missing data since the value of the LLOD observations are not 

exactly known due to the observation being less than the LLOD value.50   
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2.2. Applications of Newton-Raphson Method 

 

The Newton-Raphson method has become a recommended iterative procedure for estimating 

parameters from an underlying distribution under censored models.52-55 For example, the 

scientific agency United States Geological Survey (2012) recommended the implementation of 

the Newton-Raphson method for obtaining MLEs of parameters within the context of a left 

censored model.52 Swan (1969) provided solutions and suggested the use of the Newton-

Raphson method under censored and grouped data for estimating the parameters of a normal 

distribution.54 Also, Singh and Nocerion in 2002 applied the Newton-Raphson method with a left 

censored model to estimate parameters of a normal distribution from a sample with LLOD 

observations.55  

 

Infrequently, Newton-Raphson is applied to estimate parameters from truncated distributions. 

Cohen first suggested the use of the Newton-Raphson method in 1950 for estimating parameters 

from a truncated normal distribution, but Halperin (1952) did not recommend the application of 

New-Raphson to estimate parameters from a truncated normal distribution.5,56 Halperin stated 

that a convergence issue related to the initial value being specified incorrectly can occur when 

estimating parameters from a truncated normal distribution.56 An inaccurate initial value (i.e. 

value outside the support of the truncated distribution) can produce irrational parameter 

estimates.51,56 There have been extensive statistical methodology constructed for initial value 

selection in the context of the Newton-Raphson method.57-61  The Newton-Raphson method is 

applied occasionally for estimating parameters from a truncated normal distribution despite 

Halperin’s advice. For instance, Hattaway’s thesis in 2010 explored the mean and variance 
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estimates of a truncated obtained from the Newton-Raphson method in the context of grades 

from a statistics course.62 Also Alaesa’s thesis (2017) compared MLEs obtained from Newton-

Raphson method and other methods such as a method based on spatial linear combinations.63 

Findings from this thesis illustrated a preference to MLEs obtained from Newton-Raphson 

method relative to the other methods.  

 

2.3. Applications of EM Algorithm 

 

Applications of the EM algorithm have been established separately under censored models and 

truncated models. Wolynetz (1979) provided EM algorithm solutions for estimating normal 

distribution parameters when a sample contains censored observations.64 Park (2003) developed 

EM algorithms to estimate parameters from normal, Rayleigh, and Laplace distributions for 

censored samples.65 Particularly for left truncated models, the EM algorithm has been used to 

calculate MLEs of parameters from univariate and multivariate normal distributions using 

observed data from truncated distributions.66,67 Expectations required for EM algorithms under 

the left truncated model were initially constructed by Cohen.5,6,9 

 

There have been several EM algorithms that combined truncated and censored models.68-70 Lee 

and Scott (2010) developed EM algorithm solutions to estimate parameters from a Guassian 

mixture model for data with truncation and censoring present. In 2018, Lodhi et al. constructed 

an EM algorithm under a censored model to estimate parameters from a truncated normal 

distribution.69 Zunxiong et al. used clustering methods to develop an EM algorithm for 
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estimating parameters from a multivariate Gaussian mixture model when truncation and 

censoring occurs concurrently.71 

 

2.4. Truncated Normal Distribution 

 

A distribution that is often used for continuous data with below LLOD observations is a left 

truncated normal distribution.  The moments of a truncated normal distribution were originally 

presented by Pearson and Lee.72,73 Cohen established the MLEs for the mean and variance of a 

truncated normal distribution with left and right truncation occurring simultaneously (doubly 

truncated) or separately (singly left or right truncated).5,6 Hald formed the MLEs of parameters 

from a truncated normal distribution when the truncation value is known.7 Charts were 

constructed by Halperin for computing the MLEs of parameters from a right truncated normal 

distribution when the truncation value is unknown and known.56 The probability density function 

(pdf) of a truncated normal distribution is constructed from the pdf and cumulative distribution 

function (cdf) of a normal distribution.  

 

Normal Distribution 

A random variable X has a normal distribution with mean  and variance 2 . The pdf is 

   
2

2

1 1
exp

22
f x x 

 

 
   

 
 where x ,   , and 2   The simplest form 

of the normal distribution is the standard normal distribution. In a standard normal distribution, 

the mean 0  and variance 2 1  . The standard normal pdf of random variable W is 

21

2
1

( )
2

w

w e




  ,  where w . The cumulative distribution function                                                                                                             
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of the standard normal distribution is defined as,      Φ
w

w P W w z dz


     .  All 

normal distributions can be expressed as a standard normal distribution. The pdf of X can be 

expressed in terms of a standard normal distribution as the following,  
1 x

f x



 

 
  

 
 .                  

                                                                                            

Left Truncated Normal Distribution 

Suppose a random variable LTY  has a support that is restricted by a left truncation value, lt . The 

support of LTY is ( , )LT lY t  . LTY follows a left truncated normal (LTN) distribution with mean 

 , variance
2 , and a left truncation value lt . The pdf of LTY  is expressed as 

1 1
( )

1

LT
LTN LT

l

y
f y

t




  



 
       

 

,  where ( , )LT ly t  ,  , and 2  .  The 

mean of LTY is 

1

l

LT

l

t

t





  





 
 
  

 
  

 

   and variance of LTY                                                                   

 

is 

2

2 2 1

1 1

l l

l
LT

l l

t t

t

t t

 
 

  
 

 

 

       
                             

      

 .                
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Right Truncated Normal Distribution 

Similarly, by letting the support of ( , )RT rY t  , RTY  follows a right truncated normal (RTN) 

distribution. The pdf of RTY  is 
1 1

( ) RT
RTN RT

r

y
f y

t




  



 
       

 

,                                                                           

where ( , )RT ry t   ,  , and 2  .  The mean of RTY is 

r

RT

r

t

t





  





 
 
  

 
  
 

  ,                                                                                                                                                      

and variance of RTY is 

2

2 2 1

r r

r
RT

r r

t t

t

t t

 
 

  
 

 

 

       
                             

      

 .                          

 

2.5. Truncated Multivariate Normal Distribution 

 

The truncated multivariate normal distribution was first derived by Birnbaum and Meyer in 

1953.74 With Birnbaum and Meyer’s derivation as a guidance, the pdf and moments of the 

truncated bivariate normal distribution, a 2-dimensional truncated multivariate normal 

distribution, were formed by Weiler.75 In 1961 Rosenbaum derived the moments of the left 

truncated bivariate normal distribution.76 Also in 1961, Tallis constructed the moment generating 

function of the left truncated multivariate normal distribution with left truncation occurring in 

each of the variables.77 The moments of the doubly multivariate normal distributions were 

formed with truncation appearing on the left and right.78,79 
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The pdf of the truncated multivariate normal distribution is defined by employing the 

multivariate normal distribution pdf. The simulation studies and SLEIGH study data applications 

in the subsequent dissertation chapters involve an underlying bivariate normal distribution which 

is a special case of the multivariate normal distribution. Therefore the following pdfs and cdfs 

are expressed using two variables.   

 

Bivariate Normal Distribution 

Let there be a random vector  1 2Y YY   , a mean vector 
1 2y y 

   μ , and a covariance 

matrix 
1 1 2

1 2 2

2

2

y y y

y y y

  

  

 
 
  

Σ = . The elements of Σ  include the variance of 1Y  denoted as
1

2

y , 

2

2

y is the variance of 2Y , the covariance of 1 2andY Y is represented as 
1 2y y  ,  is the 

correlation between 1 2andY Y , and the standard deviations of are 1 2andY Y represented by
1y

 and 

2y . The covariance matrix Σ is positive semi-definite. The joint distribution of 1 2andY Y  is a 

bivariate normal (BVN) distribution. The pdf of the bivariate normal distribution is, 

   
   111

2
1 2, 2BVNf y y e

    
  

Σ

Σ
y μ y μ

 ,                                                                         

where 1 2, ,y y  Σ  is the determinant of the covariance matrix, and 1
Σ is the inverse of 

the covariance matrix. 

 

The conditional distribution of 1Y  given 2Y is a normal distribution with mean 

 1

1 2 1 2

2

| 2

y

y y y y

y

y


   


    with variance  
1 2 1

2 2 2

| 1y y y    . Likewise, the conditional 
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distribution of 2Y given 1Y  is a normal distribution with mean  2

2 1 2 1

1

| 1

y

y y y y

y

y


   


    with 

variance  
2 1 2

2 2 2

| 1y y y    . 

 

Left Truncated Bivariate Normal Distribution 

Suppose there are two random variables 1LTY and 2LTY . The support of 1LTY is
11 ( , )LT yY t  , and 

the support of 2LTY  is 
22 ( , )LT yY t  . Jointly 1LTY and 2LTY follow a left truncated bivariate 

normal (LTBVN) distribution with a mean vector 
1 2y y 

   μ , a covariance matrix 

1 1 2

1 2 2

2

2

y y y

y y y

  

  

 
 
  

Σ = , and left truncation vector 
1 2y yt tt

    . With the use the BVN pdf , 

the LTBVN pdf is expressed as, 

 
 

 
1 1 2 2

1 2 1 2

1 2 1 2

1
, ,

,y y y y

LTBVN LT LT BVN LT LT

t t
BVN LT LT LT LT

f y y f y y
f y y dy dy 

 

 

 



 
,               

where 
1 1LTyt y   and 

2 2y LTt y   . The marginal mean of 1LTY  is 

1 1

1

1 1 1

1 1

1

1
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y y

y

y y y

y y

y

t

t





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


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 
 
  
 

  
 
 

    and the marginal variance of 1LTY  is 

1 1 1 1

1 11 1
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1 1 1 1 1

1 1
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2 2 1
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y y y y
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y y y y y
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 
 

  
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      
     

                                   
      

. Similarly the marginal 
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mean of 2LTY is 

2 2

2

2 2 2

2 2
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y y
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    and 
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                                   
      

  is the marginal variance 

of 2LTY . 

 

Let LT represent the correlation between 1LTY and 2LTY . The conditional distribution of 1LTY given

2LTY is a LTN distribution with mean  1

1 2 1 2

2

| 2
LT

LT LT LT LT

LT

y

y y y LT LT y

y

y


   


     , and variance 

 
1 2 1

2 2 2

| 1
LT LT LTy y LT y     .  Also the conditional distribution of 2LTY given 1LTY is a LTN 

distribution with mean  2

2 1 2 1

1

| 1
LT

LT LT LT LT

LT

y

y y y LT LT y

y

y


   


     , and variance 

 
2 1 2

2 2 2

| 1
LT LT LTy y LT y     .                                                                                                                                                                                                                       

 

Right Truncated Bivariate Normal Distribution 

The joint distribution of random variables 1RTY and 2RTY is a right truncated bivariate normal 

(RTBVN) distribution with mean vector 
1 2y y 

   μ , a covariance matrix 
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1 1 2

1 2 2

2

2

y y y

y y y

  

  

 
 
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Σ = , and right truncation vector 
1 2y yt tt

    . Each random variable has 

a support of 
11 ( , )RT yY t   and 

22 ( , )RT yY t  . The RTBVN pdf is denoted as, 

 

 
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y y y y
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 

             

where 
1 1LTyt y   and

22RT yy t   . 

The marginal distributions of 1RTY and 2RTY  are RTN distributions. The marginal mean of 1RTY  is 
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   is the marginal variance                                               

of 1RTY . Marginally, the mean of 2RTY is 
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  and the variance of                                                                                              

is expressed as 
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.                                                      
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The conditional distribution of 1RTY given 2RTY is a RTN distribution with mean 

 1

1 2 1 2

2

| 2
RT

RT RT RT RT

RT

y

y y y RT RT y

y

y


   


    and variance  
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| 1
RT RT RTy y RT y                                                                                        

where RT is the correlation between 1RTY and 2RTY . Correspondingly the conditional distribution 

of 2RTY given 1RTY follows a RTN distribution with mean 

 2
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| 1
RT RT RTy y RT y    .                                                                                    
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3. ESTABLISH THE EQUIVALENCE OF LEFT TRUNCATION AND LEFT CENSORING 

FRAMEWORK FOR APPLICATIONS INVOLVING LIMITS OF DETECTION  

 

INTRODUCTION 

Unobserved data below a lower limit of detection (LLOD) occur when a measured analyte is 

below the level of accuracy that an analytical tool can recognize.1 Standard formulas for 

estimating parameters (e.g. sample mean and variance) ignore the observations that are below the 

LLOD and are thus biased.80 For example, ignoring observations below the LLOD causes the 

sample mean to be overestimated and the sample variance to be underestimated. A frequent 

remedy used in such situations is to replace unobserved data below the LLOD with the LLOD 

itself, LLOD/√2, or LLOD/2. The United States Environmental Protection Agency recommends 

these replacement methods when 15% or less of the observations are below the  LLOD.34 

Despite the popularity of these replacement methods, they can lead to inaccurate statistical 

inferences about the parameters.29  

 

An alternative to replacement methods described above is to assume a model that accounts for 

the unobserved data below the LLOD.  In the literature, such data are treated either as coming 

from a left truncated distribution, or the unobserved observations are treated as left censored. 

Both approaches require the LLOD value to be known and specified. A left truncated model 

assumes a distribution that has a support restricted by the LLOD value. In the left censored 

model, observations below the LLOD are considered censored. However, the literature lacks 

guidance with respect to which method might be more appropriate in general or if they are 

equivalent. 
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In this brief report, we will demonstrate the equivalence of the two approaches in terms of 

estimating the parameters of the underlying distribution (continuous or discrete) using theory 

based on maximum likelihood estimators (MLEs). We have organized this report as follows. 

First, a review of left truncation and left censoring approaches for data with LLOD are described. 

Second, a theoretical rationale paralleling the MLEs of parameters from distributions either as 

left truncated or left censored, is provided. This is followed by a numerical illustration of their 

equivalence through Monte-Carlo simulations.  In the subsequent section an application using 

BDE-153, a polybrominated diphenyl ether contaminant, from an observational cohort study, is 

presented. Lastly, we discuss and summarize our findings.  

 

BELOW THE LLOD DATA: TWO LIKELIHOODS 

Suppose we have a random sample of 1n  observations that are fully observed, and we know 2n   

are not observed because they are below the LLOD. The total sample size is 1 2n n n .  Let, 
lt  

denote the left truncation value which is equal to the LLOD, and iy  represent the ith observation. 

Also let ( ; )if y θ be a probability density function, ( ; )lF t θ  is the corresponding cumulative 

distribution function, and θ  is a 1p vector of p  parameters of the distribution. The likelihood 

under the left truncated model can be written, 

1

1

( ; )
( ; )

1 ( ; )

n

i
t

i l

f y
L

F t





θ

θ
θ

y .                                                                                         (1) 

The corresponding log-likelihood is, 

  
1

1

1

( ) ln ( ; ) ln 1 ( ; )
n

t i l

i

l f y n F t


  θ θ θ .                                                                  (2) 

For the left censored model, let iδ  be an indicator for which, 
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1  if 

0 if .

i l

i

i l

y t
δ

y t


 


 

That is, 1iδ  for all observations that are above LLOD (not ‘censored’), and 0 when they are 

not observed. The likelihood under the left censored model is, 

             
1

1

( ; ) ( ; ) ( ; )i i

n
δ δ

c i l

i

L f y F t




θ θ θy                                                                                                               

                           
1

2( ; ) ( ; )
n

n

i l

i

f y F t
 

  
 
 θ θ .                                                                       (3) 

The corresponding log-likelihood is  

1

2

1

( ) ln ( ; ) ln ( ; )
n

c i l

i

l f y n F t


 θ θ θ .                                                                         (4) 

In general, the choice between truncation and censoring analysis methods may be based on 

whether the information about the left truncation value is known and/or the number of 

observations below the LLOD is known. That is, the four scenarios regarding the left truncation 

value and the number of observations below the LLOD could be tabulated as in Table 1. 

 

Table 1 Method of choice under various scenarios 

 Left Truncation Value,
lt , 

Unknown 

Left Truncation Value,
lt , 

Known 

Number of Below the LLOD 

Observations Unknown, 2n   

1. Neither Method 2. Left Truncation Methods 

Number of Below the LLOD 

Observations Known, 2n  

3. Left Censoring and Left 

Truncation Methods 

4. Left Censoring and Left 

Truncation Methods 

 

  

Scenario 1 in Table 1 occurs when the left truncation value and the number of observations 

below the LLOD are both unknown. In this scenario, there is inadequate information to fully 
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define the likelihoods in equations (1) and (3) because they require specification of 1n , 2n , and/or 

lt . In scenario 2, the observed data likelihood from the left truncated model can still be defined. 

However, the censored data likelihood, which depends on 2n , cannot be defined. In scenario 3, 

both models can be applied by treating 
lt as an unknown additional parameter that could be 

estimated from the same likelihoods. For instance, since the number of observations below 

LLOD is known, under the truncated model the proportion of observations below the LLOD 

could provide the information necessary to estimate the LLOD.  

 

In scenario 4 the left truncation value and number of below the LLOD observations are both 

known. This is the most common scenario in the applications discussed in the introduction 

section. We will establish the equivalence of the two likelihoods below and argue, for scenarios 

3 and 4, that the two methods will yield identical MLEs. 

 

THEORETICAL EQUIVALENCE OF MLES 

The MLEs of θ are acquired from estimating equations under standard regularity conditions by 

equating the first derivative of the log likelihoods to 0. Thus the estimating equation for the left 

truncated model is,  

1

1

1

( ; ) ( ; )1 1
0

( ; ) 1 ( ; )

n

i l

i i l

df y dF t
n

d f y d F t

 



θ θ

θ θ θ θ
,                                      (5) 

 and the left censored model estimating equation is,  

1

2

1

( ; ) ( ; )1 1
0

( ; ) ( ; )

n

i l

i i l

df y dF t
n

d f y d F t

 
θ θ

θ θ θ θ
.                                                        (6) 
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The equations (5) and (6) will produce similar MLEs when the left hand side of the equations (5) 

and (6) are equal. Suppose θ  for the left truncated model is lθ while cθ  is for the left censored 

model. Equating (5) and (6) and simplifying leads to the condition for equality to be   

2 1

1 1

( ; ) 1 ( ; )l c l l

n n
F t F t


θ θ

 .                                                                                      (7)      

This equality holds under expectations. That is, since    1 1 ( ; )l cE n n F t  θ  and 

 2 ( ; )l cE n nF t θ  both sides will be n . Also for any given θ , 2n

n
 is the MLE of the 

proportion of the distribution below lt  , 𝐹̂ ( ; )lt θ ,  and 1n

n
 is the MLE of the proportion of the 

distribution above lt , 1 𝐹̂ ( ; )lt θ , where 𝐹 ̂is the MLE of the cumulative distribution function 

evaluated at lt . Therefore,  

 
2n

1n
=

𝐹̂ ( ; )lt θ

1−𝐹̂ ( ; )lt θ
                                                                                                  

is a consistent estimator of 
( ; )

1 ( ; )

l c

l c

F t

F t

θ

θ
. In other words, for a large sample (n) the probability 

that the equation (7) will hold is 1.                                                                        

  

 

Likewise we can show that the MLE of θ from likelihoods under right truncated and right 

censored models are equivalent for scenarios 3 and 4. The MLE of θ is also comparable in the 

presence of doubly truncated and doubly censoring likelihoods. Doubly truncated or doubly 

censored data occurs when there are observations that appear below an LLOD and above an 

upper limit of detection (ULOD) simultaneously.5 Suppose there is a random sample of 1n  
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observations that are fully observed, 2n  are not observed because they are below the LLOD, and 

3n  are not observed due to being above the ULOD. The total sample size is 1 2 3n n n n . Let 

lt  represent the left truncation value, 
rt is the right truncation value, and iy  denote the ith 

observation. Also let ( ; )if y θ denote a probability density function where 
l i rt y t   , ( ; )rF t θ  

and ( ; )lF t θ  denote cumulative distribution functions, and θ  is a vector with p parameters of the 

distribution. The likelihood under the doubly truncated model is, 

             
1

1

( ; )
( ; )

( ; ) ( ; )

n

i
dt

i r l

f y
L

F t F t





θ

θ
θ θ

y .                                                                           (8) 

The corresponding log-likelihood is denoted as, 

               
1

1

1

( ) ln ( ; ) ln ( ; ) ( ; )
n

dt i r l

i

l f y n F t F t


  θ θ θ θ .                                                  (9) 

The estimating equation of the log-likelihood under the doubly truncated model is,  

1

1

1

( ; ) ( ; )( ; )1 1
0

( ; ) ( ; ) ( ; )

n

i lr

i i r l

df y dF tdF t
n

d f y F t F t d d

 
   

  


θ θθ

θ θ θ θ θ θ
.                     (10) 

                       

Before displaying the likelihood under the doubly censored model, two indicators i  and i  

must be defined. The two indicators represent the following, 

1 if t

0 if otherwise

l i r

i

y t


 
 


  and 
1 if

0 if

i l

i

i l

y t

y t



 


. 

The likelihood under the doubly censored model is, 

               
1

1

( ; ) ( ; ) ( ; ) 1 ( ; ) i ii i

n

dc i l r

i

L f y F t F t
    



 θ θ θ θy  
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                              
1

2 3( ; ) ( ; ) 1 ( ; )
n

n n

i l r

i

f y F t F t
 

  
 
 θ θ θ                                                (11) 

The log-likelihood under the doubly censored model is denoted as, 

               
1

2 3

1

( ) ln ( ; ) ln ( ; ) ln 1 ( ; )
n

dc i l r

i

l f y n F t n F t


   θ θ θ θ .                                     (12) 

The estimating equation under the doubly censored model is, 

1

2 3

1

( ; ) ( ; ) ( ; )1 1 1
0

( ; ) ( ; ) 1 ( ; )

n

i l r

i i l r

df y dF t dF t
n n

d f y F t d F t d

  



θ θ θ

θ θ θ θ θ θ
.                          (13) 

 

Although the equivalence of the two approaches can be shown in general, for simplicity we 

demonstrate it for the case where the assumption ( ; ) 1 ( ; )l rF t F t θ θ is made. Under this 

assumption, let θ  for the doubly truncated model and doubly censored model be denoted as dtθ

and dcθ  respectively. By equating (10) and (13) we have the following equality,

 2 3 1

1 1

( ; ) ( ; ) ( ; )l dc r dt l dt

n n n
F t F t F tθ θ θ

 


 . 

 

This equality holds due to 1( ) ( ; ) ( ; )r lE n n F t F tθ θ ,  2( ) ( ; )lE n nF t θ , and  

3( ) 1 ( ; )rE n n F t θ . Also for any given θ , 1n

n
 is the MLE of the proportion of the 

distribution between  lt  and rt  (i.e. 𝐹̂ ( ; )rt θ  𝐹̂ ( ; )lt θ ),  2n

n
 is the MLE of the proportion of the 

distribution below lt , and 3n

n
 is the MLE of the proportion of the distribution above rt . 
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COMPUTATIONAL ADVANTAGE OF LEFT TRUNCATION APPROACH 

For obtaining the MLE of the parameters denoted byθ
̂

, the Newton-Raphson method is typically 

utilized for a likelihood under the left censored model, while for the left truncated model the 

Expectation-Maximization (EM) algorithm is often used. Recall that for estimating θ
̂

 using the 

Newton-Raphson method, an equation is iteratively computed until there is a small difference 

between ,newθ the current value for θ , and the previous value for θ  which is denoted as oldθ . 

The equation for the Newton-Raphson method is       

1
2 ( ) ( )

| |
old oldnew old

d l dl

d d



 

 
   

 
θ θ θ θ

θ θ
θ θ

θ θ
,                                                                                                                                                                   

where 
( )

|
old

dl

d
θ θ

θ

θ
 is a p dimensional vector of the first derivatives of the log-likelihood of θ  

with respect to θ  and 

2 ( )
|

old

d l
θ θ

θ

θ
is a p×p matrix of the second and partial derivatives of the 

log-likelihood of θ .  

The EM algorithm involves iterating between two steps for estimatingθ
̂

.50  In the first step, 

known as the E-step, the first moment of the log-likelihood of θ given the observed data denoted 

as   | observedE l θ y  is computed.66   The M-step, maximizes   | observedE l θ y  with respect toθ . 

Commonly,   | observedE l θ y  is maximized by finding the first derivative of   | observedE l θ y

with respect to θ and forming an estimating equation by setting the first derivative to zero. The 

estimating equation is used to solve for θ
̂

.  
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When below LLOD data arise in complex study designs, such as longitudinal studies, clustered 

data or multivariate data, the Newton-Raphson approach could become computationally intense 

given the need for repeated matrix inversion along with the need for first, second, and partial 

derivatives of the log-likelihood with respect to θ .51 The advantages of the EM algorithm are 

well known. Basically, it does not require partial derivatives for estimating multiple parameters, 

and the convergence is faster at the beginning stages of the algorithms. The actual computation 

times for the Newton-Raphson method and EM algorithm are included within the discussion 

section.  

 

SIMULATION STUDY 

To numerically illustrate that left truncation and left censoring approaches produce equivalent 

parameter estimates, a left truncated normal distribution and a normal distribution with left 

censored observations are utilized in this simulation study. The data is generated from a normal 

distribution with 5  and 2 4 . The total sample sizes are n 50, 100, and 500. The left 

truncation value is computed by l kt z  where k   is the proportion of observations that 

are below the LLOD and kz is the quantile associated with 2( ; , )lF t k   . The values for lt  are 

2.437, 2.927, 3.317, and 3.951, which allow for 100% 10%, 15%, 20%, and 30%k  the 

observations to appear below the LLOD, respectively. Any generated observations less than lt   

are considered to be below the LLOD observations.  

 

The MLEs of  and 2  are found by applying the EM algorithm and the Newton-Raphson 

method for the left truncation and left censoring approaches, respectively. Observed data is 

distributed as a left truncated normal distribution in the EM algorithm. It has been shown that the 
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first and second moments are necessary in the E-Step of the EM algorithm for estimating the 

parameters of a normal distribution.66 The inclusion of the second moment improves the estimate 

of the variance. The Newton-Raphson method incorporates a normal distribution that treats the 

below the LLOD observations as left censored. 

 

 The results of the simulation study represent an average of 1,000 simulations. The MLE of  

and 2 are denoted as ̂ and 𝜎2̂. The mean square error (MSE) of ̂ was computed as 

MSE(̂) = V(̂) +Bias(̂)where V(̂) is the variance of ̂, and the bias of ̂ is Bias(̂)=

 ̂ − 5. Similarly, the mean square error of 𝜎2̂ (MSE(𝜎2̂) was also computed. The simulations 

were conducted in R version 3.3.2.81 The Newton-Raphson method was implemented using the R 

function maxLik function within the maxLik package.82 The EM algorithm and Newton-Raphson 

method code are included in the appendices. The formulas of the EM algorithm steps that are 

included in the code were previously published.65,66 
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Table 2 Results of the simulation study examining the MLE at different percentages of observations being below the LLOD. Prior to 

any observations appearing below the LLOD when n = 50, ̂ = 4.995 and 𝜎2̂ = 3.911; n = 100, ̂= 5.000 and 𝜎2̂ = 3.954; n = 500,  

̂ = 4.998 and 𝜎2̂ = 3.984. 

 

 

Total Sample Size 
n  

Percent of 

Below the LLOD  

Observations 

Left Truncation 

Approach 

Estimate (MSE) 

Left Censoring Approach 

Estimate (MSE) 

Left Truncation Approach 95% 

Confidence Interval Coverage, 

|
𝜇̂−𝜇

√𝑉𝑎𝑟(𝜇̂)
| ≥ 1.96 

Left Censoring Approach 95% 

Confidence Interval Coverage, 

|
𝜇̂−𝜇

√𝑉𝑎𝑟(𝜇̂)
| ≥ 1.96 

50 10% ̂  = 5.003 (0.086) 

𝜎 2̂ = 3.868 (0.864) 

̂  = 4.993 (0.085) 

𝜎 2̂ = 3.924 (0.822) 

93.8% 94.4% 

100 10% ̂  = 5.004 (0.043) 

𝜎 2̂ = 3.932 (0.424) 

̂  = 4.999 (0.042) 

𝜎 2̂ = 3.960 (0.411) 

93.9% 94.6% 

500 10% ̂  = 4.998 (0.008) 

𝜎 2̂ = 3.987 (0.086) 

̂  = 4.998 (0.008) 

𝜎 2̂ = 3.989 (0.081) 

94.6% 95.3% 

50 15% ̂  = 5.004 (0.090) 

𝜎 2̂ = 3.868(0.947) 

̂  = 4.991 (0.088) 

𝜎 2̂ = 3.937 (0.899) 

93.6% 93.4% 

100 15% ̂  = 5.005 (0.044)  

𝜎 2̂ = 3.931 (0.456) 

̂  = 4.999 (0.043) 

𝜎 2̂ = 3.963 (0.432) 

92.9% 94.1% 

500 15% ̂ = 4.998 (0.008) 

𝜎 2̂ = 3.990 (0.095) 

̂  = 4.998 (0.008) 

𝜎 2̂ = 3.991(0.086) 

94.4% 94.7% 

50 20% ̂ = 5.007 (0.093) 

𝜎 2̂ = 3.862 (1.033) 

̂  = 4.989 (0.091) 

𝜎 2̂ = 3.950 (0.987) 

92.7% 93.3% 

100 20% ̂ = 5.006 (0.045) 

𝜎 2̂ =3.930 (0.495) 

̂  = 4.998 (0.044) 

𝜎 2̂ = 3.969 (0.475) 

92.5% 93.0% 

500 20% ̂ = 4.998 (0.009) 

𝜎 2̂ = 3.991 (0.105) 

̂  = 4.996 (0.008) 

𝜎 2̂ = 3.998 (0.092) 

93.7 % 94.1% 

50 30% ̂  = 5.017 (0.100) 

𝜎 2̂ = 3.831 (1.188) 

̂  = 4.989 (0.097) 

𝜎 2̂ = 3.951 (1.146) 

90.4% 92.4% 

100 30% ̂ = 5.010 (0.050) 

𝜎 2̂ = 3.917 (0.592) 

̂  = 4.997 (0.047) 

𝜎 2̂ = 3.975 (0.529) 

91.6% 92.7% 

500 30% ̂  = 4.998 (0.010) 

𝜎 2̂ = 3.990 (0.130) 

̂  = 4.997 (0.009) 

𝜎 2̂ = 3.996 (0.111) 

92.7% 93.3% 
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Table 2 displays the results from the simulation study. The results of ̂ , 𝜎2̂, and the MSE(̂) 

were nearly identical as the total sample size increases from 50 to 500 regardless of the 

percentage of below the LLOD observations. With the total sample size of 100, there were 

minimal differences between the estimates for ̂found using the left truncation and left 

censoring methods. Also we listed the 95% confidence interval coverage for the approaches in 

Table 2, and the left truncation approach has a slightly larger 95% coverage interval than the left 

censoring approach.  The 95% confidence interval coverage improved as the sample size 

increased.  

 

APPLICATION IN SLEIGH STUDY 

Data with below LLOD observations appeared in the Systemic Lupus Erythematosus in Gullah 

Health (SLEIGH) study. SLEIGH is an observational cohort study of African American Gullah 

patients with systemic lupus erythematosus (SLE) and control participants. The Gullah 

population are a unique group of African Americans, whose ancestors resided on the South 

Carolina and Georgia coastal barrier islands. SLEIGH included a toxicology and serology 

component in which serum samples were collected from the participants.83 The concentration of 

a polybrominated diphenyl ether contaminant, BDE-153, present in the serum samples of study 

participants was measured on a continuous scale of nanogram per gram (ng/g) in a laboratory.  

 

The SLEIGH study consisted of 65 study participants with SLE and 123 controls that had serum 

samples evaluated for contaminant BDE-153. The log base 10 scale of the BDE-153 contaminant 

data follows a normal distribution. Often ecological pollutant data are not normally distributed, 

but the data is normally distributed once a log transformation is applied.84-87 The observed data 
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likelihood is assumed to be a left truncated normal distribution in the EM algorithm, while a 

likelihood of the normal distribution with left censored observations was used for the Newton-

Raphson method. In this study the LLOD for the BDE-153 contaminant is -5.991 log ng/g 

(0.0025 ng/g). Approximately, 21.5% of the participants with SLE and 11.4% of the controls 

have BDE-153 observations that are below -5.991 log ng/g. The EM algorithm and Newton-

Raphson method were used to obtain the MLEs of   and 2 for BDE-153, separately for SLE 

and control participants.  

 

Table 3 MLE results of contaminant BDE-153 by systemic lupus erythematosus (SLE) disease 

status with a truncation value of -5.991 log ng/g (0.0025 ng/g).  

Percent of Observations 

Below the LLOD  

Left Truncation Approach Left Censoring Approach 

Participants with SLE, 65n    

21.5% ̂ = -3.972 log ng/g 

𝜎2̂   2.766 log ng/g 

̂ = -3.972 log ng/g 

𝜎2̂   2.766 log ng/g 

Control Participants, 123n  

11.4% ̂ = -3.695 log ng/g 

𝜎2̂   1.822 log ng/g 

̂ = -3.695 log ng/g  

𝜎2̂   1.822 log ng/g 

 

The MLEs for the mean and the variance of BDE-153 by SLE and control participants are shown 

in Table 3. The MLEs computed by the two procedures are essentially identical. The left 

truncation and left censoring approaches produced ̂ = - 3.972 log ng/g and 𝜎2̂ 2.766 log ng/g 

for participants with SLE. For control participants, the MLEs from the left truncation and left 

censoring approaches were ̂ = -3.695 log ng/g and 𝜎2̂ 1.822 log ng/g.   
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DISCUSSION 

In this paper, we explained how estimation methods relying on left truncation and left censoring 

approaches coincide in the estimation of parameters from any underlying distribution when there 

exists unobserved data because they are below LLOD and the number of such occurrences is 

known. When the left truncation value is unknown, it could be estimated using the proportion of 

observations below the LLOD. A simulation study and an application to real data were presented 

to further illustrate the theoretical relationship of the MLEs. The two approaches are 

implemented by the use of numerical algorithms to estimate the parameters. Although the 

advantages of one algorithm versus another is hard to establish in a straightforward design 

presented here, as the parameter space increases, the truncation approach paired with the EM 

algorithm is expected to have a significant computational advantage in comparison to the 

censoring approach using the Newton-Raphson method. Specifically, even in this simple 

situation, the left truncation approach using the EM algorithm was uniformly faster than the left 

censoring method in all situations in R version 3.3.2.81 For example, in the simulation scenario of 

30% of the observations appearing below the LLOD and n = 500, the computation time for the 

left truncation approach that relied on the EM algorithm was 4.658 seconds on a laptop computer 

with a processor of i7-7500U CPU @ 2.70 GHz and 8 GB of RAM while the time was 7.181 

seconds (54.165% greater) for the left censoring approach under the Newton-Raphson method. 

In our simulations and real data application, an EM algorithm under the left censored model was 

not considered, because an EM solution under that likelihood is not available. Although EM 

algorithms for time-to-event parametric survival models have previously been described, no EM 

algorithms applicable to the situation described here currently exist in the literature.64,88-90 Also, 

the EM algorithm provided under the left truncated model requires both first and second 
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moments in the E-step.66 While the EM algorithm achieved faster convergence, when the 

underlying models get more complex, properly specifying the second moments could be 

considerably more complicated. For example, the E-step may involve cross product moments 

which involves all patterns of observed and incomplete data. We have established the 

equivalence between both approaches in general, however, we plan to extend the left truncation 

approach to include more complex models.   

 

The censoring that appears in this paper is different than censoring occurring in a typical survival 

analysis framework. Unlike the typical survival analysis framework, observations that are 

considered to be censored in this paper have a common censoring point. Therefore, we do not 

include censoring within the survival analysis context in the theoretical relationship established 

in this paper.  

 

In our study, we did not consider multiple LLODs occurring simultaneously for a given variable 

while showing the relationship between the MLEs of parameters using the truncation and 

censoring approaches. There are several left censoring methods established to account for 

multiple LLODs arising in a single variable, but these methods have yet to be compared with left 

truncation approaches.15,16,19,20 Therefore future studies may consider examining the theoretical 

relationship of estimating parameters using left truncation and left censoring approaches with 

multiple left truncation values occurring in a single variable. For a single left truncation value, 

we were able to conclude that left truncation and left censoring approaches yield equivalent 

parameter estimates of an underlying distribution.  
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4. DEVELOP A METHOD FOR ESTIMATING THE MEAN AND VARIANCE OF A 

SINGLE NORMAL RANDOM VARIABLE WITH MULTIPLE LOWER LIMITS OF 

DETECTION ARISING FROM DIFFERENT BATCHES (I.E. ONE VARIABLE WITH 

MULTIPLE BATCHES) 

 

INTRODUCTION 

The lowest quantity of a substance that can be measured by an analytical tool is often called the 

lower limit of detection (LLOD).1 Frequently statistical analysis involving data with observations 

below an LLOD has an assumption that the observations above the LLOD are from a left 

truncated distribution or that the LLOD observations are left censored. The support of the left 

truncated distribution is constrained to being greater than the LLOD, which also may be referred 

to as the left truncation value. In the left censoring framework, any observation below the fixed 

LLOD value is considered left censored. Statistical analysis methods to account for one left 

truncation value have been developed relying either on left truncated and left censored models. A 

commonly used continuous left truncated distribution is a left truncated normal distribution. The 

maximum likelihood estimators (MLEs) of the parameters from the left truncated normal 

distribution have been established under various assumptions such as whether or not the left 

truncation value is known.5-7 For continuous left censored methods, a normal distribution with 

left censored observations is often considered, and the processes for estimating MLEs in this 

context have previously been outlined.8,9  

 

When LLOD observations occur in a dataset, MLEs of parameters from an underlying 

distribution can be achieved by incorporating left truncated or left censored modeling strategies. 

Most estimation methods previously described for the left truncated framework assume only one 

LLOD within a univariate distribution, however the fact that it is possible for multiple LLOD 
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values to occur within a given experiment.10,11 On the other hand, prior work using the left 

censored framework for normal distributions has included the situation involving multiple LLOD 

values occurring for a single random variable.15-17,91,92  For example, Peng (2010) assembled 

confidence intervals for MLEs of parameters from a normal distribution with multiple left 

censored values, 17 and Aboueissa and Stoline (2009) derived methods for finding MLEs of 

parameters from a normal distribution with multiple left censored values.15,16,92  

 

In an earlier manuscript, we established in general truncated and censored model approaches 

yield equivalent MLEs of the parameters from an underlying distribution when there is one 

LLOD value. We also argued the advantage of left truncated model in complex designs because 

it lends itself to the implementation of an EM algorithm more easily. In terms of convergence in 

complex designs, EM has a proven computational advantage in comparison to other iterative 

algorithms such as the Newton-Raphson method. The application of the left censored model 

through the Newton-Raphson method requires first, second, and partial derivatives of the log-

likelihood of the parameters with respect to the parameters, but the left truncated model approach 

does not require derivatives. The EM algorithm applied using the log-likelihood of the left 

truncated model requires first and second moments of the distribution of the data appearing 

below the LLOD value. This advantage motivated us to extend the left truncated model and EM 

algorithm framework to handle multiple LLOD values.  

 

To our knowledge, the statistics literature has not addressed the situation of using truncated 

models to obtain MLEs of parameters from an underlying normal distribution in which multiple 

LLOD values exist. Developing such a methodological framework could be beneficial for many 
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chemical substance and biomarker assay studies where the outcome may consist of data that has 

been generated over time with multiple LLOD values.10,11 LLOD values vary throughout time, 

even within a 24 hour period, due to the calibration and detection sensitivity of the laboratory 

analytical tool.12,13 Therefore, pooling data sets produced at different time periods for a variable 

can result in multiple LLOD values.11,14  

 

The objective of this paper is to propose an estimation approach for finding MLEs for parameters 

(i.e. mean and variance) of a normal distribution for an outcome variable that has multiple LLOD 

values in the observed sample. The estimation technique relies on an expectation-maximization 

(EM) algorithm that incorporates a linear mixed model (LMM) in the M-step. Such an approach 

has been suggested in the past; Dempster, Laird, and Rubin proposed that observations that are 

not completely recorded due to a truncation value should be included in the context of missing 

data, and that the EM algorithm is an applicable statistical approach for estimating the MLEs of 

parameters when there are observations excluded from sample due to  truncation value(s).50  

However, the implementation of their recommendation has not appeared in the literature so far 

with multiple LLOD values. After describing our version of the EM algorithm, a simulation 

study is included to compare the performance of the proposed EM algorithm with existing 

methods that account for multiple LLOD values. Finally, a real data application is presented.  

 

METHODS 

Consider data of a substance collected in m batches of data for an experiment. The collected 

substance is an outcome of interest for the experimental study. Suppose some data within each 

batch are unobserved but known to be less than a batch specific LLOD value. The number of 
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observations within the total sample size for the experiment is denoted as n, and n can be 

separated into components based on the m batches and whether an observation is below or above 

the LLOD. Let j = 1,…, m batches, k = 1 if the observation is above the batch specific LLOD, 

and k = 2 if the observation is below the LLOD. Each batch has a separate LLOD value which 

we will also refer to as a truncation value, and denote as jt . The total sample size is 

2

1 1

m

jk

j k

n n
 

  where jkn is the sample size for the jth batch that is either above or below the 

LLOD value.  

 

Our proposed method for estimating parameters incorporates an LMM. Recall that an LMM is 

written as Y = Xβ+Zγ +ε . Let Y be an 1n   outcome vector, and each observation in Y is 

denoted as ijY  where 1,2,...,i n . X is a n p  matrix of p predictors, β is a vector of p fixed 

effects, Z is a n q design matrix for the q random effects, γ  is a vector of q  random effects, 

and  ε is a vector of the residuals. We assume that  ~ ,γ N 0 G  where G is the covariance 

matrix of the random effects. Also we assume that  ,ε ~ N 0 R  ,Nε 0~ R , and 2σ is the 

residual variance such that 
2

nR = I .The variance for each observation is denoted as

 V ZGZ R   . The distribution of Y is a multivariate normal distribution with mean Xβ and 

covariance matrix V . The MLEs of the mean and covariance matrix are found by maximizing 

the log-likelihood.  

The likelihood of the parameters Xβ and V  given Y is expressed using the trace function as, 
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 
 

   

 
    
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1

1
22

1 1
exp

22

1 1
exp trace

22

n

n









   
 

   
 
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V
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 
     1

1
22

1 1
exp trace 2 .

22
n



      
 

V YY Y Xβ Xβ Xβ
V

     (1) 

 

EM Algorithm 

We are interested in estimating the mean and the variance of the total sample size for an outcome 

rather than a mean and variance for each batch separately. Due to our interest, we assume a 

constant mean and variance across m batches. We also assume observations within a batch are 

correlated, but the batches are independent of each other. We make an assumption that the 

underlying distribution of the batches of data follows a multivariate normal distribution with 

mean vectorμ  of 1m  dimension and a covariance matrix Σ  of dimension m m . The density 

function of the multivariate normal distributed is

 
   1

1/2/2

1 1
( ) exp

22
MVN n

f


   
 

y y -μ Σ y -μ
Σ

  where 
ny , and the corresponding 

cumulative distribution function is denoted as  MVNF y . Since Y includes observations 

appearing below the LLOD, we cannot accurately estimate parameters of the multivariate normal 

distribution using Y as it is originally observed. Our proposed EM algorithm treats components 

of Y as data from either a multivariate left or right truncated normal distribution based on if the 

observation is above or below an LLOD. Observations above the LLOD for each batch follows a 

multivariate left truncated normal distribution with parameters μ , Σ  and t , where 
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 1 2, , ..., mt t tt  is a vector of the truncation values.  The density function of the multivariate 

left truncated normal distribution is,  
 

 
MVN

MLTN

MVN

f
f

F


y
y

t
, where ij jy t for all j . Furthermore 

in our method, the observations below the LLOD for each batch are assumed to follow a 

multivariate right truncated normal distribution  , ;μ Σ t . The density function of the 

multivariate right truncated normal distribution is,  

 
 

 
MVN

MRTN

MVN

f
f

F


y
y

t
, where ij jy t for all j .  

 

E-Step 

A previous study demonstrated that first and second moments of a truncated normal distribution 

are necessary in the E-Step of an EM algorithm for accurately estimating the variance parameter 

from a univariate normal distribution.66  The equations for the moments from the multivariate 

truncated normal distribution with left and right truncation occurring simultaneously in all 

variables have been derived by Manjunath and Wilhelm, but an example is provided for one 

direct of truncation occurring solely.79 We adapt the formulas by Manjunath and Wilhelm for 

moments of a multivariate right truncated normal distribution for the E-Step of our method. The 

moments can be computed using the tmvtnorm R package.76,93-96  The moments by Manjunath 

and Wilhelm are extensions of previous moments formulas with various truncation scenarios.77,78 

The formulas for the first and second moment of the response for the thj  batch are, 

    ,

1

m

j j j d j

d

E Y F t 


    and 
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Here,    
1 11

... ...

j j m
t t tt

j MLTN ij ijF t f d

 

 

   

     y y   where ijy  is a subset of y with the thij

observation removed. Also let    
1 1 ' 1 ' 11

, ,, ... ... ...

j j j j m
t t t t tt

j j MLTN ij ij ij ijF t t f d

   

     

     

       y y  where 

,ij ij y  is a subset of y , the observations ij  and ij  are excluded, and j j .  

 

For the Y vector, the appropriate first moment replaces observations below the LLOD depending 

on which batch the observations belongs to. The simplified formula in equation (1) has YY

which is an element-wise multiplication matrix that will include the second moment. The 

elements of YY are replaced with the batch specific second moment only if the element in the 

Y vector is an observation below the LLOD and the observation appears on the diagonal of YY

. An example is below to illustrate how the moments replace elements in Y and YY . Let 

observedY  denote the response vector as it is originally observed. Also let an asterisk denote the 

observations that are below the LLOD in 
observedY . In this example observedY , Y , and YY are as 

follows. 
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YY =  

 M-Step 

Based on the LMM, the log-likelihood of the parameters Xβ and V  given Y  is,  

          11 1
ln , | ln 2 ln 2

2 2 2

n
tr        L Xβ V Y V V YY Y Xβ Xβ Xβ . In 

our proposed EM algorithm X  is a 1n  vector for the intercept, β  is a scalar representing the 

intercept, Z is a 2n  matrix where the columns indicates which batch the observation belongs 

to, γ is the random batch effect, 
2

batchsG  , and 
2

nR I .  By the inclusion of G  and R , our 

method incorporates the assumption that the batches are independent of each other, but 
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observations within a batch are correlated. The proposed EM algorithm finds Xβ̂   by 

maximizing the log-likelihood. For estimating V̂  from an LMM, our EM algorithm maximizes 

the log-likelihood of  based on the conditional derivation of the residual maximum likelihood 

approach.97 The log-likelihood of V  that is maximized in the proposed EM algorithm is, 

           1
1 1 1 1 11

ln ( ) ln det trace ln det .
2

L V Y V X V X V V X X V X X V YY


     
        

 
|

 

 

SIMULATION STUDY 

In our simulation study, m = 2 batches. We generated data under two scenarios. In the first 

scenario, a random batch effect was produced by generating two numbers from a normal 

distribution with  5 and 
2

batchs 1. The two numbers are then used as the means of two 

normal distributions with 2  4 to generate two batches with a sample size 100 each so that the 

total sample size is n 200. The parameters for the first scenario are  5, 2  4, and 
2

batchs

1.  For the second scenario, the parameters are  10, 2  4, and 
2

batchs 1. In both simulation 

scenarios, various percentages of the observations in each batch are removed to resemble an 

observation appearing below the LLOD. For batch 1 the percentage of observations below the 

LLOD is denoted as 
1%t , and similarly 

2%t  represents the percentage of observations below the 

LLOD in batch 2. Percentages of observations below the LLOD per batch considered in the 

simulation study are the following: 
1%t 5%, 

2%t 10%; 
1%t 10%, 

2%t 15%; 
1%t 20%, 

2%t 25%; and 
1%t 30%, 

2%t 35%. The results are an average of 1000 simulations.  
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The performance of the proposed EM algorithm is compared with simple substitution methods 

and an EM algorithm with the first moment of a multivariate right truncated normal distribution 

only. The simple substitution methods included are substituting the LLOD observations with 

LLOD itself, LLOD/2, and LLOD/√2.29,34 The MLE of 
2

batch cannot be estimated from the 

substitution methods. We compare our proposed EM algorithm to an EM algorithm with the first 

moment of a multivariate right truncated normal distribution only because we wanted to explore 

advantages of including the second moment in an EM algorithm when there are multiple LLOD 

values since the second moment is recommended in the case of one LLOD value.66   
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Figure 1 Plot of ̂  from the first simulation scenario with  5, 2  4, and 
2

batchs 1. A 

horizontal line is at  5. In the legend, “EM 1” represents an EM algorithm with the first 

moment of the multivariate right truncated normal distribution. Our proposed EM algorithm that 

includes first and second moments of the multivariate right truncated normal distribution is 

labeled as “EM 1 & 2”. 
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Figure 2 Plot of ̂  from the second simulation scenario with  10, 2  4, and 
2

batchs 1. A 

horizontal line is at 10. In the legend, “EM 1” represents an EM algorithm with the first 

moment of the multivariate right truncated normal distribution. Our proposed EM algorithm that 

includes first and second moments of the multivariate right truncated normal distribution is 

labeled as “EM 1 & 2”. 
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Figure 3 Plot of 2̂  from the first simulation scenario with  5, 2  4, and 
2

batchs 1. A 

horizontal line is at 2  4. In the legend, “EM 1” represents an EM algorithm with the first 

moment of the multivariate right truncated normal distribution. Our proposed EM algorithm that 

includes first and second moments of the multivariate right truncated normal distribution is 

labeled as “EM 1 & 2”. 
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Figure 4 Plot of  2̂  from the second simulation scenario with  10, 2  4, and 
2

batchs 1. A 

horizontal line is at 2  4. In the legend, “EM 1” represents an EM algorithm with the first 

moment of the multivariate right truncated normal distribution. Our proposed EM algorithm that 

includes first and second moments of the multivariate right truncated normal distribution is 

labeled as “EM 1 & 2”. 
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Figure 5 Plot of  2

batchs
̂

 from the first simulation scenario with  5, 2  4, and 
2

batchs 1. A 

horizontal line is at 
2

batchs  1. In the legend, “EM 1” represents an EM algorithm with the first 

moment of the multivariate right truncated normal distribution. Our proposed EM algorithm that 

includes first and second moments of the multivariate right truncated normal distribution is 

labeled as “EM 1 & 2”. 
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Figure 6 Plot of  2

batchs
̂

 from the second simulation scenario with  10, 2  4, and 
2

batchs 1. 

A horizontal line is at 
2

batchs  1. In the legend, “EM 1” represents an EM algorithm with the first 

moment of the multivariate right truncated normal distribution. Our proposed EM algorithm that 

includes first and second moments of the multivariate right truncated normal distribution is 

labeled as “EM 1 & 2”. 
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 ̂  Results from Figures 1 and 2 

o For both simulation scenarios, ̂  from both EM algorithms perform equally well, 

even as the percentages of observations below the LLOD in each batch increases. 

o The difference in the performance of the replacement methods, especially 

LLOD/√2, for ̂  across the simulation scenarios illustrated how sensitive these 

methods are to changes in the mean relative to the variance and the LLOD value.  

o In Figure 2, ̂   from both EM algorithms perform better than all of the 

substitution methods. 

 2̂  Results from Figures 3 and 4  

o The unreliability of the replacement methods for estimating 2 is illustrated from 

the differences in the performance of 2̂  across the simulation scenarios.  

o Our proposed EM algorithm is the best method in the second simulation scenario 

(Figure 4). 

 2

batchs
̂

Results from Figures 5 and 6 

o The substitution methods are excluded from the figures because these methods do 

not compute
2

batchs
̂

. 

o The results of 2

batchs
̂

  from each EM algorithm are comparable.  

 

 

APPLICATION TO SLEIGH DATA 

Systemic Lupus Erythematosus in Gullah Health (SLEIGH) is an observational cohort study of 

African American Gullah participants with systemic lupus erythematosus (SLE) and control 
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participants. Further details about the SLEIGH study has been published.21,26,83 In the toxicology 

and serology component of the SLEIGH study, perfluorinated chemicals (PFCs) and 

polybrominated diphenyl ethers (PBDEs) contaminant levels were measured from serum samples 

of 86 participants with systemic lupus erythematosus and 139 control participants. The wet 

weight of the PFCs and PBDEs were measured on a continuous scale in nanogram/gram (ng/g) 

using an analytical laboratory tool. The serum samples were measured in multiple batches which 

resulted in the majority of the contaminants having more than one lower limit of detection 

(LLOD) value. Further details about the SLEIGH study, the quality assurance, and quality 

control of the samples collected are published.21,26,83 Our proposed EM algorithm will be used to 

estimate the mean and variance of contaminants perfluorohexane sulfonate (PFHxS) and 

perfluorodecanoic acid (PFDA). 

 

Contaminants PFHxS and PFDA are presented on a log (base 10) ng/g scale because the 

observed data for each contaminant was not normally distributed. Frequently ecological data 

including ecological pollutant data are not normally distributed, and the data undergoes a log 

transformation in order to be normally distributed.84-87 For SLE participants, PFHxS has two 

batches with LLOD values at 
1t  - 2.303 log ng/g (0.10 ng/g in the original scale) and 

2t   

- 1.966 log ng/g (0.14 ng/g). The sample size for batch 1 is 10 and 76 for batch 2. There are 10% 

and 28.9% of the observations appearing below the LLOD in batch 1 and 2, respectively, for 

PFHxS. The two LLOD values for control participants with PFDA measurements are 
1t  

– 1.833 log ng/g (0.16 ng/g) and 
2t  - 3.507 log ng/g (0.14 ng/g). For batch 1 of PFDA the 

sample size is 70, and 2.9% of the observations appear below the LLOD. There are 7.4% of the 
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68 observations in batch 2 appearing below the LLOD for PFDA. Histograms of the 

contaminants by batch in the log ng/g scale are displayed in Figures 7 - 10.   

 

Based on our proposed EM algorithm, the sample mean of PFHxS for those with SLE in the 

SLEIGH study is – 0.502 log ng/g with a sample variance of 1.714 log ng/g and sample batch 

variance of 0.205 log ng/g. For control participants in the SLEIGH study, the sample mean of 

PFDA is – 0.414 log ng/ g, sample variance is 1.248 log ng/g, and sample batch variance is 0.288 

log ng/g. 
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Figure 7 Histogram of log transformed PFHxS for batch 1.  

 

 

 

 

Figure 8 Histogram of log transformed PFHxS for batch 2.  

 



 

64 

 

 

Figure 9 Histogram of log transformed PFDA for batch 1. 

 

 

 

Figure 10 Histogram of log transformed PFDA for batch 2. 
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DISCUSSION 

In this paper, we proposed a method for estimating MLEs of a normal distribution for an 

outcome variable that has multiple LLOD values in the observed sample. The random effect for 

the batches of data in our EM algorithm allowed us to incorporate the correlated observations 

within each batch. In the simulation study, we compared our method with substitution methods 

and an EM algorithm with only the first moment of a multivariate right truncated normal 

distribution. Substitution methods are recommended by the United States Environmental 

Protection Agency when 15% or less of the observations appear below the LLOD.34 The 

substitution methods have been shown to produce biased estimates even when the percent 

occurring below the LLOD is small.29,98 The results from our simulation study confirmed that 

MLEs from the substitution methods are biased and sensitive to the underlying mean and 

variance. Our method is more consistent and less sensitive to changes occurring in the 

underlying mean and variance relative to the substitution methods. We are able to conclude from 

the simulation study results that the variance estimate from our EM algorithm is less biased in 

comparison to the EM algorithm with the first moment of a right truncated multivariate normal 

distribution. In general the underlying mean and variance are unknown for real data applications, 

and we therefore recommend that our proposed method should be applied rather than the 

substitution methods and an EM algorithm with the first moment only.  
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5. DEVELOP AN APPROACH FOR ESTIMATING THE MEAN AND COVARIANCE 

MATRICES FOR MULTIVARIATE NORMAL RANDOM VARIABLES, WITH EACH 

MARGINAL DISTRIBUTION HAVING ONE LOWER LIMIT OF DETECTION 

ARISING FROM A SINGLE BATCH (I.E. MULTIPLE VARIABLES WITH ONE 

BATCH) 

 

INTRODUCTION 

Parameter estimation difficulties arise when sample data contains observations that appear below 

a lower limit of detection (LLOD) value. Directly estimating parameters such as the sample 

mean and variance from data with LLOD observations is analogous to conducting a complete 

case analysis.27,28  The LLOD observations are not included in the calculation, and the estimated 

parameters are biased estimates of the underlying distribution.27,28,99  

 

For simple cases with one variable, several methods have been proposed in the literature. These 

methods to include LLOD observations is to substitute the LLOD observations with the LLOD 

value, LLOD/2, or LLOD/√2 prior to computing the parameter estimates.29-37 Substitution 

methods are recommended by the United States Environmental Protection Agency when 15% or 

less of the data appears below the LLOD.34 The substitution estimation methods have been 

applied to multiple variables, but, similarly to parameter estimates from one variable, these 

estimation methods result in inaccurate inferences about the underlying distributional 

parameters.29,35,100 In a previous article a better alternative for parameter estimation under a 

truncated model using an EM-algorithm was introduced for one variable with LLOD 

observations.66 However, multiple correlated variables, each with an LLOD, has not been 

adequately addressed. 
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 Data collected for two continuous variables with an LLOD in each variable could be treated as a 

truncated bivariate normal distribution. In this article the objective is to provide an EM-solution 

for estimation of parameters from a bivariate normal distribution. This would require expressions 

for moments of the truncated bivariate normal distribution. We will first discuss the various 

components required for the E-step and M-step of the algorithm. Then the proposed EM 

algorithm is compared with other existing methods in a simulation study and real data 

application.  

 

METHODS 

Let 1Y  and 2Y represent two random vectors of size n . ijY  denotes the ith observation from the jth 

random variable where i=1,…,n and j=1 or 2. The observations within each random vector can 

be categorized as either being above or below a variable specific LLOD value. The LLOD value 

is also known as a truncation value.  The truncation value for the jth random variable is denoted 

as jt . Observations above jt are fully measured to be an exact value while observations below jt

are simply recorded as “< jt ”. The underlying distribution of 1Y  and 2Y  is a bivariate normal 

distribution with a two dimensional mean vector 
1 2y y 

   μ  and a 22 covariance matrix 

1 1 2

1 2 2

2

2

y y y

y y y

  

  

 
 
  

Σ = .  

 

Data above jt in 1Y  and 2Y   jointly follow a left truncated bivariate normal distribution with 

mean vector μ , covariance matrixΣ , and a 2 dimensional vector of truncation values 

 1 2t tt  , where support ( 1t  ,  ) x ( 2t  ,   ).  Also, the data below jt  in 1Y  and 2Y  jointly 
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follow a right truncated bivariate normal distribution ( μ ,Σ ; t ) with the support (- , 1t ) x (- ,

2t ). (Details of the probability distribution function (pdf) and moments of the distributions are 

listed in the Appendix.) 

 

EM Algorithm 

The proposed EM algorithm for estimating parameters of the bivariate normal distribution will 

be developed under a linear model (LM) framework, in anticipation of extensions to mixed 

models. For this, first 1Y implement to the LM, 1Y  and 2Y  are stacked into a single vector Y , 

which is 2 1n  dimensional. The elements in Y are sorted by the observation and variable 

number. That is  11 12 21 22 1 2, , , , ..., ,n nY Y Y Y Y YY = . The matrix form of the LM for our proposed 

EM algorithm is then denoted as  Y = Xβ+ε   , where X  is a 2 2n  design matrix, in this case 

with each column is a vector of 1’s and 0’s representing the corresponding variable, β is a 2 1

vector, ~N ,ε 0V and V is a block diagonal matrix such that  2nV I Σ   where  is a 

Kronecker product. The likelihood of Xβ and V given Y is simplified as, 

 
 

   

 
    

 
     

1

1
22

1

1
22

1

1
22

1 1
exp

22

1 1
exp

22

1 1
exp 2 .

22

n

n

n

tr

tr

L Xβ, V | Y Y Xβ V Y Xβ
V

V Y Xβ Y Xβ
V

V YY Y Xβ Xβ Xβ
V













     
 

     
 

      
 

  

YY  is an element-wise multiplication matrix with dimension 2 2n n . MLEs of the mean 

Xβ̂  and covariance matrix V  are found by maximizing the log-likelihood.  
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E-Step 

Any observation below 
jt is treated as a missing observation. The E-Step of our proposed EM 

algorithm replaces observations below jt  in Y and YYwith either the marginal, conditional, or 

joint moments from a truncated bivariate normal distribution. The moments that are replacing the 

observations below 
jt  in Y and YYdepend on the paired observations within 1Y  and 2Y . 

Paired observations in 1Y  and 2Y  can occur in four scenarios as shown in table 1.  In this table, 

observations below jt  for j = 1, 2, are considered unobserved. The corresponding moments 

needed in the E-Step are also listed in Table 1.  

Table 1 Scenarios of paired observations in 1Y  and 2Y  where i i  and j j . The moments 

required for each scenario are based on if the corresponding paired observation is below or above 

the truncation value.  

Scenarios ( i i and j j ) Moments Required for Observations 

Appearing Below jt or jt   in Y  

1) ijY  > jt  and i jY    > jt   N/A 

2) ijY 
jt  and i jY    jt    ijE Y 

jRTy and  i jE Y   
'j RTy  

3) ijY  jt  and i jY    > jt     ijE Y 
'|jRT j LTy y  

4) ijY  > jt  and i jY    jt    i jE Y   
' |j RT jLTy y  

 

In scenario 2 from Table 1, ijY  and i jY   are both below the truncation value. The support of ijY  

and i jY   are ( , )ij jY t  and ( , )i j jY t    , respectively. The joint distribution of ijY  and i jY   is a 

right truncated bivariate normal distribution with mean vector 
'j jy y 
 

 
μ , a covariance 
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matrix 
'

' '

2

2

j j j

j j j

y y y

y y y

  

  

 
 
  

Σ = , and truncation vector j jt tt 

    but with different 

supports as mentioned above. The pdf, moments, and R package to compute the moments of a 

multivariate truncated normal distribution with left and right truncation occurring simultaneously 

were provided by Manjunath and Wilhelm.79,93,94  By allowing the left truncation value to be   

and the dimension be equal to 2 in Manjunath and Wilhelm’s formulas, the pdf and moments of a 

right truncated bivariate normal distribution are constructed. Marginally, the mean of ijY in 

scenario 2 is 

1

j

j

jRT j j

j j

j

j y

y

y y y

y y

y

t

t





  





 
 
 
  
 
 
 
 

,          (1) 

and the variance is 

 

2

2 2 1

1 1

j j

j jj

jRT j

j j j

j j

j y j y

y yj y

y y

y j y j y

y y

t t

t

t t

 
 

 
 

  

 

      
     

               
                          

.   (2) 

In formulas (1) and (2),   and  denote the pdf and cumulative distribution function of a normal 

distribution, respectively. Also the marginal mean and variance of i jY   are  

'

'

' ' '

'

'

1

j

j

j RT j j

j

j

j y

y

y y y

j y

y

t

t





  









 
 
 
  
 
 
 
 

        (3) 
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and 

' '

' ''

' '

' ' '

' '

2

2 2 1

1 1

j j

j jj

j RT j

j j j

j j

j y j y

y yj y

y y

y j y j y

y y

t t

t

t t

 
 

 
 

  

 

 



 

      
     

               
                          

.  (4) 

 

Observations belonging to scenarios 3 and 4 are replaced with conditional moments of a 

truncated bivariate normal distribution. In scenario 3, the support of ijY  and i jY   are ( , )ij jY t 

and ( , )i j jY t    . Jointly ijY  and i jY    follow a truncated bivariate normal distribution  ;Σ tμ,  

with truncation occurring on the right side for ijY and the left side for i jY   . The pdf and moments 

of the truncated bivariate normal distribution with ijY right truncated and i jY   left truncated are in 

the Appendix. The conditional distribution of this distribution is a truncated univariate normal 

distribution.101 Specifically, the conditional mean and variance of ijY  given i jY   in scenario 3 are 

 
' '

'

|

jRT

jRT j LT jRT j LT

j LT

y

y y y T i j y

y

y


   


             (5) 

and  
'

2 2 2

| 1
jRT j LT jRTy y T y             (6) 

where T is the correlation between 1Y  and 2Y . The formulas for 
jRTy  and 2

jRTy are in equations 

(1)and (2). Likewise the distribution of ijY  and i jY    in scenario 4 is a truncated bivariate normal 

distribution, but ijY  is truncated on the left side while i jY   is right truncated. The conditional mean 

and variance in scenario 4 includes equations (3) and (4). In scenario 4, the conditional mean and 

variance are 

 '

' '|

j RT

j RT jLT j RT jLT

jLT

y

y y y T ij y

y

y


   


            (7) 
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and  
' '

2 2 2

| 1
j RT jLT j RTy y T y    .        (8)                                                                     

The formulas for
'j LTy , 

'

2

j LTy , 
jLTy , and 2

jLTy  are included in the Appendix. 

 

The corresponding moments for scenarios in YY  are listed in Table 2. The four scenarios in Y

from Table 1 result in 24 scenarios in YY . In the Appendix the formula by Manjunath and 

Wilhelm for 
'jRT j RTy y ,  which is the cross product moment of 

ijY  and 
i jY    where i i  and j j , 

is listed. 79 This moment is from a right truncated bivariate normal distribution, and it appears in 

Table 2. In our proposed EM algorithm, equations 1 – 4 and 
'jRT j RTy y are computed by the R 

package tmvtnorm.93,94  

 

M-Step 

 

Based on the LM, the log-likelihood of the parameters Xβ and V given Y is,  

          11 1
ln , | ln 2 ln trace 2

2 2 2

n
L Xβ V Y V V YY Y Xβ Xβ Xβ         . 

The proposed EM algorithm finds Xβ̂ by maximizing the log-likelihood. For estimating V from 

an LM, our EM algorithm maximizes the log-likelihood of V based on the conditional derivation 

of the restricted maximum likelihood approach.97 The M-step of our propose method is 

implemented through the mle2 function within the R package bbmle.102 The log-likelihood of V  

that is maximized to compute the MLEs in the proposed EM algorithm is, 

           1
1 1 1 1 11

ln ( ) ln det trace ln det .
2

L V Y V X V X V V X X V X X V YY


     
        

 
|  
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Table 2 This table includes moments for all possible scenarios in the YY  matrix. Observation number is denoted as i and j is the variable number.  

Moments that replace elements in the YYmatrix depend on the corresponding paired observation that could be either below or above the truncation value.  

If the corresponding observation is above the truncation value, a conditional moments replaces the element in YY . Marginal moments replace YYelements if  

the corresponding observation is below the truncation value.  
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SIMULATION STUDY 

The following simulation study is conducted to determine the performance of our proposed 

method in comparison to simpler methods. The simpler methods are substitution methods 

(LLOD value, LLOD/2, and LLOD/√2) and an EM algorithm that only includes the first 

marginal moments (equations (1) and (3)) of a bivariate right truncated distribution in the E-Step. 

The M-step of the EM algorithm with the first marginal moments is implemented by the lm 

function in R.81 The lm function requires only the Y and X matrices prior to computing the MLEs 

from a linear model. In our method, we must specify the negative log-likelihood function of Xβ

and V  given Y and the log-likelihood through the mle2 R function.102 By including an EM 

algorithm with only the first marginal moment in our simulation study, we will be able to 

determine whether the second and conditional moments included in our method are necessary for 

computing MLEs of parameters from a bivariate normal distribution.   

 

In our simulation study we generated data under different correlations  0.20; 0.50; 0.80  . 

For each correlation level, two data vectors of size 100 are generated from a bivariate normal 

distribution with  2 3 μ  and 
8 8 14

8 14 14





 
 
  

Σ = . Percentages of the observations 

in each data vector are removed to replicate observation appearing below an LLOD value. For 

each variable, the percentage of observations below the LLOD is denoted as jt %. The 

percentages considered in our simulation study are 1t % = 5%, 2t % = 5%; 1t % = 5%, 2t % = 

10%; 1t % = 10%, 2t % = 15%; and 1t % = 20%, 2t % = 25%. The simulation size is 1000, and the 

results reported are an average of the 1000 simulations. R version 3.3.2 was used to conduct the 

simulation study.81  
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Figure 1 Simulation results for MLE of 
1y

 under data generated with 0.20.   The horizontal 

line represents the true value for the parameter. Our EM algorithm is labeled as ‘EM’ while the 

EM algorithm with only the first marginal moments is labeled as ‘EM One’. 
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Figure 2 Simulation results for MLE of 
2y under data generated with 0.20.   The horizontal 

line represents the true value for the parameter. Our EM algorithm is labeled as ‘EM’ while the 

EM algorithm with only the first marginal moments is labeled as ‘EM One’. 
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Figure 3 Simulation results for MLE of 
1

2

y under data generated with 0.20.   The horizontal 

line represents the true value for the parameter. Our EM algorithm is labeled as ‘EM’ while the 

EM algorithm with only the first marginal moments is labeled as ‘EM One’. 
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Figure 4 Simulation results for MLE of 
2

2

y under data generated with 0.20.   The horizontal 

line represents the true value for the parameter. Our EM algorithm is labeled as ‘EM’ while the 

EM algorithm with only the first marginal moments is labeled as ‘EM One’. 
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Figure 5 Simulation results for MLE of 
1 2

2 2

y y  under data generated with  0.20.   The 

horizontal line represents the true value for the parameter. Our EM algorithm is labeled as ‘EM’ 

while the EM algorithm with only the first marginal moments is labeled as ‘EM One’. 
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Figure 6 Simulation results for MLE of  under data generated with 0.20.   The horizontal 

line represents the true value for the parameter. Our EM algorithm is labeled as ‘EM’ while the 

EM algorithm with only the first marginal moments is labeled as ‘EM One’. 
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Figure 7 Simulation results for MLE of 
1y

 under data generated with 0.50.  The horizontal 

line represents the true value for the parameter.  Our EM algorithm is labeled as ‘EM’ while the 

EM algorithm with only the first marginal moments is labeled as ‘EM One’. 
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Figure 8 Simulation results for MLE of 
2y under data generated with 0.50.   The horizontal 

line represents the true value for the parameter. Our EM algorithm is labeled as ‘EM’ while the 

EM algorithm with only the first marginal moments is labeled as ‘EM One’. 
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Figure 9 Simulation results for MLE of 
1

2

y under data generated with 0.50.   The horizontal 

line represents the true value for the parameter. Our EM algorithm is labeled as ‘EM’ while the 

EM algorithm with only the first marginal moments is labeled as ‘EM One’. 
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Figure 10 Simulation results for MLE of 
2

2

y under data generated with 0.50.   The horizontal 

line represents the true value for the parameter. Our EM algorithm is labeled as ‘EM’ while the 

EM algorithm with only the first marginal moments is labeled as ‘EM One’. 
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Figure 11 Simulation results for MLE of 
1 2

2 2

y y  under data generated with 0.50.   The 

horizontal line represents the true value for the parameter. Our EM algorithm is labeled as ‘EM’ 

while the EM algorithm with only the first marginal moments is labeled as ‘EM One’. 
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Figure 12 Simulation results for MLE of  under data generated with 0.50.   The horizontal 

line represents the true value for the parameter. Our EM algorithm is labeled as ‘EM’ while the 

EM algorithm with only the first marginal moments is labeled as ‘EM One’. 
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Figure 13 Simulation results for MLE of 
1y

 under data generated with 0.80.   The horizontal 

line represents the true value for the parameter. Our EM algorithm is labeled as ‘EM’ while the 

EM algorithm with only the first marginal moments is labeled as ‘EM One’. 
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Figure 14 Simulation results for MLE of 
2y under data generated with 0.80.   The horizontal 

line represents the true value for the parameter. Our EM algorithm is labeled as ‘EM’ while the 

EM algorithm with only the first marginal moments is labeled as ‘EM One’. 
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Figure 15 Simulation results for MLE of 
1

2

y under data generated with 0.80.   The horizontal 

line represents the true value for the parameter. Our EM algorithm is labeled as ‘EM’ while the 

EM algorithm with only the first marginal moments is labeled as ‘EM One’. 
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Figure 16 Simulation results for MLE of 
2

2

y under data generated with 0.80.   The horizontal 

line represents the true value for the parameter. Our EM algorithm is labeled as ‘EM’ while the 

EM algorithm with only the first marginal moments is labeled as ‘EM One’. 
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Figure 17 Simulation results for MLE of 
1 2

2 2

y y  under data generated with 0.80.   The 

horizontal line represents the true value for the parameter. Our EM algorithm is labeled as ‘EM’ 

while the EM algorithm with only the first marginal moments is labeled as ‘EM One’. 
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Figure 18 Simulation results for MLE of  under data generated with 0.80.   The horizontal 

line represents the true value for the parameter. Our EM algorithm is labeled as ‘EM’ while the 

EM algorithm with only the first marginal moments is labeled as ‘EM One’. 
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The results from the simulation study are displayed in Figures 1 – 18. In each figure, the 

horizontal line represents the values of the parameters that the bivariate normal distribution data 

was generated from. There are six figures for each parameter from a bivariate normal distribution 

under every correlation level. 

μ̂  Results: 

 The results for μ̂  are in Figures 1, 2, 7, 8, 13, and 14. 

 Regardless of the correlation value, the substitution methods consistently overestimated 

the μ̂  for every jt %. 

o The LLOD/2 substitution method performed the poorest for μ̂ . 

 The estimates for μ are similar for both EM algorithms when the correlation is small 

(Figures 1 and 2), but our method performed better than the EM algorithm with the first 

marginal moment for the simulation scenarios with higher correlation values (Figures 7, 

8, and 13). 

 In Figure 14, the EM algorithm only with the first marginal moment only performed 

better than our method for one truncation scenario ( 1t % = 5% and 2t % = 10%). 

 

Σ̂  Results: 

 The results for Σ̂  are in Figures 3 – 6, 9 – 12, and 15 – 18.    

 The substitution methods underestimated Σ̂  except when estimating ρ  in Figures 6, 12, 

and 18.  

 All of the estimation methods produced similar estimates for ρ  in Figures 6, 12, and 18. 
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 For 
1

2

y  
̂

and 
2

2

y
̂

, our proposed method is the best method with the exception of a few 

cases. 

o In Figures 10 and 14, the EM algorithm with the first marginal moment slightly 

performed better than our method for
2

2

y
̂

at the first two truncation scenarios ( 1t % 

= 5% and 2t % = 5%; 1t % = 5% and 2t % = 10%) only.  

o In Figure 10 at 1t % = 5% and 2t % = 5%, the EM algorithm with the first 

marginal moment barely is closer to 
1

2

y = 8 than our method.  

 Our method estimated the covariance the best even as the percentage of LLOD 

observations increased for each variable (Figures 6, 12, and 18).   

 

DATA APPLICATION 

The Systemic Lupus Erythematosus in Gullah Health (SLEIGH) study included a toxicology and 

serology component in which perfluorinated contaminant levels were recorded from serum 

samples. SLEIGH is an observational cohort study of African American Gullah participants. In 

the toxicology and serology component of SLEIGH, there are 86 systemic lupus erythematosus 

(SLE) and 139 control participants. Additional information regarding the SLEIGH study and 

quality assurance of the serum samples have been published.21,26,83 In this data application we 

will analyze the contaminant data for PFDA and PFOA from SLE participants solely. The wet 

weight of PFDA and PFOA were measured on a continuous scale in nanogram/gram (ng/g) using 

a laboratory instrument. Commonly, ecological data are log transformed in order that they can be 

assumed to be normally distributed.84-87 The MLEs of μ  and Σ for PFDA and PFOA are 

presented on a log base 10 scale. There are 15 out 86 PFDA observations (17.442%) appearing 



 

95 

 

below the LLOD value which is -3.507 log ng/g (0.03 ng/g) for SLE participants. The LLOD 

value for PFOA is -3.219 log ng/g (0.04 ng/g), and 2 out of 86 observations (2.326%) appear 

below the LLOD value for SLE participants.   

 

Table 3 SLEIGH study results from all methods are listed this table. 1Y  and 2Y  represents PFDA 

and PFOA, respectively. Estimates are in log ng/g scale.  

LLOD LLOD/2 LLOD/√2 EM EM One 

1y

̂

= -1.111 

2y
̂

= 0.547 

1

2

y
̂

= 1.852 

2

2

y
̂

= 1.134 

1 2y y 
̂

= 0.906 

̂ = 0.625 

1y

̂

= -0.805 

2y
̂

= 0.584 

1

2

y
̂

=  0.817 

2

2

y
̂

= 0.909 

1 2y y 
̂

= 0.505 

̂ = 0.586 

1y

̂

= -0.932 

2y
̂

= 0.568 

1

2

y
̂

= 1.137 

2

2

y
̂

= 0.988 

1 2y y 
̂

= 0.657 

̂ = 0.620 

1y

̂

= -1.218 

2y
̂

= 0.542 

1

2

y
̂

= 2.453 

2

2

y
̂

= 1.169 

1 2y y 
̂

= 1.062 

̂ = 0.627 

1y

̂

= -1.182 

2y
̂

= 0.542 

1

2

y
̂

= 2.223 

2

2

y
̂

= 1.168 

1 2y y 
̂

= 1.003 

̂ = 0.622 

 

 

The SLEIGH study results for the substitution methods, the proposed EM algorithm, and EM 

algorithm with the first marginal moments are in Table 3. PFDA and PFOA are labeled as  1Y  

and 2Y respectively in the table.  The MLEs for μ is larger and smaller for Σ  when comparing 

the substitution methods to the two EM algorithms. Since PFOA had very few observations 

below the LLOD value, our EM algorithm and the EM algorithm with the first marginal 

moments produced similar results for  
2y and 

2

2

y (EM: 
2y  0.542 and

1

2

y  2.453; EM One: 

2y  0.542 and 
2

2

y 1.168). With the exception of the LLOD/2 method,  ̂  is similar for each 

of the methods.  

 



 

96 

 

DISCUSSION 

Our EM-solution under the truncated model for obtaining MLEs of bivariate normal parameters 

involved marginal, conditional, and joint moments from a truncated bivariate normal 

distributions. In the simulation study we compared our method with substitution methods and an 

EM algorithm with only the first marginal moments. By including the EM algorithm with the 

first marginal moment only, we were able to determine that the joint, conditional, and second 

marginal moments in our method are beneficial for estimating bivariate normal distribution 

parameters. The simulation study illustrated that our method produced the least amount of bias 

for MLEs in most of the simulation scenarios in comparison to the other methods.   

  

Existing methods developed for estimating parameters in the context of left truncation occurring 

in multiple variables are quite different than our EM algorithm version. Our proposed EM 

algorithm includes conditional moments of a truncated bivariate normal distribution, while Jin et 

al. constructed an EM algorithm that did not include conditional moments but did include the 

generalized method of moments of a truncated multivariate normal distribution.103  There is 

another EM solution that includes conditional moments, but the conditional moments are in the 

context of multivariate normal mixture model.68  The four scenarios that occur in Y that yielded 

to the use of conditional moments in our method have been considered in an imputation method, 

but the imputation method was constructed for discrete data below an LLOD.104  

 

We applied our method to toxicology and serology data, but we believe our proposed estimation 

method is also beneficial for computing MLEs of parameters from the bivariate normal 

distribution for studies related to assays and environmental pollutants. Existing literature shows 
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research interests in estimating parameters in the context of multiple assays and environmental 

pollutants. 105-111 Our estimation method only focused on estimating parameters from a bivariate 

normal distribution. A possible future direction of our method is to extend the proposed EM 

algorithm to incorporate more than two variables. 
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6. CONCLUSIONS AND FUTURE DIRECTIONS 

 

This dissertation explored statistical estimation methods to account for continuous data with 

observations appearing below a lower limit of detection (LLOD) value. The Systemic Lupus 

Erythematosus in Gullah Health (SLEIGH) study motivated the aims of this dissertation. Many 

contaminant variables collected in the SLEIGH study had one or more LLOD values. Each 

dissertation aim is summarized below, and future directions are briefly discussed.  

 

AIM 1 CONCLUSIONS 

In aim 1 we theoretically showed that for any distribution the maximum likelihood estimates 

(MLEs) for the parameters of the underlying distribution are equivalent regardless if a left 

truncation or left censoring approach is applied to data with lower limit of detection (LLOD) 

observations. Simulation studies and a real data application numerically illustrated the theoretical 

relationship between left truncation and left censoring approaches. In order to estimate the 

parameters from an underlying distribution, the two approaches are implemented using iterative 

algorithms. The left truncation approach was implemented through an expectation-maximization 

(EM) algorithm while the left censoring approach was applied with the Newton-Raphson 

method.  

 

Despite both approaches producing identical results, we discussed the advantage of left 

truncation relative to left censoring. When the parameter space increases, implementation of the 

left truncation approach is less intensive computationally than the left censoring approach. This 

is due to the need of first, second, and partial derivatives of the log-likelihood of the parameters 

with respect to the parameters in order to implement the left censoring approach with the 
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Newton-Raphson method. The left truncation approach applied with an EM algorithm does not 

need derivatives, but it does involve the moments of a log-likelihood of the parameters given the 

observed data. This advantage motived the use of the left truncation approach and EM algorithm 

in aims 2 and 3.   

 

AIM 2 CONCLUSIONS  

The objective of aim 2 was to estimate parameters from a normal distribution when a sample 

consists of multiple LLOD values. The multiple LLOD values were a result of the contaminant 

data from the SLEIGH study being measured in separate batches by a laboratory device. The 

proposed estimation method was an EM algorithm that included moments from a truncated 

distribution. Specifically, the first and second moments of a multivariate right truncated normal 

distribution were computed in the E-step of the algorithm. The M-step maximized the log-

likelihood of parameters from a linear mixed model using a residual maximum likelihood 

(REML) approach. Without REML, the parameters in the covariance matrix was severely 

underestimated. The log-likelihood of the parameters from a linear mixed model had to be 

simplified using the trace of a matrix so that the second moment could be included in YY

matrix.  

 

Results from the simulation studies in aim 2 and a previous study illustrated that the variance 

parameter estimate improves when the second moment is included in an EM algorithm.66 We are 

also able to conclude that the second moment does not have an impact on the estimate of the 

mean parameter from a normal distribution. Lastly, in the simulation study we considered 

different values for the mean parameter of the normal distribution. Due to the consideration of 
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different parameter values in the simulation, we concluded that our EM algorithm is more 

consistent and less sensitive in comparison to substitution methods and an EM algorithm with 

only the first moment included. 

 

AIM 3 CONCLUSIONS 

Aim 3 involved constructing an EM algorithm that would estimate parameters from a bivariate 

normal distribution when data for each variable includes LLOD observations. Additionally, each 

variable had a separate LLOD value. The E-step included the marginal (first and second), 

conditional, and joint moments of a truncated bivariate normal distribution. We discussed which 

moment was necessary based on if either or both of the paired observations appeared above or 

below their respective LLOD values. In the M-step we maximized the log-likelihood of 

parameters from a linear model using REML.      

 

In the simulation studies and data application we compared our EM algorithm with the 

substitution methods and an EM algorithm that only included the first marginal moments of a 

right truncated bivariate normal distribution. Various correlation levels were considered in the 

simulation study. Regardless of the correlation level, our proposed method performed better than 

the compared methods more often than not. We concluded that the inclusion of the second 

marginal, conditional, and joint moments are beneficial for estimating parameters from a 

bivariate normal distribution.  

 

 

 



 

101 

 

FUTURE DIRECTION RELATED TO AIMS 2 AND 3 

One of the primary focus in the future is to extend our approach, which only focused on 

estimation, to hypothesis testing. At convergence for the proposed EM algorithms, the necessary 

statistics required for hypothesis testing from a linear mixed model (aim 2) and linear model 

(aim 3) are obtained. However, we believe the degrees of freedom would need an adjustment to 

account for the observations appearing below the LLOD value. One possible adjustment may 

only be to reduce the degrees of freedom by the number of first moments computed in the 

response vector, Y ,  that are unique because the LLOD observations that fall below the same 

LLOD value are replaced with the same first moment. A second possible adjustment is to reduce 

the degrees of freedom by the total number of observations appearing below the LLOD value. A 

simulation study is necessary for determining the appropriate degrees of freedom adjustment. 

  

Another direction for future work is related to generalizing the findings from aims 2 and 3 such 

that an EM algorithm could be used to estimate parameters from a multivariate normal 

distribution with data for each variable including multiple LLOD values. There are interests in 

computing MLEs of parameters from multivariate distributions for studies related to assays and 

environmental contaminants.105-111 Frequently, multiple LLOD values occur in data collected for 

assays and environmental pollutants.10,11  

 

The development of an EM algorithm that includes methods from aims 2 and 3 will require 

information about the corresponding observations from different variables. The use of marginal 

and conditional moments in the E-step will be based on the information about the corresponding 

observations from different variables. Formulas for marginal and conditional moments from a 
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truncated multivariate normal distribution have been previously derived.79,93,94,112,113 The M-step 

of the EM algorithm will maximize the log-likelihood of a linear mixed model. Similarly to aims 

2 and 3, the log-likelihood of the linear mixed model includes Y and YY . Below in Table 1, we 

provide an example of three variables with just one LLOD for each variable and the moments 

that should be included in for Y . The scenarios are constructed according to which observation 

appears below or above the variable specific LLOD value. Y  and YYbecome more complex if 

we were to extend Table 1 to include more variables with 2 or more LLOD values.  
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Table 1 Example of scenarios and moments associated with developing an EM algorithm with 

three random variables. Each of the random variables have a separate LLOD value. Observations 

below the variable specific LLOD value are replaced with either a marginal or conditional 

moment in the Y vector.  

Scenarios For Three Variables with One 

LLOD Value Each 

Moment Required for Observations 

Appearing below LLOD value in Y  

1) 
1iY  >

1t  and 
2iY  >

2t and 
3iY  >

3t  N/A 

2) 
1iY 

1t  and 
2iY 

2t and 3iY 
3t  Marginal Moment 

3) 
1iY  1t  and 

2iY  >
2t  and 3iY  >

3t  Conditional Moment 

4) 
1iY  1t  and 

2iY  
2t and 3iY  >

3t  Conditional Moment 

5) 
1iY  1t  and 

2iY  >
2t  and 3iY 

3t  Conditional Moment  

6) 
1iY  >

1t  and 
2iY 

2t  and 3iY 
3t  Conditional Moment 

7) 
1iY  >

1t  and 
2iY >

2t  and 3iY 
3t  Conditional Moment 

8) 
1iY  >

1t  and 
2iY 

2t  and 3iY >
3t  Conditional Moment 
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FUTURE DIRECTIONS RELATED TO DISCRETE VARIABLES IN SLEIGH 

The data for the contaminants was not the only data appearing below an LLOD in the SLEIGH 

study. The SLEIGH study also included discrete variables for cell counts in urine samples that 

were left truncated. The cell count variables represent the number of red blood cells per high 

power field, white blood cells per high power field, and epithelial cells per high power field. 

High power field is the area related to greatest magnification level obtained from a 

microscope.114,115 The majority of the observations for the cell counts are completely observed, 

but there are observations that are recorded as below the LLOD value at various left truncation 

values. For example, the normal range of red blood cells per high power field is 0-4, but in the 

SLEIGH study, normal ranges of red blood cells per high power field are occasionally recorded 

as <1 or <4. Due to LLOD observations occurring in cell count variables from the SLEIGH 

study, we will describe two future directions briefly.  

 

First Future Direction Related to Discrete Variables in SLEIGH 

One future direction of this dissertation could be to estimate the mean, , from a Poisson 

distribution when a sample consists of several observations appearing below two different LLOD 

values. The data with observations appearing from two different LLOD values can be thought of 

as data arising from a bivariate Poisson (BP) distribution. The BP distribution was introduced by 

Campbell in 1934 and by Aitken in 1936 as a Poisson correlation function.116,117 The BP 

distribution is constructed using three independent random variables. For example, let 1,X 2 ,X

and 3X be independent random variables where 1 1 2 2~ Poisson( ), ~ Poisson( ),X X  and 

3 3~ Poisson( ).X   Also let 1 1 3Y X X   and 2 2 3Y X X  . The distributions of 1Y  and 2Y are as 

follow, 1 1 3~ Poisson( )Y   and 2 2 3~ Poisson( )Y   . The joint distribution of 1Y  and 2Y  is 
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1 2( , ) ~BPf y y BP 1 2 3( , , )   where 1 2 3( , )Cov Y Y  and 3    0.  The probability mass function of 

the BP distribution is simplified as, 
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There are several things to note about the BP distribution. First, the random variables 1,X 2 ,X

3,X 1,Y  and 2Y  must all be positive. Second, the support of 3x is 3 1 20 min( , )x y y  . Therefore 

the summation in the BP distribution goes from 0 to 1 2min( , )y y . Lastly, recall that  

11
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For the future EM algorithm, computation of the first and second moments of 1Y  and 2Y from a 

right truncated bivariate Poisson (RTBP) distribution are required in the E-step. The moments of 

1Y  and 2Y  were established by Ahmad in 1968.118 In the M-Step, maximizing the pseudo log-

likelihood of a Poisson generalized linear mixed model is required for estimating the parameter 

of a Poisson distribution.  
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Second Future Direction Related to Discrete Variables in SLEIGH  

A second future direction is to estimate the parameters (i.e. λ1, λ2, λ3) from a BP distribution 

when observations occasionally appear below the variables’ specific LLOD values. Similarly to 

aim 3, we believe that the E-step of an EM algorithm would require the marginal, conditional, 

and joint moments of the BP distribution within the context of truncation. Marginal and joint 

moments of a truncated BP distribution exists, but the conditional moment of a truncated BP 

distribution for 1Y  appearing below the LLOD value given 2Y  appearing above the LLOD value 

does not exist.118-122 

 

Without any truncation occurring, the conditional distribution of 1Y  given 2Y  from the BP 

distribution is called the Charlier series (CS) distribution.123-126 The CS distribution and moments 

were initially constructed by Ong in 1988.123 Ding et al. (2015) constructed the probability mass 

function and moments of a truncated multivariate CS distribution, but the truncation considered 

only occurs at zero for each variable.124 Currently, there are not any other statistical methodology 

articles about a truncated CS distribution. We believe that the theoretical work by Ding et al. 

(2015) for constructing a zero truncated multivariate CS can be extended to solve the conditional 

moment of a truncated BP distribution for 1Y  appearing below the LLOD value given 2Y  

appearing above the LLOD value. 
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FINAL REMARKS 

This dissertation addressed methods for estimating of parameters within the context of LLOD 

values. Existing statistical methods related to handling LLOD observations prior to estimating 

parameters from an underlying distribution were discussed in chapters 1 and 2. Chapter 3 

addressed the first aim of this dissertation. In the first aim we established the equivalence of left 

truncation and left censoring approaches for computing MLEs of parameters from an underlying 

distribution. Despite the equivalence of the two approaches, we discussed the advantage of the 

left truncation approach relative to the left censoring approach. In chapters 4 and 5, we 

constructed estimation methods utilizing the left truncation approach to address the second and 

third dissertation aims, respectively. Chapter 4 incorporated a method for estimating parameters 

from a normal distribution when observations appeared below multiple LLOD values. The 

method proposed in Chapter 5 was an EM algorithm that computed MLEs of parameters from a 

bivariate normal distribution. Data for each variable included observations appearing below a 

variable specific LLOD value. In general we believe the estimation methods proposed in this 

dissertation are beneficial to statistical methods and applications related to data with detection 

limits.  
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7. APPENDIX 

7.1. APPENDIX FOR R CODE FROM CHAPTER 3 

EM Algorithm R code 

EM.TN.steps<-function(inc.data, mu, sigma.sq, n.missing, pdf.cdf.ratio,t.z.score){ 

  #E-step 

  sigma<-sqrt(sigma.sq) 

  #First and second moment of a right truncated normal distribution 

  exp.value<-mu-sigma*pdf.cdf.ratio 

  exp.value2<-sigma.sq*(1-t.z.score*pdf.cdf.ratio-pdf.cdf.ratio^2)+exp.value^2 

   

  #combining dataset with expected value 

  complete.data<-c(inc.data, rep(exp.value,n.missing)) 

   

  n.complete.data<-length(complete.data) 

   

   

  #M-step 

   

  mu.new<-(1/n.complete.data)*(sum(inc.data)+n.missing*exp.value) 

  sigma.sq.new<-(1/n.complete.data)*(sum(inc.data^2)+n.missing*exp.value2)-mu.new^2 

   

  list(mu.new=mu.new, sigma.sq.new=sigma.sq.new,exp.value=exp.value, 

       complete.data=complete.data,inc.data=inc.data) 

   

} 

 

EM.TN.algorithm<-function(inc.data, mu, sigma.sq, n.missing, pdf.cdf.ratio, tolerance, 

iteration.stop, t.z.score){ 

  mu.current<-NULL 

  mu.current[1]<-mu 

  sigma.sq.current<-NULL 

  sigma.sq.current[1]<-sigma.sq 

   

  iteration<-1 

  stop<-1 

   

  while(stop){ 

    EM.TN.run<-EM.TN.steps(inc.data=inc.data, mu=mu.current[iteration], 

sigma.sq=sigma.sq.current[iteration],  

                           n.missing=n.missing, pdf.cdf.ratio=pdf.cdf.ratio, t.z.score=t.z.score) 

    #Difference between current and new values 

    mu.diff<-mu.current[iteration]-EM.TN.run$mu.new 

    sigma.sq.diff<-sigma.sq.current[iteration]-EM.TN.run$sigma.sq.new 

    stop<-ifelse(mu.diff<tolerance & sigma.sq.diff<tolerance | iteration>iteration.stop, 0, 1) 
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    #Updating values 

    iteration<-iteration+1 

    mu.current[iteration]<-EM.TN.run$mu.new 

    sigma.sq.current[iteration]<-EM.TN.run$sigma.sq.new 

     

  } 

   

  list(mu.mle=mu.current[iteration], sigma.sq.mle=sigma.sq.current[iteration], 

mu.all=mu.current, sigma.sq.mle=sigma.sq.current, 

       exp.value.mle=EM.TN.run$exp.value) 

   

} 

 

###################################################################### 

###################################################################### 

###################################################################### 

 

#Example for 10% appearing below the limit of detection 

 

set.seed(2031578) 

#Simulation size 

n.sim<-1000 

#Sample size 

n.total<-100 

#Percentage below the lower limit of detection 

trunc.prob<-.10 

#Parameter values 

mean.true<-5 

var.true<-4 

#Setting up vectors 

mu.mle.loop<-matrix(data=NA, nrow = n.sim, ncol=1) 

sigma.sq.mle.loop<-matrix(data=NA, nrow = n.sim, ncol=1) 

#mean of the expectation value from the loop 

expect.loop<-matrix(data=NA, nrow=n.sim,ncol= 

prob<-matrix(data=NA,nrow = n.sim, ncol=1) 

missing.value<-matrix(data=NA,nrow = n.sim, ncol=1) 

loop.data<-matrix(data=NA, nrow=n.total, ncol=n.sim) 

mean.loop<-matrix(data=NA, nrow=n.sim, ncol=1) 

var.loop<-matrix(data=NA, nrow=n.sim, ncol=1) 

mean.trunc<-matrix(data=NA, nrow=n.sim, ncol=1) 

var.trunc<-matrix(data=NA, nrow=n.sim, ncol=1) 

pdf.cdf.ratio.vec<-matrix(data = NA, nrow=n.sim, ncol=1) 

count<-1 

 

while(count <= nrow(mu.mle.loop)){ 

  #Generating data from normal distribution 
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  loop.data[,count]<- matrix(rnorm(n.total, mean = mean.true, sd = sqrt(var.true))) 

  mean.loop[count]<-mean(loop.data[,count]) 

   var.loop[count]<-var(loop.data[,count])*(nrow(loop.data)-1)/nrow(loop.data) 

  #This matrix is for truncating the data  

  truncating<-matrix(loop.data[,count])  

  #Truncating value 

  trunc.value<-qnorm(trunc.prob)*sqrt(var.true)+mean.true 

  #All truncated data in this dataset below 

  trunc.loop.data<-subset(truncating,truncating[,1] > trunc.value)  

  mean.trunc[count]<-mean(trunc.loop.data) 

  var.trunc[count]<-var(trunc.loop.data)*((length(trunc.loop.data)-1)/length(trunc.loop.data)) 

  prob[count]<-1-length(trunc.loop.data)/nrow(loop.data) 

  missing.value[count]<-nrow(loop.data)-length(trunc.loop.data) 

  #Z-score  

  z.score<-qnorm(prob[count]) 

 pdf.cdf.ratio.vec[count]<-dnorm(z.score)/pnorm(z.score) 

   

  em.algorithm.run<-EM.TN.algorithm(inc.data=trunc.loop.data, mu=mean.trunc[count], 

sigma.sq=var.trunc[count],  

                                    n.missing=missing.value[count], pdf.cdf.ratio=pdf.cdf.ratio.vec[count], 

                                    tolerance=0.00000001, iteration.stop=30, t.z.score=z.score) 

   

  mu.mle.loop[count,1]<-em.algorithm.run$mu.mle 

  sigma.sq.mle.loop[count,1]<-em.algorithm.run$sigma.sq.mle 

  expect.loop[count]<-em.algorithm.run$exp.value.mle 

   

  #Updating the count for the while loop 

  count<-count+1  

   

  list(mu.mle.loop=mu.mle.loop, sigma.sq.mle.loop=sigma.sq.mle.loop, 

expect.loop=expect.loop) 

   

} 

 

# Estimates for mu and sigma square 

mean(mu.mle.loop) 

mean(sigma.sq.mle.loop) 

 

#MSE for mu hat 

mean.sim.mu<-mean(mu.mle.loop) 

var.sim.mu<-var(mu.mle.loop) 

bias.sim.mu<-mean.sim.mu-mean.true 

mse.sim.mu<-var.sim.mu+(bias.sim.mu^2) 

 

 

#MSE for sigma square hat 
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mean.sim.sigma.sq<-mean(sigma.sq.mle.loop) 

var.sim.sigma.sq<-var(sigma.sq.mle.loop) 

bias.sim.sigma.sq<-mean.sim.sigma.sq-var.true 

mse.sim.sigma.sq<-var.sim.sigma.sq+(bias.sim.sigma.sq^2) 
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Newton Raphson Method R Code 

 

#Function for log-likelhood with censored observations 

 

library(maxLik) 

cens.loglike<-function(param){ 

  mu<-param[1] 

  sigma.sq<-param[2] 

#Components of the log-likelihood 

  a<--0.5*n.observed*log(2*pi) 

  b<-n.observed*log(sqrt(sigma.sq)) 

  c<-sum(0.5*(y - mu)^2/sigma.sq) 

  d<-n.censored*log(pnorm(t,mean = mu,sd=sqrt(sigma.sq))) 

   

# log-likelihood 

  ll<-ifelse(n.censored==0, a-b-c, a-b-c+d) 

   

#Returning the log-likelihood value 

  ll 

} 

 

###################################################################### 

###################################################################### 

###################################################################### 

 

#Example for 10% censored 

set.seed(2031578) 

#Simulation size 

sim.num<-1000 

#Parameter values 

mean.true<-5 

var.true<-4 

#Sample size 

n.total<-100 

mu.hat.sim<-matrix(data=NA, nrow = sim.num, ncol=1) 

sigma.hat.sim<-matrix(data=NA, nrow = sim.num, ncol=1) 

n1.obs<-matrix(data=NA, nrow = sim.num, ncol=1) 

n2.cens<-matrix(data=NA, nrow = sim.num, ncol=1) 

#Proportion below the limit of detection 

censor.prob<-.10 

count<-1 

 

while( count <= nrow(mu.hat.sim)){ 

#Vector of all y observations 

  y.all <- rnorm(n.total, mean=mean.true, sd=sqrt(var.true))  
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#Left truncation value 

  t<-qnorm(censor.prob)*sqrt(var.true)+mean.true 

#Vector of observation above the left truncation value   

y<-subset(y.all,y.all > t)  

  n.observed<-length(y) 

  n.censored<-length(y.all)-n.observed 

  mu.start<-mean(y) 

  sigma.sq.start<-var(y) 

   

# Newton-Raphson method 

  NR.sim<-maxLik(cens.loglike, start=c(mu=mu.start,sigma.sq=sigma.sq.start),method = 'NR') 

  mu.hat.sim[count]<-NR.sim$estimate[1] 

  sigma.hat.sim[count]<-NR.sim$estimate[2] 

  n1.obs[count]<-n.observed 

  n2.cens[count]<-n.censored 

  count<-count+1 

   

  list(mu.hat.sim=mu.hat.sim, sigma.hat.sim=sigma.hat.sim, n1.obs=n1.obs,n2.cens=n2.cens) 

   

} 

 

#Estimates for mu and sigma square 

mean(mu.hat.sim) 

mean(sigma.hat.sim) 

#MSE for mu hat 

mean.sim.mu<-mean(mu.hat.sim) 

var.sim.mu<-var(mu.hat.sim) 

bias.sim.mu<-mean.sim.mu-mean.true 

mse.sim.mu<-var.sim.mu+(bias.sim.mu^2) 

 

 

#MSE for sigma square hat 

mean.sim.sigma.sq<-mean(sigma.hat.sim) 

var.sim.sigma.sq<-var(sigma.hat.sim) 

bias.sim.sigma.sq<-mean.sim.sigma.sq-var.true 

mse.sim.sigma.sq<-var.sim.sigma.sq+(bias.sim.sigma.sq^2) 

 

 

  



 

114 

 

7.2 Appendix for Formulas from Chapter 5 

 

 

In the main text of this chapter, we let paired observations be denoted as 
ijY  and 

i jY  where i i ,  

i = 1,…, n observations, j j , j = 1st variable, j = 2nd variable.  For simplicity, formulas in this 

Appendix refers to the first and second paired random variables as 1Y and 2Y . 

 

Bivariate Normal Distribution 

Consider two random variables, 1Y and 2Y . The joint distribution of 1 2andY Y  is a bivariate 

normal (BVN) distribution with mean vector 
1 2y y 

   μ , and a covariance matrix 

1 1 2

1 2 2

2

2

y y y

y y y

  

  

 
 
  

Σ = . The elements of Σ  include the variance of 1Y  denoted as
1

2

y , 
2

2

y is 

the variance of 2Y , the covariance of 1 2andY Y is represented as 
1 2y y  ,  is the correlation 

between 1 2andY Y , and the standard deviations of are 1 2andY Y represented by
1y

 and 
2y . The 

covariance matrix Σ is positive semi-definite. The probability density function (pdf) of the 

bivariate normal distribution is, 

   
   111

2
1 2, 2BVNf y y e

    
  

Σ

Σ
y μ y μ

 ,                                                                         

where 1 2, ,y y  Σ  is the determinant of the covariance matrix, and 1
Σ is the inverse of 

the covariance matrix. 
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The conditional distribution of 1Y  given 2Y is a normal distribution with mean 

 1

1 2 1 2

2

| 2

y

y y y y

y

y


   


    with variance  
1 2 1

2 2 2

| 1y y y    . Likewise, the conditional 

distribution of 2Y given 1Y  is a normal distribution with mean  2

2 1 2 1

1

| 1

y

y y y y

y

y


   


    with 

variance  
2 1 2

2 2 2

| 1y y y    . 

Left Truncated Bivariate Normal Distribution 

Suppose there are two random variables 1LTY and 2LTY . The support of 1LTY is
11 ( , )LT yY t  , and 

the support of 2LTY  is 
22 ( , )LT yY t  . Jointly 1LTY and 2LTY follow a left truncated bivariate 

normal (LTBVN) distribution with a mean vector 
1 2y y 

   μ , a covariance matrix 

1 1 2

1 2 2

2

2

y y y

y y y

  

  

 
 
  

Σ = , and left truncation vector 
1 2y yt t

   t . With the use the BVN pdf , 

the LTBVN pdf is expressed as, 

 
 

 
1 1 2 2

1 2 1 2

1 2 1 2

1
, ,

,y y y y

LTBVN LT LT BVN LT LT

t t
BVN LT LT LT LT

f y y f y y
f y y dy dy 

 

 

 



 
,               

where 
1 1LTyt y   and 

2 2y LTt y   . 

 

The following marginal formulas appear in Table 2 of the main text. Let the standard normal pdf 

of random variable W is 
21

2
1

( )
2

w

w e




  ,  where w . The cumulative distribution function 

(cdf) of the standard normal distribution is defined as,      Φ
w

w P W w z dz


     . 

Using the pdf and cdf of the standard normal distribution, we can express the marginal mean 
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variance of each variable. The marginal mean of 1LTY  is 

1 1

1

1 1 1

1 1

1

1
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y y

y

y y y

y y

y

t

t





  





 
 
 
  
 

  
 
 

    and 

the marginal variance of 1LTY  is 

1 1 1 1

1 11 1

1 1

1 1 1 1 1

1 1

2

2 2 1

1 1

LT

y y y y

y yy y

y y

y y y y y

y y

t t

t

t t

 
 

 
 

  

 

      
     

                                   
      

. Similarly the marginal 

mean of 2LTY is 

2 2

2

2 2 2

2 2

2

1

LT

y y

y

y y y

y y

y

t

t





  





 
 
 
  
 

  
 
 

    and 

2 2 2 2

2 22 2

2 2

2 2 2 2 2

2 2

2

2 2 1

1 1

LT

y y y y

y yy y

y y

y y y y y

y y

t t

t

t t

 
 

 
 

  

 

      
     

                                   
      

  is the marginal variance 

of 2LTY .  

 

Let LT represent the correlation between 1LTY and 2LTY . The conditional distribution of 1LTY given

2LTY is a LTN distribution with mean  1

1 2 1 2

2

| 2
LT

LT LT LT LT

LT

y

y y y LT LT y

y

y


   


     , and variance 

 
1 2 1

2 2 2

| 1
LT LT LTy y LT y     .  Also the conditional distribution of 2LTY given 1LTY is a LTN 
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distribution with mean  2

2 1 2 1

1

| 1
LT

LT LT LT LT

LT

y

y y y LT LT y

y

y


   


     , and variance 

 
2 1 2

2 2 2

| 1
LT LT LTy y LT y     .                                                                                                                                                                                                                       

 

Right Truncated Bivariate Normal Distribution 

The joint distribution of random variables 1RTY and 2RTY is a right truncated bivariate normal 

(RTBVN) distribution with mean vector 
1 2y y 

   μ , a covariance matrix 

1 1 2

1 2 2

2

2

y y y

y y y

  

  

 
 
  

Σ = , and right truncation vector 
1 2y yt t

   t . Each random variable has 

a support of 
11 ( , )RT yY t   and 

22 ( , )RT yY t  . The RTBVN pdf is denoted as, 

 

 

 
1 1 2 2

1 2 1 2

1 2 1 2

1
, ,

,

y y y y
RTBVN RT RT BVN RT RTt t

BVN RT RT RT RT

f y y f y y

f y y dy dy

 

 

 

 



 

             

where 
1 1LTyt y   and

22RT yy t   . 

The marginal distributions of 1RTY and 2RTY  are RTN distributions. The marginal mean of 1RTY  is 

1 1

1

1 1 1

1 1

1

RT

y y

y

y y y

y y

y

t

t





  





 
 
 
  
 

  
 
 

   and 

1 1 1 1

1 11 1

1 1

1 1 1 1 1

1 1

2

2 2 1
RT

y y y y

y yy y

y y

y y y y y

y y

t t

t

t t

 
 

 
 

  

 

      
     

                                   
      

   is the marginal variance                                                  
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of 1RTY . Marginally, the mean of 2RTY is 

2 2

2

2 2 2

2 2

2

RT

y y

y

y y y

y y

y

t

t





  





 
 
 
  
 

  
 
 

  and the variance of                                                                                              

is expressed as 

2 2 2 2

2 22 2

2 2

2 2 2 2 2

2 2

2

2 2 1
RT

y y y y

y yy y

y y

y y y y y

y y

t t

t

t t

 
 

 
 

  

 

      
     

                                   
      

.                                                      

 

The conditional distribution of 1RTY given 2RTY is a RTN distribution with mean 

 1

1 2 1 2

2

| 2
RT

RT RT RT RT

RT

y

y y y RT RT y

y

y


   


    and variance  
1 2 1

2 2 2

| 1
RT RT RTy y RT y                                                                                        

where RT is the correlation between 1RTY and 2RTY . Correspondingly the conditional distribution 

of 2RTY given 1RTY follows a RTN distribution with mean 

 2

2 1 2 1

1

| 1
RT

RT RT RT RT

RT

y

y y y RT RT y

y

y


   


    and variance  
2 1 2

2 2 2

| 1
RT RT RTy y RT y    .         

        

In Table 2 from the main text, the joint mean of 1RTY and 2RTY is denoted as
1 2RT RTy y .  In our 

proposed method, 
1 2RT RTy y is computed by the mtmvnorm function in the tmvtnorm package by 

Manjunath and Wilhelm.93,94 Jointly, the mean of 1RTY and 2RTY  is found using Manjunath and 

Wilhelm’s formula number 16  in their paper by allowing the lower truncation value be   and 
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the dimension be 2.79 The mean of 1RTY and 2RTY  is  
1 2

,
RT RTy y r sE X X   where

 
      

         
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, ,
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2
, ,

, ,

1 ,

, , , ,

,

, , , , ,

k k

q k k q

s k k x k x

r s r s r k

k k k

k q s k

r k s q

k q k k k

k q k q x k q x k q x x

F t F t
E X X

F F t F t F t t


 



 
 





 

  
 

 
    

 

       
  



   

rX denotes 1RTY , sX symbolizes 2RTY ,
,r s is the rth row and sth column of the covariance matrix 

Σ ,  kF x is the kth marginal density of the bivariate normal distribution,  , ,k q r sF x x is the 

bivariate marginal density. Further details about  ,r sE X X ,  kF x , and  , ,k q r sF x x  are 

explained in Manjunath and Wilhelm’s paper.79  

 

Truncated Bivariate Normal Distribution with Truncation Occurring in Opposite 

Directions 

Suppose there are two random variables 1RTY and 2LTY . The support of 1RTY is
11 ( , )RT yY t  . 

2LTY  support is
22 ( , )LT yY t  . Jointly 1RTY and 2LTY  follow a truncated bivariate normal 

distribution (TBVN) with a mean vector 
1 2y y 

   μ , a covariance matrix 

1 1 2

1 2 2

2

2

y y y

y y y

  

  

 
 
  

Σ = , and truncation vector 
1 2y yt t

   t . The TBVN pdf is denoted as, 

 

 

 
1 1
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1 2 1 2
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1
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f y y dy dy
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



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

 

                

where 
11RT yy t    and 

2 2y LTt y   . 
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The marginal distribution of 1RTY  is a RTN with mean
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and variance 
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 .                                                

 

2LTY follows a LTN with mean 
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 and variance 
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.                          

 

The conditional mean and variance of 1RTY given 2LTY are required in Table 2 of the main text. 

The conditional mean and variance are  1

1 2 1 2
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| 2
RT

RT LT RT LT

LT

y

y y y T LT y

y

y


   


     and

 
1 2 1

2 2 2

| 1
RT LT RTy y T y     where T  is the correlation between 1RTY and 2LTY .                                                                                                 

 

In a similar fashion we can determine the conditional mean and variance of 2RTY given 1LTY . This 

conditional mean and variance appears in Table 2 of the main text. The support of 1LTY is
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11 ( , )LT yY t  . 2RTY  support is
22 ( , )RT yY t  . The joint distribution of 1LTY and 2RTY  follow a 

truncated bivariate normal distribution (TBVN) with a mean vector 
1 2y y 

   μ , a 

covariance matrix 1 1 2

1 2 2
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y y y
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Σ = , and truncation vector 
1 2y yt t

   t . This TBVN 

pdf is denoted as, 
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where 
1 1y LTt y    and 

22RT yy t   . The conditional mean and variance of 2RTY given 1LTY

are  2
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RT LT RTy y T y     where T is the 

correlation between 1LTY and 2RTY .  
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