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Nothing in life is to be feared, it is only to be understood. Now is the time to understand

more, so that we may fear less.

Marie Curie
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SUMMARY

In 1909 German neurologist Korbinian Brodmann wrote “functional localization of the

cerebral cortex without the lead of anatomy is impossible... In all domains, physiology has

its firmest foundations in anatomy [1]”. While histology is the current gold standard for

studying brain microstructure, it is primarily a post-mortem technique that has an average

resolution of one micrometer making it impractical for studying the entire brain. Diffu-

sion Magnetic Resonance Imaging (dMRI) is ideally suited to study whole-brain tissue

microstructure by sensitizing the MRI contrast to water diffusion, which has a length scale

on the order of micrometers. Even though dMRI is applied clinically for the detection of

acute ischemia, the relation between tissue microstructure and the dMRI signal is complex

and not fully understood. The focus of this dissertation was the validation and develop-

ment of a new biophysical model of the dMRI signal. Notwithstanding, it is important to

keep in mind the potential clinical applications of these models, so in parallel we studied

the relationship between white matter integrity and language impairments in post-stroke

anomia. This application is of interest since response to language treatment is variable

and it is currently difficult to predict which patients will benefit. A better understanding

of the underlying brain damage could help inform on functionality and recovery potential.

Our work resulted in 9 peer-reviewed papers in international journals and 13 abstracts in

proceedings at national and international conferences.

Using data collected from 32 chronic stroke patients with language impairments, we

studied the relation between baseline naming impairments and microstructural integrity
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Summary

of the residual white matter. An existing dMRI technique, Diffusional Kurtosis Imaging

(DKI), was used to assess the tissue microstructure along the length of two major white

matter bundles: the Inferior Longitudinal Fasciculus (ILF) and the Superior Longitudi-

nal Fasciculus (SLF). The frequency of semantic paraphasias was strongly associated with

ILF axonal loss, whereas phonemic paraphasias were strongly associated with SLF axonal

loss. This double dissociation between semantic and phonological processing is in agree-

ment with the dual stream model of language processing and corroborates the concept that,

during speech production, knowledge association (semantics) depends on the integrity of

ventral pathways (ILF), whereas form encoding (phonological encoding) is more localized

to dorsal pathways (SLF). Using a smaller dataset of 8 chronic stroke subjects whom un-

derwent speech entrainment therapy, we assessed if naming improvements were supported

by underlying changes in microstructure. Remarkably, we saw that a decrease in semantic

errors during confrontational naming was related to a renormalization of the microstruc-

ture of the ILF. Together, these two studies support the idea that white matter integrity (in

addition to regional gray matter damage) impacts baseline stroke impairments and disease

progression. Acquiring accurate information about a patient’s linguistic disorder and the

underlying neuropathology is often an integral part to developing an appropriate interven-

tion strategy.

However, DKI metrics describe the general physical process of diffusion, which can

be difficult to interpret biologically. Different pathological processes could lead to similar

DKI changes further complicating interpretation and possibly decreasing its specificity to

disease. A multitude of biophysical models have been developed to improve the specificity

of dMRI. Due to the complexity of biological tissue, assumptions are necessary, which

can differ in stringency depending on the dMRI data at hand. One such assumption is that

axons can be approximated by water confined to impermeable thin cylinders. In this disser-

tation, we provide evidence for this “stick model”. Using data from 2 healthy controls we

show that the dMRI signal decay behaves as predicted from theory, particularly at strong
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Summary

diffusion weightings. This work validated the foundation of a biophysical model known

as Fiber Ball Imaging (FBI), which allows for the calculation of the angular dependence

of fiber bundles. Here, we extend FBI by introducing the technique Fiber Ball White Mat-

ter (FBWM) modeling that in addition provides estimations for the Axonal Water Fraction

(AWF) and compartmental diffusivities. The ability to accurately estimate compartment

specific diffusion dynamics could provide the opportunity to distinguish between differ-

ent disease processes that affect axons differently than the extra-axonal environment (e.g.

gliosis). Lastly, we were able to show that FBI data can also be used to calculate compart-

mental transverse relaxation times (T2). These metrics can be used as biomarkers, aid in the

calculation of the myelin content, or be used to reduce bias in diffusion modeling metrics.

Future work should focus on the application of FBI and FBWM to the study of white

matter in post-stroke anomia. Since FBWM offers the advantage of isolating the diffusion

dynamics of the intra- and extra- axonal environments, it could be used to distinguish be-

tween pathological processes such as glial cell infiltration and axonal degeneration. A more

specific assessment of the structural integrity underlying anomia could provide information

on an individual’s recovery potential and could pave the way for more targeted treatment

strategies. The isolation of intra-axonal water is also beneficial for a technique known

as dMRI tractography, which delineates the pathway of fiber bundles in the brain. dMRI

tractography is a popular research tool for studying brain networks but it is notoriously

challenging to do in post-stroke brains. In damaged brain tissue, the high extra-cellular

water content masks the directionality of fibers; however, since FBI provides the orienta-

tional dependence of solely intra-axonal water, it is not affected by this phenomenon. It

is important to understand that caution should be taken when applying biophysical models

(FBWM/FBI vs. DKI) to the diseased brain as the validation we provided in this work was

only for healthy white matter and these experiments should be repeated in pathological

white matter.
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CHAPTER 1

DIFFUSION WEIGHTED MAGNETIC RESONANCE IMAGING AND THE

MEASUREMENT OF WHITE MATTER MICROSTRUCTURE

1.1 Introduction

The organization of white matter spans over several orders of magnitude in size. The aver-

age diameter of axons is ∼ 1 µm with some axons having lengths up to 1 m or more. Cap-

turing structural information that encompasses all these different length scales is a major

remaining challenge for neuroscience. Techniques like Electron Microscopy (EM) (aver-

age resolution of 0.2 nm) are ideally suited to study the smallest structures; however, using

EM for studying the entire central nervous system would be extremely time consuming

(likely even impossible). In addition, EM does not allow for the study of in vivo samples.

On the other hand, Magnetic Resonance Imaging (MRI) is commonly used to study the

in vivo brain in its entirety, albeit with resolutions that are on the order of ∼ 1 mm. Dif-

fusion Magnetic Resonance Imaging (dMRI) is an MRI technique that can help us bridge

this gap by sensitizing the image to the diffusion of water molecules (a physical process

that happens at the µm scale). This chapter will describe the basic principles of dMRI in-

cluding the physics of diffusion, the diffusion MRI sequence, and the most common ways

of interpreting the dMRI signal (e.g. Diffusion Tensor Imaging (DTI)). For more in depth

information, the reader can refer to [2]. Once a basic understanding of dMRI is established,

we will cover how it is commonly used in clinical applications. The chapter will conclude

with some remaining questions and challenges which will be partially addressed in this

work.
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CHAPTER 1. DMRI AND WHITE MATTER MICROSTRUCTURE

1.2 Diffusion Magnetic Resonance Imaging

1.2.1 General principles

Water molecules at temperatures above absolute zero (0 K) are constantly in motion and

collisions between the particles will result in their random displacement. This phenomena

was first described by the botanist Robert Brown in 1827 who studied pollen grain sus-

pended in water [3]. He observed that the pollen would go on “a random walk” under the

microscope and coined the process Brownian motion, which is also known as diffusion.

Almost 100 years later, Einstein published the mathematical groundwork behind Brownian

motion (an outgrowth of his PhD work), which in turn also served as confirmation for the

existence of molecules [4]. Einstein showed that the probability of a particle displacing

a certain distance r after a time t can be described by a Gaussian Probability Distribution

Function (PDF):

P (r, t) = (4πDt)−3/2exp(− r2

4Dt
), (1.1)

with D the diffusion coefficient of that particle. P (r, t) is also commonly known as the

average diffusion propagator, an example of which is shown in Figure 1.1 (blue).

The Gaussian shape of the displacement PDF results in what is known as the Einstein

relation of diffusion, which states that the mean square displacement of the particles is

directly proportional to the D and the diffusion time (t) :

< r2 >= 6Dt, (1.2)

with the angular brackets denoting the average of r.
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Figure 1.1: The displacement probability distribution function: Gaussian free diffusion (in blue)
and restricted non-Gaussian diffusion (in red).

In reality, Equation 1.1 is only valid for free diffusion in unrestricted homogeneous me-

dia where the diffusion process can be described by a single scalar (D). In white matter,

elements such as cell walls form barriers to the water molecules resulting in displacements

that are smaller than to be expected from Equation 1.1. This results in a P (r, t) that de-

viates from a Gaussian distribution. An example is depicted in Figure 1.1 (red). Since

tissue microstructure has a direct effect on the diffusion dynamics, then studying diffusion

can provide information on that underlying tissue microstructure. Two questions remain:

1. How is the diffusion dynamics of biological tissue measured? and 2. How does the

diffusion process relate to tissue properties?

In 1963, Stejskal and Tanner proposed an elegant way of sensitizing the MRI signal

to diffusion: the Pulsed Gradient Spin Echo (PGSE) technique [5]. Modern diffusion se-

quences can all be traced back to modifications of the original PGSE experiment. To under-

stand PGSE it is helpful to begin with an intuitive analogy first given by Hahn in 1953 (see

Figure 1.2). Picture a group of runners lined up in starting blocks out of which all leave

at the same time (Figure 1.2A). Suppose that each runner can only run in their respective

lane and that each lane determines the runner’s speed, with the runner on the inside running

3



CHAPTER 1. DMRI AND WHITE MATTER MICROSTRUCTURE

the slowest and the runner on the outside running the fastest (Figure 1.2B-C). At a certain

time the runners are asked to turn around and run back to the start (Figure 1.2D). Since all

runners are going at a constant speed determined by their lane they will reach the finish line

at the exact same time. A picture is taken as soon as the runners reach the finish (Figure

1.2F). In MRI, where runners are replaced by proton spins, this phenomenon is called an

echo and the crossing of the finish line symbolizes the acquisition of the Magnetic Reso-

nance (MR) image. When all runners cross the finish line at the same time the signal is

maximized. If the runners were able to switch lanes while turning they would reach the

finish line at different time points since their speed would have changed. In this scenario,

less runners would be in the picture at the finish line. This “switching of lanes” happens

through processes like diffusion, which results in MR signal loss.

Figure 1.2: Famous analogy for the spin echo phenomenon given by Hahn in 1953 on the cover of
physics today (drawing by Kay Kaszas) [6]. “Cover art from Physics Today 6.11 (1953) reproduced
with the permission of the American Institute of Physics.”

4



CHAPTER 1. DMRI AND WHITE MATTER MICROSTRUCTURE

The basic building blocks of the PGSE sequence are demonstrated in Figure 1.3a.

Briefly, the initial 90◦ Radio Frequency (RF) pulse flips all the spins into the transverse

(x,y) plane where the signal can be measured (this is standard practice in many MRI se-

quences). This flip is followed by the first diffusion weighting gradient (diffusion gradient

pulse 1) during which the spins undergo a phase shift that is spatially dependent. This spa-

tially dependent shift is analogous to having faster and slower runners determined by their

lanes. Gradient pulse one is turned off after a duration δ, which is followed by a 180◦ RF

pulse that flips the spins. Next, the second diffusion gradient pulse is turned on, which is

identical to the first one. If the spins are at the same spatial location they will receive the

same amount of phase shift as during diffusion gradient pulse 1 and after a time δ all the

spins will be back in phase (i.e., creating an echo). If the spins changed location, like dur-

ing diffusion, the spins will be out of phase after a time δ resulting in signal loss. The spins

in voxels with a high D will be out of phase more than the spins in voxels with a low D.

This difference in D will manifest itself as a difference in signal attenuation (Figure 1.3b).

The direction (x, y, z) of diffusion gradient pulse 1 (and 2) determines in which direction

the diffusion is being sensitized. Note that the combination of the two gradient and two

RF pulses only sets up the image contrast and has to be followed by another sequence that

acquires the image. The image acquisition module that is most frequently used is the Echo

Planar Imaging (EPI) sequence, which minimizes the effects of motion.

Stejskal and Tanner also introduced the b-value, which indicates how sensitive the se-

quence is to diffusion (i.e., the strength of diffusion weighting) in addition to T2-decay. At

low b-values, only voxels with very high diffusivity will experience signal loss, but at high

b-values, even low diffusivities will result in phase incoherence.
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(a) (b)

Figure 1.3: (a) Top: Diagram of the PGSE experiment. Bottom: The phase-evolution of the spins.
(b) Raw dMRI image. Voxel A has a higher D than voxel B (in the direction of the gradient pulse)
resulting in a difference in signal intensity. Assuming the voxels have a similar T2.

The b-value of a PGSE experiment is calculated by [5]:

b = γ2G2δ2(∆− δ/3), (1.3)

where γ is the proton gyromagnetic ratio (267.5×106 · rad · s−1/T), G is the gradient

strength, and ∆ is the time between the gradient pulses.

The following two sections will cover the most common ways of interpreting the dMRI

signal. Research on dMRI signal interpretation is still very active and a consensus has

yet to be reached on the most appropriate technique. There are two main strategies to

characterizing the dMRI signal: by way of pure physics parameters or by way of tissue

modeling parameters. The difference between them will be explained in more detail in the

next sections together with the most common strategies to obtain each. These examples are

not exhaustive but are intended to give the reader a basic understanding of dMRI modeling.

The interested reader can refer to [7, 8] for more details.
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1.2.2 Pure Physics Parameters

Pure physics parameters are general physical properties that characterize the water dif-

fusion process (e.g. the diffusivity (D) or the diffusional kurtosis (K)). These metrics

have shown to be sensitive to tissue properties but they have no explicit connection to the

underlying microstructure. That is, these parameters can be used to describe any diffu-

sion process in any setting. Pure physics parameters are calculated by fitting mathematical

functions to the dMRI signal (e.g., diffusion signal attenuation curve) as closely as possi-

ble. These functions are often referred to as “model-free” functions since they do not make

any assumptions about the geometry or composition of the underlying tissue (for a con-

trasting approach see tissue modeling parameters in Section 1.2.3). We will briefly go over

the basics of three commonly used techniques: DTI, Diffusional Kurtosis Imaging (DKI),

and the bi-exponential signal model. Q-space imaging (e.g., Diffusion Spectrum Imaging

(DSI)) also belongs to this category but will not be covered in this thesis. Interested readers

are referred to [9].

Diffusion Tensor Imaging

DTI was developed in the early 90s and can be considered as one of the simplest dMRI

analysis techniques [10, 11]. Notwithstanding, it has produced some strong research, and

it is still the most widely used tool for clinical applications. The starting point for DTI is

the series expansion of the diffusion NMR signal derived by Tanner [12]:

ln[S(b,n)/S0] = −bD +O(b2), (1.4)

with S(b,n) the measured dMRI signal in a direction n at a predefined b-value, D the dif-

fusivity, and S0 the measured dMRI signal without diffusion weighting (i.e., b = 0 s/mm2).

DTI assumes that the diffusion dynamics can be accurately described by a Gaussian PDF,

which justifies neglecting the higher order terms in Equation 1.4 (O(b2)). In this case,
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Equation 1.4 simply describes a line with the slope equal to the diffusivity D. This is illus-

trated in Figure 1.4. In brain, DTI is only accurate at low b-values (up to b =1000 s/mm2),

at higher b-values the behavior deviates from linear and more complicated equations are

needed (e.g., see Section 1.2.2 Diffusional Kurtosis Imaging).

Figure 1.4: Comparison of DTI and DKI fitting models. For DTI, the logarithm of diffusion-
weighted signal intensity (circles) as a function of the b-value is fit, for small b-values, to a straight
line. In brain, this fit is often based on the signal for b = 0 and b = 1000 s/mm2. For DKI, the
logarithm of the signal intensity is fit, for small b-values, to a parabola. In brain, this fit may be
based on the signal for b = 0, b = 1000, and b = 2000 s/mm2. Reproduced from Jensen, Jens H.,
and Joseph A. Helpern. “MRI quantification of non-Gaussian water diffusion by kurtosis analysis.”
NMR in Biomedicine 23.7 (2010): 698-710 with the permission of John Wiley and Sons.

When diffusion in tissue is isotropic (i.e., the diffusivity is the same in every direction)

measuring the diffusivity in one direction would be sufficient to characterize the whole

diffusion process. In white matter however, the diffusion characteristics depend strongly

on the chosen direction. This is the result of microstructural ordering (e.g., the existence of

fiber bundles), which is still appreciable at the scale of the imaging voxel. In this case, the

correct representation would be to use a three-dimensional Diffusion Tensor (D) to describe
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the anisotropic diffusion process:

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 . (1.5)

D is made up of 6 unique elements: three diagonal elements (Dxx, Dyy, Dzz) which rep-

resent the D along each of the major axes, and three off diagonal elements (Dxy, Dyz,

Dxz) which correspond to the correlation of the displacements along each pair of principal

directions. For anisotropic diffusion Equation 1.4 can be rewritten as:

ln[S(b,n)/S0] = −bD(n) +O(b2), (1.6)

with

D(n) =
3∑

i,j=1

ninjDij. (1.7)

Since D contains 6 unknowns, in practice S(b,n) is measured at a minimum of 6 dif-

ferent directions resulting in 6 equations with 6 unknowns (using Equation 1.6 and 1.7),

which can be solved using methods such as linear least squares to find D.

Four metrics are commonly derived from D:

• Fractional Anisotropy (FA) [13]: Characterizes the degree of diffusion anisotropy.

When FA = 1, the diffusivity is maximised along one direction while all other direc-

tions have a diffusivity of 0. When FA = 0, the diffusivity is equal in all directions.

FA =
1

2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2√

λ2
1 + λ2

2 + λ2
3

, (1.8)

λ1, λ2, λ3 are the three eigenvalues of D and λ1 ≥ λ2 ≥ λ3.
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• Mean Diffusivity (MD): The average diffusivity over all directions.

D̄ =
λ1 + λ2 + λ3

3
(1.9)

• Axial Diffusivity (AD): The diffusivity along the principal direction of diffusion.

D‖ = λ1 (1.10)

• Radial Diffusivity (RD): The average diffusivity perpendicular to the principal direc-

tion of diffusion.

D⊥ =
1

2
(λ2 + λ3) (1.11)

The D is also used to determine the path of least hindrance to diffusion [14, 15]. In DTI

this is simply the direction of the principal eigenvector of D, which is also considered to

be the local fiber orientation. These voxel-wise local orientations can subsequently be used

for different types of fiber tractography (see Section 1.3).

Diffusional Kurtosis Imaging

DKI is a natural extension of DTI which takes into account the non-Gaussian effects of

water diffusion [16]. As mentioned in Section 1.2.1, tissue microstructure can cause the

PDF to deviate from a Gaussian. From statistics, we know that the non-Gaussianity of any

probability distribution can be quantified through its Kurtosis (K). Intuitively, K can be

considered a measurement of tissue complexity since it reflects barriers to diffusion. DKI

starts with the same series expansion as DTI (Equation 1.6) but now includes the second

10
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order term [16]:

ln[S(b,n)/S0] = −bD(n) +
1

6
b2D2(n)K(n) +O(b3). (1.12)

K(n) is the diffusional kurtosis K in direction n and is defined as:

K(n) =
D

2

D2(n)

3∑
i,j,k,l=1

ninjnknlWijkl, (1.13)

with Wijkl an element of the kurtosis tensor (W). W is a 4th order tensor with 15 unique

elements. Equation 1.12 now contains a total of 21 unknowns (6 from D(n) and 15 from

K(n)) implying that at least 21 Diffusion Weighted Images (DWI) are necessary for DKI

(not counting S0). Notice that for K = 0 (Gaussian diffusion) Equation 1.12 reduces to

Equation 1.6. Figure 1.4 demonstrates how the addition of the K term in Equation 1.12

results in a better fit of the diffusion data up to b ≈ 3000 s/mm2. In brain, a typical DKI

protocol exists of two b-values (e.g. b = 1000− 2000 s/mm2) with a minimum of 30

gradient directions and a handful of b = 0 s/mm2 images.

Three metrics are commonly derived from W:

• Mean Kurtosis (MK)(K̄): The average kurtosis over all directions.

• Axial Kurtosis (AK) (K‖): The kurtosis along the principal direction of diffusion.

• Radial Kurtosis (RK) (K⊥): The average kurtosis perpendicular to the principal di-

rection of diffusion.

The W can also be used in combination with the D to define the likelihood of diffusion in

each direction. The directional probability of diffusion is more commonly referred to as

the diffusion Orientation Distribution Function (dODF) (see Figure 1.5) [17]. The maxima

of these functions are considered to be the local fiber orientations and can be used for fiber

tractography (see Section 1.3). An important difference between the local fiber orientations
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as calculated by DTI is that the kurtosis based dODF can have multiple maxima and thus

can represent multiple fiber bundles within one voxel. Figure 1.5 shows an example of a

Gaussian dODF based on the D alone and the kurtosis dODF based on both the kurtosis

and the diffusion tensor. The details on how to calculate the kurtosis dODF are beyond the

scope of this work but can be found in [18].

Figure 1.5: An example of a Gaussian dODF (left) and a kurtosis dODF (right). The amplitude of
the dODF reflects the likelihood of diffusion in each direction. The direction of the dODF maxima
is commonly considered to equate to the direction of the underlying fiber bundle. By definition,
Gaussian dODFs are limited to one maximum. The kurtosis dODF can have multiple maxima and
thus represent voxels with multiple fiber bundles.

Bi-Exponential

An alternative approach to DKI is to model the non-linear behavior of the dMRI signal as

a function of b-value (Figure 1.4) by a bi-exponential function [19, 20]. As we have seen

previously, Gaussian diffusion can be described by:

S(b,n) = S0 · e−bD, (1.14)

which is analogous to Equation 1.4 (the mathematical foundation of DTI) without the

second order term. The bi-exponential model assumes that diffusion in the brain can be

accurately characterized by two distinct Gaussian diffusion processes with their own re-

spective diffusivities (D1 and D2):

S(b,n) = f · S0 · e−bD1 + (1− f) · S0 · e−bD2 (1.15)
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and f is the fraction of the signal coming from compartment 1. Equation 1.15 can be fit

to the acquired data to get estimations of D1, D2 and f . In practice, the bi-exponential

model tends to accurately explain the dMRI signal behavior well in human brain when

using one exponential with a low diffusivity and the other with a high diffusivity up to

b ≈ 6000 s/mm2 [19]. Initially, it was thought that these two Gaussians represented the

intra- and extracellular space respectively. However, experimental data has shown that this

is likely not the case (for a review see [21]). This last step of interpreting the pure physical

fitting parameters in the context of tissue microstructure is what is done by tissue modeling

and what will be discussed in the next section.

1.2.3 Tissue Modeling Parameters

Tissue models are developed to provide specific measures (i.e., tissue modeling parame-

ters) of the underlying microstructure that attempt to give biological meaning to the pure

physical properties of diffusion. They are often tissue specific (e.g., white matter) and re-

quire simplifications to deal with the heterogeneous nature of biological tissue. The dMRI

signal response is then predicted for this simplified system which in turn is fit to the exper-

imental data. These simplifications have turned out to be difficult to validate and is one of

the biggest remaining challenges in dMRI. This section will briefly cover four different tis-

sue models: the Composite Hindered and Restricted Model of Diffusion (CHARMED), the

White Matter Tract Integrity Model (WMTI), Neurite Orientation Density and Dispersion

Imaging (NODDI) and Fiber Ball Imaging (FBI). These models were chosen specifically

because they highlight the progression of tissue modeling throughout the years upon which

we will further build in this work. A multitude of other models exist but are beyond the

scope of this thesis. The reader is referred to [22] and [8] for review.
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Composite Hindered and Restricted Model of Diffusion (CHARMED)

While preceded by a handful of other models [23, 24], CHARMED was the first geomet-

rical model to successfully be applied to human dMRI data in vivo [25, 26]. CHARMED

uses a two-compartment model to characterize white matter diffusion. It includes one com-

partment with restricted diffusion that represents the axons as impermeable cylinders with

a predefined distribution of diameters, and another compartment for the extra-axonal space

which is modeled using an anisotropic Gaussian wherein all other cell-types are consid-

ered to be in fast exchange. The amount of parameters that need to be estimated is large.

CHARMED requires at a minimum the estimation of 11 parameters for voxels with only

one fiber orientation and a minimum of 15 parameters for voxels with crossing fibers. This

is not only a challenging non-linear optimization problem, it also requires a large amount

of dMRI data (around 169 data points at a minimum) with b-values up to 10.000 s/mm2.

Such a dataset is challenging to acquire on clinical scanners and within clinically feasible

scan times. The following two models (WMTI and NODDI) were the first two attempts to

create clinically applicable tissue models.

White Matter Tract Integrity Model

The WMTI model is a tissue model created specifically for the interpretation of DKI data

[27]. By leveraging the information captured in the diffusion and kurtosis tensors, WMTI

does not require complicated non-linear fitting (like CHARMED). In contrast to the pure

physical DKI metrics, WMTI parameters are more specific to the underlying microstructure

while still only requiring the acquisition of a DKI dataset (i.e., b = 0− 2000 s/mm2 and a

minimum of 21 gradient directions). Before discussing the output parameters, it is impor-

tant to understand that the model is only valid in white matter and that it makes a couple of

key assumptions further restricting its validity to specific parts of the brain. WMTI models

white matter as two non-exchanging Gaussian compartments using two diffusion tensors

(intra-axonal (Da) and extra-axonal (De)). In general, this approximation only holds for
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bundles of axons that are largely colinear (for more information see [27]).

The WMTI output parameters are visualized in Figure 1.6 and include:

Figure 1.6: Graphical representation of the output parameters from the WMTI model. Figure
created by Andreana Benitez, PhD (reprinted with permission).

• Axonal Water Fraction (AWF) (f ): The percentage of MRI visible water that is con-

tained in axons.

f =
Kmax

Kmax + 3
, (1.16)

with Kmax being the maximal directional kurtosis that can be calculated from W.

• Intra-axonal diffusivity (Da): The diffusivity along the axis of the axons.

Da = tr(Da), (1.17)

with tr symbolizing the trace operator and Da is the intra-axonal diffusion tensor.
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• Extra-axonal parallel diffusivity (De,‖): The Diffusivity along the primary direction

of diffusion in the extra-axonal space.

De,‖ = λe,1, (1.18)

with λe,1 the principal eigenvalue of the extra-axonal diffusion tensor De.

• Extra-axonal radial diffusivity (De,⊥): The average extra-axonal diffusivity along the

directions perpendicular to the principal direction of diffusion in the extra-axonal

space.

De,⊥ =
λe,2 + λe,3

2
, (1.19)

with λe,2 and λe,3 the second and third eigenvalue respectively of De.

• The Tortuosity of the extra-axonal space (α):

α =
De,‖

De,⊥
(1.20)

Da and De can be calculated from the directional diffusivities and kurtoses as determined

by DKI by:

De,i = Di[1 +

√
Kif

3(1− f)
] (1.21)

Da,i = Di[1−

√
Ki(1− f)

3f
] (1.22)
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Neurite Orientation Dispersion and Density Imaging (NODDI)

Neurite Orientation Density and Dispersion Imaging (NODDI) is probably the most widely

used tissue model [28]. NODDI’s popularity can be attributed to its clinically feasible pro-

tocol, the active imaging framework, and the availability of easy to use software. It assumes

a three compartment model: an intra-cellular thin cylindric compartment, an extra-cellular

compartment with hindered diffusion, and a CSF compartment with isotropic free diffu-

sion. As the name implies, it has two major outputs: the neurite density (which is closely

related to the AWF) and the neurite orientation dispersion. The neurite dispersion is mod-

eled through a cylindrically symmetric Watson distribution (see figure 1.7), which implies

the existence of only one main neurite orientation. Notice that the collective word neurite

is used which encompasses both axons (i.e., white matter) and dendrites (i.e., gray mat-

ter). Since the data acquisition is relatively sparse (around 90 diffusion weighted images),

NODDI relies on a multitude of assumptions to diminish the number of parameters that

need to be estimated. Most importantly, the intra-axonal diffusivity Da is assumed fixed at

1.7 µm2/ms, and the extra-axonal diffusivities are all fully determined by the orientation

dispersion and the neurite density.

Fiber Ball Imaging

Fiber Ball Imaging (FBI), on the other hand, is not a multi-compartment model. Instead,

FBI assumes that at strong diffusion weightings (i.e., high b-values) the dMRI signal is

dominated by only one compartment: the intra-axonal compartment [29, 30, 31]. Similar

to WMTI and NODDI, the axons are modeled by impermeable, thin, and straight cylin-

ders. However, their distribution is now fully described by a fiber Orientation Distribution

Function (fODF), which allows for complex geometries. This concept was first introduced

by Jespersen et al [32]. fODFs describe the density of fibers in each direction (x, y, z) and

are useful both for tissue modeling and tractography (see Section 1.3).

The key result of FBI is that the fODF can be estimated directly from the dMRI signal
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Figure 1.7: Illustration of a set of Watson distributions with the same mean orientation but different
orientation dispersion index: OD = [0.04, 0.16, 0.5, 0.84, 1.0]. The Watson distribution is cylin-
drically symmetric, hence showing only the cross-sectional view through the symmetry axis which
coincides with its mean orientation. Reproduced from J. Zhang, Hui, et al. “NODDI: practical
in vivo neurite orientation dispersion and density imaging of the human brain.” Neuroimage 61.4
(2012): 1000-1016. with the permission of Elsevier.

at high b-values through [29]:

f(n) =

√
bDa

π
T−1
F (S/S0,n), (1.23)

where T−1
F is the inverse Funk transform. In practice, the inverse Funk transform is

calculated using a spherical harmonic expansion of the DWI signal S/S0 [33]. The FBI

theory also provides an estimation for the parameter ζ , which reflects the microstructure of

the underlying voxel. Specifically, ζ is the ratio between the AWF and the square root of

the intra-axonal diffusivity (Da) and can be estimated by:

ζ =
f√
Da

= a0
0

√
b

π
, (1.24)

with a0
0 the lowest order spherical harmonic of the DWI signal. A standard FBI MR proto-

col would include a set of b = 4000 - 6000 s/mm2 images with a minimum of 64 gradient

directions and a couple of b = 0 s/mm2 images. FBI will be explained in greater detail
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in Chapter 4 - Section 4.3 where we extend this theory to also provide estimations for the

AWF and the compartmental diffusion tensors Da and De.

1.3 Tractography

The previous two sections explained how the dMRI signal can be used to find voxelwise

fiber orientations using for example: the principal eigenvector in DTI, the maxima of the

kurtosis dODF in DKI, or the fODF maxima in FBI. Tractography is the process of con-

necting all these local fiber orientations into a global set of fiber bundles. Figure 1.8 shows

an example of whole brain tractography. There are three main fiber tracking algorithms:

deterministic tractography, probabilistic tractography, and global tractography. Herein, we

will only focus on deterministic tractography, which will be important to understand the fol-

lowing chapters. The interested reader can refer to [34] and [35] for a complete overview

of all tractography strategies.

Figure 1.8: Example of whole brain fiber tractography.

Before delving into specifics, it is important to understand that the resulting fiber tracts

are only indirectly related to axons. In DTI and DKI, we trace the path of least hindrance to

diffusion, which is likely related to the underlying fiber bundles but certainly not identical.

For example, since DTI by definition only has one principal diffusion direction, the local

fiber orientation will essentially be an average of all underlying fiber directions. Naturally,

this becomes problematic if more than one fiber direction is present in which case the local

fiber orientation will not accurately reflect the underlying fibers. Even the kurtosis dODF
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will suffer from this same problem when fiber bundles intersect at a very small angle.

fODFs are an attempt to resolve this issue as they represent the density of fibers in each

direction (in comparison to the most likely path of diffusion). However, fODFs require

axons to be modeled, which as we discussed previously, has been notoriously difficult

to validate. In any case, fiber tracts should never be interpreted as individual axons (or

even axon bundles) and one needs to be extremely cautious when using tracts directly for

quantification.

After determination of the local fiber orientation, the starting points of the fiber tracking

algorithm need to be defined. These starting points are commonly called seeds and can

either be placed in a Region of Interest (ROI) (i.e., a specific subset of voxels), or they

can cover the whole brain. In ROI-based tractography, the primary interest is the subset

of fibers that start from this pre-defined region, which can either be manually drawn or

determined by an atlas. Care needs to be taken when specifying pure gray matter ROIs

since the diffusion orientation tends to be ill-defined here. Whole-brain tractography on

the other hand, attempts to map the entire brain-network as is commonly done in the field

of connectomics. For this the seeds can be placed exclusively in white matter, which has

the advantage of providing more accurate orientations but which tends to over-represent

long fibers. An alternative strategy would be to seed at the gray-white matter boundary. An

example of the two commonly used seeding strategies is given in Figure 1.9.

Once a seed is placed, the next step is to integrate the local fiber orientations. The

most basic form of integration is called the Euler method, which follows the orientation of

the seed voxel for a predefined step-size and then re-assess the orientation at the adjacent

voxel. Higher order integration methods exist and details can be found in [34]. The Eu-

ler method requires the orientations to be known at locations that do not always coincide

with the voxel-grid. This is done through interpolation of the fiber orientations. The sim-

plest interpolation algorithm is called nearest-neighbour, which as the word implies simply
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Figure 1.9: Wholebrain tracking can be launched from the white matter (left) or from the white
mattergray matter interface, where the fibers are known to originate from (right). Reproduced from
Jeurissen, Ben, et al. “Diffusion MRI fiber tractography of the brain.” NMR in Biomedicine 32.4
(2019): e3785. with the permission of John Wiley and Sons.

adopts the orientation of the nearest neighbouring voxel. Nearest-neighbour interpolation

is not recommended since it results in large interpolation errors. The most common form

of interpolating the orientations is tri-linear interpolation. In tri-linear interpolation, the

orientation of all 8 neighbouring voxels is taken into account in a weighted sum based on

the distance to each voxel. Lastly, some criteria need to be set that define when the fiber

tracking ends. Two popular strategies are to use an FA threshold and an angular threshold.

If a voxel is reached with an FA value below the threshold the tracking algorithm assumes

it entered gray matter and will terminate. The angular threshold sets a biologically plausi-

ble maximum to the angle between two consecutive orientations. In addition, one can also

define a termination ROI, which will terminate the tract as soon as the fiber reaches a voxel

specified within this ROI. Once the fiber tract is complete, the algorithm will move to the

next seed until a predefined number of seeds or tracts is reached.

1.4 Clinical Applications of dMRI

Bread and butter dMRI is used daily in the hospital for the assessment of acute ischemia,

for the characterization of tumors and infections, and at a lower frequency for surgical

planning. For a review see [36]. In the early nineties, researchers discovered that ischemia

leads to a drop in D̄ which is detectable within minutes of onset and before any changes
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are apparent on conventional T2-weighted sequences [37]. The sensitivity and specificity

for acute ischemia is higher with dMRI than with CT or conventional MRI making it the

modality of choice if time permits. In addition, dMRI is ideally suited for dating the le-

sion since the D̄ changes follow a well-known trajectory of diminished values in the acute

phase, pseudo normalization, and increased values in the chronic phase. The dating of

the lesion helps with treatment planning and prognosis. dMRI is also commonly used for

differentiating different types of tumors and infections. The benefit seems to arise largely

from the differentiation between vasogenic and cytotoxic edema. Both types of edema have

an increased T2 but only cytotoxic edema has a drop in D̄. Gaining popularity is the use of

dMRI tractography for neurosurgical planning. For example, tractography can be used to

map out the fiber bundles surrounding a tumor informing the surgeon on how to optimally

approach the resection. In other cases, the major motor and/or language bundles can be

mapped pre-surgery in an attempt to avoid causing damage to these crucial functions.

1.5 Challenges and Unanswered Questions

dMRI is a popular research tool that has seen exponential growth since the early nineties.

Figure 1.10, which shows the amount of publications on PubMed over time with key words

diffusion and MRI is a nice demonstration of this growth. Unfortunately, the clinical ap-

plication of dMRI has not followed this same trend. All clinical applications use either

the raw dMRI signal, the D̄, or in rare cases the full D, which were all developed in the

early days of dMRI. A big remaining problem is the lack of specificity to microstructural

change of the conventional pure physical diffusion parameters (i.e., D̄ or FA). For example,

a voxelwise drop in D̄ could have a multitude of origins ranging from cell swelling to in-

flammation. In fact, after almost thirty years it is still not fully understood what biological

changes cause the famous diffusivity drop in acute ischemia. This lack of specificity has

caused a considerable amount of confusion in the field and has given rise to sets of papers

with contradictory conclusions. It is worth mentioning here that the bulk of translational
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imaging studies use large databases to study disease severity and progression. While these

studies are critical for advancing our understanding of disease, they are not useful for clini-

cal decision-making, which happens on an individual basis. It is our hope that the discovery

of more specific metrics will allow for the development of more individualistic tools.
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Figure 1.10: The number of publications on PubMed with the key words diffusion and MRI

In 1997, Stanisz et al. were among the first to use a comprehensive tissue model to

estimate specific microstructural metrics of excised optic nerve tissue [24]. CHARMED

was an extension of this idea to human in-vivo brain [26]. It quickly became obvious that

these techniques required large amounts of data and complicated algorithms. In reaction

to this, several simpler models were developed (e.g. NODDI [28] and WMTI [27]), which

required much stronger assumptions about the underlying biology. Since there is no agree-

ment on what these assumptions should be, a myriad of tissue models have been developed

over the past years all with their own unique solutions [7, 8]. Many models turned out to

be oversimplified and FBI was developed as a compromise by using a simple model but

only at a very specific imaging regime [29]. Knowing which assumptions are valid when

will be critical for the future of dMRI and the field is slowly switching its focus from the

development of new models to the validation of current ones. In Chapter 4, we provide

some validation for the commonly used thin cylinder approximation for axons, which we

then use to further develop a better founded tissue model in Section 4.3.
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CHAPTER 2

CURRENT UNDERSTANDING OF NAMING AND NAMING IMPAIRMENTS

AFTER STROKE

2.1 Introduction

Today, approximately 1 in 250 people in the United States live with an acquired language

impairment (i.e., aphasia) resulting from brain injury [38]. A hallmark symptom of post-

stroke aphasia is anomia or the inability to accurately name words. Word production is a

fundamental feature of what makes us human, and losing this trait is debilitating and can

cause a considerable amount of suffering and frustration. This chapter will discuss how

anomia typically manifests post-stroke, as well as how it is studied. Even though we will

focus solely on spoken word production, it is important to mention that similar deficits

can arise in other modes of communication such as in sign language [39]. Since anomia

can be extremely diverse, it is useful to start by understanding how naming occurs. We

will focus on the initial steps of speech production using the well supported lemma model,

which spans from “thinking of speaking” to word selection with its respective phonetic

form [40]. The final steps of speech production, which govern motor system control (e.g.,

articulation) will not be covered in this work since anomia is an impairment of linguistic

and not motor capabilities. Several competing models of naming exist and the reader is

referred to [41] for a review. After covering the cognitive theory of word production, for

which evidence comes largely from the study of error patterns and response times, we

will switch to the neural substrates of word production. In this context, we will discuss

the elementary Wernicke-Lichtheim-Geschwind “house” model and the more modern dual

stream model of language. The chapter will end with some challenges and unanswered

questions that will be our focus in this dissertation.
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2.2 Word Production

2.2.1 Cognitive Theory: The Lemma Model

According to the lemma model, word production is a serial two-step process consisting of

lexical selection and form encoding [40] (see Figure 2.1).

Figure 2.1: Serial two-system architecture of the Lemma model: the two stages of lexical selection
and three stages of form encoding [40]. Reproduced from Levelt, Willem JM. “Spoken word produc-
tion: A theory of lexical access.” Proceedings of the National Academy of Sciences 98.23 (2001):
13464-13471. Copyright (2001) National Academy of Sciences, U.S.A

Levelt first introduced the different steps of the lemma model by making use of a pic-

ture naming task. Upon viewing a picture, one starts sifting through the mental dictionary,

called the lexicon, in search for its meaning. Formally, “the meaning” is called the lexical

concept commonly denoted by all capital letters. For example, upon viewing a picture of

a horse a likely choice would be the lexical concept HORSE but depending on the context

the answer could also be ANIMAL or FARM. After a lexical concept is selected, the ap-

propriate lemma is activated. The lemma is identical to the word listed in the dictionary,

while the lexical concept is a broader term that consists of all semantic features related to
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that lemma. Intuitively, lexical selection can be considered as the translation of thoughts

into words. A key concept of the lemma model is that lexical selection is subject to com-

petition. Different lexical concepts and their respective lemmas will be activated but only

one will be selected for the next step that prepares the chosen lemma for articulation: form

encoding. The transition from lexical selection to form encoding is called crossing the rift.

The rift’s presence is responsible for the well-known tip of the tongue feeling by occasion-

ally hindering the access to the sound structure of the desired word (form encoding) after

already having accessed the meaning of the word (lexical selection).

Figure 2.2: Form encoding of the word horses. (left) The upper stratum shows nodes representing
morphemic phonological codes and their phonemic spellouts. The lower stratum shows nodes rep-
resenting syllabic articulatory scores. (right) Corresponding form-processing stages. ω = phono-
logical word; σ = syllable [40]. Reproduced from Levelt, Willem JM. “Spoken word production: A
theory of lexical access.” Proceedings of the National Academy of Sciences 98.23 (2001): 13464-
13471. Copyright (2001) National Academy of Sciences, U.S.A

Figure 2.2 demonstrates the steps involved in form encoding of the plural noun horses:

1) retrieval of the morphemic phonological code, 2) prosodification and syllabification, and

3) phonetic encoding. Activation of the lemma horse (marked for plural use) triggers the

morpheme <horse> and the morpheme <iz>. Morphemes are the smallest unit in a lan-
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guage with meaning, which are coupled to their phonemic code in the mental lexicon (in

this case: /h/, /O:/, /r/,/s/ and /l/,/z/) (step 1). Prosodificiation on the other hand, which

in the English language mainly consists of the formation of syllables (step 2), happens

while speaking. This is necessary because syllabification is context dependent. For exam-

ple, the syllabification of horses and horse is different even though they are both associated

with the same lexical concept HORSE. To increase efficiency, linguists have suggested that

the phonetic encoding (step 3) of the most common syllables are prepared and ready to

access in a mental structure called the syllabary (see Figure 2.2). The syllable boundaries

(from step 2) are passed to the phonetic encoding mechanism which in turn searches the

syllabary for a match. During phonetic encoding it is also decided how the syllabi can be

fluently stringed together (the concatenation). These two types of information: the pho-

netic encoding and their concatenation is called the articulatory score which is sent to the

motor apparatus for execution and word production. For a more detailed discussion on

the Levelt model and its challenges see [42]. Cognitive models, such as the Levelt model,

help us understand what steps are involved in the production of words and aid in the for-

mation of a hypothesis on how the brain controls word production. The following section

describes two models that attempt to unravel the neurobiological basis of language namely

the Wernicke-Lichtheim-Geschwind model and the dual stream model of language.

2.2.2 Neurobiological Theories

Early Aphasiology: Wernicke-Lichtheim-Geschwind model

In the late 19th century physicians Paul Broca, Carl Wernicke, and Ludwig Lichtheim laid

the foundation for the first localizationist model of language. Through the study of post-

mortem brains from patient’s with language impairments they introduced the first known

language centers of the human brain (Figure 2.3): Broca’s area that was believed to control

speech planning and production (area M) [43], Wernicke’s area that was believed to store

information on word sounds for speech comprehension (area A) [44], and a concept center

27



CHAPTER 2. CURRENT UNDERSTANDING OF NAMING

(introduced by Lichtheim) that was believed to store the meaning of words (area B) [45].

According to early beliefs, damage to any of these centers would result in a unique set

of language impairments and in a particular aphasia subtype (e.g., a lesion in Broca’s area

tends to lead to Broca’s aphasia). Figure 2.3 depicts the organization of these three different

language centers as proposed by Lichtheim in 1885 [45]. Geschwind revitalized the model,

almost a 100 years later, and further emphasized that efficient communication between

these language centers is required and that their mere disconnection would also result in

aphasia [46]. This theory is most commonly known as the Wernicke-Lichtheim-Geschwind

model, the classic model, or the house model.

Figure 2.3: Wernicke-Lichtheim-Geschwind “house” model. Reproduced from On aphasia. By L.
Lichtheim, MD, Professor of Medicine in the University of Berne. Brain 1885; 7: 433484.

The exact anatomical location of these language centers is not entirely well established.

A recent survey done by the society for the neurobiology of language showed that 50%

of participants (mostly highly experienced language researchers) agreed on the location

of Broca’s area but only 26% agreed on the anatomical location of Wernicke’s area [47].

Figure 2.4 shows both the original definition and location with the majority vote for Broca’s

and Wernicke’s area. The most popular definition coincided with the pars opercularis and

pars triangularis of the Inferior Frontal Gyrus (IFG) for Broca’s area, and with the posterior
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part of the Superior Temporal Gyrus (STG) and the inferior part of the Supra Marginal

Gyrus (SMG) for Wernicke’s area. Unfortunately, the location of the concept or meaning

center was not part of the survey and its whereabouts is also under debate. Lichtheim

himself proposed that it was located somewhere subcortically, but the latest research points

to the existence of a widely distributed semantic network that interacts with many of the

other sensory systems (e.g., vision, gustatory) [48]. The left temporal lobe, however, does

seem to play a key role in the final word selection process.

Figure 2.4: Top row: Location of Broca’s area (left) and Wernicke’s area (right) that received the
most votes in a survey done by the society for the neurobiology of language. Bottom row: Original
location as put forward by Broca (left) and Wernicke (right). Numbers in the bottom left corner
represent the percentage of votes received. Figure is an adapted version of figure 2 and figure
3 from Tremblay, Pascale, and Anthony Steven Dick. “Broca and Wernicke are dead, or moving
past the classic model of language neurobiology.” Brain and language 162 (2016): 60-71. with
permission from authors
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In 2004, Indefrey and Levelt conducted a meta-analysis, including results of approx-

imately a 100 papers, to resolve the neurobiological origins of the Lemma model [49].

They showed that Wernicke’s area is implicated in phonological code retrieval by compar-

ing functional Magnetic Resonance Imaging (fMRI) studies that looked at the activation of

language tasks that depend on the phonological code (e.g. picture naming) with activation

patterns of tasks that didn’t (e.g., pseudoword reading). In the same paper, they demon-

strated the involvement of Broca’s area in the syllabification of words during naming.

The house model is still included today as a part of all medical school curricula to

teach the classification of the different aphasia subtypes, but it is considered mostly ob-

solete by the research community. One of the main problems with the model is that it is

focused on a handful of solitary gray matter areas that function as language hubs. The

more modern perspective is that language is supported by a small amount of different lan-

guage networks. For example, Broca’s area is unlikely the sole control center for speech

production but likely plays a crucial part in a speech production network. The existence of

networks perhaps explains why it is hard to pinpoint a single anatomical location for these

language regions. Geschwind already advocated for a more connectionist point of view by

introducing the arcuate fasciculus as one of the key language regions (Figure 2.5 left) but

we now know that many more white matter structures support language (Figure 2.5 right).

Researchers are working on revising and extending the house model, but unfortunately,

there is currently not one agreed upon alternative theory. The interested reader can go to

[50] for a review.

Dual Stream Model of Language

One such elaborate extension of the house model is the dual stream model of language

introduced by Hickok and Poeppel in 2000 (further revised in 2004 and 2007) [51]. It is

comparable to the two-stream hypothesis of the visual system, with the basic principle be-

ing that the sensory system (in this case the primary auditory cortex) interacts both with a
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Figure 2.5: An emerging picture of perisylvian long association fiber pathways supporting lan-
guage. The image on the left shows the “classic” arcuate fasciculus. The image on the right shows
the additional fiber pathways that possbily support language. Reproduced from Tremblay, Pascale,
and Anthony Steven Dick. “Broca and Wernicke are dead, or moving past the classic model of
language neurobiology.” Brain and language 162 (2016): 60-71. with the permission of Elsevier.

conceptual network (i.e, the ventral stream) and with a network that encodes motor control

(i.e., the dorsal stream). Humans rely heavily on both systems while deciding “what word

to say” (ventral stream) and “how to say it” (dorsal stream). Convincing evidence for the

existence of the two streams comes from the old aphasia literature, which established a

double dissociation between speech repetition and auditory comprehension. For example,

subjects with transcortical sensory aphasia are able to repeat sentences without understand-

ing them, while patients with conduction aphasia are able to grasp the content of a sentence

but are unable to reproduce it. Based on this existing literature, Hickok and Poeppel worked

out the most probable segments in each stream and their approximate locations are shown

in Figure 2.6left: the ventral stream (pink) encompasses the middle and inferior portions of

the temporal lobe, and the dorsal stream (blue) spans from the parietal-temporal junction

to Broca’s area. Notice how the emerging picture of important Perisylvian white matter

pathways for language (from Figure 2.5) overlaps nicely with the black arrows as drawn by

Hickok and Poeppel.

Indefrey and Levelt also found evidence in their meta-analysis for the involvement of

the temporal lobe in word naming, specifically they implicated the left mid MTG in lemma

retrieval and lemma selection (Figure 2.6 right). This area is adjacent to part of the ventral
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stream (i.e., lexical retrieval area) as proposed by Hickok and Poeppel which functions as

a relay station between phonological representations and semantic content. In addition,

the dual stream’s phonological network overlaps with the anatomical area put forward by

Indefrey and Levelt (i.e., mid-post Superior Temportal Sulcus) for phonological code re-

trieval. Lastly, both models also point to the Sylvian Temporal-Parietal (SPT) area as a

relevant contributor to the interface between the phonological network and the articulatory

network. Figure 2.6 summarizes the similarities between the dual stream model (left) and

the study done by Indefrey and Levelt that demonstrate the neurobiological underpinnings

of their cognitive model (right). To an approximation, we can see that the ventral stream

is involved in the first step of word production (i.e, lexical selection) and that the dorsal

stream governs the subsequent steps of form encoding and articulation.

Figure 2.6: Anatomical location of regions involved in word naming. As proposed by the dual
stream model of language (left) and the Levelt model (right). Figure on the left is an adapted
version of Figure 1 from Hickok, Gregory, and David Poeppel. “The cortical organization of speech
processing.” Nature reviews neuroscience 8.5 (2007): 393., with permission from authors and the
Figure on the right is an adapted version of Figure 5 from Indefrey, Peter, and Willem JM Levelt.
“The spatial and temporal signatures of word production components.” Cognition 92.1-2 (2004):
101-144.

2.3 Anomia

Essentially everybody with aphasia experiences word finding difficulties, or anomia, to

some degree. Anomia is extremely diverse and manifestations depend on where in the
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word retrieval process (see section 2.2 ) the problems arise. Identifying at which level the

naming difficulties occur is useful to determine the best treatment approach. The most

common strategy is to study error patterns during word naming using a confrontational

naming test (e.g., Philadelphia Naming Test (PNT)). Naming deficits are often targeted

by Speech Language Pathologists (SLP) since they tend to reflect overall communication

skills and language therapy has proven to be beneficial for individuals with anomia both at

the acute and the chronic state. However, treatment results are inconsistent.

Section 2.2 discussed how word naming is largely a two step process starting with

lexical selection and ending with form encoding governed by two anatomically distinct

streams. Not surprisingly, confrontational naming in subjects with aphasia is often charac-

terized by two different types of error outputs called semantic and phonemic paraphasias.

Breakdowns in the initial steps of word naming (i.e, lexical selection) will result in se-

mantic paraphasias or errors related to the meaning of a word. For example, uttering the

semantically related word table when shown a picture of a chair. A disruption further down

the word forming pipeline will result in a type of speech production error known as phone-

mic paraphasia. In this case, the spoken word contains incorrect phonemes (e.g., fable in

stead of table). If there is little to no resemblance to the phonemes of the target word the

error is classified as a neologism. In some severe cases, mistakes against both semantic

content and phonemes can be made at the same time in which case the error is labelled as

a mixed paraphasia. Breakdowns can also occur either before lexical selection and/or after

form encoding; however, these impairments are not considered under the umbrella that is

anomia. For example, failures after form encoding will result in motor control and not lin-

guistic issues, which is defined as apraxia of speech. Failures before lexical selection can

arise from deficits in visual and/or conceptual processing. A cognitive test (e.g., pyramid

and palm trees) is commonly done to assess impairments in the understanding of words.

Often, subjects with anomia are not impaired in their understanding but they are unable to

access the correct linguistic construction. Note, that it can be challenging to distinguish

33



CHAPTER 2. CURRENT UNDERSTANDING OF NAMING

these types of non-linguistic errors from paraphasias.

2.4 Magnetic Resonance Imaging and the Study of Anomia

Our understanding of naming and naming impairments has increased a lot since the early

works from Broca and Wernicke, which was largely driven by the development of new tech-

nologies. Broadly speaking, there are two approaches to study language: 1) “the theoreti-

cal approach”, which entails studying the nature of language through response times, error

patterns and dissociations, and 2) “the methodological approach”, which combines brain

mapping techniques and language batteries to unravel its neurobiological origin. Next, we

will briefly discuss a few popular brain-mapping methods used to study the brain-language

interaction. Even though a wide variety of technologies are used for the study of the brain,

e.g.: Electroencephalogram (EEG), Positron Emission Tomography (PET), Transcranial

Magnetic Stimulation (TMS), this section will focus on the most common applications

of MRI to the study of naming impairments. Specifically, we will briefly cover struc-

tural imaging (T1- and T2- weighted sequences), functional Magnetic Resonance Imaging

(fMRI), and dMRI.

2.4.1 Structural Imaging: T1-weighted and T2-weighted MRI

Tissues types tend to have unique longitudinal (T1) and transverse relaxation (T2) times.

Some MR sequences take advantage of this difference in relaxation time and use it as their

dominant contrast mechanism for visualization (e.g., T1-weighted or T2-weighted imag-

ing). For example, liquids like Cerebro Spinal Fluid (CSF) have both a prolonged T1 and

T2 compared to other brain tissues, which is why CSF appears bright on a T2-weighted

image and dark on a T1-weighted image (see figure 2.7).

Brain lesions, such as those caused by ischemia, are often clearly visible on T1- and

T2-weighted images and can be delineated by an expert reader. Lesion maps by them-
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Figure 2.7: Liquids like CSF have long T1 and T2 relaxation times resulting in a bright appearance
on a T2-weighted image (right) and a dark appearance on a T1-weighted image (left).

selves, however, are difficult to interpret but when converted into standard space compar-

isons between patients are feasible. Two group-analysis strategies are popular: 1) lesion

subtraction analysis [52] and 2) Voxel-based Lesion Symptom Mapping (VLSM) [53]. The

former method requires one to categorize all subjects into two groups; one group wherein

everyone shares a particular deficit and another wherein the deficit is absent. The lesion

locations can then be subtracted between both groups and the remaining voxels are often

designated as those responsible for the language deficit under study. A disadvantage of

this technique is the challenge of creating both groups since language deficits are often not

binary. An alternative strategy is VLSM, which entails running a t-test for each voxel to

determine if there is a significant difference in a particular behavioral metric between the

subjects that have this voxel lesioned versus those that do not. If the t-test is significant,

it is often assumed that this particular voxel is important for the behavioral metric under

study. Since there are tens of thousands of voxels in the brain, it is important to correct for

multiple comparisons. An issue that is worth mentioning here is that traditionally this test

is run in a mass univariate way, that is, all voxels are considered to be independent of one
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another. However, we now know that the damage between voxels can be highly correlated

since they can be part of the same vascular supply [54]. One solution is to do multivariate

lesion symptom mapping [55]. VLSM, both uni- and multivariate, is widely used today to

study anomia.

2.4.2 Functional Magnetic Resonance Imaging

Blood Oxygen Level Dependent (BOLD) fMRI has been called one of the “greatest method-

ological success stories in science in the past 20 years”. BOLD fMRI visualizes activated

brain regions by taking advantage of the difference in magnetic properties between oxy-

hemoglobin and deoxyhemoglobin in combination with the fact that blood oxygen content

changes when oxygen is in higher demand. During activation, neurons require more oxygen

and the body’s autonomic reaction is to send extra oxygen to these areas. Since deoxyhem-

golobin is paramagnetic (shortens T2), an influx of extra oxygen after activation will result

in an increase of the signal. BOLD fMRI has been used extensively by all branches of

neuroscience to study the brain behavior relationship. Most commonly, the BOLD signal

at rest will be compared to the BOLD signal during a particular task (e.g., word naming).

Areas with a significantly lower signal during rest are suggested to be recruited by the brain

to complete the task at hand.

2.4.3 Diffusion Weighted Magnetic Resonance Imaging

Chapter 1 explained in detail the theory behind dMRI and how it can be used to probe tissue

microstructure. dMRI has been gaining popularity in recent years to study anomia since it

is ideally suited to probe white matter connections and their integrity (for more details see

section 2.5). Unfortunately, the interpretation of dMRI is still a challenge, which this thesis

attempts to improve upon in Chapter 4.
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2.5 Challenges and Unanswered Questions

Even though 60% of persons with aphasia exhibit near or complete spontaneous recov-

ery within the first 6 months, many have long-lasting language deficits. As mentioned

earlier, the treatment for chronic aphasia consists of speech therapy, which can lead to re-

markable improvement. However, because post-stroke brain damage is different for each

patient, the clinical outcomes are unpredictable. Unfortunately, conventional metrics of

cortical post-stroke damage can only partly explain the severity of aphasia and the like-

lihood of treatment success; moreover, this limitation may likely be related to the degree

of white matter damage beyond the stroke lesion that is pervasive after strokes and not

usually mapped. Cerebral ischemia can result in significant gray and white matter injury,

with previous studies showing that white matter, after adjusting for metabolic demands,

might actually be more vulnerable to ischemia than gray matter. Notwithstanding, many

studies focus on cortical necrosis or lesion overlap on structural MRI as an indicator for

clinical representation and recovery potential(see section 2.4.1). Previous studies in our

lab have shown that white matter damage can continue beyond the necrotic stroke lesion,

suggesting that white matter integrity is compromised in an area larger than initially ex-

pected, and connectivity (not only lesion overlap) between gray matter regions should be

included. Thus, a more detailed evaluation of white matter networks in aphasia is central

to a better understanding of linguistic deficits and recovery outcomes. Several connectivity

studies have already attempted to resolve this issue, although those studies mostly investi-

gated the number of tracts present. This approach has been criticized in the past as it can be

influenced by diffusion anisotropy, curvature, and the length of connections independent

of connectivity strength. It is likely more informative to study the microstructure of the

residual language network (e.g., using DKI). In addition, the white matter connections of

the dual stream model of language remain largely unexplored. Having empirical valida-

tion of this model would help us better understand the neurobiology of naming and speech
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production. Chapter 3 of this dissertation will focus on the assessment of residual white

matter networks in patients with aphasia in order to serve two aims: 1) to determine the

crucial networks supporting semantically and phonologically correct speech production,

and 2) to quantify longitudinal changes in WM microstructure (neuroplasticity) and how

they support treatment-mediated recovery.
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CHAPTER 3

IMPACT OF REGIONAL WHITE MATTER INTEGRITY ON POST-STROKE

LINGUISTIC DEFICITS UNDERLYING ANOMIA AND ANOMIA RECOVERY

This chapter is based on the following publications:

• McKinnon, Emilie T., Julius Fridriksson, Alexandra Basilakos, Gregory Hickok, Argye E. Hillis, M. Vittoria Spampinato,

Ezequiel Gleichgerrcht, Chris Rorden, Jens H. Jensen, Joseph A. Helpern, and Leonardo Bonilha. “Types of naming errors in

chronic post-stroke aphasia are dissociated by dual stream axonal loss.” Scientific reports 8, no. 1 (2018): 14352.

• McKinnon, Emilie T., Julius Fridriksson, G. Russell Glenn, Jens H. Jensen, Joseph A. Helpern, Alexandra Basilakos, Chris

Rorden, Andy Y. Shih, M. Vittoria Spampinato, and Leonardo Bonilha. “Structural plasticity of the ventral stream and aphasia

recovery.” Annals of neurology 82, no. 1 (2017): 147-151.

• McKinnon, Emilie T., Jensen H. J., Rorden C.,Basilakos A., Gleichgerrcht E., Fridriksson J, Helpern A. Joseph and Bonilha

Leonardo. Perilesional white matter microstructure and aphasia recovery. Abstract presented at SNL 2018. Proceedings of the

Society for the neurobiology of language; 2018 August 16-18; Quebec City, Canada.

• McKinnon, Emilie T., Marebwa B., Rorden C.,Basilakos A., Gleichgerrcht E., Fridriksson J. and Bonilha Leonardo. Syner-

gism between cortical damage and white matter disconnection contributes to aphasia severity. Oral presented at SNL 2018.

Proceedings of the Society for the neurobiology of language; 2018 August 16-18; Quebec City, Canada.

3.1 Introduction

In this chapter, we investigate if the regional integrity of the white matter network is a strong

predictor of specific linguistic deficits as predicted by the dual stream model (Section 3.2).

We hypothesized that a double dissociation exists, where residual structural dorsal stream

integrity is a determinant of phonological processing, whereas ventral stream integrity is

a determinant of semantic processing. We employed DKI-based tractography to locate

white matter pathways focusing on the superior and inferior longitudinal fasciculi (dorsal

and ventral stream, respectively) and quantified their integrity using DKI-based diffusion

metrics. Using a multivariate analysis we assessed their contribution, along with cortical
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damage and aphasia characteristics, to phonological and semantic paraphasias during nam-

ing prior to therapy. In section 3.3, we also explored if improvements on confrontational

naming tasks were supported by changes in white matter microstructural integrity of ex-

isting fibers. Recovery related neuroplasticity is often associated with the strengthening

or the reestablishment of structural connections. We hypothesized that therapy-related im-

provements in semantic and phonological processing would result in detectable changes in

the ventral and dorsal stream respectively. DKI-based metrics calculated along the streams

before and after therapy were used in a multivariate analysis to assess if their local recon-

figurations related to improvements in phonological and semantic processing after therapy.

Next, we present some preliminary pilot data on predicting therapy outcomes from baseline

white matter integrity (Section 3.4) and on the synergism between gray and white matter

damage (Section 3.5)

The last section, section 3.6, will cover the development of a new and improved pipeline

for the study of anomia after stroke. The studies performed in Section 3.2 and 3.3 were

limited in their study of whole brain white matter integrity. That is, they focused on specific

white matter tracts without taking into account the integrity of most other fiber bundles. In

addition, there was no knowledge of the cortical regions that were being connected by the

white matter bundles under study. The new pipeline provides the opportunity to do a whole

brain white matter integrity assessment between hundreds of cortical ROIs.

3.2 Types of Naming Errors in Chronic Post-Stroke Aphasia are Dissociated By Dual

Stream Axonal Loss

3.2.1 Introduction

Many stroke survivors experience language impairments (aphasia) beyond six months after

a dominant hemisphere stroke [56]. One of the most common and debilitating impair-

ments in individuals with chronic aphasia is the inability to accurately produce language,
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commonly represented by difficulties in naming objects or actions (anomia) [57, 58, 59].

Naming is often assessed in the clinical setting through confrontational naming tests, during

which the individual with anomia is either unable to produce the correct name for a target

item, or generates words that are related in sound or meaning with the target (paraphasias).

Paraphasias are erroneous attempts that relate to the target, but are inaccurate regarding the

chosen speech units (phonemic paraphasias), or are real words that relate in meaning to the

intended word (semantic paraphasias). For example, when shown a picture of a pencil, a

phonemic paraphasia could be an utterance such as wencil, whereas a semantic paraphasia

could be pen.

Paraphasias offer a critical window into the mechanisms of speech production because

they represent discrete deficits regarding 1) the spoken sound structure (phonemic) vs. 2)

speech related knowledge association (semantic). They provide the opportunity to deter-

mine if these processes dissociate into different anatomic-functional pathways. Notably,

they permit the assessment of a recent neurolinguistic theory, the dual stream model of

speech processing, which suggests that distinct anatomical streams map phonological and

lexical-semantic content retrieval during speech processing [51]. The model suggests the

existence of two streams: a ventral, or what stream, which maps between lexical and se-

mantic representations of knowledge associations, and a dorsal, or how stream, that maps

between auditory and articulatory-motor representations for phonological production. In

the context of a naming task, both networks are assumed to participate at integrated dif-

ferent levels of the naming process, lexical-semantic (ventral networks) and phonological

encoding (dorsal networks). Paraphasias have been explored in the context of the dual

stream model using computer simulations of speech data [60], lesion symptom mapping

[61, 62, 63, 64, 65, 66, 67], and direct electrical cortical and subcortical stimulation in the

intra-operative setting [68]. However, the relationship between residual white matter net-

work integrity, subcortical networks (specifically in relationship to core tracts in the ventral

and dorsal streams), and speech production errors is not yet fully defined.
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As introduced in Chapter 1, dMRI is ideally suited to study post-stroke residual white

matter integrity non-invasively and to test the hypothesis that semantic and phonological

processing dissociates between the ventral and dorsal white matter pathways. Specifically,

dMRI permits the estimation of the remaining anatomical connections between brain re-

gions through tractography, as well as an assessment of the microstructural integrity of

these connections. The quantification of pathway-specific white matter integrity in stroke

survivors with chronic aphasia allows for the evaluation of the relationship between re-

gional white matter integrity and specific types of language deficits. This process is anal-

ogous to classical neuropsychological approaches which relate brain lesions to behavioral

deficits, but it can leverage white matter tractography to identify residual pathways asso-

ciated with language processing. Moreover, since dMRI also provides measures sensi-

tive to axonal integrity, it can improve the sensitivity in determining which pathways are

associated with phonological vs. semantic deficits and resolve the underlying neurobio-

logical mechanisms of regional brain damage that contribute to speech production errors.

In contrast with lesion-symptom mapping, which can provide information on damage to

white matter regions, without directly testing the integrity of specific pair-wise connections,

dMRI can provide information on the integrity and microstructural properties of residual

regional connections.

The AWF, i.e., the ratio of intra-axonal water to total MRI-visible water, reflects axonal

density by assessing the portion of tissue water that resides inside axons. Multi-shell dMRI

permits an estimation of AWF through the calculation of the diffusional kurtosis by fitting a

second-order Taylor expansion to the decay of the logarithm of the dMRI signal as a func-

tion of diffusion weighting strength following the theory for DKI [27, 16]. FA is a dMRI

measure more commonly used to investigate white matter microstructure [69]. However,

FA is a generic indicator of diffusion anisotropy [70]. AWF can indicate brain damage

through axonal loss [71] and provides information complementary to FA that allows for a

more comprehensive quantification of brain tissue properties. More microstructure specific
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diffusion metrics (e.g. AWF) should be used in conjunction with more traditional met-

rics (e.g. FA, D̄) to enhance our understanding of the mechanisms underlying FA and D̄

changes, and ultimately brain pathology.

In this study, we examined whether the degree of ventral vs. dorsal stream damage

dissociates the proportion of phonemic and semantic paraphasias in a group of individu-

als with chronic aphasia. We employed multi-shell dMRI, DKI post-processing and the

quantification of AWF and FA along stream-specific fiber pathways obtained from each

individual with aphasia. Tract-specific measures were assessed in relation with paraphasias

using multivariate statistical analyses. We hypothesized that in chronic stroke axonal loss,

reflected by a decreased AWF in the ventral but not dorsal stream, would directly associate

with semantic but not phonological paraphasias and vice versa.

3.2.2 Materials and Methods

Subjects

We studied 32 participants with chronic post-stroke aphasia (age: 57 ± 11 y, time post-

stroke: 35 ± 30 mos, gender: 8 women). All subjects were recruited through local ad-

vertisement at the Medical University of South Carolina. They were right-handed native

English speakers with a history of a single previous ischemic in the left hemisphere at least

6 months before enrollment. Demographics and behavioral information is presented in

supplementary Table A.1. Participants with a history of developmental language disorders,

other neurological or psychiatric problems, brain surgery or with seizures during the previ-

ous 12 months were excluded. This study was approved by the Institutional Review Boards

at the Medical University of South Carolina and the University of South Carolina. Written

informed consent was obtained from all participants or their legal guardians. All meth-

ods were performed in accordance with guidelines and regulations from our Institutional

Review Board (IRB).
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Assessment of naming

Participants were tested using the Western Aphasia Battery-Revised (WAB-R) [72] to screen

different language abilities and obtain a global measure of aphasia. The Pyramids and Palm

Trees Test (PPT) [73] was used to determine semantic knowledge, and the PNT [74] was

used to test confrontational naming. The PNT was repeated within one week to deter-

mine intra-subject variability. During the PNT, participants had 10 seconds to produce a

response. The last complete attempt was used for scoring. Semantic paraphasias were de-

fined as all incorrect real word responses related to the target in meaning. Phonological

paraphasias were defined as real word attempts with phonological similarities as well as

non-word attempts with incorrect phonemes that preserved more than 50% of the target

word. Circumlocutions were scored as no response; dysfluency as articulation errors, and

partially phonologically related words were considered to be phonological errors (or, if it

was more than 50% different than the target, a neologism). In the case of visual errors (e.g.,

person says “house” for the “garage”), we redirected the subjects and clarified so they knew

which part of the picture to respond to. If the visual errors persisted they were coded as

semantic paraphasias. Mixed paraphasias and articulation errors were not included in the

analysis. The PNT results from both sessions were averaged, and semantic and phonemic

paraphasias were expressed as a percentage of naming attempts excluding the number of

no responses since we were interested in semantic and phonemic paraphasias when naming

was attempted. All standardized speech and language tests were administered and scored

by an experienced American Speech-Language-Hearing Association-certified SLP.

Image Acquisition

All participants were scanned on a Siemens 3T TIM Trio MRI scanner (Siemens Health-

care, Erlangen, Germany) using a 12-channel head coil at the Medical University of South

Carolina. Data were acquired in three series, with three degrees of diffusion weighting

(b-value = 0, 1000, 2000 s/mm2), using 30 diffusion-encoding directions acquired twice

44



CHAPTER 3. WHITE MATTER INTEGRITY AND ANOMIA

for each b = 1000 and b = 2000, as well as eleven additional images without diffusion

weighting (b = 0), for a total of 131 volumes. Additional acquisition parameters were: TE

= 101 ms, TR = 6100 ms, 2.7 mm× 2.7 mm× 2.7 mm isotropic voxels, pixel bandwidth =

1355 Hz/px. All DWI were acquired using a twice-refocused gradient scheme to minimize

the contributions of eddy currents and without partial Fourier encoding. High resolution

1 mm3 isotropic T2-weighted images were acquired for lesion demarcation utilizing a 3D-

TSE SPACE protocol (Field of View (FOV) = 256 mm× 256 mm, 160 sagittal slices, Rep-

etition Time (TR) = 3200 ms, Echo Time (TE) = 212 ms, turbo factor = 129, echo trains per

slice = 2, echo train duration = 432 ms) and, for anatomical reference, T1-weighted images

were gathered using an isotropic 1 mm MPRAGE sequence: FOV = 256 mm× 256 mm,

9◦ flip angle, Inversion Time (TI) = 925 ms, TR = 2250 ms, TE = 4.15 ms.

Image Data Processing

The assessment of tract-specific microstructure included the calculation of scalar diffusion

metrics along the length of the white matter fibers. The terms fiber or bundle are used

here to indicate the deterministic paths identified by diffusion tractography, which are the

biophysical representation of large collections of axonal projections in white matter. In

this study, we employed three novel forms of structural white matter analyses: a) patient

specific white matter tractography was performed using DKI, a technique that requires

a multi-shell diffusion acquisition and dedicated post-processing procedures to improve

upon tractography through the delineation of fiber crossings [75, 76]; b) the integrity of

individual fibers was described using microstructural modeling metrics (i.e. AWF) derived

from DKI [27], which provide a more specific description of the underlying microstructure

than conventional dMRI metrics (i.e. FA); and c) AWF and FA- were assessed in a fine

grained pattern along specific tracts, enabling a detailed assessment of where and how

post-stroke integrity can affect language. Figure 3.1 highlights these methodologies; all

techniques are explained in further detail below.
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Figure 3.1: A: DKI allows for voxel-wise estimation of the number of fiber directions through
the calculation of a kurtosis dODF, while the dODF estimated from DTI provides only a single
direction. B: The AWF is the voxelwise ratio of intra-axonal water (orange) to the total water
content (orange+blue). C: (Left) The ILF estimated using kurtosis-based deterministic tractography
with streamlines color-coded according to directionality. (Right) The ILF color-coded according
to the underlying AWF values. Augmenting tractography with microstructural information paints a
more complete picture of the underlying environment.

DKI Tractography

As introduced in section 1.2.2 Diffusional Kurtosis Imaging, DKI is an extension of

the more conventional DTI method [11] that provides a more thorough characterization

of white matter microstructure, as well as allowing for more accurate fiber tractography

[75, 16]. In addition to the standard diffusion measures available with DTI, DKI also

estimates the diffusional kurtosis, which quantifies the non-Gaussianity of the underlying

water diffusion process [16]. The dMRI signal model for DTI can be expressed as:

ln[S(b,n)/S0] ≈ −bD, (3.1)

while the signal model for DKI is

ln[S(b,n)/S0] ≈ −bD(n) +
1

6
b2D2(n)K(n). (3.2)

where S(b) is the measured dMRI signal at diffusion weighting b, So is the signal in-

tensity for b = 0 s/mm2, D is the apparent diffusion coefficient, and K is the apparent
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diffusional kurtosis.

Analogous to the diffusion tensor, a kurtosis tensor, which describes the kurtosis de-

pendence on direction, can be constructed with DKI [16]. The kurtosis tensor permits

the assessment of the underlying microstructure through scalar metrics of kurtosis, which

characterize the complexity of the brain cytoarchitecture, and it provides a voxel-wise de-

scription of fiber orientations and their crossings through the calculation of a kurtosis dODF

(Figure 3.1) [18]. This is in contrast to other commonly used methods that explicitly model

fiber crossings (e.g. bedpostX) [77]. Previous work has demonstrated high sensitivity to

pathology when using mean kurtosis as a measure of tissue microstructure [78, 79, 80,

81, 82, 83], as well as tractography that identifies intra-voxel fiber crossings that are not

apparent with DTI [76].

Diffusion and kurtosis tensors were estimated using publicly available post-processing

software known as Diffusional Kurtosis Estimator (DKE) [84] (Medical University of

South Carolina, Charleston, USA, https://www.nitrc.org/projects/dke/). To improve the

signal-to-noise ratio, raw dMRI images were first denoised using a principal components

analysis approach [85], and, Gibbs ringing artifacts were removed using the method of

Kellner et al. [86, 87]. All DWI acquisitions including the additional images with b

= 0 were linearly coregistered between themselves using FMRIB Software Library v5.0

(FSL)[88] before averaging them into a final set of 61 image volumes which was used as

the input for DKE.

To localize ventral and dorsal stream white matter, we constructed tractography seed

masks for two major components of the dual stream pathway: Inferior Longitudinal Fas-

ciculus (ILF) (ventral stream) and Superior Longitudinal Fasciculus (SLF) (dorsal stream).

For each participant, we located the core of each white matter bundle by calculating the

intersection between the Johns Hopkins University (JHU) atlas [89] (SLF thresholded at
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21% (20/97) and ILF at 25% (20/79) ) and a white matter probability mask (thresholded

at 50%) created using Statistical Parametric Mapping (SPM)12, while excluding any le-

sioned voxels that were drawn on the T2-weighted images. Lesions included the entire

post-stroke cavity as well as areas with laminar necrosis and gray and white matter glio-

sis. Enantiomorphic unified segmentation-normalization [90] was employed to calculate

the spatial transformation between MNI and native T1-space (Clinical Toolbox, SPM12

[91]) taking into account lesions. This transformation was used to transfer the JHU atlas

to native T1-weighted space, while the linear transformation from native T1-weighted to

native diffusion space was calculated using FSL

The individual ILF and SLF seed masks were used for deterministic kurtosis-based

white matter tractography using the FT-toolbox from DKE, which estimates fiber directions

from both diffusion and kurtosis tensors. Streamlines were removed when the probability

of belonging to a neighboring white matter bundle, defined by the overlap between the

streamline coordinates and the JHU ROIs, was larger than the probability of belonging to

the target bundle. Additional tractography parameters were FA-threshold = 0.1, angular

threshold = 35◦, minimum track length = 20 mm, step size = 1 mm and seed number =

1000.

White matter lesion overlap was calculated as the cross-section between the manually

delineated lesion mask and the third quartile of the JHU SLF and ILF ROIs. The third

quartile was chosen to provide an inclusive representation of white matter lesion overlap,

i.e., regions of the tract that were damaged. Crucially, all analyses were performed in native

diffusion space, reducing interpolation artifacts.

Microstructural Modeling: Axonal Water Fraction

As established in Section 1.2.3, from the kurtosis tensor it is also possible to calculate

information related to specific microstructural compartments (i.e., axonal vs. extra-axonal)
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[27]. AWF is a metric, obtained through the WMTI method, which estimates the relative

amount of water inside axons to the total water content within one voxel (Figure 3.1) [27].

Specifically, AWF is estimated by

AWF =
Kmax

Kmax + 3
, (3.3)

whereKmax is the maximal directional kurtosis calculated from the kurtosis tensor over

all possible directions. Tissue modelling leverages neurobiological characteristics from tis-

sue structure, which are translated into biophysical properties as follows: 1) axons can

be approximated to long impermeable thin cylinders that are mostly coplanar, 2) diffusion

in the extra-axonal water pool can be approximated as Gaussian, and 3) water exchange

between compartments is negligible during the MRI sampled diffusion time (∼50 ms). Ex-

cept for the coplanarity condition, these are generally accepted properties of white matter

that have been assumed in a variety of different tissue modeling approaches [92]. Because

Equation 3.3 requires the axons to be coplanar, it may not be accurate in some white matter

regions with complex patterns of fiber crossings [27]. In summary, we focused on the con-

ventional metric FA, calculated from the diffusion tensor, and the tissue modeling metric

AWF, determined from the kurtosis tensor (Equation 3.3). AWF was calculated from the

kurtosis tensor using in-house scripts. FA was calculated using a DKI-based approach to

improve its accuracy [93].

Along Tract Metrics

Figure 3.2 demonstrates how FA and AWF were quantified along the length of two dis-

tinct white matter fiber bundles. To enable comparisons between individuals, we isolated

the core of each bundle using a methodology based in part on Automated Fiber Quantifi-

cation (AFQ) [94]. While the AFQ pipeline performs whole brain seeding and uses the

JHU atlas to assign each streamline to their respective fiber bundle, we created different

seed masks to locate the specific bundles. The isolation of the core was performed based
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on the methods proposed in the original AFQ description with the exception that a straight-

forward averaging was used to identify the final values compared to a distance-weighted

average in AFQ. Specifically, each subjects fiber bundle was cropped at similar locations

employing the JHU-ROIs [95], with each streamline being interpolated into 100 equidistant

points using cubic B-splines [96] (Figure 3.2, middle). Cropping provides the streamlines

with similar starting and ending points, which facilitates the identification of the core com-

ponents of each tract. By assessing equivalent segments across patients, it is possible to

relate their integrity with individualized naming performance through statistical analyses.

AWF and FA values were quantified at each point, but to facilitate statistical analysis, we

assigned the average metric to each point along the fiber bundles geometric mean resulting

in 100 values along the length of the ILF and SLF sections that were ultimately binned into

4 segments containing 25 nodes each (Figure 3.2). In what follows, these midsections will

be referred to as the SLF and ILF.

Figure 3.2: Image processing pipeline used to construct the average SLF and ILF for a representa-
tive individual. Individual seedmasks (left) for the ILF (beige) and the SLF (pink) were constructed
and used as starting points for deterministic tractography. Lesioned voxels (blue) were excluded
from each seedmask. The tractography results were cropped (middle), averaged and divided into 4
different segments (right) in each of which we calculated the average AWF

Gray Matter Necrosis
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To investigate the interaction between dual stream gray matter necrosis and white mat-

ter integrity, we defined three gray matter ROIs: supra-Sylvian language-processing gray

matter regions (dorsal stream) infra-Sylvian language-processing gray matter regions (ven-

tral stream) identified using fMRI [97] and the SMG. Gray matter necrosis was calculated

as the percent overlap between the stroke lesion and the gray matter ROIs as defined by the

JHU atlas [98]. Suprasylvian gray matter included the left posterior Middle Frontal Gyrus

(pMFG), the left IFG pars opercularis, the left IFG pars triangular, and the left Angular

Gyrus (AG). Infrasylvian gray matter was composed by the STG, the pole of the STG, the

MTG, the Posterior Superior Temporal Gyrus (pSTG) and the posterior Middle Temporal

Gyrus (pMTG). Damage to the SMG was also quantified since it has been implicated in

phonological processing [62]. Lesion locations can be found in supplementary Figure A.1.

Statistical Analysis

We created multiple linear regression models to assess the relationship between para-

phasias and integrity of the ventral and the dorsal streams. Specifically, we used the per-

centage of semantic or phonemic paraphasias as dependent variables in two separate multi-

ple linear regression models with SLF integrity (i.e., AWF and FA), as well as ILF integrity

at four distinct tract locations as predictors controlling for white matter lesion overlap. We

also assessed whether the inclusion of gray matter damage influenced the model. All re-

ported correlation coefficients are Pearson r. P-values were adjusted using the Bonferroni

correction. Fisher r-to-z transformations were performed to investigate if the dissociations

between the dorsal and the ventral stream integrity and semantic and phonemic paraphasias

were statistically significant.
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3.2.3 Results

Language Tests

Western Aphasia Battery - Aphasia Quotient (WAB-AQ), aphasia types and average PNT

results for all individuals are summarized in supplementary table A.1. Aphasia ranged from

severe to mild (WAB-AQ = [20.1-93.7]), with an average (± standard deviation) WAB-

AQ of 54.1 (± 22.5). During confrontational naming, participants elicited an average of

36.0% (± 27.1) correct responses. Incorrect responses were identified as semantic para-

phasias 14.7% (± 12.5) and phonemic paraphasias 7.1% (± 8.3) of the time. The PPT [73]

demonstrated that the semantic association pathway between pictures and their meaning

was relatively preserved in the majority of subjects (45 ± 5).

Tract-Based Integrity Analysis

As explained in the methods, we used along tract quantification to assess AWF and FA

along the longitudinal length of individual fiber bundles in order to provide a more detailed

evaluation of tract integrity. Both the residual ILF and SLF were identified in 18 out of

32 subjects, while only the residual ILF was located in an additional 11 subjects. There

were no cases where the SLF was not accompanied by the ILF. All subsequent tract-based

analyses were performed on these residual connections. Table 3.1 and 3.2 summarize the

interactions between 1) the percentage of semantic and phonemic paraphasias and 2) the

average AWF (Table 3.1) and FA (Table 3.2) at different parts along the ILF and SLF. As

described in Table 3.1, semantic paraphasias had the highest relationship with the average

AWF within the posterior portion of the ILF (segment 1: r=-0.67 and segment 2: r=-0.63,

p¡0.05 corrected). Figure 3.3 shows the scatter plots (and their line of best fit with 95% con-

fidence intervals) demonstrating the distribution of the percentage of semantic paraphasias

and the AWF from each segment of the ILF. The FA of sections 1, 2 and 3 were also

significantly correlated with semantic paraphasias (r= -0.66, r= -0.56 and r= -0.58, p¡0.05

52



CHAPTER 3. WHITE MATTER INTEGRITY AND ANOMIA

corrected). However, neither AWF nor FA along the length of the SLF was associated with

the percentage of semantic paraphasias.

Figure 3.3: Scatterplots demonstrating the relationship between AWF and percent semantic para-
phasias. Average AWF was calculated for different segments of equal size along the length of the
ILF. A significant association was seen between the AWF and semantic paraphasias in the two most
posterior segments (I & II; r=-0.67, r=-0.63) (after correction for multiple comparisons).

The weak association between semantic paraphasias and the SLF diffusion measure-

ments was not related to the smaller sample size of SLF compared to ILF (18 vs. 29). For

a similar R-value (0.67), the statistical power from n = 29 to n = 18 drops from 0.98 to

0.88. We performed 1000 random sampling of the ILF with n=18, the average R-value was

0.65, and r = 0.21 was below the 99th percentile of this sample. For this reason, the rela-

tionship between the SLF and semantic paraphasias was not significant taking into account

the smaller sample size. In addition, Fisher r-to-z demonstrated that the AWF within the

ILF (segment 1) related more strongly to semantic paraphasias than the AWF within the

SLF (segment 1) (p < 0.05).
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Table 3.1: Summary of all correlation coefficients between average AWF, calculated along the
length of the ILF and the SLF, and both phonemic and semantic paraphasias. (* p<0.05, corrected
for multiple comparisons)

Dependent Variable Region Segment r r
(corrected for lesion overlap)

Semantic Paraphasias

ILF

I -0.67* -0.49*

II -0.63* -0.4

III -0.51 —-

IV -0.36 —-

SLF

I 0.21 —-

II 0.35 —-

III 0.42 —-

IV 0.31 —-

Phonemic Paraphasias

ILF

I 0.25 —-

II 0.14 —-

III 0.15 —-

IV 0.08 —-

SLF

I -0.68* -0.65*

II -0.52 —-

III -0.47 —-

IV -0.39 —-
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Table 3.2: Summary of all correlation coefficients between FA, calculated along the length of the
ILF and the SLF, and both phonemic and semantic paraphasias. (* p<0.05, corrected for multiple
comparisons)

Dependent Variable Region Segment r r
(corrected for lesion overlap)

Semantic Paraphasias

ILF

I -0.66* -0.44

II -0.56* -0.31

III -0.58 -0.37

IV -0.3 —-

SLF

I 0.07 —-

II 0.16 —-

III 0.25 —-

IV 0.06 —-

Phonemic Paraphasias

ILF

I 0.12 —-

II 0.13 —-

III 0.15 —-

IV 0.16 —-

SLF

I -0.46 —-

II -0.29 —-

III -0.24 —-

IV -0.33 —-
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Phonemic paraphasias had the most significant association with the average AWF within

the most posterior part of the SLF (segment 1: r = −0.68, p < 0.05) (Table 3.1). The

distribution of phonemic paraphasia prevalence and average AWF calculated from the dif-

ferent parts of the SLF is depicted in Figure 3.4. The FA of segment 1 was weakly associ-

ated with phonemic paraphasias, albeit not surviving correction for multiple comparisons

(r = −0.46, p > 0.05). The percentage of phonemic paraphasias was not related to any of

the diffusion metrics calculated from the ILF. Fisher r-to-z transformations confirmed that

phonemic paraphasias were more associated with AWF within segment 1 of the SLF than

within segment 1 of the ILF (p < 0.05).

Figure 3.4: Scatterplots demonstrating the relationship between AWF and percent phonemic para-
phasias. Average AWF was calculated for different segments along the length of the SLF. A signif-
icant association was seen between the AWF and phonemic paraphasias in the two most posterior
segments (I; r=-0.68) (after correction for multiple comparisons).

It is important to highlight that ILF lesion burden was associated with the percentage of

semantic paraphasias (r = 0.56, p < 0.05). Therefore, to exclude this potential confounder

56



CHAPTER 3. WHITE MATTER INTEGRITY AND ANOMIA

from the analyses relating paraphasias with tract-based microstructure, we recalculated the

linear models described above (whose r and p values mentioned above did not control

for lesion burden) now controlling for lesion overlap with the ILF and SLF. This stricter

analysis resulted in two remaining significant correlations between 1) the average AWF in

segment 1 of the ILF and the percentage of semantic paraphasias (r = −0.49, p < 0.05) and

2) the average AWF in segment 1 of the SLF and the percentage of phonemic paraphasias

(r = −0.65; p < 0.05). AWF and FA were strongly correlated (ILF: r = 0.81, p < 0.05;

SLF: r = 0.74, p < 0.05), but stepwise regression (based on an F-test of the change in

the sum of squared error by adding a term) using AWF, FA, and lesion overlap as input

variables resulted in a final linear model with AWF as the only variable.

Impact of Gray Matter Necrosis

The degree of infra-Sylvian gray matter necrosis was associated with the frequency of se-

mantic paraphasias made during confrontational naming (r = 0.42, p < 0.05). However,

when correcting gray matter damage for the average AWF of the posterior ILF (segment 1),

the relationship did not exceed statistical significance. Conversely, a statistically significant

relationship between the AWF of the posterior ILF and semantic paraphasias (r = −0.67,

p < 0.05) remained when adjusting for infra-Sylvian gray matter necrosis (r = −0.55

p < 0.05). Supra-Sylvian specifc gray matter was not related to percent phonemic para-

phasias and thus did not alter the relationship between the AWF of the SLF and phonemic

paraphasias. Note that the AWF calculated from SLF’s segment 1 was associated with

SMG necrosis (r = −0.55, p < 0.05); however, SMG necrosis only weakly related to the

percentage of phonemic paraphasias (r = 0.31, p = 0.21).

3.2.4 Discussion

In this study, we examined the importance of residual white matter pathways supporting

semantic and phonological processing during confrontation naming in individuals with
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chronic post-stroke aphasia. We used advanced dMRI post-processing techniques to trace

representative large pathways in the ventral and dorsal streams (ILF and SLF, respectively)

and to measure a microstructural property of axonal integrity (AWF) along the fibers in each

tract. Our results indicated a double dissociation between white matter axonal loss and se-

mantic vs. phonemic naming impairments: AWF in the ILF (particularly in the posterior

aspect of the tract) was associated with the number of semantic paraphasias, but not with

the number of phonemic paraphasias. Conversely, AWF in the SLF (also more strongly in

the posterior aspect of the tract) was related to the number of phonemic paraphasias, but

not with the number of semantic paraphasias.

These findings are in line with the dual stream model of language, which proposes

the presence of functionally and anatomically distinct processing routes for lexical access

(i.e., ventral stream) and phonological form encoding (i.e., dorsal stream). Importantly,

they provide anatomical confirmation at the white matter network level and complement

existing lesion based studies, which mostly focus on regional damage, not residual white

matter connections. Moreover, these results also provide information on the relevance of

the biological nature of damage, i.e., axonal loss, and their location within the white matter

tracts.

Multiple studies have demonstrated that regional post-stroke brain damage can be as-

sociated with naming errors, with damage to dorsal regions relating mostly to phonemic

paraphasias, and damage to ventral regions predominantly associated with semantic para-

phasias. Figure 3.5 demonstrates the positioning of the ILF and SLF relative to the gray

matter regions most often implicated in naming impairments. Different studies have re-

ported that semantic errors are related to lesion involvement of the temporal pole [63, 61],

the Inferior Temporal Gyrus (ITG) [99], as well as different portions (anterior, mid and pos-

terior) of the MTG [62, 64, 65, 61, 100]. Taken together, it is possible that the intactness

of these areas, in combination with the successful integration within the language network
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is required for unimpaired lexical access. The association between neuronal damage and

word production errors has recently been further explored in relation to the Dell speech

production model [100]. It is important to note that these studies did not focus on the

residual integrity of the white matter as quantified by dMRI, but instead focused on lesion

location using structural MRI. We believe that our results complement their conclusions

highlighting the importance of residual white matter integrity in concordance with cortical

and white matter damage as shown on structural MRI.

Figure 3.5: Left: Semantic paraphasias have been associated with damage to a multitude of tempo-
ral gray matter regions (e.g., temporal pole, STG, ITG, and MTG) [101, 65, 99, 62, 102, 63]. Here,
we demonstrated that axon density of the ILF relates to the frequency of semantic paraphasias in
individuals with post-stroke aphasia. The ILF interconnects these gray matter regions [103] likely
supporting parts of a semantic network [66]. Right: Damage to the Precentral Gyrus, Postcentral
Gyrus and the SMG has been shown to result in phonemic paraphasias [61, 62, 66, 67]. These
areas are interconnected primarily through the SLF and arcuate fasciculi, which bridge perisylvian
frontal, parietal, and temporal cortices. A greater degree of axonal loss in the posterior SLF related
to a larger number of phonemic paraphasias.

The ILF, whose fibers link the superior- middle- and inferior temporal gyri [103], has

been suggested by task-based fMRI studies to support such a semantic network [66, 101].

Phonology and articulatory representations are supported by the dorsal stream, and damage

to the SMG and post-central gyrus has especially been related most frequently to impaired

phonological encoding [66, 62, 67, 61]. Schwartz et al. postulated in a structural VLSM
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analysis that phonological paraphasias might also arise from damage to dorsal stream white

matter pathways [62]. Here, we directly located the residual white matter pathways using

dMRI, and demonstrated that the axon density of the residual SLF indeed relates to the

frequency of phonemic paraphasias, confirming the hypothesis by Schwartz et al. In addi-

tion, we also demonstrated that the degree of axonal loss of the residual ILF relates with

semantic paraphasias during confrontational naming, independent of the degree of damage

to the MTG. Our results provide evidence that damage to the gray matter regions as well as

the integrity of the remaining connections between them should be considered when study-

ing naming impairments after stroke. More specifically, damage to the brain at the white

matter network level can directly influence ventral and dorsal stream processing and lead to

speech production errors. In comparison with the existing literature, this is the main novel

finding from this study.

It is important to note that the diffusion imaging methods used in this study are rela-

tively different from conventional fiber tracing methods [104]. We employed an approach

to best define the integrity of the residual white matter networks in stroke survivors and

elucidate the nature and location of the white matter post-stroke damage. The specific in-

novations of the methods used here are threefold: 1) the use of DKI to track white matter

fibers and ameliorate tracing inaccuracies in areas of fiber crossing or complex curvature;

2) the use of DKI tissue modeling (i.e., WMTI) to approximate axonal loss (AWF); and

3) the quantification of microstructural tissue properties along the main axis of each tract.

This allows for the direct assessment of the local integrity of specific tracts since it entails

the actual tracing of each tract in each individual. Since tracts can follow unusual paths in

lesioned brains, scalar diffusion metrics obtained from ROI or skeletonized based analyses,

without tracing connections, could miss important individual details.

Studying changes along the main axis of the fibers was pioneered through a technique

known as automated fiber quantification (AFQ) [94], which is particularly useful when dis-
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ease affects different parts of a fiber bundle to a different degree or when different segments

of white matter pathways are composed of branches to different parts of gray matter. In

a recent study, we used AFQ and demonstrated that aphasia recovery mediated plasticity

varies along the length of a specific tract [83]. Here, we used the same principles of AFQ

to determine AWF along the tracts, and we observed that damage to the posterior parts

of the ILF and the SLF was more significantly associated with paraphasias highlighting

the importance of local white matter integrity. While the explanation for these observa-

tions remains unclear, it may be related to the regional integration performed by these parts

of the ILF, and SLF, with their posterior relationship to somatosensory processing areas

in the temporal-parietal region, such as area SPT [105]. Alternatively, information trans-

mission could preferably flow posteriorly to anteriorly where damage to segment 1 would

impact the functioning of the downstream segments 2, 3, and 4. Lastly, it could be due to

the posterior parts being more commonly lesioned after middle cerebral artery strokes and

thereby strengthening the statistical association between damage and paraphasias in those

areas. From our findings, we can conclude that posterior damage to either stream is a strong

marker of paraphasias, but a more detailed dissection focusing on the regions connected by

the specific streams is necessary.

It is a limitation of this study that only the ILF and the SLF were studied in a small num-

ber of cases without the assessment of other tracts and other naming errors related to the

multiple subnetworks that form the dual stream system. It is important to emphasize that

the nomenclature of white matter fibers is inconsistent throughout the literature (e.g., arcu-

ate fasciculus vs. SLF). In this paper, the names ILF and SLF were chosen in accordance

with the JHU atlas labeling convention used to seed the tracks. The SLF, however, likely

includes fibers from both the SLF and the arcuate fasciculus, since no filtering algorithm

based on fiber curvature was implemented. Similarly, the posterior location of the ILF

also highly overlaps with the location of the Inferior Frontal-Occipital Fasciculus (IFOF).

A thorough dissection of the tracks is however beyond the scope of this paper, and future
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work should focus on studying white matter connections between specified gray matter re-

gions. Another caveat would be that the AWF is based on assumptions and simplifications

about the properties of axons. For example, the WMTI model assumes that in a voxel all ax-

ons lie in the same plane, which might be more or less accurate in different locations [27].

In lesioned brains, extra-cellular and glial changes could add confounders, but these are

likely less pronounced in chronic strokes, where the brain parenchyma is more stable and

inflammatory responses and edema are minimal. Regardless, the metric will always repre-

sent a specific property of the underlying water diffusion processes, albeit not necessarily

the axon density. Finally, a decrease in AWF could also be related to an increase in water in

the extra-axonal compartment. However, that seems unlikely to occur in isolation without

the loss of any axons. Note that the same error types have been associated with more than

one cause and revealing a one to one relationship between brain damage and paraphasias

would be unrealistic [106]. Future work should focus on determining the integrity of the

entire dual stream system and on studying the relationship between its residual structure

and naming performance. Studying additional error types and further subcategorizing se-

mantic and phonemic paraphasias might provide additional information about the origin of

naming errors in post-stroke aphasia [102, 107].

In summary, our results are in concordance with the dual stream model of language

processing and further corroborates the notion that, during speech production, knowledge

association (semantics) depends on the integrity of ventral, whereas form encoding (phone-

mics) is localized to dorsal pathways. These findings also demonstrate the importance of

the local residual integrity of specific white matter pathways beyond regional gray mat-

ter damage for speech production and underscore how biophysical tissue models can yield

more specific and interpretable results for clinical translation.
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3.3 Neuroplasticity: Structural Plasticity of the Ventral Stream and Aphasia Recov-

ery

3.3.1 Introduction

Stroke is the leading cause of neurological disability and acquired language problems

(aphasia) [56]. For survivors with chronic aphasia, speech therapy can lead to language

improvements, but the response is highly variable [108]. The neurobiological bases of

therapy-mediated recovery are not completely understood and it remains unclear why some

individuals benefit while other exhibit little response. A leading hypothesis suggests that re-

strengthening of the residual language network is crucial for recovery in post-stroke aphasia

[109]. The dual stream model of language suggests that ventral (parietal temporal) net-

works are responsible for integrating the lexical-semantic system, whereas dorsal (parietal

frontal) networks are related to the motor-articulatory system [51]. In a pioneering work,

Schlaug et al. demonstrated non-specific structural changes associated with chronic apha-

sia improvement [110, 111]; subsequently, Van Hees et al. showed renormalization of the

dorsal stream related to phonemic improvement [112]. However, it is unclear if semantic

improvements are supported by structural plasticity of the ventral stream. This knowledge

could help guide therapy approaches targeting residual brain integrity. We tested if struc-

tural plasticity of the ventral stream, represented by a segment of the ILF, was related to

linguistic improvements by examining a cohort of individuals with chronic aphasia who

underwent speech therapy. We applied DKI [113], a dMRI technique that provides more

comprehensive characterization of tissue microstructure, and improves the assessment of

white matter tractography [76]. In accordance with the dual stream model, we hypothe-

sized that re-strengthening of the residual ILF would be associated with semantic, but not

phonemic, therapy related improvements in naming.
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3.3.2 Material and Methods

We recruited eight participants, (52 ± 7 years, 3 women) with a history of post-stroke

aphasia due to a single left hemisphere stroke at least 12 (50.3 ± 29.8) months prior to

the study. The participants had no history of other neurological diseases and were all

right-handed. This study was approved by Institutional Review Boards at our institutions.

The participants received group-based Intensive Language Action Therapy (constraint in-

duced) [114] for three weeks (five therapy sessions per week lasting four hours each). They

were tested for confrontational naming using a short version of the Philadelphia Nam-

ing Test [115] within one week prior and post therapy. MRI data was collected using a

Siemens 3T TIM Trio (12-channel head coil) at the University of South Carolina. DKI data:

two b-values (1000 and 2000 s/mm2), 30 diffusion-encoding directions, 45 slices, voxel

size=2.7 mm× 2.7 mm× 2.7 mm, TR=6100 ms, TE=101 ms, FOV=222 mm× 222 mm,

two averages and 11 non-diffusion weighted images. T1-weighted images: turboflash se-

quence, FOV=256 mm× 256 mm, 160 sagittal slices, 9◦ flip angle, TR=2250 ms, TE=4.5 ms,

voxel size = 1 mm× 1 mm× 1 mm. All subjects underwent four MRI sessions, two be-

fore and two after treatment, within one week prior and post therapy. The image analysis

pipeline was optimized to quantify diffusion FA, D̄ and K̄) along a representative seg-

ment of the ILF as defined by the probabilistic JHU white matter atlas [116], which trav-

els from the coronal plane in the posterior edge of the cingulum to the temporal pole.

Data from both pre-treatment and post-treatment sessions were combined into a set of

121 diffusion-weighted images, linearly registered to the initial scan using SPM8 to lo-

cate the ILF for each subject. DKE was used for deterministic kurtosis-based tractogra-

phy (https://www.nitrc.org/projects/dke/). A white matter seeding mask was created with

SPMs Clinical Toolbox (https://www.nitrc.org/projects/clinicaltbx/), which was normal-

ized to diffusion space by cost function masking with the stroke lesion (drawn on T1

images). Individual whole brain tractography maps were analyzed using AFQ [94], cus-

tomized to perform analysis in diffusion space. AFQ and DKI were combined as described
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previously [78]. AFQ results in a set of ILF fibers, which ultimately is abridged to one cen-

troid. One hundred equidistant measurements along the centroid were obtained for each

metric before and after therapy. Since no significant differences were revealed between

the pre- or post-treatment scans, they were averaged to reduce noise. To assess the ILFs

weakest segment, the location with the highest diffusion abnormality (minima K̄ or FA,

maximum D̄) was determined between nodes 20-80 of the core ILF. We called this highest

abnormality the bottleneck, and a 6-node smoothing kernel was applied in this neighbor-

hood to reduce contribution of outliers. All further analyses were carried out in the bottle-

neck. Pre- to post-treatment structural changes in the ILF were examined in relationship

to therapy related improvements in both semantic and phonemic paraphasias using linear

regression. Baseline metrics were also related to baseline performance. Corresponding

p-values are adjusted for multiple comparisons (n=12) using Bonferroni correction.

3.3.3 Results

As a group, subjects showed significant improvement in the number of correctly named

items with therapy (paired t-test, p = 0.002), which was driven by fewer semantic errors

(p = 0.01) and a decrease of no responses (p = 0.03). The left ILF was significantly

different (p < 0.001) from the right ILF for each metric. Compared to the contralateral side,

the ipsilateral ILF had a higher MD, lower FA and lower MK (Figure 3.6). Individualized

perilesional changes in ILF microstructure in relationship with its proximity to the stroke

lesion were also noted. K̄ values at greater distances from the lesion are higher, gradually

decreasing when closer to the lesion (Figure 3.7).
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Figure 3.6: Along-tract diffusion metrics (y-axis) are demonstrated along equally spaced measure-
ment points in the ILF (0 to 100, anterior to posterior) (x-axis). The solid line represents the average
patient value, with the standard error of the mean shown as the shaded area. Ipsilesional ILF values
are shown in dark gray, and contralesional ILF values are shown in light gray. The rightmost image
illustrates an example of a participants core right and left ILF.

Figure 3.7: The relationship between along-tract ILF K̄ values and the chronic stroke lesion (in
pink). A. The data from one representative participant is shown in a lateral view to demonstrate
the lowest K̄ in perilesional areas (color bar). B. The ILF and the lesion are shown for this subject
(panel A) and all others using medial views to illustrate their anatomical relationship. Note that the
lesion was excluded from the seeding mask during ILF tractography.

Overlap between the lesion core and the left ILF ranged from 0.4% to 94.7% (Figure

3.8a). There was a strongly significant correlation between pre- to post-therapy increment

in K̄ (renormalization towards normal values [117] in the left ILF (at the bottleneck) and

therapy-related improvement in semantic paraphasias (r = −0.90, p < 0.05; Figure 3.8a).
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No relationships were observed for pre- to post-therapy K̄ changes and phonemic errors

(r = −0.11) (semantic vs. phonemic R to Z comparison [Fisher transformation], p < 0.05)

or for right ILF changes and improvement in semantic paraphasias (left-ILF vs. right-ILF

R to Z, p < 0.05). The correlations with FA and D̄ did not reach significance level at

p < 0.05. Bottleneck increases in K̄ with therapy are shown in the perilesional space

of a representative patient (Figure 3.8b; note K̄ color-code changes from blue to green).

There was a trend towards statistical significance in the relationship between ILF K̄ pre-

treatment and the number of semantic paraphasias prior to treatment (r = −0.82, p =

0.15), this association did not increase with treatment. To investigate the effect of lesion

burden on recovery, we evaluated the number of residual fibers in each patient. The number

of semantic paraphasias prior to therapy was related to ILF lesion burden (r = −0.65,

p = 0.07). However, lesion burden (or track integrity) was not associated with semantic

recovery (r = 0.19, p = 0.65).

3.3.4 Discussion

The present study evaluated the relationship between structural plasticity of the ventral

stream and therapy-related improvements in naming in individuals with chronic aphasia.

We observed that pre- to post-treatment increases in ILF K̄ towards normal values [117],

specifically within the areas along the ILF with the highest degree of baseline structural

compromise (the diffusion bottleneck), were strongly associated with semantic improve-

ments. These results leverage recent advancements in dMRI and image analysis, which en-

able the investigation of white matter microstructure with higher sensitivity to microstruc-

tural changes [118]. K̄ is a biophysical measure less affected by partial volume, which

can be higher in the proximity of a stroke lesion [119]. In this study, K̄ was the only

diffusion metric that reached statistical significance suggesting that conventional diffusion

measures may be less sensitive to structural changes associated with recovery, and K̄ may

be optimally suited for assessing post-stroke neuroplasticity. Larger studies are needed to
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Figure 3.8: A. (top) The scatter plot demonstrates the relationship between pre- to post-therapy
changes in K̄ measured at the ILF bottleneck, and pre- to post-therapy changes in semantic para-
phasias (r = −0.90 and p < 0.05 corrected). A. (bottom) Table summarizing K̄ values for the four
MRI acquisitions for all subjects. The table also includes individual changes in the number of se-
mantic paraphasias with treatment (in number of words) and the percent overlap between the stroke
lesion and the ILF. The scatterplot in A (top) depicts the relationship between change K̄ (second
to last column) and change in semantic paraphasias (last column). (BL=baseline; FU=follow-up;
MK=mean kurtosis) B. Pre- and post-treatment K̄ values along the ILF from a representative par-
ticipant are shown anatomically. The ILF bottleneck, which is marked with a black arrow, demon-
strates an increase in K̄ towards normal values from before to after therapy. The stroke lesion is
demonstrated in pink. This participant demonstrated a 55% improvement in semantic errors.
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replicate these results. The neurobiology underlying K̄ changes is likely due to a combina-

tion of factors that are known to occur after strokes. Namely, axonal sprouting, changes in

axon thickness or neurogenesis, can contribute to an increase in complexity in perilesional

tissues, which has been demonstrated in post-stroke experimental studies [120]. However,

further specific biophysical tissue models are needed to completely elucidate the basis of

post-stroke plasticity. Our findings provide preliminary, but theory-driven, evidence of se-

mantic improvements being supported by structural plasticity of the ventral language pro-

cessing stream. This knowledge can be used to guide therapies to recruit ventral processing

pathways in individuals with residual ILF, or direct stimulation to the ILF for semantic

improvement. Of note, Language Action Therapy focuses on the improvement of commu-

nication skills in general, and future studies with a larger sample could address whether

impairment based interventions (i.e., semantic based treatments for semantic paraphasias)

could lead to further enhanced structural neuroplasticity. Moreover, the residual integrity

of the language network could help improve the predictions of recovery potential, together

with other predictors such as lesion site, lesion load [121], as well as the right language

network, specifically the arcuate fasciculus, which has been implicated in recovery by pre-

vious studies [110, 122]. In conclusion, therapy-related ventral stream plasticity, quantified

by MK changes within a bottleneck of damage in the ILF, is related to semantic, but not

phonemic, improvements due to therapy. These results are in accordance with the theoreti-

cal dual stream model of language, which predicts the involvement of the ILF in semantic

processing. Furthermore, kurtosis-based tractography is a promising tool for the study of

the neurobiology of stroke recovery. Understanding language network integrity and its

relationship with clinical performance could advance our knowledge of stroke recovery

mechanisms and the basic neurobiology of language.
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3.4 Perilesional White Matter Microstructure and Aphasia Recovery

Language therapy has shown to be effective in chronic aphasia, although treatment re-

sponses are variable, and predicting outcomes remains challenging. Research has pre-

viously shown that left hemisphere perilesional areas contribute to therapy-induced neuro-

plasticity, but little is known about how perilesional white matter affects treatment outcome.

This preliminary study attempts to address this gap in knowledge by relating pretreatment

residual perilesional white matter integrity to post-treatment changes in confrontational

naming. Thirty-one subjects (age = 57 ± 11 y; 9 females; MRI time post-stroke=36 ± 32

m) with chronic post-stroke aphasia underwent the WAB-R, multimodal MRI, and 15 ses-

sions (5x/week) of self-administered computerized anomia treatment (45 min). Half of the

participants received anodal tDCS (1mA) during the first 20 minutes, and the remaining

half received sham stimulation. Aphasia severity ranged from severe to mild (WAB-AQ

= [20 − 92]), with an average (± standard deviation) WAB-AQ of 52 (± 22). Structural

(T1-w, T2-w) and diffusional kurtosis images (b = 0, 1000, 2000 s/mm2) were acquired

at baseline and DKE was used to estimate diffusion and kurtosis tensors. A perilesional

white matter mask was created by dilating lesion drawings (4 voxels) including only those

voxels categorized as white matter (>90% probability) by enantiomorphic segmentation.

Voxels dominated by cerebral spinal fluid (MD > 2 µm2/ms) were excluded. Before treat-

ment, subjects elicited an average of 24% (± 25%) correct responses during a confronta-

tional naming test consisting of 80 objects. After treatment, participants demonstrated a

significant proportional change in correct responses on trained items with an average im-

provement of 12% ± 19%. We found that both perilesional axial diffusivity and kurtosis

significantly related to changes in correct response (r = 0.47, p < 0.05; r = −0.49,

p < 0.05) correcting for lesion size, pre-treatment aphasia severity and tDCS application

(Figure 3.9). Baseline perilesional FA, RD and RK did not relate to naming improvements

(r = 0.2, p > 0.05; r = 0.28, p > 0.05; r = −0.33, p > 0.05). This study shows prelimi-
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nary evidence on the relationship between baseline perilesional white matter and language

recovery, and demonstrates the possible role image analysis can play in predicting recovery

potential from baseline neuroimaging data. If pretreatment MRI contains valuable infor-

mation about treatment response, then imaging has the potential to become a useful tool

for guiding clinical management of aphasia. It would be particularly useful if dMRI could

be used to tap into specific recovery potentials, such as comparing room for semantic vs.

phonemic improvement.

(a) (b)

Figure 3.9: Perilesional axial diffusivity (left) and kurtosis (right) significantly related to changes
in correct response (r = 0.47, p < 0.05; r = −0.49, p < 0.05) correcting for lesion size, pre-
treatment aphasia severity and tDCS application.

3.5 Synergism between cortical damage and white matter disconnection contributes

to aphasia severity

Language impairments are common after a dominant hemisphere stroke, although the rela-

tive contribution of damage to cortical areas and white matter pathways to aphasia severity

remains poorly understood. In this preliminary study, we assessed if our understanding of

aphasia severity and linguistic skills could be improved by quantifying damage to both gray

and white matter areas often implicated in language. Specifically, we hypothesized that

cortical disconnection aids in the explanation of critical differences in language function
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particularly when cortical areas are largely intact. We recruited 90 right handed partici-

pants (age 58.8 ± 12.1 years, 34 females; 42.8 ± 50 months post stroke) with a single left

hemisphere stroke that underwent MRI imaging (T1-w, T2-w and DTI (b = 0, 1000 s/mm2)

and the WAB-AQ (mean 63 ± 28). In addition, we scanned 60 older self-reported cogni-

tively normal participants (47 females, age 55.1 ± 8.6 years). T1-weighted images were

segmented into probabilistic gray and white matter maps using either SPM12’s unified

segmentation-normalization or enantiomorphic normalization. The probabilistic gray mat-

ter map was divided into JHU anatomical regions, and white and gray matter parcellation

maps were registered into diffusion imaging space where pairwise probabilistic DTI fiber

tracking was computed. Weighted connectomes were constructed based on the number of

streamlines corrected by distance traveled and by the total gray matter volume. Lesions

were drawn on T2-weighted images and proportional damage to ROIs was determined by

the intersection of lesion drawings and JHU ROIs. ROIs were considered disconnected

when the number of connections was less than 2 standard deviations away from the mean

number of connections in the non-brain damaged cohort. Our results focused on a language

specific subnetwork consisting of Broca’s area, SMG, AG, STG, MTG, ITG and the pSTG

and pMTG. Disconnection within this subnetwork significantly aided in the explanation of

aphasia severity (WAB-AQ) when cortical areas suffered between 21−91 % damage. Out-

side of this range, disconnection did not significantly help explain the variability in aphasia

quotient. In an additional ROI-based analyses, damage to the left superior longitudinal

fasciculus explained an extra 31% of variance (r = −0.56, p < 0.05) in WAB-R-fluency

scores in addition to 29% variance explained by damage to Broca’s area alone. Likewise,

individual auditory comprehension scores were explained by the quantification of damage

to the ILF (r = −0.23, p < 0.05) in addition to quantified damage to Wernicke’s. In con-

clusion, quantifying damage to white matter pathways can help explain individual language

impairments in subjects with chronic aphasia. Our results suggest that this benefit is largest

in areas with average cortical damage.
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3.6 Development of a Neuroimaging Pipeline Optimized for the Study of Whole

Brain White matter Integrity Post-Stroke

The studies covered in Sections 3.2 - 3.3 assesses the integrity of specific white matter

bundles (i.e, the SLF and the ILF) separately. Ideally, the white matter network should be

studied as a whole since damage to different white matter bundles is not independent. Ad-

ditionally, the origin and end point of the specific white matter fibers was not known further

complicating interpretation. To alleviate these issues, we developed a new neuroimaging

pipeline that ultimately provides the user with a way to assess the microstructure (as de-

termined by DKI metrics) between a set of gray matter ROIs determined by an atlas (e.g.,

JHU atlas). The software is available to download at:

https://github.com/neurolabusc/nii preprocess/tree/DKI pipeline.

Figure 3.10: Proposed new neuroimaging pipeline optimized for the study of whole brain white
matter integrity post-stroke. Left: Tractography starts and ends at the gray/white matter bound-
ary. The boundary is segmented into different cortical regions as determined by a predefined atlas.
Middle: Deterministic DKI-based tractography is executed for each pair of gray matter ROIs. All
tracts belonging to the same pair of ROIs are colored with the same color. This example shows left
hemisphere tractography only. All fibers are subsequently divided into 100 equidistant segments
[1− 100]. Right: The average DKI metrics are calculated for each segment and are stored in a 100
different matrices. Each matrix elements (i,j) contains the value for the connection between gray
matter ROI i and gray matter ROI j.

Tractography is performed from the gray/white matter boundary in native dMRI space.

The boundary is first located, using the software package MRtrix, on a native T1-w image

using the functions 5ttgen and 5tt2gmwmi. Subsequently, it is normalized into native DWI
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space using non-linear registration, and each boundary voxel is assigned to a particular gray

matter ROI using a predefined gray matter atlas (see Figure 3.10 left). Each pair of gray

matter ROIs is then used as a seed and end region in a deterministic tractography algorithm

using the function tckgen from MRtrix. Ultimately, this results in fiber tracts connecting a

known pair of gray matter ROIs, which are rendered in the same color (Figure 3.10 middle).

All fiber tracts are divided into 100 equidistant segments (node 1 and 100 in Figure 3.10).

In a final step we calculate the average “microstructure” at each node (e.g, MD, FA,MK),

which is stored in a matrix where the rows and colums represent the different gray matter

ROIs (Figure 3.10 left). This matrix was coined the 3D microstructural connectome. For

example, microstructural connectome element (1,2,1) contains the average FA of segment 1

for the tracts connecting gray matter ROI 1 and gray matter ROI 2. The 3D microstructural

connectome provides a comprehensive overview of the white matter microstructure at its

entirety while keeping track of the cortical areas that are being connected. The large amount

of data captured in this matrix is ideally suited to be used with machine learning algorithms.
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CHAPTER 4

VALIDATION, DEVELOPMENT, AND OPTIMIZATION OF A NOVEL TISSUE

MODEL USING DIRECTION-AVERAGED HIGH B-VALUE DIFFUSION MRI

This chapter is based on the following publications:

• McKinnon, Emilie T., and Jens H. Jensen. “Measuring intra-axonal T2 in white matter with direction-averaged diffusion

MRI.” Magnetic resonance in medicine (2019): 2985-2994.

• McKinnon, Emilie T., Joseph A. Helpern, and Jens H. Jensen. “Modeling white matter microstructure with fiber ball imaging.”

NeuroImage 176 (2018): 11-21.

• McKinnon, Emilie T., Jens H. Jensen, G. Russell Glenn, and Joseph A. Helpern. “Dependence on b-value of the direction-

averaged diffusion-weighted imaging signal in brain.” Magnetic resonance imaging 36 (2017): 121-127.

• McKinnon, Emilie T., and Jens H. Jensen. Simple scheme for correcting bias in axonal water fraction due to differences in

compartmental transverse relaxation times. Oral presented at ISMRM 2019. Proceedings of the 27th meeting of the Interna-

tional Society of Magnetic Resonance in Medicine; 2019 May; Montreal, Canada.

4.1 Introduction

The key assumption underlying FBI is that strong diffusion weighting isolates water con-

fined to the intra-axonal compartment, and that this compartment can be approximated

by thin impermeable cylinders. The latter is commonly referred to as the “stick model”,

which is an assumption that has been used by a multitude of tissue models (see Section

1.2.3). To date, few studies have focused on the validation of these assumptions, which is

crucial for the accurate estimation of tissue specific parameters. In section 4.2, by com-

paring experiment and theory, we provide some preliminary evidence for the validity of

the “stick model”. FBI theory predicts that the direction averaged b-value signal decays

as 1/
√
b. High Angular Resolution Diffusion Imaging (HARDI) data were acquired from

two human volunteers with 128 diffusion-encoding directions and six b-value shells rang-

ing from 1000 to 6000 s/mm2 in increments of 1000 s/mm2. The direction-averaged signal
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was calculated for each shell and the signal was plotted as a function of b-value for selected

regions of interest. We demonstrate that the direction-averaged DWI signal in white matter

varies, to a good approximation, as 1/
√
b providing strong evidence for the validity of FBI.

The original FBI framework provides a means of calculating the fODF in white mat-

ter from dMRI data obtained over a spherical shell with a b-value of about 4000 s/mm2

or higher. We show that by supplementing this FBI-derived fODF with dMRI data ac-

quired for two lower b-value shells, it is possible to estimate several microstructural pa-

rameters, including the AWF and the intrinsic intra-axonal diffusivity (Da) (Section 4.3).

This FBWM modeling method is demonstrated for dMRI data acquired from healthy vol-

unteers, and the results are compared with those of the WMTI method. An important

practical advantage of FBWM is that the only nonlinear fitting required is the minimization

of a cost function with just a single free parameter, which facilitates the implementation of

efficient and robust numerical routines.

In Section 4.4, we demonstrate how the T2 relaxation time of the intra-axonal water

in white matter can be measured with direction-averaged dMRI for b-values larger than

about 4000 s/mm2. Since the direction-averaged dMRI signal from white matter at high b

is dominated by the contribution from water within axons, it enables T2a to be estimated

by acquiring data for multiple TE values and fitting a monoexponential decay curve. Given

an a priori value of the intra-axonal diffusivity Da, an extension of the method allows

the extra-axonal relaxation time T2e to also be calculated. This approach was applied to

estimate T2a in white matter for three healthy subjects at 3T, as well as T2e for a selected

set of assumed intra-axonal diffusivities. The straightforward calculation of compartmental

relaxation times allows for exploration of their use as potential biomarkers, and importantly

they can be used to improve the accuracy of certain tissue modeling parameters like the

AWF (Section 4.5).
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4.2 Dependence on b-Value of the Direction-Averaged Diffusion-Weighted Imaging

Signal

4.2.1 Introduction

The relationship between the DWI signal and brain tissue microstructure is subtle and man-

ifold. In white matter, there is the added complexity of substantial diffusion anisotropy

caused by axonal fiber bundles. While there have been a variety of mathematical models

proposed to describe this relationship, their relative merits are still debated, and this topic

continues to be actively investigated [123, 21]. Previously proposed models include bi-

exponentials [124, 20, 125, 19, 126], stretched exponentials [127] and power laws [128,

29]. Although each of these approaches can approximately fit DWI data over significant

ranges of b-values, their precise mathematical forms are quite different, as is particularly

evident for large b-values. For bi-exponential models, the large b-value behavior will be

dominated by the more slowly decreasing term, and so it will approach a simple mono-

exponential decay. For stretched exponentials, the signal decay has the form exp[−(kb)a],

where b is the b-value, k is a constant, and a<1 parameterizes the degree of stretching. For

the statistical model of Yablonskiy and coworkers [128], the signal decays as 1/b for large

b, while for the model considered by Jensen and coworkers [29], the large b signal decays

as 1/b.

In order to investigate the b-value dependence of the DWI signal, we acquired HARDI

data from two healthy volunteers with b-values ranging from 1000 to 6000 s/mm2 in in-

crements of 1000 s/mm2 and with 128 uniformly distributed diffusion-encoding directions

for each b-value shell. We then averaged the signal for each shell over all of the diffusion-

encoding directions in order to reduce the effects of variable degrees of diffusion anisotropy

[129]. In effect, this corresponds to determining the powder-averaged signal [130], which

should have a less complicated behavior than the full signal. Related data reduction meth-
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ods have been applied to dMRI in various contexts [126, 129, 131]. Here our purpose is

to suppress the effects of macroscopic diffusion anisotropy, as quantified by metrics such

as the FA. Nonetheless, the direction-averaged dMRI signal will still reflect microscopic

diffusion anisotropy, as is often studied with double diffusion encoding MRI [132, 133,

134] and magic-angle spinning dMRI [135]. As a supplementary analysis, we also applied

similar methods to retrospective dMRI data obtained from the human connectome project

(HCP), which includes b-values up to 10.000 s/mm2 [136].

Remarkably, our results demonstrate a simple power law scaling of the direction-averaged

DWI signal throughout the brain parenchyma over the range of b-values considered. More-

over, a distinct qualitative difference is found between white and gray matter, suggesting

sharp biophysical differences beyond just macroscopic diffusion anisotropy. We discuss

the significance of our observations with respect to the mathematical modeling of the DWI

signal. However, our main purpose here is not to compare how well different models fit

our data, but rather to describe the empirical dependence on the b-value of the direction-

averaged DWI signal and the broader implications of this for modeling.

4.2.2 Material and Methods

Data Acquisition

Data were acquired from two healthy volunteers (Subject 1, female, age 25 yr; Subject

2, male, age 55 yr) under a protocol approved by our institutional review board using a

Siemens 3T TIM Trio MRI scanner (Siemens Healthcare, Erlangen, Germany) and a 32

channel head coil (adaptive combine mode). HARDI data were acquired for six b-value

shells using a twice-refocused DWI sequence in order to reduce eddy current distortion

[137]. The b-values for the shells were 1000, 2000, 3000, 4000, 5000 and 6000 s/mm2,

and each shell had the same 128 uniformly distributed diffusion-encoding directions over

half a sphere, determined with an electrostatic repulsion algorithm [138]. Fourteen images
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without diffusion weighting (b0 images) were acquired at the beginning of each session,

and one additional b0 image was acquired between each b-value shell. Other acquisition

parameters were TE = 149 ms, TR = 7200 ms, slice thickness = 3.0 mm, field of view =

222 mm× 222 mm, pixel bandwidth = 1351 Hz/px, echo spacing = 0.82 ms, and parallel

imaging factor = 2. The acquisition matrix was 74x74 resulting in an in-plane resolution of

3 mm× 3 mm with a total scan time of 97 min 31 s.

For anatomical reference, Magnetization-Prepared Rapid Gradient Echo (MPRAGE)

images were acquired with 192 sagittal slices, TE = 2.3 ms, TR = 1900 ms, TI = 900 ms and

slice thickness = 1 mm. The FOV was 256 mm× 256 mm, yielding 1 mm× 1 mm× 1 mm

isotropic voxels. The total scan time for the MPRAGE acquisition was 4 min and 26 s.

Image Analysis

Due to the lengthy scan time, a co-registration process was implemented to account for

motion, using SPM8 (Wellcome Department of Imaging Neuroscience, London, United

Kingdom). The images for each b-value shell were co-registered with a rigid body trans-

formation to the average of the initial set of fourteen b0 images, employing each shells

respective intermediate b0 image as the source image. The MPRAGE images were also

brought into diffusion space by using the average of all b0 images as a template. To reduce

the contribution of signal noise and Gibbs ringing [87], all diffusion-weighted images were

smoothed with a Gaussian kernel having a full width at half maximum of 3.75 mm[84].

The direction-averaged diffusion-weighted images were calculated with the following

image analysis steps. In order to estimate the average over all gradient directions, one

million random points were selected on the surface of a sphere with unit radius and with

the origin at the spheres center. For each point, we determined the closest gradient vector by

calculating the angle between that point and each of the 128 gradient vectors. Subsequently,

a weight was assigned to each gradient vector by the fraction of assigned closest points
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over the sphere. This fraction was then applied to calculate a weighted average of all the

diffusion-weighted images for each shell. This weighted average is more accurate than an

unweighted average, since even uniformly distributed points typically do not have exactly

equal spacings [139].

The ROIs were defined by the following semi-automated method. First subcortical seg-

mentations were obtained by using the raw MPRAGE images together with FreeSurfer v5.0

(Freesurfer, Laboratory for Computational Neuroimaging, Charlestown, MA). Details on

the FreeSurfer subcortical segmentations are described by Fischl et al. [140]. Next, the seg-

mentations were brought into diffusion space by employing the same affine transformation

matrix used to transform the MPRAGE image. Additionally, certain white matter regions,

such as the splenium and the cerebellar peduncle, were obtained from the JHU white mat-

ter atlas [89]. Finally, the segmentations of FreeSurfer, the JHU white matter labels, and

the MPRAGE images were yoked together, and four voxels in the core of each selected

anatomical region were defined manually. These small ROIs were chosen to increase the

likelihood that they contained a single tissue type without partial volume contamination,

possibly introduced by the long acquisition time, low spatial resolution and smoothing.

The following anatomical regions were analyzed: cerebellar peduncle, splenium, internal

capsule, frontal white matter, thalamus, cerebellar gray matter, and putamen (Figure 4.1).

For the purposes of this study, we classified the ROIs drawn for internal capsule, splenium,

frontal white matter and cerebellar peduncle as being white matter brain tissue. Conversely,

regions selected from thalamus, cerebellar gray matter and putamen were regarded as be-

ing gray matter (although the thalamus does contain some white matter). The Signal to

Noise Ratio (SNR) was estimated in each ROI from the ratio of the average signal for the

6000 s/mm2 b-value shell to the average background signal (for a similar number of vox-

els) multiplied by
√

π
2

[141, 142]. All statistical tests performed under Results are paired

t-tests, with a significance level of p = 0.05, not corrected for multiple comparisons.
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Figure 4.1: Locations of the seven ROIs considered in the quantitative analysis superimposed on
the average b0 image for one subject. Each ROI represents the core of a different anatomical re-
gion. Cerebellar peduncle (violet), splenium (cyan), internal capsule (blue) and frontal white matter
(green) are all regarded as white matter regions, for the purposes of this study, while cerebellar gray
matter (red), putamen (yellow) and thalamus (white) are classified as gray matter.

The direction-averaged DWI signal for each b-value shell was normalized by dividing

by the b0 signal on a voxel-by-voxel basis. For both subjects, this normalized mean signal

was further averaged over the selected ROIs, and the resulting data were graphed on a log-

log plot. Linear fits to these data were then determined by linear regression, with the slope,

intercept and their associated errors determined according to standard methods [143]. We

also calculated the quantity

ζ = 2 ·
√
b

π
· S̄
S0

(4.1)

where b is the b-value, S̄ is the direction-averaged DWI signal, and S0 is the signal for

b = 0. Recent work has argued that

ζ ≈ f√
Da

(4.2)
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for white matter if the b-value is sufficiently large, where f is the fraction of MRI

visible water inside axons and Da is the intrinsic intra-axonal diffusivity (i.e., the along-

axis diffusivity of water inside axons) [29].

Supplementary Analysis

In order to test the generalizability of our results, we also performed a retrospective analysis

for one subject (female, age between 25-29) from the MGH Adult Diffusion Dataset down-

loaded from the HCP data repository (https://www.humanconnectome.org). This dataset

was acquired on a 3T Siemens Connectom scanner, customized with a 64 channel tight-

fitting brain array coil [144] and consists of MPRAGE and diffusion scans with four levels

of diffusion weighting. The b-values used were 1000, 3000, 5000 and 10.000 s/mm2 with

respectively 64, 64, 128 and 256 randomly distributed diffusion-encoding directions over

a full sphere. Every 14th volume was an image without diffusion weighting (b0) used for

motion correction. Other acquisition parameters were TE = 57 ms, TR = 8800 ms, voxel

size = 1.5 mm× 1.5 mm× 1.5 mm isotropic, FOV = 210 mm× 210 mm, pixel bandwidth

= 1984 Hz/Px, echo spacing = 0.63 ms and parallel imaging factor = 3. Additional details

can be found in [145]. The MPRAGE acquisition parameters were TE = 1.15 ms, TR =

2530 ms, TI = 1100 ms, and voxel size = 1 mm× 1 mm× 1 mm isotropic voxels.

These data were analyzed in a manner very similar to that described above for our

primary dataset with a few notable differences. First, the Gaussian smoothing kernel had

a full width at half maximum of 1.85 mm, due to the higher resolution of the HCP data.

Second, we computed the direction-averaged signal for each b-value shell from a simple

arithmetic mean. Since the HCP diffusion encoding directions are random, this arithmetic

mean corresponds to a conventional Monte Carlo integration divided by the number of

directions [146]. Finally, because of the higher resolution of the HCP dataset, each ROI

consisted of 16 rather than 4 voxels.
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4.2.3 Results

For Subject 1, the SNR at b = 6000 s/mm2 ranged from 6.3 to 11.4 in the white matter

ROIs and between 3.1 and 6.6 in the gray matter ROIs. For Subject 2, the ranges were

8.5-11.2 for white matter and 3.0-4.9 for gray matter. This suggests that the bias in our data

due to rectified noise should be relatively small [141].

The log-log plotted ROI data for Subject 1 together with linear fits are shown in Figure

4.2a. The x-axis corresponds to ln( b1
b

), while the y-axis corresponds ln( S̄
S0

). Here b1 ≡

1000 s/mm2 is a reference b-value scale, chosen for convenience. The high quality of these

linear fits (average R2 of 0.996) indicates that, over the range of b-values investigated, the

data are well described by power law behavior of the form

S̄

S0

≈ C · (b1

b
)α, (4.3)

Figure 4.2: (a) Log-log plot showing the relationship between the direction-averaged DWI signal S̄
from each ROI (normalized by dividing by the signal without diffusion weighting, S0) and the six b-
values (1000, 2000, 3000, 4000, 5000 and 6000 s/mm2) for all the ROIs of Subject 1. The reference
b-value b1 is set to 1000 s/mm2. The error bars show the standard deviations of the measurements.
The fits to Equation 4.1 for white and gray matter regions are indicated by solid and dashed lines,
respectively. (b) Linear scale plot showing the same data, but without normalization and error bars
in order to better demonstrate the quality of the fits. WM = white matter; GM = gray matter.
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where the exponent α is the measured slope of the fits and C is a dimensionless constant.

The constant C is approximately equal to S̄1000

S0
, with S̄1000 being the direction-averaged

signal for b ≡ 1000 s/mm2, and may be calculated directly from the y-intercept of the fits.

The fact that the direction-averaged DWI signal is accurately fit by a power law for

b = 1000 to 6000 s/mm2 indicates that two degrees of freedom are sufficient to describes

the b-value dependence over this range of diffusion weightings. This is further illustrated in

Figure 4.2b by linear scale power law fits of S̄ as a function of the b-value. The quality of

these fits is remarkable given that they utilize only two adjustable parameters. In contrast,

a stretched exponential [127] has three adjustable parameters, while a bi-exponential [126]

uses four.

Following Equation 4.3, we computed for each ROI both the exponent α and the con-

stant C, which were derived from the slope and y-intercept of the linear regression analysis

of the log data (as in Figure 4.2a). Table 4.1 lists these fitting parameters for both subjects

and all the ROIs. In white matter, the mean exponent α is found to be 0.56 ± 0.05, while

the mean gray matter exponent has a substantially larger value of 0.88 ± 0.11. A paired

t-test demonstrates the white and gray matter exponents to be significantly different (p =

0.0005). The fitting constant C is, in contrast, relatively similar over the considered ROIs,

with no significant difference between its average values calculated from white matter (0.53

± 0.03) and gray (0.48 ± 0.05).

Parametric maps of α for a single axial slice from each subject are shown in Figure

4.3. Corresponding FA maps [69] and MPRAGE images are also provided for anatomical

reference. The FA maps were calculated from a conventional diffusional kurtosis imaging

analysis using just the images with diffusion weightings of b = 0, 1000 and 2000 s/mm2

[84]. Throughout the white matter, the exponent is seen to be relatively close to 0.5, while

appreciably larger values are found for gray matter in consistency with our ROI results.
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Table 4.1: Estimates for the exponent α and the scale constant C obtained by fitting Equation 4.3 to
the direction-averaged DWI data from the six b-value shells for each of the subjects and the consid-
ered anatomical regions. The quality of the fits is indicated by the coefficient of determination R2,
and the uncertainties, in parentheses, indicate standard errors as determined with linear regression.

ROI Subject 1 Subject 2

R2 α C R2 α C

White
Matter

cerebellar
peduncle 0.993

0.548
(-0.022)

0.553
(-0.015) 0.999

0.53
(-0.01)

0.545
(-0.007)

splenium 0.998
0.548

(-0.013)
0.543

(-0.008) 0.999
0.475

(-0.008)
0.495

(-0.005)

internal
capsule 0.998

0.557
(-0.01)

0.543
(-0.007) 0.999

0.555
(-0.005)

0.537
(-0.004)

frontal 0.999
0.611

(-0.008)
0.503

(-0.008) 0.999
0.615

(-0.011)
0.482

(-0.006)

Gray
Matter thalamus 0.997

0.845
(-0.024)

0.52
(-0.016) 0.998

0.706
(-0.015)

0.481
(-0.009)

cerebellum 0.989
0.966

(-0.049)
0.485
(-0.03) 0.995

0.957
(-0.034)

0.397
(-0.017)

putamen 0.995
1.021

(-0.034)
0.543
(-0.02) 0.997

0.81
(-0.022)

0.478
(-0.013)
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Voxels containing substantial amounts of cerebrospinal fluid (e.g., ventricles and sulci)

also show large values of in Figure 4.3, but this may be of little physical significance as the

signal in these regions does not necessarily follow the power law decay of Equation 4.3.

Figure 4.3: Parametric maps of the exponent α for a single axial slice from each subject. For
reference, the corresponding FA and a similar MPRAGE (T1) images are also shown. In white
matter, α is close to 0.5, while for gray matter regions the exponent is consistently larger.

By combining Equation 4.1 and Equation 4.2, one finds

S̄

S0

≈ 0.5 · ζ ·
√
π

b
, (4.4)

This has the same form as Equation 4.3 with an exponent α = 0.5, which is relatively

close to the measured values for white matter shown in 4.1. Thus our observed power law

decay is roughly consistent with the behavior predicted by Equation 4.3. Parametric maps

of ζ , as derived with Equation 4.1, from one subject for each of the b-values considered in

this experiment are shown in Figure 4.4. Within the white matter regions, the ζ estimates

for the higher b-values are seen to be relatively consistent with each other, as would be

expected for a true tissue property. Bar graphs of the ζ estimates for the white matter ROIs

based on the b = 4000 s/mm2 HARDI data are given by Figure 4.5a. The mean values
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over all of the white matter ROIs are shown as a function of the b-value in Figure 4.5b,

again indicating a stable behavior for the larger diffusion weightings. The fact that ζ is

a decreasing function for the lower b-values, suggests that including this lower range of

b-values in the calculation of the power law exponent tends to increase its value.

Figure 4.4: Axial maps of estimates for the quantity ζ, as given by Equation 4.1, for a single human
subject as a function of the b-value. From the theory of Ref. 10, the estimates in white matter are
expected to converge, for large b-values, to a level that is characteristic of the tissue microstructure.
The scale bar is in units of ms1/2/µm.

Figure 4.5: (a) The quantity ζ for the four white matter ROIs as estimated with Equation 4.1 and
the HARDI data for b = 4000 s/mm2. (b) Mean ζ values for all the white matter ROIs as a function
of the b-value. The mean values for b = 4000, 5000, and 6000 s/mm2 are all similar, in consistency
with the theory of Reference [29]. All error bars indicate standard deviations. SP = splenium; CP =
cerebellar peduncle; FWM = frontal white matter; IC = internal capsule.

For the HCP dataset, the SNR at b = 10.000 s/mm2 is 3.9-5.4 in white matter ROIs and

3.0-4.9 in gray matter ROIs. For gray matter this is comparable to the SNR of our primary

dataset, but the white matter SNR is somewhat lower. The linear regression ROI fits are
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shown in Fig. 6a. For all the white matter regions and for the cerebellar gray matter ROI,

the data points from all four b-values lie close to the best fit lines, indicating approximate

power law decay. The R2 values for the white matter regions ranges from 0.995 to 0.999,

cerebellar gray matter has R2 = 0.997. The R2 values for the thalamus and putamen are

0.955 and 0.965, which is somewhat lower than we find with our primary dataset. This

may indicate a breakdown of power law scaling, but could also reflect a systematic error in

the measurements. The deviation from linearity in these two gray matter regions is most

pronounced in the b = 10.000 s/mm2 data points, which also correspond to the two data

points with the lowest SNR. Although our simple SNR estimates are suggestive of minor

noise bias, this is not definitive given the complex nature of noise when parallel imaging is

utilized [147]. In this regard, it is important to note that the HCP data was acquired with

a parallel imaging factor of 3, while the primary dataset used a parallel imaging factor of

2. The exponents obtained from the best fit lines in Figure 4.6a had an average value of

α = 0.48 ± 0.05 for white matter and α = 0.73 ± 0.13 for gray matter, which is fairly

similar to, if a bit lower than, the values from our primary dataset. The region-by-region

comparison of the HCP exponents with those for the primary dataset is given by Fig 6b. A

parametric map of for one slice of the HCP data appears in Fig. 6c, along with FA and

MPRAGE images. Overall, in most white matter regions, the values for α are a little above

0.5, but they are visibly lower in high FA areas such as the corpus callosum.

4.2.4 Discussion

The central observation of this paper is the simple power law behavior of the direction-

averaged DWI signal, as given by Equation 4.3, for b-values ranging from 1000 to 6000 s/mm2.

In white matter, the average measured exponent is α = 0.56± 0.05, while the average gray

matter exponent of 0.89± 0.11 is substantially larger. This disparity suggests fundamental

differences in gray and white matter microstructure. Due to the direction averaging of the

DWI signal, we hypothesize that these go beyond those reflected in the familiar macro-
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Figure 4.6: (a) Log-log plot showing the relationship between the direction-averaged DWI signal S̄
from each ROI (normalized by dividing by the signal without diffusion weighting, S0) and the four
b-values (1000, 3000, 5000, 10.000 s/mm2) for all the ROIs in the HCP dataset (Similar to Figure
4.2a). (b) The exponent α for each ROI and subject. The HCP estimates are similar to those from
the primary dataset. (c) Parametric maps of the exponent α and FA for a single axial slice from
the HCP dataset. A similar T1 slice is provided as an anatomical reference. All error bars indicate
standard deviations. SP = splenium; CP = cerebellar peduncle; FWM = frontal white matter; IC =
internal capsule, TH = thalamus, PU = putamen, CGM = cerebellar gray matter.

scopic diffusion anisotropy metrics (e.g., FA) [69].

It should be emphasized that our primary data only support power law signal decay

for the restricted range of b-values between 1000 and 6000 s/mm2. For smaller b-values,

this scaling behavior must break down as the DWI signal approaches a constant in the

limit b0. It could also fail to hold for very large b-values, if, for example, there were a

pool of immobile proton spins that contributed a constant to the overall signal. However,

our supplementary analysis of HCP data suggests that this picture may indeed hold for b-
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values as high 10.000 s/mm2, although the acquisition parameters for the HCP dataset are

quite different from ours. Most importantly, the TE for our dataset is 149 ms, while HCP

dataset was acquired with TE = 57 ms. This implies a much shorter diffusion time as well

as a larger contribution from myelin water for the HCP dataset, which could potentially

affect the quality of the power law decay fits. In addition, the HCP dataset includes only 64

diffusion encoding directions for b = 1000 s/mm2 and 3000 s/mm2, which would reduce

the accuracy of the directional averaging, especially in high FA areas such as the corpus

callosum.

The exponent of approximately one-half for white matter is consistent with the large b-

value limit predicted for a model of water confined to thin, impermeable cylindrical tubes

[29, 22], which is commonly used to describe the diffusion dynamics of intra-axonal water

[148, 32, 22, 28]. Our results support this as being a reasonable approximation for white

matter (Table 1, Figure 4.3). However, the markedly larger exponent found for gray matter

points to essential differences in the diffusion dynamics. Since gray matter does contain

a large proportion of neurites that are plausibly modeled by thin cylindrical tubes [32, 22,

148, 28], this conclusion may seem surprising. Indeed by using magnetic resonance spec-

troscopy, Kroenke and coworkers [148] measured the diffusion-weighted signal decay for

N-acetyl-L-aspartate (NAA) in rat brain up to b-values of about 20.000 s/mm2 and showed

that this data could be accurately fit with a model based on thin, impermeable cylinders.

The volume elements for the experiment were large, but contained substantial amounts of

gray matter. Thus, the higher exponent found here for water diffusion most likely reflects

a distinction between water and NAA diffusion dynamics, rather than simply the geom-

etry of the cylinder model being inadequate for gray matter. One key distinction is that

NAA is confined to neurons [148], while water can cross cell membranes. The discrep-

ancy between the white and gray matter exponents for our experiment could then plausibly

be due to gray/white matter differences in water permeability for the cell membranes of

neurites, with gray matter having a sufficiently larger permeability to invalidate the model.
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Thus, qualitatively different assumptions about brain microstructure may be necessary to

accurately model the water diffusion dynamics for white and gray matter.

As discussed by Jensen and coworkers [29], a consequence of the thin cylindrical tube

model for axons is that the direction-averaged DWI signal decay in white matter can be

related to the microstructural parameter ζ , in the limit of large b-values. Estimates for ζ

obtained from our data and Equation 4.1 are shown in Figures 4.4 and 4.5. These estimates

are fairly consistent across b-values for b ≥ 4000 s/mm2. As intrinsic tissue parameters

must be independent of the diffusion weighting, this suggests a reasonable minimum b-

value of about 4000 s/mm2 for the applicability of Equation 4.4. Since the estimations

of both the intra-axonal diffusivity, Da, and the axonal water fraction f are topics of sub-

stantial recent interest [149], accurate quantification of ζ ≈ f
Da

from data acquired from a

single b-value shell could be useful in constraining microstructural models of water diffu-

sion dynamics in brain [134, 123]. As is evident from Figures 4.4 and 4.5, there is some

variability in ζ values across white matter regions. From our results alone, it cannot be

determined whether this is mainly due to differences in f or Da. However, individual esti-

mates for these parameters based on explicit modeling suggest that both of these parameters

may have significant regional variations [27, 28, 134].

Two other proposed models predict power law signal decay, at least for sufficiently

large b-values. One of these is the statistical model of Yablonskiy and coworkers [128], for

which the signal decays as 1/b for large b. This does not match the power law behavior that

we find in white matter, but it is in rough agreement with our exponent for gray matter. Yet

another statistical model, based on a gamma distribution of diffusion coefficients, yields a

DWI signal of the form [113, 150, 151].

S

S0

=
1

(1 + b
bc

)ε
, (4.5)
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which scales as (bc/b)
ε for b ≥ bc. However, in this case, the exponent ε depends on

the details of the distribution rather than having a universal value. Nonetheless, it should

be emphasized once again that our observation of power law scaling for the direction-

averaged DWI signal has only been demonstrated over a restricted range of b-values, and

so our results may not be sufficient to fully evaluate either of these two statistical models.

Note added in revision: While this paper was under review, an independent study reported

similar power law scaling for the direction-averaged DWI signal in white matter with an

exponent near one-half up to b-values of 10.000 s/mm2 [87].

4.2.5 Conclusion

The direction-averaged DWI signal in human brain decreases with increasing b-values ap-

proximately as a power law, for b-values ranging from 1000 to 6000 s/mm2. In white

matter, the exponent characterizing this decrease is close to one-half, which is consistent

with the large b-value limit of a model in which intra-axonal water diffusion is confined

to thin, impermeable cylinders. The exponent for gray matter is substantially larger, in-

dicative of sharp microstructural differences relative to white matter that likely go beyond

those associated with diffusion anisotropy. As a consequence, in contrast to some previous

approaches, white and gray matter may require distinct tissue modeling strategies in order

to obtain the most accurate results.

4.3 Modeling White Matter Microstructure with Fiber Ball Imaging

4.3.1 Introduction

dMRI is widely applied as a tool for investigating brain microstructure in vivo [152]. How-

ever, determining specific microstructural properties from measured dMRI data is challeng-

ing due to the intricacies of water diffusion within the complex cytoarchitecture of brain

tissue [153]. This has led to an assortment of tissue modeling methods being proposed for

dMRI, which are still being actively developed and evaluated [154, 155, 156, 8, 123, 157,
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22].

A common difficulty associated with dMRI tissue models is managing the multiple

local optima that often arise in nonlinear fitting algorithms with several free parameters,

which adds to numerical computation times and may increase sensitivity to noise and imag-

ing artifacts [158, 149, 8, 7]. In addition, estimating certain microstructural parameters with

good accuracy and precision has proven problematic. This is notably true for the intrinsic

intra-axonal diffusivity (Da), with predictions from different approaches varying by over a

factor of two [149, 7, 159]. Here we present a dMRI modeling method based on FBI [29]

intended to ameliorate these issues.

FBI is closely related to q-ball imaging [160] and yields estimates for the fODF in

white matter from HARDI data, by employing b-values typically in the range of 4000 to

6000 s/mm2 [29, 30]. It can also be used to calculate several microstructural properties

associated with axonal fiber bundles. An advantage of FBI is that the core post-processing

step is a straightforward linear transformation of the dMRI signal data that avoids the com-

plications of nonlinear fitting.

In this study, we demonstrate how to augment FBI with lower b-value dMRI data in

order to estimate several additional parameters, including Da, the mean extra-axonal diffu-

sivity ( D̄e), and the AWF. While determining these extra quantities does require nonlinear

fitting, the proposed algorithm involves the minimization of a cost function having only a

single free parameter. This allows the global optimum to be found robustly and efficiently.

This approach differs markedly from the conventional tactic of directly fitting the signal

model corresponding to the assumed microstructural framework (i.e., the tissue model) to

dMRI signal data, which typically leads to a cost function with multiple adjustable param-

eters and the aforementioned computational challenges. Instead, we regard the outputs of

the FBI analysis as fixed inputs upon which the cost function is built. Similarly, we also

93



CHAPTER 4. DIRECTION-AVERAGED HIGH B-VALUE DIFFUSION MRI

use the diffusion tensor, obtained by standard means from the lower b-value dMRI data,

as a fixed input. In this way, the number of free parameters that need to be determined by

nonlinear optimization is reduced to one, resulting in a simple numerical procedure.

A principal motivation for this Fiber Ball White Matter (FBWM) modeling approach is

to improve upon the WMTI method [27, 161], which yields predictions for the same basic

physical quantities. An advantage of WMTI is its simple computational algorithm that uses

only comparatively low b-value dMRI data. However, WMTI assumes all axons within any

given voxel to be aligned in approximately the same direction, which may be a significant

source of error particularly in crossing fiber regions. The FBWM approach overcomes this

limitation by employing the measured fODF from FBI rather than presuming a specific

geometrical arrangement for the axons. In order to investigate the extent to which FBWM

and WMTI lead to different predictions, we utilize experimental results obtained from three

healthy volunteers.

4.3.2 Theory

Signal Model

We assume the intra-axonal and extra-axonal spaces can be treated as separate compart-

ments, which requires the intra-axonal water exchange time to be large in comparison to

the diffusion time for the dMRI sequence. Although this exchange rate is not known with

high precision, it has been estimated to be on the order of seconds [162], which is indeed

long relative to typical dMRI diffusion times. In addition, we neglect the dMRI signal from

myelin water. Myelin water has a T2 of about 10−20 ms [163], so the myelin water signal

will be suppressed by over a factor of 100 for typical clinical scanner dMRI echo times of

about 100 ms.

For the intra-axonal space, we idealize axons as thin, straight cylinders, which implies
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an intra-axonal dMRI signal of the form

Sa(b,n) = S0f

∫
dΩuF (u)exp[−bDa(n · u)2], (4.6)

where f is the AWF, S0 is the signal without diffusion weighting, b is the b-value for

the dMRI sequence, n is the diffusion encoding direction unit vector, and F (u) is the fODF

as a function of a unit vector u that indicates the axon orientation. The integral in Equation

4.6 is taken over all possible axon orientations, and the fODF is normalized so that

1 =

∫
dΩuF (u). (4.7)

This corresponds to the widely used stick model for axons [164, 155, 129, 148, 32, 165,

8, 123, 22, 87, 166, 28], and it is also employed in FBI [29]. However, here we adopt a

different normalization for the fODF than used in our previous work [29], as this is more

convenient for our proposed FBWM modeling approach.

For the extra-axonal space, we treat water diffusion as Gaussian so that the signal in a

diffusion encoding direction n is given by

Se(b,n) = S0(1− f)exp(−bnTDen)), (4.8)

where De is the extra-axonal diffusion tensor. This same model has been utilized by

Jespersen and coworkers [165] and should be appropriate for b-values small enough so that

the intrinsic kurtosis of the extra-axonal space can be neglected. As we shall argue, for

FBWM the details of the extra-axonal signal at high b-values should be relatively unimpor-

tant, since the intra-axonal signal is then much larger and dominates the full signal, which

is simply the sum of Sa and Se.

95



CHAPTER 4. DIRECTION-AVERAGED HIGH B-VALUE DIFFUSION MRI

Fiber Ball Imaging

FBI requires HARDI data for a single spherical b-value shell with a large number of uni-

formly distributed diffusion encoding directions. The chosen b-value, bFBI , should be high

enough to strongly suppress the dMRI signal from the extra-axonal space, but not so big

as to induce a significant noise bias. In practice, bFBI would usually be in the range of

4000-6000 s/mm2, depending on scanner performance and the desired spatial resolution

[29, 30].

From the HARDI data, one can construct a spherical harmonic expansion for the dMRI

signal on the b-value shell as

S(bFBI ,n) = S0

∞∑
l=0

l∑
m=−l

aml Y
m
l (θ, φ), (4.9)

where S(b,n) is the signal magnitude as a function of the b-value and the diffusion

encoding direction, aml are the expansion coefficients, Y m
l are the spherical harmonics,

and (θ, φ) are the spherical angles corresponding to n. In Equation 4.9, we assume the

convention [167]

Y m
l (θ, φ) =

√
2l + 1

4π
· (l −m)!

(l +m)!
Pm
l (cosθ)eimφ, (4.10)

where

Pm
l (x) ≡ (−1)m

2ll!
(1− x2)m/2

dl+m

dl+mx
(x2 − 1)l (4.11)

is the associated Legendre function. The expansion coefficients for odd l may be set to

zero, since reflection symmetry implies S(b,−n) = S(b,n).

The central result of FBI is then that the fODF is approximately given by [29]

F (n) =
∞∑
l=0

2l∑
m=−2l

cm2lY
m

2l (θ, φ), (4.12)
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where

Cm
2l =

am2lg0(bFBID0)√
4πP2l(0)a0

0g2l(bFBID0)
(4.13)

with Pl(x) = P 0
l (x) being a Legendre polynomial and

g2l(x) =
l!xl+

1
2

Γ(2l + 3
2
)

1F1(l +
1

2
; 2l +

3

2
;−x) (4.14)

In Equation 4.13, D0 represents an upper bound on Da, which would usually be chosen

as either infinity or as the free water diffusivity at body temperature of about 3.0 µm2/ms

[168], while in Equation 4.14, 1F1 is the confluent hypergeometric function and Γ is the

Gamma function. One may verify that Equation 4.12 is normalized in accord with Equation

4.7. For D0 =∞, Equation 4.13 simplifies to

cm2l =
am2l√

4πP2l(0)a0
0

, (4.15)

since g2l(∞) = 1. In this case, the fODF is proportional to the inverse Funk transform

[169] of the dMRI signal for the HARDI shell. In practice, the difference between using a

D0 of infinity or 3.0 µm2/ms is typically small, with the fODF being slightly sharper with

D0 = 3.0 µm2/ms [29]. Note that D0 becomes more irrelevant as bFBI is increased.

From Equation 4.12, one may show that the diffusion tensor for the intra-axonal com-

partment, within the stick model approximation, is

Da = DaA, (4.16)
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with

A ≡ 1
C0

0

√
30


√
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3
c0

0 −
√

6
3
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2 + c2
2 + c−2
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2 − ic−2

2 −c1
2 + c−1

2

ic2
2 − ic−2

2

√
30
3
c0

0 −
√

6
3
c0

2 − c2
2 − c−2
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√

6
3
c0

2

 . (4.17)

Observe that tr(A) = 1. The tensor A is guaranteed to be real, since (cml )∗ = c−ml

as follows from the requirement that the fODF be real. Even though Da is not known a

priori, Equations 4.16 and 4.17 are sufficient to calculate the FA for the intra-axonal space,

as well as other related dimensionless properties of Da. More explicitly, this Fractional

Anisotropy for the Axons (FAA) is given by

FAA =

√√√√√√ 3
2∑

m=−2

|cm2 |2

5|c0
0|2 + 2

∑2
m=−2 |cm2 |2

. (4.18)

The derivations of Equations 4.16-4.18 are discussed in the Appendix B. FBI also esti-

mates the parameter ζ ≡ f/
√
Da as [29]

ζ = a0
0

√
bFBI
π

(4.19)

The FAA is simply related to the axonal dispersion metric by p2 = FAA/
√

3− 2(FAA2)

[7],[166].

Expressions for Intra-Axonal and Extra-Axonal signals in terms of AWF

By combining Equations 4.6 and 4.12, one can show that the spherical harmonic expansion

for intra-axonal signal may be expressed as [29]

Sa(b,n) = 2πS0ζ

√
π

b

∞∑
l=0

2l∑
m=−2l

P2l(0)g2l(b
f 2

ζ2
)cm2lY

m
2l (θ, φ). (4.20)
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A notable feature of the spherical harmonic expansion in Equation 4.20 is that the only

unknown parameter is f , as all the other quantities are determined by FBI. This contrasts

with several other white matter modeling approaches that utilize multiple free parameters

in order to represent the intra-axonal signal [32, 165, 8, 166, 28]. Consistency of Equations

4.9,4.19, and 4.20 requires that

g0(bFBIDa) = erf(
√
bFBIDa) ≈ 1, (4.21)

where erf indicates the error function; this approximation holds to better than 0.1% pro-

vided bFBIDa > 5.5.

Now let us assume that, in addition to the HARDI b-value shell acquired for FBI, one

also obtains low b-value data sufficient for estimating the total diffusion tensor, D, as is

conventionally done with either DTI [170] or DKI [113]. The diffusion tensor for the

extra-axonal space, De, is related to D and Da by

D = fDa + (1− f)De, (4.22)

which implies

De =
D− fDa

(1− f)
. (4.23)

With the help of Equation 4.16 and the definition of ζ , this leads to

De =
1

(1− f)
(D− f 3

ζ2
A). (4.24)

Except for the AWF, all the quantities on the right-hand side of Equation 4.24 can be

directly calculated from either FBI or low b-value dMRI data. For fitting purposes, we can

therefore regard De as only a function of f . This also applies to the extra-axonal signal of

Equation 4.8, which is determined by De and f .
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Cost Function

The dMRI signal for the full FBWM model is

Smod(b,n) = Sa(b,n) + Se(b,n). (4.25)

As we have seen, both Sa and Se can be thought of as functions of the AWF, given the

information provided by FBI and the total diffusion tensor. Therefore, we may consider the

total signal Smod to also be a function of the AWF.

In order to determine the AWF, we introduce the cost function

C(f) ≡ 1

S0

{ 1

M

M∑
i=1

1

N

Ni∑
j=1

[Smod(bi,ni,j − Sexp(bi,ni,j)]2}1/2, (4.26)

where Sexp(b,n) is the magnitude of the measured dMRI signal as a function of b-value

and diffusion encoding direction, M is the number of b-value shells, Ni is the number of

diffusion encoding directions for the ith shell, bi is the b-value for the ith shell, and ni,j is

the jth diffusion encoding direction for the ith shell. Normally, one would set bM = bFBI .

This cost function represents a weighted root-mean-square difference between the model

and experimental signals divided by the signal for b = 0, with the weight factors depending

on the number of directions for each shell. The best estimate for the AWF is then defined

as the value of f that minimizes C.

By construction, we expect the model and experimental signals to agree fairly well for

both low and high b-values, even if f is only roughly correct. Thus in order to predict

the AWF with useful precision, shells having intermediate b-values should be included in

Equation 4.26. By intermediate, we mean b-values larger than the range for which the

signals b-value dependence is primarily governed by the total diffusion tensor (as assumed

for DTI), but smaller than the b-values for which the intra-axonal signal predominates (as
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assumed for FBI). In brain, we expect such intermediate b-values to be roughly 2000 to

3000 s/mm2, corresponding to the smallest b-values with readily apparent non-Gaussian

diffusion effects in the dMRI signal [20, 113]. A minimal FBWM imaging protocol would,

therefore, have three nonzero b-value shells, with low, medium, and large b-values.

Microstructural Parameters

Once the AWF has been determined by minimizing C, then several other microstructural

parameters are easily calculated. In particular, the intrinsic intra-axonal diffusivity can be

found from

Da =
f 2

ζ2
. (4.27)

which follows directly from the definition of ζ , and the mean extra-axonal diffusivity is

given by

D̄e =
1

(1− f)
(D̄ − f 3

3ζ2
), (4.28)

where D̄ = tr(D/3) is the Mean Diffusivity (MD), which follows from Equation 4.24.

If the eigenvalues of De are λe,1 ≥ λe,2 ≥ λe,3 , then one can also estimate the axial

extra-axonal diffusivity as

De,‖ ≡ λe,1 (4.29)

and the radial extra-axonal diffusivity as

De,⊥ ≡
1

2
(λe,2 + λe,3). (4.30)

101



CHAPTER 4. DIRECTION-AVERAGED HIGH B-VALUE DIFFUSION MRI

4.3.3 Methods

Imaging

DWI data were acquired for three healthy volunteers on a 3T Prisma MRI scanner (Siemens

Healthcare, Erlangen, Germany) under a protocol approved by the Medical University of

South Carolina institutional review board. Using a twice-refocused echo planar imaging

pulse sequence to minimize eddy current distortion [137], 42 axial brain slices with 3.0 mm

slice thickness and no interslice gap were obtained. The b-values were 0, 1000, 2000, and

6000 s/mm2. For the 1000 and 2000 s/mm2 shells, 30 vendor-supplied diffusion encoding

directions were employed, while 256 diffusion encoding directions were acquired for the

6000 s/mm2 (HARDI) shell. For the 0 images, 25 separate signal excitations were uti-

lized for each slice. The HARDI shell had a large number of directions since these data

were applied in estimating the spherical harmonic expansion of Equation 4.9. The TE was

98 ms, the TR was 5100 ms, the FOV was 222 mm× 222 mm, and the acquisition matrix

was 7474, resulting in isotropic voxels with dimensions of 3 mm× 3 mm× 3 mm. The

data were acquired with an in-plane parallel imaging factor of 2 and a multiband acceler-

ation factor of 2, using a bandwidth of 1438 Hz/pixel. Partial Fourier encoding was not

employed. This entire DWI scan protocol was then repeated, in the same scan session, in

order to allow the reproducibility of our parameter estimates to be tested. The combined

scan time for both runs was 59 min 20 s.

For anatomical reference, T1-weighted (MPRAGE) images were also acquired with

isotropic 1 mm voxels for 192 slices. The TE was 2.26 ms, the TI was 900 ms, the TR was

2300 ms, and the total scan time was 5 min 21 s.

Data Analysis

All DWI data were denoised using a principal components analysis approach [85], and the

method of moments [142] was applied to reduce noise bias. Subsequently, a Gibbs ringing
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correction was employed [86], and all DWI images were co-registered to correct for any

subject motion.

The DWI images for 0, 1000 and 2000 s/mm2 were used to calculate the diffusion ten-

sor with DKE (https://www.nitrc.org/projects/dke/) in order to estimate the total diffusion

tensor D on a voxel-by-voxel basis [84]. This DKI-based approach was employed instead

of DTI in order to improve the accuracy of the tensor calculation [93]. The spherical har-

monic coefficients of Equation 4.9 were determined with linear least squares from the 0 and

HARDI data. For our main results, all harmonics up to degree l = 6 were kept in Equation

4.9, but we also considered other maximum degrees in auxiliary calculations aimed at in-

vestigating the impact of this cutoff. The spherical harmonic coefficients for the fODF of

Equation 4.13 were calculated with D0 = 3.0 µm2/ms, and the microstructural parameter

ζ was obtained from Equation 4.19.

In order to estimate the AWF, the cost function C of Equation 4.26 was evaluated in

each voxel for 100 equally spaced points between f = 0 and f = 1. For our DWI protocol,

we have M = 3 , N1 = N2 = 30, N3 = 256, b1 = 1000 s/mm2, b2 = 2000 s/mm2, and

b3 = bFBI = 6000 s/mm2. For each value of f , the eigenvalues of De were calculated with

the help of Equation 4.23. If any of these eigenvalues were less than zero for a particular f ,

then that value of the AWF was excluded as being unphysical. The optimal AWF was taken

as the value that minimized C, among all those that were not excluded. From the optimal

AWF, parametric maps of Da, D̄e, De,‖, and De,⊥ were obtained by using Equations 4.27

- 4.30. A flow chart outlining the FBWM data analysis procedure is shown in Figure 4.7.

To process a full whole brain dataset for one subject required about 12.5 min on an iMac

computer with a 4 GHz Intel Core i7 CPU.

For comparison, the DWI data for 0, 1000 and 2000 s/mm2 were used with DKE to

obtain standard DKI maps of MD, FA, Mean Kurtosis (MK), axial diffusivity (D‖), and
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Figure 4.7: Flow chart showing the data analysis pipeline for FBWM. The parameters cm2l and ζ are
determined with FBI, while the total diffusion tensor D is found with DKI. The cost function C(f)
is then constructed from cm2l , ζ, and D. By minimizing C(f), one obtains a best estimate for the
AWF. Finally, the AWF, together with the FBI and DKI results, is used to calculate the additional
microstructural parameters of Da, D̄e, De,‖, and De,⊥.

radial diffusivity (D⊥). These same data were also applied to determine ζ , f , Da, D̄e, De,‖,

andDe,⊥ following the WMTI procedure of Fieremans and coworkers [27]. The parametric

maps for all diffusion measures were skull-stripped, and a white matter mask was defined

as all brain voxels with MK ≥ 1.0 [119]. The white matter mask was based on MK rather

than FA, since the FA can be low in white matter regions with extensive fiber crossing.

To test reproducibility, the two scans for each subject were analyzed independently. The

absolute percent difference between the parameter values from Run 1 and Run 2 were then

calculated for each white matter voxel. From the full set of these voxels, median absolute

percent differences were found for each of the three subjects. We used the median rather

than the average difference in order to reduce the effect of outliers, as may arise from

imaging artifacts and co-registration errors. In calculating overall means for the various

estimated diffusion parameters, all the white matter voxels from both runs were pooled for

each subject, with standard deviations being used to indicate the spread in values.
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Finally, to compare the FBI and FBWM predictions to those obtained with WMTI,

average values were calculated for each parameter by binning all white matter voxels for

all three subjects according to FA, with a bin size of 0.1. Even though the application

of the WMTI is only recommended for voxels with FA values larger than 0.3 to 0.4 [27,

159], we determined all measures for FA values ranging from 0.15 to 0.75 for the sake

of completeness. The validity of the FBI and FBWM estimates is not expected to depend

significantly on FA.

Numerical Simulations

In order to investigate the effect of signal noise on our parameter estimates, we conducted

numerical simulations by adding varying amounts of Rician noise to a ground truth dataset

constructed from our signal model with the model parameters set to those estimated for one

of our in vivo scans (Subject 1, Run 1). Using a SNR of 50, we also numerically tested the

impact of employing different numbers of diffusion encoding directions (30, 64, 128, 256)

for the 6000 s/mm2 HARDI shell, while keeping the number of directions for b = 1000 and

2000 s/mm2 fixed at 30. In performing the simulations, we utilized the same data analysis

pipeline as for the in vivo data, except that co-registration was not performed (since there

was no motion to correct) and denoising was skipped in a subset of the simulations in order

to demonstrate the effect of this processing step.

4.3.4 Results

In vivo

Our denoising algorithm [85] generated voxelwise noise maps, which were used to estimate

the average SNR in white matter. For the b0 images, the average SNR over all scans was

59± 9, while for the 6000 s/mm2 images the average SNR was 15± 5. This latter number

was obtained by first averaging the 6000 s/mm2 images over all of the diffusion encoding

directions prior to dividing by the noise. Representative examples of the cost function C
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of Equation 4.26 are shown in Figure 4.8, for three different white matter voxels. In most

cases, the cost function has a quasi-parabolic shape with a minimum skewed toward higher

AWF values. Only 10.4% of white matter voxels had multiple local minima out of a total

of 16,184 for all three subjects. In any case, finding the global minima was not problematic

due to our exhaustive grid search strategy.

Figure 4.8: Representative FBWM cost functions for three individual voxels from the splenium
of the corpus callosum (SP), frontal white matter (FW), and the internal capsule (IC). The only
adjustable parameter in the cost function is the AWF, since all other quantities are fixed with infor-
mation supplied by DKI and FBI. For most white matter voxels, the cost function has a single local
minimum, as illustrated here.

Parametric maps of selected diffusion parameters for one anatomical slice from Subject

1 are given in Figure 4.9. The Run 1 and Run 2 maps are derived from independent datasets

obtained during a single scan session. The similarity of the corresponding FBWM metrics

within white matter regions demonstrates the minimal effect of signal noise (after denois-

ing) on the reproducibility of the method. Outside of white matter, both the FBI and FBWM

values have no clear physical meanings, even though our post-processing algorithms gen-

erate results for all voxels. The absolute percent differences of all white matter voxels from

each subject, for the same set of diffusion parameters as in Figure 4.9, are plotted in Figure
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4.10. For Subjects 1 and 2, the voxelwise reproducibility is about 10% or better for all the

FBWM measures. For Subject 3, the FBWM measures have a reproducibility of about 20%

or better. The axial extra-axonal diffusivity, De,‖, has the highest degree of variability for

Subjects 1 and 2, while De,⊥ has the highest variability for Subject 3.

In Figure 4.11, FBI, FBWM, and WMTI parameter estimates are plotted as functions of

the FA. The ζ values are relatively close for both FBI and WMTI, especially at higher FA,

which confirms the findings of a prior study [159]. In addition, the FBWM and WMTI av-

erages for D̄e and De,⊥ are comparable. For FAA, f , and De,‖, WMTI shows similar trends

as FBI/FBWM, but the numerical values are quite different. Importantly, the estimates for

f found with FBWM are higher than the WMTI values by about 20% or more. Even more

striking,Da as predicted with FBWM is over twice that from WMTI for all FA values. This

discrepancy is a manifestation of the well-known difficulty associated with estimating Da

accurately [149, 7]. Finally, Figure 4.11 also shows that the ratio ζ/f for FBI/FBWM (but

not for WMTI) to be nearly constant across the full range of FA, with tight error bars. This

suggests a high correlation between ζ and f , as estimated with FBI/FBWM, and indeed

their voxelwise Pearson correlation coefficient is r = 0.78.
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Figure 4.9: Parametric maps for selected diffusion measures from a single anatomical slice for
Subject 1. Two independent datasets (Runs 1 and 2) were acquired within a single scan session in
order to test reproducibility. The parameters in Columns 1 and 3 were calculated with DKI (MD,
FA, MK) and FBI (ζ, FAA), while the parameters in Columns 2 and 4 were calculated with FBWM.
The corresponding maps for Run 1 and Run 2 are fairly similar for all metrics, indicating that they
are not overly sensitive to signal noise. The calibration bars for the diffusivities (MD,Da, D̄e, De,‖,
De,⊥) are in units of µm2/ms, and the calibration bar for ζ is in units of

√
ms/µm, while all other

quantities (FA, MK, FAA, f ) are dimensionless. The FBI and FBWM results are only meaningful
in white matter regions.
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Figure 4.10: Median absolute percent difference between Runs 1 and 2 for selected diffusion mea-
sures in white matter. These were calculated for all three subjects on a voxelwise basis by using all
voxels considered as white matter (i.e., MK≥ 1). In most cases, the percent difference is about 10%
or less. However, the extra-axonal diffusivites (D̄e, De,‖, De,⊥) differed by up to 20% for Subject
3. All quantities were obtained with either DKI (MD, FA, MK), FBI (ζ, FAA), or FBWM (f , Da,
D̄e,De,‖,De,⊥).

Average values for the DKI-, FBI-, and FBWM-derived measures over all white matter

voxels (both runs) for each of the three subjects are listed in Table 4.2. All the parameters

are relatively consistent across subjects. For the FBWM-derived metrics, the coefficients of

variation range from 0.08 for the AWF in Subject 1 to 0.27 for the axial extra-axonal diffu-

sivity in Subject 3. Note that the axial diffusivity, D‖, obtained from the diffusion tensor is

very similar to the axial extra-axonal diffusivity but that the radial diffusivity, D⊥, from the

diffusion tensor is smaller than the radial extra-axonal diffusivity. In our model, the prin-

cipal eigenvectors for the total diffusion tensor and the extra-axonal diffusion tensor need

not be parallel, although on physical grounds one might expect them to be approximately

parallel in most white matter voxels. For our data the average absolute angle between the

two eigenvectors was 21◦ ± 21◦. Moreover, for about 14% of the white matter voxels, the

angle exceeded 45◦.

The above FBWM results were calculated by including all spherical harmonics in Equa-

tion 4.9 up to and including the degree l = 6. In order to investigate how varying this
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Figure 4.11: Selected diffusion measures versus FA. All white matter voxels for all three subjects
and both imaging runs were pooled. The solid data points are averages calculated with either FBI (ζ,
FAA) or FBWM (f , ζ/f ,Da, D̄e,De,‖,De,⊥), while the open data points are all averages calculated
with WMTI. The error bars indicate standard deviations. For the FBI/FBWM parameters, Da,D̄e,
and ζ/f vary little with FA, but an FA dependence is discernible for the other metrics. The WMTI
averages are relatively close to the FBI/FBWM values for ζ, D̄e, and De,⊥, at least for FA > 0.5
where the assumptions underlying WMTI are better justified. Otherwise substantial differences are
apparent. In particular, the WMTI estimates for Da are much smaller than the FBWM estimates
over the full range of FA
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Table 4.2: Mean values (± std. dev.) of diffusion parameters in white matter as estimated with
DKI, FBI, and FBWM.
*Estimated with DKI. †Estimated with FBI. ‡Estimated with FBWM.

Parameter Subject 1 Subject 2 Subject 3

MD [µm2/ms]∗ 0.85 ± 0.06 0.87 ± 0.08 0.85 ± 0.08
FA∗ 0.46 ± 0.14 0.44 ± 0.14 0.46 ± 0.14
MK∗ 1.09 ± 0.06 1.14 ± 0.08 1.13 ± 0.08
D‖
∗ 1.31 ± 0.21 1.32 ± 0.23 1.32 ± 0.26

D⊥
∗ 0.62 ± 0.10 0.64 ± 0.12 0.61 ± 0.11

ζ[ms1/2/µm]† 0.40 ± 0.04 0.40 ± 0.05 0.42 ± 0.05
FAA† 0.57 ± 0.14 0.56± 0.14 0.58 ± 0.15
f ‡ 0.60 ± 0.05 0.63 ± 0.06 0.62 ± 0.07
Da[µm

2/ms]‡ 2.36 ± 0.31 2.50 ± 0.35 2.23 ± 0.40
D̄e[µm

2/ms]‡ 0.95 ± 0.09 0.93 ± 0.13 1.02 ± 0.18
De,‖[µm

2/ms]‡ 1.31 ± 0.26 1.29 ± 0.32 1.46 ± 0.39
De,⊥[µm2/ms]‡ 0.76 ± 0.11 0.75 ± 0.14 0.80 ± 0.16

maximum degree affects the number of local minima, we also calculated the percentage of

white matter voxels, across all subjects, with more than one local minima for maximum

degrees of l = 2, 4, and 8, obtaining 45.3%, 13.6%, and 9.6%, respectively. This should be

compared to the 10.4% for l = 6, as previously stated. Thus increasing the degree cutoff

tends to reduce the number of voxels with multiple local minima.

Simulations

Ground truth maps of a single anatomical slice for the parameters f and Da are given in

Figure 4.12 together with the corresponding maps determined with FBWM using different

simulated noise levels. The full brain slice is shown, even though FBWM is only expected

to yield meaningful results for white matter. Within white matter regions, the FBWM

estimates agree fairly well with the ground truth values for SNR of 20 and above, but large

discrepancies are apparent for SNR = 10. Here the SNR is defined with respect to the b = 0

images.
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Figure 4.12: Numerical simulations of the effect of signal noise on parametric maps of the AWF
and the intrinsic intra-axonal diffusivity for a single anatomical slice. The ground truth data are
based on the signal model of Equations 4.25 together with the FBWM fits for Subject 1 (same slice
as in Figure 3.8). Rician noise was added to create SNR values ranging from 10 to 100 (defined
with respect to the b = 0 images), and the simulated data were processed according to our standard
analysis pipeline. In white matter regions, where the FBWM approach is expected to apply, the
parameter values are fairly insensitive to the added noise, for SNR values of 20 and above. The
calibration bar for Da is in units of µm2/ms, while that for f is dimensionless.

Mean values for ζ , f , Da, and D̄e from the simulations are plotted in Figure 4.13 as a

function of the SNR. The estimates are averages over all 4608 white matter voxels in our

simulated dataset. The solid line shows the results for our full analysis pipeline, while the

dashed line shows the effect of skipping the denoising step. With denoising, the parameter

estimates are close to the ground truth values when the SNR is 20 or higher, but without

denoising larger errors are apparent especially for Da. The small underestimation of Da

at an SNR of 100 is primarily due to systematic errors in the calculation of the diffusion

tensor from DKI, which propagate into the cost function.

Simulated results (with denoising) using different numbers of diffusion encoding direc-

tions for the HARDI shell are given in Figure 4.14. Little difference in the parameter mean

values and standard deviations are seen with 64, 128, or256 directions, but both f and Da

are significantly underestimated when only 30 directions are employed.
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Figure 4.13: Mean values of ζ, f , D‖, and D̄e over all white matter voxels for simulated data with
varying amounts of added noise (solid data points). The ground truth values are indicated by the
dotted lines, and the open data points give the simulated results with the denoising step omitted
from the processing pipeline. The error bars indicate standard deviations. With denoising, the
FBI/FBWM estimates agree well with the ground truth values for SNRs of 20 and above. Without
denoising, both accuracy and precision are noticeably reduced, particularly for D‖.

4.3.5 Discussion

A premise underlying FBI is that the dMRI signal in white matter is predominately due to

intra-axonal water for high b-values, as is strongly supported by the observed decrease of

the direction-averaged signal as 1/
√
b for large diffusion weightings [30, 87]. Furthermore,

this 1/
√
b drop-off is a signature of diffusion restricted within thin cylindrical pores, which

presumably correspond to axons. These facts allow the fODF to be estimated in a simple

manner, along with the microstructural parameter ζ ≡ f√
Da

[29].

For low b-values, the dMRI signal is well-described by the total diffusion tensor D,

which is easily estimated with either DTI or DKI. Knowledge of D, the fODF, ζ , and f are

sufficient to calculate both the intra-axonal and extra-axonal diffusion tensors via Equations

4.16, 4.17, and 4.24. Of these quantities, f is the only one of the inputs not determined

by the combination of FBI and DTI/DKI. Thus one additional condition is needed in order
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Figure 4.14: Results for selected diffusion measures from simulations with varying numbers of
diffusion coding directions (30, 64, 128, 256) for the b = 6000 µm2/ms HARDI shell. The data
points reflect average values over all white matter voxels from the simulated dataset, and error bars
indicate standard deviations. The SNR is fixed at 50, which is similar to that of our experiments,
and the number of directions is set to 30 for both the b = 1000 and b = 2000 µm2/ms shells. The
parameter estimates are all similar for 64 directions and above, but are much less accurate for f and
Da when only 30 directions are used for the HARDI shell.

to find the AWF and thereby independently characterize the intra-axonal and extra-axonal

diffusion environments.

Here we have estimated f by requiring the model dMRI signal of Equation 4.25 to

match the measured dMRI signal as closely as possible through minimization of the cost

function of Equation 4.26. As formulated, this is a one-dimensional optimization problem

that is straightforward to solve numerically, in contrast to some alternative approaches [158,

149, 7]. Moreover, we find empirically that the cost function has a single minimum for most

white matter voxels so that potential issues arising from multiple local minima should be

minor. From the optimal f , we are then able to calculate the intra-axonal and extra-axonal

diffusion tensors, along with a variety of associated diffusion parameters (see Figure 4.9).
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A crucial distinction between the FBWM optimization and alternative diffusion modeling

approaches that also employ a spherical harmonic expansion of the dMRI signal [32, 165,

8, 31] is that, for the alternatives, the number of free parameters increases with the number

of harmonics used, while for FBWM there is always a single free parameter regardless of

the number of harmonics. The reason for this is that FBWM uses the harmonic expansion

coefficients determined with FBI rather than treating them as fitting parameters.

Our results suggest that harmonics at least up to a degree of about 6 should be kept for

numerical calculations, since the occurrence of voxels with multiple local minima increases

substantially as the maximum degree is reduced below this, raising concerns regarding un-

physical solutions [158, 149, 7, 8]. However, including harmonics with very high degrees

may not be beneficial as these are likely dominated by signal noise.

The model for the full dMRI signal is the sum of the intra-axonal and extra-axonal

signal models. The intra-axonal signal model of Equation 4.20 follows directly from the

theory for FBI. There is, however, no similar basis for the extra-axonal signal model. For

our cost function, we have adopted the simplest possibility of regarding water diffusion in

the extra-axonal space as Gaussian, which leads to Equation 4.8. It has been argued that

treating the extra-axonal space as Gaussian is overly simplistic [129], but we hypothesize

that this may be adequate for b-values of 2000 s/mm2 or less, as would be the case if the

kurtosis of the extra-axonal space were not too large. Furthermore, for our high b-value

of 6000 s/mm2, the form of the extra-axonal signal should be irrelevant, since the dMRI

signal in white matter is expected mainly arise from intra-axonal water. Thus, Equation

4.8 may be appropriate for our dataset, even if it is less accurate than some other models

for intermediate b-values. Indeed, a possible advantage of our method could be a relative

insensitivity to the details of the extra-axonal signal model, although further work would

be necessary to confirm this.
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In this initial study, we have applied our FBWM method to estimate several differ-

ent microstructural parameters for characterizing diffusion in white matter using data from

three healthy volunteers. Most of these parameters have a high degree of reproducibility,

as demonstrated by Figures 4.9 and 4.10. Their values are all within physically plausible

ranges, although we have no ground truth for comparison. Alternative approaches have

yielded variable results, particularly for the intra-axonal diffusivity, which seems to be es-

pecially difficult to estimate accurately [149, 7]. Nonetheless, our results are fairly similar

to those from the recently proposed spherical mean technique [129], from b-value scaling

[87], and from TE dependent diffusion imaging [166], even while these methods employ

more complex numerical fitting schemes than used here. More specifically, we find a mean

value from FBWM for the intra-axonal diffusivity of 2.46 ± 0.20 µm2/ms. This is also

quite close to the value of 2.25 ± 0.03 µm2/ms recently reported by Dhital and coworkers

[171] based on triple diffusion encoding dMRI and a novel analysis method. The discrep-

ancy between these two results could either be caused by intersubject differences or by

systematic errors in the respective estimation methods. It would be of interest to gather

data with both techniques on the same subjects to better assess their concordance. Another

interesting observation is that the AWF and the microstructural parameter ζ are strongly

correlated, indicating that the regional variation in ζ is mainly driven by differences in the

AWF rather than in the intra-axonal diffusivity. This fact can be helpful for interpreting

FBI results when full FBWM modeling is not available.

A principal motivation for this work is to improve upon the WMTI method, which also

uses DKI data. Our basic rationale is that FBI can supply the fODF and thus eliminate

the need to assume, as with WMTI, that all axons are approximately aligned in a single

direction. In this way, meaningful parameter estimates can be obtained for the entire white

matter instead of just a small subset of voxels in which the axons may be regarded as largely

unidirectional. Moreover, fixing the parameter ζ with FBI provides an additional constraint

that may improve accuracy and precision. Our results show that WMTI and FBWM give
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similar results for ζ in high FA regions, as previously reported [159], but the WMTI esti-

mates of both f and Da are substantially lower in comparison to those from FBWM. We

speculate that the FBWM values are more accurate, since the FBWM prediction for Da

is closer to several recent estimates obtained with a variety of techniques, as mentioned

above. In addition, experiments employing isotropic diffusion weighting [172] and in fixed

spinal cord [173] both indicate that Da > De,‖, which is consistent with our FBWM results

but not with WMTI.

Our experimental data were acquired with 3 mm isotropic voxels and an average SNR

of about 59. However, our numerical simulations (Figures 4.12 and 4.13) suggest that

an SNR as low as 20 may be adequate as long as denoising is included as part of the

post-processing analysis pipeline. Thus higher resolution maps may be attainable with

FBWM. In addition, our numerical simulations (Figure 4.14) indicate that as few as 64

diffusion encoding directions could be sufficient for the HARDI shell, which would sharply

reduce the dMRI data acquisition time for FBWM to about 12 min from the 30 min of our

experimental protocol with 256 HARDI directions. However, actual experiments should be

conducted to verify this.

There are two important limitations of our proposed FBWM method. First, it only

applies to white matter, since the direction-averaged dMRI signal in gray matter does not

obey the 1/
√
b scaling behavior for large diffusion weightings, as required for FBI [30].

This contrasts with several other previously proposed dMRI tissue models that are intended

to apply to both gray and white matter [165, 28, 129]. Second, the effect of different T2

values for the intra-axonal and extra-axonal spaces is not accounted for in FBWM. As a

consequence, the estimated AWF may be T2-weighted. In particular, Veraart and coworkers

[166] have recently argued that the T2 of intra-axonal water may be substantially longer

than for extra-axonal water. FBWM might therefore overestimate f , depending somewhat

on TE.
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The primary goals of this paper have been to describe the FBWM approach in detail

and to give some preliminary results for healthy human brain. Further work is needed in

at least three directions. First, the imaging protocol should be optimized in order to reduce

the acquisition time. Specifically, the 256 directions used for the b = 6000 s/mm2 HARDI

shell could likely be reduced, as our numerical simulations suggest, with minimal impact

on the parameter estimates. Second, the predictions of FBWM should be more rigorously

validated by comparison with histology and other dMRI methods. Advanced dMRI tech-

niques that employ nonstandard pulse sequences with complex gradient wave forms seem

especially promising in this regard, as they can potentially estimate diffusion parameters

with fewer modeling assumptions and thereby yield more reliable results [172, 171, 132,

174, 175]. Finally, the relative strengths and weaknesses of FBWM in comparison to the

several related alternatives [173, 157] should be more thoroughly investigated. Here we

have mainly compared FBWM to WMTI and argued that FBWM is both more comprehen-

sive and more accurate.

4.3.6 Conclusion

By combining FBI with low to intermediate b-value dMRI data, FBWM provides estimates

for multiple biophysical parameters that characterize tissue microstructure in white matter.

FBI is used to determine the orientation of the axonal fibers, while the low/intermediate

b-value dMRI data are employed to find the total diffusion tensor of the system. From

these two inputs, a cost function is constructed with the AWF as the sole free parameter.

The minimum of this cost function gives the optimal AWF, from which several other mi-

crostructural parameters may be calculated. A key advantage of FBWM is the simplicity of

cost function, which facilitates efficient and robust numerical algorithms. The predictions

of FBWM differ substantially from those of the WMTI approach, particularly for the intrin-

sic intra-axonal diffusivity, and are in better agreement with results from some alternative

methods.
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4.4 Measuring Intra-Axonal T2 in White Matter With Direction Averaged Diffusion

MRI

4.4.1 Introduction

Measurements of transverse relaxation in white matter can distinguish three different com-

partments, which may be identified as intra-axonal water, extra-axonal water, and myelin

water [176]. The T2 relaxation time for myelin water is typically in the range of 10 to 20 ms,

while the intra-axonal and extra-axonal T2 values are substantially longer [163]. Knowl-

edge of compartmental T2 values is important for understanding how tissue microstructure

affects MRI signal data. Most prior studies have been based on multi-exponential fits for

spin echo signal decay curves over a broad range of echo times values [176, 177, 178, 179,

180, 181, 182, 183]. Recently, an alternative approach, known as TEdDI, has been demon-

strated that employs dMRI data, acquired with multiple b-values and echo times that are

fit with a specific model for the diffusion-weighted signal [166]. An advantage of TEdDI

is that the extra information provided by applying diffusion sensitizing gradients helps to

separate the intra-axonal and extra-axonal compartments, which is hard to do from spin

echo signal decay curves alone.

Here we describe a straightforward method of estimating the intra-axonal T2(≡ T2a)

relaxation time from direction-averaged dMRI data obtained with multiple echo times but

only a single b-value. Moreover, the signal is fit with a monoexponential decay rather than

the more complicated model utilized in TEdDI. The key idea is that the direction-averaged

dMRI signal is dominated by intra-axonal water for sufficiently large b-values and echo

times. As demonstrated in Section 4.2 and further discussed in other prior studies, b-values

of about 4000 s/mm2 or higher should be sufficient to suppress most of the signal from

extra-axonal water ([29, 30, 7, 166]. The echo time need only be large enough to suppress

the signal from myelin water. In practice, this implies echo times greater than about 80 ms
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for the myelin signal to be reduced by at least a factor of 50. On clinical scanners, echo

times for dMRI sequences with large b-values are typically greater than this because of the

gradient pulse durations required to generate strong diffusion weightings [184].

To demonstrate our technique, we utilized data acquired from three healthy volunteers.

Most of our data were collected using a monopolar (a.k.a. Stejskal-Tanner) diffusion pulse

sequence, as this allows for shorter echo times than a bipolar (a.k.a. twice-refocused)

sequence. However, for one subject, we also obtained data with a bipolar sequence in order

to reduce eddy currents, which could conceivably confound our T2a measurements.

4.4.2 Theory

With increasing b-value, the direction-averaged dMRI signal in white matter has been

observed to decay approximately as b−1/2 (Section 4.2, for b-values greater than about

4000 s/mm2 and echo times greater than about 80 ms ([30, 7, 166]. This scaling behavior

is the signature of water confined to thin cylindrical pores, which presumably correspond

to axons. It is only evident at high b-values for two reasons. First, the condition bDa >> 1,

where Da is the intra-axonal diffusivity, must be satisfied in order for the signal decay

from the intra-axonal water to decrease as b−1/2 [29]. Since Da ≈ 2 µm2/ms [166, 171],

this implies that b >> 500 s/mm2. Second, the b-value must be sufficiently high to sup-

press the signal from the more mobile pool of extra-axonal water within the extra-cellular

space, glial cells, blood, and possibly cerebrospinal fluid. Long echo times are needed as

well to suppress the signal from myelin water, which has a relatively low diffusivity [185],

but at least on clinical scanners this will automatically be the case for large b-values, as

the time to play out the diffusion-sensitizing gradients typically forces the echo time to

be about 80 ms or longer [184]. Thus with an appropriate choice of imaging parameters,

the direction-averaged dMRI signal is dominated by the contribution of intra-axonal water.

As a consequence, the echo time dependence of the direction-averaged dMRI signal, for a
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fixed large b-value, will simply be given by

S̄(TE) = Ca · e−TE/T2a , (4.31)

with Ca being a constant. Equation 4.31 is the basis of our proposed method for es-

timating T2a. Provided data for two echo times, TE1 and TE2, we then have the explicit

formula

T2a =
TE2 − TE1

ln[S̄(TE1)/S̄(TE2)]
. (4.32)

When data for more than two echo times are available, Equation 4.31 could instead

be fit numerically in order to find T2a, which reduces to a linear problem after taking the

logarithm of both sides.

If one also acquires the MRI signal, S0(TE), without diffusion weighting (i.e., b = 0)

for the same echo times and if one has an a priori estimate for Da, then the extra-axonal

T2(≡ T2e) relaxation time may be calculated from

F (TE) ≡ S0(TE)− 2S̄(TE)

√
bDa

π
= Ce · e−TE/T2e , (4.33)

where Ce is a constant and b is the b-value for which the direction-averaged signal is

measured. A derivation of Equation 4.33 is given in the Appendix (C). In the special case

of two echo times, the extra-axonal relaxation time is

T2e =
TE2 − TE1

ln[F (TE1)/F (TE2)]
. (4.34)

However, the accuracy of Equations 4.33 and 4.34 will depend upon the accuracy of the

estimate for Da, which puts these equations on a less firm foundation than Equations 4.31

and 4.32.
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4.4.3 Methods

Imaging

Three healthy adult volunteers (ages 26 to 30 yr) were scanned on a 3T Prisma MRI system

(Siemens Healthineers, Erlangen, Germany) employing a 32-channel head coil under a

protocol approved by the IRB of the Medical University of South Carolina. Diffusion-

weighted data were acquired for all three subjects using a monopolar dMRI pulse sequence

and 64 diffusion encoding directions with a b-value of 6000 s/mm2 for TE = 90 , 100 , 110 ,

120 , 130 , 140 , and 150 ms. Other imaging parameters were: TR = 3800 ms, voxel size =

3 mm× 3 mm× 3 mm, number slices = 42, FOV = 222 mm× 222 mm, acquisition matrix

= 74 × 74, slice acceleration = 2, phase encoding acceleration = 2, coil combine mode =

adaptive combine, and bandwidth = 1438 Hz/px. The diffusion time (∆) and gradient

pulse duration (δ) of the monopolar sequence both depended on TE, with each increasing

by 5 ms for every 10 ms increase in TE. Thus, ∆ varied from 44.1 ms for TE = 90 ms to

74.1 ms for TE = 150 ms, while δ varied from 24.9 ms for TE = 90 ms to 54.9 ms for TE =

150 ms. For every TE, we obtained five additional images with the same parameters except

that the b-value was set to zero (b0 images). For TE = 90 ms, diffusion-weighted data

were also collected using the same monopolar sequence except with 30 diffusion encoding

directions, b-values of 1000 and 2000 s/mm2, and an additional 5 b0 images. These low

b-value data were used to calculate standard diffusion measures to support our analysis, but

not for estimating T2a. For anatomical reference, T1-weighted images were acquired with

isotropic 1 mm voxels, TE = 2.26 ms, and TR = 2300 ms. The total scan time for all of

these sequences was 42 min 47 s.

For one subject (Subject 1), we also obtained, during the same scan session, diffusion-

weighted data using a bipolar dMRI pulse sequence in order to suppress eddy currents

[137]. The imaging parameters were set in the same way as for the monopolar sequence

except no data were collected with TE = 90 ms, which was not possible for the bipolar
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sequence due to the time needed to include the extra refocusing pulse. The bipolar diffusion

scans required 27 min 57 s of additional scan time.

In order to test the dependence of our T2a estimates on the choice of b-value, Subject

2 was scanned, in a separate session, using the monopolar sequence and 64 diffusion en-

coding directions for b-values of 1000, 2000, 4000, 6000, and 8000 s/mm2, both with TE =

100 ms and with TE = 140 ms. The remaining imaging parameters were set to be the same

as for the other monopolar diffusion-weighted data. For each combination of b-value and

TE, five b0 images were also acquired. A T1-weighted anatomical scan was obtained as

well, using the same imaging parameters as in the previous scan session. The total scan

time for this session was 51 min 48 s.

Data Analysis

Signal noise in all diffusion-weighted images was reduced by applying a denoising algo-

rithm based on principal components analysis [85]. The denoising algorithm also yielded

noise maps, which were used with the method of moments [142] to correct positive sig-

nal bias arising from noise rectification in magnitude images. Gibbs ringing artifacts were

mitigated by employing the approach of Kellner and coworkers [86]. Image coregistration

was accomplished through the standard techniques [186, 88], which included correction of

image distortion due to eddy currents (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy).

Conventional diffusion metrics, including MK, MD, and FA, were calculated from

the diffusion-weighted data obtained with the monopolar sequence for TE = 90 ms and

b-values of 0, 1000 and 2000 s/mm2 by applying in-house software (DKE) [84]. White

matter masks for each subject were defined as all cerebral voxels with an MK > 1 and MD

< 1.5µm2/ms [119]. In addition, we located specific anatomical regions of interest by

reference to a white matter atlas [187]. Eleven white matter regions were considered: Pos-

terior Limb of the Internal Capsule (PLIC), Genu of the Corpus Callosum (GCC), Posterior
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Thalamic Radiation (PTR), Anterior Corona Radiata (ACR), Anterior Limb of the Internal

Capsule (ALIC), Superior Longitudinal Fasciculus (SLF), External Capsule (EC), Body of

the Corpus Callosum (BCC), Splenium of the Corpus Callosum (SCC), Superior Corona

Radiata (SCR), and Posterior Corona Radiata (PCR).

In order to estimate T2a, Equation 4.31 was fit in each voxel, using least squares, to

the direction-averaged signal with a b-value of 6000 s/mm2, for the monopolar data with

TE ranging from 90 ms to 150 ms (Subjects 1-3) and for the bipolar data with TE ranging

from 100 ms to 150 ms (Subject 1). In order to assess the extent to which the measured T2a

depends on the choice of b-value, we employed Equation 4.32 together with the direction-

averaged data from the second scan session for Subject 2, with b-values of 4000, 6000, and

8000 s/mm2 and echo times of 100 ms (TE1) and 140 ms (TE2).

We also generated parametric maps of T2e for all subjects by fitting Equation 4.33 to

monopolar data with b-values of 0 and 6000 s/mm2 and TE ranging from 90 ms to 150 ms.

The assumed values for Da were 1.0, 1.5, 2.0, 2.5 µm2/ms, which are representative of

estimates obtained from microstructural modeling [166, 129, 159, 92].

Since T ∗2 in white matter is known to depend on orientation [188, 189], we investigated

the relationship of T2a and the angle of the principal diffusion tensor eigenvector relative

to the main magnetic field. We restricted our comparison to voxels with a coefficient of

linearity greater than 0.4, because these represent white matter with largely collinear axonal

fiber bundles for which any angular variation is most likely to be apparent. Here we defined

the coefficient of linearity as cl = (λ1− λ2)/λ1, where λ1 and λ2 are, respectively, the first

and second largest eigenvalues of the diffusion tensor [190]. For this analysis, T2a was

estimated by using the monopolar data of all three subjects with a b-value of 6000 s/mm2

and the seven TE values from 90 to 150 ms.
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4.4.4 Results

The direction-averaged signal with a b-value of 6000 s/mm2 as a function of TE is plotted

in Figure 4.15 for representative white matter voxels from Subject 1. The error bars indicate

standard errors calculated as the standard deviation of the signal noise divided by the square

root of the number of diffusion encoding directions. The lines show monoexponential fits

with Equation 4.31. The quality of the fits is similar for the monopolar data (A) and bipolar

data (B), although T2a is slightly longer for the bipolar data.

Figure 4.15: Direction-averaged dMRI signal as function of TE for individual voxels from selected
regions of interest using (A) a monopolar (MP) sequence and (B) a bipolar (BP) sequence. All data
points were obtained from a single subject (Subject 1) with a b-value of 6000 s/mm2. The lines
are best fits using the monoexponential form of Equation 4.31. The error bars indicate the standard
error for the signal noise.

Parametric maps of T2a for one anatomical slice from Subject 1 are given by Figure

4.16, along with the corresponding color FA map. It should be emphasized that the T2a val-

ues are only meaningful in white matter regions, where the theory underlying our method

is expected to hold. The maps generated from the monopolar data and from the bipolar

data are qualitatively similar, although a tendency toward higher T2a for the bipolar data is

apparent. Figure 4.17 shows a scatter plot of the monopolar and bipolar T2a values for all

the white matter voxels from the same slice as in Figure 4.16. The dashed line has a slope
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of one and an intercept of zero; thus points lying above this line have a higher T2a for the

bipolar data. The solid line is a best fit with a slope of 1.1 and a y-intercept of 3.6 ms, indi-

cating that the bipolar T2a values are, on average, about 10% larger than the monopolar T2a

values. The Pearson correlation coefficient is 0.9, reflecting a strong correlation between

the monopolar and bipolar data.

Figure 4.16: Parametric maps of T2a for a single anatomical slice from Subject 1, as determined
with a monopolar sequence (center) and a bipolar sequence (right), along with the corresponding
color FA map (left) for anatomical reference. The two T2a maps are qualitatively similar, although
somewhat higher values are apparent for the bipolar sequence in most white matter voxels. Note
that T2a values are only meaningful in white matter regions, because the assumptions underlying
the estimation method are invalid in gray matter. The calibration bars are labeled in units of mil-
liseconds.

Histograms of T2a from all white matter voxels for each subject are displayed in Figure

4.18. The data are for the monopolar sequence with a b-value of 6000 s/mm2 and seven TE

values. Most voxels have T2a between 50 and 110 ms, and the average values are 78± 11,

81± 12, and 78± 11 ms for Subjects 1, 2, and 3, respectively. The median T2a for selected

white matter regions is given by Figure 4.19, with median values being used to reduce the

effect of outliers. Considerable regional variation is evident, with a lowest median value

of 64± 7 ms (EC, Subject 3) and a highest median value of 94± 17 ms (PLIC, Subject 2).

There are no significant differences in T2a between the three subjects.
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Figure 4.17: Scatter plot of T2a for white matter voxels from the same anatomical slice as in Fig.
4.16. The monopolar and bipolar values are strongly correlated (r = 0.9), but those for the bipolar
sequence are mostly higher, with the best fit line having a slope of 1.1. Thus the extra refocusing
pulse of the bipolar sequence tends to increase the apparent T2a.

Figure 4.20 is a plot of T2a in white matter from Subject 2 as a function of FA, for

b-values of 4000, 6000, and 8000 s/mm2. The data points represent median values, and the

error bars indicate the first and third quartiles for each bin, which spanned an FA interval of

0.05. For 0.2 ≤ FA≤ 0.6, similar results are obtained for all three b-values, which includes

most of the white matter voxels. Some minor differences are apparent for FA < 0.2 and

FA > 0.6, although these might well reflect noise and/or coregistration errors as there are

a relatively small number of voxels in these bins. The average T2a values (±SD) over all

white matter voxels are 81 ± 12, 81 ± 13, and 83± 13 ms for b-values of 4000, 6000, and

8000 s/mm2, respectively.

The averages of the median T2e and T2a for all three subjects as a function of FA
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Figure 4.18: Histograms of T2a for all white matter voxels from three healthy subjects. The dMRI
data were acquired with a monopolar sequence and a b-value of 6000 s/mm2. Most of the T2a

values lie between 50 ms and 110 ms.

are given by Figure 4.21. The data are for the monopolar sequence with a b-value of

6000 s/mm2, with the error bars being inter-subject standard deviations. We calculated T2e

for several different choices of the intra-axonal diffusivity, since this has been a difficult

quantity to estimate accurately [149], although recent work indicates that it is most likely

in the range of 2 to 2.5 µm2/ms [171]. In all of the cases considered, T2a is substantially

longer than T2e, in consistency with prior studies [179, 181, 183, 166]. Interestingly, T2e is

markedly shorter for the higher FA values than for lower FA values. Over all white matter

voxels, the median values are 64, 62, 59 and 56 ms for T2e with Da = 1.0, 1.5, 2.0 and

2.5 µm2/ms, respectively, while the median T2a is 78 ms.

The dependence of T2a on the angle θ between the main magnetic field and the principal

diffusion tensor eigenvector, for white matter voxels with a coefficient of linearity greater

than 0.4, is shown in Figure 4.22. The colored lines are median values for individual

subjects, using a bin size of 5◦. The black line is the average of the median values for the

three subjects and demonstrates a significant negative correlation between T2a and θ (r =

-0.41, p < 0.0001). The plot indicates that T2a tends to be longer for axonal fiber bundles

that are parallel to the main field than for bundles that are perpendicular. This is similar
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Figure 4.19: Bar graphs showing the median T2a for selected regions of interest from all three
subjects, as acquired with a monopolar sequence and a b-value of 6000 s/mm2. The median values
range from a low of about 64 ms to a high of about 94 ms, and the error bars indicate standard
deviations. PLIC = posterior limb of internal capsule; ALIC= anterior limb of internal capsule; SLF
= superior longitudinal fasciculus; EC = external capsule; GCC = genu of corpus callosum; BCC =
body of corpus callosum; SCC = splenium of corpus callosum; ACR = anterior corona radiata; SCR
= superior corona radiata; PCR = posterior corona radiata.

to prior observations of a longer T ∗2 in white matter bundles that are parallel to the main

field [188, 189], which has been attributed to variations in subvoxel magnetic susceptibility

[189].

Although our data does allow the intra-axonal water fraction to be calculated, we can

estimate the apparent intra-axonal water fraction for any given value of Da by using the

expression

f ∗(TE) = 2

√
bDa

π
· S̄(TE)

S0(TE)
(4.35)

which follows from Equation [A2]. For the monopolar data with TE = 90 ms, we find

f ∗ = 0.418 ± 0.004, 0.512 ± 0.004, 0.591 ± 0.005, 0.661 ± 0.006, where the values

are averages (± standard deviations) across all three subjects, for Da = 1.0, 1.5, 2.0 and

2.5 µm2/ms. Thus, the intra-axonal and extra-axonal water fractions should be roughly
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Figure 4.20: T2a in white matter as a function of FA for b-values of 4000, 6000, and 8000 s/mm2

from Subject 2. Similar results are found for all three diffusion weightings, with some small devia-
tions being apparent for very low and very high FA. The dMRI data were acquired with a monopolar
sequence. The data points indicate median values, and the error bars reflect the first and third quar-
tile of T2a values within each bin (bin size = 0.05).

comparable in size, as has also been found in prior work (10,29).

4.4.5 Discussion and Conclusions

In microstructural models for white matter based on dMRI data, differences in the intra-

axonal and extra-axonal T2 values have typically been ignored [156]. This is understand-

able, considering that the daunting task of linking brain microstructure to dMRI data ne-

cessitates simplifying assumptions in order to obtain a tractable mathematical description

capable of yielding useful predictions. However, as recent work has shown, intra-axonal

and extra-axonal T2 values do differ significantly, enough to cause a noticeable bias in

estimates for the compartmental water fractions if neglected [166].

In this section, we have proposed a simple technique for estimating T2a from monoex-

ponential fits to direction-averaged dMRI data for b-values exceeding about 4000 s/mm2.
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Figure 4.21: T2e in white matter as a function of FA for assumed intra-axonal diffusivities of Da

= 1.0, 1.5, 2.0 and 2.5 µm2/ms, together with T2a. The dMRI data were acquired with a monopolar
sequence and a b-value of 6000 s/mm2. The data points are the averages of the median values from
all three subjects, with the error bars indicating inter-subject standard deviations. For all choices of
Da, T2e is found to be substantially shorter than T2a over the full range of considered FA values.

The key idea underlying this method is that the direction-averaged signal is dominated by

the contribution from intra-axonal water for large b-values, which is supported by the ob-

served b−1/2 scaling behavior [30, 7, 166]. Our results for T2a are largely consistent with

those obtained by Veraart and coworkers using the TEdDI method, even though TEdDI

differs markedly from our approach in being based on a detailed model for both the intra-

axonal and extra-axonal spaces and in requiring complex nonlinear fitting [166]. We have

shown here that neither a comprehensive tissue model nor advanced numerical methods are

necessary for determining T2a. The advantage of TEdDI, on the other hand, is that it also

estimates T2e, along with several diffusion parameters. Another approach for estimating

compartmental T2 is the recently proposed b-tensor method [191].

An important observation is that T2a has a strong regional variation. At first this might
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Figure 4.22: T2a in white matter voxels with a coefficient of linearity exceeding 0.4 as a function of
the angle θ between the principal diffusion tensor eigenvector and the direction of the main magnetic
field. The colored lines are median values for individual subjects, while the black line shows the
average of these medians. The inter-subject averages of T2a are significantly correlated with θ
(r = −0.41, p < 0.0001), suggesting that T2a is influenced by magnetic field inhomogeneities
generated by spatial variations in magnetic susceptibility. The dMRI data were acquired with a
monopolar sequence and a b-value of 6000 s/mm2.

seem surprising, as the chemical composition of axoplasm is presumably relatively uni-

form. But a possible explanation is that T2a is altered by spins diffusing across microscopic

magnetic field inhomogeneities, generated by adjacent myelin, tissue iron, and deoxyhe-

moglobin within small blood vessels, that depend on both on the local arrangement of

axons as well as their orientation with respect to the main magnetic field. This hypothe-

sis is supported by our observation that T2a is correlated with the angle between the main

magnetic field and the principal diffusion tensor eigenvector for voxels with coefficients of

linearity exceeding 0.4, which is consistent with prior work on the orientation dependence

of T ∗2 [188, 189]. It is also conceivable that T2a may be affected by the axon diameter, due

perhaps to exchange or surface relaxation effects [191, 192, 193]. Axons with larger di-
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ameters would then be expected to have a longer T2a, which is roughly consistent with our

results. For example, the cortical spinal tract, which runs through the PLIC, contains many

thick axons, while axons in frontal white regions, such as the ACR, have smaller average

diameters [194]. Accordingly, we find a significantly longer T2a in the PLIC as compared

to the ACR Figure 4.19.

A potential confounding effect for our method is that the eddy currents induced by

the strong diffusion sensitizing gradients will vary across echo times, thereby conceivably

altering the signal decay curves due to TE-dependent image distortions. In order to mitigate

this, we applied eddy current correction to all of our diffusion-weighted images [186]. In

addition, for one subject we acquired data with a bipolar sequence, which is designed to

strongly suppress eddy currents [137], as well as with the monopolar sequence employed

for most of our scans. Any eddy current effects should manifest themselves as differences

in the monopolar and bipolar T2a values. Qualitatively, we found a good correspondence

between the T2a maps obtained with the two sequences, and the T2a values were strongly

correlated. Thus eddy current effects are likely to be small for our experiments. We did

observe a somewhat larger T2a for the bipolar sequence. But that may be attributed, at least

in part, to the extra refocusing pulse for the bipolar sequence, which reduces the effects of

magnetic field inhomogeneities. This is similar to the known increase, as measured using

a multiple spin echo sequence, of white matter T2 with a decrease of interecho time [195,

196]. We chose to use the monopolar sequence for the majority of our scans, because it

allows for a shorter minimum echo time, thereby supporting more precise measurements

of T2a.

In applying our method, a chief consideration is the choice of b-value. Below about

4000 s/mm2, systematic errors may be expected because of the contribution to the signal

from extra-axonal water, while above 8000 s/mm2 accurate quantification of T2a is chal-

lenging as a result of a low signal-to-noise ratio. For this reason, we utilized a b-value of
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6000 s/mm2 for most of our experiments, although we found good consistency with results

obtained at 4000 s/mm2 and 8000 s/mm2. The optimal b-value may also depend somewhat

on scanner hardware and the details of the imaging protocol.

A limitation of our experimental design is that the diffusion time ∆ and the gradient

pulse duration δ for the monopolar sequence varied with TE, which could, in principle,

alter the T2a estimates even with a fixed b-value. This is a built-in feature of our vendor

supplied sequence, which is constructed so as to allow the maximum possible b-value for

any chosen TE. However, changing δ and ∆ has little effect on measured diffusion param-

eters in healthy white matter [197, 198]. As a consequence, the signal attenuation in our

experiments due to the diffusion-sensitizing gradients should primarily be determined by

the b-value, and we do not expect the variable δ and ∆ to appreciably affect our results.

Similar considerations hold for the bipolar sequence, although the diffusion time and gra-

dient pulse duration are less well-defined in this case due to the more complicated pulse

sequence design [137].

While the focus of this section has been on T2a, we have also shown how T2e can

be estimated in a similar way, provided some additional information is available. First,

one needs signal data acquired without diffusion weighting for the same echo times used to

determine T2a. Second, an a priori value for the intrinsic intra-axonal diffusivity is required,

as could be found from any of several proposed dMRI-based microstructural modeling

methods [166, 171, 129, 92, 198, 199]. Given these, T2e may once again be obtained

from simple monoexponential fits, according to Equation 4.33. For a range of plausible

values for the intra-axonal diffusivity, we find the T2a exceeds T2e in the vast majority of

white matter voxels, in consistency with the prior studies [179, 181, 183, 166]. The reader

should be aware, however, that there has been some controversy regarding the accurate

measurement of the intra-axonal diffusivity [171, 159, 149].
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An important reason for estimating T2a and T2e is that knowledge of these two parame-

ters can be used to correct values for the axonal water fraction obtained from dMRI-based

microstructural modeling, which would typically be T2-weighted as suggested by Equa-

tion C.3, when the difference between T2a and T2e is neglected. Specifically, the corrected

axonal water fraction is given by

f =
f ∗ · e−TE/T2e

f ∗ · e−TE/T2e + (1− f ∗) · e−TE/T2a
, (4.36)

where f ∗ is the uncorrected (apparent) axonal water fraction determined with dMRI data

acquired at an echo time TE. Equation 4.36 can be derived by solving Equation [A3] for f .

In summary, we have demonstrated how T2a in white matter can be found from mono-

exponential fits of direction-averaged dMRI data acquired with large b-values and two or

more echo times. Our results show a substantial regional variation in T2a. We argue that

this is at least partially attributable to the effects of microscopic magnetic field inhomo-

geneities, as is known to be the case for T ∗2 [189], although other effects may well also be

important. We also confirm the conclusion of prior studies that T2a > T2e. Our method

may find application to improving the predictions of dMRI-based microstructural models

of white matter.

4.5 Simple Scheme for Correcting Bias in Axonal Water Fraction due to Differences

in Compartmental Transverse Relaxation Times

4.5.1 Introduction

Although studies have shown significant differences in the T2 relaxation times for the intra-

and extra-axonal compartments in white matter [200, 178, 179, 181, 183, 166], these dif-

ferences are often neglected in microstructural models based on dMRI data [32, 27, 28, 92,

201]. This potentially affects the accuracy of estimated modeling parameters, particularly
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for compartmental water fractions. More specifically, the intra-axonal T2 is believed to be

longer than the extra-axonal T2 [179, 181, 183], which may lead to overestimates for the

AWF if the T2 difference is neglected [166]. Here we show how to correct this T2 bias in

the AWF for the dMRI method introduced in Section 4.3: FBWM modeling [92]. FBWM

requires data for three b-value shells at a single echo time. To correct for T2 bias in the

AWF, an additional high b-value shell is acquired at a second echo time. The implemen-

tation of this correction only involves simple analytic formulae and does not increase the

numerical complexity of FBWM

4.5.2 Methods

Monopolar dMRI data from one healthy adult (30 yrs) was acquired on a Siemens Prisma

scanner for b = 1000, 2000, and 6000 s/mm with 30, 30, and 64 diffusion-encoding di-

rections, respectively. Other imaging parameters were: TE=90 ms, TR=3800 ms, voxel

size=3 mm, number slices=42, FOV=222 mm, ∆=44.1 ms, δ=24.9 ms, and bandwidth=1438 Hz/px.

We obtained an additional b = 6000 s/mm dataset using identical gradient directions

and imaging parameters except that TE=140 ms, ∆=69.1 ms and δ=49.9 ms. Each dMRI

dataset also included 5 images with b = 0 s/mm. The total acquisition time was 14min

and 12s. Data quality was improved by reducing signal noise [87], removing Gibbs ringing

artifacts [86], correcting for Rician noise bias [142], and eddy currents [186].

In 4.4 we proposed a new technique [92] to measure intra-and extra-axonal T2 (T2a,

T2e) from which the corrected AWF can be calculated using

f =
f ∗ · e−TE/T2e

f ∗ · e−TE/T2e + (1− f ∗ · e( − TE/T2a))
(4.37)

where f ∗ is the apparent (i.e., T2-weighted) AWF determined with FBWM at a given

TE.
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The parameters f ∗ and Da were calculated using FBWM from data with TE=90 ms.

FBWM combines dMRI data for weak and strong diffusion weightings to create a cost

function with f ∗ as the single adjustable parameter. Optimization of the cost function

results in estimates of f ∗. More details can be found in section 4.3. After calculating the

standard FBWM microstructural parameters, we applied our correction scheme to find T2a,

T2e, and the corrected AWF, f , within the white matter using the additional data with b =

6000 s/mm and TE=140 ms. Voxels with a D̄ < 1.5 µm/ms and a K̄> 1.0 were considered

white matter [119]. Diffusion metrics were calculated using standard tensor analyses [84].

Average f and f ∗ were estimated for 10 regions of interest by reference to the JHU white

matter atlas [187].

4.5.3 Results

Figure 4.23 shows the distribution of and values within the white matter. The average

and are 80.8 ± 12 ms and 60.8 ± 26 ms respectively. Voxelwise parametric and maps are

given for an anatomical slice in Figure 4.24. The regional variability in is noteworthy with

lower values found in the frontal white matter and higher values in the posterior limb of

the internal capsule. Average and are reported in Figure 3. Since T2a > T2e in most voxels,

is smaller than in all regions considered. On average, AWF values are 16% lower after

correcting for the difference in compartmental relaxation times.

4.5.4 Discussion

As in prior studies [200, 178, 166, 179, 181, 183], we find that compartmental T2 relax-

ation times are not equal in white matter, with being on average about 20 ms longer than.

Correcting this difference lowers our AWF estimates obtained with FBWM substantially,

demonstrating that the uncorrected AWF has a considerable degree of T2-weighting. This

confirms previous work by Veraart and coworkers using the TEdDI method [166]. A cru-

cial difference between our approach and TEdDI is that correcting for the T2 bias required
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Figure 4.23: Distribution of T2a and T2e values in the white matter of one healthy subject. The
averages (± standard deviations) of T2a and T2e are 80.8± 12 ms and 60.8± 26 ms respectively.

no additional numerical fitting, making it simple to implement and potentially improves ac-

curacy and precision. In summary, we have described a straightforward calculation scheme

to correct T2 bias for the AWF, which requires minimal additional data acquisition. While

this approach is particularly well-suited for FBWM, it may also be adapted to other dMRI

modeling methods for white matter.
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Figure 4.24: Voxelwise parametric maps showing T2a (middle) and T2e (right) for a single axial
slice. A color FA image (left) of the same slice is given for anatomical reference. Substantial
regional variability is apparent with the T2a generally being longer than the T2e. The T2a maps
appear less noisy than the T2e maps, since they do not rely on any inputs from FBWM. Note that
the two compartmental T2 relaxation times are only meaningful in white matter regions, as the
assumptions underlying our method are violated in gray matter [30]

Figure 4.25: Bar graphs showing the average apparent AWF (f∗, blue) and the corrected AWF (f ,
yellow) for selected white matter regions of interest. The error bars indicate standard deviations.
Differences range from 0.13 in the SLF to 0.03 in the EC. PLIC = posterior limb of internal capsule;
ALIC= anterior limb of internal capsule; SLF = superior longitudinal fasciculus; EC = external
capsule; GCC = genu of corpus callosum; BCC = body of corpus callosum; SCC = splenium of
corpus callosum; ACR = anterior corona radiata; SCR = superior corona radiata; PCR = posterior
corona radiata.
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THE ADVANTAGES OF STUDYING POST-STROKE WHITE MATTER

INTEGRITY WITH FIBER BALL IMAGING AND THE FIBER BALL WHITE

MATTER MODEL

5.1 Introduction

In 1990, Moseley and colleagues kickstarted the clinical application of dMRI by discover-

ing that acute ischemia results in a large and quick drop in diffusivity, and today dMRI is

an indispensable tool in the radiologist’s toolbox. Over the last 30 years, dMRI has been

used to increase our understanding of impairments post-stroke but it has proven challeng-

ing to make the next influential contribution. So far, very little applications have made it

to the clinic except dMRI tractography for neurosurgical planning at a few large academic

centers.

dMRI has the potential of functioning as an in-vivo microscope that could inform clini-

cians on phenomena like demyelination, necrosis, or inflammation. As discussed in Chap-

ter 1, the major issue is the lack of specificity of dMRI metrics which currently makes it

challenging to distinguish between these pathological processes. A more specific assess-

ment of the affected tissue could make a substantial difference when assessing a patient’s

recovery potential, and therapy could be targeted to those brain regions that are most vi-

able. The advantage of FBI and FBWM for the study of post-stroke brains is two fold:

1) it provides compartment specific microstructural metrics and, 2) it enables the tracking

of intra-axonal water for tractography. More details together with some examples will be

given in Section 5.2 and Section 5.3 respectively.

The chapter will conclude with a note of caution. As discussed in extensive detail, the
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calculation of more specific dMRI metrics requires the introduction of several assumptions.

Even though we provided evidence for the validity of FBI’s main assumptions in Chapter

4, there is no guarantee that these assumptions will hold in stroke. Unfortunately, the

appropriate dataset was not available to redo the same experiment from Section 4.2 for

chronic stroke, but we will demonstrate, using neonatal dMRI data, that care needs to be

taken when using FBWM to study diseased white matter.

5.2 Microstructure

Determining the residual functionality and recovery potential of brain regions post-stroke

is of significant interest for stroke researchers. As introduced in Chapter 3, structural MRI

is commonly used to study the function of brain regions. It is often assumed, (e.g., like

in VLSM) that any visibly abnormal voxel on T1- and/or T2-weighted MRI has lost its

normal function. However, there is a clear difference in contrast throughout the affected

tissue and it is not well understood how the underlying microstructure changed and how

this impacts functionality. For example, T2-weighted MRIs of brains from older adults

often show bright spots in the white matter and their presence is not necessarily related to

cognitive decline.

FBWM allows for a more in depth study of the underlying structure and could poten-

tially provide more insight into the integrity and/or composition of the affected white mat-

ter. Specifically, it provides metrics that are compartment specific. Pathological processes

that impact axons, like cytotoxic edema, would have an effect on the diffusion dynamics

of the intra-axonal compartment, while other phenomena like gliosis would not. Figure

5.1 shows example FBWM metrics for two slices from one chronic stroke patient. One

slice is taken through the necrotic core of the lesion (Figure 5.1a), while the other slice

is taken from the edge of the lesion (Figure 5.1b). Both the T1-weighted image and the

conventional FA metric show abnormalities for both slices, albeit not to the same degree.
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Remarkably, the FBI-derived metric FAA looks qualitatively intact in the perilesional area.

From a diffusion perspective, a large FAA value is indicative of highly anisotropic diffusion

inside the remaining axons. Biologically speaking, this could be suggestive of perilesional

axons that are structurally similar to the axons on the contralesional side. The AWF drop,

however, reveals a likely decrease in the total number of axons. The remaining metric,

D̄e, complements FAA and suggest substantial changes to the extra-axonal environment.

In comparison, the FAA does show severe pathology in the core of the lesion as shown in

Figure 5.1a together with changes to AWF and D̄e. These preliminary findings suggest that

FAA could potentially be used to categorize lesioned tissue, which potentially relates to

their functionality; however, further research is needed to confirm this.

(a) Lesion core (b) Peri lesional area

Figure 5.1: FBWM metrics calculated for a subject with a chronic ischemic stroke. One slice (a) is
from the core of the lesion and the other slice (b) is from the perilesional area. Notice how the FAA
looks qualitatively intact in the perilesional slice (b).

5.3 Tractography

The majority of dMRI tractography techniques make the underlying assumption that the di-

rection of water diffusion equals the directionality of white matter fiber bundles. However,
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in diseased brain, an abundance of extra-axonal fluid (e.g., vasogenic edema) can mask the

true orientation of the fibers resulting in faulty tractography. In Chapter 4 we showed that

high b-values can be used to isolate the intra-axonal compartment, and techniques like FBI

leverage this to calculate the fiber density in all directions (i.e., fODF). While FBI trac-

tography is future work for the study of stroke and anomia, Figure 5.2 shows an example

of conventional DTI and the newly proposed FBI tractography for a patient with severe

leukoaraiosis. The patient reported no significant cognitive decline and was negative for

any metabolic, autoimmune, and genetic abnormalities. A structural T2-FLAIR image is

given to demonstrate the severity of the white matter abnormalities. The rendered tracts

are: the SLF, the ILF, the IFOF, the corpus callosum, and the cortico-spinal tract. Qual-

itatively, the FBI tractogram appears much fuller than the DTI tractogram, which is more

in line with her normal cognitive presentation. Tracking intra-axonal water is a promising

avenue of research for stroke, brain cancers, and other white matter diseases.

Figure 5.2: Top row: dMRI tractography when using DTI (left) and when using FBI (right) in a
patient with severe white matter disease. Bottom row: Axial slice of T2-weighted FLAIR from
same patient to demonstrate the extend of the abnormalities. Figure courtesy Hunter Moss
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5.4 Limitations: Case Study - Power-law fits for direction-averaged diffusion MRI

signal in neonatal brain as a function of b-value

Introduction

In Chapter 4 we showed that the direction-averaged dMRI signal in healthy adult brain

decays approximately as a power-law [30, 166]. Considering that a power-law fit only has

two adjustable parameters, this provides a parsimonious description of the data. Moreover,

the values of the fitted exponents give insight into the water diffusion dynamics. In white

matter, the exponent is close to 1/2, which indicates that the signal is dominated by water

confined to thin tubes, which may be identified as axons. This behavior is the foundation

for FBI and FBWM, which we introduced in this work. Gray matter, in contrast, has

a much larger exponent that is closer to 1. Here we investigated power-law fits for the

direction-averaged dMRI signal for one neonate brain at 44 weeks Gestational Age (GA).

The microstructure of neonate brain differs substantially from adult brain in the degree of

white matter myelination, which could potentially alter the water diffusion dynamics [202,

203].

Methods

A neonate, 44 weeks GA, (born at 31 weeks GA weighing 1355 grams) was scanned on

a Siemens Prisma. The subject was enrolled in a vagus nerve stimulation study at 42

weeks GA to treat the inability to master oral feeding. The patient received 14 treatment

sessions and was discharged at 44 weeks GA. Clinical MRI findings included anterior pi-

tuitary hypoplasia, enlarging cisterna magna with mild hydrocephalus, and cavum septum

pellucidum.

Data were acquired using a twice-refocused dMRI sequence for b = 1000, 2000,

4000, 6000, 8000, and 10.000 s/mm2 and 64 diffusion-encoding directions. Other imag-
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ing parameters were: TE=109 ms, TE=3800 ms, voxel size = 3 mm, number slices=36,

FOV=198 mm2. Each dMRI dataset included 11 b = 0 s/mm2 images. Subject was swad-

dled, fed, and given Sweet-Ease to induce natural sleep. The total acquisition time was

31min and 51s.

Data quality was improved by reducing signal noise [85], removing Gibbs ringing ar-

tifacts [86] and correcting for Rician noise bias [142] and motion [186]. Conventional

diffusion metrics were calculated [84] from dMRI data with b = 0− 2000 s/mm2. The

direction-averaged dMRI signal (S̄) was calculated for each b-value by averaging over all

gradient directions. Only voxels with a mean diffusivity lower than 2 m2/ms and an larger

than 3.9 at b = 6000 s/mm2 were included.

The b-value dependence of S̄ was fit to both a power law S̄ = Cp · b−α and, as a

comparison, a monoexponential S̄ = Cm · e−νb . All fits had two parameters and were

performed using a non-linear least squares fitting procedure. Monoexponential fits were

performed both with and without b = 0 as a sample point. All power-law fits excluded the

b = 0 data. Goodness of fit was assessed by the AIC and the coefficient of determination

R2.

Results

Of the 1395 voxels, 361 had an s̄ > 3.9 for all b-values; 601 and 433 voxels had an s̄ > 3.9

for b = 8000 and b = 6000s/mm2, respectively. Figure 5.3 shows the anatomical location

of these ROIs.

The semi-log plotted non-linear fits are shown in Figure 5.4 for the power-law and mo-

noexponential fits, for all ROIs. All data points below the red line were excluded. For all

ROIs the data is best described by a power-law behavior with the exponent varying be-

tween α = 1.08 ± 0.07, α = 1.19 ± 0.14, α = 1.35 ± 0.14 for data up to b = 10, 000,

b = 8000, and b = 6000 respectively. Figure 5.5 shows the distribution of α within all
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Figure 5.3: Anatomical location of the three ROIs considered in the analyses. Voxels were
grouped according to the largest b-value for which the direction-averaged dMRI signal exceeded
a noise threshold of 3.9 (arbitrary units). Only voxels for which this largest b-value was at least
b =6000 s/mm2 were included, so that the power-law fits would all have at least 4 data points
above the noise. The ROIs with largest b-values of 6000, 8000, and 10.000 s/mm2 are shown in
blue, red, and green, respectively. These largely coincide with the cerebellum, brain stem, corti-
cospinal tracts, external capsule, and splenium.

the considered voxels. The AIC does not depend significantly on the FA and the power

law outperforms the monoexponential over the entire range of FA values (Figure 5.6).In-

terestingly, the FA only has minimal influence on α suggestive of little differences in the

microstructural environment beyond diffusion anisotropy (Figure 5.7).

Discussion

Our results demonstrate a power-law scaling of the direction-averaged dMRI signal in

neonate brain over b = 1000− 10.000 s/mm2 with α = 1.08 ± 0.07. Even though the

majority of studied voxels are white matter, Figure 5.5 shows that none demonstrate a scal-

ing behavior with α = 0.5 as is observed in adult white matter [30, 166]. A plausible

explanation for this could be that, since myelination is scarce at this stage of development,

contributions of exchange cannot be neglected. Other contributing factors could be the in-

creased water content as well as the large population of glial cells present in the developing

brain. In any case, our results point to substantial differences in water diffusion dynamics

in white matter for neonate in comparison to adults. Therefore, microstructural models for
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Figure 5.4: Semi-log plots showing the relationship between the direction-averaged diffusion
weighted signal (S̄ ) and the b-values for all three ROIs. The first column has the power-law fits,
with the black dashed line showing fits to data points averaged over all voxels within each ROI and
the gray lines indicating fits for individual voxels. As a comparison, the second and third columns
show similar monoexponential fits without and with including b = 0 as a fitting point. The red line
indicates the noise threshold of 3.9.

the dMRI signal developed for adult white matter may not be valid for neonates. Interest-

ingly, the power-law exponent we find here is roughly similar to the exponent for adult gray

matter. A limitation of this study is that the neonate had multiple health problems that may

have affected brain maturation, complicating the generalization of our findings. Nonethe-

less, our results encourage caution when using microstructural models that are developed

for adults without validation.
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Figure 5.5: Histogram for the power-law exponent α from all the voxels included in the three ROIs.
The overall average value for α is 1.21± 0.16.

Figure 5.6: The AIC as a function of FA (bin size = 0.05) for power-law and both types of monoex-
ponential fits. The power law outperforms the monoexponential fits for the full range of considered
FA values. The goodness of fit is largely independent of FA.
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Figure 5.7: The power law exponent α grouped according to FA for all three ROIs. The average
values decrease from 1.35±0.14, for the ROI with a largest b-value of 6000 s/mm2, to 1.08±0.07
for the ROI with a largest b-value of 10.000 s/mm2. Notice that α is not strongly dependent of FA.
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CHAPTER 6

OVERALL CONCLUSION

The aim of this work was two-fold: 1) To study the impact of white matter integrity on

post-stroke naming impairments, and 2) To improve upon the conventional methods of

quantifying white matter microstructure using dMRI. This final chapter summarizes the

original contributions outlined in this dissertation with their implications, and proposes

avenues for future research.

The brain is often described as being composed of a collection of cortical hubs support-

ing complex cognitive function. However the emerging picture is that mental faculties, such

as language, are controlled not only by these hubs but also by their interconnection. In spite

of this, the specific role of white matter remains largely unexplored. Chapter 3 was devoted

to the impact of white matter integrity on chronic post-stroke language impairments. We

demonstrated that when predicting aphasia severity from brain microstructure, quantifying

white matter integrity is most informative in patients with intermediate cortical damage.

Additionally, the integrity of white matter pathways can be an independent predictor of

naming impairments. Our results were in line with the dual stream model of language, sup-

porting the existence of a ventral stream network that is responsible for providing meaning

to words and a dorsal stream network responsible for their sound structure. Lastly, we

provided preliminary evidence for the implication of white matter in stroke recovery. The

microstructure of the perilesional white matter at baseline was predictive of naming recov-

ery and, remarkably, therapy induced changes in white matter microstructure were strongly

correlated with improvements in naming. These preliminary results pave the way for the

development of more objective and individually tailored treatment strategies. Ideally, such

strategies would improve predictability of language recovery in chronic aphasia. To de-
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velop them we would need at a minimum: 1) A clear understanding of the neurobiology

of language, 2) To unravel how residual post-stroke integrity impacts functionality and re-

covery, and 3) To figure out how neuroplasticity supports repair. The studies in Chapter

3 partially fulfill these requirements. In conclusion, in addition to evaluating gray matter,

there is value in assessing the integrity of white matter connections. Future work should fo-

cus on quantifying the integrity of the language network at its entirety. It should assess all

white matter connections simultaneously and include information on the cortical regions

that are being connected by the white matter fibers under study. The imaging pipeline

proposed in Chapter 3 of this thesis is ideally suited to take this work forward.

dMRI has great potential to describe brain microstructure in vivo. However, the in-

terpretation of the dMRI signal has proven to be complex and has hampered its success

clinically. Over the last 15 years many different physical models have been proposed to

improve the specificity of conventional dMRI metrics. Unfortunately, results amongst the

different models are inconsistent with some metrics differing by a factor of 2. This disparity

is driven by the lack of consensus on the appropriate modeling assumptions for a particular

imaging regime. Chapter 4 provided evidence supporting a commonly used assumption

that states axons can be approximated by impermeable thin cylinders. Additionally, we

found preliminary data to reinforce the assumption that high b-values can be used to iso-

late the axonal compartment. These two assumptions are the foundation of the FBI model.

Thus, with validation of FBI, we extended the model as part of this dissertation to provide

compartment specific microstructural parameters. This extension was named the FBWM

model. Compartment specific diffusion metrics can be useful to distinguish between differ-

ent pathological processes that affect the intra- and extra- axonal compartments differently.

Lastly, we introduced a straightforward method of calculating the T2 of both intra- and

extra- axonal water. Compartmental T2 can be used either as a biomarker, aid in the cal-

culation of the myelin content, or alleviate bias in the AWF. Future work should involve

performing histology to relate FBWM metrics to tissue microstructure. One important re-

151



CHAPTER 6. OVERALL CONCLUSION

maining question is to determine if the axonal compartment, as defined by dMRI, includes

both myelinated and unmyelinated axons. Another such question would be to study the

impact of glial cell infiltration on the FBWM compartmental diffusion metrics.

In parallel to histological validation, future work should also include the application

of FBWM to post-stroke chronic aphasia. As shown extensively in Chapter 3, the use of

conventional dMRI strategies is useful but since FBWM provides a more in depth picture

of white matter integrity it may help distinguish between different pathological processes

post-stroke. If processes like inflammation and axonal degeneration are made distinguish-

able, it is possible that salvageable white matter could be better identified. FBWM could

also improve our understanding of recovery by providing more specific metrics to analyze

neuroplasticity. Additionally, since high b-value dMRI can be used to isolate intra-axonal

water, its use for tractography should be explored. The delineation of white matter path-

ways in stroke could especially benefit from this due to the presence of perilesional edema.

While several of the assumptions underlying FBWM were partially validated in this dis-

sertation, the experiments were done for healthy white matter. This work should ideally

be extended to confirm the validity of FBWM for post-stroke subjects. Nonetheless, if

FBWM shows a greater sensitivity to post-stroke recovery than conventional dMRI, this

could justify its application to stroke even without complete validation of its biophysical

foundation.

To conclude, this dissertation improves our understanding of the importance of white

matter in determining baseline impairments, brain plasticity, and recovery in post-stroke

anomia. A better understanding of the neurobiology of anomia could lead to improved

knowledge about the mechanisms supporting speech production, better treatment outcome

prediction, and possibly better treatments in the future. We also introduced a new bio-

physical dMRI model to study the white matter post-stroke in greater detail. The clinical

validation of FBWM is essential and future work should assess if FBWM better elucidates

the relationship between neural network integrity and plasticity in anomia.
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SECTION 4.3

Here we sketch the derivations of Equations 4.16 through 4.18. The diffusion tensor for the

intra-axonal space may be expressed as

Da =

∫
dΩuDaxon(u)F (u), (B.1)

where Daxon(u) is the diffusion tensor for an individual axon oriented in a direction u.

If axons are idealized as thin, straight cylinders (i.e., a stick model), we then have

Daxon(u) = DauuT = Da


sin2 θ cos2 φ sin2 θ cosφ sinφ cos θ sin θ cosφ

sin2 θ cosφ sinφ sin2 θ sin2 φ cos θ sin θ sinφ

cos θ sin θ cosφ cos θ sin θ sinφ cos2 θ

 . (B.2)

where (θ, φ) are the spherical angles for u. From Equations 4.12, B.1 and B.2, one sees

that

Daxon(u) = Da

∞∑
l=0

2l∑
m=−2l

cm2l
∫
dΩuY

m
2l (θ, φ)


sin2 θ cos2 φ sin2 θ cosφ sinφ cos θ sin θ cosφ

sin2 θ cosφ sinφ sin2 θ sin2 φ cos θ sin θ sinφ

cos θ sin θ cosφ cos θ sin θ sinφ cos2 θ

 . (B.3)

The spherical integrals in Equation B.3 may be evaluated with the help of Equations

4.10 and 4.11, which leads directly to Equations 4.16 and 4.17. All the needed integrals

correspond to elementary trigonometric forms, with those for l > 1 yielding zero.
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In order to derive Equation 4.18, we exploit the fact that the FAA is given by

FAA =

√
3

2
·
‖Da − 1

3
tr(DaI)‖

‖Da‖
, (B.4)

where I indicates the identity matrix, tr(...) indicates the trace, and norm... indicates

the Frobenius norm [13, 204]. By applying Equation B.4 to Equation 4.17, one finds the

result of Equation 4.18.

159



APPENDIX C

SECTION 4.4

Neglecting myelin water, the MRI signal without diffusion weighting can be written as

S0(TE) = A[f · e−TE/T2a + (1− f · e−TE/T2e ], (C.1)

where f is the intra-axonal water fraction and A is a constant. For large b-values, the

theory underlying fiber ball imaging [29] predicts

S̄(TE) =
1

2
f ∗(TE)S0(TE)

√
π

bDa

, (C.2)

where

f ∗ ≡ f · e−TE/T2a
f · e−TE/T2a + (1− f) · e−TE/T2e

(C.3)

is the apparent axonal water fraction for a given echo time [166]. By combining Equa-

tions C.1-C.3, one sees that

S̄(TE) =
Af

2
e−TE/T2a

√
π

bDa

. (C.4)

From Equations C.1 and C.4, it then follows that

F (TE) = A(1− f) · e−TE/T2e , (C.5)

which is identical to Equation 4.33 after identifying Ce with A(1− f).
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