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Abstract 

JOY ELIZABETH KIRKPATRICK. Validation and Development of KDM4B Inhibitors to  

Target Periodontal Disease Progression. (Under the direction of PATRICK WOSTER). 

Periodontal disease (PD) affects nearly half of the adult United States population and is 
characterized by bacterial-driven inflammatory bone loss. Traditional and emerging 
treatments for periodontitis management do not typically target the host immune response, 
which is the major source of tissue damage. The demethylation activity of lysine-specific 
demethylase 1 (KDM1A) at histone 3 lysine 4 leads to a decrease in pro-inflammatory 
cytokine transcription. By contrast, lysine specific demethylase 4B (KDM4B) is a histone 
demethylase that specifically demethylates histone 3 trimethyllysine 9 (H3K9me3). 
Interestingly, previous data has shown that cross talk between these two enzymes leads 
to a balanced system wherein lysine 9 methylation serves as a prerequisite to lysine 4 
demethylation by KDM1A. The studies outlined in this dissertation will exploit this crosstalk 
for the design of new potential therapies for PD. The central hypothesis of this dissertation 
is that promotion of KDM1A activity by introduction of a specific KDM4B inhibitor will 
alleviate PD by controlling the overactive immune system in diseased areas, enabling the 
host to better manage the disease. This hypothesis was tested through completion of the 
following Specific Aims: Specific Aim 1: To mechanistically define the role of KDM4B in 
periodontal inflammation; Specific Aim 2: To design a novel inhibitor of KDM4B for 
adjunctive treatment of PD inflammation, and Specific Aim 3: To evaluate novel and known 
KDM4B inhibitors for in vivo activity as anti-inflammatory agents. KDM4B inhibition 
prevented the A.a-induced immune response in vitro and in vivo. KDM4B inhibition also 
reduced osteoclast formation in vitro and bone loss in vivo. KDM4B activity is heightened 
in periodontal disease in clinical tissues as well as in murine calvarial tissue sections 
treated with A.a. KDM4B inhibition mediated immunosuppression relies on the concurrent 
overactivation of KDM1A. Computational chemical screens identified several hit scaffolds, 
one of which was optimized using phenotypic screen guided binary QSAR. From an 
extensive in silico derivative library, 25 novel derivatives were synthesized, 8 of which 
caused significant immunosuppression.  
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Chapter 1: Background and Significance 

 

1.1. Periodontal Disease 

1.1.a. Clinical Significance and Epidemiology 

Periodontitis is a chronic oral inflammatory condition that destroys the supporting 

tissues of teeth, resulting in irreversible damage including bone loss and tooth loss. 

Currently, this disease affects 42% of dentate adults in the United States. There is higher 

prevalence of the disease associated with adults 65 years or older, Mexican-Americans, 

non-Hispanic blacks and smokers.1 Severe periodontal disease is estimated by the world 

health organization to be the 11th most prevalent disease globally.2 Although traditional 

therapies performed by clinicians are effective for a large proportion of patients, these 

measures come at a cost, with 20% of out-of-pocket health expenditure coming from 

dental treatment.3 This is largely due to a derisory ability to control the disease which is 

a direct result of our inadequate understanding of the underlying disease 

pathophysiology. 

1.1.b. Clinical Diagnosis 

While a consensus for diagnosis of specific periodontal diseases has been difficult 

to achieve due to the complexity of the disease,4 the American Academy of Periodontology 

suggests that a diagnosis can be reached by a combination of clinical measurements. 

These measurements seek to identify the extent of inflammatory involvement by 

measuring probing depth, clinical attachment loss (CAL) and bleeding on probing (BOP) 

combined with the extent of alveolar bone loss which can be measured radiographically.5 

Probing depth is measured by inserting a periodontal probe into the gingival sulcus in 
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health or periodontal pocket in disease while applying light pressure. Probing depth 

measures the linear distance from the base of the sulcus or pocket to the gingival margin, 

where a measurement of < 4 mm is considered healthy. Clinical attachment loss measures 

the linear distance from the depth of the sulcus or pocket to the cementoenamel junction 

(CEJ), which may be more accurate as it eliminates variability in clinical crown size, 

accounting for differences in gingival recession and excess between patients. While 

extensive literature supports clinical attachment loss as the most important measurement 

in diagnosis of periodontal disease, this is commonly not measured clinically, and while 

inferior, probing depth is taken in its place.6-7 Nevertheless, increases in these measures 

demonstrate that there has already been apical migration of the connective tissue 

attachment of the periodontal ligament, which connects the cementum of the tooth to 

bone. When the force of tension from the periodontal ligament onto the bone is lost, the 

bone remodels and there is a net loss of bone in the area,8 which can be seen 

radiographically. In a complementary process, inflammatory mediators associated with 

periodontal lesions activate bone resorbing osteoclasts. This combination of events can 

lead to drastic levels of bone loss, which can involve the furcation, result in severe 

fremitus, or result in the ultimate extreme: tooth loss.  

In addition to taking linear measurements to assess alveolar bone loss, soft tissues 

are assessed for bleeding. In an intact gingival sulcus of a healthy patient, junctional 

epithelium serves to protect the underlying connective tissue from exposure to the oral 

environment. Unlike other types of epithelium, junctional epithelium contains relatively few 

desmosomes and occasionally has gap junctions.9 Inter-cellular spacing is also much 

higher even when compared to the adjacent sulcular or gingival epithelium. Lastly, while 
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the junctional epithelium has something that resembles a basement membrane, it is 

structurally unique, lacking several major components such as collagen IV and VII. 

Therefore, the normal physical barrier contained within most types of epithelium is not 

existent in the junctional epithelium.10 Because of this, immune cells such as 

polymorphonuclear leukocytes (neutrophils), macrophages, lymphocytes and dendritic 

cells can continuously sample the environment and respond to an overwhelming insult. 

When the inflammatory cells are chronically activated, such as is seen in the presence of 

specific so-called “perio-pathogens” or in the presence of a large mass of plaque or 

calculus, the periodontal ligament collagen fibers detach from the root cementum of the 

tooth, resulting in transformation of the junctional epithelium to long junctional epithelium. 

At this point, the healthy gingival sulcus has fully transformed into a periodontal pocket,  

where overgrowth and leakiness of blood vessels is a common occurrence.11 In the case 

that there is any bleeding at all, this is considered unhealthy and is recorded in the patient’s 

chart. Lastly, plaque index is a measure of the patient’s current plaque load, which has 

been established with little debate as the initial causative agent of periodontal disease. 

Overall, clinical measurements to diagnose periodontal disease aim to evaluate three 

main factors: oral hygiene, inflammation and bone loss. 

According to the 1999 consensus report on periodontal classifications,12 

periodontal disease is classified based on whether it is chronic or aggressive, and again 

by whether it is generalized or localized.13 Aggressive periodontitis presents in patients 

who are otherwise healthy, but exhibit rapid bone and attachment loss. This is thought to 

be attributed to an underlying genetic predisposition, as it is seen in families.14 Although 

not universally present, patients generally have elevated levels of A.a in their biofilms, and 



 
5 

 

have a disproportionate immune response to the amount of plaque present with hyper-

responsive macrophages.15 In chronic periodontitis, the amount of bone and attachment 

loss directly correlates with the plaque load and subgingival calculus is commonly present. 

This form of disease can be associated with other systemic diseases and has a slow rate 

of progression, According to this classification system, both forms of disease can either 

be localized, where ≤ 30% of total sites are diseased, or generalized, where >30% of sites 

are diseased. While this classification system proved useful to clinicians and researchers 

for several years, it did not address the complexity and confounding variables within 

periodontal diseases, nor did it have a valid justification for differentiating between chronic 

and aggressive periodontal disease. 

In 2018, a new international classification system for periodontal disease was 

developed following the 2017 World Workshop on the Classification of Periodontal and 

Peri‐Implant Diseases and Conditions.16 This current classification system groups chronic 

and aggressive periodontitis under one category of disease (periodontitis) and has only 

two additional disease classifications that can be considered periodontal disease: 

periodontitis as a direct manifestation of systemic disease, and necrotizing periodontitis. 

Within periodontitis, disease is further defined by stages I through IV, and grades A, B, 

and C. Stages increase based on severity, complexity and extent and distribution of 

disease, and grades increase based on both direct and indirect evidence of progression 

as well as risk factors. Necrotizing periodontal disease is periodontal disease where there 

is necrosis of the papilla, bleeding and pain and is classified into two categories based on 

the affected patient population: chronically, severely compromised patients and 

temporarily or moderately compromised patients. Periodontitis as a direct manifestation 
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of systemic disease is diagnosed by identification of a rare host immune modulating 

systemic disease. In the absence of a rare systemic disease or necrotizing lesion, where 

there is an interdental CAL at ≥ 2 non-adjacent teeth or CAL of ≥ 3mm at ≥2 teeth, the 

disease is considered periodontitis and should be staged and graded according to its 

characteristics. In addition to these three main forms of periodontal disease, additional 

separate diagnoses exist for periodontal abscesses as well as endo-periodontal lesions. 

In a periodontal abscess, there is localized accumulation of pus within the periodontal 

pocket. In endo-periodontal lesions, there is a pathologic communication between 

periodontal and pulpal tissues where either one causes the other or they occur 

simultaneously.16 While the clinical diagnosis of aggressive periodontitis has been 

eliminated, the characteristic presentation can be alternatively described as Stage III.C 

with a molar incisor pattern.16 Periodontal disease classification has undergone many 

changes over the years and will continue to evolve as more information is discovered. 

1.1.c. Pathogenesis: Introduction 

 The specific pathway that leads to initiation and progression of periodontal disease 

has been debated for decades. In the 1970s, several groups had committed to the “co-

destructive factor” hypothesis,17 suggesting that traumatic occlusion or other mild injuries 

adjacent to plaque and calculus was enough to initiate destruction of periodontal tissues.18-

19 By 1980, the critical importance of the exaggerated immune response in the etiology of 

periodontal destruction had been established. The co-destructive factor hypothesis was 

disproved; removing the source of trauma in the presence of inflammation had no effect 

on bone regeneration or connective tissue attachment, while resolution of inflammation in 

the presence of trauma produced this effect.20-23 These data suggested there was rather 
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a “continuous disease” hypothesis, where the disease would progress continuously until 

intervention or tooth loss. Unfortunately, inflammation is a very complex process, and the 

periodontium is a very complex site, and newer studies were suggesting that periodontal 

disease was a dynamic, multi-factorial process that wasn’t continuous or predictable.24-25 

In 1984, Socransky et. al suggested a systemic factor for the progression of periodontal 

disease for the first time, pointing to a correlation of periodontally destructive events with 

specific life events such as pregnancy. This breakthrough study also fed into the 

conversation regarding different forms of periodontal disease, and the importance in 

distinguishing between them for accuracy of further research.26 

What has remained constant over the years is the importance of plaque and 

calculus for the initiation of periodontal disease. The development of calculus generally 

progresses through three distinct phases: pellicle formation, plaque development and 

calcification. The pellicle is a thin biofilm layer of mainly protein that forms on teeth 

naturally throughout the day. Plaque on the other hand, is a microenvironment that 

contains living microorganisms such as bacteria, viruses and fungi as well as an 

extracellular matrix of salivary proteins and food particles.27 This microenvironment has 

the potential to undergo specific changes which confer benefits to the survival of more 

pathogenic bacteria.28 For periodontal disease, potential for true detriment depends 

primarily on the third stage, calcification. Calcium salts from saliva and dietary sources 

can incorporate into the intricate plaque lattice and form a mineralized and tightly adhered 

mass to the tooth structure. This allows for adherence of new biofilm upon its surface, 

leading to a host tissue response in the form of immune activation as well as detachment 

from the tooth to move away from the growing mass.27 Additionally, calculus can bar off 
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viable microbial environments from things that might otherwise keep them at bay.29 

Calculus is tightly adhered to the tooth structure, requiring professional removal by 

clinicians using either scalers or ultrasonic cleaners. Because of this well-defined 

progression of events centered on biofilms, it is of critical importance to educate patients 

on at home and in office oral hygiene measures. The use of soft-bristled toothbrushes, 

floss and regular dental visits may have the potential to prevent most cases of periodontal 

disease. 

1.1.d. Pathogenesis: Inflammation 

 Unfortunately for some patients, the discussion of prevention is too little too late, 

and calculus has been present long enough to elicit an immune response. The human 

body has two main pathways by which it fights off damaging insults: innate and adaptive 

immunity. Innate immunity innate immune cells such as macrophages and neutrophils 

detect evolutionarily conserved molecular patterns shared by all pathogens and mount a 

non-specific immune response.30 On the other hand, adaptive immune cells such as T and 

B lymphocytes have receptors specific to a single pathogen and mount a memory-based 

immune response.30 Periodontal disease develops through activation of both innate and 

adaptive immunity. The focus of this dissertation is on the innate immune response, and 

more specifically on macrophages, which have the capability to phagocytose pathogens 

process their antigens and signal to other immune cells through antigen presentation as 

well as secretion of cytokines and chemokines.30 When calculus is present on the surface 

of the tooth, macrophages that continually sample their environment commonly find 

danger associated molecular patterns (DAMPs) that are secreted by damaged or dying 

vascular and epithelial cells.31-32 On the other hand, the pathogenic gram-negative 
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bacteria housed by the calculus mass have lipopolysaccharide (LPS) on their cell surface 

which is made pathogenic by the carbohydrate or O-antigen portion of its structure.  LPS 

can act as a pathogen associated molecular pattern (PAMP) and directly activate 

macrophages through binding to a specific pattern recognition receptor (PRR) on their cell 

surface. These receptors are called Toll-like receptors (TLR) and of the 11 classes found 

in humans, TLR-4 is specifically activated by periopathogenic LPS.  

Activation of these TLRs results in signaling through the cell in a well-studied 

inflammatory cascade. This signaling ultimately results in activation of nuclear factor 

kappa beta (NF-κB), a transcription factor responsible for creation of inflammatory 

cytokines such as IL-1β, IL-6 and TNF-α. First, TLR-4 activation is initiated through 

homodimerization following complex assembly with LPS, CD14 as a co-receptor, MD-2 

as an adapter, and LPS-binding protein as a cofactor.33 Following successful binding of 

LPS, TLR-4 signals to either myeloid differentiation factor 88 (MyD88) or toll/interferon 

receptor domain containing adapter-inducing interferon B (TRIF) and these are named 

the MyD88 dependent and independent pathways, respectively.34 In the MyD88 

dependent pathway, another split in the pathway occurs where either IκB kinase (IKK) 

activates NF-κb or mitogen-activated protein kinases (MAPKs) activate activating protein 

1 (AP-1). Both NF-κb and AP-1 are transcription factors that produce IL-6, IL-1b and TNF-

a. In the MyD88 independent pathway, IFN-β is produced through activation of Interferon 

Regulatory Factor-3 (IRF-3) via TRAF-family-member-associated NF-κB activator 
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(TANK)-binding kinase 1 and IKKs.35 Several of these cytokines can reliably be found in 

the gingival crevicular fluid of periodontally diseased hosts,36 and the use of these 

cytokines as a biomarker has been under investigation for several decades.37 These pro-

inflammatory cytokines initiate signaling cascades to attempt to re-establish periodontal 

homeostasis.38 Unfortunately, calculus is a fortified mass that is largely impenetrable by 

these forces while the host tissues, on the other hand, are highly susceptible to damage. 

In a perfect world, the immune response would be able to clear the calculus and spare 

 
Figure 1.1. Inflammatory cascade initiated by bacterial lipopolysaccharide resulting in production of pro-
inflammatory cytokines.  



 
11 

 

the host of any damage. In reality, the opposite happens: host tissues suffer while the 

calculus and bacteria it houses thrive even more. (Figure 1.1) 

Interestingly, macrophages play a dual role in periodontal disease depending on 

how polarized they are towards inflammation or resolution. Classically activated or M1 

macrophages can secrete pro-inflammatory cytokines to recruit additional immune cells 

to the site. These macrophages are activated by exposure to lipopolysaccharide or IFN-

γ. On the other hand, pro-resolving macrophages or M2 macrophages have more anti-

inflammatory capabilities.39 M2 macrophages can be further broken down into M2a, M2b, 

or M2c depending on their specific activating factors.40 In periodontal disease, there is an 

imbalance in the M1/M2 ratio, where M1 macrophages predominate for the purpose of 

clearing microbes. This imbalance leads to tissue destruction characteristic of periodontal 

disease.41 Many studies have been conducted to understand the dynamics that govern 

polarization of macrophages towards one subset or another, as tight control of these 

processes could prove useful therapeutically. For example, KDM4D knockdown in 

fibroblasts results in IL-12 gene repression.42 IL-12 is associated with M1/Th1 immunity, 

as opposed to IL-10 which would drive the immune system towards M2/Th2 immunity.43  

Additionally, JMJD3 has been shown to be induced by LPS stimulation in macrophages.44 

This epigenetic enzyme demethylates H3K27me3 to H3K27me and its activity is critical 

for macrophage polarization into the M2 or anti-inflammatory state.45  The 

KDM4B/KDM1A axis is likely involved in this process heavily, as previous literature has 

shown that inhibition of the KDM4 family induces apoptosis in M1 macrophages and 

conversely introduction of a KDM1A inhibitor promotes expression of M1 markers and 

decreases M2 markers.46-47 



 
12 

 

 In addition to 

macrophages, 

there are several 

other important 

immune cells that 

play a key role in 

progression of 

periodontal 

disease. (Figure 

1.2) Although it is 

impossible to 

detail every cell 

involved in 

addition to all of 

their diverse 

functions, a brief 

overview will be 

provided. Gingival 

epithelial cells are 

a primary barrier 

to bacterial 

invasion as they 

line the 

connective tissue where periodontal inflammatory destruction is initiated and therefore 
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provide a mechanical barrier. Neutrophils, also known as polymorphonuclear cells or 

PMNs, are a hallmark of acute inflammation.48 They are recruited by IL-8, which is 

secreted by junctional epithelial cells following injury.49 Neutrophils secrete granules that 

are generally protective but when aberrantly released can cause tissue and extracellular 

matrix damage. Additionally, neutrophils are short lived and the accumulation of dead cells 

in the periodontal tissues leads to additional tissue damage.50 Dendritic cells (DCs) are 

professional antigen presenting cells that survey their environment and have the most 

potent T cell activating function of all cells in the body.51 Thus, DCs are a major connecting 

point between innate and adaptive immunity and have been shown to affect periodontal 

disease pathogenesis positively and negatively.52 In fact, dendritic cells can differentiate 

into bone-resorbing osteoclasts, causing bone loss directly.53 Additionally, adaptive 

immunity plays a role in periodontal disease pathogenesis. CD4+ T cells, also known as 

T helper cells, play a central role in immunity and have several subsets. For example, Th1 

and Th17 cells are pro-inflammatory and are directed toward intracellular pathogens and 

bacteria, respectively.54 Both of these cell types are positively correlated with chronic 

periodontitis in humans,55 and inhibition of differentiation of either cell type confers 

protection from destruction.56-57 Th17 cells are upregulated in response to microbial 

dysbiosis56 as well as mechanical damage,55 both of which have been thought to 

contribute to pathogenesis of PD. B cells, which produce antibodies, are another adaptive 

immune cell type involved in PD pathogenesis. While B cells produce antibodies to 

bacterial antigens, they are also able to promote destruction of host tissues through 

production of anti-self antibodies.58 In fact, B cell deficient mice do not develop bone loss 

following bacterial infection, suggesting a pathologic role of these cells likely through 

stimulation of osteoclasts and other immune cells.59 While many other immune cells play 
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a role such as natural killer cells,60 endothelial cells,61 fibroblasts,62 myeloid derived 

suppressor cells63 and more, it is increasingly clear that pathogenesis of periodontal 

disease is a complex process that is difficult to accurately model by using a single cell type 

and this will continue to challenge the field for some time. 

1.1.e. Pathogenesis: Bacteria 

In 1998 Socransky et. al. proposed that there are five main complexes of bacterial 

species that colonize periodontally diseased sites.64 This study implicated the “red 

complex” of bacteria as being highly correlated to deep pocket depths and bleeding on 

probing.64 These pathogens include: Porphyromonas gingivalis, Treponema denticola, 

and Tannerella forsythia.64 More recently, Hajishengallis et. al. proposed the “keystone 

pathogen hypothesis” which suggests that single, lowly abundant microorganisms lead 

to a dysbiotic periodontal microenvironment.65 This study suggested that Porphyromonas 

gingivalis was a keystone pathogen that if targeted individually, could result in resolution 

of inflammatory periodontal damage by stabilizing the dysbiotic microbial community.65 

More recently it was discovered that this model was oversimplified, and periodontal 

disease was dependent on a complex process leading to dysbiosis and altered overall 

subgingival flora rather than the mere presence of one or more specific periopathogens.66 

This model, termed the polymicrobial synergy and dysbiosis (PSD) model, considers that 

the polymicrobial biofilm is interdependent and pathogenic as a system rather than singly 

dependent on a keystone or red complex pathogen.66 Further studies have identified 

individual species related to specific disease subsets, such as Aggregatibacter 

actinomycetemcomitans (A.a), which has been uniquely associated with aggressive and 

highly destructive forms of PD.67  While we have not yet been able to successfully use 
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the presence of specific pathogens as a screening device for progressive versus non-

progressive lesions or for classification of periodontal diseases,15 we have used this 

information to enhance our understanding of the biologic mechanisms at play and 

augment our in vitro and in vivo experimental models by using the bacteria that are most 

commonly associated with the disease to better replicate the disease process. 

 

1.1.f. Pathogenesis: Bone Loss 

A critical hallmark of periodontal damage is alveolar bone loss. Bone resorption is 

mediated by osteoclasts (OCs), while bone formation is mediated by osteoblasts (OBs). 

Under normal homeostatic balance, OBs and OCs constantly signal to each other to 

maintain a constant level of bone turnover. More specifically, osteoblasts produce 

receptor activator of nuclear factor kappa b ligand (RANK-L), which is a critical activator 

of osteoclasts. On the other hand, osteoblasts also secrete osteoprotegerin (OPG), which 

can inhibit the RANK-L signal by irreversibly binding to its receptor.68 In periodontal 

disease, there is imbalance in this process, and a net catabolic effect occurs by an 

increased osteoclast to osteoblast activity ratio.69 In fact, osteoclast formation can be 

induced by pro-inflammatory cytokines secreted by both innate and adaptive immune 

cells, such as TNF-α and IL-1.70 These same cytokines have been shown to deactivate 

osteoblasts, directly linking inflammation to the osteoblast-osteoclast activity ratio.69 

Additionally, macrophage colony stimulating factor (M-CSF) is a pro-inflammatory 

cytokine critical for the activation of both macrophages and osteoclasts,71-72 that is 

secreted primarily by osteoblasts in response to pro-inflammatory signals.73 This results 

in an iterative cascade of macrophage and osteoclast activation which eventually results 
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in inflammatory-driven bone loss. Thus, in hyper-inflammatory conditions, osteoclast 

actions are heightened more than osteoblast actions, resulting in a net loss of bone. 

(Figure 2) 

1.1.h. Treatment Modalities 

Current and traditional therapy to treat periodontal disease includes scaling and 

root planing (SRP).74 Scaling involves mechanical debridement of plaque biofilms and 

calculus from clinical crowns using scalers, and root planing requires access to the root 

surfaces using surgical and non-surgical measures for the same purpose.75 This 

treatment has undergone continual refinement to involve an extensive array of 

instruments including ultrasonic scalers, which use ultrasonic energy to assist in removal 

of biofilms,76 although the foundational technique and principles have not changed since 

its conception. The basic concept is that by disrupting plaque biofilms, the host immune 

system will discontinue its attack on this altered environment and the tissue inflammation 

and subsequent cellular damage will stop. Unfortunately, complete removal of the entirety 

of the plaque by clinicians is highly unlikely,77 and nevertheless there are some patients 

who recur after therapy76. In fact, in aggressive periodontitis (currently referred to as 

stage III.C periodontitis), clinical attachment loss occurs in patients with a very limited 

plaque load.78 Due to the limited ability of SRP to completely heal the entire periodontally 

diseased population, several adjunctive therapeutics have been developed over the 

years.  

Initially, extensive research was conducted testing the use of systemic 

antimicrobial therapy for treatment of periodontal disease. Over the years, several 

antibiotics have been tested for treatment of PD, such as penicillin, augmentin, 
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clindamycin, amoxicillin, metronidazole, tetracycline, doxycycline, minocycline, 

azithromycin and more.79-83 Considering that antibiotic overuse has led to a widespread 

issue with antimicrobial resistance,84-85 the marginal benefits have limited the use of 

systemic antibiotic use to severe cases of disease.86 Local antimicrobials have been 

shown to be less effective than systemic antimicrobials but nevertheless are still used 

clinically.87 For example, PerioChip® and Atridox® are both bioresorbable discs either 

loaded with chlorhexidine gluconate or doxycycline hyclate, respectively.88 Arestin® is 

minocycline hydrochloride loaded in extended release nanoparticles.89, Periogard® is a 

chlorhexidine mouth rinse formulation.90 Unfortunately, clinically relevant improvements 

are not generally produced by using these drugs, and they still carry unwanted side 

effects.91 Because of these factors, local antimicrobials are not currently considered 

standard of care treatment, although they are commonly implemented as a last resort for 

desperate and severe cases.92  

Because the host immune response is the source of tissue destruction in 

periodontal disease, extensive research has been conducted toward targeting the host 

immune response. Several groups have demonstrated that non-steroidal anti-

inflammatory drugs (NSAIDs) are efficacious in reducing periodontal destruction. For 

example, indomethacin and flurbiprofen have been shown effective in reducing 

periodontal destruction when given systemically in animals.93 Interestingly, even topical 

application of an NSAID can reduce the destructive effects of periodontal disease.94 

Unfortunately, some of these effects were marginally significant, and when taken into 

clinical trials, were unable to produce statistically significant increases in clinical 

attachment or bone regeneration.95 While NSAIDS are an obvious choice considering 

significantly more prostaglandins have been found in the gingival crevicular fluid of more 
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aggressive and destructive periodontal diseases,96 many cell types are at play and play 

a contributing role in the pathogenesis of the disease that are not directly involved in the 

COX pathway. Additionally, NSAIDs have consistent side effects and chronic use is 

generally contraindicated to prevent damage.97 Nevertheless, further exploration of 

treating periodontal disease with NSAIDs is ongoing and could produce exciting data in 

the future. Most recently, an innovative cyclic treatment schedule has been used, 

reducing bone loss and inflammation in a randomized controlled clinical trial.98 

In addition to NSAIDs as host modulation therapy, many studies have suggested 

that inhibition of matrix metalloproteinases (MMPs) represent a promising therapeutic 

strategy for treating periodontal disease. MMPs are enzymes mainly secreted by 

fibroblasts that are responsible for maintenance of tissues through breakdown of 

extracellular matrix components.99 There are 23 different MMPs, all of which are 

endogenously inhibited by tissue inhibitors of MMPs (TIMPs).100 MMP-2, -8, -9 and -13 

are commonly studied with respect to periodontal disease because they are increased in 

either the gingival crevicular fluid or gingival tissues of periodontally diseased 

individuals.99 In periodontal disease, the MMP/TIMP ratio is increased resulting in a net 

breakdown of tissues.101 Although doxycycline was originally designed as a semi-

synthetic tetracycline, at sub-antimicrobial doses this compound has been shown to 

inhibit matrix metalloproteinases -8 and -13, and therefore has been marketed for 

treatment of periodontal disease as a host modulation therapy under the trade name 

Periostat®.102 Minocycline is another tetracycline analogue103 that has been evaluated as 

an MMP inhibitor in several diseases such as multiple sclerosis, vascular neurological 

disorders as well as periodontal disease.104 Small molecule MMP inhibitors have also 

been developed, such as batimastat, marimastat, prinomastat and rebimastat.105 Lastly, 
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monoclonal antibodies to MMPs have been developed and are currently being evaluated 

for treatment of tumor metastases.106-107 These antibodies will likely be evaluated for host 

modulation therapy for periodontal disease in the near future. 

Bisphosphonates (BPs) present an additional potential therapeutic class that could 

help mediate periodontal health in the over-inflamed host. BPs are pyrophosphate 

analogues that adsorb selectively to hydroxyapatite surfaces in bone and prevent 

breakdown of bone tissue through multiple independent mechanisms.108 In short, BPs 

inhibit osteoclast function and recruitment, leading to a reduction in alveolar bone loss.109 

Thus, these compounds have been implicated in diseases where bone loss is a clinical 

issue such as osteoporosis,110 osteogenesis imperfecta111 and periodontal disease.112 

Bisphosphonates have even been shown to exhibit anti-tumor activity through decreasing 

production of VEGF, inhibiting cellular proliferation and causing cell cycle arrest.113 

Unfortunately, osteonecrosis of the jaw (ONJ) is a common adverse outcome associated 

with bisphosphonate use. First described in 2003,114 bisphosphonate related 

osteonecrosis of the jaw (BRONJ) is an area of uncovered bone persisting for at least 8 

weeks in the maxillary and mandibular bones. The pathophysiology of the disease is 

poorly understood but several theories have been proposed115 including avascular 

necrosis, drug toxicity, reduced bone turnover due to compromised osteoclast-osteoblast 

interactions as well as inflammation such as is seen in periodontal disease.116 More 

recently, ONJ has been linked to the usage of anti-resorptive medications other than just 

bisphosphonates and thus has been renamed medication related osteonecrosis of the 

jaw (MRONJ).117 Second to BPs, ONJ is commonly seen in patients taking denosumab, 

a monoclonal antibody targeting RANK-L.118 While several additional medications have 

also been shown to correlate with ONJ incidence,119 periodontal disease has been 
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correlated with disease development.120-122 Considering these facts, the potential use of 

an anti-resorptive medications to treat periodontal bone loss has been employed with 

extreme caution.  

Based on the data presented above, there is an urgent need for development of 

novel treatment strategies for periodontal disease. The ideal agent would be a small 

molecule that could be applied topically, would interrupt the pathways that activate the 

inflammatory response, and prevent bone loss. This dissertation will describe our 

attempts to develop such an agent through structure-based design and structural 

optimization of potential lead compounds. 

1.2. Epigenetics 

1.2.a. Introduction 

The term epigenetics refers to reversible and heritable changes in the expression 

of DNA that do not involve changes in the primary DNA sequence. Over the last decade, 

there has been a dramatic increase in the study of epigenetic control mechanisms that 

play a role in the development of cancer and other diseases. The first epigenetic targeting 

therapeutic was technically FDA approved in 1968, but the fact that this drug, 5-

azacytidine, acted through an epigenetic mechanism was only discovered in 2004.123 In 

that same year, the first reversible histone demethylase enzyme, KDM1A, was 

discovered.124  Since then, a plethora of additional epigenetic modifying enzymes have 

been discovered, and various epigenetic mechanisms have been targeted for treatment 

of various diseases.  

Epigenetics contrasts with genetics, the study of inherited DNA alterations, 

because epigenetic modification does not alter the DNA but rather alters the differential 
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expression of specific genes. Epigenetic changes are generally initiated in response to 

internal and external stimuli, and these processes are mediated through several different 

mechanisms within a cell. There are two basic mechanisms for the epigenetic control of 

gene expression: methylation of DNA at CpG islands in promoter regions of DNA and 

post-translational modification of histone proteins. The focus of this dissertation is on 

histone methylation/demethylation, specifically the demethylation activity of KDM4B and 

to a lesser extent KDM1A. This section will explore the general concepts of epigenetics, 

the mechanism of KDM4Bs enzymatic activity, some of the effects of that activity and 

finally how and why KDM4B has been targeted for drug development.  

1.2.b. Histone Modifications 

DNA is organized into tightly wound chromatin so that it can fit into the nucleus of 

a cell. Chromatin can either be relaxed euchromatin or condensed heterochromatin, 

depending on how tightly DNA is bound around nucleosomes, and this alters the 

accessibility of transcriptional machinery for purposes of replicating and expressing these 

genes. Nucleosomes consist of histones H1, H2A, H2B, H3 and H4, each of which has 

amino-terminal tails that are accessible for modification. (Figure 1.3) Histone methylation 

and acetylation are widely studied, while phosphorylation, ubiquitination, sumoylation and 

citrullination of histone tails have been less well characterized. These groups are generally 

transferred to very specific histone tails by “writers” and to be removed require an entirely 

separate set of very specific enzymes called “erasers”. For example, histone 

methyltransferase G9a is a writer capable of specifically transferring methyl groups to 

histone 3 lysine 9 (H3K9) and is only active in converting the mono-methylated form into 

the di- or tri-methylated form.125 On the other hand, to remove these marks requires an 
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eraser: histone demethylase KDM4B. To add to the complexity, the specificity of these 

enzymes is not always overlapping, as KDM4B has additional activity on the trimethyl state 

of histone 3 lysine 36 (H3K36me3) non-concurrent with G9a’s additional activity on 

H3K27. Once specific tails are modified, the modifications are read by yet another set of 

enzymes called readers, which are most commonly bromodomains. (Figure 1.4) In cancer 

and other diseases, DNA promoter hypermethylation in combination with abnormal 

histone modifications have been associated with the aberrant silencing of genes.126-128 

Epigenetic gene silencing, in combination with gene mutations, are critical mechanisms 

involved in the etiology and progression of virtually all cancers.126 Aberrant regulation of 

these processes can lead to silencing of tumor suppressor genes important in the 

development of cancer, and thus multiple chromatin remodeling enzymes have been 

targeted for the discovery of novel antitumor agents.129-131 More recently, dysregulated 

epigenetic modulation has been shown to be a factor in diseases other than cancer.  The 

focus of this dissertation is the histone demethylase enzyme class and its relation to the 

immune response in periodontal disease. The histone demethylases can be further broken 

down into FAD dependent (KDM1) and independent enzymes (KDM2-6). The FAD-

independent histone demethylases have a jumonji C domain responsible for their catalytic 

activity whereas the FAD-dependent use FAD as a cofactor and commonly form 

complexes to enhance their catalytic activity.132 

1.2.c. KDM1A 

The first discovered and most extensively studied FAD-dependent histone 

demethylase enzyme is KDM1A, also known as lysine-specific demethylase 1 (LSD1) The 

primary function of KDM1A is to remove methyl groups from the activating chromatin mark 
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histone 3 lysine 4 (H3K4). KDM1A is specific for the substrates monomethyl histone 3 

lysine 4 (H3K4me) and dimethyl histone 3 lysine 4 (H3K4me2). H3K4 methylation states 

are generally correlated with active transcription, where higher methylation (trimethylation) 

is found on highly active genes.133 KDM1A is also known to demethylate histone 3 lysine 

9 (H3K9) when co-localized with the androgen receptor in prostate tumors,134 and also 

has  

non-histone protein substrates such as p53 and deoxynucleic acid  methyltransferase 1  

(Dnmt1).135 A number of effective KDM1A inhibitors have been identified, and include 

tranylcypromine-based irreversible inhibitors such as GSK2879552136 and ORY-1001,137-

139 oligoamines such as verlindamycin140 and related isosteric ureas and thioureas,141-142 

reversible benzohydrazide inhibitors such as SP-2509,139 reversible 1,2,4-triazoles,143 and 

dithiocarbamate-urea hybrid KDM1A inactivators.144 KDM1A is now regarded as an 

emerging drug target for diseases other than cancer, such as neurological disease,145-146 

blood disorders,147-148 viral infection,149 diabetes150-151 and fibrosis.152. The primary process 

KDM1A controls is cell proliferation and cell cycle regulation, and thus it has primarily been 

studied as a regulator in cancer cell progression and growth. It is clear that while KDM1A 

has several important regulatory functions, the potential of targeting this enzyme for 

treating human disease is in its infancy, and as time progresses it is certain that there will 

be development of further uses of inhibiting KDM1A as well as more and more potent 

KDM1A inhibitors.  

Relevant to the current discussion, KDM1A has more recently been linked to the 

host immune response. For example, KDM1A expression is reduced upon TLR activation 

and subsequent inflammation, leading to endotoxin shock.153 In the absence of KDM1A,  
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hyperinflammation ensues causing host damage.153 Also, KDM1A is critical for activation 

 
Figure 1.3. Modifiable sites on histones. 

 
Figure 1.4. Writers, readers and erasers: some common examples and their main function. 



 
25 

 

of B cells, and when KDM1A is ablated in these cells, immune response genes are 

overactivated.154 Agonizing histone demethylases is very difficult, and since the activity of 

KDM1A is correlated with immune suppression, we sought to determine a druggable target 

that would keep KDM1A active. More recently, Boulding et. Al showed that introduction of 

a KDM1A inhibitor promotes expression of M1 markers and decreases M2 markers.46 

 

1.2.d. KDM4B: Introduction 

The KDM4 family of epigenetic modifiers target the demethylation of histone 3 

lysine 9 and 36, as well as histone1.4 lysine 26. Each member contains a jumonji C (jmjC) 

domain responsible for the demethylation activity, and uses Fe2+, 2-oxoglutarate and O2 

for this activity.155 (Figure 1.5) Only family members KDM4A-C contain double PHD and 

Tudor domains, and these differences are thought to attribute to the variable specificity 

between A-C compared to isozymes D-F. KDM4A-C have a 5-fold specificity for H3K9 

over that of H3K36 and H1.4K26. KDM4B exhibits the lowest rate of demethylation within 

the family, for reasons that are not clear. KDM4D-F are half the size of other family 

members and are unable to demethylate H3K36.156 As shown above, demethylation of 

histone lysines occurs through a well-defined mechanism that is conserved among 

enzyme superfamily. First, ferrous iron binds to the active site by coordinating with one 

aspartic/glutamic acid and two histidines as well as water. 2-oxoglutarate (2-OG) then 

binds displacing some water, followed by binding of the histone lysine which displaces the 

remaining water that is bound to iron. This activates iron to undergo an oxidative 

decarboxylation reaction, generating Fe(IV) and CO2. Fe(IV) is then able to demethylate 
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the histone lysine, producing formaldehyde through a hemiaminal intermediate. The 2-OG  

 

Figure 1.5. Mechanism of KDM4B-mediated demethylation. 
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is converted to succinate through this process and once it is released, ferrous iron is 

regenerated, allowing for further demethylation.132 

Trimethylation of H3K9 and H1.4K26 are classically thought to be repressive 

heterochromatin marks. This contrasts with H3K36 methylation which generally correlates 

with active expression.156 The mechanisms underlying various histone methylation 

patterns and the enzymes involved in repressing or activating genes are yet to be 

understood, but there is substantial evidence supporting the idea that histone modifying 

enzymes exhibit crosstalk behavior, and also influence DNA methylation activity. 

Additionally, the activity of an epigenetic enzyme can have an influence on more than just 

histone lysines. These enzymes have been implicated in processes such as cytosolic and 

nuclear protein modifications, alternative splicing, as well as recruitment of other proteins 

for complex formation.  

1.2.e. KDM4B: Immune Response 

KDM4B and its primary substrate, histone 3 lysine 9 (H3K9), have been implicated 

in numerous immunological processes. For example, trimethylation at H3K9 has been 

shown to contribute to the repression of TLR4 expression.157 In addition, TNFα 

transcription is repressed through H3K9 methylation during the process of endotoxin 

tolerance.158 Also, H3K9me3 levels are decreased in macrophages through exposure to 

high glucose, accompanied by a simultaneous increase in inflammatory cytokine 

production.159 H3K9me3 levels are also found to be increased in response to hypoxia, 

which downregulates mRNA expression of the chemokine Ccl2 and the chemokine 

receptors Ccr1 and Ccr5.160 Additionally, decreased levels of H3K9me3 is associated with 

increased TLR4-mediated expression of pro-inflammatory cytokines through recruitment 
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of NF-κB p65 to their proximal promoters.161 Dulal Das et al reports that KDM4B 

knockdown recruits repressive methylation marks to the promoters of IL-1β and IL-2 genes 

among others in neural stem cells.162 IL-1β is an extremely important cytokine in the 

regulation of periodontal disease pathogenesis, and its transcription is prolonged by the 

bacterial challenge present in the plaque of diseased patients.163 KDM4B has also been 

shown to promote osteogenic over adipogenic differentiation of mesenchymal stem 

cells.164 Helicobacter pylori is the major etiological factor for development of gastric 

cancer, and a recent study found that H. pylori induces KDM4B overexpression in gastric 

tissues. The chronic inflammation seen in these tissues that leads from gastritis to gastric 

cancer is through NF-κB and COX-2, and this action is directly dependent on KDM4B 

demethylation activity.165 Although this data supports the idea that KDM4B activity is 

correlated to hyper-inflammation, further studies are needed to fully define the 

immunomodulatory mechanism of KDM4B in the context of periodontal disease.  

The KDM4 family is said to be able to demethylate H3K23me3, an underexplored 

chromatin mark. This allows for H3K36 demethylation activity to occur, which is an 

important epigenetic control point for meiosis and spermatogenesis. In relation to 

immunity, H3K36me2 expression results in expression of genes that promote plasma cell 

transformation.166 H3K36 methylation has also been associated with macrophage 

polarization, and increased methylation at this mark results in suppressed production of 

IL-6 and TNF-α by macrophages.167 

In addition to the traditional epigenetic mechanisms at play, KDM4B may 

functionally be linked to the immune response through immunometabolism. KDM4B is a 

target for hypoxia inducible factor 1 alpha (HIF-1α) in response to hypoxia.168 HIF-1α-
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dependent transcription is induced upon lipopolysaccharide pro-inflammatory stimulus 

and results in an increased glycolytic metabolic program in macrophages.169 The M1 

macrophage is a major immune cell responsible for inflammation. The expression of 

isocitrate dehydrogenase is decreased 7-fold in M1 macrophages compared to M0 

macrophages.170 This is the enzyme that converts citrate to alpha ketoglutarate (α-KG, 

also known as 2-oxoglutarate, 2-OG), which is a cofactor for KDM4 family of enzymes. In 

addition, α-KG is a source of glutamine and glutamate, and therefore plays a role in 

immunity through increases in immune cells and their respective activity.171 If less α-KG is 

available to contribute to these protective immune responses secondary to depletion by 

KDM4, it can be said that KDM4 contributes to the loss of the protective immune response 

provided by glutamine and glutamate through competition for α-KG.  

1.2.f. KDM4B: Drug Discovery 

The focus of epigenetic-based drug discovery research has been mainly directed 

towards histone deacetylases (HDACs) in the treatment of various cancers. More recently, 

the KDM4 family of epigenetic modifying enzymes have been found to be linked to positive 

regulation of many immunological processes, and therefore serve as an interesting target 

for development of hyperinflammatory or autoimmune disorders. Unfortunately, drug 

development in the realm of immunity has not been initiated, though development of 

KDM4 inhibitors for treatment of prostate and breast cancer continue to progress. The first 

series of inhibitors of the KDM4 family were based on 2-oxoglutarate (2-OG) 1 because 

of it’s critical role in the catalytic activity of the enzyme. N-oxalylglycine (NOG) 2 and 2-4-

pyridine dicarboxylic acid (2-4-PDCA) 3 have been shown to inhibit various KDM4 family 

members by chelating iron, but are not selective and target many additionally related and 
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unrelated enzymes.172 JIB-04 4 was the first KDM4 inhibitor that was not a 2-OG 

competitive inhibitor, and although it is a pan JmjC KDM inhibitor, it has no activity toward 

KDM1A or other epigenetic enzymes, proving useful for mechanistic studies.173 More 

recently, the 8-hydroxyquinoline (8-HQ) scaffold was identified as a hit through high-

throughput screening.174 These studies identified IOX1 5 as a potent KDM4 inhibitor but 

this drug has poor cell permeability and has to be used as a prodrug methyl ester.175 Based 

on this scaffold, several groups developed successful drugs, including the NIH Molecular 

Libraries program, which developed an extremely potent inhibitor, ML324 6.176 Selective 

targeting of specific KDM4 family enzymes has yet to be successful, and the structure 

activity relationships that govern selective binding are yet to be understood. Additional 

analogues of ML324 were developed that have variable selectivity within the KDM4 

family.177 Other groups have identified additional compounds able to inhibit the KDM4 

family such as NSC636819 7, a dinitrobenzene,178 circuminoids,179 pyridinyl thiazoles180 

and others, highlighting the diversity in available inhibitors and consequently the infancy 

in which KDM4 drug discovery exists. Studies describing development of KDM4 inhibitors 

rarely test the compounds for all of the KDM4 family members, and none have evaluated 

their inhibitors in both male and female samples, despite the association of these enzymes 

with sex-specific hormonal signaling pathways.181-182 (Figure 1.5) 

1.2.g. Epigenetic Coordination Mechanisms 
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As new epigenetic enzymes are discovered that possess different targets for 

regulating cellular processes, finding a definition of the epigenetic landscape, which 

encompasses all 

chromatin 

remodeling 

processes as well 

as crosstalk 

between epigenetic 

enzymes and 

marks, will be 

attempted. It has 

been known for some time that epigenetic enzymes themselves can be epigenetically 

modified, which suggests a checks and balance system or a compensatory mechanism 

by which our cells can maintain homeostasis. On the other hand, when epigenetically-

controlled cellular processes are dysregulated to a degree that is beyond repair, small 

molecule therapeutics may be indicated to revert cells into a homeostatic state. 

Uncovering the entirety of this landscape will allow for understanding of how the histone 

modification system within our cells is responsible for making the changes necessary to 

drive an undifferentiated stem cell into a fully differentiated state. 

Histone demethylase enzymes conserved among diverse species, but these 

enzymes are commonly redundant, sharing substrate specificity among different classes 

and families, as well as coordinated in their activity. For example, the demethylation 

activity of KDM1A on H3K4 leads to repression of pro-inflammatory cytokine gene 

 
Figure 1.6. Compounds known to interact with KDM4B. Compounds 1-3 are 
previously published KDM4B inhibitors. Compound 4 is a KDM1A inhibitor. 
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transcription.183 Interestingly, previous data has shown that cross talk between KDM4B 

and KDM1A enzymes leads to a balanced system wherein lysine 9 methylation serves as 

a prerequisite to lysine 4 demethylation by KDM1A.184 In other words, when KDM4B is 

active at the H3K9me3 mark, KDM1A cannot be concurrently active at H3K4me2, and 

vice versa.184 KDM4B is then a positive regulator of the pro- inflammatory cytokine  

response through an indirect mechanism by inhibiting KDM1A. The link between these 

two histone marks is coupled to H3K9Ac levels, as has been additionally demonstrated in 

human CD4+ T cells. In this situation, T cell receptor stimulation induces pathologic FasL 

production proportional to the amount of H3K9 demethylation, H3K9 acetylation and H3K4 

methylation.185 Therefore, we are able to use coordination between mutually exclusive 

histone demethylases to antagonize one and indirectly agonize another. 

 

Figure 1.7. Proposed KDM4B-mediated immunomodulation mechanism. Coordination between KDM1A and 
KDM4B results in compensation between the two to ensure either active or repressed transcription. 
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1.3. Sex Differences  

It is well known that sex plays a key role in the acquisition and progression of 

immune diseases. More specifically for periodontal disease, 56% of men have the disease 

compared to only 38% of females. Furthermore, 16.5% of male patients manifest with 

severe disease compared to 7.6% of females.186 In general, females are thought to have 

superior functioning immune systems with responses more appropriate to clear the 

antigens and cause no further damage. For example, males are known to produce more 

damaging TNF-α in response to LPS, while females are known to be more efficient at 

antigen presentation. Additionally, circulating sex hormones may influence immune 

signaling, as there are estrogen and androgen response elements on the promoters of 

many acute inflammatory genes. Testosterone is generally immunosuppressive and is 

found in higher amounts in post-pubertal males than females. On the other hand, estrogen 

has an immune activating effect, increasing production of IL-1, IL-6 and TNF-α by 

macrophages.187  

KDM4B regulates sex hormone signaling events. Current literature suggests that 

KDM4B can modulate cell signaling during androgen receptor (AR) mediated cancer 

growth and suppression, suggesting that KDM4B inhibition affects androgen receptor 

signaling leading to cancer cell death. More specifically, Coffey et al concluded that AR is 

depleted in response to KDM4B knockdown, and in turn KDM4B is required for the 

transcriptional activity of AR.188 Additionally, while KDM1A is overexpressed in breast 

cancer and its activity upregulates ER transcription,189 KDM4B has been identified as an 

estrogen receptor co-regulator and its inhibition limits breast cancer growth via GATA-3 

co-activation.190 KDM4B is also required for mammary gland development as well as 
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estrogen dependent cell proliferation and growth.191 Despite these facts, ongoing research 

does not address the differential effects of sex on KDM4B signaling and immune 

processing. Wang et al. recently reported that KDM4A is required for M1 macrophage 

polarization in RAW264.7 macrophages, and that pharmacologic inhibition of the KDM4 

family induces apoptosis in these cells.47 Unfortunately, RAW264.7 macrophages are a 

male murine cancer cell line and therefore this data cannot be generalized to males and 

females. Additionally, Choi et al. demonstrated that ML324 treatment blocks TNF-α 

mediated neutrophil adhesion, a process critical for immune response propagation, but 

only conducted the experiment in male mice.192 Thus, in addition to the importance of 

studying sex differences in periodontal disease, KDM4B also likely has sexual dimorphic 

characteristics; therefore, the work presented in this dissertation has been done in both 

sexes wherever possible, to account for these potential factors.  

1.4. Systemic disease 

Periodontal disease has been linked to several systemic diseases, which may 

have an underlying epigenetic component driving their correlation.  One systemic disease 

which has been extensively linked to periodontal disease is diabetes mellitus (DM), a 

disease where the body’s insulin is improperly managed, resulting in excessive blood 

glucose levels. This link has been attributed to several factors, but the most prominent is 

that both PD and DM patients exhibit a hyper-inflammatory state. For example, diabetic 

and obese patients exhibit higher serum levels of IL-6 and TNFa.193 Additionally, diabetic 

patients have higher IL-1b and PGE2 in their gingival crevicular fluid.194 Interestingly, 

monocytes from diabetic patients exhibit a hyper-inflammatory state, secreting higher 

concentrations of pro-inflammatory cytokines that drive PD in response to LPS than 
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monocytes from non-diabetic individuals.195 KDM4B inhibition results in methylation of 

H3K9 and is required for deacetylation at H3 and H4.196 This switch from methylation to 

acetylation at H3K9 is activated by p38 MAPK, by phosphorylating lysine 

methyltransferase 1A (KMT1A) and disabling its interaction with target genes.197 P38 

MAPK has long been known to positively regulate the immune response, but only more 

recently has the role of H3K9ac been characterized as a contributor to this activity. 

H3K9ac is increased in macrophages from diabetic mice, and this mark drives 

STAT1/MyD88 expression and subsequent sterile inflammation found in diabetes.198 

following hyperglycemic treatment, expression of SUV39H1, one of the histone 

methyltransferases that acts on H3K9, is decreased. Alternatively, glucose treatment 

recruits KDM1A to the NF-κB p65 promoter, an observation that has previously been 

shown to induce inflammatory cytokine expression. Interestingly, hyperglycemia increases 

H3K4 methylation and decreases H3K9 methylation, a pattern consistent with what we 

believe initiates immune dysfunction seen in periodontal disease.199 These data suggest 

that the underlying link observed between diabetes and periodontal disease may be due 

to a dysregulated histone code, specifically involving KDM4B and KDM1A.  

In addition to diabetes, obesity has also been extensively linked to both periodontal 

disease as well as epigenetic modifications. Obesity increases a patients risk of both 

acquiring periodontal disease as well as more severe forms of the disease.200  For 

example, systemic inflammation and periodontal disease parameters such as probing 

depth induced by obesity can be decreased with dietary management.201 Additionally, oral 

administration of the periopathogen P. gingivalis has effects on the gut microbiota, which 

alters metabolism.202 In fact, obese patients have a completely different salivary 
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microbiome than that of their healthy counterparts, including significantly increased levels 

of the keystone pathogen genus prevotella.203 Simply feeding mice a high-fat diet results 

in alveolar bone loss and increased pro-inflammatory cytokine production as compared to 

feeding mice a normal diet.204 With regards to epigenetics, KDM4C is able to control 

adipogenesis via repression of PPAR-gamma, and has consequently been identified as a 

potential therapeutic for obesity or type 2 diabetes mellitus 205. KDM4B has also shown to 

promote osteogenic over adipogenic differentiation of mesenchymal stem cells. This 

potentially links the KDM4 family with both bone diseases as well as obesity 164. Not 

surprisingly, two back-to-back 2009 studies demonstrated that KDM4B knockout mice 

spontaneously develop obesity.206-207 When KDM4B is specifically knocked out in 

adipocytes, these cells exhibit decreased energy expenditure as well as decreased 

glucose and lipid metabolism.208-209 These data suggest that KDM4B may be dysregulated 

in both periodontal disease and obesity, but cell-type specific activity of this enzyme may 

be an important consideration for treatment of either disease. 

1.5. Rationale for dissertation 

Goals of the Proposed Research: Periodontal diseases (PD) affect 42% of the adult 

American population and are characterized by bacterial-driven inflammatory bone loss. 

Present adjunctive therapies to manage PD have limited clinical value, and in some cases 

carry potential side effects that may outweigh their benefit. It is well known that histone 

demethylases can modulate the immune response, but their correlation with periodontal 

status is largely unknown 155, 183-184, 210. The primary objective of this research is to define 

the epigenetic profile of periodontal disease, specifically in the context of histone 

demethylase 4B (KDM4B). Additionally, this proposal aims to develop KDM4B inhibitors 
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with a greater ability to modulate PD pathogenesis through targeting inflammation and 

bone loss. 

1.5.a. Hypothesis. The demethylation activity of KDM1A on histone 3 lysine 4 results in 

a reduction of pro-inflammatory cytokine transcription 183. The histone lysine demethylase 

KDM4B is a histone demethylase that specifically demethylates histone 

3 trimethyllysine 9 (H3K9me3) 155, but this demethylation activity is mutually exclusive of 

demethylation of H3K4me2 by KDM1A 184. This proposal will take advantage of this 

coordination to reduce pro-inflammatory cytokine transcription by promoting 

KDM1A activity through KDM4B inhibition. The central hypothesis of this proposal is that 

promotion of KDM1A activity by introduction of a specific KDM4B inhibitor will alleviate PD 

inflammation and bone loss and that by controlling the overactive immune system in 

diseased areas, it will enable the host to better manage the disease and prevent its 

recurrence. We will test this hypothesis through completion of the following Specific Aims: 

1.5.b. Specific Aims 

1.5.b.1. Specific Aim 1:  We will define the role of KDM4B in periodontal inflammation 

and explore the mechanism by which these changes are mediated. KDM4B abundance 

will be assessed in perio-pathogen activated inflammatory bone loss tissue sections. In 

vitro, TNF-α and IL-6 response to A. actinomycetemcomitans LPS (Aa-LPS), a major 

immunodominate surface antigen of a common perio-pathogen will be measured following 

KDM4B inhibition with commercially available inhibitors. To further define the 

immunomodulatory role of KDM4B, osteoclastogenesis will be measured in the presence 

and absence of KDM4B inhibitors.  
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1.5.b.2. Specific Aim 2: We will use structure-based design techniques to discover novel 

inhibitors of KDM4B for adjunctive treatment of PD inflammation. We will dock compounds 

from large commercially available libraries to the crystal structure of KDM4B using a 

modification of previously described techniques.211-212 As hits are identified, 2D orthogonal 

mathematical models will be used to correlate immunomodulatory activity to structural 

characteristics of compounds. Immune modulation will be phenotypically screened using 

a primary macrophage model of PD. Top candidates will be synthesized and analyzed for 

cytotoxicity and immunomodulatory potential in vitro. For effective compounds, IC50 values 

will be determined. 

1.5.b.3. Specific Aim 3: We will evaluate novel and known KDM4B inhibitors for 

immunomodulatory activity in vivo. Promising KDM4B inhibitors, as well as the previously 

defined KDM4B inhibitor (ML324), will be evaluated in a murine calvarial inflammatory 

bone loss model of periodontal disease. Wild type C57BL/6 mice 12-14 weeks old will be 

injected subcutaneously with fixed A. actinomycetemcomitans following pre-treatment 

with drug or vehicle control in the mid-sagittal region of the calvarium every day for 5 days 

to induce inflammatory bone loss. Compounds will be evaluated over a 100-fold 

concentration range as defined by maximum tolerated dose, and bone loss will be 

evaluated by micro-computed tomography. Tissues overlying the calvarial bones will be 

analyzed for changes in histone methylation marks.  

1.5.c. Impact on the Field.  The proposed research will elucidate an underlying epigenetic 

mechanism of PD pathogenesis and validate KDM4B as a drug target, thereby opening 

new doors for drug development and allowing for an enhanced understanding of the inter-

related functions of histone methylation and PD progression. This proposal may result in 
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the development of a novel immunomodulatory compounds, which could be used in future 

periodontal disease studies.  

 

Chapter 2: Materials/Methods 

2.1. Animal Care and Use 

C57BL/6 mice were purchased from Jackson Laboratories and maintained in accordance 

with NIH guidelines. Animals subject to food and tap water ad libitum and maintained 

under normal 12-hour light cycles. Animals were euthanized via CO2 asphyxiation and 

death verified by cervical dislocation. Experimental protocols were approved by the 

Institutional Animal Care and Use Committee (IACUC) at the Medical University of South 

Carolina under protocol number #2718. 

2.2 Bacterial culture 

Aggregatibacter actinomycetemcomitans strain Y4 was purchased from American Type 

Culture Collection (ATCC) and grown following manufacturer’s protocols. A single colony 

was selected by plating the bacterial suspension onto brain heart infusion (BHI) agar and 

incubating for 3 days in a 5% CO2 incubator at 34 °C. A single colony was picked and 

expanded in 10mL BHI broth overnight on a shaker. A growth curve was generated by 

inoculating 10uL of this expanded solution into 20mL broth and monitoring the optical 

density at a wavelength of 450nm every hour. At the mid-logarithmic growth phase, 

bacteria were quantified using serial dilutions. Bacteria were expanded into 500mL and 

diluted to OD450 = 0.3. Bacteria were centrifuged at 1500 x g for 10 minutes, washed with 

PBS and fixed with 10% formalin for 30 minutes at room temperature. Formalin was 
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removed by pelleting the fixed bacteria at 1500 x g and rinsing twice with PBS. Bacteria 

were resuspended in PBS for in vitro experimentation and calvarial injections. 

2.3 Murine Calvarial Model 

Mice were anesthetized using isoflurane inhalation where fifteen uL of 12.5 or 20 μM of 

ML324, 20 μM 36 or DMSO vehicle control in a 15 μL volume. One hour later, mice were 

anesthetized using isoflurane and 2x109 CFU fixed Aggregatibacter 

actinomycetemcoitans strain Y4, serotype b or phosphate buffered saline (PBS) vehicle 

control was injected subcutaneously supraosteal to the mid-sagittal suture between the 

eyes and ears to approximate the bregma point into 12-week C57BL/6 male mice. 

Injections were repeated every 24 hours for 5 days. On day 6, 18 hours following the final 

 

Figure 2.1. Murine calvarial model description. 
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injection, mice were euthanized and connective tissue and skin overlying the calvarial 

bone was flash frozen, ground using a mortar and pestle and resuspended in M-PER 

protein isolation buffer. Calvarial bones were fixed in 10% formalin for 24h and then stored 

in ethanol for micro-computed tomographic analysis.  

2.4 Protein Isolation and Immunoblotting 

Protein was isolated from skin and connective tissue overlying the calvarial bone by flash 

freezing tissues upon collection and immediately resuspending the ground tissues in 500 

μL of mammalian protein extraction reagent (M-PER, Thermo fisher). Solutions were 

sonicated at 4 ○C for 60 seconds and centrifuged at 1500 x g. Pellets were discarded and 

supernatant solution containing protein was analyzed using a BCA assay. 25ug protein 

was run on a SDS-PAGE gel along with Precision Plus Protein Dual Color standards (Bio-

Rad). Gels were transferred to a PVDF membrane using the trans-blot turbo transfer 

system (Bio-Rad) and blocked in 5% fat-free milk in TBS-T overnight at 4 ○C. Blots were 

incubated with primary antibodies in TBS-T overnight at 4 ○C. Blots were washed three 

times in TBS-T and were incubated for 1 hour at room temperature with secondary 

antibody in TBS-T. Blots were washed three times in TBS-T and developed using Azure 

Biosciences ECL reagent. Blots were imaged using the Azure c600 imaging system and 

densitometric analysis of protein was done using ImageJ software. Proteins of interest 

were normalized to GAPDH as a standard.  

2.5 mRNA isolation and qRT-PCR 

Media was rinsed with PBS and cells were lysed using TriZol Reagent (Invitrogen, 

Cat# 15596026). mRNA was isolated according to manufacturer’s protocols and purity 

confirmed using a Nanodrop-1000 spectrophotometer (Thermo Fisher). Quantitative 
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reverse-transcription real time polymerase chain (qRT-PCR) reaction was run using a 

High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Cat# 4368814) 

followed by TaqMan® Fast Advanced Master Mix (Applied Biosystems, Cat# 4444557) 

with TaqMan® Gene Expression Assay Primers (Applied biosystems, listed below) using 

a StepOne Plus instrument (Thermo Fisher). TNF-α, IL-6 and the internal control GAPDH 

were then quantitated for each sample in triplicate. Results are reported as fold change 

(2-^^CT). 

2.6 Cell Culture 

All Cells were cultured at 37 ○C in 5% CO2. 

2.6.a. RAW264.7. Cells were cultured in dulbecco’s modified essential medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin. (P/S) 

2.6.b. Primary Bone Marrow Macrophage Cell culture. Primary bone marrow was 

cultured into macrophages as described previously 213. Briefly, bone marrow from left and 

right femurs and tibiae of 12-14-week old wild type C57BL/6 mice was flushed into α-MEM 

(Corning, Cat# 10-022-CV) supplemented with 10% fetal bovine serum (Hyclone, Cat# 

SH30071.03HI) and 1% penicillin streptomycin (Sigma, Cat# P4333) and plated overnight 

at 37 °C in 5% CO2. Cells remaining in suspension were differentiated into experimental 

wells at a concentration of 2E6 cells/mL for 7 days or until 80% confluency and 

homogeneity was achieved using macrophage colony stimulating factor (R&D Systems, 

Cat# 416-ML-500), reconstituted in PBS + 1% BSA (Sigma, Cat# A8806) supplementation 

(10ng/mL/48h). Cells at this point are referred to as bone marrow derived macrophages 

(BMDMs). 
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 BMDMs were pre-treated with experimental KDM4B inhibitors for 1 hour at various 

concentrations followed by incubation with Aggregatibacter actinomycetemcomitans 

lipopolysaccharide (A.a LPS) for various time points (generally 8, 16 or 24h). 

2.6.c. Primary Bone Marrow Osteoclast Cell culture. 

Bone marrow stem cells were isolated from C57BL/6 mice, and differentiated into 

osteoclasts as previously described 214-215. In brief, bone marrow isolated from femurs and 

tibiae of 12 week-old wild-type C57BL/6 mice was plated overnight into phenol red free α-

MEM (Gibco, Cat# 41061-029). Adherent cells were discarded and cells that remained in 

suspension were plated into the wells of a 96-well culture plate (Corning, Cat#3598) at a 

density of 15,000 cells/well. Cells were supplemented with macrophage colony stimulating 

factor (M-CSF, R&D Systems, Cat# 416-ML-500) (15ng/mL/48h) for 3 days followed by 

supplementing with M-CSF (15ng/mL/48h) and receptor activator of nuclear factor kappa 

b ligand (RANK-L) (R&D Systems, Cat# 462-TEC-010) (50ng/mL/48h) for 2 days. On day 

5, wells were rinsed to remove RANK-L and replacement media was supplemented with 

M-CSF (15ng/mL) with or without Aa-LPS (100ng/mL) or RANK-L (R&D Systems, Cat# 

462-TEC-010) (50ng/mL) and ML324 (SelleckChem, Cat# S7296, 10μM) or DMSO 

vehicle control for 72 hours.  

2.7. TRAP staining and enumeration 

Following osteoclast formation experiments, cells were rinsed twice, fixed with 10% 

glutaraldehyde (Fisher, Cat# O2957-1) and stained for tartrate resistant acid phosphatase 

(TRAP) as described in BD Bioscience Technical Bulletin No. 445 using a 10-minute 

incubation with TRAP buffer. Subsequently, 3 representative images per well were 

captured using an Eclipse TS100 microscope (Nikon) equipped with an Evolution MP 
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camera (Media Cybernetics). Osteoclasts were quantified as multinucleated, TRAP+ cells 

and statistically significant differences were computed using a paired one-way ANOVA 

with multiple comparisons with an alpha of 0.05. 

2.8. Cycloheximide Treatment 

RAW264.7 macrophages were grown to 80% confluence in α-MEM supplemented with 

10% FBS (Hyclone, Cat# SH30071.03HI) and 1% penicillin/streptomycin (Sigma, Cat# 

P4333). Cells were then pre-treated with ML324 (SelleckChem, Cat# S7296, 50μM) or 

DMSO vehicle control with or without cycloheximide (Sigma, Cat# C7698, 10μg/mL) for 

4h. DMSO remained constant in each group at a level of 0.1% to eliminate interference 

with the assay. Cells were challenged with A.a LPS (100 ng/mL) or PBS vehicle control 

for 24 hours and collected for qRT-PCR analysis. 

2.9. Immunofluorescence  

RAW264.7 macrophages were grown to 80% confluence in phenol red free α-MEM 

(Gibco, Cat# 41061-029) supplemented with 10% FBS (Hyclone, Cat# SH30071.03HI) 

and 1% penicillin/streptomycin (Sigma, Cat# P4333) on Sensoplate Plus glass bottom 

plates (Grenier Bio-One, Cat# 655892). Cells were pre-treated for 1 hour with test 

inhibitors (SelleckChem, Cat# S7296, 50 μM) or DMSO vehicle control followed by A.a 

LPS (100 ng/mL) for 24 hours. Cells were then rinsed with PBS and fixed using 4% 

paraformaldehyde (Sigma) at 37 °C for 10 minutes. Cells were permeablized using 0.1% 

Triton X-100 (Amresco, Cat# 0694) for 10 minutes and blocked using 3% Bovine Serum 

Albumin (Sigma, Cat# A8806) in PBS for 30 minutes. Cells were then incubated for 1 hour 

with rabbit anti-H3K4me (Active Motif, Cat# 39297, 1:750) in 3% BSA. Cells were rinsed 

and incubated with fluorescent goat anti-rabbit antibody (AbCam, Cat# ab150078, 1:500) 
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in 3% serum for 1 hour. Cells were counterstained with DAPI (VWR, Cat# 95059-474, 

30μM) and AlexaFluor Phalloidin 488 (Invitrogen, A12379). Images were captured using 

a Wiscan imaging system (Hermes). 32-36 Images per well were used for analysis (n = 3 

wells/group). 

2.10. Human Periodontal Tissue Procurement 

This study was approved by the Institutional Review Board for the Health Sciences at the 

Medical University of South Carolina, USA.  Samples used for the present study represent 

a subset of samples used for a larger study. Informed consent was obtained with all 

patients prior to initiating study. Prior to surgery, clinical parameters were measured at the 

same sites where tissues were harvested including: plaque Index (PI) on a scale of 0-3 

(0-no plaque, 1-w/probe, 2-visible, 3-abundant) 216, gingival Index (GI) on a scale of 0-3 

(0-no inflammation, 1-mild, 2-moderate w/BOP, 3-severe, spontaneous bleeding on 

probing (BOP), pocket depth (PD), BOP, gingival recession (REC) and clinical attachment 

level (CAL).  Based on these parameters the inclusion criteria for the diseased group 

consisted of at least 1 site with PD>4mm, GI 1-3 and PI 1-3.  For the healthy controls 

acceptable parameters were: PD≤4mm, GI≤1, and PI≤2. The exclusion criteria for both 

groups included: smokers, unstable systemic diseases or chronic disorders (diabetes, 

rheumatoid arthritis), patients using steroids, antibiotics, NSAIDS and/or other host 

modulators. The procured samples were from tissues that would have been otherwise 

discarded after periodontal surgery and or extraction sites.  When clinically indicated, 

procured tissues included connective tissue near the sulcular epithelium. 
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2.11. Immunohistochemistry 

Calvariae from mice with periodontal disease, collected as previously described 217 were 

formalin fixed, decalcified using 0.5 M EDTA, pH 8.0 for 2 weeks, paraffin embedded and 

cut into 7 μm sections following standard protocols. Human periodontal tissues were 

formalin fixed, paraffin embedded and cut into 7 μm sections following standard protocols. 

Sections were permeablized using 0.2 M boric acid (Sigma, Cat# B6768). Tartrate 

resistant acid phosphatase (TRAP) was measured as described in BD Bioscience 

Technical Bulletin No. 445 following a 30-minute incubation with TRAP buffer. KDM4B 

was visualized following blocking with 3% normal goat serum (SeraCare, Cat# 5560-0007) 

using rabbit anti-KDM4B (AbCam, Cat# ab191434, 1:125) or rabbit anti-KDM4E (Novus, 

Cat# NBP2-49124) overnight at 4°C. The sample was then incubated for 1 hour with 

biotinylated goat anti-rabbit (Vectorlabs, Cat# BA-1000, 1:500). VECTASTAIN Elite ABC 

HRP Kit (Vectorlabs, 1:500, Cat# PK-6100), and a DAB Peroxidase (HRP) Substrate Kit 

(Vectorlabs, Cat# SK-4100) was then used for development. 15% Hematoxylin (Sigma, 

Cat# H3136) was employed as a counterstain. Images were captured using a Nikon 80i 

Eclipse microscope equipped with a DS-Fi1 camera. Region of interest selection and 

subsequent quantification was performed using visiopharm software (n = 3) for calvarial 

tissues. Human periodontal tissues were analyzed using imagej (n = 5-9). 

2.12. JMJD2B Enzyme Assay 

Inhibition of JMJD2B was assayed by BPS Biosciences using an 11-point IC50 

determination using the histone demethylase AlphaScreen (PerkinElmer) assay (BPS 

Bioscience, Cat# 50414). Briefly, enzymatic reactions were conducted in triplicate at room 

temperature for 60 minutes in a 10 µl mixture containing assay buffer (BPS Bioscience, 
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Cat# 52407), histone H3 peptide substrate, demethylase enzyme (BPS Bioscience, Cat# 

50111), and ML324 or 2,4-pyridine dicarboxylic acid as a reference inhibitor. All wells had 

a final DMSO concentration of 1%. After the enzymatic reactions were complete, anti-

Mouse Acceptor beads (PerkinElmer, Cat# AL105C, 1:500) and Primary H3K9me3 

antibody (BPS Biosciences, Cat# 52140E, 1:200) were added and samples were mixed. 

The reactions were incubated for an additional 30 minutes followed by addition of 

AlphaScreen Streptavidin-conjugated donor beads (PerkinElmer,Cat# 6760002S, 1:125). 

30 minutes later the samples were measured using an AlphaScreen microplate reader 

(EnSpire Alpha 2390 Multilabel Reader, PerkinElmer). In the absence of the compound, 

the intensity (Ce) in each data set was defined as 100% activity. In the absence of enzyme, 

the intensity (C0) in each data set was defined as 0% activity. The percent activity in the 

presence of each compound was calculated according to the following equation: %activity 

= (C-C0)/(Ce-C0), where C is the A-screen intensity in the presence of the compound. A 

plot of % activity versus concentration was then constructed using non-linear regression 

analysis of the sigmoidal dose-response curve generated with the equation Y=B+(T-

B)/1+10((LogIC50-X)×Hill Slope), where Y is percent activity, B is the minimum percent activity, T 

is the maximum percent activity, X is the logarithm of compound concentration and Hill 

Slope is the slope factor/Hill coefficient. The IC50 value was determined as the 

concentration causing half-maximal percent activity. 

2.13. Enzyme-Linked Immunosorbent Assay (ELISA) 

Following cell culture experiments, supernatant proteins were collected for analysis by 

ELISA. Standardization of samples was based on cell count at the initiation of 

experimentation, and samples were kept at -80 ○C until use if not used immediately. 
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Samples were centrifuged at 1500 x g to remove insoluble contaminants. 96 well plates 

were coated with capture antibody overnight, washed three times and blocked with 1% 

BSA for 2 hours. After washing, samples were added to plates in a 100uL sample volume. 

Dilutions of samples were only done when necessary, in a subsequent assay if 

concentrations were not within the linear range of the standard curve. After a 2 hour 

incubation, plates were washed and a detection antibody was added and plates were 

incubated for 1 hour. Plates were washed and incubated with streptavidin:HRP for 20 

minutes. Plates were washed and developed using proprietary color reagents from R&D 

Biosystems. Development was stopped by the addition of 2N H2SO4 and plates were read 

using a Spectramax plate reader at 560nm. Plates were normalized to a blank well when 

possible. A standard curve was fit using a log-log algorithm within the spectramax software 

and concentrations were determined for each sample. Significance was determined using 

either One-way or Two-way ANOVA with multiple comparisons, when applicable. 

2.14. Micro-Computed Tomography 

Calvariae were dissected from surrounding tissues upon sacrifice and immediately 

submerged in 10% formalin for fixation. Bones were incubated overnight at room 

temperature on a shaker to ensure complete fixation. Solutions were replaced with 70% 

ethanol to rinse and then stored for long-term analysis in a fresh solution of 70% ethanol. 

Samples were sent to Maria Johnson at University of Alabama Birmingham for scanning. 

Scans were run on a Scanco 40 instrument at a 15 μm resolution. A cylindrical region of 

interest was selected centered around the bregma point and samples were thresholded 

at a minimum intensity value of 3148HU based on control samples. Bone density was 
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determined using Analyze Pro software and statistical significance was determined using 

a Student’s t-test.  

 

2.15. Computational Chemistry 

2.15.a. Docking Experiments 

DOCK6.5: The KDM4B crystal structure (PDB: 4LXL) was prepared using UCSF Chimera 

following DOCK6.5 protocols.218 Ligands and water molecules were removed from the 

crystal structure. The ZINC15 compound database was filtered using pre-defined subsets 

of compounds: those with predicted in vitro activity in combination with compounds that 

were purchasable.219 This library was further refined by generating descriptors in 

Molecular Operating Environment (CGS) software in a high-throughput manner and 

eliminating large numbers of compounds based on these unfavorable descriptors: 

violation of one or more of Lipinski’s rules, molecular weight less than 250 and greater 

than 500 g/mol, greater than 12 rotatable bonds, compounds with a formal charge <-2 or 

>2 and the library was charged and energy pre-minimized for each structure based on 

standard protocols. The compound library was docked using DOCK6.5 in an unbiased 

manner by using the entire enzyme as the active site for docking in flexible mode with 

1000 maximum orientations per computation. The compound library was concurrently 

docked using Molecular Operating Environment in a rigid receptor dock constrained to the 

active site identified by the site finder tool in MOE. Hits from both programs were ranked 

based on the percentage of the maximum binding energy of each hit. Compounds that 

ranked independently within the top 70% of both docking experiments were selected for 

physicochemical clustering. OpenBabel descriptors were generated for the top 70% 
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consensus hits using Chemmine cheminformatics online tools.220 Compounds were 

clustered by similarity and hits clustered in the smallest clade containing ML324, JIB-04 

and NSC636819 were selected for in vitro evaluation. This consensus docking strategy 

was performed on a combinatorial library of novel compounds as needed to prioritize 

synthetic efforts.  

2.15.b. Quantitative structure activity relationship (QSAR) development 

The phenotypic immunosuppressive screen data was converted into binary data using 

statistical significance (P<0.05) determined by One-Way ANOVA compared to DMSO 

controls as a cutoff. A contingency analysis was run on the tested compounds to identify 

the 2D descriptors defined by MOE that were most highly correlated with activity. The top 

12 descriptors from this analysis were used to map a quantitative structure activity 

relationship algorithm and cross-validation was conducted using a leave one out method 

following standard protocols. The model was applied to our combinatorial library to predict 

activity.221-222 

2.16. Synthetic Chemistry 

2.16.a. General Procedures: All solvents and chemicals were reagent grade. Anhydrous 

dichloromethane (DCM) and dichloroethane (DCE) were purchased from VWR. All 

solutions were dried over anhydrous magnesium sulfate or sodium sulfate, solvents were 

removed by rotary evaporation under reduced pressure. Solids used in dry reactions were 

additionally freeze dried before use. Microwave reactions were run in a Biotage Initiator. 

Flash column chromatography was carried out using pre-packed silica columns from 

RediSep or SiliCycle and mixtures adsorbed onto ISOLUTE for elution. Purity of 

compounds was >95% as determined by ultra-pure liquid chromatography analysis. NMR 
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spectra were recorded on a Bruker 400 MHz instrument using CDCl3, MeOD or DMSOd6 

as solvents. Chemical shifts are reported in ppm relative to TMS (0.00 ppm) or solvent 

peaks as an internal reference. Splitting patterns are indicated as follows: s, singlet; d, 

doublet; t, triplet; q, quartet; m, multiplet.  

All data are represented as geometric mean ± standard error of the mean (SEM) and 

statistical significance was determined using One-Way ANOVA with multiple comparisons 

(p<0.05). 

2.16.b. Compound 2: 5-Chloro-2-[(E)-2-[phenyl(pyridin-2-yl)methylidene]hydrazin-1-

yl]pyridine (JIB-04). Hydrazine hydrate (5.48 g, 171 mmol, 5.34 mL) was added to a 

solution of 2,5-dichloropyridine 1 (0.21 g, 1.42 mmol) in pyridine (10 mL) and the reaction 

mixture was refluxed for 6 h. The resulting suspension was dried in vacuo (rotary 

evaporator), dissolved in dichloromethane and washed with a 50 mL portion of 1.0 N 

NaOH and three 50 mL portions of water. The organic layer was dried over anhydrous 

magnesium sulfate, filtered, and the solvent was removed in vacuo to yield 5-chloro-2-

hydrazinylpyridine 2 as a white crystalline solid (0.097 g, 47%)  

A 20 mg portion of 2 (20 mg, 1.4 mmol) and benzoyl pyridine 3 (25.5 mg, 1.4 mmol) were 

refluxed overnight in methanol (10 mL) with a traces of acetic acid. The resulting solution 

was dried via rotary evaporator and crystallized from ethyl acetate to yield 5-Chloro-2-[(E)-

2-[phenyl(pyridin-2-yl)methylidene]hydrazin-1-yl]pyridine (JIB-04) 4 as fine yellow needles 

(0.099 g, 23%).  

2.16.c. Compound 16, 23-28: Biphenyl benzoyl chloride (3.6 mmol) was added to 

aminobenzoate derivatives 17 (3 mmol) under reflux in toluene (25 mL) as previously 

described.223 Reaction was refluxed for 4h and product was evaporated under reduced 
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pressure by adding water continually until all toluene was removed. Product was extracted 

from ethyl acetate rinsing with brine. The remaining organic layer was loaded onto a 25g 

silica column and purified using flash chromatography with a solvent gradient from 0-100% 

ethyl acetate in hexanes over 25 minutes. Fractions containing product 18 were combined 

and identity of products were confirmed using UPLC and NMR. 

The resulting ester 18 (1 mmol) was added to a microwave vial with LiOH (.5 mmol) and 

dissolved in methanol and water (3:1, 10mL). The reaction was microwave irradiated at 

100 ○C for 1-2 hours until the ester starting material was consumed. The reaction was 

acidified, evaporated under reduced pressure, and vacuum filtered rinsing with cold HCl 

to yield product 16, 23-28 as a white to off-white solid. 

Final products were lyophilized and analyzed using UPLC for >95% purity and 1H NMR 

for identification. 

2.16.d. Compound 29-46 were synthesized using a modification of a previously described 

technique.224 Derivatized trifluoroborates (0.25 mmol), derivatized bromobenzenes (0.25 

mmol), and cesium carbonate (0.756 mmol) was combined with catalytic [1,1′-

Bis(diphenylphosphino)ferrocene]dichloropalladium(II), complex with dichloromethane 

(0.023 mmol) and the mixture was suspended in a degassed solution of THF and water 

(1:10, 5mL) in a 20mL microwave vial. The reaction was vortexed briefly and irradiated in 

a biotage initiator at 100 ○C for 1-2 hours until the starting material was consumed as 

determined by TLC as previously described. The reaction mixture was evaporated under 

reduced pressure, acidified using HCl and extracted 3x from DCM. The organic was dried 

over sodium sulfate and adsorbed onto isolute for separation using flash chromatography 

to yield an off-white solid. The resulting ester (1 mmol) was added to a microwave vial with 
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LiOH (0.5 mmol) and dissolved in methanol and water (3:1, 10mL). The reaction was 

microwave irradiated at 100 ○C for 1-2 hours until the ester starting material was 

consumed. The reaction was acidified, evaporated under reduced pressure, and vacuum 

filtered rinsing with cold HCl to yield a white solid 15. 

Carboxylic acid 15 (2 mmol) was lyophilized and resuspended in dry DCE (10 mL) under 

nitrogen in a flame dried flask. Oxalyl chloride (3.6 mmol) and catalytic DMF (5 drops) 

were added to the reaction on ice and the solution was allowed to stir at room temperature 

for 1-24 h until gas was no longer produced. The reaction generally turned yellow upon 

formation of the carbonyl chloride in solution. DCE was removed under reduced pressure 

using rotary evaporation to yield a bright yellow residue. The residue was resuspended in 

dry DCM (10mL) and in a separate flask, Aminobenzoate derivatives 17 were dissolved in 

dry DCM (10 mL) with TEA (8.2 equiv.). The basic aminobenzoate solution was added to 

the benzoyl chloride under nitrogen via cannula transfer and the reaction was stirred at 

room temperature under nitrogen for 1-24h until the amine starting material was consumed 

as confirmed by UPLC. The reaction mixture was filtered to remove the TEA salt, and the 

remaining liquid was extracted from ethyl acetate, rinsing sequentially with citric acid, 

NaOH and brine. The remaining organic layer was loaded onto a 25g silica column and 

purified using flash chromatography with a solvent gradient from 0-100% ethyl acetate in 

hexanes over 25 minutes. Fractions containing product 18 were combined and identity of 

products were confirmed using UPLC and NMR. 

The resulting ester 18 (1 mmol) was added to a microwave vial with LiOH (0.5 mmol) and 

dissolved in methanol and water (3:1, 10mL). The reaction was microwave irradiated at 

100 ○C for 1-2 hours until the ester starting material was consumed. The reaction was 
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acidified, evaporated under reduced pressure, and vacuum filtered rinsing with cold HCl 

to yield product 29-46 as a white to off-white solid. 

Final products were lyophilized and analyzed using UPLC for >95% purity and 1H NMR 

for identification. 

2.16.d. Spectroscopy for Synthesized compounds: 

2: 

Intermediate: 1H NMR (CDCl3) δ: 3.795 (s, 2H), 5.797 (s, 1H), 6.697 (d, 1H, J = 8.8 Hz), 

7.422 - 7.450 (dd, 1H, J = 2.5, 8.8 Hz), 8.058 (d, 1H, J = 2.3 Hz). MS calcd for C5H6ClN3 

144.03 [M + H+], found 144.02 [M + H+]. 

Final product: 1H NMR (CDCl3) δ: 7.260-7.356 (m, 2H), 7.397-7.466 (m, 3H), 7.536-7.587 

(m, 4H), 7.506 (td, 1H, J = 1.6, 7.8 Hz), 8.136 (d, 1H, J = 2.2 Hz), 8.823 (dd, 1H, J = 4.9, 

0.7 Hz), 13.301 (s, 1H). MS calcd for C17H13ClN4 309.09 [M + H+], found 309.41 [M + H+] 

16: 

Intermediate: 1H NMR (400 MHz, CDCl3) δ3.90 (s, 3H), 7.25 (m, 1H), 7.42 (t, 1H), 7.51 

(t, 2H), 7.69 (m, 1H), 7.77 (t, 2H), 8.04 (m, 3H), 8.59 (d, 1H), 11.68 (s, 1H) 

Final Product: 1H NMR (400 MHz, CDCl3)δ7.19-7.23 (t, 3H), 7.59-7.64 (t, 3H), 8.09-

8.13 (m, 3H), 8.74, 8.76 (d, 1H), 8.87, 8.89 (d, 2H), 12.61 (s, 1H), 12.91 (s, 2H)  

23: 

Intermediate 1: 1H NMR (400 MHz, (CD3)2SO)δ 2.11 (s, 3H), 2.34 (t, 3H), 3.53 (s, 3H), 

7.16 (t, 1H), 7.26 (t, 1H), 7.35 (m, 3H), 7.50 (q, 1H), 7.59 (q, 2H), 7.68 (t, 2H), 7.91 (d, 

2H), 9.87 (s, 1H) 
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Final product: 1H NMR (400 MHz, (CD3)2SO)δ 2.07 (s, 3H), 7.12 (t, 1H), 7.26 (q, 1H), 

7.35 (q, 3H), 7.52 (q, 1H), 7.60 (t, 2H), 7.68 (d, 2H), 9.95 (s, 1H), 12.62 (s, 1H) 

24: 

Intermediate 1: 1H NMR (400 MHz, CDCl3)δ 3.92 (s, 3H), 7.44 (d, 1H), 7.53 (t, 2H), 7.62 

(d, 1H), 7.78 (m, 3H), 7.92 (d, 2H), 8.06 (d, 2H), 8.50 (q, 1H), 11.41 (s, 1H) 

UPLC Rt: 7.022 minutes 

Final product: 1H NMR (400 MHz, (CD3)2SO)δ 7.26(t, 1H), 7.40 (m, 3H), 7.60 (m, 3H), 

7.73 (d, 2H), 7.88 (d, 2H), 8.54 (q, 1H), 11.85 (s, 1H), 13.99 (s, 1H) 

25:  

Final product: 1H NMR (400 MHz, (CD3)2SO)δ 7.25 (m, 2H), 7.37 (m, 3H), 7.54 (d, 1H), 

7.61 (t, 2H), 7.69 (d, 2H), 7.91 (d, 2H), 10.04 (s, 1H), 13.01 (s, 1H) 

26: 

Final product: 1H NMR (600 MHz, CDCl3)δ 3.98 (d, 4H), 6.87 (q, 1H), 7.42 (t, 1H), 7.52 

(q, 3H), 7.66 (m, 4H), 7.78 (t, 2H), 8.14 (q, 4H), 8.82 (q, 1H) 

27: 

Intermediate 1: 1H NMR (400 MHz, CDCl3)δ3.74 (s, 3H), 7.25 (m, 1H), 7.37 (m, 3H), 

7.52 (m, 1H), 7.61 (t, 2H), 7.70 (d, 2H), 7.95 (m, 2H), 8.34 (t, 1H), 10.37 (s, 1H) 

Final product: 1H NMR (600 MHz, (CD3)2SO)δ 7.39 (d, 1H), 7.53 (m, 3H), 7.69 (m, 1h), 

7.79 (t, 2H), 7.87 (t, 2H), 8.10 (m, 3H), 8.47 (d, 1H), 10.48 (s, 1H), 12.94 (s, 1H) 
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28: 

Intermediate 1: 1H NMR (400 MHz, CDCl3)δ 3.67 (s, 3H), 7.24 (d, 1H), 7.34 (t, 2H), 7.59(d, 

3H), 7.69 (d, 2H), 7.81 (s, 4H), 7.92 (d, 2H), 10.45 (s, 1H) 

Final product: 1H NMR (600 MHz, (CD3)2SO)δ 7.42 (m, 2H), 7.54 (q, 2H), 7.68 (q, 1H), 

7.78 (d, 2H), 7.84 (d, 2H), 7.89 (d, 2H), 7.93 (d, 2H), 7.99 (d, 1H), 8.09 (d, 2H), 10.44 (s, 

1H) 

29: 

Intermediate 1: 1H NMR (400 MHz, CDCl3)δ 3.84 (s, 3H), 7.19 (m, 1H), 7.26 (d, 1H), 

7.34 (q, 2H), 7.45 (t, 2H), 7.54 (t, 2H), 7.63 (m, 2H), 7.82 (d, 1H), 8.17 (t, 1H), 8.85 (q, 

1H), 11.71 (s, 1H) 

Final product: 1H NMR (400 MHz, CDCl3)δ 7.24 (q, 2H), 7.35 (q, 2H), 7.44 (t, 1H), 7.54 

(d, 2H), 7.66 (m, 2H), 7.83 (d, 1H), 8.06 (s, 1H), 8.82 (q, 1H), 11.71 (s, 1H) 

30: 

Final product: 1H NMR (400 MHz, CDCl3)δ 6.88 (q, 1H), 7.41 (d, 1H), 7.51 (t, 2H), 7.61 

(t, 1H), 7.71 (d, 2H), 7.84 (d, 1H), 8.01 (d, 1H), 8.20 (q, 1H), 8.31 (s, 1H), 8.80 (q, 1H), 

12.13 (s, 1H) 

31: 

Intermediate 1: 1H NMR (400 MHz, CDCl3)δ 3.62 (s, 3H), 6.89 (m, 1H), 7.10 (q, 2H), 

7.31 (q, 4H), 7.38 (m, 2H), 7.59 (t, 1H), 7.77 (q, 1H), 8.53 (d, 1H), 10.85 (s, 1H) 

Final product: 1H NMR (400 MHz, CDCl3)δ 6.93 (t, 1H), 7.14 (m, 3H), 7.30 (m, 4H), 

7.46 (m, 2H), 7.62 (d, 1H), 7.88 (d, 1H), 8.60 (d, 1H), 10.47 (s, 1H) 
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32: 

Intermediate 1: 1H NMR (400 MHz, CDCl3)δ 2.00 (s, 3H), 3.71 (s, 3H), 6.98 (t 1H), 7.21 

(m, 3H), 7.29 (q, 1H), 7.35 (m ,4H), 7.57 (q, 1H), 7.66 (q, 1H), 8.93 (s, 1H) 

Final product: 1H NMR (400 MHz, CDCl3)δ 2.03 (s, 3H), 7.01 (d, 1H), 7.15 (d, 1H), 7.20 

(t, 2H), 7.27 (t, 2H), 7.32 (d, 2H), 7.38 (t, 1H), 7.67 (t, 2H), 8.70 (s, 1H) 

33: 

Intermediate 1: 1H NMR (400 MHz, CDCl3)δ3.65 (s, 3H), 7.08 (m, 2H), 7.18 (t, 2H), 7.30 

(m, 4H), 7.37 (t, 1H), 7.44 (q, 1H), 7.58 (t, 1H), 8.54 (q, 1H), 10.66 (s, 1H) 

Final product: 1H NMR (400 MHz, CDCl3)δ 7.14 (m, 4H), 7.28 (d, 1H), 7.34 (m, 2H), 

7.43 (m ,1H), 7.53 (q, 1H), 7.63 (m, 1H), 8.61 (q, 1H), 10.33 (s, 1H) 

34: 

Intermediate 1: 1H NMR (400 MHz, CDCl3)δ3.68 (s, 3H), 7.02 (m, 1H), 7.12 (m, 1H), 

7.23 (t, 2H), 7.35 (m, 5H), 7.51 (d, 1H), 7.65 (t, 1H), 8.67 (s, 1H) 

Final product: 1H NMR (400 MHz, CDCl3)δ 7.18 (m, 4H), 7.30 (q, 4H), 7.40 (t, 1H), 7.56 

(d, 1H), 7.69 (d, 1H), 8.48 (s, 1H) 

35: 

Intermediate 1: 1H NMR (400 MHz, CDCl3)δ 3.67 (s, 3H), 7.12 (m, 2H), 7.23 (m, 5H) 

7.31 (t, 1H), 7.37 (m, 2H), 7.50 (s, 1H), 7.55 (d, 1H), 7.66 (t, 1H) 

Final product: 1H NMR (400 MHz, CDCl3)δ 7.13 (q, 1H), 7.21 (q, 3H), 7.27 (t, 2H), 7.33 

(m, 2H), 7.43 (m, 3H), 7.54 (t, 1H), 8.02 (s, 1H), 10.29 (s, 1H), 12,49 (s, 1H) 
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36: 

Intermediate 1: 1H NMR (400 MHz, CDCl3)δ 2.38 (s, 3H), 3.64 (s, 3H), 7.19 (s, 4H), 

7.36 (t, 2H), 7.49 (m, 1H), 7.79 (d, 1H) 

Intermediate 2: 1H NMR (400 MHz, CDCl3)δ 2.26 (s, 3H), 7.04(d, 2H), 7.13 (t, 2H), 

7.25(m, 2H), 7.42 (m, 1H), 7.81 (m, 1H), 10.55 (s, 1H) 

Intermediate 3: 1H NMR (400 MHz, CDCl3)δ 2.01 (s, 3H), 2.19 (s, 3H), 3.69 (s, 3H), 

7.01 (m, 4H), 7.24 (m, 3H), 7.36 (q, 1H), 7.59 (d, 1H), 7.65 (d, 1H), 8.94 (s, 1H) 

Final product: 1H NMR (600 MHz, CDCl3)δ 2.355 (s, 3H), 7.19 (m, 4H), 7.37 (m, 3H), 

7.45 (m, 4H), 7.54 (m, 1H), 7.81 (m, 2H), 8.93 (s, 1H) 

37: 

Intermediate 1: 1H NMR (400 MHz, CDCl3)δ 3.63 (s, 3H), 3.81 (s, 3H), 6.91 (d, 2H), 

7.28 (d, 1H), 7.34 (t, 2H), 7.62 (t, 1H), 7.76 (m, 2H) 

Intermediate 2: 1H NMR (400 MHz, CDCl3)δ3.84 (s, 3H), 6.93 (t, 2H), 7.28 (q, 2H), 7.38 

(q, 2H), 7.54 (m, 1H), 7.92 (t, 1H) 

Intermediate 3: 1H NMR (400 MHz, CDCl3)δ 3.61 (s, 3H), 3.66 (s, 3H), 6.67 (d, 2H), 

6.93 (t, 1H), 7.33 (m, 6H), 7.59 (d, 1H), 7.77 (d, 1H), 8.63 (d, 1H), 10.77 (s, 1H) 

Final product: 1H NMR (400 MHz, CDCl3)δ 3.58 (s, 3H), 6.68 (d, 2H), 6.96 (m, 1H), 

7.11 (s, 1H), 7.20 (d, 2H), 7.29 (m, 2H), 7.37 (m, 1H), 7.46 (t, 1H), 7.59 (t, 1H), 7.86 (q, 

1H), 8.67 (d, 1H), 10.51 (s, 1H) 
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38: 

Intermediate 1: 1H NMR (400 MHz, CDCl3)δ 2.24 (s, 3H), 3.74 (s, 3H), 7.09 (q, 1H), 

7.24 (m, 1H), 7.34 (m, 3H), 7.44 (t, 1H), 7.52 (q, 2H), 7.64 (m, 1H), 7.71 (q, 1H), 7.84 (m, 

1H), 8.12 (t, 1H), 10.01 (s, 1H) 

Final product: 1H NMR (400 MHz, CDCl3)δ 2.27 (s, 3H), 7.14 (t, 1H), 7.23 (t, 1H), 7.34 

(t, 3H), 7.46 (t, 1H), 7.54 (t, 1H), 7.61 (d, 2H), 7.72 (d, 1H), 7.78 (d, 1H), 8.15 (s, 1H), 

9.90 (s, 1H), 12.69 (s, 1H) 

39:  

Intermediate 1: 1H NMR (400 MHz, CDCl3)δ3.72 (s, 3H), 3.75 (s, 3H), 7.09 (m, 1H), 

7.43 (m, 3H), 7.52 (t, 2H), 7.63 (q, 4H), 7.77 (d, 1H), 7.86 (q, 3H), 8.13 (t, 1H), 9.87 (s, 

1H) 

Final product: 1H NMR (600 MHz, CDCl3)δ  7.41 (m, 3H), 7.58 (m, 3H), 7.81 (d, 1H), 

7.88 (m, 2H), 7.94 (d, 1H), 8.00 (d, 1H), 8.11 (m, 2H), 8.37 (t, 2H), 9.88 (s, 1H) 

40: 

Intermediate 1: 1H NMR (400 MHz, CDCl3)δ 2.00 (s, 3H), 3.71 (s, 3H), 6.98 (t, 1H), 7.21 

(m, 3H), 7.27 (q, 1H), 7.34 (m, 4H), 7.57 (q, 1H), 7.66 (q, 1H), 8.93 (s, 1H) 

Final product: 1H NMR (400 MHz, CDCl3)δ 2.02 (s, 3H), 7.02 (t, 1H), 7.18 (m, 3H), 7.27 

(t, 3H), 7.32 (d, 2H), 7.38 (q, 1H), 7.66 (t, 2H), 8.71 (s, 1H) 

41: 

Intermediate 1: 1H NMR (400 MHz, CDCl3)δ 3.62 (s, 3H), 6.59 (m, 1H), 7.38 (m, 7H), 

7.61 (d, 1H), 7.81 (q, 1H), 8.46 (d, 1H), 11.02 (s, 1H) 
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Final product: 1H NMR (400 MHz, CDCl3)δ 6.72 (m, 1H), 7.19 (m, 5H), 7.36 (m ,2H), 

7.44 (m, 2H), 7.54 (m, 1H), 7.71 (q, 1H), 7.95 (q, 1H), 8.60 (q, 1H), 10.73 (s, 1H) 

42: 

Intermediate 1: 1H NMR (400 MHz, CDCl3)δ 2.38 (s, 3H), 3.92 (d, 3H), 7.24 (d, 2H), 

7.51 (q, 2H), 7.68 (d, 2H), 8.10 (t, 2H) 

Intermediate 3: 1H NMR (400 MHz, CDCl3)δ2.36 (s, 3H), 3.96 (s, 3H), 7.24 (m, 3H), 

7.49 (d, 3H), 7.70 (m, 3H), 8.01 (d, 2H), 8.88 (q, 1H), 11.89 (s, 1H) 

Final product: 1H NMR (600 MHz, (CD3)2SO)δ 2.36 (s, 4H), 7.28 (d, 2H), 7.56 (m, 1H), 

7.67 (d, 2H), 7.77 (q, 1H), 7.88 (d, 2H), 8.04 (d, 2H), 8.72 (q, 1H), 11.83 (s, 1H) 

43:  

Intermediate 1: 1H NMR (400 MHz, CDCl3)δ 2.38 (s, 3H), 3.64 (s, 3H), 7.19 (s, 4H), 

7.36 (t, 2H), 7.49 (m, 1H), 7.79 (d, 1H) 

Intermediate 2: 1H NMR (400 MHz, CDCl3)δ 2.26 (s, 3H), 7.04(d, 2H), 7.13 (t, 2H), 

7.25(m, 2H), 7.42 (m, 1H), 7.81 (m, 1H), 10.55 (s, 1H) 

Intermediate 3: 1H NMR (400 MHz, CDCl3)δ2.65 (s, 3H), 3.62 (s, 3H), 6.92 (d, 2H), 7.02 

(m, 3H), 7.14 (m, 4H), 7.24 (m, 3H), 7.33 (m, 1H), 7.41 (q, 1H), 7.51 (d, 1H), 7.79 (s, 

1H), 8.51 (q, 1H), 10.66 (s, 1H) 

Final product: 1H NMR (400 MHz, MeOD)δ 2.30 (s, 3H), 7.15 (d, 2H), 7.32 (m, 3H), 

7.50 (t, 2H), 7.60 (t, 1H), 7.68 (q, 1H), 8.63 (q, 1H) 

44: 

Intermediate 1: 1H NMR (400 MHz, CDCl3)δ3.62 (s, 3H), 3.68 (s, 3H), 6.95 (m, 3H), 

7.22 (d, 1H), 7.37 (m, 1H), 7.63 (m, 1H), 7.85 (q, 1H) 
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Intermediate 2: 1H NMR (400 MHz, CDCl3)δ 3.55 (s, 3H), 6.72 (d, 1H), 6.89 (q, 1H), 

6.98 (d, 2H), 7.11 (t, 1H), 7.18 (m, 2H), 7.29 (m ,3H), 7.41 (q, 1H), 7.78 (q, 1H) 

Intermediate 3: 1H NMR (400 MHz, CDCl3)δ 2.97 (s, 3H), 3.59 (s, 3H), 3.82 (s, 3H), 

6.76 (d, 1H), 6.90 (q, 1H), 7.00 (m, 2H), 7.30 (m, 2H), 7.46 (q, 1H), 7.53 (m, 2H), 7.62 (q, 

2H), 8.05 (s, 1H), 8.77 (q, 1H), 10.86 (s, 1H)  

Final product: 1H NMR (400 MHz, CDCl3) 1.69 (s, 3H), 3.69 (s, 3H), 7.00 (t, 2H), 7.17 

(m, 3H), 7.31 (m, 3H), 7.60 (m, 2H), 9.52 (s, 1H)  

45: 

Intermediate 1: 1H NMR (400 MHz, CDCl3)δ2.41 (s, 3H), 3.94 (s, 3H), 7.27 (t, 1H), 7.48 

(d, 1H), 7.52 (d, 2H), 8.00 (q, 1H), 8.27 (d, 1H) 

Intermediate 2: 1H NMR (400 MHz, CDCl3)δ 2.19 (s, 3H), 7.13 (d, 2H), 7.42 (t, 3H), 7.73 

(t, 2H), 7.99 (s, 1H) 

13C NMR (400 MHz, D2O)δ167.7, 140.87, 136.80, 131.87, 131.34, 130.18, 129.79, 

128.43, 127.47, 127.06, 21.13 

Intermediate 3: 1H NMR (400 MHz, CDCl3)δ2.42 (s, 3H), 3.96 (s, 3H), 7.28 (d, 2H), 7.34 

(m, 1H), 7.57 (t, 3H), 7.75 (m, 2H), 7.97 (t, 1H), 8.92 (q, 1H), 11.96 (s, 1H) 

Final product: 1H NMR (400 MHz, CDCl3)δ2.34 (s, 3H), 7.26 (s, 2H), 7.42(s, 1H), 7.57 

(s, 3H), 7.81, 7.90 (d, 3H), 8.21 (s, 1H), 8.95 (s, 1H), 12.16 (s, 1H) 

46: 

Intermediate 1: 1H NMR (400 MHz, CDCl3)δ 3.79 (s, 3H), 6.99 (m ,1H), 7.25 (m, 2H), 

7.54 (m, 2H), 7.65 (m, 1H), 7.76 (m, 1H), 7.86 (m, 1H), 7.94 (q, 1H), 8.00 (m, 1H), 8.14 

(t, 1H), 8.23 (t, 1H), 8.77 (q, 1H), 12.07 (s, 1H) 
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Final product: 1H NMR (400 MHz, CDCl3)δ 7.11 (m ,1H), 7.34 (m ,1H), 7.43 (q, 2H), 

7.54 (t, 1H), 7.65 (m, 3H), 7.76 (m, 1H), 7.98 (m, 1H), 8.12 (q, 1H), 8.22 (t, 1H), 8.90 (q, 

1H), 11.96 (s, 1H) 

 

2.17. Antibodies 

KDM4B: AbCam, Cat# ab191434 

KDM4E: Novus, Cat# NBP2-49124 

H3K9me3: Abcam, Cat# ab176916 

H3K4me: Active Motif, Cat# 39297 

H3K4me2: Abcam, Cat# ab32356 

GAPDH: Abgent, Cat# AP7873b 

Goat anti-rabbit: Vectorlabs, Cat# BA-1000 

Fluorescent secondaries:  

Goat anti-rabbit: AbCam, Cat# ab150078 

2.18. Primers 

TaqMan® Gene Expression Assay Primers (ThermoFisher) 

 GAPDH: Mm99999915_g1 

 IL-6: Mm00446190_m1 

 TNF-α: Mm00443258_m1 

 IL-10:  Mm01288386_m1 

 KDM4B: Mm01236310_m1 
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 IL-1b: Mm00434228_m1 

 Era: Mm00469669_m1 

 

Chapter Three: Inhibition of the Histone Demethylase KDM4B Leads to Activation 

of KDM1A, Attenuates Bacterial-Induced Pro-Inflammatory Cytokine Release and 

Reduces Osteoclastogenesis. 

3.1. Rationale and Hypothesis 

Periodontal disease (PD) causes irreversible tissue damage and bone loss and 

affects 46% of adult Americans. PD is a common chronic inflammatory disease 

characterized by destruction of the supporting structures of the teeth.50, 186 This chapter 

describes a novel approach that targets epigenetic control of gene expression in the host 

to resolve the pro-inflammatory immune response driving PD.  

The pro-inflammatory cytokines TNF-α and IL-6 are classically upregulated in 

gingival connective tissues of PD patients, 36 and these cytokines are secreted from perio-

pathogen activated macrophages through toll like receptor (TLR) signaling.225 TLR4 

binding by periopathogenic LPS activates a signaling cascade that drives both cytokine 

and chemokine production. KDM4B and its major substrate, H3K9, have been linked to 

this process by several research groups. 157-159, 192 Because of this, we hypothesize that  

KDM4B is a mediator of PD progression, and demonstrate that its demethylation activity 

is a signature of several pro-inflammatory processes. 

 It is well known that histone demethylase enzymes are conserved throughout 

species, and that these enzymes are commonly redundant, share substrate specificity 
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among different classes and families, and are coordinated in their activity. Multiple studies 

support the idea that H3K4 and H3K9 methylation are mutually exclusive states.184, 226 For 

example, cross talk between KDM4B and KDM1A enzymes leads to a balanced system 

wherein lysine 9 methylation serves as a prerequisite to lysine 4 demethylation by 

KDM1A.184 Because it is known that the demethylation activity of KDM1A on Histone 3 

lysine 4 leads to repression of pro-inflammatory cytokine gene transcription,183  we 

postulate that KDM4B is a positive regulator of the pro-inflammatory cytokine response 

through an indirect mechanism by inhibiting KDM1A.  

The current study aims to interrogate the activity of KDM4B as it relates to the 

immune response in periodontal disease through the use of the JMJD2 demethylase 

inhibitor ML324.212 We hypothesize that KDM4B inhibition using this inhibitor will result in 

a reduced immune response to bacterial LPS, and that ML324 could prove useful as a 

chemical tool and lead compound for future studies on PD or other hyper-inflammatory or 

autoimmune diseases. 

3.2. Results 

3.2.a. KDM4B and KDM4E protein abundance is increased in areas of periodontal 

inflammatory infiltrate. 

To test the hypothesis that KDM4B is overexpressed upon LPS stimulation, 

histological sections from the calvariae of mice that had been injected daily for 5 days with 

fixed Aggregatibacter actinomycetemcomitans (A.a) or PBS were stained for KDM4B 

protein. An increase in resorption pits due to osteoclast activity was observed in calvariae 

treated with A.a, confirming this as a viable model for periodontal disease.217 Staining for 

tartrate resistant acid phosphatase (TRAP) and F4/80 marked the area in the calvarial 
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sections most active with inflammatory 

infiltration. This region of interest showed a   

significantly higher concentration of KDM4B 

protein (Figure 3.1A), indicating that 

KDM4B protein levels correlate with immune 

activation in periodontal disease. The 

experimental inhibitor ML324 has also been 

shown to inhibit the related demethylase 

KDM4E,212 but this protein is not found in 

mice. Therefore, tissue sections from 

periodontally diseased human patients and 

healthy controls were stained for both 

KDM4E and KDM4B using 

immunohistochemistry. The connective 

tissue underlying the oral epithelium was 

chosen as the region of interest for analysis. 

A statistically significant increase in both 

KDM4B and KDM4E abundance was 

observed in diseased versus healthy tissues 

(Figure 3.1B), demonstrating that KDM4 

enzymes are implicated in periodontal 

disease status. 

  
Figure 3.1. KDM4B abundance is significantly increased 
in periodontal diseased versus healthy tissues. Live A.a 
was injected subcutaneously into 12-week old C57BL/6 mice 
at the mid-sagittal region of the calvarium every day for 5d. 
Paraffin embedded sections were stained for F4/80, TRAP 
and KDM4B using immunohistochemistry, all of which were 
significantly upregulated in diseased versus healthy 
calvariae. 10x Images presented are representative of the 
data set. (A)  In clinical periodontal specimens, the region of 
interest was defined as the connective tissue underlying the 
oral epithelium. Paraffin embedded sections were stained for 
KDM4E and KDM4B using immunohistochemistry, both of 
which were upregulated in diseased versus healthy patient 
tissues. 20x images are representative of the data set. (B) 
positive pixels quantified using color thresholding in ImageJ. 
Data are presented as mean ± SD. Significance was 
determined using a one-tailed Wilcoxon ranked sum test. 
Epithelium (E) Calvarial Bone (C) Brain (B) *p<0.05, 
***p<0.001. Scale bars, 100 μm 
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3.2.b. ML324, previously defined as a KDM4E inhibitor, shows inhibitory 

activity against KDM4B. 

ML324 was docked into the active site of the KDM4A-E family in flexible mode, and was 

found to have high computational selectivity for the KDM4B active site (Figure 3.2A). 

ML324 exhibited a lower average binding energy to the KDM4B active site (-53.04 

kcal/mol) for the top 30 conformers versus KDM4E (-42.52 kcal/mol). Additionally, we used 

an Alphascreen® assay to determine the effect of ML324 on the demethylation activity of 

KDM4B. Here we show that ML324 has inhibitory activity towards KDM4B, with an IC50 

value of 4.9 μM (Figure 3.2B). Additionally, we have defined the EC50 of ML324 for 

translational immunosuppression in primary macrophages to be 31 μM (Figure 3.2C). IL-

6 production drives periodontal disease pathogenesis, therefore the ability of ML324 to 

effectively reduce the production of this cytokine emphasizes the potential of KDM4B 

inhibitors as therapeutics for PD treatment. 

3.2.c. KDM4B inhibition using ML324 results in a significantly reduced cytokine  

immune response to Aa-LPS in macrophages. 

After a 1-hour pre-tr  eatment with ML324 (50 μM) followed by an inflammatory Aa-LPS  

challenge (100 ng/mL), ELISA and PCR analysis revealed that the KDM4B inhibitor 

ML324 significantly reduced the levels of inflammatory cytokines in primary murine 

macrophages (Figure 3.3A-D). At 8- and 24-hour time points and in both male and female 

cells, ML324 was able to significantly reduce IL-6 and TNF-α transcription and translation 

compared to LPS treatment with vehicle control (DMSO). A pan-selective KDM4 family 

inhibitor, JIB-04, was also able to produce this effect in most groups, but with a more 

variable response. As expected, GSK-LSD1, a KDM1A inhibitor, produced either no 
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change or a significant increase compared to 

vehicle controls in the majority of groups.  These 

data demonstrate not only that KDM4B 

inhibition reduces inflammatory cytokine 

production but also that this effect is specific to 

KDM4B over the KDM4 family as a whole. It is 

important to note, however, that  enzyme 

kinetics and mode of binding of ML324 to 

KDM4B have not been described, although the 

in vivo pharmacokinetics and ADME properties 

of this compound are extremely favorable.212  

Additionally, this data shows that as 

hypothesized, the activity of KDM4B and 

KDM1A are negatively correlated; and that 

inhibiting KDM1A via GSK-LSD1 gives an 

opposing effect on inflammatory cytokine 

production compared to KDM4B inhibition using 

ML324. 

 

 

 

 
Figure 3.2. ML324 demonstrates inhibitory 
activity towards KDM4B and causes dose 
dependent immunosuppression. The KDM4A-E 
protein crystal structures were subjected to 
unbiased docking of ML324 where the top 30 
conformers in the active site were used for 
analysis (A). KDM4A and C had no poses of 
ML324 dock into the active site of these enzymes, 
therefore this data is not displayed. Inhibition of 
KDM4B was assessed using an 11-point IC50 
determination using the histone demethylase 
AlphaScreen (PerkinElmer) assay in triplicate 
resulting in an IC50 of 4.9 μM (B). The EC50 for 
immunosuppression using ML324 was determined 
to be 31 μM by measuring supernatant IL-6 protein 
following a 24h Aa-LPS stimulation with variable 
concentrations of ML324 in primary BMDM cells 
(C). Cells were treated for 1h with each indicated 
concentration of ML324, followed by Aa-LPS 
challenge for 24h. The data were normalized as a 
percentage of the maximal IL-6 response in 
response to LPS. Data for all panels are 
represented as mean ± SD. N=4 
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3.2.d. KDM4B inhibition using ML324 results in a significant reduction in 

osteoclastogenesis. 

After 5 days of priming bone marrow-derived hematopoietic stem cells into pre-osteoclasts 

using macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear 

factor kappa β ligand (RANK-L), osteoclastogenesis was significantly increased in cells 

treated with RANK-L or Aa-LPS for 3 days compared to PBS treated cells, and this effect 

was lost in cells pre-treated with ML324 (10 μM). TRAP+, multinucleated cells were 

significantly increased in both cells treated with Aa-LPS as well as RANK-L compared to 

PBS treated control cells. By contrast, in cells that were pre-treated with ML324, there was 

no significant difference in osteoclast formation compared to control groups, regardless of 

 
Figure 3.3. KDM4B inhibition significantly reduces the A.a LPS-induced immune response in primary 
macrophages. Male (A) and female (B) murine bone marrow derived macrophages were pre-treated for 1h with the 
selective KDM4B inhibitor, ML324, a family-wide KDM4 inhibitor, JIB-04, and a KDM1A inhibitor, GSK-LSD1 or DMSO 
vehicle. Following drug treatment, cells were challenged with Aa-LPS for 8 and 24h, where gene expression and 
supernatant protein concentration were measured via rt-qPCR relative to GAPDH and ELISA relative to a standard 
curve. Data was normalized as a percentage of the maximal response (red) in each group for display. (C,D). N=4 per 
experiment, data is representative of 3 experiments. Data are presented as mean ± SD. Statistical significance was 
determined using a repeated measures ANOVA with multiple comparisons. ***p<0.001, **p<0.01, *p<0.05 compared to 
same sex LPS controls. N=4 per experiment, data is representative of 3 experiments. 
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whether cells were stimulated with Aa-LPS or RANK-L. Additionally, formed osteoclasts 

appeared smaller, and had less intense TRAP staining (Figure 3.4).  

3.2.e. Immunosuppressive effects of KDM4B inhibition act indirectly, through 

demethylation of H3K4 by KDM1A.  

To understand the mechanism for KDM4B inhibition induced immunosuppression, we 

used the RAW264.7 macrophage cell line, which is the best representation of primary  

bone marrow derived macrophages.227 Interestingly, when cycloheximide (5 μg/mL) was 

co-administered with ML324 (50 μM) prior to Aa-LPS challenge in these cells, the ability 

 
Figure 3.4. KDM4B inhibition via ML324 prevents osteoclast formation induced by either A.a LPS or RANK-L. 
Murine bone marrow was differentiated into osteoclasts by supplementation of the hematopoietic compartment with 
M-CSF for 3 days and RANK-L + M-CSF for 2 days, where cells were rinsed and pre-treated for 1h with M-CSF and 
ML324 or DMSO vehicle followed by supplementation with RANK-L or A.a LPS. After 72 hours, cells were fixed and 
stained for tartrate resistant acid phosphatase. 3 representative images were taken of each well, and TRAP+, 
multinucleated cells were counted in each field. 10x representative images of M1 and F2 are displayed. (A) Each 
mouse (M1, M2 = male; F1, F2 = female) independently showed a significant increase in osteoclast formation in 
response to LPS or RANK-L alone compared to PBS controls, but no significant difference in osteoclast formation 
was observed between PBS and ML324 + LPS or ML324 + RANK-L treated cells (B). Male cells exhibit increased 
osteoclastogenesis in response to RANK-L or A.a LPS compared to female cells. (C) Data is presented as the mean 
number of osteoclasts in each field ± SD. Statistical significance was determined using a paired Friedman test or 
two-way ANOVA with multiple comparisons at an α = 0.05. *p<0.05, **p<0.01 n = 3 fields per well, 2 wells per group, 
per mouse.  
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of ML324 to reduce LPS-induced cytokine production is lost (Figure 3.5A). Because 

cycloheximide 

inhibits eukaryotic 

translation, this data 

indicates that ML324-

induced 

immunosuppression 

relies on new protein 

synthesis, and that 

the reduced cytokine  

response to LPS is 

not a direct effect of 

KDM4B inhibition, but 

rather requires 

intracellular 

signaling. 

To determine if the 

cellular response to 

LPS altered KDM4B 

expression levels, we 

used a bioinformatics 

database (NCBI 

Gene Expression 

 
Figure 3.5. KDM4B inhibition mediated immunosuppressive effect is indirect, 
requiring new protein synthesis and increased KDM1A activity. New protein 
synthesis is required for the immunosuppressive effects of ML324 on the LPS-induced 
immune response (A). Cells were pre-treated with cycloheximide (5ug/mL) for 4 h with 
or without ML324 (50 μM) followed by Aa-LPS challenge (100ng/mL) for 16h where 
RNA was collected and analyzed using qRT-PCR to measure IL-6 expression 
compared to GAPDH as an endogenous control. Statistical significance was 
determined using a repeated measures ANOVA with multiple comparisons. 
Demethylation at H3K4 is significantly decreased in cells following LPS treatment, but 
the effect is reversed upon addition of ML324. (B) ML324 treatment causes a 
significant increase in H3K9me3 but not KDM4B, and these marks are not affected by 
LPS treatment alone. (C) RAW264.7 cells were pre-treated for 1h with ML324 followed 
by Aa-LPS challenge for 24h where H3K4 mono-methylation was measured in fixed 
cells using immunofluorescent antibody to H3K4me at 10x. KDM1A activity is 
significantly decreased following Aa-LPS treatment alone, but in combination with 
ML324 pretreatment, KDM1A activity is increased. n = 3 wells, 48 fields/well, **p<0.01. 
Data are represented as mean ± SD. Statistical significance was determined using 
one-way ANOVA with multiple comparisons where the outcome was log transformed. 
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Omnibus (GEO) profiles). There was no change in mRNA expression of KDM4B in 

response to LPS, suggesting that the activity of KDM4B as opposed to its expression level 

drives the immune response to LPS. Further, KDM4A, KDM4C, and KDM4D also show 

no significant differences in expression in response to LPS. To confirm that the activity of 

 
Figure 3.7. KDM4B inhibition reduces A.a.-induced inflammation in vitro and modifies calvarial bone loss 
pattern in vivo. ML324 reduced fixed A.a induced inflammatory cytokine production in bone marrow derived 
macrophages. (A) 12-week old C57BL/6 were injected subcutaneously and supraperiosteally at the mid-sagittal suture 
daily for 5d with either A.a alone, A.a + drug or DMSO as a negative control. Mice were sacrificed on day 6, where 
calvarial tissue was homogenized and protein isolated for western blot analysis of H3K9me3 compared to GAPDH as 
internal control. (B) Calvarial bones were dissected and micro-computed tomography was run using a Scanco40 
instrument at a 15μm resolution.(C) A region of interest was defined as a 150 mm3 cylinder centered at the bregma 
point (intersection of the frontal and parietal bones at the midline). Total bone volume at this area was quantified using 
AnalyzePro software. (D) Significance was determined using one-way ANOVA with multiple comparisons.  
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KDM4B was altered in response to LPS, the histone methylation marks H3K4me and 

H3K9me3 were monitored by immunofluorescence following ML324 pre-treatment (50 

μM) and Aa-LPS challenge. Concurrent with the absence of change in mRNA levels of 

KDM4B, there was no significant difference in KDM4B protein levels between groups 

(Figure 3.6). In contrast, the activity of KDM4B was decreased following ML324 pre-

treatment as evidenced by a significant increase in H3K9me3. Interestingly, there was not 

a significant difference between control and LPS treated cells (Figure 3.5B). Conversely, 

H3K4me levels significantly decreased following A.a.LPS challenge, but ML324 pre-

treatment not only reversed this effect, but caused a significant increase in H3K4me levels 

compared to PBS controls (Figure 3.5B). These data together suggest that H3K4 

methylation is differentially regulated by inflammatory stimuli in macrophages, and this 

activity can be modulated indirectly through pharmacological inhibition of KDM4B. 

3.2.f. KDM4B inhibition using ML324 and Experimental Inhibitor 36 Results in 

Altered A.a-Induced Bone Loss 

Phenotype  

To recapitulate the anti-inflammatory 

effects of ML324 treatment in vitro, 

we used a 5-day  murine calvarial 

model of periodontal disease using 

Aggregatibacter 

actinomycetemcomitans induced 

bone loss to probe the in vivo efficacy 

of KDM4B inhibition. First, we verified 

 
Figure 3.6. KDM4 family gene expression is unaltered in 
response to LPS treatment. KDM4A-D mRNA expression in 
primary bone marrow derived macrophages following 
lipopolysaccharide stimulation for 24h. Data were obtained from 
NCBI Gene Expression Omnibus profiles 
(http://www.ncbi.nlm.nih.gov/geoprofiles; Reporter: GPL1261; 
Record: GDS5196) 

 

http://www.ncbi.nlm.nih.gov/geoprofiles;
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that ML324 was able to reduce fixed A.a induced cytokine production, as all previous 

experimentation was done using isolated LPS from A.a. We found that ML324 significantly 

reduced A.a-induced inflammatory cytokine production to the same degree that it was  

 

Figure 3.8. ML324 alters macrophage polarization. KDM4B inhibition alters macrophage metabolism in response 
to A.a LPS. Primary BMDMs were isolated and differentiated as previously described and were pre-treated with 
ML324 at 50uM for 1 hour followed by A.a LPS (100ng/mL). 24 hours later, extracellular flux was analyzed using a 
seahorse XFe96 instrument and following metabolic analysis, cells were incubated with phalloidin 488 and DAPI. 
Representative images were acquired using the Hermes Wiscan system at 10x for morphological analysis. N=4. 
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previously shown to inhibit A.a LPS-induced inflammatory cytokine production. (Figure 

3.7A) Mice were injected subcutaneously supraperiosteal to the calvarial bone with both 

fixed whole A.a or PBS control and ML324, 36 or DMSO control for 5 days, and calvariae 

and tissues overlying the calvarial bone were collected following sacrifice. We found that 

in ML324 treated animals, H3K9me3 protein abundance was higher on average although 

insignificant, suggesting the effect was on target and that KDM4B was indeed inhibited in 

vivo. (Figure 3.7A) Unfortunately, we didn’t observe this effect with the experimental 

inhibitor we tested, 36. This could be due to absorbance or metabolism issues, as neither 

of these things were tested in our experimentation. Using micro-computed tomography, 

we analyzed total bone volume for a specific region of interest that spans 10mm x 10mm 

centered over the mid sagittal suture between the anterior and posterior calvarial bone. 

(Figure 3.7C) Unfortunately, there was a highly variable and not robust enough response 

to A.a treatment to discern any significant differences in our treatment groups. (Figure 

3.7D) We did, however, observe a very consistently high average bone volume within our 

region of interest for both ML324 and 36 treated animals. (Figure 3.7B) Overall, these 

data suggest that KDM4B inhibition may serve as a useful therapeutic intervention for 

prevention of periopathogen-induced bone resorption in vivo, but further experimentation 

is needed. 

3.2.g. ML324 alters A.a LPS-induced macrophage polarization 

As previously mentioned, literature suggests that KDM4B may be involved in macrophage 

polarization,46, 228-229 therefore we wanted to test whether ML324-induced 

immunosuppression was due to M2 polarization or de-differentiation of macrophages. 

Primary BMDMs were isolated and differentiated as previously described and were pre-
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treated with ML324 at 50 μM for 1 hour followed by A.a LPS (100ng/mL). 24 hours later, 

mRNA was isolated and IL-10 expression was quantified using qRT-PCR and ML324 pre-

treated cells were found to have significantly higher IL-10 expression. (Figure 3.8A) To 

determine if macrophages were M2 polarized, Extracellular flux was analyzed using a 

seahorse XFe96 instrument as previously described.230 We found that LPS treated cells 

are more glycolytic than PBS control cells, and ML324 pre-treatment rescued this effect. 

(Figure 3.8B) Additionally, cells treated with LPS, with or without ML324 exhibit a reduced 

spare respiratory capacity compared to PBS control treated cells. (Figure 3.8C) These 

data suggest that ML324 pre-treatment alters macrophage metabolism with an overall 

reduction in metabolic activity. To further probe macrophage polarization, we fluorescently 

stained both the cytoplasm and nuclei of cells to visualize cell morphology, as clear 

morphological differences are known to exist between M0 (un- or de- differentiated 

macrophages), M1 (pro-inflammatory) or M2 (anti-inflammatory) macrophages.231 We 

found that LPS treated macrophages exhibited an M1 phenotype, and ML324 pre-

treatment was able to rescue this effect, appearing very similar to PBS control treated 

cells. (Figure 3.8D) 

Chapter 4: Discovery of anti-periodontitis biphenyl-carboxamido-benzoic acids via 

Phenotypic Screening Guided QSAR. 

4.1. Rationale and Hypothesis 

Previous data from the project laboratory implicates KDM4B as a regulatory 

enzyme in periodontal disease progression through its role in suppressing both 

osteoclastogenesis and inflammatory cytokine production in primary macrophages.232 The 

exacerbated immune response of the periodontally diseased host is well known in the 
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literature to be the source of the 

tissue damage and bone loss 

characteristic of the disease.50 Still, 

therapeutic development has been 

aimed towards local antimicrobials 

such as chlorhexidine (PerioChip), 

doxycycline (Periostat) and 

minocycline (Arestin). Nevertheless, 

these therapies provide a moderate 

clinical benefit at best,7 and require strict patient compliance with visits required as often 

as every three months, which is rarely covered by insurance premiums. While the 

microbial component of periodontal disease is indeed critical to disease pathogenesis,50, 

64, 233 these therapies are applied by clinicians following standard of care treatment – which 

is to remove plaque biofilms through scaling and root planning (SRP), effectively leaving 

little to no microbial load immediately following treatment.233 Disease recurrence is driven 

rather by a continuation of immune activation and an inability for the periodontal wounds 

to heal.234-235 Given this information, one can imagine that a local immunosuppressive drug 

would afford some benefit, allowing the host immune system to resolve, wounds to heal, 

and ultimately preventing disease recurrence. The failure of previously explored anti-

inflammatory agents is likely due to their surface level targets such as secreted effector 

proteins that do not cause heritable changes beyond single cell divisions. Epigenetic 

therapeutics offer an advantage in this regard as they seek to reverse detrimental 

environmental changes that have the ability to propagate harmful disease processes. 

 

Figure 4.1. Compounds used to physicochemically cluster 
screening data. Compounds 4,6 and 7 are previously published 
KDM4B inhibitors. Compounds 8 is a KDM1A inhibitor. 
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In 2012, the NIH molecular libraries program reported the discovery of N-(3-

(dimethyamino)propyl-4-(8-hydroxyquinolin-6-yl)benzamide(1), a small molecule inhibitor 

specifically targeting KDM4E.212 While this compound was shown to inhibit viral replication 

of herpes simplex virus and cytomegalovirus, and later shown to induce depression in 

mice at high doses,236 the compound was not probed for additional activity. We recently 

reported that ML324, 8, is active toward a closely related enzyme, KDM4B, and has 

immunosuppressive action in murine macrophages.232 While this compound exhibits good 

cell permeability, it is highly insoluble at effective doses and requires a 14-step synthesis 

 

Figure 4.2. Consensus orthogonal in silico docking strategy yielded novel and commercially available 
immunosuppressive compounds. The public ZINC compound database was filtered and refined prior to docking to 
increase computational efficiency as well as after docking to eliminate PAINS and false positives/negatives (A). 
Compounds that ranked in the top 70% of both docks were physicochemically clustered and the cluster containing 
ML324 and JIB-04 was sorted based on binding affinity(B). The top 8 compounds (C) were purchased from Vitas 
laboratories. Compounds overlay space taken by natural ligands (D) 2-oxoglutarate (green), H3K9me3 (teal), KDM4B 
(pink, PDB:4LXL), top 8 hits (orange), ML324 (red). 

A

B

C

D



 
78 

 

for development of new derivatives.212 Because of this, we sought to determine novel 

scaffolds with the potential to inhibit KDM4B, cause immunosuppressive effects, and 

potentially serve as optimizable compounds for localized treatment of periodontal disease.  

The current study utilized a multidisciplinary approach that combined consensus 

computational docking data with phenotypic screens using primary murine macrophages  

 
Figure 4.3. Phenotypic screening data for compounds identified by in silico docking suggests compound 16 is 
a promising hit for further development. Several initial hits caused suppressed the immune response to A.a LPS in 
vitro. (A) n=2 Compound 16 was further evaluated for dose-dependent immunosuppression, N = 4 (B) as well as for 
KDM4B inhibitory activity through measurement of H3K9me3 using fluorescent immunostaining, N = 3. (C,D) *p<0.05, 
**p<0.01, ***p<0.001 compared to DMSO control via one-way ANOVA with multiple comparisons.  
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to identify a derivatizable scaffold with KDM4B inhibitory action. We further used this 

strategy to optimize our lead compounds and ultimately identified compound 46 as a 

Table 4.1. Novel compounds synthesized. 

 

Compound Scaffold R1 R2 R3 R4 R5 R6 R7 

16 1 H COOH H H H H H 

23 1 H COOH H H H CH3 H 

24 1 H COOH H F H H H 

25 1 H COOH H H H F H 

26 1 H COOH H H F H H 

27 1 H H COOH H H H H 

28 1 H H H COOH H H H 

29 2 H COOH H F H H H 

30 2 H COOH H H F H H 

31 3 H H COOH H H H H 

32 3 H H COOH H H H CH3 

33 3 H H COOH H F H H 

34 3 H H COOH H H H H 

35 3 H H H COOH H H H 

36 3 CH3 H COOH H H H CH3 

37 3 O-Me H COOH H H H H 

38 2 H COOH H H F CH3 H 

39 2 H COOH H H H F H 

40 3 H H COOH H H H CH3 

41 3 H H COOH H H H H 

42 1 CH3 COOH H F H H H 

43 3 CH3 H COOH H F H H 

44 3 H O-Me COOH H H H CH3 

45 2 CH3 COOH H H H CH3 H 

46 2 H COOH H H H H H 
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potent immunosuppressive compound that could be used to treat periodontal disease  

4.2. Results 

4.2.a. Consensus computational docking followed by physicochemical clustering 

yields commercially available immunosuppressive compounds 

The ZINC database of molecules237 was filtered to retrieve compounds that were proposed 

to have in vitro activity as well as compounds that could be purchased. This library was 

further filtered to remove any potential pan-assay interference compounds (PAINS)238 as 

 

Scheme 4.1. Synthetic method for development of biphenyl carboxamido benzoic acids. 
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well as compounds with Lipinski violations, cytotoxic or unfavorable features239 (Figure  

4.2A).  The remaining compounds were subjected to high throughput screening for activity 

towards the KDM4B active site using two separate software programs (DOCK6.5, 

Molecular Operating Environment). The consensus activity data240 was consolidated into  

8,000 top compounds that were clustered based on similarity of their physicochemical 

properties241 (Figure 4.2B) and the top compounds that were physicochemically similar to 

 

Figure 4.4. Derivatives of 16 cause immunosuppression and were used to develop a binary QSAR model. The 

phenotypic immunosuppressive screen data (A) was converted into binary data using statistical significance (P<0.05) as 

a cutoff. A contingency analysis was run on the tested compounds to identify the physicochemical descriptors that were 

most highly correlated with activity. The top 12 descriptors from this analysis were used (Table 4.2) to map a quantitative 

structure activity relationship using Molecular Operating Environment software that had accuracy to predict actives of 

100% and inactives of 100% (B). 30 compounds were predicted to have activity with >70% confidence, and this subset 

included our current lead compound 42 (red). (C) *p<0.05, **p<0.01, ****p<0.0001 compared to DMSO control via one-

way ANOVA with multiple comparisons. 
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previously identified KDM4B inhibitors212, 242-243 were purchased for in vitro evaluation 

(Figure 4.2C,D).  

4.2.b. 2-([1,1'-biphenyl]-4-carboxamido)benzoic acid causes dose-dependent 

immunosuppression and increased H3K9me3 

Several compounds from this initial clustered data set were active and suppressed 

the immune response to A.a LPS at 50 μM (Figure 4.3A). We decided to move forward 

with 11 because of its three membered structure and multiple routes of straight forward 

combinatorial chemistry-based synthesis. Before investing significant time in development 

of derivatives of 12, we confirmed a dose-dependent immunosuppressive response to A.a 

LPS (Figure 4.3B) with a concurrent increase in H3K9me3 (4.3C, D), suggesting the effect 

was on target.  

4.2.c. Development of efficient synthetic methods for 2-([1,1'-biphenyl]-4-

carboxamido)benzoic acid derivatives 

Sixteen derivates (Table 4.1; 13-28) were synthesized using a 5-step microwave 

assisted synthesis from derivatized bromobenzenes, phenyltrifluorborates and 2-amino 

benzoates (Scheme 4.1). Potential compounds were developed in silico, using 

commercially available and economical starting materials. This library was docked to the 

active site of KDM4B using consensus screening and hits were ranked based on binding 

affinity. Top derivatives predicted by consensus scores as well as easy to synthesize 

derivatives were synthesized. The first step of synthesis was a microwave assisted Suzuki 

coupling of a bromobenzene and trifluoroborate to yield a two-ringed ester. The second 
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step was microwave-assisted saponification to cleave the ester into a reactive carboxylic 

acid. The third step was further 

activated the carbonyl into a 

carbonyl chloride followed by 

addition of an aminobenzoate 

under basic conditions to yield the 

final three-membered ester. The 

resulting ester was cleaved in the 

final step using the same 

microwave-assisted saponification 

reaction to increase solubility of the 

final compounds.  

4.2.d. 2-([1,1'-biphenyl]-4-carboxamido)benzoic acid derivatives prevent 

inflammatory cytokine production in primary macrophages stimulated with A.a LPS  

Derivatives were monitored for in vitro immunosuppressive activity using the 

previously described periodontal disease inflammation model232 using primary murine 

macrophages. 22, 24, 32 caused a significantly reduced secretion of the pro-inflammatory 

cytokine, IL-6, in response to A.a LPS. (Figure 4.4A) resulting in an overall hit rate of 20%. 

Compounds that significantly reduced inflammatory cytokine production compared to 

DMSO controls as determined by one-way ANOVA with multiple comparisons were set as 

actives while those that did not were set as inactives. These data were consolidated into 

a binary quantitative structure activity relationship, where descriptors were chosen based 

on contingency analysis (Table 4.2). Overall the model had an accuracy of 100% with a 

Table 4.2. QSAR model descriptors and classes. 
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60% chance value. This model had an 100% accuracy to predict active hits  with a 28% 

chance value and a 100% accuracy to predict inactive compounds with a 72% chance 

value (Figure 4.4B). The in silico library of derivatives was fit to this model and yielded 30 

potential hits with greater than 70% chance of being active, one of which was one of our 

current leads, compound 42. (Figure 4.4C) More importantly, several hits were eliminated 

from the pool of potential hits with high confidence. 

4.2.e. A binary quantitative structure activity relationship guided synthesis of potent 

immunosuppressors using phenotypic screening data 

Our second generation (34-42) of inhibitors was synthesized (Table 4.1) and 

compound 35, 38-40 and 42 significantly reduced the secretion of IL-6 in response to A.a 

LPS in vitro. (Figure 4.4) The current lead compounds 44 and 46 were further evaluated 

 
Figure 4.5. Potent immunosuppressive compounds do not inhibit KDM4B in biochemical assays, but show 
functional suppression of KDM4B activity in vitro. KDM4B activity was measured using an AlphaLISA® assay 
with experimental inhibitors 44 and 46, exhibiting an IC50 >100 μM.  (A) H3K9me3 (B) and H3K4me2 (C) protein 
abundance was quantified in RAW264.7 macrophages 24h following A.a LPS challenge. Cells were fluorescently 
stained and 36 images per well were captured using a Hermes Wiscan imaging system. Total fluorescence intensity 
was normalized to cell number and statistical significance was determined using a one-way ANOVA with multiple 
comparisons. N=3, 36 images per well. *p<0.05, **p<0.01, ***p<0.001. 
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because of their potent immunosuppressive action rivaling that of the control compound, 

1. Surprisingly, using an AlphaLISA® KDM4B assay, we found that these compounds had 

no inhibitory activity for KDM4B at concentrations as high as 100μM. (Figure 4.5A) On 

the other hand, when we measured histone methylation marks as functional readouts in 

response to inhibitor treatment in vitro, we found that 42 and 46 were able to significantly  

increase H3K9me3 protein expression in vitro. (Figure 4.5B. D) Interestingly, while ML324 

pre-treatment resulted in the expected decrease in H3K4me2, 16, 42 and 46 all caused a 

significant increase in this mark. (Figure 4.5C, D) This suggests that these inhibitors may 

target a similar enzyme with additional activity at H3K4me2 or may indirectly cause 

inhibition of KDM4B through a process that is poorly recapitulated in biochemical assays 

using recombinant protein.  

 

Chapter 5: General Discussion and Future Directions: 

5.1. General Discussion 

To date, there is limited mechanistic data concerning the epigenetic modulation of 

periodontal inflammation. A 2014 study by Meng et al. used a novel BET bromodomain 

inhibitor, JQ1, in an experimental periodontal disease model and found that a decrease in 

BRD4 recruitment led to a reduction in periodontal inflammation and subsequent bone 

loss.244  Importantly, there have been no studies that suggest that any of the histone 

demethylases play a direct role in the progression or persistence of periodontal disease, 

despite the fact that numerous links between the KDM4 family of epigenetic modifiers and 

inflammation have been published. The study described herein demonstrates that 

inhibition of KDM4B reduces the pro-inflammatory cytokine immune response to bacterial 
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lipopolysaccharide in macrophages. This effect occurs through new protein synthesis and 

a subsequent overactivation of KDM1A. In the absence of KDM4B, macrophages do not 

produce these inflammatory signals, and thus modulation of KDM4B activity could be 

utilized to locally suppress the immune response to plaque and microbial biofilms in PD 

patients for the resolution of inflammatory disease states.  

To determine whether KDM4B inhibition could be used as a therapeutic strategy 

to manage periodontal disease, we first demonstrated that the abundance of KDM4B 

protein is significantly increased in areas of inflammatory infiltrate marked by increased 

F4/80+ macrophage cells and increased tartrate resistant acid phosphatase (TRAP)+ 

osteoclastic cells following live A.a. subcutaneous injection into murine calvariae (Figure 

3.1A).245 The murine genome does not express KDM4E,246 leading us to believe that the 

ML324-induced immunomodulatory effect is entirely dependent on KDM4B. However, it is 

likely that ML324 would also interact with KDM4E when administered in humans. Thus, 

we sought to determine whether one or both of these enzymes were overproduced in 

periopathogen-activated immune cells using human clinical PD tissues. Our results 

demonstrate that the abundance of both KDM4B and KDM4E protein is significantly 

increased in the oral epithelium of patients with periodontal disease, compared to healthy 

controls. (Figure 3.1B).  

Based on computational studies, ML324 demonstrated promising selectivity for 

KDM4B (Figure 3.2A). Additionally, within the first 500 least energy docked poses, ML324 

did not enter the active site of either KDM4A or KDM4C. ML324 is a methyl derivative of 

the 8-hydroxyquinoline compounds developed as selective KDM4B inhibitors, yet thus far 

the drug has only been published as an inhibitor of KDM4E with an IC50 of 920 nM. The 

synthetic route used to produce JIB-04 is depicted in Scheme 3.1 and is described in 
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detail in the Experimental section. Herein we show that ML324 has additional inhibitory 

activity towards KDM4B, with an IC50 value of 4.9 μM (Figure 3.2B)247 and an EC50 value 

for its immunosuppressive action in vitro of 31.0 μM (Figure 3.2C). JIB-04 is a pan Jumonji 

domain demethylase inhibitor that inhibits KDM4B with an IC50 of 435 nM, but is a more 

potent inhibitor of the related demethylases JARID1A and KDM4E. Another KDM4B 

inhibitor, NSC636819, has been identified with a substantially higher IC50 against KDM4B 

of 9.3 μM. These data identify ML324 as a potent inhibitor of KDM4B with moderate 

selectivity that can be used as a tool to study phenotypic changes resulting from KDM4B 

inhibition. 

We thus reasoned that the periodontal immune response might be attenuated in 

the absence of KDM4B activity. Macrophages have been established as the primary 

mediator of the acute PD inflammatory response.248-250 For this reason, murine bone 

marrow derived macrophages (BMDMs) have been utilized extensively to model oral 

inflammatory responses. The pro-inflammatory cytokines TNF-α and IL-6 are classically 

up regulated in gingival connective tissues of PD patients, 36 and these cytokines are 

secreted from periopathogen activated macrophages through toll like receptor (TLR) 

signaling.225 Lipopolysaccharide (LPS) is a predominate surface antigen that activates this 

pathway; 251-252 therefore Aa-LPS, a well characterized periopathogen251-252 was used to 

simulate the immune challenge present in PD. We anticipate that KDM4B inhibition will be 

useful clinically following standard of care treatment (scaling and root planing (SRP)), 

where cells are primed for responding to inflammatory stimuli but are temporarily halted 

due to the elimination of the plaque biofilm. Introduction of an adjuvant therapy directly 

after SRP allows for modulation of the host immune response that can prevent future 

episodes of hyper-inflammation that drives tissue damage and bone loss. Since most 
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patients resume building biofilms back almost immediately after clinical intervention, we 

felt that a 1 hour pre-treatment would recapitulate the clinical setting most likely 

encountered by PD patients. Our results show that ML324-induced inhibition of KDM4B 

significantly suppresses the inflammatory response to bacterial LPS (Figure 3.3). TNF-α 

mRNA at 8h after Aa-LPS challenge was the only time point tested that did not produce a 

statistically significant effect, and this was consistent between both male and female cells 

(Figure 3.3). This suggests that TNF-α and IL-6 are epigenetically regulated differently 

due to the differences seen between groups in these cytokines.  

An additional component of the pathogenesis of periodontal disease is the 

imbalance in osteoimmunological mediators, resulting in a net loss of alveolar bone. 

KDM4B was recently shown to drive mesenchymal stem cells towards an osteogenic 

lineage preferentially over adipogenesis,253 but it is unknown how KDM4B regulates 

osteoclastic cell types. Because we have seen a decrease in inflammatory mediators 

required for endogenous osteoclastogenesis, we hypothesized that inhibition of KDM4B 

would also reduce osteoclastogenesis. Our data demonstrates that osteoclastogenesis 

proceeds normally with supplementation of either Aa-LPS or RANK-L, but when KDM4B 

is inhibited in pre-osteoclasts using ML324, neither of these additives induce significant 

osteoclast formation compared to vehicle control (Figure 3.4). This effect is seen in cells 

from both sexes, although there is a significantly higher number of osteoclasts formed in 

male cells compared to female cells, consistent with previous literature254 (Figure 3.4C). 

The mechanism by which KDM4B inhibition promotes immunosuppression is 

unknown. A study by Whetstine et al. demonstrated that KDM4B is structurally distinct 

from its other family members, and has the lowest demethylase activity of the KDM4 

family, for reasons that are not clear.255  KDM4B has also been recognized for its ability to 
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demethylate non-histone proteins, many of which are transcriptional repressors.256 We 

used the NCBI Gene Expression Omnibus databank to determine the differences in 

expression of the KDM4 family of enzymes following lipopolysaccharide treatment in 

primary BMDMs. We found that the expression level of these enzymes doesn’t reflect their 

activity, as there are no significant differences in the expression of any KDM4 family gene 

between LPS treated cells and vehicle treated cells (Figure 3.6). Therefore, we probed 

methylation marks rather than expression of KDM4B itself to determine the mechanism of 

action of ML324. The RAW264.7 macrophage cell line is the best representation of 

primary bone marrow derived macrophages,227 but exhibit increased resiliency for use with 

glass plates for fluorescent imaging and highly cytotoxic chemicals such as cycloheximide. 

Herein we used immunofluorescent staining for methylation marks as well as 

cycloheximide treatment to show that KDM4B-induced immunosuppression acts via an 

indirect mechanism.257 After ML324 pre-treatment and Aa-LPS challenge in the presence 

of cycloheximide, the immunosuppressive effects of ML324 are completely abolished 

(Figure 3.5A). Additionally, it appears that when ML324 is added, even more IL-6 and 

TNF-α are being transcribed in response to Aa-LPS (Figure 3.5A). We postulate that 

because the cells are not able to effectively propagate intra- and inter-cellular signaling 

events, the transcripts are aberrantly abundant. Although the immunosuppressive activity 

of KDM4B inhibition requires new protein synthesis, an epigenetic mechanism is still at 

play, as evidenced by the increase in H3K9me3 and H3K4me levels that are reversed 

when KDM4B is inhibited (Figure 3.5B, C).  

We were able to recapitulate our in vitro data in vivo using a murine calvarial model 

of periodontal disease. The calvarial model used is superior to other methods to simulate 



 
90 

 

PD: the ligature induced periodontal disease model is too acute for drug studies, while the 

alveolar LPS injection model is not as robust and has unavoidable experimentalist 

variability. Correlating with decreased osteoclastogenesis, we saw a decrease in bone 

loss following A.a injection with both ML324 and E3ii treatment as well as an increase 

between PBS vehicle and A.a treated mice. Tissues overlying the injection site were found 

to have increased amounts of H3K9me3 in ML324 treated animals, but this wasn’t affected 

by A.a injection alone, as was previously seen in vitro.  

These data together demonstrate that newly synthesized protein signals KDM1A 

following KDM4B inhibition, resulting in reduced transcriptional processing of pro-

inflammatory cytokines as well as reduced osteoclast formation.  This translates to 

reduced bone loss in vivo, which suggests that KDM4B inhibition could be a viable 

therapeutic option for treating periodontal disease induced bone loss. 

Drug discovery in the field of periodontics currently lacks momentum, and the 

minimal drug discovery that does go on frequently recycles drugs used for other purposes 

such as NSAIDs and antibiotics. We sought to utilize the well-established 

interconnectedness of histone 3 lysine 9 methylation with the immune system to develop 

drugs that could prevent the aberrant immune response that drives periodontal damage.  

ML324 was originally published as a KDM4E inhibitor,212 and therefore exhibits 

poor selectivity. This compound also suffers from extremely poor solubility. To enhance 

both of these properties, we utilized an in silico docking approach to identify several hit 

compounds for optimization. Our strategy utilized the consensus hits between multiple 

docking algorithms within two different software programs (DOCK6.5 flexible dock and 

Molecular Operating Environment rigid receptor dock) to eliminate potential false 
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negatives. Prior to docking, we selected the ZINC library containing compounds with 

predicted in vitro activity that were also available for sale. We filtered this compound library 

by eliminating compounds that were not drug-like following Lipinski’s rules, had many 

rotatable bonds and thus, had predicted cytotoxicity, and compounds that were not easy 

to synthesize in a high throughput manner (Figure 4.1). This refined library was docked 

into the active site of KDM4B and hits that ranked highly (>70th percentile) within both 

programs were subjected to physicochemical clustering.220 We generated a set of 

OpenBabel descriptors for each compound and clustered them based on similarity to 

eachother as well as similarity to known KDM4B inhibitors (ML324212 1, JIB-04242 2 and 

NSC636819243 3). We selected the smallest grouping that contained all three of these 

inhibitors and made sure that this grouping did not contain the control compound, a 

KDM1A inhibitor. (Figure 4.1)  

We screened the purchased hits using a previously published232 periodontal 

disease immunosuppression model using primary murine macrophages challenged with 

Aggregatebacter actinomycetemcomitans lipopolysaccharide for 24 hours following 1 hour 

pre-treatment at 50 μM with each compound. It is of critical importance in these 

experiments to use primary cells from normal mice as KDM4B has been established as a 

therapeutic target for anti-cancer agents.243, 258 Our experiments yielded several potential 

hits from our initial screen of several different chemotypes including anti-anxiolytic 

cinazepam259 13 and anti-tuberculosis drug aconiazide260 14. We ultimately selected 2-

([1,1'-biphenyl]-4-carboxamido)benzoic acid 16 due to its potency, solubility, ease of 

derivatization as well as ease of overall synthesis. We divided the scaffold into three units, 

each containing a benzene ring available for derivatization. We generated a combinatorial 
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library in silico based on commercially available and economical starting materials. Our 

initial library was subjected to consensus docking to prioritize our synthetic efforts. Despite 

our awareness of the power in using this tool, we ultimately synthesized both compounds 

with high binding affinity as well as compounds that we were able to synthesize efficiently. 

For example, the parent scaffold (scaffold 1) had a simplified synthetic scheme because 

of the purchasability of a two ringed starting material, eliminating the bulk of the synthetic 

difficulty. 

The Suzuki coupling reaction resulted in homocoupling of the bromobenzene 

starting material, which had been previously reported.261 Additionally, the third step 

sometimes generated an anyhydride product for selected diphenyl carboxylic acids. We 

hypothesize that the nucleophilic amine starting material was stabilized by the carboxylic 

acid hydroxy group, reducing its nucleophilicity and hydrophilicity making both the reaction 

and purification extremely difficult. Because of this, several hits were synthesized based 

on our ability to purchase starting materials that eliminated steps in our method (biphenyl 

carboxylic acids 19, eliminating the Suzuki coupling and ester cleavage reactions) as well 

as compounds that were very reactive or could be used in heavy excess due to the high 

yield of the previous step.  

Our synthetic method (Scheme 4.1) was relatively simple and utilized microwave assisted 

reactions to reduce the total time for synthesis. Purification of the three-ringed product 22 

from the amine starting material 21 proved unexpectedly difficult, likely due to strong 

hydrogen bonding between the amine hydrogen and the lone pairs of the adjacent acetate 

oxygen. For this reason, reactions were crystallized rather than purified by column 

chromatography whenever possible. In the second step, we found that lyophilization of the 
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starting material 21 as well as removing the excess oxalyl chloride prior to adding the 

nucleophilic amine 21 were critical for the success of this step. To do this more efficiently, 

we used dry DCE rather than DCM as was previously published,224 due to its higher boiling 

point. At this point, all reactions were bright yellow in color. For the next step we pre-stirred 

triethylamine with the amine 21, and this solution was added via cannula transfer to the 

reaction under nitrogen. When using lower equivalents of TEA the reaction did not 

proceed, likely due to strong hydrogen bonding between the amine hydrogen and the lone 

pairs of the adjacent acetate oxygen which decreased the nucleophilicity of the amine. 

When successful, the reaction proceeded almost instantaneously, with a sharp color 

change and white gas occurring in almost every reaction. Unfortunately, the final step was 

critical to the solubility of our final compounds. Thus, the ester 22 of each drug could not 

be considered for in vitro testing due to poor solubility. Purity of our final compounds was 

confirmed using UPLC, and compounds were characterized by NMR. Final compounds 

were only utilized for biological evaluation if purity was >95% by UPLC. 

We utilized the immunosuppressive action (Figure 4.4A) of the first 16 (16, 23-37) 

compounds synthesized to build a quantitative structure activity relationship (Figure 4.4B) 

utilizing 11 descriptors. We chose to use contingency analysis for selection of descriptors 

so that our methodology would be reproducible. We had a 20% hit rate with a 100% 

probability to predict negative hits but only a 88% probability to predict positive hits. This 

model was used to guide synthesis of 9 more compounds (38-46), several of which 

showed a significantly higher efficacy than the first series of inhibitors (Figure 4.4A), with 

a hit rate within our second generation of 56% yielding an overall hit rate of 29%. We 

tested our two final best compounds as predicted by docking, QSAR and phenotypic 
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screening (44, 46) for KDM4B inhibitory action and surprisingly found that they exhibited 

IC50 values >100 μM.  

Conclusion 

ML324 is an effective inhibitor of KDM4B, which acts through binding to KDM4B 

and initiating de novo protein synthesis, subsequent KDM1A activation followed by H3K4 

demethylation. This results in a reduced cytokine inflammatory response and decreased 

osteoclastogenesis in primary bone marrow cells. These data together provide a novel 

mechanism of immunomodulation through epigenetic modification, which can be used for 

further development of therapeutics for treatment of hyper-inflammatory disorders such as 

periodontal disease.  

We were able to use high-throughput computational chemical consensus screens 

coupled with in vitro phenotypic screening to identify novel compounds that cause 

immunosuppression coupled to epigenetic changes. We optimized these with our 

phenotypic screening data to identify multiple potent compounds. We conclude that novel 

scaffolds have been identified that could serve useful in treating periodontal disease 

through a unique epigenetic mechanism. 

5.2. Future Directions 

5.2.a. Further drug development 

This dissertation describes the identification of a novel scaffold for immunosuppressive 

drugs that could be used to treat hyper inflammatory disorders including periodontal 

disease. Additionally, this dissertation validated KDM4B as an epigenetic enzyme that 

produces immunosuppressive effects when inhibited in vitro and in vivo. Unfortunately, 

the drug discovery strategy utilized in this dissertation did not combine these two aims – 
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and our immunosuppressive compounds do not work through inhibition of KDM4B. Further 

drug discovery research should be conducted using enzymatic assay-based QSAR that 

correlates IC50 with structural characteristics rather than phenotypic immunosuppression 

which can be vague and off-target.  

5.2.b. Human samples 

While human tissues were stained immunohistochemically for KDM4B protein abundance 

from periodontally diseased and healthy tissues in this dissertation, no further human data 

was acquired. While there are obvious benefits associated with using a murine system to 

study periodontal disease such as cost, simplicity, sentience and complete genetic control, 

there are equally obvious limitations. For example, mice do not develop periodontal 

disease and are not naturally colonized with periodontal pathogens such as 

Porphyromonas gingivalis or Aggregatibacter actinomycetemcomitans. Because of this, it 

would be more clinically relevant to measure the efficacy of KDM4B inhibition to cause 

immunosuppression in human tissues or cells. Future studies should incorporate the use 

of either an immortalized human cell line or even a human macrophage cancer cell line 

such as KG-1 cells.  

5.2.c. Assay development 

As mentioned previously, the quantitative structure activity relationship that was 

developed through completion of this dissertation is binary and is based on statistically 

significant phenotypic immunosuppression data. While this type of screening produces 

clinically applicable inhibitors, the potential for development of drugs that are off-target is 

very high. This strategy was utilized due to the limited options available for biochemically 

assaying the enzymatic activity of KDM4B. The main strategy used currently is an 
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alphalisa or AlphaScreen assay which is costly and requires an advanced alpha count 

reading plate reader. Future work should focus on development of a more economical 

enzyme assay, or at the very least the growth of KDM4B protein in E. coli.  

5.2.d. CRISPR/Cas9 

While we feel confident that KDM4B inhibition presents a valid therapeutic strategy for 

treatment of inflammatory diseases through the data presented within this dissertation, 

genetic deletion of KDM4B would be a worthwhile endeavor in the multitude of cell types 

involved in periodontal disease pathogenesis. As drug discovery toward KDM4B inhibitors 

gains momentum and more potent inhibitors are developed, it is prudent to understand 

the systemic effects of deletion of KDM4B in both health and disease states. Several 

groups have successfully deleted KDM4B through the use of CRISPR/Cas9 technology, 

but it has yet to be done in macrophages or in an inflammatory setting. These studies 

would help determine whether KDM4B inhibition is feasible, the extent of compensatory 

mechanisms among the KDM4 enzyme family, and potential positive or negative feedback 

mechanisms that may come into play with long-term KDM4B inhibition therapy. 

5.2.e. Macrophage polarization 

Initial studies were conducted within this dissertation towards understanding the 

polarization of macrophages following KDM4B inhibition. Unfortunately, these studies 

were contradictory, and no definitive conclusions could be made. Macrophages treated 

with KDM4B inhibitors secrete less pro-inflammatory cytokines, increased IL-10, an anti-

inflammatory cytokine, do not morphologically look like M1 macrophages when stimulated 

with LPS, and have a metabolic profile consistent with depolarized M0 or M2 

macrophages. Previous literature suggests that other KDM enzymes regulate 
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macrophage polarization, therefore it is entirely possible that KDM4B is also involved in 

this switch that is seen in periodontal disease pathogenesis. Future work should clearly 

delineate whether KDM4B inhibition depolarizes or de-differentiates macrophages or if it 

induces M2 macrophage polarization. This could be done using cell sorting experiments 

or immunofluorescent staining of M1 and M2 macrophage markers. 

5.2.f. Optimization and expansion of calvarial model 

The in vivo experimentation conducted in this dissertation was unfortunately limited to 

male mice only. This decision was made based on the lack of differences seen between 

male and female cells in their inflammatory response to LPS and whole bacteria following 

KDM4B inhibition. Differences were observed in osteoclastogenesis between male and 

female cells in response to KDM4B inhibitors. These differences were seen with and 

without KDM4B inhibition, and previous literature has described differences between male 

and female osteoclastogenesis. While these facts validate the use of a single sex for 

preliminary experimentation, testing should be done in both male and female mice prior to 

translation to clinical studies. 

Additionally, the A.a induced bone loss observed in our experimentation was not robust 

enough to determine significant differences between groups. A pilot study should be 

conducted that includes a dose-response to fixed A.a and experiments should be 

repeated. The most potent immunosuppressor, compound 46, should also be tested in 

vivo. 

5.2.g. Additional Disease models 

Because the general idea of KDM4B inhibitors as therapeutics for periodontal disease is 

based on the concept of immunosuppression, it is conceivable that these compounds 
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could be used for various additional hyper-inflammatory diseases. For example, 

rheumatoid arthritis is a common degenerative disease driven by the immune response 

and affects more than 21% of the adult American population and would thus present a 

potential candidate disease that could be treated using KDM4B inhibitors. Additionally, as 

mentioned previously, periodontal disease has been linked to even more prevalent 

systemic diseases such as diabetes and obesity, for which an epigenetic mechanism 

underlying their interconnectedness has not been explored. A challenge with treatment of 

other diseases is the issue of systemic administration – in fact, the major appeal of 

epigenetic therapy for periodontal disease is the ability to provide local treatment directly 

in the oral cavity. Therefore, future work should focus on the potential effects of systemic 

KDM4B inhibitor administration. 

5.3. Impact on the field 

This project has several important implications that will make a significant impact across 

several fields, including periodontics, immunology and epigenetics. First, the regulation of 

periodontal disease by the epigenetic histone demethylase KDM4B was entirely unknown 

prior to completion of this dissertation. This project demonstrated that KDM4B plays a 

regulatory role in both perio-pathogen induced inflammation as well as bone loss. Prior to 

this study, host modulation therapy for treating periodontal disease through histone 

demethylase inhibition has yet to be translated into a pre-clinical model of the disease. 

This project resulted in a series of small molecule epigenetic modulating drugs and 

ultimately these compounds were tested in vivo. The synthetic methodology described in 

this dissertation has been optimized for development of additional inhibitors, to enable 

extension of this compound library efficiently in future studies. In addition to the novel 
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series of inhibitors that was developed, this project defined ML324 as a KDM4B inhibitor 

for the first time and extended the therapeutic potential for this drug to include reduction 

of inflammation and bone loss. Also, this project further confirmed the mutual exclusivity 

of the epigenetic enzymes KDM1A and KDM4B. The epigenetic landscape is extremely 

complex and yet to be completely understood; therefore, studies that elucidate interactions 

between epigenetic mechanisms are critically important. Overall, this project was able to 

bridge the gap in understanding between multiple fields. 
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