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Abstract 

M. ELIZABETH G. BURTON. Regulation of VCAM-1 expression by TGFt32 during 

formation of the epicardium. (Under the direction of STEVEN W. KUBALAK, Ph.D.) 

The normal formation of the epicardium, the outer cel/layer of the heart, is critical for 

subsequent development of the heart to proceed normally. Abnormalities in the epicardium lead 

to cardiac defects as shown in mice deficient in retinoid X receptor a (RXRa-/-), a model of 

congenital heart disease that exhibits many cardiac malformations including epicardial defects. 

The RXRa-/- epicardium is slower to form and once formed, it detaches from the myocardium. 

Previously an elevation of transforming growth factor ~2 (TGFf32) has been observed in RXRa-/­

hearts at midgestation and an alteration in vascular cell adhesion molecule 1 (VCAM-1) was 

found at E11.5. Based on these findings it was hypothesized that proper expression of VCAM-1 

is essential for normal cardiac morphogenesis and is regulated by TGF~2 and/or retinoid 

signaling. VCAM-1 is a transmembrane protein known to be involved in epicardial cell adhesion 

and has been reported to inhibit epithelial to mesenchymal transformation (EMT) of epicardial 

cells. In this study the expression of VCAM-1 was analyzed from E9.5-E13.5 in the wild type 

(WT) and RXRa-/- mice using real time quantitative PCR, immunohistochemistry and western 

blotting. At E11.S, VCAM-1 protein expression levels were similar to WT in the RXRa-/- mouse, 

but later (E12.S and E13.S) misexpression of VCAM-1 was found in the epicardium of RXRa-/­

mice. Specifically, VCAM-1 mRNA and protein were increased in the myocardium of the RXRa­

/- heart compared to the WT at E12.S and E13.5. Elevation ofVCAM-1 protein was also found 

in E13.5 epicardial explants from RXRu-/- embryos. To investigate possible involvement of 

TGFB2 in VCAM-1 regulation, E11.5 epicardial explants were treated with TGF~2 and the 

treatment was found to promote upregulation of VCAM-1 in the epicardial cells. Treatment of 

embryos in whole embryo culture with TGF~2 resulted in elevation of VCAM-1 and also caused 

xi 



epicardial detachment after 18 hours of treatment. RXRa and Smad4 were shown to bind to the 

mouse VCAM-1 promoter using ChiP analysis and the VCAM-1 promoter can be activated by 

TGF~2 treatment (shown through use of a luciferase expression plasmid containing the VCAM-

1 promoter). Together the findings show that VCAM-1 is elevated in the hearts of RXRa-/- mice 

and TGF~2 can regulate VCAM-1 expression in the embryonic heart, particularly in the 

epicardium. Elevated TGF~2 in the heart, such as that observed in the RXRa-/- mouse, can 

cause upregulation of VCAM-1 in the myocardium and epicardium. Upregulation of VCAM-1 

could decrease epicardial EMT, which is also observed in the RXRa. From our study we show 

that proper expression (levels and location) of VCAM-1 is essential for normal heart 

development and that misexpression of VCAM-1 can negatively affect formation of the heart. 
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Chapter 1: Review of Literature 

A. Congenital Heart Disease 

Congenital heart defects (CHDs) are the most common birth defect, affecting 

approximately 1 % of all live births. Presently, treatment of CHDs is limited to surgical 

and pharmaceutical intervention. Major CHDs are usually seen during the neonate 

period while some minor CHDs may not be found until adulthood making the prevalence 

of CHD likely much higher than reported. Currently there are few options to reduce the 

occurrence of CHD. Taking prenatal vitamins has been shown to reduce the occurrence 

as well as avoiding environmental exposure to risky medications, chemicals and certain 

illnesses (Jenkins et aI., 2007). Even with these precautions, CHDs are quite prevalent 

so other interventions are necessary to prevent their occurrence. 

Retinoid signaling is known to playa role in the development of the heart with too 

much or too little signaling resulting in heart defects. The effects of retinoid signaling on 

the developing heart have been shown in models such as that of the vitamin A 

deficiency (VAD) rat (Wilson and Warkany, 1949) and human birth defects that result 

from exposure to the drug Accutane (isotretinoin- Roche), a retinoid receptor ligand (de 

la Cruz et aI., 1984). The retinoic acid synthesizing enzyme retinaldehyde 

dehydrogenase 2 (RALDH2) is expressed in the epicardium of the heart indicating that 

retinoid signaling is important within the epicardium. In the mouse, loss of the retinoid X 

receptor alpha (RXRu) results in embryos displaying defects in all regions of the 

developing heart. Specifically, the RXRa-/- embryo displays hypoplastic endocardial 

cushions, thinning of the ventricular myocardium and detachment of the epicardium. 
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Dysfunction of the epicardium could cause common congenital abnormalities that are 

seen throughout the heart in the human population including coronary artery anomalies, 

septal and valve defects. Currently there are no reported epicardial-specific defects 

(loss of epicardium or bubbling of the epicardium) in the human congenital heart defect 

population. There are, however, rare reports of congenital absence of the pericardium 

(structure derived from the epicardium) (Abbas et aI., 2005). 

B. Cardiac Morphogenesis 

The heart is derived from cardiac progenitor cells that are found in the epiblast of 

the developing embryo (Martinsen, 2005). These cardiac progenitor cells form the 

bilateral primary heart field and the secondary heart field (Buckingham et aI., 2005; 

Cohen-Gould and Mikawa, 1996; Garcia-Martinez and Schoenwolf, 1993; Martinsen, 

2005). The primary heart field is located on either side of the primitive streak forming 

two separate but paired regions (the cardiac crescent) (Dyer and Kirby, 2009; Martinsen, 

2005) (Figure 1-A). The two sides of the cardiac crescent will form endocardial heart 

tubes and migrate to the midline to form the primary heart tube, which will begin to beat 

(Martinsen, 2005) (Figure 1-B). The primary heart tube consists of an inner layer of 

epithelial endoderm, an outer layer of myocardium with an extracellular matrix (ECM)­

rich cardiac jelly between the two layers (Markwald et aI., 1977; Smith and Bader, 2007). 

The secondary heart field is located anterior and dorsal to the primary heart tube and will 

form the right ventricle, outflow tract and venous poles (Buckingham et aI., 2005; Kelly et 

aI., 2001; Mjaatvedt et aI., 2001; Srivastava, 2006; Verzi et aI., 2005; Waldo et aI., 2001; 

Zaffran et a/., 2004) (Figure 1-A). After the primary heart tube is completely fused, it will 

rightwardly loop to form the atria, atrioventricular junction and left ventricle (Manner, 

2000; Snarr et aL, 2008; Srivastava, 2006) (Figure 1-C). Once looping is complete, the 

chambers of the heart will begin to remodel and septate to form the four-chambered 

2 



Figure 1: Heart Development. The heart initially forms as a cardiac crescent around Day 
15 of human development (E7.5 of mouse development) and consists of the first 
(primary) heart field (red) and the second heart field (blue) (A). The crescent will fuse 
the midline of the embryo to form the heart tube around Day 20 of human development 
(E8 of mouse development) (8). The heart will then loop rightward around Day 28 of 
human development and E9 of mouse development (C). Starting at Day 32 (mouse 
E1 0), the heart will further remodel to form the mature four chambered heart (D). FHF, 
first (primary) heart field; SHF, second heart field; RV, right ventricle; LV, left ventricle; 
RA, right atrium; LA, left atrium; V, ventricle; aT, outflow tract. Adapted from: (Bruneau, 
2008) 
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Stage: 

Mouse embryo day: 
Human embryo day: 

Milestones: 

A 
FHF 

SHF 

Cardiac crescent 

E7.5 
DaylS 

B 

Linear heart tube 

E8 
Day 20 

• Cardiac differentiation • Heart tube formation 
• Migration to midline • First heartbeat 

• Anterior-posterior and 
dorsal-ventral patterning 
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c 

Looping heart 

E9 
Day 28 

D 

Chamber formation 

E10 
Day32 

• Early chamber • Chamber formation 
formation • Trabeculation 

• Looping to the right • Cushion formation 
• Outflow tract septation 
• Early conduction -system 
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heart (Figure 1-0). The complete four-chambered heart is made up of the primary heart 

field and the secondary heart field as well as from contributions from neural crest cells 

and epicardially-derived cells. The primary heart field contributes to the atria, 

atrioventricular junction and the left ventricle (Buckingham et aI., 2005). The second 

heart field will form the outflow tract, right ventricle and parts of the venous pole 

(Buckingham et aI., 2005). 

During looping, some of the endocardial cells overlying the cardiac jelly will 

delaminate, migrate into the cardiac jelly and eventually form the endocardial cushions 

(Markwald et a!., 1977; Potts et aI., 1991). The endocardial cushions appear as 

localized swellings of the cardiac jelly in the atrioventricular junction and the outflow tract 

and contain extracellular matrix molecules and eventually mesenchymal cells of varying 

origins (Schroeder et aI., 2003; Snarr et aI., 2008). Part of the ventricular septum, the 

outflow tract septum and the valves are, in part, derived from the endocardial cushions 

(Eisenberg and Markwald, 1995). Neural crest cells will migrate into the developing 

heart and contribute to the development of the outflow tract septum, semilunar valves, 

the great arteries and sympathetic innervation of the heart (Hildreth et aI., 2008; Hutson 

and Kirby, 2007; Nakamura et aI., 2006; Verberne et aI., 1998). The epicardium will 

form from cells derived from the proepicardium and cover the myocardium (Viragh and 

Challice, 1981) (Figure 2). Some cells from the epicardium will undergo epithelial to 

mesenchymal transformation (EMT) to contribute to various processes and structures in 

the heart including the maturation and development of the myocardium, seeding of the 

endocardial cushions and become endothelial and smooth muscle cells of the coronary 

vasculature (Dettman et aI., 1998; Manner, 1999; Mikawa and Fischman, 1992; Perez­

Pomares et aI., 2002; Perez-Pomares et aI., 1998). 

5 



Figure 2: Illustration of epicardium formation in the E9.S mouse. The inset shows the 
relationship between the proepicardium and the myocardium during the early stages of 
epicardium formation. The asterisk indicates an area where proepicardial cells are 
directly interacting with the myocardium. The black arrow indicates an area of 
myocardium that is covered by newly formed epicardium. The red arrow indicates an 
area of bare myocardium. 

6 



, , 
II 

r 

/ 

7 



c. Formation of the epicardium 

The epicardium is an important structure in the heart because it contributes cells 

and signals to aid in the formation of many structures in the developing heart. Loss of 

the epicardium or proper epicardium function results in various heart defects including 

defective development of coronary vasculature and abnormal ventricular chamber 

development. The epicardium, the epithelial covering of the myocardium, is derived 

from a cell population referred to as the proepicardium (PE) (Manasek, 1969; Viragh and 

Challice, 1981) (Figure 2). The PE is a cluster of cells of mesenchymal and epithelial 

origin contained within an extracellular matrix (ECM) (Viragh and Challice, 1981). It is 

located on the septum transversum above the liver primordium and will form from the 

pericardial coelomic mesothelium (Manner, 1992; Schulte et aI., 2007; Tomanek, 2005; 

Viragh and Challice, 1981) (Figure 2). The PE contains precursors for endothelial, 

smooth muscle and connective tissue cells (Mikawa and Gourdie, 1996). 

During the transition from PE to epicardium, which occurs between embryonic 

day (E) 9.0 and E10.0 (looping of the heart) in the mouse, cells from the PE will 

delaminate and form vesicular-like buds (Manner et aI., 2001; Mikawa and Gourdie, 

1996; Viragh and Challice, 1981; Viragh et aI., 1993) (Figure 2). These buds will migrate 

to the myocardium where they will attach and move across the surface of the 

myocardium, proliferate and form the epicardium (Komiyama et aI., 1987; Viragh and 

Challice, 1981) (Figure 2). The extracellular matrix within the proepicardial buds will 

become part of the subepicardial space, which contains fibronectin, collagens I, IV, V 

and VI (Bouchey et aI., 1996; Hurle et aI., 1994; Kalman et aI., 1995; Kim et aI., 1999; 

Tidball, 1992), proteoglycans, laminin (Kalman et aI., 1995) vitronectin, fibrillin-2 and 

elastin (Bouchey et aI., 1996). These ECM proteins play roles in epicardium attachment, 

coronary vasculogenesis and possibly other roles such as signaling to the myocardium 

from the epicardium. Mesenchymal cells, derived from the proepicardial buds or from 

8 



the newly formed epicardium, will also occupy the subepicardial space and form 

epicardially-derived cells (EPDCs) (Dettman et aI., 1998; Munoz-Chapuli and Hamlett, 

1996; Munoz-Chapuli et aI., 1994; Perez-Pomares et aI., 1997, 1998; Van den Eijnde et 

aI., 1995; Viragh et aI., 1993). 

The PE cells can reach the myocardium in one of two ways depending on 

species. In the mouse and other mammals, the PE buds will free-float through the 

pericardial space to the myocardium; however there is also some direct migration that 

will occur (Komiyama et aI., 1987; Kuhn and Liebherr, 1988; Munoz-Chapuli et aI., 

1994). In the chick there is evidence that the PE buds migrate to the myocardium via an 

extracellular matrix bridge made up of fibronectin, glycoproteins and collagens (Manner 

et aI., 2001; Nahirney et aI., 2003). It has been hypothesized that mice also have this 

extracellular matrix bridge but this has not been shown. A recent report in mouse 

suggests that the PE will form microvili that will protrude and attach to the myocardium 

as the main method by which PE cells reach the myocardium but that some PE budding 

does occur (Rodgers et aI., 2008). 

Epicardial cells with undergo EMT to form EPDCs that will contribute to interstitial 

fibroblasts, seeding of the endocardial cushions, fibroblasts of the endocardial cushions 

and smooth muscle cells and endothelial cells of the coronary vasculature (Dettman et 

aI., 1998; Gittenberger-de Groot et aI., 1998; Manner, 1999, 2000; Mikawa and 

Fischman, 1992; Mikawa and Gourdie, 1996; Perez-Pomares et aI., 1997; Vrancken 

Peeters et aI., 1999). The epicardium normally expresses RALDH2, a retinoic acid 

synthesizing enzyme (Duester, 2000) and Wilms' tumor 1 transcription factor (Wt1) 

(Little et aI., 1999). As EPDCs develop into smooth muscle and endothelial cells of the 

coronary vasculature, RALDH2 and Wt1 will be downregulated within the cells (Perez­

Pomares et a/., 2002). Wt1 has previously been implicated in epicardium development 

with loss of Wt1 causing a failure of epicardium formation (Moore et aI., 1999). 
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Two recent ere-models have suggested that EPDCs will also become myocytes 

in the ventricular myocardium and interventricular septum (Cai et aI., 2008; Zhou et aI., 

2008a; Zhou et aI., 2008b). A Wt1 GFPcre/+ mouse was used to trace the fate of Wt1 + 

epicardial cells throughout the heart (Zhou et aI., 2008a). Some of these Wt1 + cells 

differentiated into functional cardiomyocytes that were found in all four chambers of the 

heart as well as in the interventricular septum (Zhou et aI., 2008a). These Wt1-

expressing cardiomyocytes also expressed GATA4 and Nkx2-5 (Zhou et aI., 2008a). 

Wt1 + PE cells were found to arise from Nkx2-5 and 151et1 (lsl1 )-expressing progenitor 

cells, indicating that PE/epicardial cells may share a developmental origin from 

cardiogenic progenitor cells (Chien et aI., 2008; Laugwitz et aI., 2008; Martin-Puig et aI., 

2008; Zhou et aI., 2008a). A Tbx18-cre has also been used to label epicardial cells and 

trace EPOCs in the developing heart (Cai et aI., 2008). Cai et al found that Tbx18+ 

epicardial cells went to the interventricular septum and the ventricular myocardium 

where they became cardiomyocytes that were Nkx2-5+ (Cai et aI., 2008). These data 

(Cai et aI., 2008) support the findings of Zhou et al. However, there has been some 

debate from another group who suggests that Tbx18 is normally expressed in the 

interventricular septum and myocardium and is found in a mouse model with absent 

epicardium and therefore cannot be used as a marker of epicardially-derived 

cardiomyocytes (Christoffels et aI., 2009). Further evidence supports the theory that 

PE/epicardial cells are derived from the same cardiogenic progenitor pool as 

cardiomyocytes in work from van Wijk et al. This group found through Oil tracing that 

PE/epicardial cells come from the same precursor pool as the inflow myocardium and 

that this separation of PE/epicardium from myocardium required a balance of BMP and 

FGF signaling (van Wijk et aI., 2009). FGF2 was found to enhance epicardium formation 

while BMP stimulation enhanced myocardium formation (van Wijk et aI., 2009). These 
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recent studies of EPDC cells fate suggest a new role for EPDCs as a cardiomyocyte 

progenitor cell population. 

Cell-cell as well as cell-matrix interactions are necessary for proper epicardial 

EMT. For example, connexin-43, vascular cell adhesion molecule (VCAM-1) and 

integrin a4 have been previously noted to be required for epicardial EMT (Kwee et aI., 

1995; Li et aI., 2002; Rhee et aI., 2009; Yang et aI., 1995). Loss of Cx43, a gap 

junctional protein, in the mouse results in embryos with decreased epicardial EMT as 

well as bubbling of the epicardium (Rhee et aI., 2009). Loss of VCAM-1 or integrin a4 in 

the mouse results in embryos that have no epicardium, thus, form no EPDCs (Kwee et 

aI., 1995; Yang et aI., 1995). Erythropoietin (EPO) and retinoic acid are produced by the 

epicardium and are thought to signal for secretion of trophic signals that aid in 

myocardium development (Chen et aI., 2002; Perez-Pomares et aI., 2002; Stuckmann et 

al.,2003). EPO knockout mice have been previously reported to have a detached 

epicardium similar to the RXRa-/- mouse (Wu et aI., 1999). Failure to properly signal to 

the myocardium from the epicardium can affect myocardium development as both the 

EPO knockout and RXRa-/- have hypoplastic ventricles indicating the importance of 

proper epicardium function. It may be that detachment of the epicardium impairs proper 

functioning of the epicardium. Currently, the mechanism by which the epicardium can 

become detached and the role this detachment plays in epicardial signaling and EMT is 

not fully known. 

D. Mouse models of aberrant epicardium formation 

Since defects in the epicardium lead to various abnormalities in the heart 

including hypoplastic ventricular myocardium and coronary vasculature anomolies, 

animal models that perturb proteins and molecules important for epicardium 
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development result in many of these phenotypes. A list of these mouse models is found 

in Table 1. Integrin a4 is a celt surface receptor that is involved in cell-cell and cell­

matrix interactions (Hynes, 1992) and is expressed in the epicardium. Knockout of 

integrin a4 results in two possible phenotypes. The first phenotype is failure of allantois 

fusion early in development affecting extraembryonic circulation leading to embryonic 

lethality by E11 (Pineo et aI., 2001; Yang et aI., 1995). Other embryos fail to form an 

epicardium and have hypoplastic ventricular myocardium and missing coronary 

vasculature resulting in embryonic lethality by E14.5 (Pineo et aI., 2001; Yang et aI., 

1995) (Figure 3). Integrin a4 promotes migration of proepicardial cells over the surface 

of the myocardium through its interaction with VCAM-1 on the surface of the 

myocardium. Proepicardial cells come into contact with the myocardium but will not 

migrate over the surface of the heart in the absence of integrin a4 in a4-knockin-lacZ 

mice (Sengbusch et aI., 2002). In the absence of integrin a4 in this mouse model, there 

is also decreased proepicardial cell budding, indicating a role for integrin a4 in 

proepicardial cell bud formation to initiate migration over the myocardium (Sengbusch et 

aI., 2002). Integrin a4 will interact with fibronectin during proepicardial cell budding and 

with fibronectin and/or VCAM-1 during proepicardial cell migration over the myocardial 

surface to aid in formation of the epicardium (Sengbusch et aI., 2002). Loss of the ability 

of PE cells to bind to the myocardium via an interaction between integrin a4 and VCAM-

1 can result in failure to form an epicardium. 

VCAM-1 is a cell surface protein and a ligand for integrin a4 that is involved in 

inflammatory processes and development (Kwee et al. , 1995) and is expressed within 

the myocardium. VCAM-1 knockout mice (VCAM-1-/-) are embryonic lethal and die 

between E1 0.5 and E12.5 with two different phenotypes (Kwee et aL, 1995). One group 

of embryos did not develop extraembryonic circulation while the other group of embryos 
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Table 1: Knockout mice displaying an epicardial phenotype. 
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KO mice with Epicardium KO mice with Epicardial 
Detachment Defects 
RXRa VCAM-1 
Epicardial-specific ALK5 Integrin a4 
Cx43 Wt1 
N-cadherin Wnt-1 Cre conditional KO GATA4 
EPO/EPO receptor PAR3 
Podoplanin 
Foxc1/c2 
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Figure 3: Epicardial phenotype of the integrin a4 knockout mouse. A histological 
analysis of the integrin a4 knockout from E1 0.5 to E12.S. WT at E12.5 (A,e) has an 
epicardium present. KO at E12.S (B,O) has no epicardium present. KO at E10.5 (E) 
has an epicardium present but is lost by E11.5 (F). The wr forms coronary vessels (G) 
while the KO has none present (H). A, atrium; Ee, endocardial cushions; B, blood cells; 
Cv, coronary vessel; Ep, epicardium; M, myocardium; 0, outflow tract; V, ventricle 
(Taken from Yang et ai, 1995) 
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Figure 4: Epicardial phenotype of the VCAM-1 knockout mouse. The wr mouse at 
E11.5 (A-C) forms a epicardium (indicated by arrowheads). The KG mouse fails to form 
an epicardium by E11.5 (D-F). (Taken from Kwee et ai, 1995) 
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showed various heart defects including loss of epicardium 1 hypoplastic ventricular 

myocardium and abnormal coronary vasculature (Kwee et aI., 1995) (Figure 4). In the 

absence of VCAM-1, there is also a loss of integrin a4 expression in the epicardium but 

not in the endocardial cushions (Kwee et aI., 1995). VCAM-1-/- mice fail to form an 

epicardium by E11.S, however, a small number of epicardial cells can be seen on the 

atria (Kwee et aI., 1995). The failure of the epicardium to form could be due to the 

inability of the PE buds to attach to the surface of the myocardium in the absence of 

VCAM-1. As seen with other models of aberrant epicardial development, there is a 

reduction in myocardial wall thickness and a decrease in ventricular compaction (Kwee 

et aI., 1995) (Figure 4). The phenotype of VCAM-1-/- is similar to that of integrin a4-/-, 

which could be expected considering the two proteins are binding partners and likely 

involved in the same developmental processes during heart formation. VCAM-1 is 

expressed in the myocardium while integrin a4 is expressed in the epicardium, 

suggesting a role for each in adhesion between the epicardium and myocardium (Kwee 

et aI., 1995; Yang et aI., 1995). Alterations in the levels of either VCAM-1 or integrin a4 

could have adverse effects on intercellular binding between these proteins potentially 

due to changes in the stoichiometry of these transmembrane proteins. 

N-cadherin has been implicated in proper epicardial attachment. Conditional 

knockout (eKO) of N-cadherin specifically in the neural crest cells caused an epicardial 

bubbling phenotype similar to that of the RXRu-/- mouse (Luo et al., 2006) (Figure 5). It 

was found that Wnt1-Cre used for the conditional knockout is also active in epicardial 

cells resulting in decreased N-cadherin in the epicardium as well (Luo et aI., 2006). In 

these mice, the epicardium itself remains intact but is detached from the underlying 

myocardium. N-cadherin is normally expressed in both the myocardium and epicardium 
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Figure 5: Epicardial phenotype of the N-cadherin conditional knockout mouse. The wr 
mouse forms at normal attached epicardium seen in H&E stained sections (A,C) and 
whole mount (E). The CKO mouse forms a detached epicardium seen in H&E stained 
sections (8,0) and whole mount (F- arrow indicates detached epicardium). 
Immunofluorescence for N-cadherin shows it present in the epicardium of the wr (arrow 
in G) and absent in the eKO (arrow in H). Epicardial explants showed N-cadherin 
present in the WT (I) and present at low levels in the eKO (J). (Taken from Luo at ai, 
2006) 
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and is involved in adhesion of the epicardium to the myocardium via formation of 

adherens junctions (Luo et ai" 2006). In addition to the detached epicardium, there is 

also thinning of the ventricular myocardium similar to what is seen in other mice that 

have epicardial defects (Figure 5). 

Another mouse model that fails to form an epicardium is the Wilm's Tumor 1 

(Wt1) knockout mouse. wt1 is a zinc finger transcription factor that targets genes such 

as those responsive to retinoic acid receptors and integrin a4 signaling (Kirschner et al., 

2006; Little et aI., 1999). Wt1 knockout mice have no epicardium, hypoplastic ventricular 

myocardium and improper formation of the coronary vasculature (Moore et aI., 1999). 

This is similar to the integrin a4 knockout mouse so it is possible that decreased 

transcription of integrin a4 due to loss of Wt1 contributes to the phenotype of Wt1 

knockout mice further pointing to the importance of integrin a4 and its interactions in 

normal epicardium formation. Embryos with an epicardial-specific knockout of Wt1 die 

between E16.5 and E18.5 as a result of cardiovascular failure (Martinez-Estrada et aL, 

2010). These embryos fail to form coronary vasculature and had an upregulation of E-

cadherin and cytokeratin (indicative of epithelial phenotype) and a reduction in the 

mesenchymal cell markers Snail and vimentin expression, indicating a reduction of 

epicardial EMT (Martinez-Estrada et aI., 2010). Using immortalized epicardial cells with 

a tamoxifen-inducible Wt1 knockout, it was found that loss of Wt1 increased E-cadherin 
" ~', 

I~I, •. i 

expression, downregulated N-cadherin and decreased cell migration (Martinez-Estrada 

et aI., 2010), indicating the importance of Wt1 in epicardial EMT. 

Podoplanin is a mucin-like transmembrane glycoprotein that has been found to 

downregulate E-cadherin in human oral and mouse skin carcinomas leading to an 

upregulation of EMT (Mahtab et aI., 2008; Martin-Villar et aI., 2005). Loss of podoplanin 

produces embryos that have hypoplastic and perforated ventricular and septal 
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myocardium, hypoplastic atrioventricular cushions, epicardial detachment, incomplete 

epicardium formation and impaired coronary vasculature formation (Mahtab et aI., 2008). 

A reduction in epicardial EMT was also found as a result of upregulation of E-cadherin 

(Mahtab et aI., 2008), indicating the importance of the appropriate ratio of cell adhesion 

molecules to epicardial EMT. 

GATA4 is a zinc finger transcription factor that interacts with other proteins 

important for heart development including Nkx2.5 (Watt et aI., 2004). GATA4 knockout 

mice have no proepicardium and as a result lack an epicardium and have hypoplastic 

ventricular myocardium, disrupted looping and disrupted septation (Watt et aI., 2004), 

suggesting a role for GATA4 more in development of the PE. Friend of GAT A 2 

(FOG2) is a cofactor for GATA transcription factors (Tomanek, 2005). FOG2 knockout 

mice have abnormal epicardial EMT resulting in hypoplastic ventricular myocardium, 

common atrioventricular canal and absence of coronary arteries (Tevosian et aI., 2000), 

suggesting a role for FOG2 in transcription of genes involved in epicardial EMT. 

Foxc1 and Foxc2 are forkhead/Box transcription factors that playa role in the 

development of the heart, especially in the formation of the outflow tract (Sea and Kume, 

2006). Combination Foxc1 heterozygote and c2 knockout mice have improper formation 

and function of the epicardium including detachment from the myocardium, accelerated 

EMT, failure of outflow tract septation, hypoplasia of the outflow tract, defects in 

endocardial cushions and a thin myocardium (Sea and Kume, 2006). The phenotype of 

the Foxc1 +/-/c2-/- mouse is quite similar to the RXRa-/- mouse with the exception of the 

accelerated EMT. Transforming growth factor ~-2 (TGF~2) signaling has previously 

been shown to be required for expression of Foxc1 in the eye during development (Ittner 

et aI., 2005). Foxc1 has also been shown to be a TGF~1 responsive gene and can be 

upregulated by TGF~1 in several cancers (Zhou et aI., 2002). Foxc2 has been shown 
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previously to interact with Smads to promote EMT (Fuxe et aI., 2010). Since both Foxc1 

and Foxc2 have been implicated in EMT, it is possible that these two transcription 

factors could playa role in EMT in the epicardium, possibly with TGFB2. 

PAR3 is a protein that complexes with PAR6 and atypical protein kinase C 

(aPKC) to establish epithelial cell polarity and has been shown to be important for 

epithelial cysUbud formation (Hirose et aI., 2006; Hurd et aI., 2003; Joberty et aI., 2000). 

PE cells express both integrin a4 and GATA4 but fail to form buds to migrate to the 

myocardial surface, thereby failing to form an epicardium by E11 ,5 (Hirose et aI., 2006). 

There were no integrin a4-positive cells on the surface of the myocardium (indicating 

that no epicardial cells were present) but there was no effect on the expression of 

VCAM-1 in the myocardium (Hirose et aI., 2006). PAR3 is important for the formation of 

epithelial cell junctions with loss of proper cell junctions leading to a loss of PE bud 

formation (Hirose et aI., 2006). These results point to the importance of cell adhesion to 

the formation of the epicardium. 

Erythropoietin (EPO) is a growth factor that is involved in various processes in 

the body such as endothelial cell proliferation and erythrocyte production and in heart 

development (Anagnostou et aI., 1990; Krantz, 1991). EPO and EPO receptor knockout 

embryos have a detached epicardium, vascular abnormalities and a reduction in 

proliferating myocytes and will die from cardiac dysfunction and anemia by E13.5 (Wu et 

aI., 1999). EPO has been shown to be a trophic factor for cardiomyocyte proliferation 

following its secretion from the epicardium (Stuckmann et aI., 2003). EPO could playa 

role in regulating cell adhesion molecules since its phenotype is similar to both RXRa-/­

(Jenkins et aI., 2005) and N-cadherin-/- (Luo et aI., 2006) mice but this is currently 

unknown. It has been noted previously that EPO levels are reduced in the RXRa-/-

mouse and that the EPO gene is a direct target of retinoid signaling (Makita et aI., 2005) 
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suggesting a link between RXRu-/- phenotype and the EPO knockout phenotype. Early 

fetal hypoxia can cause epicardial detachment and thinning of the ventricular 

myocardium (Ream et aI., 2008). One hypoxia induced target gene is EPO (Ream et aI., 

2008) suggesting the importance of EPO signaling for epicardium attachment. 

Epicardial-specific knockout of Alk5 (TGF~ type I receptor) resulted in embryos 

with a detached epicardium, thinning of the ventricular myocardium, decreased 

myocardial cell proliferation and decreased epicardial EMT (Sridurongrit et al., 2008). 

These embryos also have a downregulation of N-cadherin and zona occludens 1 (Z01) 

(Sridurongrit et aI., 2008). Z01 is known to interact with Connexin 43 (Cx43) in formation 

of gap junctions (Gourdie et aI., 2006). Cx43 knockout mice have outflow tract defects, 

coronary artery defects, epicardial bubbling similar to the RXRa-/- mouse and defects in 

epicardial EMT (Rhee et al., 2009). Cx43 is known to be involved in the formation of gap 

junctions between cells and is necessary for the electrical conduction system of the 

heart. These studies point to the importance of proper epicardial cell signaling for 

epicardium function because decreased gap junction formation and decreased growth 

factor receptors can result in epicardial defects. 

The RXRu-/- mouse is a model of aberrant epicardium formation. Phenotypically 

this mouse displays a detachment of the epicardium from the myocardium, hypoplastic 

ventricular myocardium and defects in septation and outflow tract (OFT) formation 

(Jenkins et aI., 2005; Sucov et aI., 1994) (Figure 6). The RXRa-/- mouse will be 

discussed further later in this chapter. 
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Figure 6: Epicardial phenotype of the RXRa-/- mouse. The WT seen in whole mount (A) 
and H&E section (C) shows normal architecture of the epicardium. The RXRa-/- heart 
seen in whole mount (8) and H&E section (D) shows a bubbling of the epicardium 
indicated by the arrowhead and arrow in D. The hypoplastic ventricular myocardium can 
also be seen in the RXRu-/- heart section in D. (Taken from Jenkins et ai, 2005) 
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E. Cell Adhesion 

Cell-cell interactions are important to all development processes and formation 

and maintenance of tissues and organs. In order for the epicardium to form and function 

properly, appropriate cell-cell and cell-extracellular matrix adhesions need to be in place. 

There are several types of cell-cell junctions that can be found in an organism including 

tight junctions, gap junctions, desmosomes, hemidesmosomes, adherens junctions and 

focal adhesions. Both adherens junctions and focal adhesion complexes serve to 

connect the cell membrane to the actin cytoskeleton (Niessen, 2007; Wozniak et aI., 

2004). Desmosomes are found within epithelia and muscle and are capable of resisting 

shear forces that can occur in these two tissues. The components of a desmosome will 

connect the cell membrane with the cell cytoskeleton and one cell membrane to another 

cell membrane to form a strong junction (Green and Simpson, 2007). Improper 

functioning or formation of desmosomes has been implicated in skin blistering diseases 

(Has and Bruckner-Tuderman, 2006). This would indicate that proper desmosome 

function is necessary for adhesion since with loss of desmosomes function there is a 

"bubble-like" detachment, similar to the epicardium in the RXRa-/- mouse. Cadherins 

are a family of cell adhesion molecules that are found mainly in adherens junctions and 

desmosomes (Elangbam et aI., 1997) and attach the cell to the actin cytoskeleton using 

interactions with catenins (Wheelock and Johnson, 2003). Desmosomes in particular 

contain two specialized cadherins that interact with intermediate filaments (Green and 

Simpson, 2007). N-cadherin knockout mice have a detached epicardial phenotype (Luo 

et aL, 2006), indicating the importance of cellular junctions in epicardial cell attachment 

to the myocardium. 

The focal adhesion complex is important for cell migration as well as transient 

cell adhesion. Focal adhesions bind cells to the extracellular matrix or to other cells 

through integrins. The focal adhesion complex consists of focal adhesion kinase (FAK), 
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fibronectin (FN), VCAM-1, integrins, paxillin and various other ECM proteins (Wozniak et 

aI., 2004) (Figure 7), FAK is a tyrosine kinase that will interact directly with integrins and 

other proteins attracted to the focal adhesion such as paxillin (Wozniak et aI., 2004) 

(Figure 7), Fibronectin will induce tyrosine phosphorylation of FAK following binding to 

integrin heterodimers (llic et aI., 1995). Paxillin has been shown to be involved in 

fibronectin-dependent cell migration, as was illustrated by the loss of cell migration on 

fibronectin in paxillin null primary cell culture (Hagel et aI., 2002). There is decreased 

tyrosine phosphorylation of FAK in paxillin null mice, which indicates a role for 

fibronectin, FAK and paxillin in cell migration (Hagel et aI., 2002). 

FN is an extracellular matrix glycoprotein that is expressed in the proepicardium, 

epithelial basement membranes, connective tissues, vessel walls and muscles of the 

mouse embryo and is involved in the focal adhesion complex through its binding to 

integrins (Hynes, 1985; Kalman et aI., 1995; Peters and Hynes, 1996). FN contains a 

specific RGD sequence that is recognized by the fibronectin-binding integrins to mediate 

signaling and cell-matrix attachment (Hynes, 1992). FN-/- embryos die at gastrulation as 

a result of defects in mesodermally-derived tissues (George et al. , 1993), Epicardium 

formation in FN-/- cannot be studied because of the early embryonic death. Previously it 

has been shown that FN is increased in the RXRa-/- heart and might playa role in 

epicardium formation (Jenkins et aI., 2005). 

Integrins are transmembrane receptors that aid in cell adhesion and attachment 

of the cell to the extracellular matrix and to neighboring cells (Hynes, 1992). Integrins 

are composed of a and ~ subunits which can form 24 different integrin heterodimers 

(Hynes, 2002). The integrin heterodimers a5~1, a8~1 and aV~1 will bind to FN at the 

RGD (arginine-glycine-aspartate) sequence within the FN protein (Hynes, 2002). The 

heterodimer a4~ 1 will also bind FN although it primarily binds VCAM-1, which will also 
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Figure 7: Signaling pathways downstream of VCAM-1 or FN binding to integrin a4~1. 
This diagram illustrates the major signaling pathways that occur downstream of integrin 
a4~1 binding to VCAM-1 or fibronectin. VCAM-1 binding is shown in the diagram but 
integrins can also bind to fibronectin and initiate signaling. 
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bind FN (Kwee et aI., 1995) (Figure 7). Other integrin heterodimers bind different 

extracellular matrix molecules including laminins that do not possess RGD sequences 

(Hynes, 2002). After binding their particular ligand, integrins will activate signaling 

processes such as proliferation, cell motility, cell survival, cytoskeletal organization and 

transcriptional control (Hynes, 2002). Integrins are referred to as "outside-in" 

transducers, receiving signals from extracellular components and then sending signals 

within the cell (Hynes, 2002). 

Integrin a4 and as are expressed in the proepicardium and epicardium of the 

mouse (Pinco et aI., 2001). Integrin a5 knockout mice have defects in the posterior 

trunk, have malformed yolk sac blood vessels and display defects in embryonic blood 

vessels, but exhibit no heart defects (Yang et aI., 1993). Integrin a4 knockout mice have 

no epicardium resulting in coronary artery and myocardial defects (Yang et aI., 1995) 

(Figure 3). Integrin a4 has been shown previously to be required in EPDCs to initiate 

FN-mediated migration (Sengbusch et aI., 2002). Inhibiting integrin a4 by using 

adenovirus expressing antisense integrin a4 in chick epicardial cells resulted in 

stimulation of EMT, increased migration and invasion of EPDCs into the underlying 

myocardium and inability to become smooth muscle cells in the coronary vasculature 

(Dettman et aI., 2003). While it is known that integrin a4 is involved in epicardium 

formation, its role in maintenance of epicardium attachment and epicardium function is 

not entirely known. The RXRa-/- mouse has a defect in epicardial EMT (Ruiz-Lozano 

and Kubalak, unpublished) hence disrupting cell adhesion could have an adverse affect 

on EMT. 

VCAM-1 is a transmembrane protein that was originally identified for its 

involvement in adhesion of leukocytes expressing integrin a4 during the inflammatory 

response (Elangbam et aI., 1997). The primary function of VCAM-1 is to mediate 
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intercellular adhesion with the integrin a4~ 1 heterodimer. VCAM-1 is expressed in a 

number of cell types including vascular endothelial and smooth muscle cells, bone 

marrow cells, and myocardial cells (Rosen et aI., 1992; Sheppard et aI., 1994), 

Expression in the heart can be found in the myocardium especially in the interventricular 

septum and outflow tract myocardium (Kwee et aI., 1995), The VCAM-1 binding partner 

integrin 0.4 is expressed in the epicardium and also in the endocardial cushions (Kwee et 

aI., 1995), The VCAM-1 knockout is embryonic lethal as a result of either loss of 

extraembryonic circulation or heart defects including a failure to form the epicardium 

(Kwee et aI., 1995). One study showed that VCAM-1 expression will increase in cultured 

cardiomyocytes and NIH3T3 cells in response to an epicardial-derived factor (serum-free 

conditioned media from cultured epicardial cells) (Kang and Sucov, 2005). In this same 

study, VCAM-1 m RNA levels were reported to be reduced in the E 11 ,5 RXRa-/- heart 

(Kang and Sucov, 2005) (Figure 13). However, a complete developmental profile of 

VCAM-1 in the mouse was not done. VCAM-1 is necessary for epicardium formation 

with loss of VCAM-1 resulting in failure to form an epicardium (Kwee et aI., 1995), 

however, the role of VCAM1 in events following epicardium formation is unknown. In 

this study VCAM-1 was examined through analysis of its expression in the RXRa-/­

mouse model of aberrant epicardium formation. 

F. Retinoid signaling during heart development 

Retinoic acid signaling is important for a wide variety of events during veterbrate 

embryonic development including cell proliferation, apoptosis, cell differentiation and 

tissue homeostasis (Mark et at., 2006). VAD in vertebrates results in defects such as 

malformations of the eye, heart, respiratory system and urogenital system (Mark et a!., 

2006; Wilson and Warkany, 1949). Retinoic acid isoforms (all-trans retinoic acid and 9-
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cis retinoic acid) are derivatives of vitamin A. Retinoids are ligands for the retinoid 

receptors, which when activated will translocate into the nucleus, dimerize and either 

activate or inhibit transcription. There are two types of retinoid receptors: retinoic acid 

receptors (RARs) and RXRs, with an u, ~ and y subtype of each (Chambon, 1996). 

RARs will bind all-trans (at-RA) and 9-cis retinoic acid (9-cisRA) while RXRs will bind 

only 9-cisRA for activation (Chambon, 1996; Mark et aI., 2006) (Figure 8). Hetero- or 

homodimers of retinoid receptors will control transcription of RA-target genes by binding 

to retinoic acid response elements (RAREs) on DNA (Chambon, 1996) (Figure 8). Once 

9-cisRA or at-RA binds to the RAR/RXR heterodimer or receptor homodimer, the 

complex will bind to the DNA and up- or downregutate transcription (Chambon, 1996; 

Mark et aI., 2006) (Figure 8). RARs and RXRs can also dimerize with thyroid hormone 

receptors, vitamin D3 receptors (Mark et aI., 2006), farnesoid X receptor, peroxisome 

proliferator-activated receptors (PPARs) and liver X receptor (Desvergne, 2007) to 

initiate transcription. 

Vitamin A is converted to retinol in the body and is then further metabolized to 

retinal and finally to at-RA and 9-cis-RA. RALDH2 is a retinoic acid-synthesizing 

enzyme responsible for the conversion of retinal to at-RA (Duester, 2000) (Figure 8). In 

chick and mouse, RALDH2 is expressed in the proepicardium and continues to be 

expressed in the proepicardial buds and epicardium suggesting a role for RALDH2 in 

epicardium development (Hoover et aI., 2008a; Moss et aI., 1998; Niederreither et aI., 

1997; Xavier-Neto et aI., 2000) (Figure 9). In the chick model, epicardially-derived cells 

that express RALDH2 are contained within the subepicardial space and then invade the 

ventricular myocardium (Perez-Pomares et aI., 2002). As these cells differentiate into 

smooth muscle and endothelial cells, RALDH2 is downregulated (Perez-Pomares et aI., 

2002). RALDH2 knockout mice have heart defects that include decreased 

cardiomyocyte proliferation and ventricular trabeculation suggesting a role for epicardial 
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Figure 8: Retinoid signaling and cardiovascular phenotypes resulting from knockout of 
pathway components. RAR, retinoic acid receptor; RXR, retinoid X receptor; RBP, 
retinol binding protein; RoDH, retinol dehydrogenase; CRBP, cellular retinol binding 
protein; RARE, retinoic acid responsive element; 9-cisRA, 9-cis retinoic acid; atRA, all­
trans retinoic acid; RALDH, retinaldehyde dehydrogenase; CYP1 81, cytochrome P450 
181; CYP26, cytochrome P450 26; CRASP, cellular retinoic acid binding protein 
(Adapted from Hoover et ai, 2008) 
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Figure 9: Immunohistochemical (IHC) analysis of RALDH2 expression in the mouse 
heart from E9.5-E11.S. RALDH2 expression is detected in the PE at E9.S (8 and C), in 
the remaining PE, PE buds and newly formed epicardium at E1 0.5 (E and F) and in the 
epicardium and body wall at E11.S (H and I). 
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RALDH2 since these processes require a functional epicardium (Niederreither et aI., 

2001). RXRa has been shown to have a similar expression pattern to RALDH2 in avian 

embryos, with expression being seen in the epicardium, some subepicardial 

mesenchymal cells and EPDCs (Guadix et aI., 2006). The similar expression patterns of 

RXRa and RALDH2 indicate that retinoid signaling is highly important in epicardium 

development and function. 

Cardiac defects have been reported to be associated with several com ponents of 

the retinoid pathway including RALDH2 and VAD models (mentioned above) (Figure 8). 

Cytochrome P450 26 (Cyp26) is responsible for converting at-RA to inactive metabolites 

(Figure 8). Loss of Cyp26 leads to defects in cardiac looping (Sakai et aI., 2001). 

STRA6 is a cell surface receptor that is specific for retinol binding protein (RBP) that 

delivers retinol into the cell (Figure 8). Autosomal recessive mutations of STRA6 have 

been reported in the human population and are associated with a condition known as 

Matthew-Wood syndrome (Pasutto et aI., 2007). The heart defects associated with this 

syndrome include Tetrology of Fallot, aortic arch defects, septal defects and persistent 

ductus arteriosus (Pasutto et al., 2007). Defects associated with Cyp26 and STRA6 

further indicate the importance of proper retinoid signaling with heart development. 

Targeted deletions of several of the RARs and RXRs exist (Kastner et aI., 1997; 

Lee et aI., 1997; Luo et aI., 1996; Mendelsohn et aI., 1994); however, knockout of RXRa 

is the only single RA receptor knockout that results in cardiac malformations (Sucov et 

al. , 1994). Combination RA receptor knockouts have a phenotype that resembles VAD 

(Mark et aI., 2006). The RXRa-/- mouse has a thin myocardium, improper septation of 

the outflow tract, hypoplastic endocardial cushions, delay in epicardium formation and 

detached epicardium (Jenkins et aI., 2005; Kubalak et aI., 2002; Sucov et aI., 1994). 

Using a floxed RXRa mouse line, RXRa has been conditionally knocked out in the 
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different cell lineages in the heart including the ventricular myocardium [using MLC2V­

cre (Chen et aI., 1998)], neural crest cells [using Pax3-cre (Ruiz-Lozano and Chien, 

2003) and Wnt-1-cre (Merki et aI., 2005)] and endocardial cells [using Tie2-cre (Merki et 

al.,2005)]. Epicardial-specific RXRa knockout (using GATA-5-cre) is the only region of 

the heart where specific removal of RXRa produced a cardiac phenotype that resembled 

the systemic RXRa-/- illustrating the importance of retinoic acid signaling within the 

epicardium (Mark et aI., 1999; Merki et aI., 2005). These mice have defects in the 

coronary arteries (abnormal branching), thinning of the myocardium, detachment of the 

epicardium and thinning of the subepicardium (Merki et aI., 2005). There is also 

downregulation of ~-catenin (Merki et aI., 2005), which is known to be involved in cell 

adhesion through interactions with N-cadherin. 

Secretion of retinoic acid and EPO from the epicardium appears to be required 

for cardiomyocyte proliferation (Stuckmann et aI., 2003). In response to retinoic acid 

and requiring a functional RXRu, the fetal epicardium will secrete trophic factors, such 

as fibroblast growth factor 2 (FGF2), that help promote ventricular chamber 

morphogenesis (Chen et aI., 2002; Smith and Bader, 2007) by activating the P13K1Akt 

and Erk pathways to promote cell proliferation (Kang and Sucov, 2005). At this time it is 

not entirely known if proper epicardial cell adhesion is necessary for signaling to the 

myocardium but it is likely. The RXRa-/- mouse also has a loss of mitogenic signals 

from the epicardium as well as a reduction in the proliferative rate of ventricular 

cardiomyocytes (Kang and Sucov, 2005). The expression of VCAM-1 was reduced in 

the E11.5 RXRa-/- (Kang and Sucov, 2005), suggesting that this extracellular matrix 

molecule is likely regulated by retinoic acid receptor. 
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G. Transforming Growth Factor-~ signaling 

TGF~2 is found in the proepicardium, epicardium and ventricular myocardium 

during heart development (Molin et aI., 2003) (Figure 10) and, importantly, is elevated in 

the RXRa-/- mouse (Kubalak et aI., 2002). TGF~2 is a member of the TGF~ superfamily 

of signaling proteins (Derynck and Feng, 1997) and has been shown to playa role in 

cardiovascular development (Harvey, 1999). Other members of this signaling family 

include TGF~1, TGF~3, bone morphogenetic proteins (BMPs) and activins (Feng and 

Derynck, 2005). TGF~1 is expressed in the vascular endothelium and endocardium, 

particularly in the endocardium overlying the atrioventricular region and ventricular 

trabeculae (Molin et aI., 2003) (Figure 10). TGFB2 (Figure 10) and TGFB3 are 

expressed in the epicardium, endocardial cushions and fibrous structures of the heart 

(Molin et aI., 2003) indicating that these signaling molecules are especially relevant to 

epicardium formation and function. 

TGF~2 is secreted as a latent protein (as are TGF~1 and TGFB3), which is then 

proteolytically cleaved and activated (Derynck and Feng, 1997). TGFB2 binds to the 

TGFB type II receptor, inducing heterodimerization with the type I receptor (Derynck and 

Feng, 1997) (Figure 11). The type II receptor phosphorylates the type I receptor through 

intrinsic serine/threonine kinase activity (Derynck and Feng, 1997). The type I receptor 

then phosphorylates the receptor-activated Smads (R-Smads) Smad2 and Smad3 

(Derynck and Feng, 1997) (Figure 11). Once a R-Smad is activated by phosphorylation, 

it dimerizes with the co-Smad, Smad4, translocates into the nucleus and binds to DNA to 

regulate gene transcription (Figure 11). The R-Smad/Smad4 complex, once inside the 

nucleus, activates transcription by assembling with a nucleoprotein complex at Smad 

consensus DNA-binding sites (Feng and Derynck, 2005) (Figure 11). This nucleoprotein 

complex includes Smad-binding elements on the DNA, DNA-binding transcription factors 
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Figure 10: TGF~ mRNA expression in the mouse heart at E9.S. TGF~1 transcripts (B, E 
and H) are detected in the endocardium, dorsal mesocardium (arrow in B) and dorsal 
aorta. TGF~1 mRNA was not detected in the myocardium or PE (B). TGF~2 mRNA (C, 
F and I) is expressed in the myocardium, endocardium, PE (arrowhead in C) and newly 
formed epicardial cells (arrow in C). (Taken from Molin et aI., 2003) 
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Figure 11: TGF~ signaling. Diagram of the canonical TGF~ signaling pathway. (adapted 
from Hui and Friedman, 2003) 
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and transcriptional coactivators (Feng and Derynck, 2005). In order to stop signaling 

through Smads, the inhibitory Smad, Smad7, is induced by Smad3 and serves as a 

negative regulator (Feng and Derynck, 2005). The inhibitory Smad7 competes with the 

receptor-activated Smads for receptor interaction (Moustakas et aI., 2001). 

Knockout of TGF~2 results in cardiovascular defects including ventricular and 

outflow tract septal defects, hypoplastic ascending aorta, dual outlet right ventricle and 

dual inlet left ventricle (Sanford et aI., 1997), but no reported epicardial defects. The 

mutant mice die perinatally due to respiratory distress possibly as a result of 

cardiovascular dysfunction (Sanford et aI., 1997). TGF~2 is the only TGF~ isoform that 

is expressed in the proepicardium (Molin et aI., 2003) (Figure 10) suggesting it may be 

important for development of the epicardium. TGF~2 is also localized to the developing 

outflow tract and cardiomyocytes (Molin et aI., 2003) (Figure 10) and is known to be an 

activator of EMT and possible regulator of apoptosis in endocardial cushions 

(Camenisch et aI., 2002; Kubalak et aI., 2002). At this time, no epicardial defects have 

been reported or observed by in TGF~2-/- mice. Interestingly, the RXRu-/- mouse heart 

has elevated TGF~2 expression during midgestation (Kubalak et aI., 2002) (Figure 12) 

and potentially during early heart development (Jenkins and Kubalak, unpublished data). 

We hypothesize that increased TGF~2 plays a role in the abnormal epicardium formation 

seen in the RXRu-/- mouse, indicating the need to explore the TGF~2 signaling pathway 

further in epicardium attachment and proper epicardium function 

H. The retinoid X receptor knockout (RXRa-I-) mouse 

The RXRu-/- mouse is the only single retinoid receptor knockout to result in 

congenital heart disease. The RXRu-/- mouse has a thin myocardium, improper 

septation of the OFT and hypoplastic endocardial cushions and is embryonic lethal 
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between E13.5 and E15.5 (Gruber et aI., 1996; Sucov et aI., 1994). RXRu-/- mice also 

have an increase in apoptosis in the outflow tract and elevated TGF~2 at midgestation 

(Kubalak et aI., 2002) (Figure 12). In addition to its cardiac defects, the RXRu-/- mouse .. 

also has decreased liver mass as well as edema and ocular defects (Kastner et aI., 

1994; Sucov et aI., 1994). 

The RXRa-/- mouse has, among other cardiac defects, a defect in epicardium 

development (Jenkins et aI., 2005) (Figure 6). Epicardium formation in the mutant is 

delayed and, once the epicardium forms, is detached from the myocardium (Jenkins et 

aI., 2005). There are several areas of bare myocardium in the RXRu-/- heart up until 

E11.5 when the wild type mouse epicardium is fully formed (Jenkins et aI., 2005). By 

E12.5, the RXRa-/- mouse has epicardium fully covering the heart, however, it is 

detached from the myocardium (Jenkins et aI., 2005) (Figure 6). A decrease in VCAM-1 

mRNA in the E11.5 RXRu-/- heart was also reported (Kang and Sucov, 2005) (Figure 

13), indicating VCAM-1 may be important in the RXRa-/- mouse phenotype since it has 

previously been shown to be involved in epicardium formation (Kwee et aI., 1995). 

However, the study by Kang and Sucov did not do a complete developmental profile of 

VCAM-1 in the developing heart. This detachment from the underlying myocardium may 

be due to an increase in subepicardial extracellular matrix production or a defect in 

epicardium/myocardium attachment. In this study, epicardial cell attachment will be 

further studied by analyzing adhesion proteins in the RXRu-/- mouse. 

The phenotype of the RXRu-/- mouse heart may largely be due to improper 

development and functioning of the epicardium since loss of EPDCs or fewer EPDCs 

can lead to many of the defects seen in the RXRu-/- heart such as thinning of the 

myocardium. In previously published reports, the RXRa-/- mouse was shown to have 
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Figure 12: Elevated TGF~2 protein and mRNA in the heart of the RXRu-/- mouse. 
TGF~2 mRNA levels are elevated in the heart but not TGF~1 in the RXRu-/- shown by 
RNase protection (A). Immunohistochemical analysis of E13.5 (8) and E12.5 (C) WT 
and RXRu-/- heart shows that TGF~2 levels are elevated in the RXRu-/- mouse. 
(adapted from Kubalak et ai, 2002) 
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Figure 13: Real time PCR analysis of VCAM-1 mRNA in the heart of the RXRa.-/- mouse 
at E11.S. Real time quantitative PCR shows a decreased level of VCAM-1 in the 
RXRa.-/- mouse heart at E11.S. (Adapted from Kang and Sucov, 2005) 
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increased TGF~2 in the heart during midgestation (Kubalak et aI., 2002) (Figure 12). 

Previous studies suggest that TGF~2 is increased in the proepicardium using RNase 

protection analysis of proepicardium of wr versus RXRu-/- (Jenkins and Kubalak, 

unpublished). The increased TGF~2 could be regulating proteins that are altered in the 

RXRu-/- mouse such as VCAM-1. RXRu-/- mice also have a reduction in GSK3~ 

phosphorylation (downstream of P13K1Akt pathway) and p90rsk (downstream of Erk) 

phosphorylation (Kang and Sucov, 2005). Both of these pathways are known to be 

involved in cardiomyocyte proliferation, indicating that retinoid signaling is important for 

cardiomyocyte proliferation. One study showed that the RXRu-/- mouse has reduced 

expression of NADH-ubiquinone oxidoreductase (mitochondrial complex I), reduction in 

ATP content in ventricular tissue and misexpression of several genes involved in the 

electron transport chain (Ruiz-Lozano et aI., 1998). The authors indicated that the 

hearts of RXRu-/- mice are energy deprived, which could contribute to embryonic 

lethality from impaired heart function. 

Previous studies have also shown that the levels of the extracellular matrix 

molecule fibronectin is increased in the proepicardium, epicardium and body wall of the 

RXRu-/- mouse heart and thus, may playa role in the abnormal development of the 

mutant heart (Jenkins et aI., 2005). Levels of fibronectin protein within RXRu-/- PE 

explants also appears to be elevated and disorganized in comparison to the fibronectin 

network in the wild type PE explants (Jenkins et aI., 2005), which could disrupt binding 

with integrins. In PE explants from the RXRu-/- mouse, migration of PE-derived cells is 

reduced compared to wild type, which may explain the delay in epicardium formation. 

There is also an increase in apoptosis within the PE of the RXRu-/- mouse (Jenkins et 

aI., 2005), which may also contribute to the delay in epicardium formation because fewer 

PE cells would be available to migrate to the heart. 
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Knockout of RXRa specifically in the epicardium results in thinning of the 

myocardial wall as well as defects in coronary arteriogenesis (Merki et aI., 2005). The 

epicardial-specific RXRa knockout demonstrated that the epicardium is the only cell 

lineage of the heart where RXRa can be specifically knocked out and produce a 

phenotype illustrating the importance of retinoic acid signaling within the epicardium 

(Mark et aI., 1999; Merki et aI., 2005). These mice have defects in the coronary arteries 

(abnormal branching), thinning of the myocardium, detachment of the epicardium and 

thinning of the subepicardium (Merki et aI., 2005). The coronary artery defect was not 

reported in the original paper describing the systemic RXRa-/- mouse (Sucov et aI., 

1994). In the epicardial-specific RXRa-/- mouse there is a down-regulation of FGF2, ~­

catenin and Wnt9b, all of which are known to be important in epicardial EMT and 

vasculogenesis (Merki et aI., 2005). Re-expression of RXRa specifically in the 

myocardium for RXRa-/- hearts is unable to rescue the thin myocardium phenotype 

suggesting that the thinning of the myocardium is not due to loss of RXRa-/- in the 

myocytes (Subbarayan et aI., 2000). 

The cell adhesion molecule VCAM-1 has previously been shown to be required 

for epicardium formation (Kwee et aI., 1995). VCAM-1 was altered in the RXRa-/­

mouse heart with a decrease seen at E11.5 compared to the WT (Kang and Sucov, 

2005). Based on its known role in epicardium formation through adhesion of the 

epicardium to the myocardium (Kwee et aI., 1995) and in inhibiting epicardial EMT 

(Dokic and Dettman, 2006), it is thought that VCAM-1 could have a role in epicardium 

adhesion and epicardial EMT in the RXRa-/- mouse. This current study aims to analyze 

VCAM-1 in the RXRa-/- model of aberrant epicardium formation during E9.5-E13.5 and 

determine if the retinoid and/or TGF~2 signaling pathway is responsible for its regulation. 
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The overall hypothesis to be tested in this dissertation is that proper expression 

of VCAM-1 is essential for normal cardiac morphogenesis and is regulated by TGF~2 

and/or retinoid signaling during formation of the epicardium. To address this hypothesis 

there are two specific aims: 

Aim 1: To determine the expression pattern and levels of VCAM-1 in E9.5-E13.5 

RXRu-/- versus wild type (WT) hearts. 

Aim 2: To determine how TGF~2 and/or retinoid signaling regulate VCAM-1 expression 

during heart and epicardium development 
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Chapter 2: Materials and Methods 

Transgenic Mice and Embryos 

RXRu+/- breeders were maintained as previously described on a C57BL6 

background (Sucov et aI., 1994). RXRu+/- mice were crossed to yield WT and RXRu-/­

embryos to use for some experiments (immunohistochemistry, western blot, real time 

PCR and epicardial explants). WT mice were crossed to yield WT embryos to use for 

epicardial explants and whole embryo culture (WEC). Timed pregnant females were 

sacrificed using isofluorane followed by cervical dislocation on the appropriate 

embryonic day for experimentation. Embryos were staged using the day of plug as 

embryonic day (E) 0.5. Embryos were removed from the uterus and yolk sac then 

dissected according to each experiment. 

Immunohistochemistry 

Whole embryos (E9.0-E12.5) from RXRu+/- matings were bisected and fixed in 

2% paraformaldehyde for 1 hour at room temperature (RT). A portion of the tail of each 

embryo was removed for genotyping. Wild type and mutant littermates were dehydrated 

through graded ethanols and embedded in paraffin for sectioning. The paraffin 

embedded tissues were sectioned at 5!lm and mounted onto slides (Fisher Superfrost 

plus). A guide series of each embryo (every ninth section) was made and hemotoxylin 

and eosin stained to use as a reference. Slides were deparaffinized in xylenes, 

rehydrated in graded ethanols and washed in 1 x phosphate buffered saline (PBS). 

Slides were blocked in a blocking solution with 1 % bovine serum albumin (BSA), 0.01 % 

Tween 20 in 1 x PBS for 1 hour. Sections were incubated in primary antibody diluted in 

blocking solution overnight at 4 cc. The primary antibodies used were rabbit anti-VCAM-
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1 H276 (Santa Cruz Biotechnologies), rabbit anti-integrin a4 (Abcam 65984) and rabbit 

anti-N-cadherin (Abcam 12221). The following day, sections were washed with 1x PBS, 

incubated in anti-rabbit secondary antibody conjugated to Alexa-488 or Alexa-594 from 

Molecular Probes diluted in blocking solution, for 2 hours and washed in 1 x PBS. 

Following PBS wash, sections were nuclear stained using ToPr03 nuclear stain 

(Invitrogen Molecular Probes) for 10 minutes then washed. Slides were coverslipped 

using OABCO in PBS and a glass coverslip, sealed with nail polish (Fisher) for 

microscopic analysis. The fluorescently stained tissue sections were viewed on a Leica 

rcs SP2 AOBS confocal microscope. To compare wr and RXRa-I-, constant gain and 

laser settings were used throughout the analysis. 

Western Blottingllmmunoblotting 

Samples of whole heart were taken from wild type and mutant embryos. The 

genotypes of the embryos were determined by PCR following dissection as described 

above. Protein was extracted from single hearts in 20l-l1 RIPA (20 mM Tris pH 7.5, 100 

mM NaCI, 0.5% NP-40, 0.5 mM EOTA, 0.5 mM PMSF) buffer containing protease 

inhibitors (Complete mini, Roche) and sonicated until the tissue was disintegrated. 

Protein samples were centrifuged at maximum speed for 10 minutes at 4°C to pellet any 

cell debris. The supernatant was removed and 6x loading buffer (200 mM Tris-HCI pH 

6.8, 50% glycerol, 8% SOS, 400 mM OTT, 0.4% Bromophenol blue) was added to each 

sample to a final concentration of 1x. Samples were heated at 95°C for 5 minutes and 

then loaded onto a 10% Tris-HCI gel along with Precision Plus Kaleidoscope Standard 

molecular weight marker (Biorad). The gel was run for 45 minutes at 60 volts (V) then 

for an additional 2-3 hours at 130V. Following electrophoretic separation, the gel was 

equilibrated in transfer buffer for 20 minutes. PVOF (GE water and processing 
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technology) membrane was cut to the appropriate dimension (8.5cm x 5.5cm), activated 

in methanol for 1 minute, washed in water for 10 minutes then equilibrated in transfer 

buffer for 10 minutes. Blot paper (BioRad) was cut to appropriate dimensions (gcm x 

6cm) and equilibrated with transfer buffer. A Transblot semi-dry transfer cell (BioRad) 

was used to transfer the proteins from the gel to the PVDF membrane. Protein transfer 

was done at 20V for 30 minutes. Once proteins were transferred, the blot was rinsed in 

1XTBST (Tris-buffered saline containing 0.01%) Tween20). After washing, the blot was 

blocked in 5x blocking buffer (TBST with 5% dry milk) for 1 hour. Primary antibody 

(rabbit anti-VCAM-1 H276) was diluted to 1 :500 in 1 x blocking buffer and incubated with 

the blot overnight at 4°C. The following day, the blot was washed for 1 hour with TBST, 

incubated in horseradish peroxidase (HRP) conjugated anti-rabbit secondary antibody 

diluted 1: 1 0,000 in 1 x blocking buffer, then washed with TBST for 1 hour. The blot was 

incubated with West Femto (Pierce) solution per the manufacturer's recommended time 

and developed using autoradiography film (Hyperfilm, Amersham). Blots were stripped 

for probing with different antibodies using ReBlot mild solution (Millipore) as per 

manufacturer's recommendations. Blots were scanned for quantification of protein 

levels using Image J (NIH) for densitometry and normalized to ~-tubulin. 

Real time PCR (RT -PCR) 

Intron-spanning primers were designed for each mRNA of interest and checked 

for specificity to the gene of choice by using BLAST on the NCBI website 

(http://www.ncbi.nlm.nih.gov.ezproxy.musc.edu/BLAST/). The intron-exon boundaries of 

each gene were mapped and primer sets designed to span an intron in order to verify 

that we were amplifying cDNA and not genomiC DNA in the PCR. 

Sequences of the primers were: 

Integrin a4 F: 5' CCCACAGGCCTTTATTTCAT 
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Integrin a4 R: 5' CTATCCTTGAGAGGCGATCC 

VCAM-1 F: 5' CACTCTTACCTGTGCGCTGT 

VCAM-1 R: 5' CTCCAGATGGTCAAAGGGAT 

GAPDH F: 5' AACTTTGGCATTGTGGAAGGGCTC 

GAPDH R: 5' TGGAAGAGTGGGAGTTGCTGTTGA 

N-cadherin F: 5' ATGCCCAAGACAAAGAAACC 

N-cadherin R: 5' CTGTGCTTGGCAAGTTGTCT 

TGF~2 F: 5' GCTTTGGATGCTGCCTACTGCTT 

TGF~2 R: 5' TGTACAGGCTGAGGACTTTGGTGT 

RNA was isolated from whole hearts of RXRa-/- and wild type mice using RNA 

Stat60 (Tel-Test, Inc) per manufacturer's recommendations. The amount of RNA was 

quantified by UV absorbance at 260nm. Complementary DNA (cDNA) was made from 1 

Ilg RNA samples using M-MLV reverse transcriptase (Promega) and Oligo dT (Gibco). 

Real time reverse transcriptase (RT) PCR was performed using SYBR green (BioRad) 

per manufacturer's protocol using the BioRad iCycler. All reactions were performed in 

triplicate. Relative mRNA levels in each sample were determined based on differences 

between the cycle thresholds (Ct) for each amplicon. The delta Ct was determined by 

subtracting the Ct value of the GAPDH from the Ct value of the gene of interest. The 

fold change between WT and RXRa-/-was determined using the delta delta Ct method 

(Schefe et aI., 2006). 

Transmission Electron microscopy (TEM) 

Embryos fixed in 2%) glutaraldehyde were sent to the Instrumentation Resource 

Facility at the University of South Carolina School of Medicine in Columbia, SC where 

Dr. Robert Price's lab performed the TEM analysis. Images were analyzed in 
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collaboration with Dr. Price to look for differences in cellular junctional complexes 

between the epicardium and myocardium of the E1 0.5 wr and RXRa-I-. 

In silico promoter analysis 

The VCAM-1 promoter sequence was obtained from the NCBI database 

(Accession number: U42327) and analyzed using the Transcription Element Search 

System (TESS) program (http://www.cbil.upenn.edu/cgi-bin/tess/tess). Smad binding 

elements and retinoid binding sites were also searched for manually within the promoter 

to ensure that al possible sites were identified. 

Rat epicardial (REC) cells 

Rat epicardial (REC) cells were obtained from Dr Robert Gourdie at the Medical 

University of South Carolina in Charleston, SC and were maintained as described (Wada 

et aI., 2003). The cells were grown in media consisting of Dulbecco's Modified Eagle 

Medium (DMEM 4.5 gIL, Gibco) supplemented with 10% fetal bovine serum (Gibco), 

penicillin-streptomycin and L-glutamine at 37°C and 5% C02. Cells were passaged 

using 0.05% trypsin EDTA (Gibco) at 37°C and then plated according to the specific 

experimental protocol being used. REC cells were used for chromatin 

immunoprecipitation and VCAM-1-luciferase analysis. 

Chromatin immunoprecipitation (ChiP) 

REC cells (100,000 cells) were seeded onto 35 mm dishes and grown until 90% 

confluent. Each dish of cells was fixed with 37% formaldehyde to covalently crosslink 

proteins to the DNA. ChiP was performed using the EZ ChiP kit from Millipore per the 

manufacturer's instructions. Briefly, chromatin was harvested from the cells by adding of 

SDS lysis buffer (Millipore), scraping cells into an eppendorf tube and pelleting the cells. 
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DNA was sheared by sonication 4-5 times in a water bath sonicator containing ice until 

DNA was sheared to fragments of 200-1000 basepairs (approximately 5 minutes). DNA 

was analyzed on an agarose gel to assure the proper shearing of the DNA. Sheared 

DNA was diluted in Dilution Buffer (Millipore) to a 1:10 DNA:buffer ratio. 

Protein G Agarose (Millipore) was added to the diluted sheared DNA and 

incubated for 1 hour at 4°C to remove proteins and DNA that may bind non-specifically 

to the Protein G agarose later in the procedure. Samples were centrifuged at low speed 

(1000g) and the pellet was discarded. Ten III of each supernatant was saved to use as 

the "input" sample. One milligram of the immunoprecipitating antibody was added to 

each sample and incubated overnight at 4°C with rotation. Immunoprecipitating 

antibodies used were anti-RNA polymerase (positive control-Millipore), RXRa (0-20, 

Santa Cruz) and Smad4 (Santa Cruz). The negative control had normal mouse IgG 

added instead of an antibody. 

Protein G agarose was then added to each sample and incubated for 1 hour. 

Samples were centrifuged at low speed and supernatant removed and discarded. The 

agarose beads were first washed in low salt (Millipore) then high salt (Millipore) then LiCI 

buffers (Millipore) followed by TE buffer. Samples were eluted in elution buffer 

(Millipore) and crosslinked proteins were separated with 5M NaCI. Samples were 

incubated with RNase A, 0.5M EDTA, 1 M Tris-HCI and Proteinase K and then purified 

using the DNA purification system in the EZ ChiP kit (Millipore). DNA that was 

crosslinked to RXRa or Smad4 will coprecipitate with the chromatin complex and can 

then be analyzed using PCR. 

A PCR reaction using primers to the VCAM-1 promoter or the GAPDH promoter 

(as a positive control) was performed to determine if portions of the VCAM-1 promoter 

DNA were bound by RXRa or Smad4. The PCR reaction consisted of a 95°C 
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denaturation cycle for 5 minutes followed by 30 cycles of denaturation at 95°C for 1 

minute, annealing at 60°C for 1 minute and extension at 72°C for 1 minute. A final 

extension at 72°C was done for 10 minutes. PCR samples were run on a 2.5% agarose 

gel containing ethidium bromide. DNA bands were visualized using a gel imager. 

ChiP primers were as follows (Figure 14, highlighted in red): 

VCAM-1 ChiP F: TCCTGTCATCCAGCAATGGGTCAA 

VCAM-1 ChiP R: AACTGCCAACAGTGTGTGTGTGTG 

GAPDH ChiP F: 

GAPDH ChiP R: 

CTGAGCAGACCGGTGTCACATC 

GAGGACTTTGGGAACGACTGAG 

TGF~2 and 9-cisRA treatments 

Lyophilized TGF~2 (R&D Systems) was reconstituted in diluent (4 mM HCI in 

0.1 % BSA) at a 1 Ong/~I concentration. Lyophilized 9-cisRA (MP Biomedicals) was 

reconstituted in DMSO at a concentration of 100 mM. Most treatments were done in 

serum-free DMEM to eliminate the variability from growth factors contained within 

serum. The appropriate amount of TGFf32 and/or 9-cisRA was added to serum-free 

DMEM depending on experiment (concentrations used are listed with each experiment) 

and then added to cells in culture. In the case of whole embryo culture and luciferase 

assays, the appropriate amount of TGF~2 and/or 9-cisRA was added directly to the 

culture medium. Concentrations used of each varied depending on the experiment. 
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Figure 14: Regulatory elements contained within the mouse VCAM-1 promoter region. 
5' portion of the sequence of the mouse VCAM-1 promoter (accession number: U42327) 
with putative and defined regulatory sites highlighted. Smad-binding elements are 
highlighted in yellow. Retinoid elements are highlighted in blue. The TATA box is in 
purple upstream of the start site indicated by the black arrow. E box sequences are 
highlighted in green. ChiP primers used are highlighted in red. 
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-1894 gatctacata gccacggaga gttctttagc tatatgttag agtagtggtt cttaaacgag gaaggatttg accttgtgga atccaccaaa tagttttttt 

- 1794 tttcacttcc tctgttgtat gtactattct cctttcctga taggaattat ttctccactc acttgggtga gaactgatac caaataagat gagtctgcat 
SBE 

-1694 gatccaagta gttatttatt tttaagtgtc aaagacatgg attaacattt tcttacatgc ctttgatcta tggagaaggt gagaatcagt agggggtag1.. 
SBE SBE 

-1594 ctatactctc cttttatgac atgacattgt tgaggtcctc tagatgacat ggcagctaat gtcatcgatc cctggatatg tcgtcatagc cctaaaatat 

-1494 atccctcaac ttccctttta tacttgcctc tcagtgggag ccacatgtat tctcaagagg gaattcagaa gtctctcctg ccaggttgga gcagttggcg 
SBE 

-1394 actgtggg Lc \;cactgatag cctttgtcca atgacatgat actgttaatt ttacatgtgc ccagatgtct. gggaactata cctttcttgt ggaattattt 
SBE SSE 

-1294 ttttctc gcactt atgaactaca ttcagtattt tgaacgtttc tcttctagat tttaaacatc tagaagatgc tgcaggtttt atagtcgtta 
E Box 

- 1194 tatataaaac cattatatat atatatatat atatatatat atatatatat atatatatat atggaataga aacaactatg aataagaact agtcctggcc 

- 1094 atgcagggaa ctgataatgc catgtgggag gtaaacccac atgtgtataa tacaaggaag tggctattcc ggtttctttc tgatgggcaa gcattttgca 

-994 aggacatggg ctatgcatgt gtaagaccta cagaggcatt ta ,gacactt aattgagtc t ttcaaaaagt catttcactg ggagtagaaa ataataataa 
SSE SSE SSE 

-894 aaaaatggtt gtcaattcat ctcctaaagc taatctgttt acatattcaa ttggacttgt ggctaaataa tgcagccaaa gaaatccacc acaaaaattt 

-794 agcagacaga tcccattttt tagcgttcaa gtct.gcaaaa gac cctgt catccagcaa tgggtca ag ggctggggca ttgtcaaaca aaagaaaaga 
SSE SSE SSE retinoi retinoid 

-694 taattccctt cattctgcat caacgtcctt tcatttacta cttcagaaag ttatttcagg gaggtttttt ttttgtcaaa aattcactta tgaataaaag 

-594 agtataaaaa taagaactac tgactcacat tctaaaagag tgactcatga taatgSlgtca ataaaaacaa ataaaggata ttttcctttt tttgttgaaa 
retinoid 

-494 gagaacaatt tttatttttt aaattgcaaa tgcatttctt aatgaagaaa agtcagtggt tatttactga gtgatctctg tcLttgcctg tcacacacac 
SSE 

-394 acacacacac acacaca c ac:acacacac actgttggca gt catttt gcaatcatct tttcaggaga gatagccctt tcggagctga aggtcaggaa 
retinoid 

-294 aagccagaga tttatatact tggaagtgtc gtgtttccca ggactcagaa tgacttcagc ccagaaagca gctgaagggg ttaacgtggg gacttggctg 

-194 gctgtcagtt aaactttttc cctggctctg ggtttcccct tgaagggatt tccctccgcc tctctagcaa gaccct agagcaga tttctattt 
SSE TATA SSE --... 

·-94 cactcacacc agcccggctg gctttggagg ctgaacactt ttcccagaca cttt ggcacaaa gaaggctttg aagcagag,3.C ttgaaatgcc 
SSE E Sox retinoid SSE 

tgtgaagatg gtcgcggt.ct tgggagcctc aacggtactt tggatactgt ttgcagt.ctg taagttcctg acctatttca cacatctaca gcttctggtg 
SSE SSE 

106 tactacagag ctttgctata agagccagta ttctgacaga gctggggacg gattttcttt ccactgtcaa atgagtaatt tggattatat cggtagtggg 
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Whole embryo culture (WEe) 

WEC was performed as previously described (Hertig et aI., 1999). Embryos at 

E11.5 were removed from the uterus then dissected to leave the embryo attached to the 

placenta and yolk sac via the two pairs of umbilical vessels. The embryos were placed 

into roller culture bottles containing pre-equilibrated 50% DMEM and 50% immediately 

centrifuged rat serum (lCRS) and cultured at 37°C with 95% O2 and 5% CO2 . Following 

a 1 hour pre-equilibration period, TGFf32 (1 Ong/ml), 9-cisRA (1 OOnM), diluent or TGFf32 

(1 Ong/ml)+9-cisRA (1 OOnM) was added directly to the culture medium. Embryos were 

grown in culture for 12 to 18 hours. After treatment, embryos were fixed in 2% 

paraformaldehyde for 1 hour at RT, embedded in paraffin and sectioned at 7~m to 

analyze epicardial and ventricular phenotypes (using H&E staining) and 

immunohistochemical analysis. Immunohistochemical analysis was performed as 

described above using antibodies for VCAM-1 and a4 integrin. 

Epicardial explant culture 

Ventricles were dissected from E11.5 or older embryos with removal of the atria, 

outflow tract and atrioventricular cushions. The ventricles were cut in half so that each 

half included part of the right and left ventricle (Le. bisected in the coronal plane). The 

ventricular pieces were placed epicardium side down on a fibronectin-coated 4-chamber 

glass slide (Nunc). Enough media was removed to create a meniscus to hold the 

ventricular pieces in place to allow the epicardium to attach to the FN-coated glass slide 

overnight. The following day, fresh media was added to each well and the myocardium 

was carefully removed from the epicardium leaving a lawn of epicardial cells attached to 

the slide. The following day, explants were treated with TGFf32 (10ng/ml), 9-cisRA 

(100nM), diluent or TGFf32 (1 Ong/ml)+9-cisRA (1 OOnM) in serum-free media for 24 
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hours. Epicardial explants were then fixed for 10 minutes with 2% paraformaldehyde 

and rinsed with PBS following treatment. Explants were then immunostained for rat anti­

VCAM-1 M/K2 (Santa Cruz) by first incubating in blocking buffer containing 1x PBS with 

1 % BSA and 0.3% Triton X-1 00 for 2 hours. Anti-VCAM-1 M/K2 was diluted 1 :50 in 1% 

BSA in 1x PBS and incubated overnight at 4°C. The following day, the slides were 

washed with 1 x PBS 3 times for 5 minutes each. Goat anti-rat secondary antibody 

conjugated to Alexa488 (Molecular Probes) was diluted in 1 x PBS at a 1: 100 

concentration and incubated with the slides for 2 hours at room temperature. The slides 

were washed with 1 x PBS and coverslipped using Vectashield mounting media 

containing DAPI nuclear stain (Vector Laboratories, Inc, Burlingame, CA). Explants 

were viewed and photographed on a Zeiss AXIO M2 fluorescent microscope. 

Quantification was performed using ImageJ software and the mean gray value for 

representative cells from each explant was found. Images were converted to gray scale 

and the antibody staining was seen as white pixels. The mean gray value represents 

the intensity of white pixels present in the sample, with a higher mean gray value 

indicating a higher level of expression. Statistics were calculated using a paired T-test. 

VCAM-1-luciferase plasmid 

Several attempts to generate the reported VCAM-1 promoter were made 

following the published protocol from Hosking et al. (2004) while simultaneously 

respectfully asking the authors to obtain an aliquot from the same lab (Dr. Muscat, 

Australia). After a long process of clearing the Material Transfer Agreement and Dr 

Muscat tracking down the plasmid for us (many months had passed) the plasmid was 

finally shipped to us. The plasmid contains the full-length VCAM-1 promoter inserted 

into the pGL2B-basic (pGL2B-Promega), which contains a luciferase reporter gene and 

ampicillin resistance gene (Figure 15). This plasmid is promoter-less until a promoter is 
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inserted into it indicating that any expression of luciferase seen is due to activation of the 

inserted promoter (i.e. VCAM-1). 

The primers used to make the VCAM-1 luciferase plasmid (VC1889) were as 

follows (Hosking et aI., 2004) and were also used to verify plasmid identity via PCR and 

direct sequencing: 

1895 VCAM: GCCGGTACCGATCTACATAGCCACGGAGAG 

19 VCAM: CGACCATCTTCACAGGCATTT 

1887 KPN1 VCAM: CGGGGTACCATAGCCACGGAGAGTTCTT 

1XH01VCAM: GCCCTCGAGTTCAAGTCTCTGCTTCAAAGCC 

GLprimer 1: TGTATCTTATGGTACTGT AACTG 

GLprimer 2: CTTTATGTTTTTGGCGTCTTCCA 

These primers were used to verify that we had the correct plasmid (Figure 16) following 

amplification of the plasmid using Escherichia coli (E. coli). We also performed a 

restriction digest using Kpnl and Xhol to remove the VCAM-1 promoter insert from the 

plasmid as another means of plasmid identity verification. 

The plasmid was eluted from the filter paper in a 1.5 ml eppendorf tube 

containing 1 00 ~I of sterile filtered 1 x PBS. The filter paper was incubated in 1 x PBS 

overnight at 4°C. The CMV-Renilla luciferase plasmid was obtained from Promega and 

was used as an internal transfection efficiency control to normalize the luciferase data. 

Empty pGL2B-basic plasmid was used as a negative control. All plasmid DNA was 

transformed into OneShot Mach1 chemically competent E. coli cells (Invitrogen) per 

manufacturer's protocol. Transformed bacteria cells were grown on LB agar plates 

containing ampicillin at 37°C. Single colonies were selected and grown in small cultures 

for MiniPrep (Qiagen) to verify that we had the correct plasm ids. When the plasm ids 

were confirmed by sequencing, PCR and restriction digest, we grew the transformed 

bacteria in a large culture (500 ml) for MaxiPrep (Qiagen) to obtain a large amount of 
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Figure 15: Diagram of the mouse VCAM-1 promoter luciferase plasmid. A schematic 
diagram of the 1889 base pair portion of the mouse VCAM-1 promoter construct cloned 
into the pGLBasic luciferase reporter plasmid. Luc, luciferase reporter gene; F1 ori, 
origin of replication; Amp, ampicillin resistance gene. (Hosking et aI., 2004) 
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Figure 16: VC1889 plasmid restriction digest and VCAM-1 promoter PCR. A. The 
VC1889 luciferase plasmid was digested (lane 3) to verify the plasmid integrity. Digest 
with Kpn1 and Xh01 releases the VCAM-1 promoter element, which is 1889 basepairs. 
B. PCR with the GL primers (plasmid-specific, lane 2) and VCAM-1 restriction enzyme 
primers (specific to the inserted VCAM-1 plasmid, lane 6) also confirm a band at 
approximately 1889 basepairs. The empty plasmid (pGLBasic, lanes 3, 5 and 7) shows 
no bands from the PCR indicating that the VCAM-1 promoter is not present. PCR with 
the VCAM-1 primers is negative for the presence of the 1889 basepair product (lane 4), 
which is expected. In order to insert the VCAM-1 promoter sequence into the plasmid, 
restriction enzyme sites were inserted on the ends of the VCAM-1 promoter where these 
primers (VCAM1 promoter primers) would normally bind. 
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plasmid for transfection. Both the MiniPrep and MaxiPrep were performed via the 

manufactu rer's recommendations. 

In order to confirm that we had the correct VCAM-1-luciferase plasmid we 

performed a restriction digest at 37°C using the restriction enzymes Kpn1 (NEB) and 

Xh01 (NEB) to cut out the VCAM-1 promoter. The digest was run on a 2%) agarose gel 

and can be seen in Figure 16. We also used PCR analysis to confirm that we had the 

correct plasmid using the primers above that were specific to the plasmid (GL primers), 

the promoter without restriction sites (1895 VCAM and 19 VCAM) and the promoter 

containing the restriction sites (1887 KPN1 VCAM and 1XH01 VCAM) (Figure 16). The 

primers 1895 VCAM and 19 VCAM should not have produced a band if the restriction 

sites used for cloning into the plasmid were present, which can be seen in Figure 16. 

Sequencing was also used to verify that we had the correct plasmid. The VCAM-1-

luciferase and CMV-Renilla luciferase plasm ids were then used for assays. 

VCAM-1-Luciferase analysis 

Following passaging, 35 mm dishes were seeded with 100,000 REC cells. The 

dishes were grown to 750/0 confluency prior to transfection. The cells were transfected 

with 0.25 ~g of VCAM-1-luciferase plasmid and 0.25 ~g of CMV-Renilla luciferase 

plasmid. Western blot analysis was used to determine the optimal amount of plasmid to 

use for transfection using a luciferase antibody to measure the production of luciferase 

(Figure 17). For experiments, negative control cells were transfected with 0.25 ~g of 

pGL2B-basic and 0.25 ~g of CMV-Renilla luciferase plasmid. Twenty-four hours 

following transfection, the cells were treated with the indicated concentrations of TGF~2 

and/or 9-cisRA. Treatments were added directly to the dishes without changing the 

media from transfection. Twenty-four hours following treatment, the cells were 
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Figure 17: Western blot of luciferase protein following transfection with VC1889. 
Detergent extracts of REC cells transfected with different concentrations (O.25JlQ, O.5JlQ 
and 1 Jl9) of VC 1889 plasmid were assayed for the presence of luciferase protein in 
order to determine the appropriate concentration to use for experiments. The 0.25 !-t9 
transfection (lane 3) is the only one that produced luciferase and thus was the 
concentration used for experiments. Lanes 1 and 2 were negative controls. 
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harvested using Passive Lysis Buffer (Millipore) diluted to 1 x concentration. Each dish 

was washed with 1 x PBS, followed by addition of 200 ~I of 1 x Passive Lysis Buffer. 

Each dish was scraped with a cell scraper and the buffer was transferred to a 1.5 ml 

eppendorf tube. Each sample was subjected to one freeze-thaw cycle prior to assaying 

for luciferase activity. Luciferase activity was analyzed using the DualGlo luciferase 

assay kit (Promega) per the manufacturer's recommendations using a luminometer. 

Each experiment was performed in triplicate. Statistics were calculated using a paired 

T-test between each treatment group. 
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Chapter 3: Results and Discussion 

A. Expression patterns of VCAM-1 in RXRa-/- at E9.5 and E10.5 are similar to WT 

The expression ofVCAM-1 was assessed using immunohistochemical analysis 

of paraffin embedded sections of wr and RXRa-/- embryos. At E9.5, VCAM-1 protein 

was expressed throughout the myocardium (Figure 18). VCAM-1 was expressed in the 

PE but at levels lower than those seen in the atrial and ventricular myocardium in both 

WT and RXRu-/- (Figure 18). Expression of VCAM-1 was also seen in budding PE cells 

as well as migrating PE cells moving to the myocardial surface in both the wr and 

RXRa-/- (Figure 18). There were no detectable differences seen in the expression 

patterns of VCAM-1 between wr and RXRa-/- in any area of the heart at E9.S. 

Previous studies by others have shown that VCAM-1 is expressed in the PE and 

myocardium at this stage of mouse development (Yang et aI., 1995) hence our results in 

the wr are consistent with other published results. No differences in expression of 

integrin a4 between wr and RXRu-/- were observed (Figure 19 and Jenkins and 

Kubalak, unpublished). Both VCAM-1 and integrin a4 are necessary for PE bud 

formation as well as initial PE cell attachment to the myocardium for epicardium 

formation. Since the epicardium will form in the RXRa-/- mouse heart, it is not surprising 

for VCAM-1 and integrin a4 levels to be similar between WT and RXRu-/-. TGF~2 is 

expressed in the PE (Molin et aI., 2003) and TGF~2 mRNA is elevated in RXRu-/- PE 

(Jenkins and Kubalak, unpublished). At this age the signaling from TGFf32 may not be 

elevated enough to affect VCAM-1 levels. However, no quantitative studies of VCAM-1 

expression at E9.5 have been performed (Le. real time PCR or western blot). 
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At E1 0.5, VCAM-1 was expressed throughout the atrial and ventricular 

myocardium and can be found in body wall of both the WT and RXRu-/-. VCAM-1 

expression was not observed in the endocardium of WT and RXRu-/- or in the 

epicardium of the WT (Figure 20), which is consistent with the current established 

expression pattern of VCAM-1 in the heart (Yang et al., 1995). There were few 

epicardial cells present on the myocardium in the RXRu-/- heart as is common with this 

mouse due to the delay in epicardium formation (Jenkins et aI., 2005) and there was no 

expression of VCAM-1 in the few epicardial cells present (Figure 20). Upon gross 

examination of the embryos at E1 0.5, there were no detectable differences in the 

histological phenotype of the hearts between WT and RXRu-/- mice. At E1 0.5 in 

development, the RXRu-/- mouse heart begins to exhibit phenotypic differences from the 

wr, with delayed epicardium formation observed and fewer PE buds present. A change 

in VCAM-1 could decrease PE bud formation, which would result in a delay in 

epicardium formation. Since analysis of VCAM-1 has only been done through 

immunohistochemistry at this age and at E9.5, it could be that there are some slight 

differences in VCAM-1 not observable through this method. Small changes in protein 

levels in embryonic development can have large consequences to the embryo. It is 

possible that a slight increase or decrease in VCAM-1 is present but cannot be found 

from our current experimental analysis. 
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Figure 18: IHe analysis of VCAM-1 expression at E9.5 in the WT and RXRa-/- mouse 
heart. VCAM-1 expression (green) is seen in the PE, PE buds and ventricular 
myocardium in hearts from both wr (8 and C) and RXRa-/- (E and F). No histological 
abnormalities were apparent in the hearts of E9.5 RXRa-/- (D) as compared to the wr 
(A). The arrow indicates PE buds that are migrating to the surface of the myocardium. 
Atr, atrium; Vent, ventricle; PE, proepicardium. Green- VCAM-1; Blue- ToPro3 nuclear 
stain. Images are representative of two experiments (2 litters) each having 
immunostained sections from the hearts of one WT and one RXRa-/- embryo from the 
same litter. 
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Figure 19: IHe analysis of integrin a4 subunit expression at E9.S and E10.S in the wr 
and RXRa-/- mouse heart. Integrin a4 subunits expression (green) is seen in the PE 
and myocardium of the WT (A) and RXRa-/- (8) at E9.S. Integrin a4 expression is seen 
in the epicardium and myocardium of the WT (C) and RXRa-/- (0) at E1 0.5. BW, body 
wall; PE, proepicardium; Myo, myocardium; Endo, endocardium; Epi, epicardium. 
Green- integrin a4; Blue- ToPro3 nuclear stain. Images are representative of two 
experiments (2 litters from each stage) each having immunostained sections from the 
hearts of one WT and one RXRa-/- embryo from the same litter. 
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Figure 20: IHC analysis of VCAM-1 expression at E1 0.5 in the WT and RXRa-/- mouse 
heart. VCAM-1 (green) is expressed in the myocardium and body wall in both the WT (8 
and C) and RXRa-/- (E and F). The ventricular myocardium in the RXRa-/- mouse heart 
is thinner (0) than the ventricular myocardium in the WT (A). Boxed area in A is found in 
panels Band C. Boxed area in D is found in E and F. Myo, myocardium; Epi, 
epicardium; Atr, atrium; OFT, outflow tract; AV, atrioventricular junction; Vent, ventricle. 
Green- VCAM-1; Blue- ToPro3 nuclear stain. Images are representative of two 
experiments (2 litters) each having immunostained sections from the hearts of one WT 
and one RXRa-/- em bryo from the same litter. 
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B. TEM of WT and RXRa-/- hearts at E10.5 

From previous studies of the RXRa-/- mouse, there is a delay in formation of the 

epicardium in the RXRa-/- mouse (approximately 0.5-1.0 day later than Wf) and, once 

formed, will be detached from the myocardium at E12.5 when the epicardium is normally 

closely associated with the underlying myocardium. Clearly, there must be an initial 

attachment of proepicardial buds that allows the epicardium to form in the mutant. This 

is in contrast to what was found in the in the integrin a4 and VCAM-1 KOs where a lack 

of attachment prevents the formation of the epicardium (Kwee et aI., 1995; Yang et aI., 

1995). In the RXRa-/- mouse heart there are a few areas of the myocardium where 

proepicardial cells do attach. However, since there are large areas where the 

epicardium is not attached, intercellular junctions were examined at the ultrastructural 

level. TEM analysis was used to examine cell junctions in more detail. In the RXRa-/-

mouse heart, cellular junctions were harder to find between myocytes and epicardial 

cells as shown in Figure 21. However, cell junctions between adjacent epicardial cells 

were readily visible, therefore defects in detachment are most likely between epicardium 

and myocardium and not between adjacent epicardial cells (Figure 21). This is not 

surprising because there is a complete epicardium that forms in the RXRa-/- mouse 

heart, indicating that the epicardial cells will attach to each other however fail to remain 

attached to the myocardium. 

Also evident in the micrographs of the RXRa-/- mouse heart was the decrease in 

visible mitochondria as well as free ribosomes (Figure 21). This is also not surprising 

because it has been previously reported that the RXRa-/- mice have metabolic 

deficiencies in addition to heart defects (Ruiz-Lozano et aI., 1998). Data from this paper, 

however, reported an increased density of mitochondria per cell possibly as a feedback 

mechanism responding to the decreased metabolic state (Ruiz-Lozano et aI., 1998). 

83 



Figure 21: Immunogold TEM analysis of epicardium/myocardium junctions in E1 0.5 WT 
and RXRa-/- mouse hearts. The WT epicardium/myocardium junction (A) has a visible 
cell junction and immunogold-Iabelled FN (black dots) present in the subepicardial 
space. The epicardial cell junction also has a well-defined junction (8). The RXRa-/­
epicardium/myocardium junction has a less well-defined cell junction (C) than the WT 
(A). Immunogold-Iabelled FN is also present in the subepicardial space (black dots in 
C). The cell junction between epicardial cells is well defined (D). Epi, epicardium; Myo, 
myocardium; FN, fibronectin; Mit, mitochondria 
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This observation in E12.5 embryos was not statistically significant (Ruiz-Lozano et aI., 

1998). It is possible that from E1 0.5 (fewer mitochondria) to E13.5 (more mitochondria) 

the heart is trying to make up for the metabolic deficiencies by producing more 

mitochondria. However, since metabolic deficiencies still exist at E13.5, the increase in 

mitochondria does not completely restore function. 

c. VCAM-1 is misexpressed in the epicardium of the RXRa-l- mouse heart at E11.S 

Examining embryos just prior to full epicardial attachment at E11.S, VCAM-1 was 

expressed throughout the atrial and ventricular myocardium and not in the endocardium 

of both the WT and RXRa-/- as shown by immunohistochemistry (Figure 22). VCAM-1 

was not expressed in the epicardium of the WT but was, however, expressed in the 

epicardium of the RXRu-/- mouse (Figure 22). Others have shown that VCAM-1 is not 

expressed in the epicardium and is expressed only in the myocardium of the heart 

(Kwee et ai, 1995). Expression of VCAM-1 in the epicardium has not been reported 

previously in any mouse model and represents a novel finding in heart development. 

Currently the role of misexpression of VCAM-1 in the epicardium of the RXRa-/- mouse 

is not known but it is speculated that it could adversely affect cell-cell adhesion between 

the epicardium and myocardium as well as interfere with epicardial EMT. Indeed, the 

RXRa-/- mouse has been previously reported to have fewer epicardial-derived cells in 

the heart (Merki et aI., 2005) and VCAM-1 has been shown to negatively affect EMT 

(Ookic and Dettman, 2006). Together, these results suggest that VCAM-1 may playa 

role not only in the apparent defective cell adhesion found in the mutant but also the 

blunted EMT observed in the RXRu-/- mouse epicardium (Ruiz-Lozano and Kubalak, 

unpublished), which will be discussed further in Chapter 4. 
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Figure 22: IHC analysis of VCAM-1 expression in hearts of E11.S in the WT and RXRu-/­
mice. The WT mouse has expression ofVCAM-1 in the myocardium but not in the 
endocardium or epicardium (B-E). The RXRu-/- mouse heart has expression of VCAM-1 
in the myocardium and also in the epicardium (G-J). AV, atrioventricular junction; RV, 
right ventricle; LV, left ventricle; Myo, myocardium; Endo, endocardium; Epi, epicardium; 
BW, body wall. Green- VCAM-1; Blue- ToPro3 nuclear stain. Images are representative 
of three experiments (3 litters) each having immunostained sections from the hearts of 
one wr and one RXRu-/- embryo from the same litter. 
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In order to get a more quantitative measure of VCAM-1 levels, real time PCR 

analysis of RNA from E11.5 whole hearts was perform·ed. An increase in VCAM-1 

mRNA was observed at E11.5 in the RXRa-/- mouse heart compared to the WT (Figure 

23). However, when protein levels of VCAM-1 were analyzed using Western blot 

analysis of E11.5 whole hearts, no differences were found between WT and RXRa-/­

(Figure 24). The increased VCAM-1 mRNA might not have been translated into protein 

at the time of the assay. In the RXRu-/- mouse heart there is an increase in MLC2a 

mRNA observed (Dyson et aI., 1995) without an increase in protein level (Kubalak et aI., 

2002) so it is plausible that VCAM-1 mRNA could be increased without an increase in 

protein. The misexpressed VCAM-1 protein at E11.5 appeared to be localized to the 

epicardium and was perhaps not significant enough to detect in whole heart. At this time 

it is not entirely known what the consequence are of having VCAM-1 expression in the 

epicardium. Altering the normal expression pattern of a cellular adhesion molecule 

might have a negative impact on epicardial cell adhesion or may have more significant 

effect on epicardium function such affecting epicardial EMT. VCAM-1 has been shown 

to negatively affect epicardial EMT (Dokic and Dettman, 2006). Soluble VCAM-1 

treatments increased the association of E-cadherin and ~-catenin in cellular junctions 

thereby decreasing epicardial EMT (Dokic and Dettman, 2006). So it is possible that 

misexpressed VCAM-1 in the epicardium is strengthening epicardial cell adhesion and 

decreasing EMT. 

No apparent differences in integrin a4 protein were seen from 

immunohistochemical analysis (Figure 25) between E11.5 WT and RXRu-/-. However 

preliminary studies using real time peR analysis suggested there may be an increase in 

integrin a4 mRNA in the RXRa-/- mouse heart in comparison to the WT heart (Figure 

89 



Figure 23: Real time PCR analysis of VCAM-1 mRNA in hearts of E11.5 in wr and 
RXRu-/- mice. Levels of mRNA are represented as a fold change from WT using the 
comparative Ct method. The mRNA from E11.5 RXRu-/- whole heart have 
approximately 2.75 fold higher level of VCAM-1 mRNA as compared to the average of 
the WT samples. The error bar represents ± standard error of the mean (SEM). The 
plotted values are mean fold change from the WT values. This experiment was 
performed in triplicate on two pairs of WT and RXRa-/- whole hearts. 
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Figure 24: Western blot analysis of VCAM-1 protein in E11.5 in wr and RXRu-/- hearts. 
There was no statistically significant difference in VCAM-1 protein levels between wr 
and RXRu-/-. Protein levels are represented as fold change from the average of the wr 
samples. The plotted values represent the mean fold change from wr of three 
experiments performed on a wr and RXRu-/- pair from the same litter (3 litters total). 
The error bar represents ± SEM. A representative blot is shown. 
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Figure 26: Real time PCR analysis of N-cadherin, integrin a4 subunit and TGF~2 at 
E11.5 in the WT and RXRa-/- heart. All mRNA levels are represented as a fold change 
from the WT using the comparative Ct method. N-cadherin is no different between WT 
and RXRa-/-. Integrin a4 appears to have higher mRNA levels in the RXRa-/- mouse 
heart than the WT. TGF~2 mRNA levels are higher in the RXRa-/- mouse heart than in 
the WT. This experiment was performed in triplicate on one WT and one RXRa-/- each 
from the same litter. Error bars represent the range of values for the triplicates. 
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26). No difference in the mRNA expression of N-cadherin was seen between E11.5 wr 

and RXRa-/- (Figure 26). Increased TGF(32 mRNA was found in the RXRa-/- mouse 

heart in comparison to the wr which served as a positive control and is consistent with 

our previous finding of increased TGF(32 mRNA in the RXRa-/- heart during 

midgestation (Kubalak et aI., 2002). This preliminary real time experiment (n=1) would 

need to be repeated prior to drawing any major conclusions from these results. 

D. VCAM-1 expression is increased in RXRa-l- hearts at E12.5 and E13.5 

At E12.5, the epicardium is normally in close association with the myocardium. 

EMT is altered in the RXRa-/- epicardium, as shown from previous studies with this 

mouse model (Ruiz-Lozano and Kubalak, unpublished), so it is possible that the 

disassociation of the epicardium from the myocardium (Le., epicardial bubbling) is 

negatively impacting EMT. Relatively low levels of VCAM-1 were expressed in the 

E12.5 myocardium of both the WT and RXRa-/- and none was detected in the 

endocardium at E12.5 (Figure 27) or at E13.5 (Figure 28). VCAM-1 was also not 

expressed in the endocardial cushions of the AV or OFT (data not shown). The 

misexpression of VCAM-1 found in the E11.5 RXRa-/- epicardium was also found in the 

E12.5 and E13.5 RXRa-/- epicardium. No VCAM-1 expression was seen in the wr 

epicardium at either age (Figures 27 and 28). Analysis of VCAM-1 mRNA expression 

using real time PCR showed that VCAM-1 mRNA was elevated in the RXRa-/- heart at 

both E12.5 (Figure 29) and E13.5 (Figure 30) in comparison to the WT. When protein 

levels in the E12.5 and E13.5 WT and RXRa-/- heart were analyzed using Western blot 

analysis, higher levels ofVCAM-1 protein were seen at both E12.5 (Figure 31) and 

E13.5 (Figure 32) RXRa-J- than in WT. At E11.5, the epicardium is normally dissociated 
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Figure 27: IHC analysis ofVCAM-1 expression at E12.S in the WT and RXRa-/- heart. 
VCAM-1 is expressed in the myocardium but not the epicardium or endocardium of the 
WT heart (B-E). VCAM-1 is expressed in the myocardium at higher levels in the RXRa­
/- mouse (G-J) than the WT. VCAM-1 is also expressed in the epicardium in the RXRa­
/- mouse (G-J). H&E sections of the WT (A) and RXRa-/- (F). Bubbling of the 
epicardium can be seen in the RXRa-/- mouse (G-J). RA, right atrium; OFT, outflow 
tract; AV, atrioventricular junction; LV, left ventricle; RV, right ventricle; Epi, epicardium; 
Myo, myocardium; Endo, endocardium. Green- VCAM-1; Blue- ToPro3 nuclear stain. 
Images are representative of three experiments (3 litters) each having immunostained 
sections from the hearts of one WT and one RXRa-/- embryo from the same litter. 
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Figure 28: IHC analysis of VCAM-1 expression at E13.5 in the WT and RXRa-/- heart. 
VCAM-1 is expressed in the myocardium but not the epicardium or endocardium of the 
V\fT heart (B-E). VCAM-1 is expressed in the myocardium at higher levels in the RXRa­
/- mouse (G-J) than the WT. VCAM-1 is also expressed in the epicardium in the RXRa­
/- mouse (G-J). H&E sections of the WT (A) and RXRa-/- (F). Bubbling of the 
epicardium can be seen in the RXRa-/- mouse (G-J). RA, right atrium; LA, left atrium; 
AV, atrioventricular junction; LV, left ventricle; RV, right ventricle; Epi, epicardium; Myo, 
myocardium; Endo, endocardium. Green- VCAM-1; Blue- ToPro3 nuclear stain. Images 
are representative of three experiments (3 litters) each having immunostained sections 
from the hearts of one WT and one RXRa-/- embryo from the same litter. 
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Figure 29: Real time PCR analysis ofVCAM-1 mRNA at E12.S in WT and RXRa-/­
heart. VCAM-1 mRNA levels are almost 5-fold higher in the RXRa-/- mouse heart than 
in the WT. Values are expressed as a fold difference from WT using the comparative Ct 
method. The error bar represents ± standard error of the mean (SEM). The plotted 
values are mean fold change from the WT values. This experiment was performed in 
triplicate on two pairs of WT and RXRa-/- whole hearts. 
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Figure 30: Real time PCR analysis of VCAM-1 mRNA at E13.5 in WT and RXRa-/­
heart. VCAM-1 mRNA leyels are approximately 8.5-fold higher in the RXRa-/- mouse 
heart than in the WT. Values are expressed as a fold difference from WT using the 
comparative Ct method. This experiment is representative of one pair of WT and RXRa­
/- whole heart mRNA samples performed with three replicates. Error bars represent the 
± SEM of the triplicates 

105 



10 1 

~ 9 ~---------------------------------------------------------------() 
Q) 
> 

.~ 8 t---------------------! 
~ 

CO 
0-
E 8 7 r----------.----------i -(/) 
Q) 

~ 6 ~-----.-----------------------~ 

« z a: 5 -r------.-----------i 
E 
,... 

I 

~ 4 +----------------------i:i::':~:;;~ « 
() 
> 
.5 3 -----
Q) 

jf 2 ~---------------------------
c..> 

""0 
"'6 
LL 1 +---------.....,.,....~...".....--~~~......--."...,........-

WT 

106 

RXRa-/-



Figure 31: Western blot analysis VCAM-1 protein at E12.5 in the WT and RXRu-/- heart. 
VCAM-1 protein levels are elevated in the RXRu-/- mouse heart in comparison to the 
wr whole heart. The plotted values represent the mean fold change from WT of three 
experiments performed on a WT and RXRu-/- pair from the same litter (3 litters total). 
The error bar represents ± SEM. A representative blot is shown. 
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Figure 32: Western blot analysis of VCAM-1 protein at E13.5 in the 'NT and RXRa-/­
hearts. VCAM-1 protein levels are elevated in the RXRa-/- mouse heart in comparison to 
the 'NT whole heart. The graph shows the quantification of the western blot performed 
on one WT and one RXRa-/- each from the same litter. 
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Figure 33: Real time PCR analysis of N-cadherin, integrin a4 and TGF~2 in E12.S \NT 
and RXRa-/- heart. All mRNA levels are represented as a fold change from the \NT 
using the comparative Ct method. N-cadherin is lower in the RXRa-/- mouse heart than 
\NT. Integrin a4 has lower mRNA levels in the RXRa-/- mouse heart than the WT. 
TGF~2 mRNA levels are higher in the RXRa-/- mouse heart than in the WT. The plotted 
values are the means of the triplicates from the experiment using one WT and one 
RXRa-/- heart from the same litter. Error bars represent the range of values for the 
triplicates. 
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from the myocardium in the WT heart. However, at E12.5 the epicardium is normally 

attached and closely associated with the myocardium. From E11.5 to E12.5 there is an 

increase in VCAM-1 protein that occurs suggesting that VCAM-1 could playa role in this 

detached epicardial phenotype. Epicardial EMT is also occurring at E12.5 when VCAM-

1 protein is increased so VCAM-1 may playa role in inhibiting epicardial EMT. The 

RXRa-/- mouse has decreased epicardial EMT (Ruiz-Lozano and Kubalak, unpublished) 

and VCAM-1 has been shown to negatively affect epicardial EMT (Dokic and Dettman, 

2006). 

No differences were observed in integrin a4 protein expression at E12.5 (Figure 

25) or E13.5 in preliminary experiments (data not shown). When mRNA levels of 

integrin a4 at E12.5 were examined, a lower level of integrin a4 mRNA was seen in the 

RXRa-/- mouse heart than in the WT (Figure 33). This is in contrast to what was 

observed at E11.5 where there appeared to be a higher level of integrin a4 in the 

RXRa-/- heart in comparison to the WT. The result at E12.S will need to be repeated 

prior to making any definitive conclusions. When N-cadherin was analyzed, there was a 

lower level of mRNA in the RXRa-/- mouse heart than in the WT at E12.S (Figure 33). 

At E11.5 there was a slight decrease in N-cadherin mRNA in the RXRa-/- heart (Figure 

26). The N-cadherin knockout is known to have a detached epicardium (Luo et aI., 

2006). However, before any conclusions can be made on the role of N-cadherin in the 

phenotype of the RXRa-/- mouse, real time experiments would need to be repeated and 

protein levels would also need to be examined. Levels of TGF(32 mRNA were examined 

as a positive control and an increase in TGFf32 mRNA was found in the RXRa-/- heart 

(Figure 33), which is consistent with our findings at midgestation (Kubalak et aI., 2002). 
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E. Epicardial explants from E13.5 RXRa-/- have a higher level of VCAM-1 than WT 

In order to provide further evidence that there was indeed aberrant expression of 

VCAM-1 in the epicardium of the RXRa-/- mouse, epicardial explants were grown in 

culture from a wr and RXRci-/- heart. The ventricular pieces were placed epicardium 

side down on a FN-coated glass slide as described in Chapter 2 and, after removing 

myocardial tissue, allowed to grow for 2 days prior to fixation with 2% paraformaldehyde. 

The explants were then immunostained for VCAM-1. In both the WT and RXRa-/­

explants, epicardial cells expressed VCAM-1 (Figure 34). However, levels of VCAM-1 

were higher in the RXRa-/- epicardial cells than in the wr. The higher levels present in 

the RXRa-/- cells is consistent with our previous findings that VCAM-1 is misexpressed 

in the epicardium prior to explant culture. The RXRa-/- epicardial explants were already 

expressing VCAM-1 prior to being explants and, therefore, retain higher levels of VCAM-

1 in culture. The expression of VCAM-1 in the wr epicardial explants was surprising 

since VCAM-1 is not typically expressed in the epicardium. This expression would 

indicate that epicardial cells are intrinsically capable of expressing VCAM-1 but do not 

under normal physiological conditions. When the epicardial cells are placed into an 

artificial culture system, the signaling that typically occurs in the epicardium could be 

altered resulting in VCAM-1 expression. Epicardial explants are grown on FN-coated 

slides. Since binding of FN by integrin a4 can induce several signaling cascades, 

excess FN/integrin a4 binding could induce signaling changes that induce VCAM-1 

expression. 

F. Smad and retinoid elements are located within the VCAM-1 promoter 

The VCAM-1 promoter sequence was analyzed using the Transcription Element 

Search System (TESS) (http://www.cbil.upenn.edu/cgi-bin/tess/tess) to locate putative 
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Figure 34: IHC analysis of VCAM-1 protein expression in E13.5 RXRa-/- epicardial 
explants than Wf. Epicardial explants from RXRa-/- had a higher level of VCAM-1 (D-F) 
than the Wf (A-C). Green- VCAM-1; Blue- Dapi nuclear stain. This experiment was 
performed on epicardial explants from one wr and one RXRa-/- mouse from the same 
litter. 
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binding sites for RXRa and Smads to determine if the retinoid and/or TGFj32 signaling 

pathways might regulate VCAM-1. This was followed by a manual search throughout 

the sequence using the consensus sequence for the binding sites. From this search 

several Smad binding elements (SBEs) and retinoid responsive elements were located 

in the VCAM-1 promoter (Figure 14). One of the pairs of retinoid elements is in a DR6 

direct repeat configuration for binding of a RAR/RXR heterodimer (Figure 14). Both 9-

cisRA and at-RA are predicted to activate this heterodimer. There are several retinoid 

elements present on the promoter that are not paired with another retinoid element 

(Figure 14). These elements on the promoter might be used as binding sites for any of 

the other receptors that RXRa is known to heterodimerize with including the vitamin D 

receptor, thyroid hormone receptor and PPARs. 

G. RXRa and Smad4 will bind to the VCAM-1 promoter 

Since potential Smad and retinoid elements have been located on the VCAM-1 

promoter, we wanted to determine if it was possible for RXRa or Smads to bind to the 

VCAM-1 promoter. ChiP analysis was used to determine if either RXRa or Smad4 were 

capable of binding to the VCAM-1 promoter. In order for either RXRa or Smads to 

directly regulate VCAM-1 expression, they must be able to bind to the promoter. This 

would also validate the in silica promoter analysis which suggests that there are binding 

sites for both RXRa and Smads. The negative control (no immunoprecipitating antibody) 

was negative for bands from the VCAM-1 PCR (Figure 35, lane 6) and control PCR for 

the GAPDH promoter (Figure 35, lane 2). The positive control for immunoprecipitation 

was the RNA polymerase antibody followed by PCR for the GAPDH promoter (Figure 

35, lane 4). 
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Figure 35: Chromatin immunoprecipitation analysis showing that RXRa and Smad4 bind 
to the VCAM-1 promoter. Chromatin immunoprecipitation shows RXRa and Smad4 
binding to VCAM-1 promoter. ChiP using the negative control (no antibody) shows no 
amplicons corresponding to GAPDH in the control PCR (lane 2) or for VCAM-1 promoter 
(lane 6). RNA polymerase immunoprecipitating antibody followed by PCR for GAPDH 
was used a positive control (lane 4). The VCAM-1 promoter band is observed in the 
samples using RXRa immunoprecipitating antibody (lane 8) and Smad4 
immunoprecipitating antibody (lane 10). The input samples contain genomic DNA that 
was added to the immunoprecipitating antibody for the experiment (lanes 3, 5, 7, 9, 11) 
and were positive controls. Lane 1 is a 1 kilobase ladder and lane 12 is a no DNA 
control performed to confirm specificity of the PCR reaction. 
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RXRa was found to be capable of interacting with the VCAM-1 promoter. The RXRa 

antibody bound to RXRa located on DNA fragments of the VCAM-1 promoter and 

immunoprecipitated the VCAM-1 promoter as was indicated by the band seen following 

PCR with the VCAM-1 promoter primers (Figure 35, lane 8). No band would have been 

present following PCR if RXRa did not immunoprecipitate the VCAM-1 promoter. The 

DNA that was used in the experiments (the input- inp) also showed a band for the 

VCAM-1 PCR as was to be expected because it was the positive control containing all 

genomic DNA (Figure 35, lane 9). Currently, it is not known which of the retinoid sites 

RXRa is binding to or if RXRa is binding as a homodimer (RXRa/RXRa) or a 

heterodimer with another retinoid receptor or related receptor (RARs, other RXRs, 

Vitamin 0, PPAR). 

Smad4 was capable of binding to the VCAM-1 promoter as was indicated by the 

band seen in PCR for the VCAM-1 promoter (Figure 35, lane 10). The input sample also 

had a band from the VCAM-1 PCR (Figure 35, lane 11). Since Smad4 is a common 

Smad shared by multiple pathways, binding would indicate activation by any of the TGF(3 

isoforms, activin or BMPs. Our hypothesis is that TGF~2 is primarily responsible for 

activation of VCAM-1 given that there is an increase in TGFf32 in the RXRa-/- heart 

coupled with an increase in VCAM-1. The following sets of experiments tested the 

hypothesis that TGFf32 could increase the expression of VCAM-1. In order to determine 

which retinoid or Smad binding sites are responsible for regulating the VCAM-1 

promoter, mutational analysis of the promoter would need to be performed. 
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H. TGFp2 causes epicardial bubbling and induces VCAM-1 expression the 

epicardium 

Embryos at E11.S were grown in whole embryo culture and subjected to TGF~2 

(10 ng/ml) or 9-cisRA (100nM) treatments. Both TGFf32 and 9-cisRA treatments were 

used because the ChiP and in silico promoter analyses indicated that RXRa and Smad4 

could both bind to the VCAM-1 promoter. Treatments to activate TGFf32 and/or retinoid 

signaling will help determine which pathway is likely responsible for the increase in 

VCAM-1 seen in the RXRa-/- heart since both pathways are altered in the mutant. 

No gross histological differences were observed between any of the 12 hour 

treated embryos (Figure 36). All embryos displayed a detached epicardium and similar 

thickness of the ventricular myocardium. The embryos were treated for 12 hours 

beginning at E11.S in development so when the culture was stopped, the age of the 

embryos was around E12. At E12 of in vivo development it is normal to have a 

somewhat detached epicardium because it is not normally fully attached until E12.S. 

Another possible reason that there were no gross differences between control and 

treated embryonic hearts after 12 hours of culture is that the embryos were not in culture 

long enough for differences to develop. 

When the embryos were treated for 18 hours, histological analysis showed that 

the epicardium was attached in the diluent control (Figure 37). However, TGFf32 treated 

embryos displayed a detached epicardium in various regions of the heart. There 

appeared to be no histological difference in the ventricular myocardium in each 

treatment (Figure 37). One issue that exists with the 18 hour culture is that this time 

frame represents the limits that whole mouse embryos can be cultured. Thus, the 

integrity of the embryos may become compromised once they reach the E12.0-12.S age. 
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Figure 36: IHC analysis of VCAM-1 expression following TGF~2 treatment in 12 hour 
whole embryo culture. There appears to be no phenotypical difference between diluent 
(A) and TGF~2 treatment (C) in the H&E stained paraffin sections. There are higher 
levels of VCAM-1 in the TGF~2-treated embryos (0) than in the diluent (8). VCAM-1 is 
expressed in the myocardium and epicardium of both the diluent (8) and TGFp2-treated 
(0). Green- VCAM-1; 8lue- Dapi nuclear stain. Myo, myocardium; Epi, epicardium. 
Images are representative of two experiments (2 embryos of each treatment) each 
having immunostained sections from the hearts of one diluent and one TGF~2 treated 
embryo. 
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Figure 37: IHC analysis showing that VCAM-1 expression increases and the epicardium 
detaches following 18 hours of TGF~2 treatment in whole embryo culture. VCAM-1 is 
expressed in the myocardium of the diluent treated embryo (C, D, F,G) and the TGF~2-
treated embryo (J, K, M, N). VCAM-1 is not expressed in the epicardium of the diluent­
treated embryo (C, D, F, G) but is expressed in the epicardium of the TGF~2-treated 
embryo (J, K, M, N). The diluent-treated embryo has an attached epicardium (A, B, E) 
but the TGF~2-treated embryo has a detached epicardium (H, I, L). Images are 
representative of one experiment (one set of treatments) with immunostained sections 
from the hearts of one diluent and one TGF~2 treated embryo. 
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Figure 38: TGF~2 treatment of epicardial explant cultures results in increased VCAM-1 
expression. wr epicardial explants were treated with diluent, TGF~2, 9-cisRA and 
TGF~2+9-cisRA for 24 hours. VCAM-1 was expressed in all of the explants. However, 
there is great expression of VCAM-1 in the TGFf32 (C) and TGF~2+9-cisRA (0) 
treatments than in diluent (A) and 9-cisRA (8). These data were quantified in E using 
ImageJ. There is a statistically significant difference between diluent and TGF~2 (*), 
diluent and TGF~2+9-cisRA (*), 9-cisRA and TGF~2 (#), and 9-cisRA and TGF~2+9-
cisRA (#). There is no statistical significance between diluent and 9-cisRA treatment or 
between TGF~2 and TGF~2+9-cisRA treatment. A representative immunohistochemical 
staining is show in A-D. The plotted values in E are the mean gray value of pixels per 
cell of 3 independent experiments each having a diluent, TGF~2, 9-cisRA and TGF~2+9-
cisRA treatment. 
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Treatment with TGFf32 either alone or with 9-cisRA induced expression of VCAM-1 over 

that of either diluent or 9-cisRA alone (Figure 38). These data would indicate that 

TGFf32 can directly stimulate expression of VCAM-1 and that addition of 9-cisRA to the 

TGFf32 treatment has no additive affect on expression (Figure 38). The 

immunohistochemical data was quantified using ImageJ. Quantification of the 

immunohistochemical data confirmed what was seen in the immunohistochemical 

staining. Statistical significance was calculated using paired T-tests to compare each 

treatment. The differences seen between the diluent, TGFf32 and TGFf32 + 9-cisRA are 

statistically significant. The differences found between 9-cisRA, TGF~2 and TGFf32 + 9-

cisRA are also statistically significant. There was no statistical significance between 

diluent and 9-cisRA indicating that 9-cisRA has little to no effect on VCAM-1 expression 

elevation. This finding would suggest that the retinoid binding elements on the promoter 

are not functional, not responsive to 9-cisRA (not an RXR) or that the concentration of 9-

cisRA used did not induce receptor activation. The retinoid binding elements could be 

RXR heterodimer sites meaning that the ligand for the RXR heterodimer partner would 

also need to be present to activate transcription through RXR binding. 

J. VCAM-1-luc activity increases with TGFp2 treatment 

In order to further determine if TGFf32 was having a direct effect on VCAM-1 

expression, an expression plasmid containing the VCAM-1 promoter upstream of a 

luciferase reporter gene was used. Plasmid identity was confirmed by performing a 

restriction digest with Xhol and Kpnl to remove the VCAM-1 promoter from the plasmid 

and also by direct sequencing of the plasmid. When transcription factor binding 

activates the VCAM-1 promoter, luciferase will be produced and can be quantified using 

a luminometer. Luminescence gives a quantifiable response of the VCAM-1 promoter to 
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TGF(32 treatment instead of a more qualitative measure used previously with explants 

and WECo 

Rat epicardial cells were used to analyze the VCAM-1 promoter element and 

were grown as described in Chapter 2 until reaching approximately 75% confluency. 

Once the appropriate confluency was reached, the cells were transfected with the 

VCAM-1-luc plasmid (VC1889) and the CMV-Renilla-Iuc plasmid (control for 

normalization). Following 24 hours of transfection, treatments were added to each 35 

mm dish directly into the culture medium. The cells were treated with TGF(32 (10 ng/mL) 

and/or 9-cisRA (100 nM). Following the 24 hours of treatment, the cells were harvested 

and subjected to a luciferase assay to determine luciferase activity. Each sample was 

assayed for both Firefly luciferase (VCAM-1-luc) and Renilla luciferase (CMV-ReniI1a­

luc). The VCAM-1-luc data were then normalized to CMV-Renilla-Iuc to account for 

differences in transfection efficiency. The fold-change from the diluent treatment of 

VCAM-1-luc was calculated for each treatment to compare between experiments. All 

statistics were calculated from the raw data using paired T-tests to compare between 

each treatment. 

Treatment with TGF(32 resulted in a higher level of VCAM-1-luciferase activity 

than treatment with diluent, which was statistically significant (p<0.05) (Figure 39). 

There was no statistically significant difference in VCAM-1-luc activity between 9-cisRA 

treatment and diluent or between either TGF(32 treatment (Figure 39). This would 

indicate that RA signaling is not responsible for increasing transcription of VCAM-1. It is 

possible that the retinoid sites present on the promoter could be heterodimer sites for 

RXRa. to bind with another receptor (Vitamin D, PPAR) indicating that the other receptor 

in the heterodimer needs to be activated to elicit an effect on VCAM-1. Further studies 

with other treatments to activate those receptors are required to address this. 
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Figure 39: TGF(32 treatment of cells transfected with the VC1889 luciferase expression 
plasmid increases VCAM-1-driven luciferase expression. REC cells were transfected 
with the VC1889 plasmid and CMV-Renilla luciferase control plasmid. Following 
treatment, cells were harvested and assayed for luciferase expression. The firefly 
luciferase (VC1889) was normalized to the CMV-Renilla luciferase values. The 
normalized values were then expressed as a fold change from diluent. There is a 
statistically significant difference between diluent and TGF(32 (*), diluent and TGF(32+9-
cisRA (*), 9-cisRA and TGF(32 (#), and 9-cisRA and TGF(32+9-cisRA (#). There is no 
statistical significance between diluent and 9-cisRA treatment. These results represent 
8 independent experiments performed in triplicate. The plotted values are the mean fold 
change from the diluent values. Error bars represent ± SEM. 

131 



2.5 I 

~ I 
c:: 1.5 

(]) 
C> 
c:: 
CO 

.c:: 
() 

'"0 
o u.. 

0.5 +----

0 +-----

*# 

Diluent TGF~2 9-cisRA TGF~2 + 
9-cisRA 

132 



Figure 40: Concentration-response study of cells transfected with VC 1889 luciferase 
expression plasmid and treated with varying TGF~2 concentrations. Treatments with 
varying concentrations of TGF~2 were done on REC cells transfected with VC1889 and 
CMV-Renilla. The firefly luciferase (VC 1889) was normalized to the CMV-Renilla 
luciferase values. The normalized values were then expressed as a fold change from 
diluent. The asterisk (*) represents statistical significance between diluent and 0.1 ng/ml 
TGF~2, 2.5 ng/ml TGF~2, 5 ng/ml TGF~2 and 10 ng/ml TGF~2. These results represent 
7 independent experiments performed in triplicate. The plotted values are the mean fold 
change from the diluent values. Error bars represent ± SEM. 
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Alternatively, the retinoid consensus sites indentified on the promoter may not be 

functional retinoid binding sites. 

Treatment with both TGFf32 and 9-cisRA together shows a statistically significant 

increase in VCAM-Iuc activity compared to both diluent and 9-cisRA alone (Figure 39). 

However, there was no statistically significant difference in VCAM-1-luc activity between 

TGFf32 alone and TGFf32 plus 9-cisRA, indicating that TGFf32 does not interact with 9-

cisRA to have an influence on VCAM-1 expression at least not at the concentrations 

used in this experiment (Figure 39). 

A dose response experiment was performed to evaluate the effect of TGFf32 on 

induction of VCAM-1-luc activity. An apparent biphasic response curve was observed 

(Figure 40). At the lowest concentration of TGFf32 (0.1 ng/ml), there was a statistically 

significant increase in VCAM-1-luc activity seen compared to diluent (Figure 40). At the 

next three concentrations tested (0.25 ng/ml, 0.5 ng/ml and 1 ng/ml), there was a 

decrease in the amount of VCAM-1-luc activity seen from 0.1 ng/ml treatment and there 

is no statistical significance in comparison to the diluent (Figure 40). When transfected 

cells are treated with the next three concentrations (2.5 ng/ml, 5 ng/ml and 10 ng/ml), the 

amount of VCAM-1-luc activity increased to levels that were significantly higher (p<0.05) 

as compared to the diluent treatment (Figure 40). Previous studies using different 

concentrations of TGFf32 in treatment suggested that at lower concentrations of TGFf32 

that p38 was being activated instead of Smads (Sauls, Hoover and Kubalak, 

unpublished). The biphasic response curve in this study could represent activation of 

the VCAM-1 promoter through both p38 (at lower concentrations) and Smad activation 

(at higher concentrations) by TGFf32. 
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Chapter 4: Conclusions and Future Directions 

From this study and those of others, it is concluded that VCAM-1, a cell adhesion 

molecule previously found to be necessary for epicardium formation (Kwee et aI., 1995), 

is playing an integral role in the normal development of the heart following formation of 

the epicardium. Appropriate levels and cell-type specific expression of VCAM-1 is 

essential for normal cardiac morphogenesis including, but not limited to, the formation of 

EPDCs, which will contribute to the formation of coronary vasculature, ventricular 

chamber maturation and valve formation (Dettman et aI., 1998; Gittenberger-de Groot et 

aI., 1998; Manner, 1999,2000; Mikawa and Fischman, 1992; Mikawa and Gourdie, 

1996; Perez-Pomares et aI., 1997; Vrancken Peeters et aI., 1999). Using the RXRa-/­

mouse, a model of aberrant cardiac morphogenesis, alterations in VCAM-1 expression 

were found. This study showed an increase in VCAM-1 mRNA and protein in the 

myocardium of the RXRa-/- heart from E11.S-E13.S compared to the WT. In addition, 

VCAM-1 was misexpressed in the epicardium of the RXRu-/- heart at E11.S-E13.S 

compared to the WT, which normally has no VCAM-1 expression in the epicardium. 

Since VCAM-1 was increased and misexpressed in the RXRa-/- heart, we wanted to 

look at regulation of this gene. Retinoid and Smad-binding elements were found on the 

VCAM-1 promoter (by in silica promoter analysis) and both RXRa and Smad4 were 

capable of binding to the VCAM-1 promoter (shown with ChiP analysis) suggesting 

regulation of VCAM-1 by retinoid and/or TGFj32 signaling. TGFj32 treatment induced 

expression of VCAM-1 in epicardial explants as well as in the epicardium in whole 

embryo culture while 9-cisRA treatment had no effect. Treating REC cells transfected 

with VC1889 luciferase expression plasmid with TGF(32 demonstrated that TGFj32 

activates the VCAM-1 promoter to induce luciferase activity while treatment with 9-cisRA 

136 



does not activate the VCAM-1 promoter. The results from this study demonstrate that 

VCAM-1 is upregulated in the RXRa-/- model of aberrant epicardium formation and that 

TGFf32 is capable of upregulating VCAM-1 in the developing heart. Our current working 

model of the role of normal and aberrant VCAM-1 expression is present in Figure 41. 

Furthermore, these studies suggest that appropriate expression of VCAM-1 regulated by 

TGF(32 is a significant contributing factor in normal heart development. The 

consequences of changes in VCAM-1 expression and cell type specific location to the 

developing heart are not fully known, however, several potential scenarios will be 

discussed. 

Integrin Involvement 

Integrin 0.4 and VCAM-1 have both been previously been shown to be essential 

to formation of the epicardium (Kwee et aI., 1995; Yang et aI., 1995), however, their role 

in cardiac morphogenesis following epicardium formation is not fully known. Currently it 

is thought that binding between integrin 0.4 (in the epicardium) and VCAM-1 (in the 

myocardium) helps to maintain close association of the myocardium and epicardium. 

Changing the levels of these two proteins could have detrimental consequences to cell­

cell (epicardium to myocardium) and cell-ECM (epicardium to subepicardial space) 

binding. Increases in the amounts of VCAM-1 protein in the RXRa-/- mouse could affect 

the normal stoichiometry of integrin a4NCAM-1 receptor interactions, thus affecting 

normal binding of the epicardium and myocardium possibly leading to epicardial 

detachment. 

Epicardial explants from the RXRa-/- mouse do attach to FN-coated slides, 

however, the amount of attachment has not been quantified. In one epicardial explant 

experiment using wr and RXRa-/-, most of the cells of the RXRa-/- explant detached 

during the fixation process. However, in another experiment with WT and RXRa-/-
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explants, epicardial cells remained attached during the fixation process. An attachment 

assay would need to be devised to further analyze epicardial cell attachment using 

RXRa-/- epicardial explants. 

Increased VCAM-1 could also bind to different receptors located in the 

epicardium and/or myocardium instead of binding to integrin a4. There are no reports in 

the literature demonstrating VCAM-1 NCAM-1 binding so the formation of VCAM-

1NCAM-1 homodimers is unlikely. It is more likely that excess VCAM-1 could bind with 

another integrin in the developing heart. Typically, VCAM-1 binds to integrin a4/(31 

heterodimers. A study of the chick PE demonstrated that integrins a4, a5, a8, av, (31, 

133 and 135 are all expressed in the PE (Pae et aI., 2008). A recent study also found 

expression of integrin (32 in the mouse heart, particularly in the epicardium (Oliveira et 

aI., 2010). Since integrin (32 is found in the epicardium, it is possible that it could interact 

with epicardially-expressed VCAM-1. VCAM-1 on endothelial cell walls was previously 

reported to bind to aD(32 integrin on eosinophils (Grayson et aI., 1998) but it is unknown 

if this interaction occurs within the heart. Under flow conditions, aDf32 integrin 

expressed by lymphoid cells binds to VCAM-1 on endothelial cells at levels that were 

similar to binding of a4(31 integrin-expressing inflammatory cells to VCAM-1 on 

endothelial cells (Van der Vieren et aI., 1999). This would suggest that VCAM-1/aDf32 

integrin binding could be as strong as VCAM-1/a4(31 integrin binding. Another study 

found that a9f31 integrin in neutrophils binds to VCAM-1 on endothelial cells for migration 

across an endothelial monolayer during the inflammatory process (Taooka et aI., 1999) 

suggesting that integrin a4 is not always necessary for VCAM-1 binding. These 

alternative interactions of VCAM-1 with integrin subunits other than a4(31 have only been 

reported in endothelial and lymphoid cells during inflammation. However, it is possible 
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that VCAM-1 interactions with other integrin subunits can occur in the heart since those 

subunits are expressed within the heart, particularly in the PE and epicardium. 

P13K1Akt 

In the developing heart, P13K1Akt can initiate proliferation of cardiomyocytes 

(Kang and Sucov, 2005) for ventricular chamber maturation. Binding of VCAM-1 and 

integrin a4 can activate P13K1Akt signaling (Figure 7), which can induce myocardial 

proliferation in the normal developing heart (Kang and Sucov, 2005). Activation of 

P13K1Akt signaling is downstream of integrin a4NCAM-1/FN binding is (Hynes, 2002). 

P13K1Akt signaling has also been shown to be activated by an unknown factor secreted 

by epicardial cells in response to retinoic acid signaling (Kang and Sucov, 2005). 

Altering the normal ligand binding to integrin subunits could modify the downstream 

signaling in the developing heart such as P13K1Akt and Erk signaling. The increased FN 

present in the RXRa-/- heart (Jenkins et aI., 2005) could also alter the signaling that 

occurs from its binding with integrin a4. The RXRu-/- mouse has decreased P13K1Akt 

and Erk signaling (Kang and Sucov, 2005), both of which are downstream of integrin 

binding. It is possible that the decreased signaling through those pathways is related to 

increased FN binding to integrin a4 or by VCAM-1 binding to another integrin 

heterodimer since each one of these interaction can initiate and modify integrin­

mediated signaling. 

A decrease in proliferation was found in the ventricular myocardium of the 

RXRa-/- heart as shown by a reduction in mitotic index of myocytes (Kastner et aI., 

1997) and a reduction of PI3K/Akt signaling (Kang and Sucov, 2005). Since the 

P13K1Akt pathway is known to induce proliferation and is active in cardiomyocytes, the 

reduction in signaling from the P13K1Akt pathway could decrease proliferation of 

cardiomyocytes in the RXRa-/- mouse (Kang and Sucov, 2005). This reduction in 
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P13K1Akt signaling could be related to the disruption of VCAM-1/integrin a4/FN 

stoichiometry because activation of P13K1Akt signaling can occur downstream of integrin 

a4 binding. Decreased proliferation due to a reduction of P13K1Akt signaling could lead 

to a hypoplastic ventricular myocardium as seen in RXRa-l- mice (Jenkins et aI., 2005). 

Using real time PCR, increased Rac mRNA was observed in RXRa-l- mice 

(Brichler, Burton and Kubalak, unpublished). Rac is involved in initiation of migration 

downstream of integrin-mediated signaling (Figure 7) and has been found to increase 

invasiveness and transformation in cancer (Bosco et aI., 2009). An increase in Rac 

would suggest an increase in EMT, but increased EMT is not what is observed in 

RXRa-/- mice (Ruiz-Lozano and Kubalak, unpublished). VCAM-1/integrin a4 signaling 

can activate Rac1 in mouse and human endothelial cells leading to the production of 

reactive oxygen species (ROS) (Cook-Mills, 2002; Deem and Cook-Mills, 2004; van 

Wetering et aI., 2003). ROS have been shown to induce dissociation of cell-cell contacts 

in retinal pigment epithelial cells through the loss of cadherins on the cell surface without 

EMT occurring (Inumaru et aI., 2009). It is possible in RXRa-l- mice that increased 

VCAM-1 and increased Rac1 can induce dissociation of cell-cell contacts (possibly 

between epicardium and myocardium) without leading to the induction of EMT. 

According to a recent study, Foxc proteins are activated by the P13K1Akt pathway 

(Hayashi and Kume, 2008). The VCAM-1 promoter contains Fox-binding elements and 

the Foxc1 and Foxc2 transcription factors have been shown to activate the VCAM-1 

promoter to increase VCAM-1 levels (Kang et aI., 2006). Increased levels of VCAM-1 

could, in turn, increase signaling downstream of integrin a4 including the P13K1Akt 

signaling (Figure 7). Similar to the RXRa-/- mouse (Jenkins et aI., 2005), the 

combination Foxc1+/-/Foxc2-/- mouse has been shown to have a detached epicardium 

(Sea and Kume, 2006). In RXRa-/- mice, Foxc1 or Foxc2 expression has not been 
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examined. However, it is speculated that the reduction in P13K1Akt signaling in RXRa-/­

mice (Kang and Sucov, 2005) could cause decreased Foxc1 and/or Foxc2. With 

decreased Foxc1 and/or Foxc2, there would be less activation of the VCAM-1 promoter, 

resulting in lower levels of VCAM-1. However, in RXRa-/- mice, VCAM-1 is increased 

and is likely due to a mechanism independent of P13K1Akt signaling and Foxc1/Foxc2. 

In this study, TGF(32 signaling was shown to increase VCAM-1 expression so TGF(32 is 

most likely the pathway affecting VCAM-1 expression in RXRa-/- mice. 

Effects on EMT 

In normal cardiac morphogenesis, VCAM-1 could playa role in regulation of EMT 

through signaling by binding to integrin a4 and through cell-cell adhesion. In order for 

EMT to occur, there must be some loss of cell adhesion. If VCAM-1 is increased or 

expressed in the wrong cells, there could be alterations in cell-cell adhesion and/or 

signaling that would impact EMT with increases in cell adhesiveness decreasing EMT. 

Recently, VCAM-1 has been shown to negatively impact EMT (Ookic and Dettman, 

2006). Treatments with soluble VCAM-1 caused a reduction in EMT by strengthening (3-

catenin and E-cadherin association between epicardial cells, decreasing basal stress 

fibers and promoting formation of apical cortical actin fibers to maintain epicardial­

epicardial cell attachment (Dokic and Dettman, 2006). The RXRa-/- mouse has been 

previously shown to have decreased epicardial EMT (Ruiz-Lozano and Kubalak, 

unpublished). VCAM-1, in excess, could decrease epicardial EMT in RXRa-/- mice. 

Similarly, other mouse models of aberrant epicardium formation have increased E­

cadherin resulting in decreased epicardial EMT including the epicardial-specific Wt1 

knockout (Martinez-Estrada et aI., 2010) and the podoplanin knockout (Mahtab et aI., 

2008). Therefore, increased E-cadherin-mediated association between epicardial cells 

could decrease epicardial EMT. VCAM-1 was also found to antagonize EMT of 
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epicardial cells stimulated by TGFf3 by activating p190RhoGAP thereby altering Rho 

activation by TGFf33 (Dokic and Dettman, 2006). Since TGFf3 signaling is known to 

increase EMT, the TGFf32 increase observed in RXRu-/- mice would be expected to 

increase EMT. However, since EMT is not increased in RXRu-/- mice (Ruiz-Lozano and 

Kubalak, unpublished), the increase in VCAM-1 might explain this discrepancy because 

VCAM-1 has been shown to reduce TGF(3-induced EMT. A strategy to determine 

whether or not VCAM-1 elevation and misexpression in the epicardium alters EMT or 

causes epicardial detachment would be to create a mouse model overexpressing 

VCAM-1 in the epicardium. This could be done by creating a mouse line using the wt1, 

Tbx18 or GATA5 promoter to drive expression of VCAM-1 in the epicardium. The 

phenotype of these transgenic embryos could then be analyzed for epicardial bubbling 

and alterations in epicardial EMT. Such experiments might provide insight into whether 

misexpression of VCAM-1 in the epicardium is responsible for any of the epicardial 

phenotype seen in RXRu-/- mice. Conversely, it could be determined if excess VCAM-1 

is responsible for epicardial bubbling or decreased EMT by lowering VCAM-1 levels in 

the RXRu-/- mouse by creating a compound VCAM-1 +/-RXRu-/- mouse, in which 

VCAM-1 levels are genetically reduced. 

N-cadherin 

In the normal heart, N-cadherin is required for attachment of the epicardium to 

the myocardium (Luo et aI., 2006). In this study, our findings indicate there may be a 

decrease in N-cadherin in the RXRu-/- mouse (Figure 33). N-cadherin is of interest 

because the N-cadherin KO mouse has a detached epicardium (Luo et al., 2006) and N­

cadherin is involved in cell-cell attachment through desmosomes and adherens 

junctions. Desmosome dysfunction has been previously implicated in skin blistering 

diseases (Has and Bruckner-Tuderman, 2006). The phenotype of the skin in blistering 
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diseases is quite similar to the phenotype of the bubbled epicardium because the 

epithelial cell layer is detached from a loss of normal cell adhesion. Therefore, it is 

possible that improper formation of desmosomes is responsible for epicardium 

detachment in the RXRa-/- mouse as well as other mouse models with epicardial 

bubbling/blistering. Cellular junctions between the epicardium and the myocardium were 

less apparent in the RXRa-/- mouse than in the WT, as was seen in TEM analysis 

(Figure 21). Future studies examining epicardial/myocardial cellular junctions and 

analysis of N-cadherin in the developing heart are needed in order to determine 

N-cadherin's role in epicardium attachment. 

Decreased N-cadherin has previously been observed in two models of detached 

epicardium. N-cadherin is decreased in the Wt1 epicardial-specific knockout (Martinez­

Estrada et aI., 2010) and the Alk5 epicardial-specific knockout (Sridurongrit et aI., 2008), 

both of which have a decrease in epicardial EMT and a detached epicardium. The 

detachment of the epicardium in the RXRa-/- mouse may be due to a decrease in N-

cadherin and not necessarily to misregulation of VCAM-1, whereas an increase in 

VCAM-1 may be contribute more to the decrease in EMT and EPDC formation. 

Therefore, the role of VCAM-1 in the normal heart following the formation of the 

epicardium could be in regulating epicardial EMT to form EPDCs that contribute cells 

and signals for normal cardiac morphogenesis. 

TGFB2 signaling 

TGFf32 signaling is known to be important for cardiac morphogenesis especially 

in activating EMT and in apoptosis in the endocardial cushions (Camenisch et aI., 2002; 

Kubalak et aI., 2002). TGF(32-/- mouse embryos have a multitude of cardiac defects 

including ventricular and outflow tract defects, hypoplastic ascending aorta, double outlet 

right ventricle and dual inlet left ventricle (Sanford et aI., 1997), indicating the importance 
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of TGFf32 signaling to the developing heart. An increase in TGFf32 protein and mRNA 

was seen in the RXRa-/- heart in previous studies (Kubalak et aI., 2002; Jenkins and 

Kubalak, unpublished) as well as this current study (Figures 26 and 33). TGFf32 is 

known to regulate the transcription of several genes through its role as a growth factor 

and is expressed in the epicardium. Because of misexpression of VCAM-1 in the 

RXRa-/- epicardium and increased TGFf32 in the heart of the RXRa-/- mouse occur 

during the same developmental timeframe, this study focused on whether TGFf32 could 

regulate the expression of VCAM-1 in epicardial cells. 

Both RXRa and Smad4 were shown to bind to the VCAM-1 promoter by using 

ChiP analysis (Figure 35). Binding of Smad4 to the promoter might indicate that any 

member of the TGFf3 and BMP family is capable of regulating the VCAM-1 promoter. 

TGFf32 was shown to regulate VCAM-1 expression in epicardial explants (Figure 38), 

whole embryo culture (Figures 36 and 37) and VCAM-1 promoter luciferase assays 

(Figures 39 and 40). However, the effect of other TGFf3 family members on VCAM-1 

expression is not known. Further analysis of the other TGFf3 family members would be 

necessary to determine if TGF(32 is the only member regulating the VCAM-1 promoter. 

In the future, the effect of TGF(31, TGFf33, (because of its overlapped expression with 

TGFf32 (Molin et aI., 2003» BMP2 and BMP4 (because of expression in the PE (Kruithof 

et aI., 2006; Schlueter et aI., 2006» on VCAM-1 expression needs to be defined. 

Using REC cells transfected with the VC1889 VCAM-1 promoter luciferase 

plasmid, TGF(32 was shown to activate transcription from the VCAM-1 promoter. There 

are numerous putative SBEs present on the VCAM-1 promoter so promoter deletion 

constructs are needed to determine which possible SBEs are involved (due to their 

localization in the deleted region). Following promoter deletion studies, mutational 

144 



analysis of possible SBEs could be used to determine which SBEs are involved in the 

regulation of VCAM-1 transcription. 

Retinoic Acid Signaling 

A proper balance of retinoid signaling is required for cardiac mophogenesis to 

occur normally with too much or too little retinoid signaling resulting in heart defects as 

has been demonstrated previously with the VAD rat model and in gestational exposure 

to Accutane (isotretinoin) (de la Cruz et aI., 1984; Wilson and Warkany, 1949). 

Retinoid consensus binding sites were found on the VCAM-1 promoter (Figure 14) 

suggesting that VCAM-1 could be regulated by retinoid signaling. However, treatment 

with 9-cisRA had no effect on the expression of VCAM-1 in epicardial explants or in 

embryos in WECo Furthermore, 9-cisRA did not regulate the VCAM-1 promoter, in cells 

transfected with the VC1889 luciferase expression plasmid. Despite these findings, it is 

possible that another retinoid (such as all-transRA to activate RARs) or ligand that 

activates a retinoid receptor-binding partner (such as Vitamin D for the Vitamin D 

receptor) may playa role in regulating VCAM-1. It is also possible that the retinoid 

consensus elements found on the VCAM-1 promoter are not functional retinoid binding 

elements so, therefore, would have no effect on VCAM-1 activation. However, since 

RXRa bound to the VCAM-1 promoter, it is possible that RXRa acts as a heterodimer 

with another nuclear receptor. Therefore, in order for RXRa to have an effect on the 

VCAM-1 promoter, the heterodimer partner of RXRa would also need to be activated by 

ligand binding. 

In the heart, RXRa may have more of a direct effect on TGF(32 signaling than 

VCAM-1 since 9-cisRA treatment did not activate the VCAM-1 promoter. Previously it 

has been proposed that RXRa regulates activation of Smad2 since loss of RXRa (in the 

RXRa-/- mouse) or dual treatment with TGF(32 and 9-cisRA (in NIH3T3 cells) will 
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increase Smad2 phosphorylation (Hoover et al., 2008b). Although Smad 

phosphorylation was increased, nuclear localization of pSmad was decreased in both 

the RXRa-/- mouse and with TGFf32/9-cisRA treatments (Hoover et aI., 2008b). It was 

hypothesized that RXRa was acting as a nuclear shuttle for pSmad2 when it is located 

on the nuclear membrane (Hoover et aI., 2008b). In the RXRa-/- mouse or with 9-cisRA 

treatment when RXRa is not present at the nuclear membrane, there is a decrease in 

pSmad2 in the nucleus, indicating an uncoupling of TGFf32 signaling (Hoover et aI., 

2008b). The increase in TGFf32 seen in the RXRa-/- mouse could be a compensatory 

mechanism since pSmad2 may be unable to get into the nucleus to signal (Hoover et aI., 

2008b). In response to the lack of TGFf32 signaling, the cell could increase TGFf32 

levels (Hoover et aI., 2008b). However, the uncoupling hypothesis would not explain the 

increase in VCAM-1 since in this current study it was found that TGFf32 signaling can 

increase VCAM-1 expression. Importantly, the uncoupling of TGFf32 signaling in the 

RXRa-/- mouse is not seen in the entire heart. For example, decreased nuclear 

localization of phosphorylated Smad2 was seen in the cushions of the heart but was not 

observed in the epicardium or myocardium (Hoover and Kubalak, unpublished). TGFf32 

could also activate p38 (part of MAPK signaling) to activate transcription of VCAM-1. 

TGFf32 has been previously shown to cause phosphorylation of p38 by activation of 

TGFr3 associated kinase (TAK1) (Yamashita et aI., 2008). Several studies have shown 

that induction of VCAM-1 expression is dependent on activation of p38. Inhibition of p38 

has been shown to suppress VCAM-1 expression induced by tumor necrosis factor a 

(TNFa) (Ho et aI., 2008), cadmium (Park et aI., 2009), interleukin f3 (lL-f3) (Wang et aI., 

2005) and C reactive protein (CRP) (Kawanami et aI., 2006). Thus, the increased 

VCAM-1 may be independent of Smad-binding and instead a response to p38 activation 

by TGFf32, which would still occur even if Smad2 is uncoupled. 
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Conclusion 

From this study, it is proposed that VCAM-1 is playing roles in attachment, 

signaling and regulation of epicardial EMT in the developing heart, each of which will be 

discussed in this section. First, VCAM-1 is involved in epicardial cell attachment to the 

myocardium. VCAM-1 is necessary in the initial attachment of the PE cells to the 

myocardium to form the epicardium (Kwee et aI., 1995; Yang et aI., 1995) but may not 

playa role in the later attachment (starting at E11.5) to maintain epicardial adhesion to 

the myocardium. VCAM-1 and integrin a4 are essential for the initial attachment of PE 

buds to the myocardium as was demonstrated by both the integrin a4 and VCAM-1 KO 

mice, both of which fail to form an epicardium (Kwee et aI., 1995; Yang et aI., 1995). In 

both the VCAM-1 and integrin a4 knockout mice, PE buds form and migrate to the 

myocardium but fail to adhere to the myocardium. Therefore, VCAM-1 and integrin a4 

are not required for PE bud formation (Kwee et aI., 1995; Yang et aI., 1995). In the 

RXRa-/- mouse, delay in epicardium formation is likely due to an increase in VCAM-1 

expression, resulting in increased adhesiveness of PE cells within the PE. Increased PE 

cell adhesion could prevent or slow the formation of PE buds resulting in a delay of 

epicardium formation. Furthermore, findings from a previous study demonstrating 

decreased cell outgrowth in PE explants could be indicative of increased cell adhesion 

(Jenkins and Kubalak, unpublished). 

As for the epicardial cell detachment in the RXRa-/- mouse, N-cadherin is likely 

responsible for maintenance of epicardial cell adhesion following epicardium formation 

(Figure 41, 1). The N-cadherin KO mouse has a detached epicardium and N-cadherin is 

expressed in both the epicardium and myocardium (Luo et aI., 2006). Data from this 

study suggest that N-cadherin levels are decreased, which would decrease epicardial 
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Figure 41: Diagrammatic representation of the current working hypothesis. See text for 
further explanation. N-cadherin is necessary for binding of the epicardium to the 
myocardium (1). Increased VCAM-1 levels strengthen epicardial-epicardial cell adhesion 
through increasing interactions of ~-catenin and E-cadherin between epicardial cells (2). 
Binding of VCAM-1 to integrin a4~ 1 can activate signaling through the P13K1Akt and Erk 
signaling cascades (3). Increased FN could increase signaling downstream of integrin 
a4~1 (4). V, VCAM-1; N, N-cadherin; a4, integrin a4; ~1, integrin ~1; ~, ~-catenin; E, Eo. 
cadherin 
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cell adhesion to the myocardium. Further analysis of N-cadherin in the RXRa-/- mouse 

would need to be performed to support this conclusion. 

It is proposed that VCAM-1 plays a role in regulating epicardial EMT either 

through cell adhesion of epicardial cells or through signaling with integrin a4. 

Previously, it has been demonstrated· that soluble VCAM-1 can decrease epicardial cell 

EMT by strengthening epicardial cell-cell association with f3-catenin and E-cadherin on 

the cell surface (Dokic and Dettman, 2006). Decreased epicardial EMT is observed in 

the RXRa-/- mouse (Ruiz-Lozano and Kubalak, unpublished) as well as increased 

VCAM-1. If the increased VCAM-1 in the RXRa-/- mouse heart is increasing epicardial 

cell-cell association with f3-catenin and E-cadherin, then there could be increased 

epicardial cell-cell adhesion and a decrease in EMT through cell-cell binding by E­

cadherin (Figure 41, 2). Decreased epicardial EMT could contribute to some of the 

cardiac phenotype of the RXRa-/- mouse, including the hypoplastic ventricular 

myocardium which can occur as a result of fewer EPDCs (Jenkins et aI., 2005). 

Finally, it is suggested that VCAM-1 is playing a role in signaling in the 

developing heart (Figure 41,3). By binding with integrin a4, VCAM-1 can initiate several 

possible signaling cascades (Figure 7). P13K1Akt and Erk signaling are activated 

downstream of VCAM-1/integrin a4 binding (Figure 7). Both P13K1Akt and Erk signaling 

are decreased in the RXRa-/- mouse (Kang and Sucov, 2005). Both P13K1Akt and Erk 

signaling can initiate proliferation of myocytes and decreased P13K1Akt or Erk signaling 

could decrease myocyte proliferation (Kang and Sucov, 2005). Increased P13K1Akt or 

Erk signaling might be expected if there is increased VCAM-1/integrin a4 binding. 

However, this is not seen in the RXRu-/- mouse (Ruiz-Lozano and Kubalak, 

unpublished), so the decrease in P13K1Akt or Erk signaling may be unrelated to VCAM-

1/integrin a4 signaling or may reflect a decrease in interactions between a4 integrin and 
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VCAM-1. Alternatively, the loss of RXRa in the RXRa-/- mouse could also affect 

signaling through the loss of gene transcription or through its role as a nuclear shuttle. 

The decrease in P13K1Akt could be directly related to loss of RXRa. Since there is also 

increased FN in the RXRa-/- heart (Jenkins et aI., 2005), an increase in FN binding to 

integrin a4 could also alter downstream signaling, including P13K1Akt and Erk signaling 

(Figure 41, 4). However, since the FN network is disorganized, signaling from 

FN/integrin a4 binding could be adversely affected. Thus, increased FN may not 

increase integrin a4-mediated signaling in the developing heart due the disorganization 

in the FN network in the subepicardial space. 

From this study, increased VCAM-1 was found in the RXRa-/- mouse heart and 

can be regulated by TGF~2 signaling. Several roles of VCAM-1 were proposed in the 

developing heart. Our study and those of others illustrate that cell adhesion molecules, 

particularly VCAM-1, playa significant role in cell adhesion as well as in signaling and 

EMT during heart development and demonstrates the importance of correct cell-type 

specific expression of cell adhesion molecules during the formation of the heart. 
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