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ABSTI1ACT 

KGM Brockbank. Rabbit Erythropoiesis "In V1tro~ 

The objective of the studies described was to 

analyze inductive and proliferative phenomena involved 

in hemopoiesis. In order to perform these studies in 

the rabbit it was necessary to vindicate the use of 

the methylcellulose assay for erythroid precursors in 

this species. 

The erythropoietin (Ep) dose response of erythroid 

. colony-forming units (CFU-e) and erythroid burst-forming 

Ul1its (BFU-e) from rabbit b011e were similar to murine 

erythroid precursor Ep requirements. Bone marrow and 

peripheral blood contained a continuum of erythroid 

precursors at differing stages of maturation. The 

earliest BFU-e were assayed on day 10. CFU-e were ob­

served in bone marrow, but not in peripheral blood. 

The most mature erythroid precursors observed in peri­

pl1eral blood were intermediate ,BFU-e, assayed on day 5. 

A linear relationship exists between the number of 

nucleated bone marrow cells plated and the number of 

3 day colonies and 10 day bursts observed. The 10 day 

bursts were composed of erythroid cells at all stages 

of maturation and these cells contained normal adult 

hemoglobins. The methylcellulose assay was then used 



to characterize the hemopoietic t~ssue in ossicles in-, 

duced by dem~neral~zed allogeneic bone matrix (DBM) 

and to investigate the mechanisms or action or burst-

promot~ng activity (BPA). 

DBM, implanted in muscle, induces the :formation 

o~ an ossicle within which hemopoietic tissue develops. 

Analyses or ossicle marrow in vitro demonstrated the 

presence or committed hemopoietic precursors; cOlony-

rorming units in culture (CFU-c), CFU-e and BFU-e by 6 

weeks postimplantation.· The time courses or colony and 

burst rormation by erythroid precursors in ossicle and 

remoral marrow were similar. Induction or hemolytic 

anemia by phenylhydrazine hydrochloride at six weeks 

post DBM implantation showed that the ossicle marrow 

was responsive to system~c erythropoiet1e st~muli. The 

DBM implant is a unique model for studying the develop-

ment or hemopoietic microenvironments with~n bone. 

Rabbit bone marrow conditioned media-(BMCM) was 

round to contain potent erythroid BPA. ][n order to 

f>tlrther characteri.ze the mechanisms or a'etlon oT BPA 

and to improve the quantitation or BPA,'We studied the 

e~:rects of BMCM on the number or bursts, cells per 

burst a11d 59Fe incorporation into l"leme. Examination 

o:C erythroid precursors at dirrerent mat~ational 

stages revealed that the sensitivity o~ ,erythroid pre-

cursors to BPA decreases with maturity. Delayed ad­

dition or BMCM to cultures demonstrated a' requirement 



for BPA during the early stages of burst formation. 

BMCM did not enhance granulocyte/macrophage colony 

formation. The enhancement of heme synthesis by BMCM 

was routinely much greater (range, 7- to l09-fold) than 

the increase in burst number (range, 1- to 2-fold). 

The latter observation suggested that BPA might increase 

the size of bursts in addition to augmenting burst num­

ber. Simultaneous measurement of cell number and 59Fe 

incorporation in individual bursts showed a strong cor­

relation between these parameters. In this experiment, 

the total enhancement of cell nu~er and 59Fe incorpora­

tion was 6.6- and S.D-fold, respectively. These results 

suggest that a major effect of BMCM BPA is to promote 

cell division during the early phase of burst formation. 



Chapter 1. 

GENERAL INTRODUCTION: REGULATION OF ERYTHROPOIESIS 



INTRODUCTION 

The purpose of this dissertation was to study 

inductive and proliferative phenomena in hemopoiesis. 

The first objective was to study the induction of bone 

marrow in association with bone (1) in heterotopically 

placed demineralized bone matrix (DBM) implants (2). 

The second objective was to examine factors involved 

in erythroid proliferation. The rabbit was utilized for 

these studies and culture methods were devised which 

could be used for analysis of erythroid precursor 

cells. In particular the in vivo methylcellu~ose 

assay, originally described by Iscove et ale (3) for 

murine erythroid precursors, was employed after the 

appropriate adaptation. The initial part of my 

thesis involves the characterization of this assay 

for rabbit erythroid precursors. 

The DBM model has been utilized for the study of 

bone formation (2). The implantation of DBM induces a 

cascade of biological events which cUlminate in the 

formation of an ossicle with central marrow. This mo­

del has potential for the study of early events in bone 

marrow formation. 

During the characterization of the rnethylcellulose 



assay it became apparent that the rabbit might be an 

excellent model for the study of factors, known as 

2 

burst promoting activity, which are involved in the 

regulation of the early stages in erythropoiesis. 

Previous studies by Wagemaker (4), Ploemacher et ale (5) 

and Kurland et al. (6) have implicated the macrophage 

as a source of burst promoting activity. Morphologic 

evidence based on the observation that differentiating 

erythroblasts are frequently associated with macrophage 

in erythroblastic islands (7) has for many years been 

thought to imply that macrophage have a role in the for­

mation of erythroid hemopoietic microenvironments. In 

order to put my work into perspective I will present an 

overview of erythropoietic regulation and introduce the 

assays and models available for its study in this chap­

ter. 
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THE ERYTHROID MICROENVIRONMENT 

Murine pluripotent hemODoietic stem cells may be 

assayed by transplantation or bone marrow cell sus­

pensions into lethally irradiated mice (8). The trans­

planted stem cells generate macroscopic colonies of 

erythroid, granulocytic or megakaryocytic cells in the 

spleen. The stem cells assayed by this technique have 

been designated spleen colony forming units (CFU-S). 

There is a considerable amount of evidence support~ng a 

clonal ori~in for spleen colonies. The curve relating 

the number of nucleated marrow cells that are trans­

planted to the number of colonies that develop is linear 

(8,9). More direct evidence bas been obtained by in­

ducing chromosome abnormalities in CFU-S prior to im­

plantation. Recognizable chromosome abnormalities were 

observed in 10% of the spleen colonies and in each case 

at least 95% of the cells possessed the specific ab­

normality (10). The CFU-S gives rise to precursor 

cells capable of difrerentiation in only one hemopoietic 

line of development via a process known as commitment. 

In the spleen colony assay the colonies usually consist 

or cells rollowing one line of development during the 

£irst 8 to 10 days (10-14). Later as the colonies get 



It 

larger they develop secondary lines of development. 

Trentin (13,14) proposed that this phenomena is due to 

colonies encroaching upon areas of hemopoietic stroma 

which induce uncommitted spleen colony cells to become 

committed to other hemopoietic development lines. These 

areas of hemopoietic stroma which induce commitment to 

specific lines of development are known as hemopoietic 

microenvironments. In the murine spleen erythroid micro­

environments predominate (11), while in the bone marrow 

granulocytic microenvironments are more rrequent (15). 

Wolr and Trentin (15) demonstrated quite clearly that 

the microenvironment distribution in spleen and bone 

marrow is a function of endogenous factors. Both tis­

sues when implanted ectopically retained their original 

ratio of erythroid and granulocytic spleen colonies. 

In marrow implants in spleen the coloni;es growing across 

the junction of the two tissues showed abrupt transitions 

in cell type, erythroid cells on the spleen side and 

granulocytic cells on the bone 'marrow s1de. Further 

evidence for specific erythroid microenwironments was 

obtained via the spleen colony assay in hypertrans£used 

mice (11,16). Hypertransfusion suppressed the formation 

of erythroid colonies. In place o:f macroscopic ery-

throid colonies microscopic nests of undirrerentiated 

erythropoietin sensitive cells were observed. These 

undifferentiated colonies did not becoIre' granuloid even 



though normal granulocytic colony formation was oc­

curing in adjacent areas. 
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McCuskey et al. (17) have dissected the hemo­

poietic microenvironment morphologically into three 

compartments: a microvascular compartment consisti11g o:f 

arterioles~ capillaries~ sinusoids and venules; a con­

nective tissue compartment composed or fibers substance 

and cells; and neural elements associated with both the 

blood vessels and stroma. The study of McCuskey et 

al. (17) demonstrated specific alterations in blood flow 

and glycosarninoglycan type in response to erythropoietic 

s~imulation and repression. During erythropoietic re­

pression the blood flow decreased, only sulphated acid 

glycoaminoglycans were observed, granulopoiesis pre­

dominated, and small undifferentiated colonies were rre­

quent. During erythropoietic stimulation the blood flow 

was elevated, neutral glycosaminoglycans were observed 

in addition to sulphated acid glycosamino~lycans, and 

erythropoiesis was enhanced. Whether or not these 

changes in vivo during erythropoietic modulation 

directly effect erythropoiesis can not be determined 

from these studies. However, Ploemacher et al. (18) 

have shown an in vitro efrect or acid glycosarninoglycans 

on erythroid prolireration and difrerent~ation- So it 

is likely that the ground substance components of the 

hemopoietic microenvironment effect erythropoiesis. 
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EXPERIMENTAL HETEROTOPIC BONE MARROW MODELS 

There are a number of models which might be use­

luI for the study of the development of hemopoietic 

microenvironments in adult mammals. Heterotopic hemo­

poiesis can be established by implantation of medullary 

marrow (19) or demineralized bone matrix (2), and via a 

number of techniques in association with epithelial 

cells (20). In all these models bone formation preceeds 

the development of hemopoietic tissue and the general 

impression is that the histogenesis of the bone marrow 

recapitulates its ontogeny. 

Implantation of medullary marrow into extramedullary 

sites leads to the ~ormation of an ossicle with a central 

marrow in rats (19~22)~ mice (22)~ and rabbits (23~24). 

Tavassoli and Crosby (19) have described the sequence 

of events culminating in ossicle formation. Within 

24 hours or marrow implantation capillaries from the 

surrounding host tissue penetrate the implant. These 

vessels rapidly establish an extensive capillary bed. 

By day 3-4, the implant consists of pro1irerating fibro­

blasts interspersed between large numbers of. capillaries. 

Some isolated concen~rations or osteoid may be seen and 

very few of the original implanted hemopoietic cells 

remain. By day 6-7 most of the implant is occupied by 

bone; between the areas o~ bone is a loose connective 

tissue stroma and highly branched intercommunicating 
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vascular sinuses. The first hemopoietic elements 

may be seen after day 10. During the ensuing weeks 

the bone resorbs and the marrow extends. The product 

of these simultaneous processes is an ossicle with a 

thin shell or bone and a large medullary cavity four 

weeks arter implantation. The ossicles remain for at 

least six months (24). The ossicle marrow demonstrated 

enhanced erythroid proli~eration in response to phenyl-

hydrazine ~nduced anemia indicating that the marrow is 

functionally normal (163). Friedenstein et ale (25) 

have refined this model by demonstrating that isolated 

marrow stromal cells produce ossicles by the same 

developmental sequence. Chromosome marker studies in-

dicate that the bone cells (22) and the marrow stroma 

precursor (26) are or donor origin~ while the-hemo-

paietie cells are of recipient origin (22). There~ore 

the implantation or marrow is basically the trans~er 

or hemopoietic microenvironment. This is an excellent 

model ror the study of hemopoietic microenvironment 

development. The only reservation being that the , 

earliest stages of hemopoietic tissue development are 

obscured by the presence of many stromal cells, which 

make it difficult to tell whether their distribution 

is coordinated in any particular manner. 

Bone and hemopoietic tissue may be induced by the 

interaction o£ connective tissue cells with several 

sources or epithelial cells. The best studied epi-



thelial inductor is the transitlonai epithelium (TE) 

lining the urinary tract and bladder. The inductive 

properties of TE have been examined in a variety or 

mammals (27-37). The hemopoietic tissue requires fur­

ther study before judgement is made with regard to its 

suitability as a model for bone marrow development. 

8 

A number or epithelial cell lines (FL, ~lISH, Hep-2, 

Hela, KB, CLV-X and CLv-4) have been shown to induce 

bone and bone marrow in cortisone treated mice (38-42). 

This model is not suitable ~or the study or hemopoietic 

microenvironment formation because only 50% of the 

grafts induce hemopoietic tissue and the induced tis­

sues are rapidly resorbed. 

The last model I would like to discuss involves 

the implantation of demineralized bone matrix (DBM). 

DBM implantation in a variety of heterotopic sites ·(43) 

produces an ossicle with a central marrow (2). The 

most common site or implantation is in a muscle pouch 

(2,4~~45). Urist (2) has rep6rted successrul ossicle 

induction by DBM in mice~ rats, rabbits guinea pigs 

and dogs. The events during development or DBM-induced 

ossicles have been described by Urist (2), his obser­

vations have been corroborated and the hemopoietic-tis­

sue described in more detail by Reddi and Huggins (44), 

Bombi et al. (45), and Friedenstein et al. (46). At 

approximately 5-10 days arter implantation the DBM is 
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invaded by mesenchymal cells rrom the surrounding con-

nective tissue. At 10 days mesenchymal cells may be 

observed in synchrony with the appearance or matrix 

resorbing multi-nucleated giant cells and capillary in­

growth. By 15-20 days newly dirferentiated osteoblasts 

start to elaborate calciriable osteoid. After 20 days, 

bone rormation~ bone remodeling, marrow stroma and 

sinusoid development and the initiation and expansion 

or hemopoies~s occur in a coordinated manner. A ~ully 

formed ossicle with a bone cortex and hemopoietic 

medulla is present at two weeks and may still be present 

after 300 days (44). Ultrastructurally the hemopoietic 

cells are normal (44,45) and 59Pe incorporat~'on into 

heme was used to detect hemoglobin synthesis in the 

ossicles (44). This model would appear to be the best 

or the models discussed for the study of hemopoietic 

microenvironment ~ormation. The DBM ossicles are dis-

crete which permits easy location and removal. Mul-

tiple implants can be made in ~ach experimental animal, 

which would permit sequential studies or multiple 

analyses to be made. The ossicles have a long life 

span. Finally, the DBM possesses no viable cells at 

implantation, so the earliest events in hemopoietic 

microenvironment formation may be observed. However, 

it should be noted that prior to using this model ~or 

the study of hemopoietic microenvironment ~ormation it 
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is necessary to demonstrate that the hemopoietic tissue 

is normal bott} in hemopoietic precursor cell content 

and their functional responses to proliferative stimuli. 



11 

HUMORAL REGULATORS OF ERYTHROPOIESIS 

Erythropoietin (Ep): 

Ep is considered the primary regulator or verte­

brate erythropoiesis. Ep is a glycoprotein produced 

principally by the kidney in response to tissue hypoxia 

(47~5l). Ep has been purified rrom sheep plasma (52) 

and from anemic human urine (53). The international 

standard unit of Ep is equivalent to 1.48mg. or a crude 

human Ep assayed by the method or Kajal and Erslev (54) 

in either hypertransfused or exhypoxic mice. 

Ep initiates red cell di~rerentiat~on ~n a mor­

phologically uncharacterized cell known as the erythro­

poietin responsive cell (ERe) (55~56). The ERe is 

thought to be a committed erythroid precursor and there 

is a lot Ol evidence which differentiates the ERe ~rom 

the CFU-S. Ep administration does not influence CFU-S 

numbers (57). When CFU-S are depleted the ERC can still 

be detected (58) and vice versa, when the ERG are de­

pleted by tritiated thymidine the CFU-S are scarcely 

erfected (59). Furthermore, the ERe can be separated 

rrom the CFU-S by unit gravity sedimentation (60). 

Ep promotes proliferation and dirferentiation of 

the ERe. Within a short period of time (3 days) arter 

Ep administration, the incorporation or labelled thymi­

dine and uridine (61), RNA synthesis (62), DNA synthesis 
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(63), mitotic index (63), and hemoglobin synthesis (64) 

are increased. The speed with which Ep acts to promote 

erythropoiesis is thought to imply that the ERe is a 

relatively mature erythroid precursor not far removed 

from the early erythroblast. Marks and Rifkind (65) 

showed that Ep increased the number of cells synthesizing 

hemoglobin and that the amount or hemoglobin synthesized 

(measured by tritiated leucine incorporation) per cell 

did not change. Thus Ep would appear to promote pro­

liferation and differentiation Ol the ERC. 

Further characterization or the ERe was difficult 

because of the lack or morphologic characterization. 

The development o~ two in vitro assays ror erythroid 

precursor cells~ the plasma clot (66) and methylcel­

lulose (67) techniques in the early 1970's were major 

breakthroughs. In these assays two committed erythroid 

precursor cells could be detected. Stephenson et al. 

(66) described the formation or small (8-32 cells) 

erythroid colonies £rom erythroid precursors, dubbed 

erythroid colony-rorm~ng units (CFU-e), in murine bone 

marrow after two days of culture. Axelrad et al. (68) 

demonstrated the presence or a second class or committed 

erythroid precursor cells, known as erythroid burst­

forming units (BFU-e)~ which produce bursts or small 

colonies arter longer periods in culture. The CFU-e 

require approximately physiological concentrations of 
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Ep (0.01-0.25 units) to form colonies i.n vitro and are 

thought to be relatively mature erythroid precursor 

cells placed just before the pronormoblast in the ery­

throid series. The BFU-e require high levels or Ep 

(0.1-2.5 units) for burst formation and are believed 

to be an early erythroid precursor cell separated rrom 

the CFU-S by committment to erythroid development 

(69,70.7l). Both the CFU-e and BFU-e derived colonies 

have been shown to be clonal in origin (72,73,74). 

Further study has demonstrated the presence of a con­

tinuum of intermediate precursor cells between the 

BFU-e and CFU-e (71,75,76,67,77). BFU-e~ but not CFU-e, 

have been observed in the blood of mice (78~79) and 

humans (80,81). The BFU-e in blood are round in the 

null-cell leukocyte fraction (81). Bone marrow BFU-e 

and CFU-e have been dirrerentiated by separation at 

unit gravity and by sensitivity to tritiated thymidine 

(82,75,83,84). 

The response of erythroid,precursors to ambient 

Ep levels in vivo can be determined in vitro. Ele­

vation or Ep levels can be produced by bleeding~ in­

duction or hemolytic anemia with phenylhydrazine hydro­

chloride (PHZ), Ep injection and intermittent hypobaric 

hypoxia. Depression or Ep levels can. be produced by 

hypertransfusion with packed erythrocytes or by pro­

~o~ged subjection to a hypobaric atmosphere rollowed 
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by a few days at normal atmospheric pressu:re Cexhy­

poxic). Murine CFU-e increase following in vtvo ele­

vation of Ep (84,78,79,83~85) and decrease when Ep 

is depressed (68,84,79,83). Murine BFU-e migration 

from bone marrow to spleen may be enhanced by elevation 

of Ep (78,83), but no significant changes in marrow 

BFU-e number occur following either increase or de­

crease of Ep (71,84,86,78,83,85). The proliferative 

state of BFU-e and CFU-e~ assayed by sensitivity to 

tritiated thymidine} is not changed during erytllro­

poietic stimulation and suppression (83,84). These 

observations indicate that Ep stimulates proliferation 

of intermediate erythroid precursors to produce in­

creased CFU-e numbers and that Ep bas little effect 

on BFU-e. 
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BU'rst-Pr'omoti'ng" 'Acti vi ty 
• -'-". Is q 

In the section on Ep it was noted that BFV-e re-

quire higher than physiological concentrations o~ Ep 

in order to produce bursts .. In addition BFU-e did not 

appear to be in:fluenced by' 'in' 'v'i'vo Ep :fluctuations. 

These observations suggest that ~actors other than Ep 

may be involved in the production of B.F1J-e from CFU-S 

and for regulation of BFU-e differentiation to an Ep 

responsive stage. 

During the past few years investigators have ob-

served the enhancement of burst number by addition 

or media conditioned by human peripheral blood leuko-

cytes (87~88), lectin stimulated murine spleen (89), 

bone marrow (gO), T-cells (9l,92), monocytes (93), 

macrophage (94,6) and non-adherent (non T-cell) peri-

pheral ~lood mononuclear cells (95). The f'actor(s) 

responsible ror increasing burst number has been de-

s~gnated burst-promoting activity (BPA). BPA has also 

been detected in urine (96) and in serum (97) or anemic 

humans. In addition to enhancing burst number con-

ditioned media with BPA have also been reported to in-

duc,e the rormation of mixed colonies (colonies with 

cells or more than one hemopoietic line) (87,89,98), 

increase hemoglobin synthesis (90), and enhance human 

£etal hemoglobin synthesis (99) in culture. The in-. 

crease in burst number may be due to stimulation of a 
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BFU-e population with high BPA requi"rements or un-

committed pluripotent stem cells. The latter would ex-

plain the observation of mixed colonies. A requirement 

for BPA during early proliferation in bursts prior to 

the development of Ep responsiveness has been shown, 

but Ep is still required for terminal differentiation 

to recognizable erythroid cells (86,90,lOO). The 

mechanism(s) of action or BFA are still uncertain. 

A very active area of BPA research has been the 

identification" of cell types which produce BPA. Iso­

lated studies have shown that radioresistant, non­

adherent, non T-cell peripheral blood mononuclear cells 

produce BPA (95) and that marrow stromal cell addition 

to the erythroid precursor cell assay enhanced BFU-e 

and CFU-e (101). l\1ost evidence, ho\...rever, implicates 

T-cells and monocyte-macrophagesas sources of BPA. 

A role ror lymphocytes in erythropoiesis was in­

dicated by studies in the early 1970's which showed 

that thymocytes could promote <erythrocyte formation 

(102 ,103) . More recently data has specifically impli-

cated T-cells. Removal of T-cells from mononuclear 

leukocyte preparations led to a decrease in burst 

number which was corrected by replacing the T-cells 

(104). Phytohaemagluttinin (PHA) stimulated marrow 

cells or thymocytes produce an increase in erythroid 

colonies in bone marrow suspensions placed intraperi-
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toneallj in dif'fusio11 chambers. Pretreatment o:f the 

PHA stimulated cells with antitheta serum and comple­

ment eliminated the colony 1ncr'ement (105). The 

genit1cally anemic W/Wv mouse could not be cured by T­

cell depleted marrow transplants (106). Nathan et al. 

(91) reported that the addition or T-cells or media 

conditioned by tetanus toxoid stimulated T-cells en­

hances burst formation. The most convincing evidence 

for T-cel1s as a source or BPA comes from the production 

of BPA by a human T-lymphocyte cell line (Mo) (92). 

A role for the macrophage in erythropoiesis has 

been suggested by the observation in morphological 

studies or an intimate physic~l relationship between 

macrophage and developing erythroid cells in erythro­

blastic islands (7). In' vitro studies have generated 

much stronger evidence. Rinehart et al. (107) showed 

that 20% monocytes in the BFU-e assay completely sup­

pr~ssed burst formation and that low concentrations of 

rnonocytes (1%) favour erythropoiesis. Wagemaker (108) 

has observed BPA by addition of irradiated bone marrow 

cells to the BFU-e assay. The cells responsible for 

this BPA, which he termed burst feeder activity~ have 

a bouyant density of 1.083 g/cm3 and a modal semi­

mentation rate of 4.7mrn/hr. (4). Intravenous admini­

stration or inert polystyrene latex particles, which 

were mainly phagocytosed by macrophages, induced changes 
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in the remoral BFU-e content following an increase in 

burst ~eeder activity (5). These observations indicate 

that macrophage may be responsible ror burst feeder 

activity. Murphy and Urabe (109) cultured mouse non­

adherent bone marrow cells in the presence or varying 

concentrations o~ peritoneal macrophage and observed 

enhanced burst and colony ~ormation. Kurland et al. 

(6) have carried out similar stUdies and also showed 

that macrophage conditloned media could enhance ery­

throid colony formation. Interestingly the sedimenta­

tion velocity characteristics of the stimulatory 

peritoneal macrophage resemble those or the cells re­

sponsibile ~or burst reeder activity in the study or 

Wagemaker et al. (4). Two recent studies, one with 

a murine macrophage cell line (WEHI-3) and the other 

with a human monocyte cell Ilne (GeT), are the most 

convincing evidence ~or a role o~ monocyte-macrophage 

in the production of BPA (94,93). 

It is likely that the BPA produced by these cell 

types is not the sam~ and ~t is also possible that 

some o£ these BPAs do not e~fect BFU-e directly. The 

T-cell BPA may modulate monocyte-macrophage BPA pro­

duction or vice versa. The other cell types, mentioned 

brierly. which have been associated with BP~may also 

be involved. Complex lymphocyte-macrophage inter-

actions have been well documented in other cell 

systems (llO). 
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Other -Hormones 

Although erythropoietin is the major r~gulator 

or erythropoiesis other hormones may influence red 

cell production. Considerable inrormat~on has been 

obtained from in vivo experiments. Androgen~c steroj_ds 

can stimulate erythropoiesis (Ill) in vivo by enhancing 

erythropoietin production (112). The in vivo evidence 

for glucocorticosteroids is contradictory (ll3-1l6)) 

however~ dexamethasone appears to stimulate erythro­

poiesis by an effect on erythropoietin production (ll7). 

Thyroid hormones have also been shown to increase ery­

thropoiesis when administered to animals (118-120) and 

anemia is regularly observed in the hypothyroid man 

(121). It is not clear from in vivo studies whether 

thyroid hormones directly e~fect erythroid precursor 

cells or act primarily upon erythropoietin production 

(122,121,119>123~124). In general the in vivo approach 

to analysis or hormonal efrects on erythroid precur­

sors surfers ~rom the problem or whether any effects 

observed are direct or indirect. 

In vitro analysis o~ hormone interactions with 

erythroid precursors removes the possibility of indirect 

ef£ects. Androgens (125) and phosphodiesterase in­

hibitors (126) enhance erythroid colony £ormation. 

Golde et al. (127) has reported that dexamethasone 

stimulates erythroid colony rormation 1n mouse and human 
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bone marrow cultures. Most investigators, however, 

have found glucocorticosteriods to be inhibitory for 

rodent bone marrow erythroid precursors [cortisol (125), 

cortisone (128), and dexamethasone (129,128)]. Urabe 

et al. (130) compared the effects of dexamethasone on 

human and murine bone marrow and found dexamethasone in­

hibitory for mouse and stimulatory for human erythroid 

precursors. Other hormones which potentiate erythroid 

colony and burst formation in vitro are thyroid hor­

mones (131,132), B-adrenergic agonists (133,134), di­

'butryl cyclic AMP (135,136,133,134), prostaglandins 

(135,137,138,134), and growth hormone (134). 
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MATURATION AND DELIVERY OF ERYTHROCYTES 

Erythroblastic islands consisting of maturing ery­

throblasts and one or two central macrophage have been 

observed in the liver or mice following induction of 

hemolytic anemia with phenylhydrazine (139), and in nor­

mal bone marrow (140), spleen (141)~ and yolk sac (142). 

In the erythroblastic islan~ t~e erythroid cells are 

arra~ged in one or more corona with the cells of each 

corona being at approximately the same maturational 

stage, the most mature cells being on the outside (143, 

144,141,145,139). A number or roles have been proposed 

~or the central macrophage; (A) delivery or ferritin to 

the maturing erythroid cells (114), (B) detainment or 

differentiating erythroblasts, which would ~nhibit pre­

mature delivery into the circulation and (C) the ability 

to phagocytose expelled normoblast nuclei and deranged 

erythroid elements (146~147). 

The vascular sinuses of the marrow are the site o~ 

transmural migration of blood cells. Their wall con­

sists of an endothelium, a discontinuous adventitia and 

basement membrane (148). The components of the sinus 

wall may play an important role in erythrocyte delivery 

to the circulation. Several investigators have pre­

sented evidence which indicated that junctional struc­

tures might be involved in maintaining endothelial cell 

contact (149-151). More recent evidence based on £reeze 



fracture and ultrastructural analysis of lanthanum 

localization in intra-endothelial spaces indicates 
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that there are no junctional structures present (152). 

These last observations indicate that transmural trans­

port may be interendothelial rather than transendothe­

lial as proposed previously (153~150)151). The absence 

of tight junctions may permit the endothelial cells to 

slide over one another resulting in sinus lumen diameter 

changes. This would explain the rhythmic sinusoid di­

lations observed by Branemark (154) during in vivo 

microscopic studies of bone marrow. These periodic 

fluctuations in sinus diameter CQuld serve as a mechanism 

ror deliver of hemopoietic cells into the circulation 

(152). 

The adventitial covering o~ sinusoid consists or 
radio-resistant, long lived reticular cells (155). These 

cells, unlike endothelial cells, possess contractile 

cytoplasmic filaments (156-158). Tavassoli (159) ob­

served a reduction in the quan~ity of sinus wall covered 

by adventitial cells after phlebotomy. This reduction 

may be promoted by erythropoietin (160~16l). It is 

still not clear whether the erfect or erythropoietin 1s 

direct or indirect. McCuskey and Meineke (162) sug­

gested that erythropoietin may mediate the release of a 

vasoactive substance rrom erythropoietin responsive 

stem cells. 
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SUMMARY 

Due to the development of a pluripotent stem cell 

assay in the mouse, during the 1960's, studies of murine 

hemopoiesis have dominated experimental hematology. Ap­

proximately ten years later in vitro assays for murine 

erythroid precursors were described. Studies using 

these assays, repeated in humans when possible, have 

granted us considerable insight into the regulatory me­

chanisms or erythropoiesis. The accumulated data sug­

gests that the earlier stages of erythropoies~s, such 

as commitment or pluripotent hemopoietic stem cells to 

the erythroid line or development and runctional dif­

rerent~ation of committed ste~ cells, are controlled at 

the cellular level by interaction with hemopoietic micro­

environments. Potential models ~or the study of hemo­

poietic microenvironment development were discussed. 

The demineralized bone matrix system appeared to be the 

best model for such studies, but further characterization 

is required. Humoral ractors~such as erythropoietin 

and a variety or nonspecific hormones, are involved in 

the intermediate stages of erythropoiesis during which 

prolireration and differentiation occur. Recent evidence 

for humoral ractor{s) with burst-promoting activity 

which are required for early erythroid proliferation in 

vitro was presented. The mechanisrn(s) of action of 

burst-promoting activity are still speculative. The 



final stages in erythropoiesis, maturation and de­

livery, appear to be a function of the hemopoietic 

organ structure. 

2~ 
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40 

INTRODUCTION 

Rabbits are an excellent experimental animal 

for hematolog1cal studies because repeated blood and 

bone marrow sampling can be carried out. Rabbit ery­

throid colonies have been described previously in the 

methylcellulose assay (1) and in the plasma clot assay 

(2). Rabbit bursts have been descr~bed ~n the plasma 

clot assay (3). The purpose or this study was to 

characterize rabblt erythroid precursors in the methyl­

cellulose colony assay. 

MATERIALS AND METHODS 

Cell" Pre"para"tion: 

Male New Zealand wh~te rabbits weigh~ng 2.5-3.5kg. 

were employed in the study. Bone marrow was aspirated 

rrom the femur and coll~cted in 6 mI. falcon plastic 

tubes containing heparin without preservatives (Chromalloy 

Pharmaceuticals, Inc., St. Louis~ MO). The buffy-coat 

cells were collected a~ter centri~ugation and resus­

pended in a- medium (Flow Laboratories~ Inc., Rockvil1e~ 

MD). Peripheral blood was obtained by bleeding from 

the car veins and mononuclear cells were harvested 

using the Ficoll-Isopaque technique described by Boyum 

(4) with slight modir1cations (5). 
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Bbne Mar~ow Cotidit~otied M~di~(BMCM): 

Marrow buffy-coat cells (10 6 cells/ml) were cul­

tured in glass flasks in 10 mI. of a-medium containi~g 

1% deionized bovine serum albumin (Calbiochem, San 

Diego, CA), 1% fetal calf serum (FCS) Flow Laboratories, 

Inc.) and lO-4M mercaptoethanol (Fisher Scientific Co., 

Norcross, GA). After 1, 2, 3> 4, and 5 weeks of cul­

ture, one-half of the culture medium was removed and 

rep1ac~d with fresh medium. BMCM was centrifuged at 

BOOg and the supernatant stored at -70°C. 

Erythropoiet~cCell Culture: 

Aliquots of 105 marrow nucleated cells or 5 x 10 5 

peripheral blood mononuclear cells were plated in Lux 

standard non-tissue culture dishes (#5221P, Flow Labora­

tories, Inc.) in 1 mI. of media per dish. 

The media consisted of a~medium, 0.8% methylcellu­

lose (Fisher Scientific Co.)~ 1% deionized bovine serum 

albumin, 30% FCS, lO-4M mercaptoethanol and 1.0 U or 
Step III preparation o~ sheep plasma erythropoietin (Ep) 

w~th speciric activity of 13.7 U/mg. protein (Connaught 

Labs., Lt d. Willowdale, Ontario, Canada). When BMCrll 

(10% V!V) was added to experimental culture FCS content 

was reduced to 10%. Controls with no BMCM contained 

the same concentrations o~ all other media components as 

the experimental cultures with BMCM. The dishes were 1n-



cubated at 37°C in a humidif'.ied atmosp11ere consist:lng 

or 5% C02 in air. Red colon~es' and bursts were counted 

using an inverted microscope (65X) on days 3 and 10, 

respectively. 

In'co'r'pora'ti'on of 59Fe' 'i'rite Heme: 

Cultures were labeled for 24 hours by carelully 

overlaying each dish with O.3ml o~ a-medium containing 

50% heat-inactivated rabbit serum (30 minutes at 56°c) 

and 0.5 ~Ci or 59Fe-citrate (6) on day lO or incubation. 

Heme was extracted by the cyclohexanone method (7). 

Analysis 'of' Hemoglobin: 

Hemolysates of rabbit erythrocytes were prepared 

by the method o~ Drabkin (8) and were stabilized by the 

addition of 40]..ll of 0.1 M KeN to prevent 'oxidation (9). 

Burst hem~globin was labelled for 24 hours by overlayi~g 

2~Ci o~ unirormly C14 -1abelled amino acid m~xture 

(NEC-445, New England Nuclear" Boston, Mass.) in O.3ml. 

or phosphate burrered saline (PBS) on day 10 or culture. 

Hemolysates rrom C14 -1abelled'and non-labelled bursts 

was prepared by lifting each burst with a lO~l pipet 

and pooling the bursts o~ each dish in 200ul of PBS in 

a microcentrifuge tube. The cells were then washed 

twice in PBS by centri:fugation and the cell pellets were 

rrozen at -70°C. The rrozen cell pellets were thawed 

at room temperature and lysed by addit~on of a solu-
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tion containing 40ul of O.DIM KeN arid lOul of 10% non­

~det P-40. The hemolysates were subjected to isoelectric 

focusing, which was carried out by using an LKB Multi­

phor apparatus and the conditions described by Allen et 

al. (10) and Drysale et al. (11). Ampholytes in the pH 

ra~ge 6-8 were used. After separation the gels were 

rixed in 15% trichloracetic acid, stained with dimethoxy­

benzidine P-509, and destained in 10% acetic acid. When 

C1ij-labelled hemolysates were used, gels were stained 

with Coomassie Blue R-250 and dried. Arter drying, 

the labelled gels were placed in contact with Kodak 

RP nX_Omatn film (Eastman Kodak Co., Rochester, New 

York) that had been previously exposed to a brief 

rlash or light using an electronic photographic flash 

unit (Vivitar 283, Vivitar Corp., Div. of Ponder and 

Best Inc., Santa Monica, Ca.). Pre-exposure of the 

film raised the level of background fog absorbance by 

0.15 OD and established a linear relationship between 

radioactivity of the sample and. density or the fluoro­

gram band (12). Densitometric tracings or the bands 

were carried out on a Joyce Loebl 3CS microdensitometer 

(Joyce, Loebl and Co., Ltd., Gateshead-on-Tyne, England). 

Light' Microscopy: 

Bursts were individually lifted with a IOul pipet 

and applied to slides via a cytospin centrifuge. The 
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cells were stained by Wright's stain or for red cell 

pseudoperoxidase activity by incubating with the sub­

strate 3-3' diaminobenz1dine (DAB). The latter sta~n 

utilized the technique of Graham and Karnovsky (13) 

with a slight modirication (14). The substrate medium 

contained 9 mg. or DAB dissolved in 30ul of 0.05 M 

Tris-HCl buffer, pH 7.6 Six milliliters of 3% hydro­

gen peroxide solution were added to the DAB solution 

just prior to use. 

Transmission Electron M~croscopy: 

One ml. o£ fixative containing 4% glutaraldehyde 

with 0.1 M cacodylate, bur~ered at pH 7.4> was added to 

culture dishes containing bursts and incubated at room 

temperature ror 1 hr." The content or each dish was 

solidi~ied by addition or 1 mI. of 2% Bacto-agar (l~) 

and removed as an intact disc. The disc was rinsed 

overnight in O.lM cacodylate bufrer. Intact individual 

bursts were dissected out or the disc, post-rixed ror 1 

hour in 2% osmium tetroxide in O.1M cacodylate bufrer, 

dehydrated through graded ethanol to polypropylene oxide 

and embedded in Epon. Thin sections of bursts were 

examined after staining with uranyl acetate and lead 

citrate in a Hitachi 12A electron microscopy. 



-RESULTS 

In preliminary studies of methyl-cellulose cul­

tures containing 105 rabbit marrow nucleated cells and 

1.0 U/ml or Ep, it was found that red cells could first 

be observed in colonies on day 3 after plat~~g. These 

colonies consisted or 8-50 cells and rapidly disinte­

grated Rfter hemoglobinization. A time course study of 

colony formation (Figure 3, Chapter 3) revealed that 

these colonies were most numerous on day 3 and rapidly 

decreased wlth longer periods of culture. On day 4 of 

culture colonies composed of 3-10 subcolonies were ob­

served and with longer perlods of culture larger colonies 

composed of many subunits were seen. These colonies com­

posed or three or more subunits are known as bursts. 

Time course studies oi burst formation in cultures con­

taining rabbit bone marrow cells or rabbit peripheral 

blood cells are presented in Table 1. Peripheral blood 

cultures contained fewer small and intermediate sized 

bursts and no small 3 day colonies. Because very rew 

bursts formed later than 10 days in culture it can be 

assumed that 10 day bursts are derived rrom early BFU-e. 

Day 10 was selected for burst quantitation. 

Table 2 shows results obtained when colony and 

burst formation responses at different Ep concentrations 

were examined. CFU-e required approximately physiolo­

gical concentrations or Ep in order to rorm the colonies. 
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The BFU-e required mu.ch higher than physiological con-

centrations or Ep J.or burst formation. Based on these 

studies 1.0 U per mI. of erythropoietin was selected for 

further studies of colony and burst formation. 

Due to unknown and possibly variable plating erri­

ciencies affecting the reliability o~ erythroid pre­

cursor quantitation it ls necessary to have a well de­

f~ned, preferably linear, relationship between the num­

ber OL cells plated in culture and the number or colonies 

that rorm. Linearity o~ the culture system was tested 

by varying the cell concentration in the presence of 

I.OU/ml rof Ep. The number or 3 day colonies formed 

correlated well (r-O.9975) with the number or ·cells 

plated between 10 4 and 2.5 x 105 nucleated cells per 

dish (Fig. 1). Similarly the number o~ 10 day bursts 

correlated well ~-O.9792) with the number of cells 

plated between 10 4 and 1.5 x 105 nucleated cells per 

dish (Fig. 2). It was not possible to quantitate 

bursts at higher cell numbers because they tended to 

merge into one another. 

It has been reported that human BMCM can promote 

human burst formation (6). The add:Ltion o.f rabbit BMCM 

to the rabbit erythroid precursor assay at low FCS con­

centrations resulted in enhanced burst number and heme 

59Fe incorporation similar to the results obtained in 

the previously reported human study (6) (Table 3). The 

bursts were qualitatively much larger in the presence 
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of' BMCM than in ~ts absence (Chapter 4!t Flg. 1)~ The 

ability of BMCM to promote burst formatlon varied be­

tween batche s and the f'irst sample ,in each batch was 

usually of poor qual~ty. Batches or BMCM were screened 

for their ab~l~ty to enhance burst Tormation at low FCS~ 

Table 3 compares the burst promotion by two batches of 

BMCM wh~ch were produced over a rive week per1od~ batch 

2 is of excellent quality and batch 1 is o~ poor quality_ 

The reason ~or such variation between BMCM batches is 

not known. 

The factor(s) responsible ~or burst promotion by 

BMCM had a molecular weight greater than lO,OOO, based 

upon retention by ultrafiltration. Burst enhancement 

by BMCM was lost a~ter heating at lOQoC ror twenty 

minutes. 

Cytospin preparations o~ burst cells stained with 

Wright's stain revealed erythroid cells at all stages 

o~ maturation. The majority of burst cells examined 

stained positive ~or hemoglobin with DAB. Toluidine 

blue stained thick section o~ Epon embedded bursts also 

revealed erythroid cells at all stages of maturation. 

Ultrastructural studies of less mature erythroid cells 

were performed in order to confirm that they were early 

erythroblasts. Figure 3 shows a small cluster or such 

cells. These cells appear to be early erythroblasts, 

in that they possessed slightly irregular nuclei wlth 

condensed chromatin and one to three nucleoli, while 



48 

the cytoplasm was full ,of fr.ee ribosomes and PQly­

ribosomes~ several mitochondria and pinocytotic vesi-

cles. I failed to observe any non-erythroid cells or 

abnormal erythroid cells in bursts. 

Burst hemolysate analysis by isoelectric ~ocusing 

revealed two major protein bands with Coomassie blue. 

These bands corresponded to rabbit hemoglobins Al and 

A2 when compared with erythrocyte hemolysates. Both or 

these bands stained positively ror hemoglobin with benzi­

dine. These hemoglobins were resolved most clearly by 

'fluorography o~ 14C-labelled burst hemolysates. Figure 

5 shows a representative densitometric tracing of 

fluorographed burst hemoglobins. 

DISGUSSION 

The methylcellulose assay as described ~or murine 

erythroid precursor (16~17) was found to support the 

growth of rabbit erythroid precursors. Using the 

methyl-cellulose assay a spectrum or erythroid pre­

cursors was detected arter dirferent periods or culture. 

In nucleated bone marrow cell preparations the latest 

precursor detected was the CFU-e which produced small 

colonies on day 3 of culture and the earliest precursors 

were BFU-e which produced large bursts on day 10. In 

peripheral blood mononuclear cell preparations no CFU-e 

were observed, the latest precursors detected were inter-
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mediate BFU-e~ BFU-e which rormed bursts on day 10 were 

the earliest precursors observed. These results are very 

similar to observations ror murine erythroid precursors 

in bone marrow (19) and blood (20,6). The CFU-e Ep dose 

response was very similar to that reported by Moriyama 

and Fisher (1) for rabbit CFU-e in the methylcellulose 

assay_ The Ep dose response or BFU-e resembles the mu-

rine BFU-e dose response (18,19). The linearity of 

colony and burst rormation at difrerent cell numbers is 

inconclusive evidence that they are or clonal origin. 

Morphologically the contents of the bursts were 

erythroid and the majority of the erythroblasts examined 

stained pOEitive for hemoglobin. Isoelectric focusing 

o~ burst hemolysates demonstrated the presence o~ normal 

adult rabbit hemoglobins. The addition or BMCM to low 

FCS cultures enhanced burst number and heme 59Fe inc or-

poration. Similar results were obtained by Porter el al. 

(6) with human BMCM, but the increase in heme 59Fe incor-

poration observed was much greater. In addition BMCM 

appeared~ qualitatively, to enhance the size or bursts. 

These studies indicate that rabbit BMCM may promote hemo­

globin synthesis or erythroid proliferation. Further 

study is necessary to clarify this point. 

In summary, these results demonstrate that the 

methylcellulose assay supports the growth of rabbit ery­

throid precursors. The bursts contained erythroid cells 

at all stages of maturity and normal adult rabbit hemo-
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globins. Furthermore the results indicate that the 

rabbit is an excellent model for the study of the BMCM 

factor(s) whicll promote bursts. 



51 

TABLE I 

Erythropoietin Dose Response of Erythroid Precursors 

Ep Dose 3 Day Colonies* 10 Day Bursts 

0.0 220 ± 64 3 ± 1 

0.001 284 + 20 (nd) 

0.01 404 ± 12 13 ± 2.5 

0.1 544 ± 20 27 ± 3 

1.0 480 ± 40 28 ± 3.5 

2.0 (nd) 30 ± 3 

5.0 (nd) 39 ± 2 

* All data expressed as mean ± standard error of 
duplicate dishes. 

nd = not done. 



TABLE 2 

Time Course of Burst Formation by Bone 
Marrow and Peripheral Blood BFU-e 

Day of Bone Marrow Peripheral 
Culture Burst II Burst 

4 6~ - ± 1* 0 

5 112 ± 17 8 ± 1 

6 110 ± 19 15 + 2 

·7 98 ± 9 22 ± 2 

8 83 ± 7 29 ± 1 

9 55 ± 0 29 ± 1 

10 43 ± 3 29 ± 3 

11 28 ± 2 20 ± 7 

12 15 ± 2 21 ± 1 

13 11 ± 3 19 ± 1 

52 

Blood 
# 

* All data expressed as the mean ± standard error of 
duplicate dishes. 
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TABLE 3 

Production of BMCM by Bone Marrow Cultures 

eM Week Bursts/Dish 59FE CPM/Dish 

1 1 ~3 ± 6* 479 ± 311* 

1 2 5Q ± 2 921 ± 80 

1 3 59 ± 7 477 ± 329 

1 4 ij7 ± 0 362 ± 139 

1 5 43 ± 6 605 ± 29 

2 1 43 ± 3 708 ± 80 

2 2 52 ± 4 835 ± 50 

2 3 71 ± 11 1909 ± 274 

2 4 84 ± 4 2685 ± 620 

2 5 90 ± 6 2690 ± 793 

Control 43 ± 6 195 ± 33 

Rabbit bone marrow nucleated cells (105/dish ) were 
culttlred in the presence of BMCM collected from bone 
marrow flask cultures at weekly intervals and in the 
absence of BMCM (control). 

* Data expressed as mean ± standard error of duplicate 
dishes. 
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Fig. 3. A group of early 
The cytoplasm of 

erythroblasts form a burst. 
the cells contains many 

several mito­ribosomes and polyribosornes, 
chondria and pinocytotic vesicles. The 
nuclei are slightly irregular with condensed 
chromatin and one to three nucleoli (x8000). 
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CHAPTER 3 

HEMOPOIESIS IN DEMINERALIZED BONE ALLOGRAFTS 
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INTRODUCTION 

Hemopoiesis in intimately, but not exclusively, 

associated with bone in mammals. Marrow has been ob­

served in areas or ectopic ossirication (1) and may be 

induced experimentally by implantation of demineralized 

allogeneic bone matrix (DBM) in a variety of tissues 

(2,3). The DBM implant has been extensively employed as 

a model ror the study or bone development (3) and has 

been used clinically as a bone graft material. Im­

plantation of DBM into a muscle bed produces an ossicle, 

with central marrow within four to six weeks, depending 

on the species of experimental animal (3,4). When DBM 

is implanted, fibroblastic mesenchymal cells in the 

connective tissues near the implant are induced to dif­

rerentiate in a complex sequence into the cell types 

found in cartilage, bone and marrow stroma (5). The 

objective of this study was to determine if the DBM im­

plant marrow possesses proliferative functions which are 

responsive to systemic hemopoietic control mechanisms. 

Results of these studies suggest that DBM implants are 

useful ror investigation of bone marrow rorrnation and 

hemopoiesis. 
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MATERIALS AND METHODS 

Preparation, Implantation or DBM and Ossicle Retrieval: 

Male New Zealand white rabbits weighing 2.5-3.5kg 

were used. Segments o~ remurs rrom sacririced animals 

were demineralized using a modirication o~ a reported 

method (6). Freshly excised cortical bone segments 

were demineralized in 0.6 N Hel (IOgm/bone L) at 4°C 

ror 24 hours. The DBM, prior to implantation, was 

rinsed in 70% ethanol, dissected into segments approxi­

mately lx4x4 mm, and stored in 70% ethanol. Berore 

implantation, the segments were rinsed in sterile sa­

line. 

Using sterile techniques, DBM segments were im­

planted in muscles, 4 in the quadricep and 8 in the ab­

dominal muscles o~ eight rabbits. Two rabbits were 

sacririced at 3, 6, and 10 weeks. At least three 

remora1 and three abdominal ossic1es from each rabbit 

were retrieved under sterile conditions ror clonal 

cell culture; the remaining ossicles were processed for 

histological evaluation. 

Ossicles £rom the left hind limbs of two rabbits 

were obtained by sterile biopsy arter six weeks. Hemo­

lytic anemia was subsequently induced by one subcutaneous 

injection of phenylhydrazine hydrochloride (20mg PHZ/kg). 

Hematocrits were measured be~ore and three days arter 

PHZ injection using blood obtained rrom peripheral ear 
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veins. The rabbits were sacrificed" three days arter PHZ 

injection, and the ossicles were processed as described 

above. 

Methylcellulose Cell Culture: 

Cell suspensions ~or clonal analyses were obtained 

from implants by dissection in a-medium (Flow labora­

tories, Inc., Rockville,MD). The cells from three im-

plants were combined. Single-cell suspensions were 

prepared by rlushing the cells through a #23 gauge 

needle, repeated pipetting with 1.0ml serological pipet 

and riltering through a #100 stainless steel mesh 

screen. Control marrow cells were obtained rrom the fe-

mur or anesthetized rabbits by aspiration, using a 

sterile procedure. The buffy coat cells, collected by 

centrifugation, were suspended in a-medium, counted and 

plated at a concentration of 105 nucleated cells per ml 

or tissue culture medium. 

Hemopoietic precursors we~e cultured in methyl­

cellulose (7). Duplicate or quadruplicate cultures 

were established in Lux standard non-tissue culture 

dishes (Flow Laboratories, Inc.) in 1 ml or media per 

dish. The medium consisted or a-medium, 0.8% methyl­

cellulose (Fisher Scientiric Co., Norcross, GA), 1% 

bovine serum albumin (Calbiochem, San Diego, CA), 30% 

retal ca1£ serum (Flow Laboratories, Inc.), 10-4 M 

mercaptoethano1 (Fisher Scient1~ic Co.) and 1.0 U or 
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Step III preparation o~ sheep plasma erythropoietin 

(EPO) (Connaught Labs, Ltd., Willowdale, Ontario, 

Canada). The dishes were incubated at 37°C in a humi­

dified atmosphere consisting or 5% CO 2 in air. 

The erythroid colonies were counted when the cells 

showed clear signs o~ hemoglobinization, either daily 

or on day 3 ~or erythroid co1ony-~orming units (CFU-e) 

(8), and on day 7 for erythroid burst-rorming units 

(BFU-e) (9). Granulocyte-macrophage colonies were 

counted on day 12. All colony counts were performed 

using an inverted microscope. 

Histology: 

Undecalci~ied specimens for histologic analysis 

were fixed in formalin and processed in methylmethacry-

late. The sections, cut on a Jung model-K hard tissue 

microtome, were stained with hematoxylin and eosin. 

RESULTS 

Histology: 

Histological evaluations of the 3-, 6- and lO-week 

ossicles from both the femoral and abdominal sites were 

consistent with previous ~indings (3,4,5,10). Hemo­

pOietic elements were observed in the 6- and IO-week 

ossicles. The area occupied by marrow appeared to be 

closely related to the size or the ossicle. There was 
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some variation in the size o~ the ossicles in anyone 

animal, despite the unirormity in size at implantation. 

The 6-week post-implantation ossicles revealed a 

highly vascular, developing marrow (Fig. la). Stromal 

cells were the predominant cell type, amongst which 

were scattered mature and immature erythroid and granu­

locytic cells. An occasional megakaryocyte was observed. 

The IO-week post-implantation ossicles had many more 

hemopoietic cells, especially granulocytic cells and 

megakaryocytes. The stromal cells were not the pre­

dominant cell type at this time. The marrow in 6-week 

ossicles, when examined three days a~ter PHZ injection 

(Fig. lb), was more cellular than the ossicles biopsied 

prior to PHZ administration. There was an increase in 

erythroid elements. 

Cell Culture Analysis o~ Hemopoietic Precursors: 

At 6-week post-implantation, the DBM implant con­

tained both erythroid and gran~locytic precursor cells. 

Erythroid colonies were seen at 3-6 days, bursts were 

seen arter day 5 and granulocyte-macrophage colonies 

appeared after the 7th day. A representative burst 

(day 7) is shown in Fig. 2. The time courses or ery­

throid colony and burst formation (Fig. 3) ~rom DBM 

ossicle and femoral marrow were approximately the same, 

but the plating erriciency or ossicle marrow was less 

than one-tenth that or ~emoral marrow. This dir~erence 
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may be due to the disproportionately large number of 

stromal and bone-associated cells in the ossicles as 

compared to femoral marrow. Granulocyte-macrophage 

colonies measured on two occasions were 85 ± 10.5 and 

31.5 ± 3 (mean ± SE) per 105 cells, respectively_ 

Erythropoietic Precursors in Ossic1es Before and After 

PHZ Treatment: 

Hematocrits, before and three days after PHZ 

treatment, were 44.1 ± 1.1% (mean ± SE) and 21.8 + 1.3%, 

respectively. Anemia induced by PHZ was accompanied by 

an increase in the er~throid colony count and no change 

in the burst count of DBM ossicles (Fig. 4). These re­

sults indicate that the DBM induced ossicle marrow was 

responsive to systemic erythropoietic control mechanisms. 
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DISCUSSION 

The results or this study show that the DBM­

associated ossicle marrow possesses erythroid and granulo­

cyte-macrophage precursors. The proportions or erythroid 

precursors at dirrerent maturational stages in the time 

course experiment were similar to those in the remoral 

marrow (Fig. 3). Furthermore, we observed that the 

erythroid elements in the ossicle marrows were re­

sponsive to erythropoietic stimuli present in PHZ­

induced anemia as determined by both morphologic and 

functional assays. Our observations are in basic 

agreement with data on the changes in number or CFU-E 

and BFU-E in the marrow o~ mice rollowing erythropoietic 

stimulation (11,12). These observations can probably 

be explained by the reported dir~erences in erythroid 

precursor sensitivity to erythropoietin; the CFU-E being 

derived from EPO responsive precursor cells (11) and the 

BFU-E from precursor cells which are not EPO responsive 

(13). The proliferative potential or ossicle marrow 

cells appears to be similar to that or remoral marrow 

cells. 

The ossicle that develops at the s~te of the DBM 

implant may provide a good model ~or the study or de 

novo development of marrow and hemopoietic functions 

in vivo. When compared with other models, the DBM im­

plant system appears to have a number or potential ad-
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vantages. Currently, rour experimental models are 

available £or in vivo study or cellular interactions in 

developing hemopoietic tissues; regenerating marrow (14), 

extramedullary marrow implants (14), intraperitoneal im­

plants o~ cellulose acetate membrane (15) and trans­

plants o~ urinary tract transitional epithelia (16;. 

In the ~irst model, the regeneration process ~ollowing 

the evacuation or long bone marrow may be observed. The 

principle limitation is that there are only two comparable 

sites in anyone animal. In the DBM mode~ multiple im-

plants may be made at specific sites in each experimental 

animal. In the second model, a hemopoietic nodule sur-

rounded by a shell of bone is formed at the site in which 

medullary marrow has been placed. In this model, the 

stromal cells are implanted whereas in the DBM implant 

model, cellular elements are absent at the time of<im-

plantation. In the third model, implanted cellulose 

acetate membranes provide an environment ror predominantly 

granulocytic colony ~ormation and only a rew erythroid 

colonies are ~ormed. This model is not suitable for the 

study of erythroid development and the cellulose acetate 

membranes begin to disintegrate after two weeks. The 

hemopoietic precursors in DBM-induced ossicles give rise 

to both granulocytic and erythroid colon~es. Also, DBM-

associated ossicles have a much longer lirespan and they 

have been observed to support marrow unt~l 700 days post-

implantation (10) in rats. The last model may be suit-
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able for similar studies in the dog, cat or guinea pig, 

but it has a poor success rate in the rabbit (16). The 

DBM implant model may be of particular interest in the 

analysis of the development of marrow stromal cells, 

collectively called the hemopoietic inductive micro­

environment (HIM) (17), and their interaction with 

functional hemopoietic precursors. 
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Undecalcified ossicles were fixed in formalin, 
processed in methylmethacrylate, and stained 
with hematoxylin and eosin. 
a) Bone marrow in an ossicle six weeks after 
implantation of DBM. The marrow contained many 
blood vessels amid a loose connective tissue 
stroma. (330X). 
b) Marrow in a six-week ossicle from a rabbit 
which received phenylhydrazine three days prior 
to sacrifice. The marrow was organized with 
fewer blood vessels and less stroma (330X). 
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A large erythropoietic burst, observed on day 
seven of culture, from DBM-induced ossicle 
marrow (220X). 
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Fig. 4: Comparison of CFU-E and BFU-E from DBM-induced 
ossicle marrow before and after PHZ-induced 
hemolytic anemia. On the left, the height of 
the bars represents the mean of the two du­
plicate experiments. On the right, the oss1cles 
were removed three days after PHZ administration, 
the height of the bars represents the mean of 
two quAdruplicate experiments. The verticle 
lines represent the standard error of the mean. 
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CHAPTER 4. 

BURST-PROMOTING ACTIVITY DERIVED FROM BONE MARROW 
CONDITIONED MEDIA: A QUANTITATIVE ASSAY AND CELLULAR 
MECHANISMS OF ACTION. 
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INTRODUCTION 

Using clonal cell culture assays, it is possible 

to study sequential stages or erythroid development and 

factors which influence erythroid maturation. Two dis­

tinct populations of erythroid precursors have been 

described between which occurs a continuum of inter­

mediate stages (1-3). Late precursors, erythroid 

colony-rorming units .(CFU-e) (4), give rise to small 

colonies after short incubation periods. Early ery­

throid progenitors, erythroid burst-rorming units (BFU-e) 

(5), give rise to large colonies (bursts) arter longer 

incubation periods. Erythropoietin (Ep) is now recog­

nized as the primary regulator o:f erythropoiesis and is 

known to act on precursors at relatively late stages 

or development. However, factors other than Ep, which 

are tentatively designated burst-promoting activity 

(BPA), may be important for early stages of erythro­

poiesis in culture. Aye (16) observed that the addition 

or human leukocyte conditioned medium to human bone mar­

row cultures produced an increase in burst number. 

Other investigators nave since observed BPA in media 

conditioned by spleen cells (7,8), T-cells (9), a T-cell 

line (10), peripheral blood non-adherent, non-
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rosetting mononuclear cells (11), and bone marrow (12). 

BPA has also been noted in the urine (13) and in the 

serum (14) of anemic patients. The BPA assays used in 

di~rerent laboratories di~~er in the means employed to 

reduce endogenous BPA. Endogenous BPA has been reduced 

by: (A) selective removal or adherent cells (6,2); (B) 

lowering the cell number plated to minimize burst feeder 

activity (15); and (C) lowering the serum concentrations 

used (8,12). 

For precise characterization of BPA, a quantitative 

assay ~or BPA is necessary. The use of burst number 

has been used successfully for murine BPA (8), but this 

assay does not yield any information on the quality of 

the bursts. In our culture system, we consistently ob­

served an increase in burst size, even in experiments 

where only a small increase in burst number is seen. 

Recently, we presented preliminary evidence that 59Fe 

incorporation into heme may be a quantitative assay of 

BPA in human bone marrow conditioned media (BMCM) (12). 

We reporthene that rabbit BMCM also possesses potent 

BPA, which increases burst number and hemoglobin (Hb) 

synthesis. By analysis or cell numbers and 59Fe in­

corporation into heme in individual bursts, we have 

rurther characterized the mechanism or action of rabbit 

BFA. The results described in this report indicate that 

the major errect of BPA in BMCM is on cell prolireration 
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during the early phase or burst formation and that the 

sensitivity o~ erythroid precursors to BPA decreases 

with maturity. 

MATERIALS AND METHODS 

Cell Preparation: 

Male New Zealand white rabbits weighing 2.5-2.5 kg 

were employed in the study. Bone marrow was aspirated 

from the remur and collected in 6 ml Falcon plastic 

tubes containing heparin without preservatives 

(Chromalloy Pharmaceuticals, Inc., St. Louis, MO). The 

bu~ry-coat cells were collected after centrirugation and 

resuspended in a-medium (Flow Laboratories, Inc., 

Rockville, MD). Peripheral blood was obtained by 

bleeding rrom the ear veins and mononuclear cells were 

harvested using the Ficoll-Isopaque technique described 

by Boyum (16) with slight modirications (11). Human 

peripheral blood was obtained by venipuncture from 

antecubital veins and the mononuclear cells harvested 

as described above. 

Bone Marrow Conditioned Media: 

Marrow burry-coat cells 106 cells/ml) were cultured 

in glass flasks in 10mI of a-medium containing 1% de­

ionized bovine serum albumin (BSA) (Calbiochem, San 

Diego, CAl, 1% retal calf serum (FCS) (Flow Laboratories, 
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Inc.) and 10-4 M mercaptoethanol (Fisher Scientiric Co., 

Norcross, GA). After 1, 2, 3, 4 and 5 weeks of culture, 

one-half or the culture medium was removed and replaced 

with fresh medium. The BMCM was centrifuged at 800 g 

and the supernatant stored at -70°C. 

Erythropoietic Cell Culture: 

Aliquots of 5 x 10 4 marrow nucleated cells or 5 x 105 

peripheral blood mononuclear cells were plated in Lux 

standard non-tissue culture dishes (#5221R, Flow Labora­

tories, Inc.) in 1 ml of media per dish. Human peri­

pheral blood mononuclear cells were plated at 2 x 105 

cells per dish. We used 5 x 10 4 bone marrow nucleated 

cells per dish since we observed that at this cell con­

centration, the endogenous BPA due to burst feeder activity 

is low as has been reported by Wagemaker (15) in culture 

of mouse marrow cells. 

The media consisted of a-medium, 0.8% methylcellulose 

(18) (Fisher Scientific Co.), l% deionized BSA, 6.6% 

FCS, 10-4 M rnercaptoethanol and 1.0 U or step III pre­

paration of sheep plasma Ep with specific activity of 

13.7 U/mg protein (Connaught Labs, Ltd., Willowdale, 

Ontario, Canada). This concentration or FCS was selected 

in order to minimize the endogenous BPA in our culture 

system. Human peripheral blood cells were cultured in 

the same media with two alterations; 10% FCS and no 

mercaptoethanol (12). BMCM wa$ added to experimental 
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cultures at a concentration of 10% ·(v/v). The control 

medium contained the same concentrations or all com­

ponents as the experimental controls~ except BMCM. The 

dishes were incubated at 37°C in a humidiried atmos-

phere consisting or 5% C02 in air. Red colonies~ in-

termediate bursts and bursts were counted using an in­

verted microscope (65X) on days 3, 5 and 10, respectively. 

Granulocyte/macrophage colonies were counted on day 10. 

Incorporation or 59Fe into Heme: 

Cultures were labeled ror 24 hours by carerully 

overlaying each dish with 0.3 ml or a-medium containing 

50% heat-inactivated rabbit serum (30 minutes· at 56°C) 

and 0.5 uei or 59Fe-citrate (Porter et ale 1980). For 

the assay or individual bursts, 1.0 uei or 59Fe-citrate 

was used. Heme was extracted by the cyclohexanone method 

(19). 

Individual Burst Analysis: 

Individual bursts were lifted from the culture dishes 

with a 10 ul Eppendorr pipet and placed in a total volume 

or 200 ul of phosphate-bufrered saline (PBS) containing 

2% FCS. A 10 ul aliquot or the cell suspension was then 

counted on a hemocytometer. Incorporation or 59Fe into 

heme was measured in individual bursts with or without 

simultaneous cell counts. When simultaneous cell counts 

were perrormed, the 59Fe incorporation was estimated rrom 
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the remaini~g 190 ul or cell suspension. Twenty-five 

ul or rabbit packed red cells were added to each tube 

prior to preparation ror heme extraction in order to 

prevent loss of cells during washing. 

RESULTS 

The erfect of BMCM on the number and 59Fe incor­

poration of bursts, intermediate bursts and colonies 

derived rrom bone marrow erythroid precursors and of 

bursts derived from peripheral blood erythroid pre­

cursors is shown in Table 1. No enhancement was ob­

served for colonies. The intermediate burst$ were 

moderately enhanced and bursts from both bone marrow 

and peripheral blood were more dramatically enhanced. 

In each experiment, the increase in 59Fe incorporation 

was much greater than the increase in burst number~ 

Although burst size qualitatively varied over a w~de 

range, they were consistently larger in the presence of 

BMCM (Fig. 1). These results demonstrated that sensi­

tivity to BPA is inversely parallel to the maturational 

stages of erythroid precursors and that the enhancement 

or heme synthesis by- BPA is rar greater than the increase 

in burst number. Comparison or granulocyte/macrophage 

colony and burst number at high (30%) and low (6.6%) 

FCS Showed a decrease in both colony types in low FeS 

condition (Table 2). The addition or BMCM had no effect 
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on granulocyte/macrophage colony number, while BMCM 

slgniricantly augmented burst formation. This ob­

servation indicated that colony stimulating factor (CSF) 

is undetectable in rabbit BMCM. 

Walters et ale (20) demonstrated that immature 

leukemia leukocytes possess heme synthesizing capacity. 

In order to exclude the possibility that some of the 

heme synthesis we observed was from immature cells in 

the granulocyte/marcophage colonies, we estimate the 

59Fe incorporation in all the granulocyte/macrophage 

colonies (n=14) from two dishes. An equivalent number 

o~ erythroid bursts were lifted at random from the same 

cultures. The 59Fe incorporation by granuloc'yte/macro­

phage colonies was undetectable, while the erythroid 

bursts revealed an incorporation of 3472 cpm. This 

result clearly negated the possibility that granulocyte/ 

macrophage colonies might be contributing significantly 

to the observed 59Fe counts. 

In order to further delineate the target population 

of BPA, we carried out an experiment in which BMCM was 

added to cultures after varying intervals in incubation. 

We observed a gradual decline rollowed by a plateau in 

the burst number and in contrast, a sharp decline in 

59Fe incorporation (Fig. 2). This observation supported 

our conclusion rrom the previous experiment that the 

sensitivity to BPA inversely parallels the maturational 

stages of precursors. In add~tion, the plateauing or 
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burst number at control levels in the presence of a 

continuing decline of 59Fe incorporation strongly in­

dicated that a major effect of BPA is to sustain hemo­

globin synthesis in individual bursts. 

In order to examine two possible mechanisms of heme 

synthesis enhancement by BPA; namely enhancement of 

hemoglobinization of individual cells with no increase 

in the cell number per burst or augmentation of cell 

proliferation with resultant enhancement of hemoglo­

binization in individual bursts; we examined 59Fe in­

corporation into heme and cell number or individual 

bursts in the presence and absence of BMCM. On day 10 

of culture~ all the bursts in an experiment and a con­

trol dish were picked and cell counts performed. At 

the same time~ the duplicate dishes were labeled with" 

59Fe for 24 hours ror examination of individual bursts 

for heme 59Fe incorporation. The size or bursts ranged 

from 4.5 x 10 2 to 5.9 x 104 cells per burst in the ab­

sence of' BMCM and f'rom 102 to ·2.9 x 105 cells per burst 

in the presence of BMCM (Fig. 3). The amount of 59Fe 

incorporated into heme ranged rrom 0-219 cpm/burst in 

the absence of BMCM and rrom 11/929 cpm/burst in the 

presence or BMCM (Fig. 4). For both cell number and 

59Fe incorporation~ BPA produced a shift in the relative 

cumulative f'requency distribution without changes in the 

shape of' the distribution of the entire burst formation 
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(Figs. 3,~). 

We then carried out simultaneous quantitat~on of . 

cell number and 59Fe incorporation into heme of indivi­

dual bursts in order to examine the relationship be­

tween these parameters. Marrow cells were grown in 

the presence of BMCM and labeled with 59Fe. All the 

bursts were lifted individually from the culture and 

simultaneous quantitation of cell number and 59Fe in­

corporation performed. Linear regression analysis 

clearly demonstrated that there is a relationship be­

tween the number of cells and the heme 59Fe incor­

poration in the bursts (correlation coefficient, 0.811; 

p<O.OOl by Student t-test) (Fig. 5). The enhancement 

of cell number was 6.6-fold and the enhancement of 

heme synthesis was 8.D-fold. These results supported 

the notion that enhanced hemoglobinizat~on by BPA is 

due primarily to augmented cell proliferation in the 

bursts. 

To ascertain whether the BPA in rabbit and human 

BMCM are species-specific, we cultured cells from rab­

bit bone marrow and human peripheral blood in the 

presence or BMCM rrom each source (Table 2)~ Rabbit 

BMCM enhanced both burst number and 59Pe incorporation 

in human bursts to the same degree as human BMCM. 

Human BMCM did not enhance rabbit bursts at all. 



81 

DISCUSSION 

Our initial experiments were designated to ~urther 

characterize the target cells of BPA. First, we com­

pared the sensitivity of early, intermediate and late 

erythroid precursors to BFA. Rabbit BMCM mildly in­

hibited the growth or colonies, enhanced intermediate 

bursts moderately and dramatically enhanced bursts de­

r~ved rrom very early precursors. Thus, the sensitivity 

of erythroid precursors to BPA decreases with maturity 

as has been observed by others ror di~ferent sources of 

BPA (2,21,8). The delayed addition of BMCM experiment 

demonstrated a requirement for BPA during burst forma­

tion and is in agreement with the data of Iscove (8), 

Tsang and Aye (22) and Porter et ale (12). Since no 

CSF activity was detectable, the BPA in rabbit BMCM 

appears to be specific for erythroid precursors. We 

conclude from these experiments that the primary target 

of BPA is positioned very early in the committed ery­

throid sequence and that the presence or BPA is required 

ror their survival in culture. 

Analysis or our data shows that the use of 59Fe in­

corporation into heme was a very sensitive assay for BPA. 

Dramatic increases in Hb synthesis were seen in the 

presence or BMCM. We considered two mechanisms which 

might be responsible ~or the enhancement or Hb synthesis 

by bursts in culture: 1) enhancement or hemoglobinization 
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in ~ndividual cells with no increase in cell number; 

and 2) augmented cell proliferation resulting in in­

creased synthesis. It is possible that both are 

operative. In order to distinguish between these po­

tential mechanisms~ we tested the second hypothesis. 

Analysis of the number of cells in each burst demon­

strated a consistent enhancement in the size of the 

bursts, with some containing as many as 2 x 105 cells. 

Similarly~ analysis of the heme 59Fe incorporation per 

burst demonstrated a consistent increase. Simultaneous 

analysis of these two parameters revealed a highly sig­

nificant correlation between burst size and heme 59Fe 

incorporation in individual bursts. In addition, the 

enhancement or cell numbers (6.6-rold) and heme 59Fe 

incorporation (8.Q-fold) was similar. These results 

supported the idea that the elevated heme 59Fe incor­

poration is a re~lection of enhanced proliferation. We 

thus concluded that the BPA in BMCM increases the number 

of cell divisions between BFU~e and hemoglobinization. 

The shift in the frequency distributions of burst size 

and burst heme 59Fe incorporation induced by BPA (Figs. 

3~4) suggest that almost all BFU-e respond to BMCM. 

Our data~ however~ do not exclude the possibility 

that BPA may also recruit younger cell populations for 

proliferation in culture, since we consistently observed 

an increase in burst number with BMCM. These BFU-e would 
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probably be several cell divisions less mature than those 

present in low BPA conditions and may require the pre­

aence of high BPA concentrat.ions in order to initiate 

burst formation. Alternatively, BPA, may induce burst 

formation from an uncommitted population. This pos­

sibility is supported by the observations that phyto­

hemagglutinin-stimulated leukocyte conditioned media 

(23) and pokeweed mitogen-stimulated spleen cells (7) 

promote the growth of mixed colonies from pluripotent 

stem cells. Although our bursts appear erythroid in 

nature, we have not excluded the possibility that some 

of the bursts may contain non-erythroid cells. While 

these possibilities need further invest~gations, our 

observations in this report appear to suggest that a 

major effect of BMCM BPA is on cell proliferation during 

the early phase of burst formation and that the elevation 

of 59Fe incorporation into heme induced by rabbit BMCM 

is a reflection of this enhanced proliferation. 
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Cumulative, relative frequency distribution of 
individual bursts varying in cell number. Bone 
marrow nucleated cells were cultured (a) in 
the absence of BMCM (0) or (b) in the presence 
of BMCM (0). The bursts were individually 
lifted and cell counts performed. 
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Simultaneous examination of cell number and 
59Fe incorporation in individual bursts. Bone 
marrow nucleated cells were cultured in the 
presence of BMCM. The solid line represents 
a linear regression line ror the data; the 
correlation coefficient = 0.81, p<O.OOl, 
(Student t-test). 
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TABLE 1 

Effect of Rabbit BMCM on Colony Formation and Heme 59Fe Incorporation 
By Rabbit Bone Marrow and Peripheral Blood Erythroid Progenitors 

Colony Type 

~ 

3-day Colony 

5-day Intermediate 
Burst 

lO-day Burst 

Peripheral Blood 
la-day Burst 

EXP # 

1 
2 
3 

1 
2 
3 

1 
2 
3 

1t 

5 
6 

Control 
Colony # 

279 ± 5* 
349 ± 10 
140 ± 6 

36 ± 7 
33 ± 10 
21 ± 2 

48 ± 5 
41 ± 3 
16 '± 1 

10 ± 2 
7 ± 3 
8 ±1 

Br~CM 
Colony # 

235 ±12 
305 ± 11 
103 ± 9 

31 ± 3 
50 ± 1 
14 ± 'I 

53 ± 2 
85 ± '4 
29± 2 

17 ± 2 
12 ± ,5 
12 ± 5 

Control 
59PeCPM 

168 ± 1 
204 ± 6 
107 ± 6 

516 ± 83 
431- ± 49 

85 ± 6 

547 ± 115 
32 ± 5 
24 ± 2 

72 ± 35 
51 ± 21 
43 ± 38 

BMCM 
59Fe CPM 

126 ± 9 
158 ± 0 

72 ± 4 

1075 ± 60 
1693 ± 169 

216 ± 64 

3910 ± 1068 
3475 ± 1008 
1260 ± 64 

1708 ± 422 
971 ± 308 

1025 ± 685 

*All data are expressed as mean ± standard error of duplicate dishes. 



TABLE 2 

BMCM Effect on Burst and Granulocyte/Macrophage 
Colony Number 

90 

Condition Burst # G/M Colony # 

30% FCS 

6.6% FCS 

6.6% FCS+BMCM 

51 ± 5* 

31 ± 1 

47.5 ± 6.5 

115 + 5 

9.5 ± 0.5 

11.5 ± 3.5 

* All data are expressed a~ mean ± SE of duplicate 
dishes containing 5 x 104 nucleated bone marrow 
cells. 
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Human Peripheral 
Blood 

Rabbit Bone 
Marrow 

TABLE 3 

Species Specificity of Rabbit and Human BMCM 

Rabbit BMCM Human BMCM No Conditioned Medium 
Burst # 59Fe Counts Burst # ' 5~Fe Counts Burst # 59Fe Counts 

51 ± 7 * 1175 ± 231 54 ± 4 1297 ± 272 39 ± 5 354 ± 57 

34 ± 2 2605 ± 436 19 ± 2 57 ± 3' 16 ± 1 78 ± 14 

*Al1 data are expressed as mean ± standard error of duplicate dishes. 
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DISCUSSION AND PROPOSAL 
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INTRODUCTION 

In the preceeding chapters I have characterized 

two systems by which early events in erythropoiesis 

may be examined. First, I examined the demineralized 

bone matrix (DBM) ossicle hemopoietic tissue and found 

that it was normal. Second, I developed an assay for 

humoral factors known as burst-promoting activity (BPA), 

involved in the early development of erythroid cells. 

Rabbit bone marrow conditioned media (B~CM) was a potent 

source of BPA. The measurement of 59Pe incorporation 

into heme was revealed as a much more sensitive assay 

for BPA than burst number. Analysis of individual bursts 

showed that heme 59Fe incorporation and cell number were 

strongly correlated. Thus it appeared that heme 59Pe 

incorporation was detecting increased hemoglobin syn­

thesis due to cell proliferation. On the basis of 

these observations I proposed that a major mechanism 

of action of BMCM BPA is to promote cell proliferation 

during the early phase of burst formation. These 

studies were discussed at length in Chapter 3 and 4. In 

this chapter I will propose some avenues for future re­

search. 
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~licattons of the DBr\~ ~,1odel 
< 

The DBM model has potential as a system for mor-

phologlca.l study of events durlng hemopoietic micro-

environment formation. The major events would involve 

the interaction of fibroblastic, vascular and hemo-

poietic cells. These interactions can be examined by 

standard techniques utilizing the light and electron 

microscope. The role of glycosaminoglycans in specific 

hemopoietic microenvironment formation (1) could be 

analyzed during ossicle development using histochemical 

techniques (2). 

Another use for the DBM model is the investigation 

of the relationship between bone and bone narrO"l. A 

considerable amount of evidence points to such a relation-

ship. Bone marrow forms in ectopic bone (3,4) under nor-

mal conditions. Hemopoiesis in non-bone sites is only 

observed when hemopoietic cells are undergoing compen-

satory hemopoietic proliferation or inappropriate hyper-

plasia (5). 'Bone and bone marrow have a common blood 

supply (6) which may facilitate the exchange of hypo-

thetical biologically active substances between these 

two tissues (7). The cells of bone and bone marrow 

are derived from the same precursor cells. Friedenstein 

and his colleagues have shown that bone marrow stromal 

cells can give rise to bone cells (8) and marrow stromal 

cells (9"). Osteoclasts are derived from pluripotent 
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stem cells via the monocyte differentiation pathway (10). 

The DBr~ model might be employed to examine the relation­

ship between these two tissues by modulation of pro­

liferation in one tissue and examining the other tissue 

for effects (11). Some parameters which can be quanti­

tated are, the osteoclastic index, bone: bone marrow 

ratio, erythrocyte: granulocyte ratio and hemopoietic 

precuror cells. 

Further Studies of Burst-Promotin~ Activity 

Prior to further study of BMCM some degree of 

purification is required. The rabbit is an excellent 

source of BPA for purification because liter batches of 

BMCM may be produced from one animal. Preparation of 

large batches of human BMCM is not feasible because of 

the small volume of bone marrow obtained from aspiration 

biopsies. Rabbit BMCM contains BPA for both rabbits 

and human erythroid precursors. Thus purified rabbit 

BMCM could be used to further characterize the biologi­

cal role of BPA in the development of human as well as 

rabbit erythroid precursors. 

I have sho\~n that early erythroid committed stem 

cells respond to BPA, but the possibility still remains 

that uncommitted pluripotent stem cells may also be re­

sponding to BPA (12,18,14). The culture system I have 

employed strongly favor erythroid colony formation. 
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An approach to aid in the detection'of mixed colonies 

(colonies derived from pluripotent stem cells) would be 

to add colony stimulating factor (CSF) to the assay. 

Thus committed granulocyte/macrophage precursors in 

presumptive mixed colonies may be encouraged to dif­

ferentiate. 

A long-term bone marrow culture system has been 

described (15,16) in which hemopoietic stem cell main­

tenance and, proliferation occurs. This system has been 

used to analyze factors involved in the control of pro­

liferation and differentiation of early hemopoietic 

cells (16,17,18,15,19). Long-term bone marrow cultures 

could be used to detect the target cell population of 

BPA. Addition of BPA to the system followed by systema­

tic analysis of the numbers of erythroid precursors at 

different maturation stages would indicate which cell 

populations are responsive to BPA. An increase in 

early BFU-e would indicate an effect on pluripotent 

cells and if the colonies are not mixed a role in com­

mittment might be proposed. Similarly an increase in 

intermediate BFU-e would indicate that earlier erythroid 

precursors are responsive. 

The possibility of a BPA role in committment could 

be further examined in this system by looking for changes 

in the relative numbers of committed hemopoletic precur­

sor cells for different cell lines in the presence and 
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absence of BPA. Development of a long term human BFU-e 

culture system has so far met with technical difficul­

ties (Ogawa, personal communication). It is likely 

that such a culture system may be facilitated by the 

addition of rabbit BMCM to the media. 

Another topic which requires further attention is 

the possibility that complex cell interactions may be 

involved in BPA production. In Chapter 1, I discussed 

at length the enhancement of burst formation by T-cells 

and monocyte-macrophage and proposed that BPA from one 

of these sources may stimulate BPA production from the 

other source. To examine this possibility experiments 

could be performed in which monocyte-macrophage BPA is 

incubated with T-cells, or vice versa, and the resulting 

conditioned media tested on bone marrow suspensions from 

which monocyte-macrophage and T-ce11s have been removed. 

With a highly purified rabbit BPA preparation it 

should be possible to identify BPA sensitive human 

early erythroid precursors. Tbis might be done by in­

cubating suspensions of human hemopoietic cells with 

rabbit BPA, washing, and then a further incubation with 

labelled anti-rabbit antibodies prior to observation 

at the light or ultrastructural level depending on the 

type of label used. 
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Development of a Chemically Defined ~edium 

BMCM may facilitate the development of a serum 

free BFU-e assay similar to the assay described by 

Iscove (20) for CFU-e. The culture assays for ery­

throid precursors require serum in order to supply un­

defined needs. These requirements are probably mul­

tiple and it is difficult to distinguish between the 

effects of nonspecific nutritional factors and those of 

specific regulatory factors. The presence of serum 

makes it particularly difficult to investigate hormone 

effects because hormones may bind to serum proteins or 

there may already be hormones present in the ~erum. 

Serum is also a source of BPA (13). Thus it is im­

portant to replace serum with chemically defined media 

components. I have obtained burst formation in the 

presence of BMCM, selenite, transferrin, albumin, 

cholesterol and lecithin in serum free media. However, 

the bursts were very small and heme 59Fe incorporation 

was not significant. This suggests that with further 

adjustments to the media a successful serum free BFU-e 

assay may be realized under serum free conditions. The 

development of a chemically defined medium will permit 

study of the regulation of early erythroid development 

and proliferation in much more detail than has been 

previously possible. 
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CONCLUSION 

The future of the in Vivo model and in vi"tro 

assay described appears promising because they enable 

one to study the early events in erythropoiesis. The 

DBM ossicle may be used for morphologic studies of 

hemopoietic microenvironment formation and to investi­

gate the relationship between bone and bone marrow. 

Rabbit BMCM BPA may be used to further define the tar­

get cells of BPA, to investigate the possibility that 

complex cell interactions are involved in BPA pro­

duction and in the development of a chemically defined 

media for the BFU-e assay_ 
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