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MARGARET HOLBROOK BROADWATER. Computational methods for the 
differential profiling of triacylglycerols using RP-HPLC/ APCI -MS. (Under the direction 
of JOHN H. SCHWACKE). 

Reversed phase liquid chromatography with atmospheric pressure chemical ionization 

mass spectrometry (RP-HPLC/APCI-MS) was employed for the analysis of natural 

mixtures oftriacylglycerols. An integrated framework for data analysis, including 

preprocessing, statistical analysis and automated structure identification, was 

implemented in the R statistical program. Raw data stored as mzXML, mzData, or 

Q1ZML files are preprocessed using a series of steps for peak detection, chromatographic 

alignment, and normalization. Targeted and non-targeted feature selection steps are 

employed to filter the data for features that are relevant and informative for a particular 

biological question. Triacylglycerol structures are identified by evaluating relationships 

between the diacylglycerol fragment ions and protonated molecules observed in APCI 

mass spectra, and suggested structures are evaluated using a correlation-based score that 

reflects whether structure-associated ions are concurrently eluting over the retention-time 

course of the analysis. The algorithm was tested using five soybean oils and 

triacylglycerol structure identifications were verified from literature references. We 

employed the developed methodology for classification of plant oils and marine oils to 

their biological source, and also to determine structural differences in triacylglycerols in 

adipose tissue from mice fed different high-fat diets in studies of diet-induced obesity. 
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INTRODUCTION, BACKGROUND, AND DESIGN 

Reversed-phase high perfonnance liquid chromatography coupled to atmospheric

pressure chemical ionization mass spectrometry (RP-HPLC/APCI-MS) has shown 

promise in the analysis oftriacylglycerols (TAGs) in recent years and has been used 

extensively in the analysis of plant oil TAGs (1-4). Fats and oils from animal sources are 

more chemically complex than plant oils by nature, as they incorporate dietary fatty acids 

(F As) into storage fat TAGs in addition to F As resulting from biosynthesis via cellular 

metabolic pathways. This complexity creates a challenge in TAG LCIMS data analysis, 

as it is not possible to separate individual TAG components in complex mixtures using 

current chromatographic capabilities (5). The fields ofproteomics and metabolomics 

have addressed similar issues, and a variety of tools useful to process data resulting from 

the analysis of complex mixtures of molecules have been developed in recent years. 

Programs such as SpecArray (6), msInspect (7), MZmine (8), xcms (9), and OpenMS 

(10) are freely available and facilitate the processing ofproteomic and metabolomic 

LC/MS data, but have been not yet been applied specifically to the analysis of complex 

mixtures of TAGs, such as those found in natural fats and oils. The present study aims to 

address some of the challenges associated with TAG LCIMS analysis using cross

disciplinary methods, and to develop a high-throughput data processing and analysis 



pipeline for TAG RP-HPLC/APCI-MS data that can be used to address biological 

questions related to the TAG composition of storage fats in plants and animals. 

This project comprises three independent studies using RP-HPLC/APCI-MS 

analysis of TAGs. We began with the analysis of plant oils for the purpose of classifying 

oils to their biological source. We used these data primarily for method validation, as 

similar data were previously reported to achieve acceptable classification results (4). 

Two freely available metabolomics tools, MZmine and xcms, were compared with a 

previously published manual processing methodology (1, 4). We found the xcms results 

were more highly correlated with the manually processed data, and achieved 

classification accuracy similar to that of the manually processed data. We then sought to 

combine xcms data processing with targeted and non-targeted feature selection 

approaches to address current biological issues. We applied xcms processing of marine 

oil RP-HPLC/APCI-MS data in combination with two feature selection steps to confirm 

F A profile identifications of seal oil dietary supplements in forensic analyses. Lastly, we 

applied xcms processing ofRP-HPLC/APCI-MS of mouse adipose tissue samples in 

combination with two feature selection steps to examine specific differences in the 

adipose tissue TAG composition in mice fed milkfat- and lard-based high-fat diets to 

induce obesity. These three studies collectively address the following specific aims. 

Specific Aim 1: To evaluate current methodology and the application of existing 

computational tools (MZmine andxcms) for processing TAG RP-HPLCIAPC/-MS data. 
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Computational tools may be used to facilitate high-throughput processing of plant oil 

TAG RP-HPLC/APCI-MS data and achieve results comparable to conventional data

processing methodologies in terms of identifying and measuring features within an 

LCIMS image. We examined correlations between plant oil RP-HPLCIAPCI-MS data 

that were manually processed to determine the relative amounts of 12 known analytes (4) 

and the same analytes measured using MZmine (8) and xcms (9), and compared 

classification accuracies of the resulting data sets using a random forest model to classify 

the plant oils to their biological source. 

Specific aim 2: To select relevant and informative features from preprocessed TAG RP

HPLCIAPCI-MS data/or classification. 

The xcms program and similar tools provide a comprehensive list of all peaks detected in 

a set of samples, defined by retention time and mass-to-charge ratio (RT, mlz) 

coordinates; many of these peaks may not be relevant to a specific biological question. 

We implemented a combined approach of targeted and non-targeted feature selection to 

reduce the size of the peak list generated using xcms. First, FA compositional data were 

used to predict TAG species that may be present and to generate a list of ions (mlz 

values) representative of such species. We then searched the xcms peak list specifically 

for intensities at these values. This targeted peak selection strategy narrowed our peak 

list to features that represent relevant analytes. We then aimed to select a list of 

informative TAG features that may be used to answer specific biological questions, and 

addressed examples for classification and difference detection in two applications. 
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Specific aim 3: To apply high-throughput RP-HPLCIAPC!-MS analysis of TAGs using 

xcms preprocessing combined with feature selection to the forensic identification of seal 

oils. 

Seal oil dietary supplements, commonly used to increase consumption of omega-3 

polyunsaturated fatty acids (PUFAs), are legal in Canada, but prohibited in the U.S. and 

E.U. FA profiles have been used to distinguish between marine oils harvested from fish 

and seals for forensic purposes, but FA composition may not be sufficient to determine 

that such oils are non-synthetic. TAG composition of marine oils is considerably more 

complex than FA composition, and current technology does not permit separation and 

identification of TAG molecular species in these samples. A metabolomics approach 

combining xcms preprocessing ofRP-HPLC/APCI-MS data with feature selection was 

used to obtain a list of features representing TAG molecular species for use as predictor 

variables to classify samples to fish versus seal sources. A random forest classifier 

successfully confirmed classification results using FA profile data from the same set of 

samples. This additional analysis provides a two-tiered approach to identifying seal oils 

for forensic purposes. 

Specific aim 4: To apply an integratedframeworkfor processing high-throughput RP

HPLCIAPC!-MS analysis of TAGs using xcms preprocessing combined with feature 

selection and TAG structure identification to examine differences in adipose tissue TAG 

composition in mice fed milkfat- and lard-based high-fat diets. 
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Rodent diet-induced obesity models are commonly used to study human disease. Dietary 

FA composition affects the relative availability of F As to tissues, and individual F As 

have diverse effects on health. A novel milkfat-based high-fat diet (MD) resulted in 

more obese and more insulin-resistant mice, compared with a traditional lard-based high-

fat diet (LD) and isocaloric low-fat control diet (11). TAG RP-HPLC/APCI-MS data 

were obtained from adipose tissue sampled from MD- andLD-fed mice at 8 and 16 

weeks. A metabolomics approach combining xcms preprocessing ofRP-HPLC/APCI-

MS data with feature selection was used to obtain a list of features representing TAG 

molecular species that differed in adipose tissue sampled from MD- and LD-fed mice at 

the two time points. We determined the structures of TAG species that differed between 

diet groups using an algorithm that exploits the relationships between ions in TAG mass 

spectra and correlations among groups of ions over retention time windows associated 

with individual features. 

Background 

Fats and oils are of great economic importance in agriculture, international commerce, 

and as ingredients in foods. Fats comprise 40% of dietary energy intake in Western 

Europe and North America. Composition of dietary fats is vital to good nutrition and 

contributes to the palatability, taste, and structure of foods (5). Oils are simply fats that 

are found in the liquid phase at room temperature; fats and oils are similar in chemical 

structure and together fonn the biochemicals known as lipids that are found in all living 

organisms. The tenn lipid includes F As and their derivatives, and substances related 
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biosynthetically or functionally to these compounds. F As are compounds that are 

naturally synthesized via condensation of malonyl coenzyme A units by a fatty acid 

synthase enzyme complex (5). FAs found in plant and animal lipids are typically 14 to 22 

carbons in length and are saturated or contain one to six cis double bonds separated by 

methylene (-CH2-) groups. Naturally occurring short-chain F As, branched-chain F As, 

hydroxy F As, and F As containing other functional groups including trans double bonds 

are found less frequently and in lesser abundance. F As are identified by systematic or 

trivial names, and using the notation A:Bn-C, where A is the number of carbon atoms, B 

is the number of double bonds, and C is the position of the first double bond from the 

terminal methyl group. For example, 18:2n-6 is an I8-carbon FA with two methylene

interrupted cis double bonds, the first at the 6th carbon from the terminal methyl group; 

18 :2n-6 has the trivial name linoleic acid. The structures of several common 

polyunsaturated fatty acids (PUF As) are shown in Figure 1. Glycerolipids are compounds 

consisting of one or more F As esterified to glycerol, and include the 

glycerophospholipids, glyceroglycolipids, and mono-, di-, and triacylglycerols. Most 

commercially important fats and oils consist primarily of TAGs, and TAGs in plant and 

animal storage fats are the main focus of this research. 
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linoleic aCid (lA)t 18:2n-6 

o 
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o 

(I.-Linolenic aCid (ALA); 18:3 n .. 3 

o 

OH 

OH 

CH3 
Eicosapentaenoic acid (EPA)y 20:5 n~3 

o 
--{ -{ 

OH OH 

Docosapentaenoic acid (DPA n .. 6), 22 :Sn-6 

==--~CH3 
Oocosahexaenoic acid (DHA), 22:6 n-3 

Figure 1. Common n-6 and n-3 polyunsaturated fatty acids. 

TAGs are the most abundant class of lipid molecules (5). They serve primarily as 

an energy source, but also are important for insulation and protection (12). At 37.6 kJ 

(8.98 kcal) per gram, TAGs are the most concentrated form of biological energy. In 

animals, storage fat TAGs are typically located in well-defined tissues, but also occur as 

droplets within cells (13). Adipose tissue, in which TAGs are stored within specialized 

cells called adipocytes, is unique to vertebrates and constitutes the primary energy 

reserve in mammals, birds, reptiles, and amphibians (14). Skeletal muscle and liver are 

major lipid storage sites in fish, and are highly variable among species. Lean fish, such as 

cod, store large amounts of lipid in the liver, while fatty species such as herring and 

anchovies deposit TAG in the skeletal muscle (15). Oils extracted from select fish and 
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seal species are valued for their high proportion ofn-3 long-chain PUFAs, specifically 

eicosapentaenoic acid (20:5n-3 or EPA) and docosahexaenoic acid (22:6n-3 or DHA), 

which may provide significant health benefits in humans (16-18). Marine mammals have 

a specialized tissue called blubber which lies under the skin and consists primarily of 

fibrous proteins and adipocytes. Blubber is extremely important both physiologically and 

metabolically, as most marine mammals have very few internal adipose depots (14, 19). 

In plants, TAGs are stored within lipid bodies in fruits and seeds and used as energy 

reserves for the next generation. Because plants are not mobile and can use 

photosynthesis to fix carbon, their energy storage requirements are substantially less than 

those for animals. The relative proportion of TAGs in seeds from different plant species 

varies widely, ranging from 1-2% in grasses to 60% dry weight in the castor seed. 

Greater than 75% of commercial oils are derived from plant oils, with two-thirds of this 

used for food purposes. 

TAGs are synthesized by enzyme systems in living organisms as L-glycerol 

derivatives, with a center of asymmetry around carbon-2 of glycerol. A stereospecific 

numbering (sn) system is used to describe the stereochemistry of TAGs and other 

glycerolipids. The structure of I-palmitoyl-2-docosahexaenoyl-3-0Ieoyl-sn-glycerol is 

shown in Figure 2. The three F As in a TAG molecule may vary in carbon chain length; 

number, position, or configuration of double bonds; and may have branched chains or 

hydroxyl or other functional groups. Hundreds of different F As occur naturally in plant 

and animal TAGs, and FA composition is often distinctive for different species. The FA 
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composition of storage fats also depends on an animal's diet and can thus distinguish 

among members of the same species who consume different diets (5). FA composition is 

typically determined by analyzing derivatives of F As using gas chromatography with 

flame ionization detection (GCIFID) andlor mass spectrometry (GCIMS). 

Figure 2. Structure of I-palmitoyl-2-1inoleoyl-3-0Ieoyl-sn-glycerol (PLO), with acyl 
chains 16:0 (palmitic acid) at sn-I, 18:2n-6 (DHA) at sn-2, and I8:1n-9 (oleic acid) at sn-
3. 

Brockerhoff observed that "the positional distribution of fatty acids in 

triglycerides of animals is nonrandom;" he noted that while the principles regulating this 

distribution are unknown, general patterns are characteristic of taxonomically related 

organisms (20). Multiple studies of TAGs from marine animals indicate that DHA is 

primarily found in the sn-2 position in fish and marine invertebrates and in the primary 

positions (sn-l and sn-3) in marine mammals (18, 21). This difference may playa key 

role in determining the authenticity high n-3 PUF A of marine oil supplements, and may 

provide a means to distinguish between oils from fish and marine mammal sources. TAG 

composition maybe studied by determining the positional distribution of F As, i.e. the FA 

composition at each position on the glycerol backbone, using enzymatic techniques in 
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combination with FA compositional analysis, or by analyzing intact TAGs using LCIMS 

with the aim of determining molecular species composition, i.e. the TAG profile, or the 

relative amounts of individual TAG molecules. 

Fatty acid profile analysis 

Shortly after the advent of gas-liquid chromatography (GLC, 22), the newly developed 

technique was applied to resolve a mixture of volatile fatty acids ranging in length from 

1-12 carbons (23). Lipid chemists have been at the forefront of most of the advances 

leading to modem GC, which can be used to separate most types of lipid molecules (24). 

Modem GC instruments use capillary columns to separate individual F As as their methyl 

ester derivatives (FAMEs), and components may be identified by retention times in 

comparison with known standards, and the use of electron-impact MS. Other types of FA 

derivatives (e.g. butyl or picolinyl esters, 4,4-dimethyloxazoline) may also be used for 

similar purposes or to determine specific double bond positions in individual F As. Upon 

separation, each FAME peak is integrated as a time signal and converted to a weight 

percent of the total FA composition using a correction factor accounting for differential 

response; GC/FID is widely believed to provide accurate quantitation when correction 

factors are properly employed (5, 24). The resulting FA profile is a list of the relative 

quantities of F As in a sample, typically expressed as percents. These compositional data 

must be treated appropriately using statistical methods, as individual FA variables are not 

independent. 
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Analysis oftriacylglycerols 

The general structure of TAG molecules was established during the 19th century, but 

separation and analysis of TAGs and their component F As were not possible until 

chromatographic methods were developed (13). In the first stereospecific analyses of 

TAGs, enzymatic and chemical digestive techniques were combined with GLe of FA 

derivatives to quantify the positional distribution of F As on the glycerol backbone (25, 

26). While these methods and their modifications have been widely used, they have been 

subject to criticism for a variety of reasons. Enzymatic and chemical hydrolysis 

procedures are time-consuming; and possible complications due to limitations on the 

selectivity of the lipase, selectivity for chain length and number of double bonds, and acyl 

migration during analysis have raised doubts about their accuracy. This bottom-up 

approach to TAG analysis does not provide information about individual TAG molecular 

species, only the overall distribution of F As in each position (27). 

RP-HPLC of TAGs is a top-down approach, analyzing mixtures of whole 

molecules. RP-HPLC has proven to be extremely useful in the separation of TAGs, but 

has not yet succeeded in the resolution of individual TAG molecules. While modem 

chromatographic and spectrometric instrumentation methods can successfully separate 

and identify FA derivatives from lipid extracts to determine the FA composition of an oil 

or fat, characterization of the TAG molecular species is a more difficult process. For n 

3 2 

fatty acids, n +n TAG molecular species are possible, not including enantiomers (when 
2 

enantiomers are considered this number jumps to n3
). The position of fatty acyl moieties 
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on the glycerol backbone of the molecule may yield considerable information about 

metabolic and nutritional properties of fats and oils, and has been a continuous analytical 

challenge to lipid chemists (27). TAGs elute on an octadecyl-siloxane (ODS, C18) 

column approximately in the order of their equivalent carbon number (ECN), defined as 

the number of fatty acyl carbon atoms minus two times the number of carbon-carbon 

double bonds. TAGs with the same ECN are termed "critical pairs" and tend to elute 

close together (5). Recent developments in the field ofMS may help to address 

challenges related to coeluting TAG molecules. APCI-MS used with RP-HPLC allows 

for partial identification of the FA (number of carbons and double bonds, e.g. 18 :3) from 

individual TAGs in a mixture and provides information on positions of F As on the TAG 

molecule (27). 

RP-HPLC/APCI-MS was first applied to the analysis of TAGs in 1995 (28). In 

this study, APCI-MS analysis ofa mixture of mono acid TAG standards separated by RP

HPLC revealed minimal fragmentation, resulting in the formation of diacylglycerol ions, 

[M-RC02]+ or [DAG]+, and protonated molecules, [M+H]+, as shown in Figure 3. A 

later study analyzed ABC-type TAG of known regiospecific compositions and observed 

that the relative intensities ofDAG fragment ions could reveal information on the 

positions of FA on the TAG molecule (29). Specifically, the least abundant [DAG]+ ion 

resulted from loss of the FA from the secondary position (sn-2). Individual TAG isomers 

(e.g. LPL and LLPIPLL), which shared the same retention time by RP-HPLC, could be 

distinguished using the ratio of [DAG]+ ions observed in APCI-MS spectra. This allowed 
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the identification and quantification of mixtures containing only one TAG positional 

isomer, which is the case in many plant oils. Further research has established that it is 

possible to construct calibration curves from known TAG standards by which the relative 

proportion of TAG positional isomers can be calculated. Beef, pork, and chicken fats as 

well as several plant oils have been characterized in such a manner (30, 31). 
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Figure 3. APeI mass spectrum of I-palmitoyl-2-linoleoyl-3-0Ieoyl-sn-glycerol (PLO). 

The main challenge in analysis of TAGs lies in the lack of ability to resolve 

individual molecular species using chromatographic separation techniques. Different 

molecules with the same number of acyl carbons and double bonds may coelute and 

resolution of TAG molecular species using MS involves calibration procedures requiring 

standard compounds for accurate quantitation. While it is possible to obtain standards for 

many of the TAG molecular species observed in plant oils, these standards are expensive. 

Marine oils are more complex and obtaining standards for each TAG molecule would 

likely be cost-prohibitive even if such compounds were made available. As chemists, we 

have been trying to implement TAG profiling experiments in the manner of FA profile 
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analysis, and this may not be possible for complex samples. While our ultimate goal is 

complete characterization of TAG molecular species, many problems can be addressed 

without these comprehensive analyses. Jakab and colleagues used relative peak areas of 

TAG molecular species, calculated from [DAG]+ or [M+H]+ ion intensities from RP-

HPLC/APCI-MS analysis, to differentiate plant oils (n = 42) from twelve different 

biological sources with 97.6% accuracy reported from a linear discriminant model (4). 

This type of analysis may be very useful for similar classification problems, and could 

potentially be automated for high-throughput analysis. 

A new approach for the RP-HPLC/APCI-MS analysis of TAGs 

Bottom-up profiling experiments are common in the fields of proteomics, where complex 

mixtures of digested peptides isolated from blood or tissue are routinely analyzed using 

LCIMS. Such mixtures have complexity similar to (or greater than) a mixture of TAG 

molecules in an extracted oil. A signal-based processing methodology can be used with 

these data as opposed to the more traditional peak detection, identification, and 

quantification procedure discussed above. Data are treated as a two-dimensional signal 

matrix or image, as shown in Figure 4, and established methods in signal processing, 

statistics, and machine learning are used to find patterns that are characteristic of a 

particular sample or class of samples (32). Data must be treated in a manner to assure 

consistency across experiments, and a great deal of effort has been put toward this goal in 

recent years in proteomics and metabolomics research, and the underlying and supporting 

discipline ofbioinformatics (32-36). Software programs designed for proteomics and/or 
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metabolomics experiments, including the publicly available programs msInspect (7), 

MZmine (8), SpecArray (6), and xcms (9), have been devised to combine preprocessing 

and differential analysis of proteomic and metabolomic data in a suite of algorithms. 

MZmine and xcms, both designed specifically for data resulting from the analysis of 

metabolites such as lipids using LCIMS or GCIMS, provide a framework from which we 

can devise a high-throughput methodology for the RP-HPLC/APCI-MS analysis of 

TAGs, taking the analysis from the raw data stage through classification or difference 

detection and ultimately to determine the F As present in individual TAG species, 

depending on the question at hand. Additionally, such programs may be useful for 

detecting specific differences in TAG profiles between sample classes that may be 

informative from a clinical perspective. 
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Figure 4. RP-HPLC/APCI-MS of seal oil triacylglycerols. The data are presented as an 
image of intensity values, indexed by retention time and mass-to-charge ratio. 

Data mining is an iterative process, as shown in Figure 5. Data analysis and 

acquisition, preparation, feature selection, model development, model assessment, and 

generalization steps all play an important role in the process, and errors can occur at any 

of these levels (37, 38). Listgarten and Emili divided LCIMS data processing into low-, 

mid-, and high-level stages (32). Low- and mid-level steps include preprocessing, or 

assimilating the data into an accessible format, filtering, baseline subtraction, 

normalization, alignment in time and peak detection and quantification; the goal of these 

steps is to format the data such that different profiles, or LCIMS experiments, can be 

compared for classification or difference detection purposes. We want to minimize 

random and systematic differences between experiments such as R T shifting and changes 
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in intensity measurements. High-level processing encompasses feature selection, 

difference detection, and classification. Goals of high-level data processing for TAG 

analysis, in order of complexity, are: 

1. Classification of samples, e.g. classifying an oil sample to its biological source. 

2. Low-level biomarker discovery, where particular regions of the data matrix are 

selected for their ability to discriminate among classes. 

3. High-level biomarker discovery, where specific TAG peaks corresponding to 

discriminating regions are identified. 

4. Complete identification and quantitative resolution of the full set of TAG 

molecular species present in a particular oil. 

The current research will address the first three goals, with the aim of contributing to the 

advancement of the fourth. All four may be possible for well-studied groups of samples 

such as plant oils, while the complexity of animal lipids may be prohibitive to this aim 

given current technologies. It is important to note that classification is often a simple 

problem when compared with the challenges of difference detection and biomarker 

discovery (39). The following processing steps are incorporated to achieve a high

throughput, automated analysis that takes a set ofRP-HPLC/APCI-MS experiments from 

raw data to a final informative product, which may be the output from a classification 

model or difference detection between sample groups resulting in a list of features, and 

ideally the related TAG structures, that differ between sample groups. 
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Figure 5. A schematic view of the iterative process of data mining, adapted from Polikar 
(37). 

Preprocessing 

The first step in data processing is to convert the data from the typical LCIMS vendor-

specific proprietary format into a more accessible format such as mzXML (40), mzData 

(http://www.psidev.info/index.php?g=node/80#mzdata). or the more recently developed 

rnzML (http://www.psidev.info/index.php?g=node/257). These formats use an XML 

schema to represent raw instrument data and can be read using metabolomic software 

tools such as MZmine (8), xcms (9), and OpenMS (10), where data can be accessed and 
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manipulated accordingly. Often this involves interpolation along the RT and mass 

spectral dimensions so that the images are the same dimensional size and range. This 

step is specific for the instrument used, as conversion programs differ for different 

proprietary raw data formats. A local smoothing in time and mlz may be used to 

overcome any issues that arise due to interpolation (39). Additionally, data images may 

be cropped in RT and/or mlz dimensions to remove regions that do not contain viable 

information, e.g. the beginning and end of an analysis or areas outside of the range of 

interest in the m/z dimension. 

~ow-level processing 

Peak detection aims to find informative regions in the LC/MS data image (37). These 

regions indicate chromatographic elution of one or more compounds of interest. The goal 

is to distinguish signal from noise. It is important to note that this is different from 

feature or variable selection, where we select a subset of features from those identified 

here. Local maximum methods search the data for local intensity maxima, while 

recursive threshold methods require a width parameter to differentiate actual peaks from 

noise spikes in the data; both of these are available in MZmine (41). Wavelet transform 

methods use time-frequency analysis to find changes in signal frequency that are 

indicative of peaks (42). Methods such as the translation-invariant wavelet transform 

(TIWT) can be used to extract features from mass spectral data even in situations with 

experimental variability in background noise and measurement intensities, and before 

smoothing, estimating signal-to-noise ratio, or modeling a baseline (43). The xcms 
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package uses matched filtering with background suppression (44) to detect peaks in 

extracted ion base-peak chromatograms using a second-derivative Gaussian function (9). 

While xcms detects peaks in the RT dimension of the LC/MS image, MZmine finds 

peaks in individual spectra (the m/z dimension) and connects peaks from successive 

spectra when they form good continuity (41). 

Alignment in chromatographic time has been cited as a major obstacle to reliable 

detection of differences among sample groups using LCIMS data and is an important step 

in preprocessing (39). Shifting of retention times can occur for many reasons and must be 

corrected before comparing data from different LCIMS experiments. The goal of 

alignment is to match corresponding features from different experiments to minimize R T 

variation and experimental noise. Time warping methods choose one experiment as a 

template and warp the time coordinates of each of the other experiments to maximize 

similarity between the two images. The theory behind dynamic time warping algorithms 

is similar-each point in RT space can be moved. The alignment problem is more 

complicated when mass spectral space is considered. TAG with different m/z values may 

have differential RT shifting in different experiments, e.g. two TAG that coelute in one 

profile may be separate peaks in another profile. Thus, aligning based only on R T 

coordinates may not be sufficient to align individual TAG molecular species. Piecewise 

methods divide the mJz domain into bins and fit piecewise linear time warping functions 

specific to each bin. These methods rely on the (RT, mJz) intensity values of detected 

features. Alignment methods that rely on detected peaks as opposed to raw spectral 
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information may be affected by errors in the peak detection step. Another issue to 

consider is the use of a template profile, as mentioned above, to which all other 

experiments are aligned. This approach is prone to error when samples from different 

classes with different features must be aligned. MZmine and xcms use detected peaks to 

align samples simultaneously. MZmine employs a master list for all peaks detected in all 

samples, considered one at a time, and matches peaks from each new sample to the 

master list based on a scoring function that compares isotope patterns. In xcms, peaks are 

first matched using fixed-interval overlapping bins; the algorithm determines the overall 

distribution of peaks in chromatographic time and then dynamically identifies boundaries 

of regions where many peaks have similar retention times. "Well-behaved" peak groups, 

in which very few samples have no peaks or more than one peak assigned, are used to 

create a nonlinear (loess) RT deviation contour for each sample. The resulting deviation 

profiles are used to correct the RTs of the original peak lists, and the corrected lists must 

be matched into groups again. 

High-level processing 

The goal of feature selection is to select a subset of relevant peaks that will best 

discriminate among samples or sample classes. It is important to note that this differs 

from feature extraction steps such as peak detection, described above. Feature extraction 

methods search for informative regions within a signal while feature selection methods 

find variables which discriminate among signals that represent different sample classes. 

Feature selection can be performed on independent variables using filter methods such as 
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receiver operating curves (ROC), statistical tests, wavelet transforms, or information gain 

criteria (37). Filters such as wavelet transforms are useful in both feature extraction and 

selection steps. Grouped feature selection such as stepwise methods, genetic algorithms, 

correlation-based methods, and principal components analysis (peA) consider all 

features simultaneously, though not in the manner of an exhaustive search of all possible 

subsets of variables. Grouped methods account for correlations among variables, where 

some variables are better able to discriminate classes when considered together than 

independently. Wrapper methods perform feature selection in conjunction with 

classification algorithms such that classifier performance is used as a measure of variable 

strength for inclusion/exclusion (38). The variable subset is "wrapped around" the 

classifier, and in this sense feature selection is optimized with regard to a specific 

classifier. It is important to note that this may result in model overfitting, where 

generalization error is underestimated and the model does not perform well on new data. 

Difference detection procedures are common when data are high-dimensional, as 

in the case ofLCIMS and in microarray analysis. Such procedures aim to identify 

biomarkers, or individual features that differ most among sample classes. Classical 

statistics (e.g. t, F, or X2
) and statistical and permutation test p-values can be used to rate 

features according to their ability to distinguish among sample groups, though data do not 

always meet the assumptions associated with these tests (32). Each feature is evaluated 

independently and thus correlations among features are not considered. To identify as 

many features as possible while incurring the lowest proportion of false positives, Storey 
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and Tibshirani devised the q-value, which provides a measure of each feature's 

significance while accounting for the fact that many variables are being tested 

simultaneously (45, 46). The q-value is based on the false discovery rate (FDR, 47) in 

contrast to the traditional p-value's false positive rate (FPR). The FDR is the rate that 

features deemed significant are truly null, while the FPR is the rate that null features are 

deemed significant. The FDR is a measure of how many selected variables, or "hits" are 

likely false. 

Classification algorithms such as Breiman's random forest (RF) algorithm (48) 

can be used with independent or grouped variable filters, or can be implemented as 

wrapper methods. The general idea behind the RF algorithm is to combine random 

feature selection and bagging (bootstrap aggregation) to improve sample classification. 

In theory, a RF consists of many decision trees built on independent and identically 

distributed random samples; the classifier output is the most popular class, or the mode of 

individual tree outputs. The generalization error converges to a limit as the number of 

trees becomes large, but convergence depends on the strength of individual trees and the 

degree of correlation among them. Random feature selection is used to split each node, 

yielding error rates that compare favorably to boosting and are more robust with respect 

to noise. Individual decision trees differ from each other due to random selection of 

features at nodes, reducing correlation to prevent overfitting. So-called "out-of-bag data" 

is used to estimate the error rate for each tree and for the full forest, providing an 
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unbiased estimate of generalization error and eliminating the need for cross-validation 

(48-50). The random forest algorithm implements the following steps: 

1. Sample with replacement N bootstrap samples, (Bt, ... ,BN). 

2. For each sample (k = 1 :N), construct a decision tree (T k) without pruning, with the 

following modification: M randomly selected variables are used to select the best 

split for the decision at each node. Use Tk to predict the out-of-bag samples 

(samples not included in Bk). 

3. Data are predicted by aggregating the predictions of the N decision trees, i.e. the 

mode for classification. An estimate of the generalization error (the out-of-bag 

error rate) is obtained by aggregating the out-of-bag predictions in step 2. 

Additionally, the out-of-bag samples are used to assess variable importance: for m = I:M 

(randomly selected variables at each node), we randomly permute values of the mth 

variable and run the out-of-bag data down Tk, saving outputs. Intuitively, the prediction 

error will increase proportionally to the importance of the variable. Percent increase in 

misclassification rate with respect to out-of-bag rate (all variables intact) reflects the 

importance of the variable (48, 51). RF has been shown to be a highly accurate and 

stable classifier that outperforms other classifiers when used as a wrapper method and 

performs similarly when used with independent variable selection in classifying samples 

using MS data (49). 
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Research design and methods 

Three independent studies were designed to achieve the aims of this project. The first of 

these applied RP-HPLCIAPCI-MS analysis of TAGs in plant oils to classify oils to their 

biological source, with the primary goal of validating the use of a high-throughput 

processing method for the analysis of targeted TAG analytes (Aim I). Results from 

MZmine and xcms programs were compared with results achieved when data were 

processed manually by a trained analyst using a published method that had successfully 

classified the plant oils by type based on the relative intensities of twelve TAG features 

(~). The second study implemented a high-throughput approach for processing marine 

oil TAG RP-HPLC/APCI-MS data with xcms, combined with two feature selection steps 

(Aim 2), to classify marine oil dietary supplements to their biological source (fish vs. 

seal; Aim 3). These data were successfully used to verify classification results from fatty 

acid profile data for the same samples. The final study applied an integrated framework 

for the analysis of TAGs using RP-HPLC/APCI-MS that combined xcms preprocessing 

with statistical analysis and automated structure determination to study TAGs in mouse 

adipose tissue from mice fed milkfat- and lard-based high-fat diets to induce obesity 

(Aim 4). The RP-HPLC/APCI-MS data processing workflow for these experiments can 

be divided into a series of discrete steps, as illustrated in Figure 6. Details for individual 

experiments are provided in the following chapters. 
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Figure 6. Schematic diagram of data processing workflow, adapted from Katajamaa and 
Oresic (34). 

Rationale and Innovation 

The goal of this research is to address the current challenges associated with TAG 

analysis by applying techniques used in proteomic and metabolomic analyses to solve 

biological problems" A high-throughput method for processing TAG RP-HPLC/APCI-

MS data was applied to three independent studies. Raw data, in the fonn of preprocessed 

mzData files, were taken through a series of low- and high-level processing steps in the R 

computing environment, using xcrns combined with normalization, targeted and non-

targeted feature selection, difference detection, and ( optionally) classification. An 
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integrated framework was developed for the analysis of TAG RP-HPLCIAPCI-MS data 

from complex lipid samples, beginning with raw data stored in mzXML, mzData, or 

rnzML formats and performing a series of steps that ultimately lead to classification 

and/or difference detection with automated identification of TAG structures for selected 

features (Appendix). The research described here provides a means for high-throughput 

analysis of complex TAG samples and will bring lipid chemists closer to achieving the 

ultimate goal of complete identification and quantitative resolution of the full set of TAG 

molecular species present in fats and oils. 
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ABSTRACT 

A signal-based approach to data analysis, commonly used in proteomics and 

metabolomics experiments, was applied for high-throughput processing of plant oil TAG 

profile data obtained using RP-HPLC/APCI-MS. Relative peak areas for twelve targeted 

TAG features were obtained manually and selected from data processed using the freely 

available computational tools, MZmine and xcms. Linear discriminant analysis and a 

random forest classifier were used to classify the plant oils (n = 30) to six different 

biological sources, and success was measured with classification accuracy. Manual 

processing, MZmine, and xcms resulted in a random forest model that classified 97%, 

87%, and 93% of samples correctly, respectively, based on out-of-bag error rates using 

the same twelve analytes. TAG structures associated with the targeted features were 

examined using a tool for automated structure assignment based on mass spectral data 



obtained via xcms. Most of the TAG structures identified from the targeted features for 

the different oil types were consistent with previously assigned structures; however, TAG 

assignments for three targeted features differed between the linseed oils and other groups. 

Automated data processing with xems provides a viable high-throughput alternative to 

traditional time-intensive manual processing ofRP-HPLC/APCI-MS triacylglycerol data, 

and plant oil TAG structures may be determined from xcms output using a new tool for 

TAG structure assignment. 

INTRODUCTION 

Plant oils are of great economic importance in agriculture, international commerce, and 

as cooking materials and ingredients in foods. Most commercially available plant oils are 

composed of mixtures oftriacylglycerols (TAGs), and a great deal of effort has been put 

forth in the past decade to characterize the TAGs present in these oils using various 

methods including reversed-phase high performance liquid chromatography with 

atmospheric pressure chemical ionization mass spectrometry (RP-HPLC/APCI-MS) (1, 3, 

4, 52-55). Such characterization is important from a nutritional standpoint, and in 

establishing the authenticity of commercial oils (17). 

TAGs are the most abundant class of lipid molecules and are comprised ofL-

glycerol esterified to three fatty acyl (FA) groups of varying carbon chain length and 

degree of unsaturation (5). The three sites of esterification are stereospecifically 

numbered sn-l, -2, and -3. Short-hand notation for TAGs uses the initials or identifiers 

of the fatty acid trivial names in order of their positions on the glycerol molecule (52). 
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For example, the notation for 1-palmitoyl-2-linoleoyl-3-oleoyl-sn-glycerol is PLO; this 

molecule is shown in Figure 1 (p. 7) and a list of identifiers for fatty acids commonly 

identified in plant oils are listed in Table 1. 

Table 1. Trivial names and identifiers for fatty acids commonly found in plant oil TAGs. 
Note: The C:DB notation for each fatty acid is the number of fatty acyl carbon atoms 
followed by the number of double bonds. 

Trivial name InitialJIdentifier 

Palmitic P 

Stearic S 

Oleic 0 
Linoleic 

Linolenic 

L 

Ln 

C:DB 

16:0 

18:0 

18:1 

18:2 

18:3 

TAG molecular species are separated by RP-HPLC and elute in order of their 

equivalent carbon number (ECN), which is approximately equal to the number of FA 

carbon atoms minus two times the number of carbon-carbon double bonds (ECN ~ C -

2·DB). Components with the same EeN are called 'critical pairs' and tend to have 

similar retention times. For example, the molecules 000 (18: 1/18: 1/18: 1), POO 

(16:0/18:1/18:1), and POP (16:0/18:1/16:0) all have ECN:::: 48 and elute in the same 

region. Modern chromatographic equipment may separate these three components, but 

regioisomers such as POP and PPO typically coelute, and the complexity of TAGs in 

many naturally-occurring oils requires the added dimensionality of mass spectrometric 

detection (5, 56). Several studies have successfully quantified such regioisomers using 

RP-HPLC/APCI-MS (27, 30, 31, 57, 58), but quantification procedures require standards 

for all of the individual TAG molecular species present in an oil. These standards are 
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expensive and are not yet available for all known TAG molecular species, and such an 

analysis would be time consuming on the part of the analyst and may be prohibitively 

expensive. While the ultimate aim of these analyses is to obtain a qualitative and 

quantitative profile of all of the TAG molecular species in an oil, this type of 

comprehensive analysis is not necessary for classification purposes, such as determining 

the biological source of an oil. 

APCI-MS is a "soft" ionization technique that produces relatively simple spectra 

from TAGs with base peaks consisting of either the protonated molecule, [M+H]+, or 

diacylglycerol ions, [DAG]+ or [M-RC02]+, that result from the loss of a FA moiety (27, 

56). The presence of the protonated molecule depends on the degree of unsaturation of 

the acyl moieties, with the relative abundance of the [M+H]+ ion increasing with the 

number of double bonds in the molecule; this ion may be absent in saturated TAGs (27). 

Relative intensities of [DAG]+ ions provide information on the positions at which F As 

are attached to the glycerol backbone. [DAG]+ ions resulting from the loss of the FA 

moiety at position sn-l and -3 are observed in greater abundance than those resulting 

from a loss at sn-2. Lesser-abundant acylium ions, [RCO]+, that correspond to the 

individual FA moieties may also be present in TAG spectra. These ions, together with 

HPLC retention time information, allow identification of the F As attached to glycerol in 

each TAG species. 

Jakab et a1. (4) used linear discriminant analysis (LDA) (59) to classify 42 plant 

oils to twelve different biological sources based on twelve relative peak areas calculated 
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from RP-HPLC/APCI-MS extracted ion chromatograms with a reported classification 

accuracy of97.6%. Only one peanut oil (of two) was misclassified and the authors 

suggested that the oils may have had different geographical origins that resulted in 

differing TAG profiles. The reported classification accuracy is based on the 

resubstitution error of the classifier, or the ability of the model to classify the training 

data, as opposed to an estimate of the generalization error, which would provide more 

information on the ability of this method to determine the biological source of new 

samples that were not analyzed in this study. Reanalysis of these data using LDA with 

leave-one-out cross-validation (CV) resulted in a reduced accuracy of76.2%; and a 

random forest (RF) classifier (48) resulted in 85.7% classification accuracy based on the 

out-of-bag error rate. In this case, the random forest result is likely a better indicator of 

model performance, because uneven sample class sizes and a large number of classes 

(12) relative to the number of samples (42) may interfere with the performance ofLDA. 

These results indicate that data from RP-HPLC/APCI-MS analyses of TAGs in plant oils, 

used as inputs for multivariable classification methods such as LDA and RF, may be used 

to accurately classify plant oils to their biological source. 

Developments in the fields of proteomics and metabolomics have employed a 

signal-based approach for the automated processing of raw instrument data to circumvent 

the many challenges associated with non-targeted profiling of pep tides and metabolites 

using comparative LC/MS (34, 39, 60, 61). The individual data files from LC/MS 

experiments are treated as a two-dimensional signal matrix, or image. Such an image is 
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shown in Figure 7, with columns composed of mass spectral scans over the duration of 

the chromatographic run and rows of extracted ion chromatograms; each cell in the 

matrix is a mass-to-charge ratio (m/z) abundance measured within a scan at a particular 

retention time (RT). Established methods in signal processing, statistics, and machine 

learning are used to find patterns in the image that are characteristic of samples or sample 

classes (32). 

Figure 7. Image representation of an LCIMS analysis. Each cell in the matrix on the left 
is a mass-to-charge ratio (m/z) abundance measured within a mass spectral scan at a 
particular retention time; columns contain data from mass spectral scans and rows 
represent extracted ion chromatograms. The LCIMS image for a soybean oil is shown on 
the right, with DAG ions and protonated molecules labeled. The total ion chromatogram 
is shown below the image, and is simply a plot of the sum of column intensity values. 

The freely available computational tools MZmine (8, 41) and xcms (9) contain · 

methods for spectral filtering, peak detection and chromatographic alignment that allow 
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the analyst to set data-specific processing parameters. Such tools will ideally provide a 

list of peak areas corresponding to m/z and RT indices that are quantitatively similar to 

those obtained by manual data processing, using a method such as the one used by Jakab 

et al. (4). MZmine and xcms have been reviewed (34, 36) and used successfully in 

several published metabolomics studies (62-65); the two programs have been found to 

yield comparable results (65). 

The current study set out to evaluate the ability of the computational tools 

MZmine and xcrns to process TAG RP-HPLC/APCI-MS data, compared with manual 

processing of the same data by a trained analyst. We sought to develop a high

throughput data processing strategy to discriminate among commercially-available plant 

oils from different biological sources. To this aim, semi-quantitative data for twelve 

targeted variables were obtained using the two computational tools MZmine and xcms, 

and compared with results obtained by manually processing the same data using the 

method of Jakab et al. (4). These twelve variables were used as inputs for LDA and RF 

classification models. Misclassification rates (%) were used as a metric to evaluate 

MZmine and xcms data, compared with data that were manually processed. Pearson 

correlation coefficients between values for twelve specific variables in the manually 

processed data and MZmine and xems were examined to determine whether the 

chemometric data sets reflected values determined from manual processing. 

Additionally, we evaluated TAG structures associated with the targeted features used for 

classification using a new tool (described in the Appendix) that determines the FA 
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substitutions for specific features from mass spectral data using xcrns" The use of 

computational tools provides a high-throughput data processing methodology that may be 

widely employed for authentication of commercial oil samples and for identifying TAG 

structures associated with specific features useful for classification of oils to their 

biological source. 

METHODS 

Sample preparation 

Thirty commercial plant oil samples (almond, grapeseed, linseed, olive, peanut, and 

soybean oils, 5 samples per class) were purchased from local grocery stores and on-line 

vendors. Samples were diluted in acetone/acetonitrile (2: 1, v/v) to a concentration of 1 %. 

Burdick and Jackson solvents were obtained from VWR (West Chester, PA); all solvents 

were HPLC grade or the highest purity available, and were used without further 

purification. 

RP-HPLCIAPC!-MS 

RP-HPLC/APCI-MS analyses were performed using an Agilent 1100 quaternary pump 

HPLC system and Agilent XCT ion trap MS equipped with APCI source (Agilent 

Technologies, Palo Alto, CA). Separation of TAG was achieved using a Restek Allure 

C18 column (5 f.lIl1, 250 x 2.1 mm, Restek Corporation, Bellefonte, PA) with a two

stepped linear gradient of acetone in acetonitrile at flow rate 0.6 mL/min. Both solvents 
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contained 0.1 % acetic acid to facilitate ionization. Acetone concentration was held at 

20% for 1 min, stepped to 66% at 4 min and held for 13.5 min, then stepped from 66% to 

90% in 1 min and held at 90% until 45 min. Autosampler and column temperatures were 

200e and 35°C, respectively. The injection volume was 3 flL. Direct infusion MS was 

performed in Ultrascan mode with the following parameters: APCI temperature, 350°C; 

vaporizer temperature, 500°C; corona current, 5000 nA; nitrogen sheath and auxiliary 

gas, 60 psi and 5 L/min, respectively. Mass spectra were collected in positive ion mode 

from m/z 100-1200 with a scan time 0[300 ms. 

A;fanual data processing 

Samples were processed manually using DataAnalysis software (Bruker Daltonics, Vera 

3.3), as described by Jakab et al. (2002). Briefly, peak areas for twelve TAG analytes 

were calculated from extracted ion chromatograms of either the protonated molecule 

[M+H]+ or one of the DAG fragment ions [M-RC02]+ and converted to area percent 

values. Data including the m/z values used for extracted ion chromatograms for each of 

the twelve TAG are listed in Table 2. The total ion and extracted ion chromatograms for 

a typical soybean oil are shown in Figure 8. While the area percent value of a particular 

peak is not a true representation of the concentration, we can use this information to 

describe the TAG profile of a particular oil sample and such a profile is sufficient for 

classifying the oil to its biological source (4). 
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Table 2. Twelve TAG analytes. TAG identifiers refer to the following fatty acids: 
P=16:0, 8=18:0, 0=18:1, L=18:2, and Ln=18:3, where C:DB indicates the number of 
fatty acyl carbon atoms and double bonds. The equivalent carbon number (ECN) for a 
TAG is approximately equal to the total number of FA carbons minus 2 times the total 
number of double bonds in the acyl chains. 
TAG· ECN RT/(m) t Ion 
LLLn 40 10.6 ± 0.1 [M+H]+ 

LLL 42 12.1 ± 0.2 [M+H]+ 

LnLP 42 12.6 ± 0.1 [M+H]+ 

LLO 44 14.2 ± 0.2 [M+H]+ 

PLL 44 14.8 ± 0.2 [M+H]+ 

OOL 46 17.1 ± 0.2 [OL] + 

PLO 46 17.8 ± 0.2 [PO] + 

PLP 46 18.6 ± 0.2 [PP] + 

000 48 20.6 ± 0.1 [00] + 

POO 48 21.0 ± 0.1 [PO] + 

POP 48 21.3 ± 0.1 [PO] + 

sao 50 22.1 ± 0.1 [SO] + 
• Actual TAG structure, from (4). 
tMean± SEM. 

EIC mlz (± 0.5) 
877.7 

879.7 

853.7 

881.8 

855.7 

601.5 

577.5 

551.5 

603.5 

577.5 

577.5 

605.5 

Assigned TAG 

LLLn I OLnLn (IL) t 
LLL I OLLn (5L,20) t 

LnLP 
LLO /OLnO (5L) t 

PLL / OLnP (5L,10) t 

OOL 

PLO 

PLP 
000 I 80L (IG) t 

POD 

POP 

sao 

t Numbers and letters in parentheses indicate number and type of oils for which the 
second TAG structure was assigned. L = linseed, 0 = olive, G = grapeseed. 
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Figure 8. Total and extracted ion chromatograms for a typical soybean oil sample. 

MZmine 

Data files were converted from the Bruker MS proprietary data file format to mzXML 

using the CompassXport program (Bruker Daltonics, Ver. 1.3); mzXML files were read 

directly into MZmine (Ver. 0.60). The data were cropped to m/z 200-1000 and RT 250-
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1600 s and a chromatographic median filter (mlz tolerance = 0.2, scan windows = 6) was 

used to smooth data in the chromatographic direction, and peaks were detected using the 

recursive threshold method (mlz bin size = 0.25, chromatographic threshold = 5%, noise 

level = 2,000,000, minimum peak height = 5,000,000, minimum peak duration = 5 s, 

minimum mJz peak width = 0.5, maximum mlz peak width = 25, mlz tolerance = 1.2, 

intensity tolerance = 40%). Peak lists from the different files were aligned by matching 

each peak list to a master list using the Fast aligner algorithm (balance = 10, mlz 

tolerance = 0.5, RT tolerance = 5%). Peaks that were found in less than three samples 

were removed, and empty slots in alignment results were filled by searching for a local 

maximum over the region of raw data where a peak was likely to be located (intensity 

tolerance = 100%, m/z tolerance = 0.5, RT tolerance = 5%). Peaks were normalized by 

the total raw signal to remove systematic variation in intensity levels between different 

data files. The twelve peaks used for manual data processing were selected from the 

MZmine output and converted to area percent values. 

Xcms 

The OpenMS TOPPView program (http://open-ms.sourceforge.net, Ver. 1.2) was used to 

crop the LCIMS image size to m/z 200-1000 and RT 250-1600 s; files were imported into 

TOPPView in mzXML and exported as rnzData files for processing with the xcms 

package (Ver. 1.14.1) in R (Ver. 2.7.2). Matched filter peak detection was used with the 

following parameters: sigma = 6.5, max = 25, step = 0.1, steps = 58 Peaks were grouped 

together across samples using fixed-interval overlapping m/z bins (rnzwid = 0.25) and 
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calculation of smoothed peak distributions in chromatographic time using a Gaussian 

kernel density estimator (bw = 10). RTs were corrected for all samples simultaneously 

using loess regression to model nonlinear RT deviation contour profiles based on peak 

group median RTs and deviations from the median. The corrected peak lists were re-

grouped using a smaller Gaussian kernel (bw = 5), and samples with missing peak values 

within a group were filled by integrating raw data in the peak group region using 

corrected start and ending retention time points defined by the peak group medians. A 

matrix of peak area values with rows for every group, indexed by m/z and RT, and 

columns for every sample were generated. Samples with multiple peaks per group were 

resolved by choosing the peak closest to the median RT. Xcms does not provide a 

function for nonnalization, so this was perfonned manually by dividing each peak by the 

total area for the sample. The same twelve peaks used for manual and MZmine data 

processing were selected from the XCMS output and converted to area percent values. 

We performed a recursive search of the peak list for m/z values we would expect to 

observe in TAGs resulting from combinations of the five most prominent F As observed 

in the FA profile analysis (Table 1). 

Statistical analysis and classification 

All statistical procedures, classification, and data manipulation were performed using R 

(Ver. 2.7.2) and Microsoft Office Excel (2007). RF classifiers were generated using the 

R randomForest package (Ver. 4.5-28) and linear discriminant analyses were performed 

with the R MASS package (Ver. 7.2-45). RF classifiers were built using 5,000 decision 
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trees with 3 (of 12) variables randomly selected for differentiation at each node. As the 

RF algorithm uses bootstrap samples to create individual decision trees and implements a 

stochastic variable selection at the nodes of individual trees, results were confinned with 

multiple analyses for all RF models reported. RF output provides the "out-of-bag" error 

obtained by classifying samples which were not a part of the bootstrap data used to build 

a specific tree. This provides an unbiased estimate of the generalization error, or the 

error we can expect when trying to use this model to classify new data, and eliminates the 

need for cross-validation (48). We also calculated the resubstitution error by using the 

RF to classify the same data that were used to generate the RF model. As LDA only 

provides the resubstitution error, we used leave-one-out cross-validation to estimate the 

generalization error (59). 

RESULTS AND DISCUSSION 

Area percent values for the twelve TAG analytes listed in Table 2 were obtained by 

manually processing RP-HPLC/APCI-MS data, and from the peak lists resulting from 

processing the same data with MZmine and xcms programs. Data (mean ± SEM) for 

each of the three processing methods are displayed separately and grouped by biological 

source of the oil samples, in Figure 9. It is apparent in the bar plots that the three 

processing methods result in similar infonnation for these twelve variables, and that the 

feature values vary among the different types of oils. 
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Figure 9. Barplots (Mean ± SEM) of (A) manually processed, (B) MZmine, and (C) 
xcms data sets, grouped by the biological source of the oil samples. 
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While manual processing targeted specific peaks representing the twelve TAG 

analytes, MZmine and xcms are non-targeted processing methods. Both of these 

programs first identify all peaks in each RP-HPLC/APCI-MS image, and then align the 

peaks from different samples that represent the same analytes in the retention time 

dimension. MZmine allows the user to filter out rare peaks, estimate areas for peaks that 

were missed on the first round based on user-specified parameters, and normalize each 

peak value to the total signal to remove systematic variation in intensity levels. Xcms 

also estimates peak areas for features missed during peak detection, and the group 

function may be used to filter out rare peaks after alignment; xcms does not include a 

function for normalization. MZmine processing resulted in a list of 129 features, 

including the twelve targeted variables of interest. Xcms returned a longer peak list, 

consisting of2408 features (including the twelve targeted features), and peaks were 

normalized manually by dividing by the total area. The different number of features 

obtained using MZmine vs. xcms is likely a result of peak detection parameters used for 

the different methods. The xcms peak list was filtered to obtain a peak list of 161 

relevant ions representing [DAG]+ and [M+H]+ ions from possible TAG analytes 

resulting from all combinations of the FAs listed in Table 1. 

LDA resubstitution and leave-one-out CV error rates and RF resubstitution and 

out-of-bag error rates are listed in Table 3. The twelve targeted features (Table 2) 

produced classification results similar to those reported by Jakab et al. (1) for all three 

processing methods. As noted previously, reanalysis of those data using LDA with 
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leave-one-out CV and the RF algorithm yielded much higher estimates of generalization 

error (23.8% for LDA with CV and 14.3% for RF out-of-bag error) than the reported 

resubstitution error (2.4% for LDA). We analyzed 30 oils from six different biological 

sources (n=5 per class), while Jakab et a1. analyzed 42 oils from twelve biological 

sources, with only two samples in the smallest class. The lower generalization error 

estimates that we report may be a result of balancing the class sizes for our data and 

looking at fewer classes overall. For our oil samples, manual processing of the RP

HPLC/ APCI -MS data yielded the lowest classification error rates, followed by using 

relative values for the twelve targeted features from automated processing with xcms and 

then MZmine. XCMS values for the twelve targeted features were more highly 

correlated with manually-processed data than MZmine values (Table 4). XCMS peak 

integrations for the twelve targeted features are shown in Figure 10. Dot plots of the 

mean decrease in accuracy in the RF model for the xcms values of the 12 targeted 

features are shown in Figure 11. POO (m/z 577.5, RT 21.0 ± 0.1) was the "most 

important" variable in this model. 
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Table 3. Misclassification rates for LDA (resubstitution), LDA with leave-one-out cross
validation (CV), and random forest classifiers (resubstitution and out-of-bag error rates). 
Data Features LDA LDA (CV) RF RF (OOH) 
Manual 12* 0% (0/30) 6.67% (2/30) 0% (0/30) 3.33% (1/30) 
MZmine 12* 3.33% (1/30) 13.3% (4/30) 0% (0/30) 13.3% (4/30) 
MZmine 129 0% (0/30) 3.33 % (1/30) 
XCMS 12* 0% (0/30) 10.0% (3/30) 0% (0/30) 6.670/0 (2/30) 
XCMS 2408 0% (0/30) 3.33% (1/30) 
XCMS 161 t 0% (0/30) 3.33% (1/30) 
• These peaks represent the same twelve analytes: LLLn, LLL, LnLP, LLO, PLL, OOL, 
PLO, PLP, 000, POD, POP, and SOD, with m/z values and RTs corresponding those 
listed in Table 2. LDA was not applied to data sets where the number of features 
exceeded the number of observations (n = 30). 
tXcms data screened specifically for [DAG]+ and [M+H]+ ions in TAGs containing the 
FAs 16:0, 18:0, 18: 1, 18:2, and 18:3. 

Table 4. Pearson correlation coefficients between feature values from manually 
processed data and the two chemometric processing methods. 

Feature MZmine xcms 

LLLn 0.989 0.994 

LLL 0.954 71-.995 
LnLP 0.993 0.998 
LLO 0.961 0.976 
PLL 
OOL 
PLO 
PLP 
000 
POO 
POP 
SOO 

0.932 
0.930 
0.813 
0.966 
0.982 
0.939 
0.362 
0.515 
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Figure 10. Extracted ion chromatograms for twelve targeted features; data processed 
with xcms. Integrated areas for each peak are indicated by darker colors, with lighter 
areas outside the area of integration. 
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Figure 11. Variable importance of the xcms values for the twelve targeted features, 
estimated by the mean decrease in accuracy of the RF classifier. 

Non-targeted data from MZmine (129 features) and xcms (2408 features) and 

xcms output filtered for peaks representing [M+H]+ and [DAG]+ ions from possible TAG 

analytes (161 features) performed similarly to each other, with all three models having 

97% classification accuracy based on the RF out-of-bag error rates. As LDA must have 

fewer variables than observations (n=30), we could not use this model for these data sets. 

Multidimensional scaling (MDS) plots based on the RF proximity matrix were used to 

visualize groupings among the different classes, or biological sources of the oils, in the 

different feature sets (Figure 12). All of the RF models using twelve features produced 

similar MDS plots, though Coordinate 1 and 2 axes were reversed in the xcms plots 

[Figure 12 (C) and (D)]. 
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Figure 12. Multidimensional scaling plots of the RF proximity matrix from different 
processing methods for the twelve targeted features processed (A) manually, using (B) 
MZmine and (C) xcms, and (D) 161 TAG-filtered xcms features . 

Automated TAG structure assignments are listed in Table 2. All twelve targeted 

features were assigned the same TAG structures that were documented by Jakab and 

colleagues for most of the plant oil samples (4). Five features were assigned an alternate 
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structure in one or more samples; these are noted in Table 2. Notably, all five linseed oils 

were assigned alternate structures for LLL (m/z 879.7, RT 12.1 m), LLO (m1z 881.8, RT 

14.2 m), and PLL (m/z 855.7, RT 14.8 m); the structures assigned for these peaks in the 

linseed oils were OLLn, OLnO, and OLnP, respectively. Examination of the target 

feature mass spectra for LLL, LLO, and PLL in soybean and linseed oil samples shown 

in Figure 13 supports the alternative TAG structure assignments in the linseed oils. Ions 

observed in the soybean oil LLL spectrum are 599.5 and 879.7; additional peaks at m1z 

597.4 and 601.5 observed in linseed oil indicate the presence of OLLn. Similar patterns 

are observed in LLO (vs. OLnO) and PLL (vs. OLnP) spectra: LLO m/z 599.5, 601.5, 

and 881.8, OLnO m/z 599.5, 603.5, and 881~8; PLL m1z 575.5, 599.5, and 855.7, OLnP 

mlz 573.5, 577.5, 599.5, and 855.7. So, for linseed oil, the amounts of target features m/z 

879.7, 881.8, and 855.7 actually represent different TAG species from the other plant 

oils. It is unclear what effect this may have on classification results. TAG structure 

assignments may be used to select features that represent the same structure in different 

samples, assuring that we compare the same elements in different types of oils. The 

presence of these alternative TAG species in appreciable quantities in linseed oil is 

confirmed by the observations of Lisa, et al. (66). 
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Figure 13. (A) Soybean and (B) linseed oil mass spectra for targeted peaks LLL 
(X879.9.719), LLO (X881.9.849), and PLL (X855.9.881). 

Overfitting becomes a problem when model complexity increases with the 

1000 

1000 

1000 

number of features (59, p. 194) such that the model does not accurately classify new data. 

Non-targeted peak detection programs, such as MZmine and xcms, generate large lists of 

peaks with many redundancies in the data. As each analyte may produce several peaks, 
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correlations may exist among variables. Searching for useful features among these data is 

the focus of many recent studies. Resubstitution error rates are poor estimates of a 

model's ability to generalize, or to classify samples that were not used in generating the 

model. For all feature sets that we studied, the generalization error estimates were higher 

than (or equal to) resubstitution errors, as would be expected. This illustrates the need to 

perform some sort of estimation of the generalization error for all classification models. 

The RF out-of-bag error rate was lower than the cross-validated LDA error rate for both 

manually processed data and XCMS, implying that the RF algorithm may be superior to 

LDA for these data. RF has been demonstrated to outperform other classifiers for MS 

data, and is not subject to the stringent assumptions of the LDA model (49). 

One objective of this research was to evaluate the data produced by MZmine and 

xcms, quantitatively and in terms of classification of oils to their biological source, 

compared with manual processing of the same data by a trained analyst. Of the three 

processing methods, the manually processed data were best able to classify the plant oils 

to their biological source based on the twelve targeted features, followed closely by xcms 

and then MZmine (Table 3). Examining scatter plots and correlations among the manual, 

MZmine, and xcms processing methods for each of the twelve variables revealed that 

xcms values were more closely related to the manually processed data than MZmine 

values (Table 4), and therefore we determined that xcms outperforms MZmine for 

processing these data with the parameters employed. It is possible that MZmine 

performance could be improved with a different parameter set. A great deal of time can 
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be spent optimizing parameters and we did not perform any true optimization procedures. 

We settled on the parameters that gave peak lists containing all twelve of the targeted 

features and produced peak integrations that were acceptable based on a visual 

inspection. Additionally, when using xcms, once the original files are imported to 

generate an xcmsSet variable, all further statistical analyses and TAG structure 

assignment can be performed in R. We found this to be a great advantage, and used the 

xcms data to develop a TAG structure assignment tool for this reason (see Appendix). 

The results of this study indicate that data from RP-HPLC/APCI-MS analyses of TAGs 

in plant oils, used as inputs for multivariable classification methods such as LDA and RF, 

may be used to accurately classify plant oils to their biological source with high accuracy 

and that programs such as xcms and MZmine allow analysts to devise a high-throughput 

methodology to achieve this end. 
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ABSTRACT 

Seal blubber oils are used as a source of omega-3 polyunsaturated fatty acids in Canada 

but prohibited in the United States and European Union. Thus, a reliable method is 

needed to identify oils originating from seals vs. fish. Two lipid profiling methods, fatty 

acid analysis using gas chromatography and triacylglycerol analysis using liquid 

chromatography and mass spectrometry, were applied with statistical models to 

discriminate commercial oils and blubber samples harvested from marine fish and seals. 

Significant differences were observed among fatty acid profiles, and seal samples 

differed from each of the fish oils (p < 0.001). Fatty acid and triacylglycerol profiles 

were used to discriminate sample groups using a random forest classifier; all samples 

were classified correctly as seals vs. fish using both methods. We propose a two-step 



method for the accurate identification of seal oils, with preliminary identification based 

on fatty acid profile analysis and confinnation with triacylglycerol profiles. 

INTRODUCTION 

The recent focus of the biomedical community on dietary fats and their relation to health 

and disease states has brought to light the necessity of including polyunsaturated fatty 

acids (PUFA) in a healthy diet, and in particular the long-chain omega-3 (n-3) PUFA 

eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic (DHA, 22:6n-3) acids found in 

fatty fish. For those unable or unwilling to increase dietary fatty fish intake, fish oil 

omega-3 PUF A dietary supplements are available. A national survey conducted in 2007 

by the Centers for Disease Control and Prevention (CDC) revealed that fish oil/omega-

3IDHA supplements were the most popular products used by consumers for health 

reasons (67). In Canada, seal oil supplements manufactured primarily from harp seal 

blubber are available to consumers (68-71), but the Marine Mammal Protection Act of 

1972 (MMPA; 72) prohibits buying and selling of seal products in the United States 

(US). The European Union (EU) also banned commercial seal products in May 2009 

(73). A reliable method to distinguish between marine oils harvested from fish and seals 

is necessary for law-enforcement purposes. 

While many fish products may be identified to species using DNA analysis, 

verifying the biological source of a marine oil is more difficult because oils are composed 

of lipids and typically do not contain amplifiable DNA. Authentication and 

determination of the biological source of marine oil dietary supplements may be achieved 
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via compositional analyses of the lipids present in such oils (17). Natural marine oils 

harvested from fish and seals are typically composed oftriacylglycerols (TAGs), in 

which three fatty acids (F As) are esterified to glycerol. The F As vary in carbon chain 

length and the number of double bonds, with most naturally occurring F As having 14-24 

carbons and 0-6 methylene-interrupted double bonds in the cis configuration (5, 74). FAs 

are identified using the notation A:Bn-C, where A is the number of carbon atoms, B is the 

number of double bonds, and C is the position of the first double bond from the terminal 

methyl group. The FA profile of an oil is a quantitative list of the F As present, measured 

as fatty acid methyl esters (FAMEs) using gas chromatography with flame ionization 

detection (GC/FID); amounts are relative and sum to 100%. 

F A profiles have been used to reliably distinguish among different fish species 

(75-77) and marine mammal populations and subspecies (78, 79), and to differentiate 

between wild and cultured fish for forensic purposes (80, 81). Marine oil FA profiles are 

species-specific with some overlap and variation due to age and differences in diet (17, 

82). Characteristics of seal oil FA profiles noted in the literature include a 16: In-7/16:0 

ratio greater than unity (83, 84) and high levels of 18:1n-ll (68) and 22:5n-3 (18, 71, 82) 

when compared with other marine oils. Additionally, FA distribution on the glycerol 

backbone in TAG molecules differs between seals and fish. Studies of positional 

distribution ofFAs have consistently shown that long-chain PUFA including 20:5n-3, 

22:5n-3, and 22:6n-3 are located in the TAG sn-2 position in fish oils and the sn-1/3 

positions in seals and other marine mammals (68, 71). 
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Reversed-phase high performance liquid chromatography with atmospheric

pressure chemical ionization mass spectrometry (RP-HPLC/APCI-MS) can be used to 

obtain semi-quantitative TAG profile data for the purpose of classifying oils to their 

biological source. RP-HPLC has proven useful in the separation of TAG molecular 

species, but cannot resolve individual TAGs in complex mixtures. TAGs elute on an 

octadecylsiloxane (ODS) column in order of their equivalent carbon number (ECN), 

approximated by the number of fatty acyl carbon atoms minus two times the number of 

carbon-carbon double bonds. TAGs with the sameECN tend to elute close together (5). 

APCI-MS ofT AGs produces protonated molecules, [M+H]+, and one to three 

diacylglycerol (DAG) fragment ions, [M-RC02]+, depending on the number of different 

F As attached to glycerol (28). The relative intensities of DAG fragment ions reveal 

information on the positions of F As on the TAG molecule (29). Specifically, the least 

abundant DAG ion resulted from loss of the FA from the secondary position (sn-2). RP

HPLC/APCI-MS allows for partial identification of the FAs (number of carbons and 

double bonds, e.g. 18:3) from individual TAGs in a mixture and also provides pertinent 

information on positions of F As on the glycerol backbone in the TAG molecule (27). 

Because differences exist in TAG positional distribution of long-chain PUF A between 

seal and fish oils, RP-HPLCIAPCI-MS should be useful in discriminating these oils. 

While the complexity of marine oil TAGs does not allow quantification of individual 

TAG molecular species, TAG RP-HPLCIAPCI-MS data may be used with classification 

models to discriminate between marine oils from fish and seals. Such data must be 
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subjected to preprocessing steps including peak detection, alignment, and normalization 

prior to classification (39). This study determines FA composition for commercial 

marine oils and marine oil dietary supplements from five different biological origins (Cod 

liver, herring, salmon, generically labeled "fish," and seals; to evaluate differences 

among oils from different marine sources and address the feasibility of using such data to 

identify seal oil using classification models for forensic purposes. We report the FA 

composition for 45 commercial marine oils and 3 extracted seal blubbers and use these 

data to classify marine oils to five different biological sources. RP-HPLCIAPCI-MS of 

TAG in marine oils is implemented as a confirmatory analysis procedure to verify 

classification and to ascertain that the oils are not synthetic in origin. We propose that 

FA and TAG profiling methodologies should be used together for the forensic 

identification of seal oils, and assert that this two-tiered analysis approach, when used 

with the appropriate statistical models, can identify seal oil definitively and without bias 

on the part of the analyst. 

METHODS 

Harp seal (Phoca groenlandica) blubbers and commercially marketed fish and seal oils 

were obtained from government agencies, academic institutions, and commercial vendors 

as described in Table 5. Possession of marine mammal specimens was authorized under 

National Marine Fisheries Service (NMFS) Permit No. 13599. Burdick and Jackson 

solvents were obtained from VWR (West Chester, PA); all solvents were HPLC grade or 

the highest purity available, and were used without further purification. 
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Table 5. List of samples. 
Sample Source 
Cod-1 Norwegian Cod liver oil, 0.5 g capsules, Dale Alexander, Norway 
Cod-2 Natural Cod liver oil, 0.65 g capsules, Sundown, USA 
Cod-3 Cod liver oil (with vitamins A & D), 0.5 g capsules, Premier Value, USA 
Cod-4 Cod liver oil (with vitamins A & D), Squibb, USA 
Cod-5 Natural Cod liver oil, 0.6 g capsules, Sundown, USA 

Cod-6 Arctic Cod liver oil, 1 g capsules, Nordic Naturals, Norway 
Cod-7 Norwegian Cod liver oil, 0.39 g capsules, Carlson, Norway 
Cod-8 Norwegian Cod liver oil, 0.52 g capsules, Spectrum Essentials, Norway 
Fish-l * 18/12 Fish oil, Biooriginal Food & Science Corp., Norway 

Fish-2t Res-Q Omega 3 supplement (pelagic fish), 1.25 g capsules, N3 Oceanic, 

Fish-3* 
Fish-4* 

Fish-5 

Fish-6 

Fish-7 

Fish-8t 

Fish-9 
Fish-lO* 
Fish-II * 
Fish-12* 
Herring-l * 
Herring-2* 
Herring-3* 
Herring-4* 
Herring-5* 
Herring-6* 

Salmon-l * 

Salmon-2 * 

Salmon-3 
Salmon-4 

Norway 

18/12 Fish oil, ICE, Department of Homeland Security, USA 
18/12 Fish oil, ICE, Department of Homeland Security, USA 
Nutra Sea EPAlDHA rich omega-3 supplement (sardine, anchovy), Ascenta, 
Canada 

Omega-3 Fish oil (sardine, anchovy), 1.2 g capsules, Nature Made, USA 
Wild Fish oil (sardine, anchovy, mackerel, herring), 1 g capsules, Physician 
Formulas, Inc., USA 

Fisol Enteric-coated fish oil (sardine, anchovy, mackerel), 0.5 g capsules, 
Nature's Way, USA 
Omega-3 Fish oil (sardine, anchovy), 1.2 g capsules, Sundown, USA 
Marine body oil (menhaden), Omega Protein, USA 

Marine body oil (menhaden), Omega Protein, USA 
Fish oil (menhaden), Biomedical Test Materials Program, NOAA, USA 
Atlantic Herring oil, Omega Protein, USA 
Atlantic Herring oil, Omega Protein, USA 
Atlantic Herring oil, Dalhousie University, Canada 
North Atlantic Herring oil, Noble, Canada 
Atlantic Herring oil, Dalhousie University, Canada 
Atlantic Herring oil, Zapata, USA 
Sockeye Salmon oil, NOAA-NMFS, USA 
Salmon oil, NOAA-NMFS, USA 
Salmon oil + Vitamin E, 1 g capsules, Solaray, USA 
Pure concentrated Salmon oil, 1 g capsules, Neolife, USA 
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Table 5. - continued . 
• Sample Source 

Salmon-5 

Salmon-6 
Salmon-7 

Salmon-S 

Seal-I * 

Seal-2 * 

Seal-3 * 

Seal-4 * 

Seal-5 * 

Seal-6 * 

Seal-7*f 

Seal-S*t 

Seal-9*t 

Seal-IO*t 

Seal-II * 

Pure Norwegian Salmon oil, 1 g capsules, Health Laboratories of America, 

Norway 

Salmon oil, 1 g capsules, Sundown, USA 
Wild Alaskan Sockeye Salmon oil, 1 g capsules, Natural Factors, Canada 

Norwegian Salmon oil, 1 g capsules, Carlson, Norway 
Marine oil (seal), 0.5 g capsules, Healthy Life Co., Canada (NOAA-NMFS) 

Omega-3 DPA EPA DHA, 0.5 g capsules, Super Natural, USA (NOAA

NMFS) 
Seal oil, 0.5 g capsules (NOAA-OLE) 
Commercial Harp seal oil (Dalhousie University, Canada) 

Omega-3 Seal oil, 0.5 g capsules, Terra Nova, Canada (NOAA-OLE) 

Seal oil, 0.5 g capsules, Creators Own, Canada (NOAA-NOS) 
Harp Seal oil, Spirulina Bio-Lab Co., Osaka, Japan (FWS-NWPR) 

Omega Plus Harp seal oil, 0.5 g capsules, Terra Nova, Canada (FWS

NWPR) 
Harp seal oil, 0.5 g capsules, BEC, Canada (FWS-NWPR) 

Harp seal oil omega-3 plus, 0.5 g capsules (FWS-NWPR) 

Commercial Harp seal oil (Memorial University of Newfoundland, Canada) 
* Pgro-l Phoca groenlandica, Harp seal blubber, NMMTB, NIST, USA 
* Pgro-2 Phoca groenlandica, Harp seal blubber, NMMTB, NIST, USA 
* . Pgro-3 Phoca groenlandlca, Harp seal blubber, NMMTB, NIST, USA 

Note: Abbreviations for indicated U.S. government sources: FWS = Fish and Wildlife 
Service; ICE = Immigrations and Customs Enforcement; NIST = National Institute of 
Standards and Technology; NMFS = National Marine Fisheries Service; NMMTB = 

National Marine Mammal Tissue Bank; NOAA = National Oceanic and Atmospheric 
Administration; NOS = National Ocean Service; OLE = Office of Law Enforcement; 
NWPR = National Wildlife Property Repository. 
* Samples were purchased at local (Charleston, SC) grocery or health food stores unless so 
indicated. 
tFish-2 and -8 'were composed of fatty acid ethyl esters (as opposed to TAGs), so RP
HPLC/APCI-MS analysis was not performed on these samples and they were not used 
for classification. 
tSeal-7, -8, -9, and -10 were not available for RP-HPLC/APCI-MS analysis and data 
from these samples are only reported in summary tables and plots for FA profile data; 
these samples were not used for classification. 
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Homogenized blubber samples were extracted in hexane (1 :30 sample-to-hexane 

volume). Lipid class composition and sample quality were assessed using thin-layer 

chromatography (TLC; 85). FAME derivatization according to Metcalfe et al. was 

followed with FA profile analysis using GC with mass spectrometry (MS) and FID (85, 

86). Mass spectra were used to identify individual FAME peaks, in conjunction with 

comparison of retention times (RTs) with those of known standards. Empirical 

correction factors determined from quantitative standards (GLC-85, 411, 566, and 617, 

NuChek Prep, Elysian, MN) were applied to integrated peak areas from the FID 

chromatogram and compositions reported as weight percent FA. Sample order was 

randomized prior to analysis to account for systematic changes in instrumental 

conditions. 

Analysis of TAGs using an Agilent 1100 quaternary pump HPLC system and 

Agilent XCT ion trap MS equipped with APeI source (Agilent Technologies, Palo Alto, 

CA) was implemented as a secondary step to verify results of the FA profile analysis. 

Detector optimization was performed using trilinolein (NuChek Prep, Elysian, MN). 

Lipid extracts were dissolved in acetone-acetonitrile (2:1; 1 mg/mL). TAGs were 

separated on a Restek Allure CI8 column (5 Jlm, 250 x 2.1 mm; Restek Corporation, 

Bellefonte, PA) with a two-stepped linear gradient of acetone in acetonitrile (with 0.1 % 

acetic acid) at 0.6 mL/min. Acetone concentration was held at 20% for 1 min, stepped to 

66% at 4 min and held for 13.5 min, then stepped from 66% to 90% in 1 min and held at 

90% until 45 min, adapted from Jakab et al. (4). Autosampler and column temperatures 
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were 20°C and 35°C, respectively. The injection volume was 3 flL. Direct infusion MS 

was performed in Ultrascan mode with the following parameters: APCI temperature, 

350°C; vaporizer temperature, 500°C; corona current, 5000 nA; nitrogen sheath and 

auxiliary gas, 60 psi and 7 L/min, respectively. Mass spectra were collected in positive 

ion mode from mass-to-charge ratio (m/z) 100-1200 with a scan time of300 ms. 

Samples were analyzed in random order to account for systematic differences in LCIMS 

profiles over the time of the analysis, and gradient blanks were analyzed between samples 

to prevent column contamination. 

LC/MS data files were converted to mzXML using CompassXport (Broker 

Daltonics, Vera 1.3); OpenMS TOPPView (http://open-ms.sourceforge.net, Vera 1.2) was 

used to crop the LCIMS image to m/z 200-1100 and RT 300-1800 s; files were imported 

into TOPPView in mzXML and exported as mzData files for processing with the XCMS 

package, vera 1.14.1, in R, vera 2.9.1 (9, 10, 87). Matched filter peak detection was used 

with the following parameters: sigma = 6, step = 0.25, mzdiff = 0.6. Peaks were grouped 

together across samples using fixed-interval overlapping mlz bins (rnzwid = 0.25) and 

calculation of smoothed peak distributions in chromatographic time using a Gaussian 

kernel density estimator (bw = 10). RTs were corrected for all samples simultaneously 

using loess regression to model nonlinear R T deviation contour profiles based on peak 

group median R Ts and deviations from the median. The corrected peak lists were re

grouped using a smaller Gaussian kernel (bw = 5), and samples with missing peak values 

within a group were filled in by integrating raw data in the peak group region using 
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corrected RT start and end points defined by the peak group medians. A matrix of peak 

area values with rows for every group, indexed by m/z and RT, and columns for every 

sample was generated. Samples with multiple peaks per group were resolved by 

choosing the peak closest to the median RT. XCMS does not provide a function for 

nonnalization, so this was performed manually by dividing each peak by the total area for 

each sample. 

To reduce the number of LC/MS peaks identified using the preprocessing steps 

above, we implemented two additional steps. First, we performed a recursive search of 

the peak list for mlz values we would expect to observe in TAGs resulting from 

combination~ of the most prominent F As observed in the FA profile analysis. The 

resulting peak list was reduced to 100 variables using minimum redundancy, maximum 

relevance (mRMR) feature selection algorithm with the mutual information difference 

scheme and a threshold of 1 to discretize data. The mRMR program selects the features 

that best discriminate among classes (maximum relevance) while reducing correlations 

among these features (minimum redundancy) (88, 89). 

All statistical procedures, classification, and data manipulation were performed 

using R, ver. 2.9.1 (87), and Microsoft Excel (2007). Multivariate analysis of variance 

using distance matrices was performed using the adonis function in the R vegan package, 

ver. 1.17-0 (90), to test for differences between seal oils and blubbers, and for differences 

among oils from five different biological sources (Cod, "Fish", Herring, Salmon, Seal). 

This procedure is analogous to a nonparametric MANOV A performed on a distance 
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matrix calculated from the raw FA profile data, where the ratio of the F -statistic is used to 

compare variability observed among samples from different biological sources versus 

within-source variability. This test is ideal for the statistical analysis of FA profile data, 

as it may be applied to non-independent multivariable data and can handle situations 

where the number of variables is large relative to the number of observations (91, 92). 

Variables with mean and median weight percent values below 0.5% were eliminated 

from the FA profile data prior to performing this analysis. The semi-metric Bray-Curtis 

distance measure was used to calculate a matrix of pairwise distances between samples 

(93). As it is possible to determine significant differences among groups that are due to 

differences in dispersion as opposed to differences in location, non-metric 

multidimensional scaling (nMDS) of Bray-Curtis distances was used to visualize 

multivariate patterns among observations. nMDS was performed using the R MASS 

package, ver. 7.2-49 (94). Hierarchical cluster analysis was performed on the distance 

matrix obtained from unsupervised random forest proximities (distance = 1 -

.Jproximity) as an exploratory technique to examine unsupervised groupings among the 

samples. 

The random forest (RF) algorithm (48) was used to classify oil samples to their 

biological source using FA and TAG profile data, separately. RF has been shown to be a 

highly accurate and stable classifier that performs well when variables are not 

independent (95), as is often the case with FA profile data, and specifically for MS data 

(49). RF classifiers were generated using the R randomForest package, ver. 4.5-34 (51), 
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using 5,000 decision trees. RF output provides the "out-of-bag" (OOB) error obtained by 

classifying samples which were not a part of the bootstrap data used to build a specific 

classification tree. This provides an unbiased estimate of the generalization error and 

eliminates the need for cross-validation (48). All RF classification results were checked 

against classification using the same sample data set with permuted group labels to assure 

that classification error was similar to what would be expected due to chance in the 

permuted model. Code for all procedures performed in R is available from the authors 

upon request. 

RESUL TS AND DISCUSSION 

TLC analysis revealed that sample quality was intact; all samples were composed 

primarily of TAGs with the exception of two fish oils (Fish-2 and Fish-8), which were 

ethyl esters. F A profile analysis allowed identification of 98 individual FAME peaks; 

with 24 FAMEs having mean and median values greater than or equal to 0.5% by weight 

for all samples (n=48). These 24 FAMEs accounted for 93.2 ± 0.20/0 (mean ± SE) of total 

FA weight and were retained for statistical analyses. Data are listed by group in Table 6; 

medians and ranges were reported due to the presence of outliers for many variables. 

Individual FAs varied within and among the different groups (Figure 14); such variability 

is not surprising in commercial marine oils, as fish are harvested from different locations 

and different methods may be used to render and process oils (96). Many of the oils in 

the generic "fish" class are mixtures of different species, e.g. menhaden, sardines and 

anchovies (Table 5). 
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Table 6. Grou~ median {range} FA weight ~ercent data for 24 FAMEs with overall mean or median> 0.5%. 
Cod liver oils Fish oils Herring oils Salmon oils Seal oils Harp seal 
(n=8} (n=12} (n=6} (n=8} (n=ll} blubbers (n=3} 

14:0 4.1 (3.1-5.6) 7.3 (0.1-9.7) 6.4 (4.3-6.8) 5.5 (3.8-7.1) 4.6 (4.3-4.7) 4.0 (3.3-4.2) 
16:0 11.7 (9.7-13.9) 16.1 (1.2-20.8) 10.0 (7.4-14.0) 13.7 (11.5-16.3) 8.0 (6.7-10.2) 5.3 (2.7-8.0) 
16:1n-9· 0.6 (0.2-0.7) 0.6 (0.1-0.8) 0.5 (0.3-0.6) 0.6 (0.5-0.7) 0.5 (0.5-0.6) 0.6 (0.5-0.7) 

16:1n-7 6.8 (3.9-9.8) 8.0 (0.5-11.4) 7.2 (6.8-10.7) 7.3 (4.6-8.5) 15.9 (12.6-16.9) 16.5 (10.6-19.3) 

16:2n-4 0.5 (0.3-0.8) 1.3 (0.1-1.5) 0.5 (0.4-0.6) 0.7 (0.3-1.2) 0.6 (0.4-0.6) 0.7 (0.4-0.8) 

16:3n-4 • 0.6 (0.4-1.1) 1.7 (0.1-2.5) 0.5 (0.5-0.6) 0.8 (0.3-1.8) 0.4 (0.3-0.5) 0.6 (0.5-0.6) 

16:4n-l 0.4 (0.3-1.1) 1.7 (0.1-2.7) 0.7 (0.5-0.9) 0.9 (0.3-2.5) 0.4 (0.3-0.5) 0.5 (0.2-0.6) 

18:0 2.3 (2.1-3.2) 3.1 (2.2-3.8) 0.9 (0.7-1.5) 2.7 (2.1-3.3) 1.1 (0.9-1.4) 0.7 (0.6-1.4) 

18: In-II 1.4 (0.5-2) 0.1 (0.0-0.2) 0.6 (0.4-0.8) 0.8 (0.1-1.6) 4.4 (3.2-4.6) 4.4 (2.8-5.5) 

18: In-9 15.0 (10.8-18.5) 8.2 (3.8-9.3) 7.6 (4.4-9.1) 12.9 (8.2-19.1) 16.0 (13.7-21.5) 15.5 (15.4-20.7) 

18: In-7 3.2 (2.4-4.9) 2.8 (1.2-3.3) 2.0 (1.6-2.7) 3.1 (2.5-5) 4.3 (4.0-4.4) 4.7 (3.4-4.9) 

18:2n-6 2.7 (1.5-21.5) 1.4 (0.7-1.9) 1.0 (0.6-2.2) 1.7 (1.3-3.2) 1.9 (1.5-2.1) 1.4 (1.3-1.5) 

18:3n-3 1.1 (0.6-3.2) 0.7 (0.3-1.7) 0.4 (0.2-1.4) 0.7(0.6-1.1) 0.6 (0.5-0.8) 0.4 (0.4-0.5) 

18:4n-3 2.2 (1.3-2.6) 2.6 (1.0-3.2) 1.6 (0.8-4.3) 2.1 (1.1-2.7) 1.5 (1.2-2.2) 0.9 (0.7-1.1) 

20:1n-ll • 1.2 (0.7-1.5) 0.2 (0.1-0.6) 1.3 (0.8-1.9) 0.9 (0.1-9.1) 2.3 (1.9-2.6) 2.3 (1.6-3.9) 

20:1n-9 7.4 (4.2-10.6) 1 (0.9-3.4) 16.3 (9.1-19.1) 3.7 (0.9-8.4) 9.0 (7.3-11.3) 8.7 (7.1-15) 

20:4n-6 0.5 (0.3-0.7) 1.1 (0.8-1.9) 0.2 (0.1-0.3) 0.6 (0.3-1.1) 0.4 (0.4-0.5) 0.4 (0.3-0.4) 

20:4n-3 0.9 (0.6-1.2) 0.9 (0.7-1.7) 0.4 (0.2-0.8) 0.9 (0.6-1.6) 0.5 (0.4-0.7) 0.3 (0.3-0.4) 

20:5n-3 (EPA) 9.0 (4.8-11.4) 17.3 (8.5-34.5) 4.8 (3.6-7.8) 9.9 (8.5-17.9) 6.7 (6.0-8.2) 4.2 (3.5-8.5) 

22:1n-l1 • 5.4 (3.8-9.3) 0.9 (0-3.4) 24.3 (12.3-33) 5 .0 (0.3-9.4) 2.1 (1.3-4.6) 3 .0 (1.9-3.9) 

22:1n-9 0.7 (0.5-0.9) 0.2 (0.1-0.8) 2.2 (0.9-3.5) 0.6 (0.0-1.1) 0.5 (0.3-0.9) 0.6 (0.5-1.1) 

21:5n-3 0.4 (0.3-0.6) 0.8 (0.5-2) 0.2 (0.0-0.4) 0.5 (0.3-0.8) 0.4 (0.4-0.5) 0.5 (0.3-0.6) 

22:5n-3 (DPA) 1.5 (1.2-3.0) 2 .0 (1.7-5.0) 0.6 (0.4-0.7) 2.4 (1.5-3.8) 4.0 (2.4-4.3) 5.3 (3.2-8.1) 

22:6n-3 (DHA) 10.1 (6.3-12.7) 11 (8.2-29.9) 2.7(1.9-9.4) 9.9 (5.6-14.9) 8.4 (7.5-9.7) 8.6 (7.1-9.8) 

Total 93.7 (92.6-95.3) 92.1 (87.5-93.9) 93.7 (93-94.5) 92.9 (91.4-93.7) 94.4 (94.0-94.9) 93.1 (93.0-93.8) 

• Indicates possible coelution with another FA. 
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Figure 14. FA profile data (Mean ± 95% CI) for 24 FA with mean or median > 0.5% 
(n=48). Note that seal oils represent combined data from extracted blubbers (n=3) and 
commercial oils (n= 11 ). 

Palmitic acid (16:0), oleic acid (18: In-9), EPA (20:5n-3), and DHA (22:6n-3) 

were the predominant FA among the cod liver, "fish" and salmon oils. Herring oils were 

also high in palmitic acid, but herring oil FA profiles had lower levels of EPA and DHA 

and very high levels of20- and 22-carbon monoenoic FAs (20: In-9 and 22: In-II). 

These long-chain monoenes were also high in some, but not all, cod liver and salmon 

oils. One cod liver oil (Cod-I) was notably different from the others within its group, 

with very high values for linoleic (18:2n-6, 21.5%) and linolenic (18:3n-3, 3.2%) acids. 
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The commercial seal oils and Harp seal blubbers were very similar to each other, with 

profiles dominated by high values for 16:1n-7 and 18:ln-9, and to a lesser extent 20:1n-9 

and 22:6n-3. Multivariate analysis of variance using distance matrices verified that these 

two groups were not significantly different (F=2.34, R2=0.1630, p=0.104), and could be 

combined into one group of seal oils (n=14). 

Multivariate analysis of variance using distance matrices revealed an overall 

significant difference among the five groups, and between the seal oils and each of the 

fish oil groups (Table 7). Non-metric multidimensional scaling using Bray-Curtis 

distances from FA profiles verified that differences were due to location and not 

dispersion (Figure 15). While a great deal of variability and overlap was observed among 

and within the different fish classes, the seal oils grouped together and clearly separated 

from the fish classes in the two-dimensional nMDS plot. One cod liver oil (Cod-I) 

separated from the others in its class, likely due to the higher levels of 18:2n-6 and 18:3n-

3 noted previously. Two "fish" oil samples (Fish-2 and Fish-8) separated from the other 

"fish" oils; these two samples were composed of ethyl esters rather than TAGs and had 

extremely high levels of EPA (>30%) and DHA (>20%). One herring oil (Herring-6) 

grouped with most of the cod liver and salmon oils; the other five herring oils grouped 

together and were separated from all other samples. The characteristics attributed to 

commercial seal oils, including high 16: In-7/16:0, high 18: In-II, and high 22:5n-3, were 

present in all of the seal oil and blubber samples and differed significantly from each of 

the fish oil groups in pairwise one-sided Wilcoxon tests (Table 8). 
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Table 7. Multivariate analysis of variance usin~ distance matrices for FA profile data. 
F R P 

Overall (5 classes) 21.17 0.6633 0.001 
Seal vs. Cod 20.18 0.5022 0.001 
Seal vs. "Fish" 
Seal vs. Herring 
Seal vs. Salmon 

39.49 
58.85 
28.72 

0.6220 
0.7658 
0.5895 

0.001 
0.001 
0.001 

Note: 24 FAs with mean or median weight % values> 0.5%. 

Table 8. P values from pairwise one-sided Wilcoxon tests. 
HA 16:1n-7/16:0 18:1n-ll 
Seal> Cod 3.13 x 10-6 7.56 x 10-5 

Seal> "Fish" 1.04 x 10-7 8.54 x 10-6 

Seal> Herring 2.58 x 10-5 3.07 X 10-4 
Seal> Salmon 3.13 x 10-6 7.56 X 10-5 
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Figure 15. Non-metric multidimensional scaling plot of Bray-Curtis distances from FA 
profile data (n=48). 
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Hierarchical cluster analysis of the FA profile data using unsupervised random 

forest proximities resulted in a primary split between seal oils and fish oils, and then split 

the fish oils into four overlapping groups containing "fish"/salmon, salmon/cod liver, 

salmon/cod Iiver/herring, and herring oils (Figure 16). Sample groupings were similar to 

those observed in the nMDS plot (Figure 15). A random forest classifier was used to 

classify the oil samples to their biological source using 24 FA with an out-of-bag error 

estimate of26.2% (Table 9). The algorithm was unable to classify the fish samples to 

their respective classes, likely due to the high variability observed within groups and 

similarity among the fish groups. The seal samples were classified with 0% class error 

and none of the fish samples were classified as seals, indicating that FA profile analysis 

may be used to identify seal oils for forensic purposes. 

Analysis of TAGs using RP-HPLC/APCI-MS was implemented as a secondary 

step to determine whether the oils were natural (non-synthetic) marine oils and to verify 

the results of the FA profile analysis. Because of the complex nature of marine oils, the 

actual TAG molecular species composition cannot be determined using available 

technologies (10); it is therefore extremely unlikely that a synthetic oil would meet the 

specifications of this analysis. Manual inspection of the LCIMS chromatograms and 

spectral data indicated that the oils were complex mixtures of TAGs. Preliminary 

processing of all samples simultaneously with XCMS resulted in 1886 peaks. It is 

important to note that many of these peaks are redundant, as each "peak" is defined by its 

(RT, m/z) coordinates in an image, as opposed to the two-dimensional peaks we use for 
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FA profile analysis that represent individual chemical components. One TAG molecular 

species may yield several highly correlated ions in this analysis (e.g. the protonated 

molecule and up to three DAG fragment ions and corresponding isotope peaks), and each 

is processed as a separate peak using XCMS. The peak list was first filtered by screening 

for only DAG ions and protonated molecules expected from TAGs resulting from 

combinations of the 24 FA selected in the FA profile analysis, and then using mRMR 

feature selection. The TAG screening step resulted in 669 peaks, and we used the first 24 

variables selected by the mRMR algorithm as inputs to the random forest, such that 

results could be compared with those from the classification using FA profile data. 
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Figure 16. Dendrogram and heatmap of cluster analysis from unsupervised random 
forest, FA profile data (n=42). 
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Table 9. Random forest classification results for FA 2rofile data. 

Actual 
Predicted 

Cod "Fish" Herring Salmon Seal Class error 
Cod 6 0 0 2 0 0.2500 
"Fish" 0 9 0 1 0 0.1000 
Herring 1 0 5 0 0 0.1667 

Salmon 5 2 0 1 0 0.8750 

Seal 0 0 0 0 10 0.0000 

Notes: OOB estimate of error rate: 26.19%. Weight % values for 24 F As with mean or 
median> 0.5%; n=42 (Fish-2 and -8, and Seal-7, -8, -9, and -10 were not included, see 
Table 5 for explanation). 

Table 10. Random forest classification results for TAG data. 

Actual 
Predicted 

Cod "Fish" Herring Salmon Seal Class error 
Cod 7 0 0 1 0 0.1250 
"Fish" 0 10 0 0 0 0.0000 

Herring 0 0 5 1 0 0.1667 

Salmon 3 2 0 3 0 0.6250 

Seal 0 0 0 0 10 0.0000 

Notes: OOB estimate of error rate: 16.67%. Normalized peak areas for 24 TAG peaks; 
n=42 (Fish-2 and -8, and Seal-7, -8, -9, and -10 were not included, see Table 5 for 
explanation). 

The random forest classified the oil samples to their biological source with an out-

of-bag error estimate of 16.7% (Table 10). As with the prior FA profile data, the random 

forest could not discriminate well among the fish samples, but seal samples were 

classified with 0% class error and there were no false positives, or samples classified 

incorrectly as seal oils. Multidimensional scaling plots of the random forest proximities 

for FA profile and TAG RP-HPLC/APCI-MS data are shown in Figure 17. The seal 

samples separate clearly from the fish groups, but as in the previous analyses, some 

overlap can be observed among the fish groups. It is noteworthy that the FA and TAG 

plots are nearly identical when Coordinate 2 is inverted on either plot; this indicates that 
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the underlying structure of the classifiers, as indicated by the sample proximities, is 

similar even though the data are based on different ·measurements. Both of the lipid 

profiling methods, FA by GCIFID and TAG using LC/MS may be used to successfully 

identify commercial seal oils. 
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Figure 17. Multidimensional scaling plots of random forest proximities for (A) FA 
profile data and (B) TAG RPHPLC/APCI-MS data. 

F A profiling methodologies are well-established and provide consistent data for 

relative quantitation of individual FA that may be identified using retention time and 

mass spectral data along with known standards for verification. Thus, a database of FA 

profile information may be stored and used for classification of unknown samples as 

needed. Due to the semi-quantitative nature of the TAG RP-HPLC/APCI-MS analysis, a 

set of standard oils must be analyzed with any unknown samples and a classifier must be 
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built from data obtained in real-time. As true amounts of individual TAG molecular 

species are unknown, the peak values cannot be verified and standards and samples 

should be analyzed together and in random order with gradient blanks run in between 

each data collection. 

It is important to note that this study is based on commercially available oil 

supplements that were purchased or obtained from academic and government institutions 

and private companies. The biological source for many samples was determined from 

information provided on the sample label. As many of the samples are not authentic 

forensic standards, it will be important to continue this research with appropriate fish and 

seal oil standards. The difficulty of obtaining authentic standards is a recurrent problem 

in wildlife forensics, and particularly when working with species like marine mammals 

that cannot be legally taken in the US. 

We propose a two-tiered analysis to accurately identify seal oil dietary 

supplements for forensic purposes. While FA profile analysis is sufficient to conclude 

that a suspect sample is consistent with seal oil, it does not eliminate the remote 

possibility of a synthetic oil mixture that was made to mimic the FA composition of seal 

oil. Natural marine oils comprise a mixture of TAGs that is considerably more complex 

than the FAMEs observed when the acyl chains are transesterified in FA profiling 

experiments. Moreover, the underlying structures and quantities of individual TAG 

molecular species in marine oils are not known. Thus, LCIMS of TAGs provides an 

additional analysis step that will reliably identify omega-3 dietary supplements that were 
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originally harvested from seals, and should be used to confinn any unknown samples that 

are identified as seal oils using FA profiling. Because seal products are illegal in the US 

and EU, this methodology may be useful for intemationallaw enforcement purposes. 

This research provides a solid foundation for the development and validation of a method 

to enforce existing laws prohibiting the possession of seal oil dietary supplements in the 

US andEU. 
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ABSTRACT 

Lipid profiles of diets and adipose tissue from mice fed milkfat- and lard-based high-fat 

diets were studied with the objective to determine whether differences exist between 

adipose tissue lipid profiles from mice on the different diets, and whether the profiles 

resemble those of the diets. Palmitate (16:0) and oleate (18:1n-9) were the most 

prominent fatty acids in feed and adipose tissue samples. Multivariable analysis based on 

eight fatty acids indicated significant differences between diets (p < 0.05) and adipose 

tissue sampled at eight and sixteen weeks from mice fed different diets (p < 0.005). The 

milkfat-based diet was higher in medium chain « 12 carbons) and saturated fatty acids 

and lower in unsaturated fatty acids than the lard-based diet. Overall trends observed in 

diet FA profiles were reflected in adipose tissue composition. Multivariable analysis 



based on twenty triacylglycerol species in adipose tissue sampled from mice fed different 

diets revealed differences between diet groups at both time points (p < 0.005), and we 

determined the structures oftriacylglycerol species that differed between groups. As 

differences in adipose tissue lipid composition may result in differential plasma fatty acid 

composition and ultimately affect the availability of specific fatty acids to peripheral 

tissues, high levels of saturated fatty acids in adipose tissue may result in a chronic 

disease phenotype. 

INTRODUCTION 

The increasing prevalence of obesity and obesity-related disease in humans worldwide 

has fueled much new research into the mechanisms by which obesity abets pathological 

outcomes. Rodent models of diet-induced obesity (010) have been demonstrated to be 

useful in the study of human disease, and particularly for the combination of insulin 

resistance, abnormal blood lipid levels, hypertension, and central obesity known 

collectively as the metabolic syndrome (MetS) (97-99). MetS is associated with an 

increased risk of type 2 diabetes and non-alcoholic fatty liver disease; the primary clinical 

outcome associated with MetS is morbidity and mortality due to atherosclerotic 

cardiovascular disease (CVO). As MetS risk factors are modifiable, dietary interventions 

are recommended for both prevention and treatment (100). 

The relationship between dietary fat, obesity, and human disease is well-

established, but recently the focus in human nutrition has shifted from the quantity of 

dietary fat to its quality (101). There is a general consensus that saturated and trans fatty 
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acids (SF As and TF As) increase disease risk, while monounsaturated and 

polyunsaturated fatty acids (MUFAs and PUFAs) have a protective effect on both CVD 

and type 2 diabetes (102, 103). Epidemiological studies, as well as recent laboratory 

studies using rodent models and cell cultures, have shed light on the diverse effects 

individual F As have on MetS risk factors, and specifically on the counteracting roles of 

SFAs and MUFAs in the development of insulin resistance (11, 102, 104-106). 

Elevated plasma lipids resulting from obesity lead to increased levels of ceramide 

and diacylglycerol (DAG) in liver, heart, pancreas, skeletal muscle, and adipose tissues. 

These bioactive lipid mediators mechanistically link dietary SF As to insulin resistance 

and other pathologies associated with the obese state (107). Hu et a1. (104) observed that 

the MUFA oleate (18:1n-9) attenuated ceramide production induced by the SFA 

palmitate (16:0). These two FAs differentially regulated dihydroceramide desaturase 1 

(DESl) at the mRNA level; up-regulation of DES 1 by palmitate may drive sphingolipid

modulated insulin resistance. Additionally, stearate (18:0), which differs in chain length 

from palmitate by only two carbons, had no effect on DES l, leading the researchers to 

conclude that individual F As function as discrete chemical species and can mediate 

distinct actions (104). As the fats ingested by humans and the rodents used to model 

human disease are primarily mixtures oftriacylglycerols (TAGs) that comprise a variety 

ofFAs differing in chain length and degree of un saturation, it is noteworthy that the 

composition of dietary fat may profoundly influence the results observed in scientific 

studies (103, 107). 

77 



Rodent DIO models have employed a variety of high-fat diets from animal and 

plant sources (e.g. lard, butter, milkfat, coconut fat, com oil, safflower oil) with relative 

fat ranging 20-60% of total energy; these diets have very different FA compositions and 

have led to considerable variability in reported results (99). Geng et al. (11) compared 

mice fed a novel milkfat-based diet (MD) with a more traditional lard-based diet (LD) 

and a low-fat, isocaloric control diet (CD). Mice fed the MD developed an obese, 

severely insulin-resistant phenotype compared to both LD and CD, but did not exhibit 

increased levels ofDAG or ceramide in muscle or liver tissues. Instead, the MD (and 

LD, to a lesser extent) promoted expression of the mammalian homolog of drosophila 

tribbles 3 (TRIB3), which binds to and prevents phosphorylation of PKB/ AKT in 

response to insulin (108). The authors demonstrated dose- and time-dependent 

differential expression of TRIB3 in response to different F As, reiterating the distinct 

actions of individual dietary F As. SF As (14:0 and 16:0), which were higher in the MD 

than LD, promoted expression ofTRIB3, and UFAs (18:1n-9 and 18:2n-6), which were 

lower in the MD than LD, attenuated SF A-induced TRIB3 expression. Postprandial 

plasma non-esterified FA (NEFA) composition in MD- and LD-fed mice was affected by 

diet. Thus, the dietary FA composition in rodent DIO studies may affect the phenotype 

observed and this may occur via different mechanisms. Over time, a high-SF A diet may 

affect the composition of fat storage depots and contribute to a chronic disease 

phenotype. 
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It is generally accepted that the relative availability and storage of F As in tissues 

depends on dietary FA composition (103, 109). A simplified model of the fate of dietary 

FAs is depicted in Figure 18. Dietary TAGs are digested by lipases, releasing FAs and 

monoacylglycerol (MAG). The digestion process differs for medium-chain vs. long

chain TAGs, as shown in Figure 19. FAs from medium-chain TAGs are shuttled to the 

liver via the portal vein, while those from long-chain TAGs (containing F As with > 12 

carbons) are reconstituted as TAGs and packaged in chylomicrons, entering the 

circulation via lymph after a meal (110, Ill). TAGs in postprandial plasma are delivered 

to adipose tissue, liver, and peripheral tissues, where lipoprotein lipase (LPL) facilitates 

transport of F As across the cell membrane. Within the cell, F As are used for energy or 

reconstituted as TAGs for storage. F A and TAG deposition in adipose tissue is selective 

and depends on the diet (112). When energy levels are low, e.g. fasting, TAGs are 

mobilized from adipose tissue stores; F As are released in three steps by desnutrin/adipose 

triglyceride lipase (ATGL), hormone-sensitive lipase (HSL) and monoglyceride lipase 

(MGL) (113). This process, termed lipolysis, is also selective and is based on substrate 

availability to lipolytic enzymes, which depends on the molecular polarity of TAG 

molecules within the lipid droplet (114). NEFAs cross the cell membrane and are bound 

to serum albumin for delivery to the liver and other tissues via the circulatory system 

(Figure 18). Thus, postprandial plasma F As reflect a recent meal, while F As in adipose 

tissue and fasting plasma are representative of F As in the diet over a longer period of 

time. The relationship between dietary, adipose tissue, and plasma FAs is further 
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complicated by the convergence of metabolic pathways; de novo FA biosynthesis of 

palmitate by the fatty acid synthase complex occurs when an excess of acetyl-CoA is 

present from the glycolytic pathway, e.g. dietary carbohydrates (115). Palmitate and 

dietary fatty acids may also undergo elongation and desaturation, as shown in Figure 20. 
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(Pl) 

deposition 
(lPl) 

tissue 

de novo FA 
biosynthesis 
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mobilization 
(ATGl, HSL, MGl) 
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Figure 18. Simplified model of the fate of dietary fatty acids. F As are released from 
dietary TAGs by lipases including pancreatic lipase (PL) during digestion, and 
reconstituted as TAGs and packaged in chylomicrons for circulation via lymph and 
plasma during the postprandial state. These TAGs are delivered to the adipose tissue, 
liver, and peripheral tissues, where lipoprotein lipase (LPL) facilitates breakdown for 
transport across the cell membrane. The F As are stored as TAGs in the form of a lipid 
droplet inside the adipocyte. During the fasting state, TAGs are mobilized from the 
adipose tissue and broken down into F As and glycerol by desnutrinladipose triglyceride 
lipase (ATGL), hormone-sensitive lipase (HSL) and monoglyceride lipase (MGL); the 
non-esterified F As are bound to serum albumin for delivery to the liver and other tissues 
via the circulatory system. 

Adipose tissue, once thought to be an inert storage depot for lipids, is now known 

to be a complex organ with endocrine and paracrine functions. Adipose tissue comprises 

adipocytes and other cell types that serve to maintain homeostasis. Adipocytes have a 

unique organelle, the lipid droplet, that stores FAs in the form of TAGs and can account 
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Figure 19. Schematic representation of the different paths of dietary medium-chain 
(MCT) and long-chain triacylglycerols (LCTs), adapted from Bach and Babayan (111). 
MCTs and LCTs are both hydrolyzed to release fatty acids (MCFAs and LCFAs) by 
pancreatic lipase in the lumen of the intestine. MCT hydrolysis is faster and more 
complete, and MCF As diffuse rapidly across the intestinal epithelium. MCTs are also 
absorbed as TAGs, and can undergo hydrolysis by an intestinal lipase within enterocytes. 
MCF As leave the intestine via the portal vein and are transported to the liver as non
esterified F As bound to serum albumin. LCTs must be hydrolyzed to LCF As and 
monoacylglycerols (MAG) and organized as micelles to cross the epithelium. A fatty 
acyl-CoA synthetase specific for FAs with 12 or more carbons converts LCFAs to fatty 
acyl-CoAs, and TAGs are resynthesized from fatty acyl-CoAs and digested MAGs. The 
TAGs are packaged in chylomicrons with dietary cholesterol and fat-soluble vitamins, 
which are then released into the lymph and then the blood for distribution to peripheral 
tissues for storage and! or energy. 
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for 95% of cell mass (116). Adipose tissue can be thought of as a buffer for the flux of 

plasma F As, both as chylomicron and lipoprotein TAGs and albumin-bound NEF As. As 

such, it suppresses the release ofNEFAs from adipocytes and increases TAG clearance 

from plasma during the postprandial state (117). The FA composition of adipose tissue 

reflects dietary FA composition over the long term, and thus influences the composition 

of depot F As available to tissues as plasma NEF As during low energy states. Release of 

FAs from adipose tissue is selective. More polar TAG molecular species comprise more 

polar F As, i.e. F As with fewer carbons and more double bonds; these molecules have 

better access to lipolytic enzymes and are thus more easily hydrolyzed (114). Because 

the composition of adipose tissue affects the release of F As into the bloodstream, it is 

important to consider TAG molecular species composition of adipose tissue in addition to 

the FA profile (112). 
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Figure 20. Mammalian fatty acid pathway, adapted from Cook (118). Palmitate (16:0) 
is the product of the de novo biosynthesis by the fatty acid synthase complex. Elongation 
and de saturation of dietary and biosynthetic palmitate are carried out by other enzyme 
systems. Elongase enzymes add 2 carbons to the acyl chain at the carbonyl end of the 
molecule; a specific A9-desaturase enzyme can add a double bond to form palmitoleate 
(16:1n-7) and oleate (18:1n-9) from palmitate and stearate (18:0), respectively. 
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Analysis of fatty acid methyl ester (FAME) derivatives is commonly performed 

using gas chromatography with flame ionization detection (GC/FID) to determine the FA 

profile, or the relative amounts of fatty acids, in a lipid extract. FAME peaks are 

identified using retention times (RTs) of known standards and mass spectral data (i.e. 

concurrent analysis by GC/MS). This well-established procedure is quantitative, and can 

be validated using standard mixtures or samples with known composition to assure data 

quality (5). TAG molecular species analysis using reversed-phase high performance 

liquid chromatography with atmospheric pressure chemical ionization mass spectrometry 

(RP-HPLC/APCI-MS) is a more recent analytical development, and can be used to obtain 

semi-quantitative TAG profile data (119). Using RP-HPLC, TAG molecular species 

elute depending on polarity, ordered by equivalent carbon number (ECN), which is 

approximately equal to the number of acyl carbons minus twice the number of carbon

carbon double bonds (C - 2· DB). TAGs with the same ECN are termed "critical pairs" 

and elute together (5). APCI-MS is a 'soft' ionization technique that produces relatively 

simple spectra from TAGs with base peaks consisting of either the protonated molecule, 

[M+H]+, or diacylglycerol ions, [M-RC02]+ or [DAG]+, that result from the loss of a FA 

moiety (120). The presence and intensity of the protonated molecule is related to the 

saturation of FA moieties attached to the glycerol backbone of the TAG molecule, with 

the [M+H]+ ion intensity increasing with the number of double bonds in the molecule. 

The protonated molecule may not be observed in TAGs with three saturated acyl chains 

(27). 
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RP-HPLC/APCI-MS allows for partial identification of the FAs (number of 

carbons and double bonds, e.g. 18:2) from individual TAGs in a mixture and also can 

provide information on the positions ofFAs on the glycerol backbone in the TAG 

molecule (27). RP-HPLC/APCI-MS data may be treated as a three-dimensional image 

(RT x mlz x intensity); raw instrument data must be subjected to preprocessing steps 

including peak detection, alignment, and normalization prior to statistical analysis (39). 

The metabolomics software program xcms (9) is a freely available tool that runs in the R 

statistical program (87) and combines matched filtration peak detection, nonlinear 

chromatographic alignment, and peak matching in one package. As xcrns identifies all 

peaks present in the samples, it is necessary to filter xcms output data specifically for 

TAG peaks. TAGs have an advantage over many other molecules in that their structures 

vary only by the FA moieties attached to the glycerol molecule. Knowledge of FA 

profile data for a sample or group of samples enables the prediction of all possible TAG 

molecules based on F As present. Knowing TAG molecular structure, we can make a list 

of [M+H]+ and [DAG]+ peaks that may be observed and recursively search the xcms 

output data for these specific peaks. We can use feature selection methods to search 

specifically for peaks that differ between sample groups, and return to the original RP

HPLC/APCI-MS data to identify the TAG molecules that these peaks represent. These 

processing steps have been combined as an integrated framework for the analysis of 

natural TAG mixtures using RP-HPLC/APCI-MS (Appendix), where raw data in the 
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form of mzXML, rnzData, or rnzML files undergo preprocessing with xcms, statistical 

analysis, and structure determination within the platform of the R statistical program (87). 

We examined lipid profiles of diets and adipose tissue from mice fed milkfat- and 

lard-based high-fat diets (MD and LD) and an isocaloric low-fat control diet (CD) at 

eight and sixteen weeks. The objectives of this study were to determine whether 

differences existed between adipose tissue lipid profiles from MD- and LD-fed mice, and 

whether the profiles resembled those of the diets. Theoretically, differences in adipose 

tissue lipid composition result in differential plasma FA composition and ultimately 

affect the availability of specific F As to peripheral tissues. High SF As in adipose tissue 

may result in a chronic disease phenotype. We know that the MD-fed mice are more 

obese and more insulin-resistant than LD-fed mice (11); and hypothesize that FA profiles 

of adipose tissue from these mice will reveal that MD-fed mice have higher palmitate 

(16:0) and lower oleate (18: 1 n-9), reflecting dietary FA composition. We used a targeted 

metabolomics approach, described in detail in the Appendix, to determine differences in 

adipose tissue TAGs from MD- and LD- fed mice by searching the RP-HPLC/APCI-MS 

data image for masses of interest and identifying specific features that differed between 

the diet groups. 

METHODS 

C57b1l6J male mice maintained on high-fat lard (LD), milkfat (MD), or isocaloric low-fat 

control diet (CD) for eight or sixteen weeks (11). Adipose tissue was harvested at eight-

and sixteen-week time points. To harvest adipose tissue, mice were euthanized with 
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isoflurane (Hospira, Inc., Lake Forest, IL) and cervical dislocation. Abdominal cavity 

was subsequently cut open, and epididymal white adipose tissue was then carefully 

separated by scissors from each mouse and immediately frozen in liquid nitrogen. All 

tissues were transferred to -80°C freezer for long-term storage. Animal protocols were 

reviewed and approved by the Institutional Animal Care and Use Committee of the 

Medical University of South Carolina and the VA Medical center in accordance with the 

Guide for the care and use of laboratory animals (NIH Publication No. 86-23, revised 

1996). Burdick and Jackson solvents (VWR, West Chester, PA) were HPLC-grade or the 

highest purity available, and were used without further purification. 

Lipid extraction 

Lipids were extracted from diets and adipose tissue samples in chloroform-methanol 

(2:1) using the method of Folch et al. (121). Diet pellets (2.4-3.9 g) were softened in 2 

mL water, then extracted in a volume of chloroform-methanol (2: 1, 25 mglL BHT) 20 

times the sample volume. Diet extracts were filtered and a volume of aqueous sodium 

chloride (0.73%) was added to achieve a ratio of chloroform-methanol-water of 8:4:3. 

After thorough mixing, diet extracts were stored at 4°C overnight to facilitate phase 

separation. The aqueous layer was removed and discarded. Frozen adipose tissue 

samples (~40 mg) were transferred to glass conical vials and 0.4 mL methanol and 0.8 

mL chloroform (containing 25 mg/L BHT) were added in sequence, topped with 

nitrogen, vortexed lOs and sonicated for 15 min, then left at room temperature for 24 

hours. Adipose extracts were again sonicated for 15 min and vortexed 10 s, then 0.29 mL 
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aqueous sodium chloride (0.73%) was added, then vortexed again and centrifuged 3 min 

at 1300 rpm to induce phase separation. The aqueous layer was removed and discarded. 

The adipose lipid in chloroform was dried with anhydrous sodium sulfate and allowed to 

settle for 15 min, then filtered. 

FA profile analysis 

Fatty acid methyl esters (FAMEs) were prepared according to Metcalfe et al. (122). 

Briefly, 25 mg of extracted lipid was dissolved in 1 mL hexane, to which 1.5 mL sodium 

hydroxide in methanol (0.5 N) were added. The samples were vortexed for 10 sand 

heated to 100°C for S- min, then cooled in a water bath. Two mL boron trifluoride in 

methanol (10%) were added, and samples were vortexed for 10 s, heated to 100°C for 20 

min, and cooled in a water bath. Addition of one mL hexane was followed by vortexing 

for lOs, and washing with basic saturated sodium chloride. Samples were centrifuged 3 

min at 1300 rpm and the hexane layer removed and diluted to approximately 0.7 mg/mL 

FAMEs in hexane for fatty acid profile analysis using gas chromatography with mass 

spectrometry (MS) and FID. FAMEs were analyzed on an Agilent 6890 gas 

chromatograph with splitless injection equipped with FID and a 5973 MS (Agilent 

Technologies, Inc., Palo Alto, CA). With the use of dual injection, each sample was 

simultaneously analyzed on two DB225-MS columns (50%-cyanopropylphenyl-50%-

methylpolysiloxane, 30 m x 0.25 mm, J&W Scientific Inc., Folsom, CA, USA). 

Separation was achieved with oven temperature programming as follows: 50°C held for 2 

min, ramped at 20°C/min to 150°C followed by a l°C/min ramp to 220°C. Mass spectra 
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were used to identify individual FAME peaks, in conjunction with comparison of 

retention times with those of known standards. Empirical correction factors determined 

from quantitative standards (GLC-85, 411, 566, and 617; NuChek Prep, Elysian, MN) 

were applied to integrated peak areas from the FID chromatogram and compositions 

reported as weight percent of fatty acids (85). Sample order was randomized prior to 

analysis. 

A combination of univariate and multivariable statistical methods were used to 

evaluate differences in FA profiles between the milkfat and lard diets and adipose tissue 

samples harvested from the MD- and LD-fed mice at eight and sixteen weeks. The eight 

most prominent F As in adipose tissue samples harvested from MD- and LD-fed mice 

were used for all statistical analyses. Univariate t-tests were used to evaluate the null 

hypothesis of no difference between MD and LD using a Bonferroni-adjusted Type I 

error rate to account for multiple tests «(l = 0.05/8 = 0.00625). A nonparametric 

permutational MANDV A was performed on the Bray-Curtis distance matrix using the 

adonis function in the R vegan package, ver. 1.17-0 (90). As it is possible to determine 

significant differences among groups that are due to differences in dispersion as opposed 

to differences in location, non-metric multidimensional scaling (NMMDS) of Bray-Curtis 

distances was used to visualize multivariate patterns among observations. All significant 

results from nonparametric permutational MANDV A tests were confirmed using 

NMMDS plots. NMMDS was performed using the R MASS package, ver. 7.2-49 (94). 

88 



Pattern similarities in FA composition between diet and adipose tissue from MD-, LD-, 

and CD-fed mice were calculated using the cosine similarity measure (123). 

TAG profile analysis 

Lipid extracts, composed primarily of TAGs, were analyzed on an Agilent 1100 

quaternary pump HPLC system and Agilent XCT ion trap MS equipped with APe! 

source (Agilent Technologies, Palo Alto, CA). Detector optimization was performed 

using trilinolein (NuChek Prep, Elysian, MN; 5 Jlg/mL in 2:1 acetone-acetonitrile). Lipid 

extracts were diluted to approximately 1 mg/mL in acetone-acetonitrile (2:1). TAGs 

were separated on a Restek Allure C18 column (5 Jlm, 250 x 2.1 mm, Restek 

Corporation, Bellefonte, PA) with a two-stepped linear gradient of acetone in acetonitrile 

at flow rate 0.6 mL/min. Solvents contained 0.1 % acetic acid to facilitate ionization. 

Acetone concentration was held at 20% for 1 min, stepped to 66% at 4 min and held for 

13.5 min, then stepped from 66% to 90% in 1 min and held at 90% until 45 min, adapted 

from Jakab et al. (4). Autosampler and column temperatures were 20°C and 35°C, 

respectively. The injection volume was 3 JlL. Direct infusion MS was performed in 

Ultrascan mode with the following parameters: APe! temperature, 350°C; vaporizer 

temperature, 500°C; corona current, 5000 nA; nitrogen sheath and auxiliary gas, 60 psi 

and 7 Llmin, respectively. Mass spectra were collected in positive ion mode from mass-

to-charge ratio (m/z) 100-1200 with a scan time of300 ms. Samples were analyzed in 

random order with a gradient blank run between each analysis to prevent systematic 

differences in LCIMS profiles over the time of the analysis and column contamination. 
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LCIMS data files were converted from the Bruker MS proprietary format to 

mzXML using CompassXport (Bruker Daltonics, Ver. 1.3); OpenMS TOPPView (10; 

http://open-ms.sourceforge.net, Ver. 1.2) was used to crop the LC/MS image to mlz 250-

900 and RT 300-1800 s; files were imported into TOPPView in mzXML (40) and 

exported as mzData files for processing with the xcrns package (9; Ver. 1.14.1) in R (87; 

Ver.2.9.1). Matched filter peak detection was used with the following parameters: sigma 

= 8, max = 25, step = 0.1, steps = 3, rnzdiff= 0.7. Peaks were grouped together across 

samples using fixed-interval overlapping mlz bins (mzwid = 0.25) and calculation of 

smoothed peak distributions in chromatographic time using a Gaussian kernel density 

estimator (bw = 10). RTs were corrected for all samples simultaneously using loess 

regression to model nonlinear RT deviation contour profiles based on peak group median 

RTs and deviations from the median. The corrected peak lists were re-grouped using a 

smaller Gaussian kernel (bw = 5), and samples with missing peak values within a group 

were filled in by integrating raw data in the peak group region using corrected R T start 

and end points defined by the peak group medians. A matrix of peak area values with 

rows for every group, indexed by m/z and R T, and columns for every sample was 

generated. Samples with multiple peaks per group were resolved by choosing the peak 

closest to the median RT. Xcms does not provide a function for normalization, so this 

was performed manually by dividing each peak by the total area for each sample. 

We implemented a targeted variable selection approach to identify relevant 

features in the xerns output, and then searched for peaks that differed between MD- and 
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LD-fed mice. Using our knowledge of the FA profiles of the adipose tissue samples, we 

used the most prominent F As to generate a list of TAG molecular species structures that 

were likely to be observed; F As are listed in Table 11. The expected ions from these 

structures were predicted and used to recursively search the xcms feature list for relevant 

peaks, or those likely to represent TAG analytes. Because the presence and intensity of 

the [M+H]+ ion depends on the degree of un saturation in the acyl chains of individual 

TAG molecules (27), we chose to limit our search to [DAG]+ ions. The resulting peak 

list was reduced to twenty variables by using q-values to rank features according to 

differences in integrated peak values between MD and LD groups. The q-value is based 

on the false discovery rate, and provides a measure of each variable's significance, 

accounting for the fact that many variables are being tested simultaneously. A low q-

value signifies a low probability that a feature was falsely deemed significant (45). The 

qvalue package in R was used to obtain q-values from p-values generated by individual t-

Table 11. FAs used for TAG screening. Note that we cannot differentiate among 
isomers because masses were used as search criteria. 
Common name Abbreviation C:DB ECN* 

Laurate La 12:0 12 
Myristate M 14:0 14 
Palmitate P 16:0 16 
Stearate S 18:0 18 

Palmitoleate 
Oleate 

Po 
o 

16: 1 
18: 1 

14 
16 

Linoleate L 18:2 14 

Linolenate Ln 18:3 12 

'EeN ~ C - 2·DB; TAG molecules elute by RP-HPLC in order of their molecular ECN 
values (the sum of three FA ECNs). 
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tests of the identified [DAG]+ ions. The twenty features with the lowest q-values were 

identified using R Ts and mass spectral data. All statistical procedures, data manipulation, 

and graphics were performed using R (87; Ver. 2.9.1) and Microsoft Excel (2007). 

RESULTS 

The FA composition of milkfat, lard, and control diets is listed in Table 12; our analysis 

revealed that the diet compositions were consistent with expected values (Harlan 

Laboratories, Madison, WI). Total SF As were higher in MD than LD samples; total 

MUFAs were higher in LD than MD samples (Table 12). The FA composition of 

adipose tissue harvested from MD-, LD-, and CD-fed mice at eight and sixteen weeks is 

listed in Table 13. Palmitate (16:0) and oleate (18:1n-9) were the most prominent FAs in 

all feed and adipose samples; linoleate was also very high in CD and LD samples. The 

following eight F As were present at > 1.0% by weight on average in adipose samples 

from MD- or LD-fed mice: 12:0, 14:0,16:0,18:0, 16:1n-7, 18:1n-9, 18:1n-7, and 18:2n-

6. These F As were used in all statistical analyses of the FA profile data. 

All eight F As differed significantly between milkfat and lard diets (Figure 21 A). 

Multivariable analysis using a nonparametric permutational MANDV A results indicated 

that the FA profiles differed significantly between the two diets (F = 29,324, R2 = 

0.99986, p = 0.035). Four F As differed significantly between adipose tissue samples 

from MD- and LD-fed mice at eight weeks (Figure 21 B), and seven FAs were 
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Table 12. Feed fatty acid profile data (mean ± SEM). 
FAME Control (n=3) Lard (n=3) Milkfat (n=3) 
Saturated and branched-chain saturated fatty acids (SF A) 
4:0 0.9±0.0 O.O±O.O 
6:0 0.8±O.0 O.O± 0.0 
8:0 0.4± 0.0 O.O±O.O 
10:0 1.0 ± 0.0 0.1 ± 0.0 
11:0 O.O± 0.0 O.O±O.O 
12:0 1.2 ± 0.0 0.1 ± 0.0 
13:0 O.O± 0.0 O.O±O.O 
iso 14:0 O.O± 0.0 O.O±O.O 
14:0 4.2± 0.0 1.3 ± 0.0 
iso 15:0 0.1 ± 0.0 O.O± 0.0 
anteiso 15:0 0.2 ±O.O O.O± 0.0 
15:0 0.5 ± 0.0 0.1 ± 0.0 
iso 16:0 0.1 ± 0.0 O.O± 0.0 
16:0 21.3 ± 0.0 22.3 ± 0.1 
iso 17:0 0.1 ± 0.0 O.O± 0.0 
anteiso 17:0 0.2 ±O.O O.O± 0.0 
17:0 0.4± 0.0 0.4± 0.0 
18:0 9.8 ±O.O 12.7 ± 0.1 
20:0 0.2 ±O.O 0.2± 0.0 
22:0 O.l ± 0.0 o.o± 0.0 
Monounsaturated fatty acids (MUF A) 
10:1 0.1 ± 0.0 0.0 ± 0.0 
12:1(1) 0.0 ± 0.0 0.0 ± 0.0 
12:1(2) 0.0 ± 0.0 0.0 ± 0.0 
14:1n-5 0.3 ± 0.0 0.0 ± 0.0 
16:1n-l0(9) 0.2 ± 0.0 0.3 ± 0.0 
16:1n-7 1.2 ± 0.0 1.8 ± 0.0 
17: 1n-8 0.2 ± 0.0 0.3 ± 0.0 
18:1n-9 27.0 ± 0.1 35.7 ± 0.1 
18:1n-7 1.7±0.0 2.3±0.0 
18:1n-6 0.2 ± 0.1 0.1 ± 0.0 
18:1n-5 0.1 ± 0.0 0.0 ± 0.0 
20:1n-13(11) 0.0 ± 0.0 0.0 ± 0.0 
20: 1 n-9 0.3 ± 0.0 0.7 ± 0.0 
Polyunsaturated/alty acids (PUFA) 
18:2n-6 23.3±0.1 19.3±0.1 
18:2 (conj) 0.2 ± 0.0 0.1 ± 0.0 
18:3n-3 2.9 ± 0.0 1.2 ± 0.0 
20:2n-6 0.2 ± 0.0 0.6 ± 0.0 
20:3n-6 0.1 ± 0.0 0.1 ± 0.0 
20:4n-6 0.1 ± 0.0 0.2 ± 0.0 
Sums and ratios 
1: SFA 
l:MUFA 
1: n-3 PUFA 
1: n-6 PUFA 
16:0/18:1n-9 
n-3/n-6 

41.7 ± 0.1 
31.5 ± 0.2 
2.9±O.0 
23.9 ± 0.1 
O.8±0.0 
0.1 ± 0.0 
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37.3 ± 0.2 
41.1 ± 0.1 
1.2 ± 0.0 
20.3 ± 0.1 
0.6±0.0 
0.1 ± 0.0 

2.4±0.0 
2.0±0.0 
1.2 ± 0.0 
2.7±0.0 
0.1 ± 0.0 
3.l ± 0.0 
0.1 ± 0.0 
0.1 ± 0.0 
9.9±0.0 
0.2±0.O 
0.4±0.0 
1.1 ± 0.0 
0.2± 0.0 
27.7 ± 0.1 
0.3 ± 0.0 
0.4± 0.0 
0.5 ± 0.0 
10.5 ± 0.0 
0.2± 0.0 
0.1 ± 0.0 

0.2 ± 0.0 
0.1 ± 0.0 
O.l ± 0.0 
0.8±0.0 
0.2±0.0 
1.2 ± 0.0 
0.2±0.0 
22.0 ± 0.1 
1.1 ± 0.0 
0.9 ± 0.4 
0.3 ± 0.0 
0.1 ± 0.0 
O.l ± 0.0 

7.6± 0.0 
0.5± 0.0 
1.1 ± 0.0 
O.O±O.O 
0.1 ± 0.0 
0.1 ± 0.0 

63.2 ± 0.2 
27.3 ± 0.3 
1.1 ± 0.0 
8.8±O.3 
1.3 ± 0.0 
0.1 ± 0.0 



Table 13. Adipose tissue fatty acid profile data (mean ± SEM). 
8 weeks 16 weeks 
Control Lard Milkfat Control Lard Milkfat 

FAME n=6 n=6 n=6 n=3 n=6 n=6 
Saturated and branched-chain saturated fatty acids (SF A) 
10:0 0.1 ± 0.0 o.o± 0.0 0.3 ± 0.0 0.1 ± 0.0 O.O±O.O 0.2±0.0 
12:0 0.4±0.0 0.1 ± 0.0 1.0 ± 0.0 0.3 ± 0.0 0.1 ± 0.0 0.9 ± 0.1 
14:0 2.0 ± 0.1 1.0±0.1 4.7 ± 0.1 2.2± 0.0 0.9 ±O.O 4.7 ± 0.3 
anteiso 15:0 0.1 ± 0.0 O.O± 0.0 0.1 ± 0.0 0.1 ± 0.0 O.O± 0.0 0.1 ± 0.0 
15:0 0.3 ± 0.0 0.1 ± 0.0 0.7± 0.0 0.3 ± 0.0 0.1 ± 0.0 0.8 ±O.O 
iso 16:0 0.2±0.0 0.1 ± 0.0 0.2±0.0 0.2 ± 0.0 0.1 ± 0.0 0.2 ±O.O 
16:0 18.6 ± 0.5 19.3 ± 0.7 21.1 ± 0.8 19.4 ± 0.5 18.9 ± 0.4 22.8 ± 0.5 
iso 17:0 0.1 ± 0.0 O.O± 0.0 0.2±0.0 0.1 ± 0.0 O.O± 0.0 0.2 ±O.O 
anteiso 17:0 0.1 ± 0.0 0.1 ± 0.0 0.2 ± 0.0 0.1 ± 0.0 O.O±O.O 0.3 ± 0.0 
17:0 0.2 ± 0.0 0.2± 0.0 0.3 ± 0.0 0.3 ± 0.0 0.3 ±O.O 0.3 ± 0.0 
iso 18:0 0.1 ± 0.0 O.O± 0.0 0.1 ± 0.0 0.1 ± 0.0 O.O± 0.0 0.1 ± 0.0 
18:0 2.8 ± 0.2 3.2±0.2 3.3 ± 0.2 2.6 ± 0.4 3.5 ±0.3 2.9 ± 0.1 
20:0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 
Monounsaturated fatty acids (MUF A) 
14:1n-5 0.2 ± 0.0 0.1 ± 0.0 0.4± 0.0 0.2± 0.0 O.O±O.O 0.5 ±O.O 
1~: In-l 0(9) 0.8 ± 0.1 0.7± 0.0 0.7± 0.0 0.9± 0.0 0.7 ±O.O 0.8 ± 0.1 
16:1n-7 6.1 ± 0.5 4.7±0.2 5.7± 0.5 6.8 ± 1.6 3.8 ± 0.4 6.6± 0.5 
17:1n-8 0.4 ± 0.0 0.4±0.0 0.5 ± 0.0 0.4± 0.0 0.4 ± 0.0 0.6±0.0 
18:1n-9 38.4 ± 0.6 45.2 ± 0.8 42.4 ± 1.3 40.9 ± 1.6 47.0 ± 0.6 42.6 ± 1.0 
18:1n-7 2.6 ± 0.1 2.4± 0.0 1.9 ± 0.0 3.0±0.2 2.5 ± 0.0 1.8 ± 0.1 
18:1n-5 0.2 ± 0.1 O.O± 0.0 0.6± 0.0 0.1 ± 0.0 O.O± 0.0 0.6±0.0 
19:1 0.1 ± 0.0 0.1 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.1 ± 0.0 O.2±0.0 
20:1n-9 0.8 ± 0.1 0.7 ± 0.0 0.5 ± 0.1 0.9±0.2 0.8 ± 0.1 0.4 ± 0.0 
Polyunsaturated fatty acids (PUF A) 
16:2 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 
18:2n-7 0.2 ± 0.1 0.1 ± 0.0 0.5 ± 0.0 0.2 ± 0.1 0.1 ± 0.0 0.5±0.0 
18:2n-6 22.7 ± 0.7 19.2 ± 0.5 11.6 ± 0.3 17.4±0.1 18.5 ± 0.3 9.7 ± 0.1 
18:2 (conj) 0.3 ± 0.1 0.2±0.0 1.0 ± 0.0 O.4± 0.0 0.1 ± 0.0 1.0 ± 0.0 
18:3n-3 1.1 ± 0.1 0.8 ± 0.0 0.6 ± 0.1 0.9 ± 0.1 0.6± 0.0 0.6± 0.0 
20:2n-6 0.2 ±O.O 0.3 ± 0.0 0.1 ± 0.0 0.2 ± 0.0 0.4±0.0 O.O± 0.0 
20:3n-6 0.2±0.0 0.2± 0.0 0.2 ± 0.0 0.2±0.0 0.2±0.0 0.1 ± 0.0 
20:4n-6 0.4 ± 0.1 0.3 ± 0.0 0.2±0.0 0.3 ± 0.0 0.3 ± 0.0 0.2±0.0 
22:5n-3 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 
22:6n-3 0.3 ± 0.0 0.2± 0.0 0.1 ± 0.0 0.2±0.0 0.2±0.0 0.1 ± 0.0 
Sums and ratios 
rSFA 25.0 ± 0.7 24.3 ± 0.9 32.5 ± 0.7 26.1 ± 0.3 24.0 ± 0.5 33.5 ± 0.7 
I MUFA 49.5 ± 0.2 54.2 ± 0.7 53.0 ± 1.0 53.7 ± 0.2 55.3 ± 0.5 54.1 ± 0.7 
In-3 PUFA 1.4 ± 0.1 1.1±0.1 0.9 ± 0.1 1.2 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 
In-6PUFA 23.5 ± 0.8 20.1 ± 0.5 12.1 ± 0.3 18.3 ± 0.1 19.5 ± 0.3 10.0 ± 0.1 
16:0/18: 1n-9 0.5 ±O.O 0.4± 0.0 0.5 ± 0.0 0.5 ±O.O 0.4±0.0 0.6± 0.0 
n-3In-6 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 O.O±O.O 0.1 ± 0.0 
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Figure 21. Profiles of major FAs in (A) milkfat (MD) and lard (LD) diets (n=3 per diet) 
and adipose tissue from mice fed milkfat (MD) and lard (LD) diets sampled at (B) 8 
weeks (n=6 per diet) and (C) 16 weeks (n=6 per diet). Means and actual data are shown; 
* indicates p < 0.00625. 
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significantly different at sixteen weeks (Figure 21 C). Nonparametric permutational 

MANOV A revealed that FA profiles of adipose samples differed between diet groups at 

both time points (8 weeks, F == 26.1, R2 == 0.72, P == 0.004; 16 weeks, F == 64.4, R2 == 0.85, 

p = 0.003). Differences in adipose tissue palmitate (16:0) and oleate (18:1n-9) between 

diet groups were observed at sixteen weeks, but not at eight weeks; this suggests a delay 

in the onset of effects. F A profiles did not differ between the eight- and sixteen-week 

time points, but linoleic acid (18:2n-6) decreased in MD-fed mice (p = 0.0003) and 

palmitoleic acid (16:1n-7) decreased in LD-fed mice (p == 0.0035) between eight and 

sixteen weeks. Pattern similarities in FA profiles between diet and adipose tissue 

samples were highest in LD samples, followed by CD and MD samples at both time 

points, as shown in Figure 22. Because mean values were used to calculate pattern 

similarities, statistical significance could not be assessed between the time points. 

1 - ----.. -
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Figure 22. Pattern similarities (123) in FA composition between diet and adipose tissue 
from mice fed milkfat (MD), lard (LD), and control (CD) diets at 8 and 16 weeks. Note: 
pattern similarities calculated using diet and AT means of 8 FA, cosine similarity 
measure. 
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(8-week) and 58 (16-week) features had q-values less than 0.01 (Table 14), indicating a 

probability less than 0.01 that these features were falsely deemed significant. 

Table 14. Peak counts and description for results of TAG RP-HPLCIAPCI-MS analysis 
ofMD- and LD-fed mouse AT sampled at 8 and 16 weeks. 

xcms peaks 

[DAG]+ ion peaks 

q-value < 0.01 

q-value < 0.001 

q-value < 0.0001 

8-week AT samples 

2285 

85 

56 

44 

28 

16-week AT samples 

2020 

80 

58 

47 

30 

Note: Data were processed using xcms to identify all peaks present, peaks were screened 
for specific [DAG]+ peaks based on all possible combinations of eight F As, and q-value 
ranks were used to select 20 peaks that differed between feed groups. 

We selected twenty features with the lowest q-values, separately for eight- and 

sixteen-week samples, for further analysis. Heatmaps and dendrograms illustrating 

hierarchical cluster analysis using all detected peaks, [DAG]+ peaks, and the twenty 

features selected using q-values are shown in Figure 23. The three feature sets clearly 

separate the samples based on feed groups for adipose tissue TAG data sampled at both 

time points; distances between samples from the different feed groups increase as we 

decrease the number of features used in the analysis. Nonparametric permutational 

MANOV A based on the twenty features selected at each time point revealed that TAG 

profiles of adipose samples differed between diet groups (8 weeks, F = 271.1, P = 0.002, 

R2 = 0.96; 16 weeks, F = 177.9, P = 0.003, R2 = 0.95). Multidimensional scaling of Bray-

Curtis distances of the twenty peaks selected at each time point clearly separated samples 

based on diet group in two dimensions for adipose tissue samples at both time points 

(F igure 24). 
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Figure 23. Heatmaps and dendrograms showing results of hierarchical cluster analysis 
(Euclidean distance of log values, complete linkage) of (A) 2285 TAG RP-HPLe/ APeI
MS features resulting from preprocessing 8-week AT samples with xcms, (B) 2020 
features identified similarly in 16-week samples, (e) 85 features resulting from screening 
xcms output for [DAG]+ ions in 8-week AT samples, (D) 80 features identified similarly 
in 16-week samples, (E) twenty features selected using q-value ranks in 8-week and (F) 
16-week AT samples. Nine features were identified in samples at both time points. 

99 



.. -\ 

l(') 

g -
o 

o Lard I 
A Milkfat 

o 
o 0 
o - 0 
q 0 

o 
I 

·0. 

I 

·02 

Str~ss = 0 007 

I , 1 

00 02 0 4 

Coordinate 1 

B 
Stre = 007 

o L rd 
~ Mllkfa 

Co 
".. 

0 
0 

~ 

<""4 
A 

~ 0 
c:: 0 

~ 0 
0 
0 

<.) 

..-
0 
q 

0 
~ 

0 

0 0 

q 

-03 -0.2 ·01 00 01 02 03 

Coordmate 1 

Figure 24. Multidimensional scaling of TAG data using Bray-Curtis distances for 
twenty TAG features selected using q-value ranks, adipose tissue sampled at (A) 8 weeks 
arid (B) 16 weeks. 

Automated TAG structure analysis was performed on the 20 selected features in 

eight- and sixteen-week samples using the algorithm described in the Appendix. TAG 

structures assigned to the features are listed in Table 15 (8-week) and Table 16 (16 

week). Nine features were common to data from both time points and TAG structure 

assignments were consistent for these peaks. Structures were not assigned for two 

features identified in the eight-week samples, and one in the sixteen-week samples. In 

the eight-week data, X467.4.885 eluted with OOL, and X495.5.1055 eluted with OLL; 

these TAG are present in large quantities and the ions observed for these components 

were much larger than any others in the spectra for the two features. The feature 

X517.6.712, identified in the sixteen-week samples was a low-intensity feature with 

co elution from multiple other TAG species leading to poor spectral interpretation for 
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structure detennination for this feature. Extracted ions for 20 features are presented in 

Figure 25 (8 weeks) and Figure 26 (16 weeks). 

Table 15. Twenty TAG features identified by q-value ranks in adipose tissue sampled 
from MD- and LD-fed mice at 8 weeks. Note: Diet indicates which diet group had higher 
relative amounts of each feature. 
Peak Feature RT/(s} mJz Ion EeN TAGID Diet 

1 X439.4.617 617 439.4 [LaLa] + 38 LLaLa MD 

2 X519.5.682 682 519.5 [LaL]+ 40 LLaL + LPoLa MD 
3* X493.4.692 692 493.4 [LaPo]+ 40 LPoLa MD 
4 X467.4.714 714 467.4 [LaM]+ 40 PoMLa MD 
5 X439.4.720 720 439.4 [LaLa] + 40 OLaLa MD 

6* X519.6.800 800 519.6 [LaL]+ 42 OLLa MD 
7* X521.6.804 804 521.6 [MPo]+ 42 LPoM MD 
8* X493.4.815 815 493.4 [LaPo]+ 42 OPoLa MD 
9 X495.5.833 833 495.5 [LaP]+ 42 LPLa + PPoLa MD 

10 X467.4.846 846 467.4 [LaM]+ 42 OMLa MD 
11 X493.4.849 849 493.4 [LaPo] + 42 PPoLa MD 
12 X467.4.885 885 467.4 [LaM]+ "NA" MD 

13 X599.6.937 937 599.6 [LL]+ 44 LPL LD 
14* X547.6.945 945 547e6 [PoPo]+ 44 OPoPo MD 
15* X521.6.962 962 521.6 [MPo]+ 44 OPoM MD 
16 X495.5.1004 1004 495.5 [LaP]+ 44 OPLa MD 
17 X495.5.1055 1055 495.5 [LaP]+, "NA" MD 

[MM]+ 

18· X601.6.1138 1138 601.6 [OL]+ 46 OLP LD 
19* X549.6.1156 1156 549.6 [PPo]+ 46 OPPo MD 
20· X523.6.1213 1213 523.6 [MP]+ 46 OPM MD 
• Peaks included in top twenty features identified by q-value ranks in adipose tissue 
sampled at both 8 and 16 weeks. 
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Figure 25. Extracted ion chromatograms for twenty TAG features selected using q-value 
ranks, adipose tissue sampled at 8 weeks from mice fed lard- and milkfat-based high fat 
diets. Integrated areas, used for quantitation, are shown with a darkened line. 
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Table 16. Twenty TAG features identified by q-value ranks in adipose tissue sampled 
from MD- and LD-fed mice at 16 weeks. Note: Diet indicates which diet group had 
higher relative amounts of each feature. 
Peak Feature RT/(s) mlz Ion ECN TAGID Diet 

1· X493.4.692 692 493.4 [LaPo]+ 40 LPoLa MD 
2 X517.6.712 712 517.6 [LaLn]+ "NA" MD 
3 X545.6.781 781 545.6 [MLn]+ 40 LLnM MD 

4* X519.5.799 799 519.5 [LaL]+ 42 OLLa MD 
5* X521.6.804 804 521.6 [MPo]+ 42 LPoM MD 
6 X545.6.810 810 545.6 [MLn]+ 42 OLnM MD 
7* X493.4.813 813 493.4 + 42 OPoLa MD [LaPo] 
8 X519.5.832 832 519.5 [LaL]+ 42 LPLa MD 

9 X599.6.899 899 599.6 [LL]+ 44 OLL LD 
10* X547.6.942 942 547.6 [PoPo]+ 44 OPoPo MD 
11 X549.6.948 948 549.6 [PPo]+ 44 LPPo MD 
12* X521.6.962 962 521.6 [MPo]+ 44 OPoM MD 
13 X521.6.1006 1006 521.6 [LaO]+ 44 OPLa MD 

14 X60 1.6.1 087 1087 601.6 [OL]+ 46 OLO LD 
15 X603 .6.1 088 1088 603.6 [00]+ 46 OLO,OPoO LD 
16* X601.6.1137 1137 601.6 [OL]+ 46 OLP LD 
17* X549.6.1155 1155 549.6 [PPo]+ 46 OPPo MD 
18* X523.6.1212 1212 523.6 [MP]+ 46 OPM MD 
19 X549.6.1214 1214 549.6 [MO]+ 46 OPM MD 

20 X601.6.1283 1283 601.6 [OL]+ 48 SOL LD 
• Peaks included in top twenty features identified by q-value ranks in adipose tissue 
sampled at both 8 and 16 weeks. 
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Figure 26. Extracted ion chromatograms for twenty TAG features selected using q-value 
ranks, adipose tissue sampled at 16 weeks from mice fed lard- and milkfat-based high fat 
diets. Integrated areas, used for quantitation, are shown with a darkened line. 
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DISCUSSION 

Rodent DIO models allow researchers to study MetS and related diseases, including type 

2 diabetes and CVD, in a controlled laboratory setting using animals with relatively few 

genetic variations. The amount and type of dietary fat used in such studies often has an 

effect on the results observed (99). The MD used in our study was higher in SF As and 

lower in UFAs than the LD (Table 12, Figure 21 A). MCFAs were also found at higher 

levels in the MD than LD. Trends observed in FA profiles of the diets were similarly 

observed in post-prandial plasma (11) and adipose tissue sampled at eight and sixteen 

weeks from MD- and LD-fed mice (Table 13, Figure 21 B-C). These results indicate that 

the different diets determine plasma and adipose tissue FA profiles, to some extent, as 

expected. A simplified model for the fate of dietary F As (Figure 18) illustrates that 

dietary F As enter the circulatory system in the postprandial state, then are either 

distributed to the liver and/or peripheral tissues or deposited as TAGs in adipose tissue; 

our data support this model. While substantial amounts of MCFAs (4:0,6:0,8:0 and 10:0 

> 1.0%, Table 12) were measured in the MD, these FAs were not present in measurable 

amounts in adipose tissue ofMD-fed mice (except 10:0, 0.2%, Table 13). This supports 

the proposed different pathways taken by dietary MCTs and LCTs during digestion 

(Figure 19); it is likely that these MCF As are sent directly to the liver. MCF As are 

rapidly oxidized by the liver and have a very low tendency to deposit in AT (111). 

Because adipose tissue TAGs are mobilized during low energy states, releasing F As that 

are circulated to the liver and peripheral tissues via plasma (Figure 18), changes in 
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adipose tissue FA profiles may have long-term implications on an organism's overall 

health. 

Palmitate (16:0) is the major end-product of de novo FA biosynthesis, but various 

elongation and desaturation steps convert 16:0 to 18:0, 16: In-7, 18: In-9, and 18: In-7 

(Figure 20). These processes may affect FA composition in plasma and adipose tissue 

(Figure 18). Regulation of FA biosynthesis and related steps may control the amounts of 

these F As under specific conditions, and perhaps in response to dietary FA composition. 

While all eight F As differed significantly between MD and LD (Figure 21 A), only four 

(12 :0, 14 :0, 18: 1 n-7, and 18 :2n-6) were different in eight-week adipose tissue samples 

(Figure 21 B), and seven (all except 18:0) in sixteen-week adipose tissue samples (Figure 

21 C). The four F As that did not differ between MD- and LD-fed mouse adipose tissue 

sampled at eight weeks were all F As that could be synthesized via the de novo pathway 

(Figure 20). It is likely that the relative amounts of these F As in plasma and adipose 

tissue are only partially dependent on diet, and are controlled metabolically. Any 

difference in adipose tissue levels of these F As due to diet may have been offset by de 

novo FA biosynthesis and related pathways to maintain homeostatic control over TAG 

and FA composition. Further research will be necessary to determine whether, and how 

much, relative amounts of these biosynthetic F As in adipose tissue can be influenced by 

diet. 

Lipolysis, when FAs are released from adipose tissue TAGs into the bloodstream, 

is a selective process and depends on the polarity of individual TAG molecules (114). As 
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the more polar TAGs (i.e. having lower ECN values, or eluting more quickly from the 

non-polar column during RP-HPLC) have better access to lipolytic enzymes, F As from 

these TAG molecules are preferentially released during a state of low energy and may be 

more available to tissues. Perona et al. suggested that TAG molecular species 

composition should be considered in addition to FA composition. We used a 

metabolomics approach to identify twenty TAG molecules that differed between adipose 

tissue sampled from MD- and LD-fed mice at eight and sixteen weeks. We used eight 

FAs, with ECN values from 12 to 18, to generate a list of possible TAG molecules used 

to search RP-HPLC/APCI-MS data for [DAG]+ peaks. EeN values of these TAGs 

ranged from 36 to 54, but actual peaks that differed in adipose tissue from animals in 

different feed groups had ECN values between 38 and 48. Based on the relative amounts 

of twenty TAGs, we found significant differences between TAG profiles from the 

different diet groups at both time points. Of the twenty TAG features selected from data 

at each time point, nine were identified in both data sets. While these data show clear 

differences between relative amounts of TAG molecules in MD- and LD-fed mice 

(Figure 25, Figure 26), how these differences translate to an effect on overall health is not 

clear. 

Hu and colleagues recently revealed a mechanism whereby palmitate specifically 

drives sphingolipid-mediated insulin resistance via up-regulation of DES 1, and 

demonstrated that oleate attenuated palmitate-induced overexpression of DES 1, 

preventing an increase in cellular ceramide levels (104). Inconsistencies in results 
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between cell culture studies, using the direct addition of palmitate, and rodent 010 

models seeking to demonstrate a role for ceramide in insulin resistance had been noted 

previously with the suggestion that mechanisms for insulin resistance may depend on the 

relative amounts ofFAs available to cells (107). Geng et al. found that MD-fed mice 

were more obese and more insulin resistant compared to LD-fed mice, though ceramide 

levels were similar, and identified a separate mechanism for insulin resistance 

(expression ofTRIB3) that was promoted by SFAs and attenuated by UFAs (11). The 

higher SF As and lower UF As observed in adipose tissue from MD-fed mice may 

promote a chronic disease state resulting from constitutively high levels of enzymes such 

as DES! and TRIB3. As dietary fats are mixtures of TAGs comprised ofa variety of 

F As, we can make changes in our diets that change the F As available to cells and tissues 

and ultimately regulate metabolic processes that detennine health and disease. This new 

mechanistic understanding of the effects of dietary fats on our health may provide insight 

for the prevention, control and treatment of MetS and obesity-related disease. 

In conclusion, we detennined that differences observed in FA profiles between 

milkfat- and lard-based high fat diets do result in differences in adipose tissue FA and 

TAG profiles in C57bl/6J adult male mice fed these diets. Greater obesity and more 

severe insulin resistance observed in MD-fed mice may result from higher relative 

amounts of SF As in the diet. Future research should address other possible mechanisms 

for SF A-induced insulin resistance, and how such mechanisms are modulated by the 

mixtures of TAGs that make up dietary fat as opposed to individual F As. Also, can 
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subtle changes in adipose tissue composition influence an individual's propensity for 

disease? Specifically, why does the MD incite severe insulin resistance compared with 

the LD? This diet differs from the LD both in relative amounts of SF AIMUF A and also 

MCFAs. High-energy MCFAs are not deposited in AT, but are sent directly to the liver 

for immediate metabolism and serve as a quick energy source that is likely necessary for 

the young mammals for which it is intended. Milk is the only known food that is created 

in nature for no other reason except to be used for fuel-it is typically used to sustain 

young mammals and is necessary for their growth and viability. Further research should 

address the mechanism by which the MD induces MetS symptoms and work to determine 

whether an MD-induced disease state results from changes in adipose tissue, and 

therefore the relative quantities of specific F As available to tissues, or a possible burden 

placed on the liver in metabolizing MCF As. 
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SUMMARY AND CONCLUSIONS 

This project began, as most do, with a simple scientific question. Having worked with 

FA profiles for some time, we wanted to explore whether TAG analyses by RP

HPLC/APCI-MS could yield similar, or even better, information for classification of 

marine samples for forensic purposes. RP-HPLC/APCI-MS has shown great promise in 

the analysis of plant oil TAGs (1, 2,4), and we wanted to apply similar data processing 

methods to the analysis of marine oils, which are a great deal more complex in terms of 

FA and TAG composition. As it was not possible to separate individual TAG 

components in complex mixtures such as marine oils using current chromatographic 

capabilities (5), we had to explore other options for processing data from these samples. 

We found that bottom-up profiling experiments common to proteomics, where 

complex mixtures of digested peptides isolated from blood or tissue are routinely 

analyzed using LC/MS, had similar complexity to TAG mixtures in extracted marine oils. 

A signal-based processing methodology was typically employed with these data as 

opposed to the more traditional peak detection, identification, and quantification steps 

that we were accustomed to in processing FA profile data. Data were treated as a two

dimensional signal matrix or image, as shown in Figure 4 (p. 16), and established 

methods in signal processing, statistics, and machine learning were used to find patterns 



characteristic of a particular sample or class of samples (32). Data undergo a series of 

preprocessing steps to assure consistency across experiments, and much effort has been 

focused on this goal in proteomics and metabolomics research, and the underlying and 

supporting discipline ofbioinformatics (32-36). 

We set out first to verify that metabolomics data processing tools such as xcms 

and MZmine would work similarly to the manual data processing procedures that we 

were familiar with, and that we could achieve similar classification performance with 

data produced by these tools. We successfully implemented data processing using the 

xcms package in the R statistical environment, and results were comparable with manual 

processing. This process is described in Paper 1: Computational methods for the 

differential profiling of plant oils. We then focused on our original aim to classify marine 

oils to their biological source, specifically to determine whether marine oil dietary 

supplements contained oils harvested from seals versus fish. We found that TAG RP

HPLC/ APCI-MS data classified marine oils to their biological source with accuracies 

similar to those observed using FA profile data. TAG data were processed with xcms and 

we employed both targeted and non-targeted feature selection, based on TAG species that 

may be present for a known set of F As in the samples and differences between groups. 

This research is presented in Paper 2: Forensic identification of seal oils using lipid 

profiles and statistical models. 

Classification is a relatively easy task compared with difference detection and 

high-level biomarker discovery, so we moved our focus to these tasks to address 
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questions related to observed differences in the health of mice fed different high-fat diets 

in a diet-induced obesity study. We obtained adipose tissue from mice fed lard- and 

milkfat-based high-fat diets for eight and sixteen weeks. As with the marine oils, we 

analyzed both FA and TAG profiles and used FA composition to determine a list of 

targeted features to filter from the xcms output. Difference detection (q-values) based on 

the null hypothesis of no difference between diet groups was used to identify a list of 

features for which to determine TAG structures. TAG structures were identified for nine 

features that were common to data from both time points. Paper 3: Differential profiling 

of adipose tissue triacylglycerols in mice fed milkfat- and lard-based high-fat diets 

describes this research. 

During analysis of these data, we developed an automated tool in the R computing 

environment that combined xcrns preprocessing, statistical analysis and difference 

detection techniques, and TAG structure identification (i.e. the numbers of carbons and 

double bonds in F As attached to glycerol). As many of the steps involved in processing 

TAG data were common to the three experiments described above, a set of R functions 

was written to facilitate high-throughput processing of TAG RP-HPLC/APCI-MS data. 

Raw data stored in mzXML, mzData, or mzML formats are processed using a series of 

steps that ultimately lead to classification and! or difference detection with automated 

identification of TAG structures for selected features. TAG structures were identified by 

evaluating the relationships between [DAG]+ and [M+H]+ ions observed in APCI mass 

spectra according to Cvacka et a1. (125), and a score was devised for individual TAG 
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structures that evaluated multiple correlations among ions related to a particular TAG 

structure over the retention time window of the peak. A full description of this process is 

provided in the Appendix. 

The processing of raw instrument data as opposed to determining quantitative 

values of molecular species is necessary in order to differentiate among complex 

mixtures of compounds, as observed for peptide digests and complex mixtures of TAGs. 

A limitation of this approach is the ability to determine true compositional data. We can 

only address classification and difference detection, when the ultimate goal is often to 

characterize the chemical composition of a sample. One limitation of this approach is that 

the use of raw data limits the analyst to comparison of samples analyzed on one 

instrument. Quantitative values for TAG composition would be necessary to compare sets 

of data among different studies. 

Throughout these studies, we sought to address the challenges associated with 

TAG RP-HPLC/APCI-MS analysis using cross-disciplinary methods, and to develop a 

high-throughput data processing and analysis pipeline for these data that can be used to 

address biological questions related to the TAG composition of storage fats in plants and 

animals. The automated framework developed here integrates data processing, statistical 

analysis, and structure determination of the FA chain structures of individual TAG 

species. While manual processing may be feasible for the analysis of TAGs in plant oils, 

a high-throughput methodology is essential for more complicated projects such as 

differential profiling of TAGs in animal tissues. LCIMS data processing has begun a 
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migration from proprietary instrument vendor software to open-source packages such as 

xems that work on data stored in universal formats (e.g. mzXML, rnzML, mzData), and 

tools for high-level data analysis must be developed that work with the data produced 

from these packages. We have developed one such tool that is specific to the analysis of 

TAGs using RP-HPLC/APCI-MS, and we envision expanding this tool to a general lipids 

analysis pipeline universal to all lipid classes composed of F As analyzed using both 

GCIMS and LCIMS. 

This study has opened the door to greater possibilities in the analysis of lipids 

using LCIMS and, as is often the case in scientific research, more questions related to 

what we can learn from these analyses. The first extensive characterization of menhaden 

oil TAGs was published in March 2012 (124). In this study, researchers used reversed 

phase ultra-high pressure liquid chromatography with atmospheric pressure chemical 

ionization-ion trap-time of flight mass spectrometry (RP-UHPLC/APCI-IT-TOF) with 

four serially coupled shell-packed octadecylsilyl columns (60cm total length) to separate 

137 TAGs containing nineteen different FAs in 224 min. The data were processed 

manually, which is a very time-consuming and analyst-intensive process. We plan to 

apply the data processing methodology described here (see Appendix) to cheek TAG 

structure identifications in these data. This will be the first automated characterization of 

TAGs in a marine oil. 

The mouse adipose tissue study revealed differences in FAs and TAGs in storage 

fats of mice fed lard- and milkfat-based high fat diets, which may be associated with 
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higher insulin resistance and greater obesity observed in the milkfat-fed mice. An 

alternative hypothesis is that higher levels of medium chain TAGs (containing FAs with 

fewer than twelve carbons) present in the milkfat-based diet are placing a burden on the 

liver that could also contribute to the milkfat-associated disease state. We will analyze 

FA and TAG profiles of liver samples from these mice to provide insight into the 

mechanism of obesity-related disease. 

Additional future research will include the comparison of the TAG structure score 

discussed here with scoring algorithms for similar programs and adaptation of the 

algorithm for the analysis of other lipid classes containing F As (e.g. phosphoglycero

lipids, wax and sterol esters, sphingolipids). Another goal will be to interface with 

tandem MS (MSn) methods that are possible using ion trap MS. The xcms program has 

already established the capability for processing tandem MS data to provide structural 

information from unknown metabolites (125). We may be able to use RP-HPLCIAPCI

MSn analyses to confirm structure assignments and to determine TAG structures of 

multiple coeluting TAG species. Lastly, obtaining qualitative and quantitative data for 

the complete characterization of TAGs present in a fat or oil sample is the ultimate goal 

in these types of studies, and we will continue to work toward resolving the challenges 

associated with this process. 
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MS-PREPROCESSING, STATISTICAL ANALYSIS AND AUTOMATED 
STRUCTURE DETERMINATION 
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(NOAA), 219 Fort Johnson Road, Charleston, SC 29412. 
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ABSTRACT 

We present an integrated framework for the processing, statistical analysis, and structure 

detennination of triacylglycerols (TAGs) occurring in natural oils and fats analyzed using 

reversed-phase high performance liquid chromatography with atmospheric pressure 

chemical ionization mass spectrometry (RP-HPLC/APCI-MS). This methodology 

combines the existing metabolomic preprocessing platform xcms with higher-level 

processing steps that include screening specifically for peaks resulting from TAGs, 

classification and/or difference detection, and determination of the fatty acyl chain 

structures of individual TAG molecules based on the observed masses of diacylglycerol 

fragment ions and molecular adducts. Suggested TAG structures are evaluated with a 



correlation-based score that reflects whether structure-associated peaks are concurrently 

eluting over the retention-time course. 

INTRODUCTION 

Many useful tools have been developed in recent years for global metabolomic 

applications using gas and liquid chromatography with mass spectrometric detection 

(GCIMS and LCIMS). Several of these are freely available under a GNU General Public 

License [e.g. MZmine, MZmine 2, xcms, OpenMS (8-10, 126)], and allow users to 

process data from any LC/MS system via the conversion of proprietary instrument output 

files to open-source mzXML, mzData, or mzML formats (40, 127). All of these tools 

aim to treat these data as an image, as shown in Figure 4 (p. 16), and use signal 

processing, statistics, and machine learning methods to find patterns that are 

characteristic of a particular sample or class of samples (32). LCIMS data must undergo 

peak detection, chromatographic alignment, and normalization steps to assure 

consistency across experiments. 

While automated data processing tools have been demonstrated to be useful in the 

analysis of lipids (64, 128, 129), in many cases lipids have specific structural advantages 

that global metabolomic tools do not exploit. For example, all triacylglycerol (TAG) 

molecules comprise glycerol bound to three fatty acyl (FA) groups via ester linkages. 

The F As vary in chain length and number of double bonds, and we may determine the FA 

composition of a mixture of triacylglycerols using well-established fatty acid profiling 

methodologies such as gas chromatography of fatty acid methyl ester derivatives (5). We 
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can use FA compositional information to predict the possible TAG structures present in a 

sample, i.e. a list of known TAG molecules defined by the number of carbons and double 

bonds in the three FA chains, and search LC/MS data from extracted lipid samples (e.g. 

plasma, tissues, and natural oils and fats) for peaks (ions) specific to these molecules. 

This targeted approach yields a list of the peak intensities representing selected TAG 

molecules, and differs from the non-targeted approach common in global metabolomics 

experiments (130,131). Yetukuri and colleagues employed such a structure-based 

informatics strategy to facilitate the globallipidomic analysis of ob/ob and wild type 

mouse livers by using combinations of structural variants, i.e. FA chains and polar head 

groups, to determine theoretically possible lipid structures (129). However, in this study 

and others (64, 128), actual identification of lipid FA substitutions is achieved only by 

performing additional experiments using tandem MS. 

RP-HPLC/APCI-MS is a popular technique for the analysis of mixtures of 

triacylglycerols found in natural oils and fats (2, 27, 30, 52, 56, 132, 133). TAG 

molecular species are separated by RP-HPLC and elute in order of their equivalent 

carbon number (ECN), which is approximately equal to the number of FA carbon atoms 

minus two times the number of carbon-carbon double bonds (ECN ~ C - 2·DB). As 

TAG species elute from the HPLC, relatively simple spectra are produced via APCI-MS 

with base peaks consisting of either the protonated molecule, [M+H]+, or diacylglycerol 

ions, [DAG]+ or [M-RC02]+, that result from the loss ofa FA moiety (27,56). These 

ions, together with HPLC retention time (RT) information, allow identification of the 
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number of carbons and double bonds in the F As attached to glycerol in each TAG 

species. The intensity of the protonated molecule depends on the degree of un saturation 

of the FA moieties, with the relative abundance of the [M+H]+ ion increasing with the 

number of double bonds in the molecule, and may be absent in some fully saturated 

TAGs (27). 

RP-HPLC/APCI-MS experiments generate an abundance of data that can be 

overwhelming to an analyst looking at multiple samples or aiming to compare differences 

between groups or classes of samples. These data have traditionally been processed 

manually (1, 2, 4, 133), and reported results may be oversimplified due to the selective 

nature of the analysis and the limited capacity of the chromatographic system to separate 

. individual TAG molecular species (5). We present here an integrated framework for the 

processing and statistical analysis of TAG RP-HPLC/APCI-MS data that combines the 

existing metabolomic preprocessing platform xcms with higher-level processing steps 

that include screening for specific [DAG]+ and [M+H]+ ions, classification and/or 

difference detection, and determination of the FA chain structures (number of carbons 

and double bonds) of individual TAG molecules based on observed ion masses. A score 

is calculated for each proposed structure based on the multiple correlation of the primary 

peak (identified by xcms) with other ions we would expect to observe for a partiCUlar 

TAG structure across the RT window of peak integration. 
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Sample files 
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or ".mzML} 
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4. Group peaks 
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Generate li st of [DAG]-, 

[M +Hr- ions for poss ible TAGs 

Classification 

Classification 

Classification 

Plot spectrum with 
labeled peaks 

(m/zvs. Intensity) 

[DAG),," f ragm ents [M +H]- fragments 
(CN,06 j 

Calculate score(s); 
Suggest TAG 
structures; 

Plot primary peak 
with ove rlaid 

supporting ions 
(RTvs. Intensity) 

Spectrum not interpreted ~-c ~"--""~ Primary peak present? 

no 

Spectrum not interpreted 

Figure 27. Data processing workflow. 
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PROGRAM DESCRIPTION 

The data processing workflow described here is shown in Figure 27; this process takes a 

set of raw data files through a series of processing steps to identify relevant TAG features 

that differ among sample classes and to determine possible TAG structures that these 

features represent. The process may be used in its entirety as a data processing pipeline 

for TAG RP-HPLC/APCI-MS data, or steps may be selected and applied individually to 

solve specific problems related to these data. 

We rely on the well-established methodology ofxcms (9) for preprocessing raw 

RP-HPLC/APCI-MS data converted from proprietary instrument output files to mzXML, 

mzData, or mzML formats; tools for file conversion are provided by most instrument 

vendors. Xcms has been reviewed (34, 36) and used to process data in several published 

metabolomics studies (62, 63, 128); results from xcrns processing are comparable with 

similar tools including MZmine (65). Preprocessing steps in xcms include peak 

detection, grouping, chromatographic alignment, and peak filling that allow the analyst to 

set data-specific processing parameters. The product of xcms preprocessing is a list of 

peak areas corresponding to specific mlz and R T indices for each sample; xcrns output is 

in the form ofa matrix of samples (rows) x features (columns) with each feature labeled 

using the notation X[m/z].[RT]. 

One TAG molecule may yield several highly correlated ions in this analysis (e.g. 

a protonated molecule and up to three DAG fragment ions and corresponding isotope 

peaks), and each is a separate peak in xcms. Thus, many of the identified features are 
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redundant, i.e. several features represent one TAG molecule. When we plot a spectrum 

over a specific RT window for peak X [m/z]. [RT] , as in Figure 28, the spectrum will 

contain [DAG]+ and [M+H]+ ion peaks for the for each of the TAGs that elute during the 

RT window; we refer to the specific mlz value from X[m/z].[RT] as the primary peak. 

We will exploit redundancies in the data to determine the TAG structure that likely 

represents the primary peak and assign a score based on the correlations among peaks 

representing a specific TAG structure. Xcms does not provide a function for 

normalization, so we divide each peak by the total area for each sample to eliminate 

differences in peak intensities due to the amount of sample injected on the HPLC. 

Most metabolomics tools, including xcms, employ a non-targeted strategy (130) 

to detect all peaks in a RP-HPLC/APCI-MS image. For a targeted analysis of TAGs, we 

want to select peaks from this list that represent TAG molecules, i.e. [DAG]+ and 

[M+H]+ ions. Ifwe know which FAs are present in a specific sample or group of 

samples, we can predict the TAG structures that may be present and also the [DAG]+ and 

[M+H]+ ions that may be observed. We can implement a recursive search of the detected 

features to screen for mlz values we would expect to observe in TAGs resulting from 

combinations of specific F As. This will eliminate most peaks that do not represent TAG 

molecules, i.e. noise and artefacts or contaminants. This list contains peak areas for 

relevant features, or peaks that represent TAG molecules, indexed by mlz and RT indices 

for each sample. 
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We use difference detection techniques to identify peaks that differ between 

classes of samples, e.g. plant oils from different biological sources or lipids extracted 

from plasma or tissues in diseased vs. healthy subjects (39). Difference detection can be 

an endpoint to our statistical data analysis, e.g. biomarker detection, or can be used to 

select a subset of features that best discriminate among sample classes. We use q-values 

calculated from p-values resulting from t-tests or ANOVAs (Ho: no difference 

between/among sample classes) to select a list of features of using a criterion based either 

on the desired number of features or a threshold q-value. The purpose of using q-values 

is to identify as many features that differ among sample classes as possible while 

incurring the lowest proportion of false positives. The q-value provides a measure of 

each feature's significance while accounting for the fact that many variables are being 

tested simultaneously (45, 46). Each feature is evaluated independently, thus redundant 

features may be included in this list of relevant features that differ among sample classes. 

At this point, we have narrowed the original xcms output to relevant (TAG) 

features that differ among sample classes, and we can further examine these features by 

looking at each selected feature independently for each sample analyzed. Original peak 

data for each feature identified in each sample may be obtained by accessing the original 

xcmsSet() class variable created using xcms during preprocessing. We can generate an 

xcmsRaw() class for each individual sample to access raw data observed during the RT 

window of each identified feature. The MassSpec Wavelet package may be used to detect 

spectrum peaks and plot spectra across the specified RT window (134). These spectrum 
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ions can then be used to determine which possible TAG structures are eluting during the 

RTwindow. 
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Figure 28. Spectrum for feature X881.9.847 identified in soybean oil sample S-OOl. 
Spectral peaks detected using MassSpecWavelet are marked with red circles; labeled 
peaks with cyan-filled circles are detected peaks that represent [DAG]+ or [M+H]+ ions 
associated with possible TAG structures. 

We use an algorithm based on the TriglyAPCI program developed by Cvacka and 

colleagues (135) for the automated interpretation of TAG APCI mass spectra. The 

algorithm characterizes F As, and also TAGs, by the number of FA carbons and double 

bonds and determines relations among ions in the spectra using these two parameters. 

The following equations define the relationship between the masses of [DAG]+ fragment 

ions and [M+H]+ molecular adducts in terms of the number of FA carbons (CN) and 

double bonds (DB). 
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When these equations are satisfied simultaneously by the ions in a spectrum, we can 

calculate the number of carbon atoms and double bonds in the individual FA groups to 

obtain the associated TAG structure using the following equations: 

As we are only interested in TAG structures that generate the primary peak, we consider 

only structures that produce this peak in their spectra. We then calculate a correlation-

based score using the multiple regression model, 

where Y is the primary peak (mlz value) and X1[,2,3j are the other ions present for a 

particular TAG structure. We use the adjusted R2 value calculated from the multiple 

regression model as the TAG structure score: 

R~ = 1 - n-l (1 - R2), 
n-m-l 
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where n is the number of observations and m is the number of independent variables in 

the multiple regression model. While R2 increases when independent variables are added 

to the model, R~ increases only when an added variable results in improved model fit 

(136). Thus, the adjusted R2 value is a measure of the model fit that may be used to 

compare models with different numbers of parameters. An output file containing 

suggested TAG structure(s), with score value(s) and supporting [M+H]+ and [DAG]+ ions 

specific to each structure, is generated for each feature for each sample (Figure 29), along 

with diagnostic plots of the mass spectrum observed during the R T window of peak 

integration (Figure 28) and RT vs. intensity for the primary feature (mlz) with overlaid 

plots each of the ions that support suggested TAG structures for that ion (Figure 30). For 

the feature X881.9.847, identified in soybean oil sample 8-001, the TAG structure score 

is the adjusted R2 value for the regression model 

mz881.9 = Po + Pl(mzS99.7) + P2(mz601.6). 
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File: S-OOl 

tagSpecID output for peak X881.9.847 
m/z 881.9 
RT: 847 s 
Results suggest 1 likely TAG structure(s) 
Suggested TAG structure(s): 

FA1 FA2 FA3 ECN score 
OLL 18:1 18:2 18:2 44 0.6037 

DAG fragment ions: 
mz C DB 
599.736 4 
601.6 36 3 

M+H adduct ions: 
mz C DB 

881.9 54 5 

Int 
175903319.4 
318898212.1 

Int 
96792659.8 

--- OLL ---------------------------------------

FAs: 18:1 18:2 18:2 
C:DB 54:5 
ECN: 44 
Elemental composition: 
Score = 0.6037 
Molecular adduct: 
M+H 881.8 

C (57) H (100) 0 (6) 

DAG fragment ions (loss of acyl group) : 
18:1 18:2 18:2 
599.5 601.6 601.6 

Figure 29. Text file output for TAG structure identification for peak X881.9.847 detected 
in soybean oil sample 8-001. 
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Figure 30. Extracted ion chromatograms for peaks supporting structure identification for 
feature X881.9.847 detected in sample S-OOl. The primary peak (m/z 881.9) is shown in 
solid black, and structure-associated ions are overlaid with dotted lines as indicated in the 
legend. The grey vertical lines indicate the RT region over which feature X881.9.847 
was detected using matched filter peak detection in xcms. 

RESUL TS AND DISCUSSION 

We tested this methodology on two sets of data. In the first example, we analyzed five 

soybean oils with the aim of identifying major TAG components. As soybean oil TAGs 

are relatively well-characterized, we can check our TAG structure prediction results 

against structure assignments from the literature. The second example addresses a 

differential profiling problem, where we aim to determine the TAGs that differ in adipose 

tissue samples from mice fed two different high-fat diets in a diet-induced obesity study. 

We used xcms, ver. 1.14.1, in R, ver. 2.9.1 (9,10,87) for the preprocessing of these data. 
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Xcms functions used for preprocessing, and parameters that differed from the default 

settings, are listed in Table 17 and Table 18. 

Table 17. Xcms functions and associated parameters for preprocessing soybean oils. 
Function Parameters 
xcmsSet sigma=6.5, max=25, steps=5 
group bw=10 
rete or missing=O, extra=O 
group bw=5 
fillPeaks 
groupval method='medret' value='into' , 

Table 18. Xcms functions and associated parameters for preprocessing mouse AT lipids. 
Function Parameters 
xcmsSet sigma=8, max=25, steps=3, mzdiff 0.7 
group bw=10 
retcor 

bw=5 group 
fillPeaks 
groupval method='medret', value='into' 

We detected 899 features in the soybean oils (n=5) using xcms, and screened these data 

for [DAG]+ and [M+H]+ peaks that would be observed for all possible TAG structures 

containing the most prominent FAs in soybean oil, 16:0 (P), 18:0 (S), 18: 1 (0), 18:2 (L), 

and 18:3 (Ln), to get a list of 77 relevant features. We then applied the structure 

identification algorithm to these 77 features and compared results among the five samples 

and with TAGs identified in soybean oil from the literature (4, 66). TAG structures for 

41 features were consistently assigned in all five soybean oils. Due to data redundancies, 

i.e. multiple ions related to one TAG species, these features accounted for 23 TAG 

species. The total ion chromatogram for soybean oil S-OOI with identified TAG species 

labeled is shown in Figure 31 ; TAG structures and scores are listed in Table 19. 
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Figure 31. Total ion chromatogram for soybean oil S-OOI with peak labels 
corresponding to the 23 TAG species identified in all five soybean oils. Note: P == 
palmitate (16:0), S == stearate (18 :0), 0 == oleate (18:1), L == linoleate (18:2), and Ln == 
linolenate (18:3). 
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Table 19. TAG structure assignments for features identified in soybean oils. 
Feature RT m/z Structure EeN Score 

iii 
Reference( s} 

X595.7.505 505 595.7 LnLnLn 36 0.93 ± 0.03 

X597.6.561 561 597.6 LLnLn 38 0.92 ± 0.02 (66) 

X599.6.630 630 599.6 LLnL 40 0.85 ± 0.04 (66) 
X877.8.658 658 877.8 LLnL 40 0.92 ± 0.01 (4, 66) 
X851.9.659 659 851.9 LnPLnt 40 0.82 ± 0.04 (66) 
X573.7.660 660 573.7 LnPLnt 40 0.86 ± 0.02 (66) 
X595.6.660 660 595.6 LnPLnt 40 0.87 ± 0.03 (66) 

X879.9.717 717 879.9 LLL 42 0.70 ± 0.09 (4, 66) 
X599.6.718 718 599.6 LLL 42 0.69 ± 0.08 (66) 
X601.6.732 732 601.6 OLLn 42 0.75 ± 0.06 (66) 
X575.7.756 756 575.7 LLnP 42 0.90 ± 0.02 (4, 66) 
X597.7.757 757 597.7 LLnP 42 0.85 ± 0.05 (66) 

X601.6.847 847 601.6 aLL 44 0.73 ± 0.07 (66) 
X881.9.847 847 881.9 aLL 44 0.62 ± 0.05 (4, 66) 
X575.7.880 880 575.7 LPL 44 0.79 ± 0.02 (66) 
X599.6.880 880 599.6 LPL 44 0.71 ± 0.04 (66) 
X855.9.881 881 855.9 LPL 44 0.59 ± 0.05 (4, 66) 
X573.7.936 936 573.7 Lnppt 44 0.73 ± 0.04 (66) 
X829.8.936 936 829.8 LnPpt 44 0.46 ± 0.08 (66) 

X603.5.1021 1021 603.5 aLa 46 0.73 ± 0.09 (4, 66) 
X883.9.1021 1021 883.9 OLO 46 0.28 ± 0.10 (66) 
X603.6.1054 1054 603.6 SLL 46 0.61 ± 0.04 (66) 
X857.9.1064 1064 857.9 OLP 46 0.38 ± 0.07 (66) 
X601.7.1065 1065 601.7 OLP 46 0.79 ± 0.05 (66) 
X577.7.1066 1066 577.7 aLP 46 0.85 ± 0.04 (4, 66) 
X831.8.1112 1112 831.8 LPP 46 0.06 ± 0.06 (66) 
X551.6.1113 1113 551.6 LPP 46 0.65 ± 0.12 (4, 66) 
X575.6.1113 1113 575.6 LPP 46 0.66 ± 0.12 (66) 

X603.6.1246 1246 603.6 SOL 48 0.31 ± 0.11 (4,66) 
X885.9.1254 1254 885.9 SOL 48 0.61 ± 0.13 (66) 
X605.6.1255 1255 605.6 SOL 48 0.89 ± 0.06 (66) 
X577.7.1262 1262 577.7 OPO 48 0.34 ± 0.11 (4,66) 
X859.9.1262 1262 859.9 OPO 48 0.38 ± 0.08 (66) 
X579.7.1274 1274 579.7 SLP 48 0.93 ± 0.01 (66) 
X833.8.1280 1280 833.8 oppt 48 0.18 ± 0.10 (66) 
X577.6.1281 1281 577.6 oppt 48 0.88 ± 0.06 (4, 66) 

X887.9.1327 1327 887.9 soot 50 0.36 ± 0.15 (66) 
X605.6.1329 1329 605.6 soot 50 0.80 ± 0.15 (4, 66) 
X607.6.1337 1337 607.6 SLS 50 0.21 ± 0.05 (66) 
X579.7.1345 1345 579.7 SOP 50 0.95 ± 0.01 (66) 

X607.6.1414 1414 607.6 SOS 52 0.90 ± 0.01 (66} 
• Mean± SD. 
t Observed at relative amount < 1 % (66). 
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The determined TAG structure assignments were compared with two literature 

references (4, 66) to evaluate the success of the algorithm. All twelve peaks (indexed by 

RT, mJz) used for classification of plant oils by Jakab et al. (4) were detected using xcms 

preprocessing, and structure assignments were consistent with the manual assignments in 

the reference. Of the 24 TAG species observed at relative amounts > 1.0% by Lisa, et al. 

(66), we identified 20 and our structure assignments were consistent with those in the 

reference. We identified one peak (X595.7.505, identified as LnLnLn) that was not 

identified in either of the references, and we were able to identify several TAG species 

that were present at relative amounts < 1 % (LnPLn, LnPP, OPP, and SOO; 66). We 

suggest that automated data processing and TAG structure identification may be used to 

achieve results similar to those in the plant oils literature, and that such an automated 

method may have particular utility for classification problems, e.g. identification and/or 

authentication of plant oils. 

In our second example, we used a differential profiling methodology to determine 

LCIMS peaks (indexed by RT, m/z) that differ in adipose tissue samples from mice fed 

two different high-fat diets, containing lard (LD, n=6) and milkfat (MD, n=6), for eight 

weeks (11). The aim of this example was to determine which TAG species differ in 

adipose tissue from mice fed the different diets. We detected 2285 features in these 

samples using xcms, and screened these data for [DAG]+ peaks that would be observed 

for all possible TAG structures containing the most prominent F As observed in the 

adipose tissue and feed samples, 12:0 (La), 14:0 (M), 16:0 (P), 18:0 (S), 16:1 (Po), 18:1 
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(0), 18:2 (L), and 18:3 (Ln), to get a list of85 relevant features. We used q-values (45, 

46) to rank features according to differences between groups and selected the 20 "most 

different" features; q-values were obtained from the p-values associated with t-tests for 

differences in individual variables in animals fed the two different diets (i.e. Ho: LD = 

MD) using the qvalue package in R (ver. 1.26.0). We then applied the structure 

identification algorithm to these 20 features to determine the TAG structures associated 

with peaks that differed between adipose tissue sampled from LD- and MD-fed mice. 

We determined the TAG structures for 18 of the 20 features; extracted ion 

chromatograms for all 20 peaks are shown in Figure 32. All structure assignments were 

verified manually by examining the files produced by the TAG structure identification 

algorithm. We determined that the two peaks that could not be identified, X467.4.885 

and X495.5.1055, both labeled with "NA," were minor components coeluting with OLL 

and OOL, respectively. Spectra for these features are shown in Figure 33, and it is 

obvious that ions resulting from elution ofOLL (m/z 599.6,601.6, and 881.8) and OOL 

(m/z 601.6, 603.6, and 883.8) dominate the respective spectra. Also, the highest-scoring 

TAG structures for peaks X493.4.815 and X493.4.849 did not appear to be correct 

assignments, based on the associated ECN values. As the ECN determines the order of 

elution for TAGs using RP-HPLC, ECN values should increase with retention times. We 

noted that the highest scoring structure for peak X493.4.815 was LPoLa, with EeN = 40, 

and that this structure was also assigned to a peak with the same m/z value that eluted 

earlier, X493.4.692. Examination of the output file showed OPoLa as the TAG structure 

133 



I'---X-4-39-.4-.6-17--·--·--.I;-~' 

I 

I I 
I 

I 

I I 

Uala 10(,; 

r-___ ---.---... - --_ ..... _ ... _ ... 

X467.4.835 
"NA" * 

... 

,----_._ .. _ .................... - ................. . 

X495 .5.833 
LPla (LO) 
PPola (MO) 

I Olla , 
I 

I 

I --=--
f..-----· 

OPoPo 

I I 

~ ~'39~4J20'---" 
.~ 1 Olala 
~ I 
~ '1 

1 lPola 

, .. 
. ! j 

.~ -t 

~ I X495.5.1004 I 
:' ; OPla 

XS21.6.804 
LPorl.o1 

X549.6.1156 

h 
I 

J 

i OPPo (, 

.... J:> 

"'" 

,- " 

~--··-----·~-.. ----·-··---~--------'--·-I 
X467.4.714 

,-' PoMla 

~ , 

~ r X"4'9"i'4:S"iS _ .... 
OPola t 

~ .. 

~ i X495.5.1055 
!: "NA" * 

1: X521.6.962 
~ 

, OPoM 

. ! 
,v 
..:c' 

_ •• IJ 
>It 

; i 

Iw. _ _ .. ~ e"' ....... I11 ... _.~ ..... "'" 

r r X599. 6. 937 ----.-.. __ .. ---_.--, 

% . LPl 

f ~ OMla 

~ rX493.4]i49·" ... -... 
< ! PPola t 
i ~ 

..,. i 

: j 
.: i 

",il 

X519.5.68l ~ 
llal-lPola I 

X5l3.6 1213 

OPM V: 

r --- ~ 

...... 1>! 
~~! 

--. 
Figure 32. Extracted ion chromatograms for 20 "most different" TAG features identified 
in adipose tissue samples from MD- and LD-fed mice. * "NA" peak structures could not 
be determined due to coelution with very prominent TAGs, OLL and OOL. t TAG 
structure assignments were not structures with highest score. 
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Figure 33. Mass spectra for MD sample AC-4-8227, peaks X467.4.885 and 
X495.5.1055. Spectra show coelution of multiple TAG species, with large amounts of 
(A) OLL (m/z 599.6,601.6,881.8) and (B) OOL (m/z 601.6,603.6,883.8). 
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with the next highest score and correct ECN (42) for this component. The same process 

was used to identify PPoLa as the structure for peak X493.4.849. TAG structures for 

peak X495.5.833 differed by diet group; this peak was identified as LPLa in LD-fed mice 

and PPoLa in MD-fed mice, though both TAG species may be coeluting in samples from 

both groups. Peak X519.5.682 appeared to be a mixture ofLLaL and LPoLa, with the 

latter dominating in the MD-fed mice. As we can see from this interpretation, these data 

are extremely complex. In animal samples, such as the adipose tissue examined here, it is 

likely that many TAG species are coeluting, and we observe this directly as multiple 

[M+H]+ ions in the spectra (Figure 33). In this case, the TAG structure assigned to most 

of the identified peaks is simply the most prevalent of the several TAG species that are 

present. Plant oils typically have cleaner spectra that are easier to interpret (Figure 28); 

this is likely due to the fact that plants biosynthesize all of their TAGs, while animals also 

obtain TAGs (asFAs) from the diet. 

The data generated by RP-HPLC/APCI-MS experiments are often overwhelming 

to researchers analyzing multiple samples or examining differences between groups or 

classes of samples. While manual data processing may be feasible for studies of plant oil 

TAG composition or for relatively simple classification tasks (1, 2, 4, 133), an automated 

framework that integrates data processing, statistical analysis, and structure determination 

of the FA chain structures of individual TAG species is necessary for more complicated 

projects such as differential profiling experiments. As LC/MS data processing migrates 

from proprietary software to open-source packages such as xcms that work on data stored 
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in universal formats (e.g. mzXML, mzML, rnzData), tools for high-level data analysis 

must be developed that work with the data produced from these packages. The integrated 

framework for the analysis of natural mixtures of TAGs presented here is one such tool. 

We have combined preprocessing in xcrns with subsequent steps for normalization to 

total area, optional targeted screening for [DAG]+ and [M+H]+ ions observed in TAG 

structures that may be determined from FA compositional data, difference detection 

and/or feature selection using q-values (R qvalue package), and structural determination 

of FA using an automated structure determination algorithm (135) combined with the 

MassSpecWavelet package in R. We use multiple correlations of the primary peak (mlz) 

intensity values with structure-supporting ions to assign a score to the identified TAG 

structure( s). Data are formatted for classification tasks at several points during the 

analysis workflow (Figure 27). This package was written in R and is available from the 

corresponding author upon request. 
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