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Abstract 

JESSE BREEDLOVE. Echoes of Vision: Mental Imagery in the Human Brain. (Under 

the direction of THOMAS NASELARIS).  

When you picture the face of a friend or imagine your dream house, you are using the 

same parts of your brain that you use to see. How does the same system manage to both 

accurately analyze the world around it and synthesize visual experiences without any 

external input at all? We approach this question and others by extending the well-

established theory that the human visual system embodies a probabilistic generative 

model of the visual world. That is, just as visual features co-occur with one another in the 

real world with a certain probability (the feature “tree” has a high probability of occurring 

with the feature “green”), so do the patterns of activity that encode those features in the 

brain. With such a joint probability distribution at its disposal, the brain can not only infer 

the cause of a given activity pattern on the retina (vision), but can also generate the 

probable visual consequence of an assumed or remembered cause (imagery). 

The formulation of this model predicts that the encoding of imagined stimuli in low-

level visual areas resemble the encoding of seen stimuli in higher areas. To test this 

prediction we developed imagery encoding models—a novel tool that reveals how the 

features of imagined stimuli are encoded in brain activity. We estimated imagery 

encoding models from brain activity measured while subjects imagined complex visual 

stimuli, and then compared these to visual encoding models estimated from a matched 

viewing experiment. 
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Consistent with our proposal, imagery encoding models revealed changes in spatial 

frequency tuning and receptive field properties that made early visual areas during 

imagery more functionally similar to higher visual areas during vision. Likewise, signal 

and noise properties of the voxel activation between vision and imagery favor the 

generative model interpretation.  

Our results provide new evidence for an internal generative model of the visual 

world, while demonstrating that vision is just one of many possible forms of inference 

that this putative internal model may support. 
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Chapter 1 :  Introduction  

What better way to demonstrate the rich and complex internal environment of the 

brain than through the ability to experience a scene in its absence? While its exact nature 

and utility have been subjected to exhaustive debate (as will be discussed later), it is 

difficult to deny that the thing we call “mental imagery” is intimately intertwined with 

our thoughts and daily experiences. Imagery-like phenomena appear to be associated with 

a plethora of cognitive and perceptual processes including spatial navigation (Byrne et al. 

2007), dreams (Horikawa et al. 2013), future planning (Szpunar et al. 2007), and 

language comprehension (Just et al. 2004). Imagery is also thought to be involved in 

rehearsal (Savaki & Raos 2019), such as in sports (Filgueiras et al. 2018), and is thought 

to be linked to creativity (Palmiero et al. 2015).  

While mental imagery’s connection to our normal, everyday experiences is in itself 

interesting, it is in the context of clinical pathologies that the importance of advancing 

our understanding of imagery’s underlying mechanisms is most apparent. An abundance 

of research on this topic has demonstrated that the presence of invasive or otherwise 

dysfunctional mental images across neuropsychiatric disorders is staggering, showing up 

in almost every major recognized category including anxiety, mood, addiction, and 

psychotic disorders as well as eating disorders and degenerative diseases (Brewin et al. 

2010; Hackmann & Holmes 2004; Holmes et al. 2019; Holmes & Mathews 2010). 

The manner and extent in which mental images are involved varies across disorders. 

When they are excessively intrusive, unwanted, and pervasive they can be associated 

with a number of anxiety disorders (Hirsch & Holmes 2007). This is most in post-
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traumatic stress disorder, or PTSD (Hackmann & Holmes 2004). A core symptom used to 

diagnose this disorder is the reliving of a traumatic event (American Psychiatric 

Association 2013), often through “flashbacks”, which are invasive and upsetting mental 

images related to the original event. Not only are these perceptual experiences a sensitive 

and specific indicator of PTSD in trauma survivors (Duke et al. 2008), their features 

(such as a sense of happening “here and now”) can be early predictors of the severity and 

continuation of the symptoms beyond the immediate aftermath of the event (Kleim et al. 

2007; Michael et al. 2005). Intrusive mental imagery is more than just a hallmark 

symptom of PTSD; the re-experiencing of traumatic memories through flashbacks may 

actually serve to reinforce and maintain the chronic disorder (Brewin 2011).  

While the presence of intrusive images is a feature most often  associated with PTSD, 

they are also prevalent in obsessive compulsive disorder (OCD), occurring in up to 75-

90% of patients (Moritz et al. 2018; Speckens et al. 2007; Lipton et al. 2010). In these 

cases, the characteristic obsessions of the disorder are accompanied by vivid and 

distressing images, such as seeing or feeling dirt on one’s skin or disturbing images of 

harming a loved one (Moritz et al. 2018). The presence of these intrusive images is 

associated with heightened anxiety (Speckens et al. 2007), and the strength of the 

imagery is associated with increased compulsive behavior in an apparent attempt to 

neutralize the images, subsequently leading to more impairment in daily function (Moritz 

et al. 2018). Interestingly, the most dominant sense for intrusive imagery in OCD is 

visual (Moritz et al. 2018; Speckens et al. 2007).  



3 

 

Recurrent and unwanted mental images have also turned up in a number of other 

anxiety disorders. Examples include third-person images of oneself looking anxious and 

sweating in social anxiety disorder (Hirsch & Holmes 2007), picturing being trapped in 

an inescapable situation or location in agoraphobia (Day et al. 2004), or imagining 

oneself as deceased in health anxiety disorder (Wells & Hackmann 1993).  

Maladapted mental imagery is also found in mood disorders, often manifesting as an 

imbalance in the emotional affect produced by images. Individuals with depression have 

an impaired ability to imagine positive future events while their ability to vividly imagine 

negative events remains intact. Moreover, the positive events that they are able to 

voluntarily invoke are associated with less positive feelings (Holmes, Lang, et al. 2008). 

Much like the anxiety disorders, mood disorders (including major depression and bipolar 

disorder) are accompanied by intrusive involuntary negative imagery as well (Myers et 

al. 2007; Gregory et al. 2010). Outside of depressive states, patients with bipolar disorder 

additionally experience intense positive imagery (Close et al. 2014) which is thought to 

exacerbate the mania associated with the disorder (Holmes, Geddes, et al. 2008). 

Moreover, it appears that mental imagery has an even more sinister role in mood 

disorders as it may facilitate suicide in depressed populations via habituation, planning, 

and rehearsal (Braithwaite et al. 2010; O’Connor et al. 2018; Crane et al. 2012).  

A number of studies have demonstrated a role of mental imagery in pathologies 

beyond mood and anxiety disorders. For example, intrusive mental images are also 

associated with eating disorders, such as body dysmorphic disorder, where the person has 

distorted and negative mental images of their bodily appearance (Osman et al. 2004). 
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Exceptionally vivid perception (MCGHIE & CHAPMAN 1961; Freedman 1974) and 

mental imagery accompany schizophrenia, the latter of which has been suggested as a 

trait marker of the disease (Oertel et al. 2009; Sack et al. 2005). A study investigating 

possible relationships between imagery and visual hallucinations in Parkinson’s disease 

found that patients defined as “hallucinators” had stronger mental imagery than controls 

and the strength of imagery was correlated with degree of hallucinations (Muller et al. 

2014).  

The above mentioned research suggests that, in some cases, dysfunctional mental 

imagery is not only present but may also serve to maintain—or even play a causal role 

in— the disorder. While our appreciation of this is growing, an understanding of the 

underlying mechanisms of dysfunctional imagery is disproportionate to the clinical 

relevance. To capture how imagery gone awry in pathology we must first understand how 

it works in the healthy brain.  

As is discussed in the next section, while we have made great strides in imagery 

research in the past few decades, we have, in some sense, uncovered more questions than 

we have answered. Consequently, our understanding of the generation, functional role, 

and even nature of normal imagery is still lacking.  

Fortunately, recent advances in computational modeling offer renewed potential for 

imagery research, providing the framework and tools needed to build, test, and 

manipulate models of human systems (Kriegeskorte 2015; Kriegeskorte & Douglas 

2018). Armed with these new tools, the current study seeks to understand how visual 
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mental imagery works in the healthy human brain; a task that, as it turn out, is in no sense 

a new endeavor.  

History of Mental Imagery  

Long-Standing Questions 

Take a moment to imagine your favorite coffee mug. What color is it? Does it have a 

handle or any words written on the side? What are the relative proportions of its 

circumference to height? For a different example, consider the face of an analog clock at 

6:50. Is the angle made by its hour and minute hands smaller or larger than 90 degrees?  

In either case, was your experience at all like seeing your mug or a clock face? If so, 

did seeing the image in your “mind’s eye” aid you in answering the questions? 

Incidentally, these are some of mental imagery’s most ancient questions:  1) What is the 

nature of mental images? Are they, as the name implies, experienced as visual images? 

Or are they better characterized as language-like descriptions? And 2) Why do humans 

have mental images? Specifically, do they have any cognitive utility?  

The various answers offered to these questions stretch back in time over two 

millennia and have substantially shaped the way we think about and research mental 

imagery today. Therefore, to understand the current landscape of imagery research and its 

gaps in knowledge, it is useful to consider the history of these questions and the 

philosophical and scientific research they sparked.  

The first question concerning the nature of images in particular split all conversations 

about imagery into two views rather early on (MacKisack et al. 2016), a dichotomy that 
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has survived the intervening years. On one side, there are those who believe that mental 

images are experienced in the perceptual sense and contain depictive visual features. On 

the other are those who believe that they are better characterized as descriptions. The 

dichotomy eventually culminated in what was dubbed the “imagery debate” in the 20th 

century, and the defenders of the depictive and descriptive sides have been branded the 

“iconophiles” and “iconophobes”, respectively. Divisions over the question of utility have 

been less clear-cut but are generally thought to follow the division over the nature of 

mental imagery: those who take mental images to be pictorial are naturally led to 

understand them as things that can be used to complete cognitive tasks, much like 

percepts can be examined and used, while most who believe that images do not 

contribute anything extra to cognition tend to align with the iconophobe stance 

(MacKisack et al. 2016; Thomas 2018).  

In the following sections, I briefly discuss a few key actors in the history of 

philosophical research on imagery, and consider the answers they offered for one or both 

of these two main questions: the question of the nature of mental images and the question 

of their utility.   

I then transition into the scientific investigation of mental images, in particular within 

cognitive psychology and neuroscience, and consider what insight they have brought to 

these longstanding questions as well as new questions they have unearthed. Finally, I 

discuss what kind of model of imagery would be necessary to address these questions.  
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In the meantime, we start in ancient Greece, where the stage for the imagery debate 

was first set. 

Mental images as depictions – the Iconophiles  

The oldest surviving philosophical discussions on the nature of mental images comes 

from the classical Greek thinkers in the 4th century BCE. One of the most extensive 

writings on this comes down from Aristotle (Thomas 2018) who believed that sensation 

was the process through which forms, actively emanating from their objects, collide with 

and impress themselves upon the sensory organ of the observer, much like a stamp into 

wax. These impressions start internal movements which can later be re-instantiated in the 

absence of the object as mental images, or phantasmata. Aristotle therefore saw 

phantasmata as being necessarily like the sensory experiences from which they came: 

visual mental images were echoes of visual sensation. It was particularly on the point of 

“usefulness” that Aristotle deviated from his mentor, Plato. While Plato treated mental 

images as incidental and misleading counterfeits twice removed from the eternal forms 

(MacKisack et al. 2016), the Aristotelian perspective granted mental imagery a central 

role in human cognition, necessary for motivation, decision-making, communication, 

dreams, and even thought itself: “the soul never thinks without a phantasma” (Aristotle 

1984).  

Even as human understanding of anatomy and physiology evolved substantially (such 

as recognizing the brain as the center of mental processing rather than the heart), many 

upheld a similar depictive treatment of mental imagery. In the 18th century, Hume 

described mental images, or ideas, as faint versions of visual percepts, virtually identical 
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in content and character and differing only in their degree of intensity (Hume 2003). 

Nearly a century later, Descartes, following a similar vein and foreshadowing 

neuroscientific research to come, proposed a common brain substrate (albeit erroneously 

the pineal gland) for vision and imagery, whereby stored information about the percept 

could recreate patterns on this shared structure, bringing the experience back into 

consciousness (Thomas 2018). 

The depictive stance was almost entirely silenced during a decades-long bout of 

behaviorism that denied imagery research scientific integrity altogether, but was 

resurrected in the late 1900s, this time with the support of psychophysical and, soon after, 

neuroscientific methods (MacKisack et al. 2016). The most prominent present day 

champion of the iconophile stance is Dr. Stephen Kosslyn, who developed a thorough 

theoretical model of mental imagery. According to this theory, feedback connections 

match stored memories with visual representations in lower-level areas so that, during 

imagery, the details of some recalled object can be realized in the “visual buffer” (i.e., the 

primary visual cortex). These visual details (which allow you to answer questions such as 

“are a German Shepherd’s ears pointy?”) are only implicit in the higher-level 

representation from which they were constructed: “because visual memories are stored in 

[an] abstract format during perception, in order to recall the local geometry of shape it is 

necessary to generate mental images in topographically organized areas” (Kosslyn et al. 

2006, p.142). This generation of images in the retinotopic visual cortex affords them the 

same explicit spatial and otherwise depictive properties that percepts have. Consequently, 

Kosslyn’s theory gives imagery special cognitive utility: images allow you to become 
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conscious of, interpret, and reason about things that are not currently available to your 

eyes (Kosslyn et al. 2006).  

Mental images as descriptions – the iconophobes  

Similarly distributed throughout imagery’s history are arguments in favor of the 

descriptive, or “propositional”, account of mental imagery. One such argument, made by 

Dennett (Dennett 1969) and Shorter (Shorter 2007), involves the issue of indeterminacy, 

a perceived contradiction in which one can imagine an object (such as a coffee mug) with 

certainty while simultaneously not being able to, or even needing to, imagine a given 

detail of that object (such as its color). Supporters of this argument posited that this 

paradox, along with others innate to the pictorial image, could be resolved by treating 

mental imagery as a “language-like” code that represents images much like words 

represent objects and ideas rather than depicting them (MacKisack et al. 2016).  Dr. 

Zenon Pylyshyn, a major advocate of the propositional stance (and usually positioned in 

direct opposition to Kosslyn), further developed this idea by drawing from ideas 

emerging in computer science research, arguing that mental images are “more accurately 

referred to as symbolic descriptions than as images in the usual sense” (Pylyshyn 1973). 

Concerning the utility of images, Pylyshyn has also proposed a “null hypothesis”, stating 

that there is nothing special in particular about mental imagery: “reasoning with mental 

images involves the same form of representation and the same processes as that of 

reasoning in general, except that the content or subject matter of thoughts experienced as 

images includes information about how things would look.” (Pylyshyn 2002) –a 

hypothesis that he believes we have yet to reject.  



10 

 

Contemporary Scientific Findings  

Although the history of philosophical research on imagery may have spanned at least 

two millennia (MacKisack et al. 2016; Thomas 2018), a scientific understanding of 

imagery has emerged only in the last several decades (Kosslyn & Thompson 2003; 

MacKisack et al. 2016; Crawford I.P. Winlove et al. 2018; Albright 2012). A major 

driver of this understanding has been the development of rigorous psychophysical 

methods for probing mental imagery (Podgorny & Shepard 1978; Kosslyn et al. 1978; 

Ishai & Sagi 1995; Pearson et al. 2008).  

Many of these methods provided evidence for spatially structured representations of 

imagined objects and consequently have been used as arsenal by the iconophiles. A 

fundamental example of these cognitive studies involves having subjects judge whether 

two drawings of 3D geometric objects rotated relative to one another are the same 3D 

object or different. These studies found that the time it takes to make a decision 

corresponds linearly to the angle in which the object has to be rotated in order to be 

directly compared to the other (Shepard & Metzler 1971), suggesting that subjects were 

mentally rotating visual representations of the objects in their mind’s eye.  Others have 

found that concrete nouns that can have physical, visual representations such as “chair”, 

are easier to remember than more abstract formless nouns such as “truth” (Paivio 1963). 

Taken together, these results suggest that mental imagery somehow serves a facilitative 

role in tasks such as learning and decision making (MacKisack et al. 2016).  

Equally important has been the development of neuroimaging tools, particularly 

functional magnetic resonance imaging (fMRI), for noninvasively measuring brain 
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activity of humans engaged in mental imagery. A central finding of several decades of 

fMRI studies of imagery has been the confirmation of an extensive overlap between 

imagery and vision in the brain. At the level of brain activity, these studies have revealed 

that imagery engages the same brain areas that we use to see (Wheeler et al. 2000; 

Crawford I P Winlove et al. 2018), including even the primary visual cortex (Kosslyn & 

Thompson 2003). At the level of representation, studies have demonstrated the presence 

of correlated multivoxel activity patterns between vision and imagery (Stokes et al. 2009; 

Reddy et al. 2010; Cichy et al. 2012; Lee et al. 2012; Albers et al. 2013; Bosch et al. 

2014). Importantly, the activity patterns generated during imagery encode the same kinds 

of low-level visual features encoded during vision, such as spatial frequency and 

retinotopic location (Slotnick & Thompson 2018), which can be used to decode imagined 

content (Naselaris et al. 2014; Thirion et al. 2006; Horikawa & Kamitani 2017).  

New Questions and the Echoes of Old 

Considering the psychophysical and neuroimaging results discussed above, can we 

say that we have finally laid the age-old questions of nature and utility to rest? Many take 

the activation of early visual cortex and decoding of low-level features of the imagined 

images as solid evidence that the images themselves are depictive in nature and consider 

the debate a closed book (Kosslyn et al. 2006). However others remain unconvinced, 

pointing out that activity in lower-level visual areas, even if structured, does not in itself 

necessitate that mental imagery relies on actual visual images. It could instead be the case 

that their activation represents mere epiphenomenal side effects which are not used in the 

essential processing that gives rise to our imagery experiences and observed behaviour 
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(Pylyshyn 2003; Thomas 2018). Indeed, our ability to decode specific information from 

an area of the brain does not in itself demonstrate that the rest of the brain uses that 

information for the process in question.  

On the question of utility, the opposing side also argues that we have yet to reject the 

null hypothesis, that there is no evidence that imagery is a special form of reasoning and 

therefore has not been proven to add anything special to cognition (Pylyshyn 2002). On 

the other hand, the cognitive and neuroimaging findings discussed above seem to provide 

an intuitive argument for how mental imagery could in fact be special: lower areas could 

be used to “fill in” details associated with and left unspecified by a recalled memory or 

generated scenario. However, this intuition has yet to be formalized. Our research efforts 

have therefore reframed and provided some insight into the questions of nature and utility 

but these questions remain open nonetheless.   

The neuroscientific findings have also unearthed new, equally exciting questions that 

the field has only just begun to grapple with.  

The first, which I will call the synthesis question, arises from the fact that the visual 

cortex is involved (whether you believe its involvement to be consequential or not) in 

both vision and imagery. How does a single apparatus become involved in both analysis 

and synthesis? Many agree that image generation must entail some sort of reversal of the 

visual cortex. Indeed, imaging studies indicate that imagery is associated with top-down 

activation from higher visual areas such as parietal and frontal cortices (Mechelli 2004; 

Stokes et al. 2009). However, an explicit model about how mental imagery arises in this 
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context or how the representations imposed on lower-level areas are computationally 

determined has yet to defined or tested.  

The second question has been shaped by the historical dichotomy discussed above—

most efforts to understand mental imagery have been aimed at testing the iconophile 

theory. The consequence has been extensive examination of how vision and imagery are 

similar. While there may be substantial overlap in the substrate and types of 

representations between vision and imagery, our subjective experiences at the very least 

lead us to understand that there must be differences in the specific states associated with 

the two. Therefore, fMRI studies have succeeded in putting an upper bound on how 

different seen and mental images can be, but have yet to actually reveal how and why 

seen and mental images differ.  

The Model We Need 

In the following section I consider what elements and assumptions a model of mental 

imagery would require to effectively address the outstanding questions detailed above. 

Specifically, I attempt to describe a model that can speak to why we have images and the 

divide over what they are like, as well as provide a story for how they are generated from 

the same substrate as vision while leading to two different phenomenological 

experiences. As I address these in turn, I add to the components that build up our theory.  

Addressing the Nature Debate with Reinstatement in a Visual Hierarchy  

Why has the imagery debate remained an open dispute for so long? Some have 

suggested that views were so strongly polarized because the opposing defenders 
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themselves experienced varying degrees of vividness in their own mental imagery 

(Reisberg et al. 2003).  

Another (potentially related) possibility is that the debate was based on a false 

dichotomy whereby it was assumed that the two views were necessarily competing and 

mutually exclusive hypotheses on the nature of representations in the brain. This may 

stem from a separation in how we experience percepts and thoughts: while percepts feel 

concrete and external to oneself, thoughts are incorporeal and private. Perhaps when 

presented with something that is positioned in the undefined space between, we feel 

compelled to put it in either one bin or the other.  

However, neurophysiological and imaging studies have now made it clear that the 

brain contains hierarchical structures (Markov et al. 2013; Piras et al. 2017). The visual 

system in particular contains multiple distinct areas that can represent the same external 

object at various, increasingly abstract levels. From a collection of edges all the way up 

to semantic categories and beyond, the visual system seems less of an isolated structure 

and more of a series of representations that runs seamlessly into the rest of the brain. 

Given this information, it becomes much less of a clear-cut task to draw a line in the 

brain where vision stops and non-visual thought begins. Therefore a mental image could 

occupy, just as percepts do, both a depictive representation and a higher-level “language-

like” representation.  

Here we present a model of mental imagery that emphasizes its representation across 

a hierarchy of visual structures. Therefore we start with multiple discrete levels arranged 
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in a chain (nodes in Figure 1.1), where each level represents the activity pattern in a given 

area of the brain encoding some set of features.  

Interestingly, as Thomas (2018) points out, most on either side of the debate have 

assumed intentionality: “A mental image is always an image of something or other 

(whether real or unreal), in the same sense that perception (whether veridical or not) is 

always perception of something.” 
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Figure 1.1 Imagery as reinstatement in a hierarchical generative model. Schematic showing 

vision and imagery in a recurrently connected (gray arrows) hierarchy of visual areas. Each node 

represents the activity pattern at a given level along the hierarchy while viewing (top) or 

imagining (bottom) some stimulus (s). When seeing s, the retina (𝑟0) is clamped to s while the 

remaining nodes converge to an activity pattern that encodes the causes of this pattern on the 

retina. When imagining s, the retina is clamped to an uninformative value (e.g. 𝑟0 = 0) while at 

least one higher processing stage is clamped to the visual activity pattern that would be present 

when viewing s (i.e. reactivation; orange box). The remaining nodes below the clamped area 

converge to an activity that encodes the consequences of the cause specified by the reactivated 

level.  

 

We take this shared intentionality to imply that there is shared representation at some 

level of the visual hierarchy. For example, whether one is seeing or imagining a zebra, 

one knows that the percept or image is of a zebra and not, say, a tiger. We might expect 

then that some area, perhaps at the level of processing responsible for encoding the 

abstract “zebra”, converges during imagery to the activity it would be when seeing a 

zebra. Our model therefore assumes that during imagery there is a reinstatement of the 

visual activity pattern somewhere along the brain’s hierarchy. Likely, this reinstatement 

occurs relatively high in the visual hierarchy given the high degree of similarity between 

vision and imagery in higher visual areas (Pearson et al. 2015; Dijkstra et al. 2019). We 

refer to the state of a processing level being held to a certain activity pattern as clamping 



17 

 

(denoted by the dashed orange box in Figure 1.1). Note that this just assumes that imagery 

involves reactivation at some point in the hierarchy. More notable is how the activations 

of the rest of the hierarchy are determined during imagery. Our proposed mechanism for 

this is discussed below.  

Addressing the Question of Analysis/Synthesis with a Generative Model of Visual 
Perception  

For our question of how the same system can both analyze retinal input (vision) and 

synthesize without input (imagery) we turn to a model of vision that is an alternative to 

the standard feed-forward discriminative model, one that posits that the brain must 

already contain the ability to produce images in order to see. Evidence for this has 

emerged primarily from studies designed to test, or derive the consequences of, the 

hypothesis that the visual system embodies a generative model of the visual world (Bar 

2009; Friston 2005; Lee & Mumford 2003; Rao & Ballard 1999; Spratling 2016; Yuille 

& Kersten 2006). Generative models are systems of knowledge that support inference 

about what is uncertain given what is known (Christopher M. Bishop 2006). As the name 

suggests, the hallmark of a generative model of the visual world is the ability to generate 

images. In the context of vision, this means that the brain, with only input sensory nerve 

signals to go off of, infers what is out in the world by generating the causes of those 

signals. This is sometimes aptly referred to as “analysis by synthesis” (Yuille & Kersten 

2006). A variety of phenomena in visual cortex such as spontaneous dynamics (Berkes et 

al. 2011), stimulus response non-linearities (Coen-Cagli et al. 2015; Karklin & Lewicki 

2009; Rao & Ballard 1999), the encoding of prediction error (Murray et al. 2002; Alink et 

al. 2010), the structure of visual representations in low-level (Olshausen & Field 1996) 
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and high-level (Stansbury et al. 2013) visual areas, and the emergence of structured 

hallucinations as a consequence of damage to the visual system (Reichert et al. 2013) can 

be interpreted as evidence that the visual system embeds a generative model of the visual 

world and uses it to perform inference. While theories equating vision with inference in a 

generative model imply a compelling computational rationale for image generation in the 

visual system, an explicit hypothesis about how mental imagery arises in such a system 

has yet to be articulated or tested.  

We adopt and adapt this theory to describe how vision and imagery might be derived 

from a single system. To expand briefly, the generative model (i.e. the visual system) 

contains a model of the outside visual world. That is, it replicates the statistical 

regularities found between different visual features in the sensory environment in terms 

of brain activity patterns that encode those features. Therefore, just as certain features are 

likely to co-occur in the external visual world (e.g., the feature “sky” and the feature 

“blue”), so too are the activity patterns that encode those features at different levels of the 

brain. In this model, seeing then entails using these relationships between features to infer 

the causes of the activity pattern on the retina.  

What we propose is that imagery—like vision—is defined as inference in the same 

generative model. Note that the structure of the model, the hierarchy and the probabilistic 

relationships, remain constant. The only thing that changes is the inference that is made: 

the activity patterns of the multiple levels of the hierarchy during imagery (the unknown) 

is inferred from the activity of the clamped layer (the known) rather than the retina, 

which is uninformative. In other words, it can use the relationships specified by the 
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model to “unpack” the activations of lower areas that are likely given the activity at the 

clamped. 

Within the framework of a visual hierarchy, bi-directional connections between levels 

(much like those found in the human brain) are needed in order to converge on mutually 

consistent representations across the network. Such connections are also necessary to 

infer activity in any lower level area given only the activity of a higher level (as is the 

case in imagery). Therefore we assume recurrent connections between each layer and the 

next that work to spread information started as activation in the clamped layer (whether at 

the retina or some level higher up) to the rest of the system (grey arrows in Figure 1.1).  

Addressing the Question of Differences Through Independent Models of Imagined 
Features 

The hierarchical generative model (HGM) theory of imagery that we propose makes 

specific predictions about how the activity patterns elicited by the two different types of 

inference will compare (see Chapter 2 for full treatment). Revealing any such differences 

would require directly comparing explicit, validated models of the features represented 

during imagery and vision of the same stimuli. Note that the model for imagery needs to 

be estimated directly from signals collected during imagery, independent of vision, in 

order to make a meaningful comparison. Previous studies investigating the kinds of 

features encoded during imagery have built models based on visual activity patterns and 

then tested these models on imagery activity patterns (Naselaris et al. 2014; Senden et al. 

2019). While powerful, this tells you how well features encoded during vision can 

explain variance during imagery (i.e., how similar imagery is to vision) but falls short of 
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telling you to what imagery might otherwise be tuned. We therefore need to rely on a 

different experimental paradigm that can tell us what representations are activated by 

vision and imagery separately. As the next chapter will detail, the formalization of our 

theory predicts an explicit, testable relation between activity during imagery and vision 

and reveals a way in which we can directly model the types of features encoded during 

imagery.  

Addressing the Question of Utility with Formal Inference   

A computational model for mental imagery, like the one presented here, has the 

advantage over decoding alone in that it provides a testable story for why the brain would 

be encoding specific features in the areas that they are found. Therefore it has the 

potential to link findings that show visual features are encoded in primary visual areas 

during imagery to a theory of imagery utility. Our theory formalizes the intuitions of 

utility discussed earlier by equating the “reasoning” supported by mental imagery with 

inference in a generative model.  

In summary, we propose that mental imagery is inference about the sensory 

consequences of predicted or remembered causes in an internal hierarchical generative 

model. The following chapters formalize this theory and describe how imagery imposes a 

different set of conditions than that of vision, leading to testable predictions about the 

types of features encoded during imagery.  
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Chapter 2 :  A Formalized Theory of Mental Imagery: 

Inference in a Hierarchical Generative Model 

In this chapter I further describe and formalize the unifying computational account of 

vision and imagery proposed above by expanding on an influential theory that describes 

vision as probabilistic inference in an internal hierarchical generative model (HGM). The 

structure of the HGM and the specifics of the particular formulation used here are 

detailed below.  

Generative Model of Visual Cortex 

As was introduced in Chapter 2, the “generative” portion of the HGM posits that the 

visual system performs a sort of “analysis by synthesis”; it makes sense of the stimulus-

induced patterns on the retina by attempting to generate the cause of those patterns. 

Seeing therefore consists of activity patterns at discrete stages in the brain that encode 

different visual features of the proposed cause of the retinal activity. Figure 2.1  

illustrates this arrangement:  𝑟0, … , 𝑟𝐿 are the activity patterns of 𝐿 + 1 stages in the 

visual system, where 𝑟0 is the activity pattern of the retina and the remaining are the 

activity patterns in functionally distinct areas of the visual cortex (e.g. V1, V2, etc.). The 

probability of these activity patterns co-occurring in the network reflect the probability of 

the features they encode co-occurring in the visual environment. For example, the feature 

“sky” has a high probability of occurring with the feature “blue” (and less so with the 

feature “red”), so the activity pattern that encodes “sky” in one visual area has a high 

probability of occurring with the activity that encodes “blue” in another area. In this way 
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the brain contains a joint probability distribution for all the possible features at all stages, 

effectively amounting to an implicit model of the external sensory environment.  

 

  

Figure 2.1 Vision and imagery in a generative hierarchical network. Schematic showing 

vision and imagery in a recurrently connected (gray arrows) hierarchical network. At 

equilibrium, the visual activity pattern at a processing stage, 𝑟𝑘, can be expressed as a 

transformation 𝑇𝑘
0(long blue arrow) of activity at the sensor stage 𝑟0 or, equivalently, as a 

composition of transformations (shorter blue arrows) of activity patterns from lower stages. 

During imagery, 𝑟0 = 0 and at least one higher processing stage is clamped to its visual 

activity pattern. Imagery activity patterns beneath the clamped stage (e.g., 𝑟𝑙) differ from 

their visual activity patterns by an echo Ω. The echo is a transformation from the current to 

the clamped layer (shortest blue arrow) and from the clamped layer back down (orange 

arrow). 
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Hierarchy of Causal Relationships  

The model is “hierarchical” because the stages are arranged in a chain and the joint 

distribution described above is specified by a hierarchy of causal relationships. In other 

words, the activity pattern at the top of the hierarch 𝑟𝐿 encodes features that, in the 

sensory environment, cause the features encoded at the stage below. For example, if 𝑟𝐿 

encodes object categories, then lower stages might encode visual features like color or 

texture that are caused by the presence of an encoded object category. If the object 

“zebra” causes the presence of the texture “stripes” in the sensory world, then the activity 

pattern in 𝑟𝐿 that encodes “zebra” is likely to co-occur with the activity pattern in 𝑟𝑙<𝐿 that 

encodes “stripes”. Similarly, the specific activity pattern in 𝑟𝐿 that encodes “building” 

would likely co-occur with an activity pattern in some layer 𝑟𝑙<𝐿 that encodes vertical 

edges. Note that in the first example, it is “zebra” that is causally responsible for 

generating the feature “stripes” and not the other way around (it is the presence of a zebra 

that causes one to see stripes). By maintaining a representation of these causal 

relationships, the brain can “explain away” the lower level features by selecting the most 

probable cause of them. Also note that many different specific orientations and sizes of 

black and white stripes can be associated with a single object category “zebra”, such that 

the specifics of the stripes can change over time (as they would if the zebra were to move 

about relative to the viewer) while the brain maintains that a zebra is the cause. This 

invariance of higher processing stages to changes in lower processing stages is critical to 

object identification. However, this also means there is a loss of resolution with ascension 

in the visual hierarchy. As will be discussed later, such an asymmetry in the structure of 
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the joint probability distribution leads to important differences in outcomes when the 

system performs inference under different conditions. 

Formally, the hierarchical relationship between activity patterns is expressed by a set 

of conditional independence relationships between the various stages. Given an 

ordering (0, … , 𝐿) of activity patterns, the joint distribution can be expressed as a product 

of conditional distributions that specifies the interaction between one stage and the stage 

above it: 

[ 1 ] 

𝑝(𝑟0, 𝑟1, … , 𝑟𝐿) = 𝑝(𝑟𝐿) ∏𝑝(𝑟𝑙

𝐿−1

𝑙=0

|𝑟𝑙+1) 

 

In this hierarchical model, seeing a stimulus (𝑠) means the network is conditioned on 

the activity in the bottom most layer (i.e. the retina, 𝑠0) being set (or “clamped”) to 𝑠 

(Figure 2.1, top). Vision is then the process of sampling activity patterns in all higher 

processing stages from the resulting posterior distribution 𝑝(𝑟1, . . . , 𝑟𝐿 |𝑟0 = 𝑠), so that 

that the average activity state for a given visual area, 𝑙 

[ 2 ] 

𝜇𝑙
vis =  𝔼 𝑝(𝑟1,… ,𝑟𝐿 |𝑟0=𝑠)[𝑟𝑙] 

 

encodes a feature that is the expected cause of the retinal stimulus 𝑠.  
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The HGM Expanded to Mental Imagery 

We treat mental imagery as a subtly but importantly different conditional inference 

within the same HGM. Specifically, we propose that when a mental image of 𝑠 occurs 

(Figure 2.1, bottom) the retina is clamped to some uninformative value (e.g., 𝑠0 = 0) 

while the activity in some higher layer k is clamped to the expected activity pattern 

evoked by seeing 𝑠 (𝑟𝑘 = 𝜇𝑘
vis;  e.g. imagining a “house” might set some object 

recognition area within temporal lobe to the same activity that would be present there 

when seeing a “house”). Mental imagery is then the process by which the activity 

patterns in the remaining stages are sampled from the resulting conditional probability 

distribution 𝑝(𝑟1, . . . , 𝑟𝑘−1, 𝑟𝑘+1, … , 𝑟𝐿|𝑟0 = 0, 𝑟𝑘 = 𝜇𝑘
vis). The average activity pattern for 

the lth visual area during imagery 

[ 3 ] 

𝜇𝑙
img

=  𝔼
 𝑝(𝑟1,...,𝑟𝑘−1,𝑟𝑘+1,…,𝑟𝐿|𝑟0=0,𝑟𝑘=𝜇𝑘

vis)
[𝑟𝑙] 

 

therefore encodes an expected consequence of the cause specified by clamping the 

activity in a high-level visual area.  

Vision and Imagery Encoding Models  

For most HGMs it is not possible to explicitly write the conditional distribution 

without making assumptions about the distributions within the joint (e.g. Gaussianity), as 

the solution becomes computationally insurmountable when the variable being integrated 
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over has a large number of dimensions. This is especially so in our case where the 

posterior consists of the activity patterns of hundreds of thousands of voxels. However, 

note that during vision the only source of variance for each processing stage is the 

stimulus. Thus, the activity at each individual stage can be expressed as some function of 

s (i.e.f(s)).Therefore, without making any assumptions about the distributions, we can 

say that the expected activity pattern at 𝑙 during vision, 𝜇𝑙
vis,  could be represented by 

some (possibly nonlinear) transformation, T, from the bottom stage 0 (the source of 

explainable variance), to the higher stage 𝑙. We write such a transformation of 𝑠 as 𝑇𝑙
0[𝑠] 

where the superscript indicates which stage this function transforms from and the 

subscript indicates which stage it transforms to. We refer to any transformation of activity 

patterns from a lower to higher stage as a forward transform. Thus the expected activity 

pattern at 𝑙 during vision can be expressed as   

[ 4 ] 

𝜇𝑙
vis = 𝑇𝑙

0[𝑠] 

Incidentally, the expected activities during imagery can also be written as a 

transformation of activity patterns from the source of variance to the stage in question. 

Only now, as Equation 3 shows, the only source of variance in the hierarchy is the 

clamped stage which, when imagining 𝑠, equals the activity at that stage as it were when 

viewing 𝑠. Therefore the expected activity patterns during mental imagery can in general 

be expressed as  

 



27 

 

[ 5 ] 

𝜇𝑙
img

= 𝑇𝑙
𝑘
[𝜇𝑘
vis] 

for 𝑙 < 𝑘, where 𝑇𝑙
𝑘
 is a transformation of activity patterns from the clamped stage 𝑘 

down to stage 𝑙. We refer to any transformation of activity patterns from a higher to 

lower stage as a backward transform and denote it with a bar accent (𝑇).  

Furthermore, in a strictly hierarchical architecture, the transformation from any one 

stage to another can be decomposed into transformations between intervening stages 

(Figure 1.1), e.g. 𝑇𝑘
0 = 𝑇𝑘

𝑙 ◦ 𝑇𝑙
0 where 𝑙 < 𝑘 is some intermediary stage between 0 and 𝑘. 

The imagery expected activities can therefore be rewritten as: 

[ 6 ] 

𝜇𝑙
img

= 𝑇𝑙
𝑘
[𝑇𝑘
0[𝑠]] =  𝑇𝑙

𝑘
◦ 𝑇𝑘

𝑙
⏟    

Ω𝑙,𝑘

◦ 𝑇𝑙
0[𝑠]⏟  

𝐸𝑙
vis[𝑠]

 

This equation and the underbrace notations highlight three major points that are 

useful for interpreting the relationship between vision and imagery as an experimentally 

testable prediction.  First, we recognize the rightmost forward transform as a formal 

encoding model, denoted E𝑙
vis[𝑠]. In the context of visual neuroscience, an encoding 

model is a transformation of a visual stimulus into a prediction of evoked brain activity. 

A transformation that makes an adequate prediction of brain activity in a given portion of 

the brain (e.g. a voxel) serves as an indication of the kinds of information encoded in that 

portion. We refer to E𝑙
vis[𝑠] as a visual encoding model as it transforms the stimulus 𝑠 
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into predicted activity patterns during vision. Thus we see that the expected activity 

pattern during mental imagery depends on the way the stimulus 𝑠 is encoded during 

vision.  

Secondly, the portion denoted by Ω𝑙,𝑘 indicates how the expected activity pattern 

during imagery will differ from the expected activity pattern during vision. Notice that 

Ω𝑙,𝑘 constitutes a forward transform from stage 𝑙 to stage 𝑘, followed by a backward 

transform from stage 𝑘 back to stage 𝑙 (green box in Figure 2.1). It can thus be 

understood as an echo of the state of 𝑙 during vision: imagery activity pattern at any one 

stage will resemble the visual activity pattern that has been fed forward from that stage to 

the clamped stage, then fed back to the original stage. The exact effect of the echo on the 

types of features encoded during imagery will be treated in detail in Chapter 5. 

Meanwhile, note that unless the feed-back transformation is an inverse of the feed-

forward transformation the echo will induce a potentially measurable difference between 

the expected imagery activity pattern 𝜇𝑙
img

 and the expected visual activity pattern 𝜇𝑙
vis. 

In general, we would expect this difference to manifest as a loss of resolution in areas 

below the clamped area during imagery relative to the resolution normally seen in these 

areas during vision. This is due to the fact that lower areas during imagery are driven 

solely by the clamped area which, being higher in the visual hierarchy, has a lower 

inherent resolution compared to the retina. In other words, given the structure of the 

HGM proposed here, we expect lower areas during imagery to take on the lower-

resolution properties seen in higher areas during vision.  Note also that effect of the echo 

is compositional in nature, meaning that the distortion that each layer experiences relative 
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to its original representation during vision increases moving away from the clamped layer 

and toward the bottom layer. 

This echo transformation therefore codifies the key signatures of inference we expect 

to observe during mental imagery: (1) an inheritance of functional properties from the 

reactivated brain area and (2) a gradient in this distortional effect that increases with 

hierarchical distance below the reactivated area. 

Finally, the arguments above provide a guide for how to reveal the effects of the echo 

transformation on the features encoded in imagery activity patterns. Specifically, the 

composition of the two underbraced portions (the echo composed with the visual 

encoding model) defines something novel to the field: an imagery encoding model. 

Denoted as E𝑙
img
[𝑠], the imagery encoding model is similar to its visual counterpart, only 

it predicts the activity pattern that will be evoked by imagining 𝑠. Since both the visual 

and imagery encoding models accept the same input 𝑠, it should be possible to explicitly 

characterize the differences between the encoding of imagined and seen stimuli by 

estimating imagery and visual encoding models. 

In summary, we propose that imagery is the process of a particular form of conditional 

inference in the same HGM that allows us to see our external world. Formulation of this 

theory predicts measurable differences between the activity patterns encoding stimuli 

during vision and imagery. If the HGM is a good model for both forms of visual 

perception and such differences exist, we should be able to detect them by building 
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encoding models from brain activity measured during viewing and imagining the same 

stimuli.  

Specific Aims 

To this end, we have designed an experiment to capture brain activity from human 

subjects as they view and imagine matched visual stimuli.  We have built and compared 

encoding models from the resulting activity patterns to test our hypothesized generative 

model of mental imagery. These objectives are summarized in the following aims.  

Specific Aim 1: Build voxel-wise imagery encoding models. We hypothesized that 

imagery encoding models can be successfully measured from fMRI data, used to predict 

brain activity to new imagined stimuli, and used to decode the position and content of the 

imagined stimuli. 

Specific Aim 2: Determine if signatures of inference in a generative model can be 

observed during mental imagery in the human brain. We hypothesized that (1) tuning to 

imagined features in lower visual areas will more closely resemble tuning to seen features 

in higher areas and (2) a gradient in this distortional effect that increases with hierarchical 

distance below the reactivated area, demonstrating key signatures of inference that follow 

from our formulation of mental imagery as inference in an internal generative model.  
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Chapter 3 :  Experimental Methods   

In this chapter, I describe in detail the experimental design, fMRI processing and 

display, training of the encoding models, as well as how specific measures of significance 

were determined. Some of the following methods will be reviewed again briefly in the 

following chapters as they become relevant. 

Data Acquisition and Pre-processing 

Subjects 

Two healthy adult females and one healthy male participated in the main experiment, 

and one healthy male participated in the control experiment. All subjects had normal or 

corrected-to normal vision. All subjects gave written informed consent approved by the 

Institutional Review Boards at the University of Minnesota and/or the Medical University 

of South Carolina before participating in the study. Each subject completed both vision 

and imagery runs. 

Experimental Design and Stimuli 

The experimental scans were organized into separate 10-minute runs, each an 

uninterrupted succession of trials during which whole-brain blood-oxygen level 

dependent (BOLD) activity was measured. Runs were of two types: vision runs and 

imagery runs. During vision runs stimuli, including an object picture and a cue, were 

presented on a screen and viewed by the subjects. During imagery runs object pictures 

were not presented and only a cue was shown on the viewing screen. During these runs 

subjects instead imagined the cued object pictures (Figure 3.1). Subjects viewed the 
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stimulus on a 3M Vikuiti rigid rear projection screen projected on by a NEC NP4000 

projector (1024 × 768 resolution and 60Hz). Data acquired during vision runs were used 

to estimate visual encoding models. Data acquired during imagery runs were used to 

independently estimate imagery encoding models. During all runs, subjects fixated on a 

6-letter cue (filling a 1.5° × 0.4° rectangle) at the center of a grey stimulus field (16° × 

16°). Eight brackets with 8 distinct colors framed the stimulus field throughout each run. 

Each bracket delineated a different but overlapping portion of the stimulus field (8° × 8°) 

within which an object picture might be seen (vision runs) or imagined (imagery runs). 

The same framing brackets were visible and unchanging at all times during all runs and 

conditions, and therefore contributed no variance in the stimulus. Cues were 6-letter 

descriptive abbreviations (e.g., “firtrk” cued a picture of a fire truck, “ababie” cued a 

picture of a baby) and always appeared at the same location and with the same 

dimensions throughout both run types (Figure 3.2).  
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Figure 3.1 Experimental Design. Data and procedures for estimating visual encoding models 

(vEM, left) and imagery encoding models (iEM, right). Whole-brain fMRI (7T) measured BOLD 

activity as subjects viewed or imagined 64 unique object pictures at 8 distinct locations. The color 

of the six-letter cue for each stimulus coded a location bounded by a visible bracket. Model 

estimation (center) was applied separately to visual and imagery data, resulting in a distinct vEM 

and iEM for each voxel. Model prediction accuracy was k-fold cross-validated by computing 

Pearson correlation between predicted and measured activities on held-out data. 
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Figure 3.2 Experimental Timing. Top: The stimulus displayed on the viewing screen during 

vision runs. Second from top: Enlargements of the cues visible during both vision and imagery 

runs. Third from top: The display during imagery run. Bottom: Timing of stimulus on/off-set and 

inter-stimulus interval (∆tisi).  
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During imagery runs (Figure 3.1 right and Figure 3.2 bottom), subjects were 

instructed to fixate on the cue and mentally project the cued object onto the portion of the 

visual field framed by the bracket whose color matched the color of the cue. For example, 

the cue “firtrk” written in yellow prompted the subject to imagine the firetruck picture in 

the upper left corner within the yellow framing brackets. Subjects were instructed to 

imagine the object in the correct position for the 2s duration in which the cue was 

present. Each imagined object was followed by an inter-stimulus interval (ISI) during 

which the 6-letter fixation cue at center was replaced by a dummy cue (“XXXXXX”).  

Subjects were instructed to stop imagining the object for the duration of the ISI which 

varied randomly from 1 TR (2 seconds) to 𝑗 × 𝑇𝑅 where 𝑗 was sampled from a Poisson 

distribution (𝜆 = 0.4; ≈ 2 to 6s). 

During the matched vision runs (Figure 3.1 left and Figure 3.2 top), subjects viewed 

that same display as during the imagery runs (i.e., the same cues, background, framing 

brackets, and ISI) except that the object picture was visually present. Subjects were 

instructed to fixate the cue and view the object pictures passively.  

Object pictures (Figure 3.3A) were selected from the SUN labeled image collection 

(Xiao et al. 2010) and were selected to span the 19 object categories specified in 

(Naselaris et al. 2009). Each object was extracted from its background using the object 

mask provided by the SUN database. Masks were dilated by 10 pixels. 
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Figure 3.3 Details of the stimuli. A) All 64 individual object pictures viewed and imagined 

during the experiment. B) An object picture displayed in each of the 8 positions bounded by the 

framing brackets. C) A superposition of all 64 objects pictures showing the visual field coverage 

of the stimuli. 

 

Eight unique object pictures (single row in Figure 3.3A) were displayed and 

imagined during each scanning session (set of runs). Note that subjects therefore had to 

remember only 8 object pictures at a time. Prior to each run subjects familiarized 

themselves with the experimental stimuli using a self-paced version of the imagery 

experiment. Familiarization sessions halted when subjects felt confident that the 8 object 

pictures and associated 6-letter cues were committed to memory. These sessions varied in 

duration from 20-30 minutes per scanning session. 
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Each object picture was displayed or imagined at each of the 8 framed locations 

(Figure 3.3B), for a total of 64 unique stimuli per run. Each unique stimuli was also 

viewed/imagined twice within a run, for a total 128 stimulus presentations/acts of 

imagery per run. Runs were repeated a minimum of two times for vision and two times 

for imagery. Repetition of runs allowed us to utilize a BOLD time-series denoising 

technique that uses the reoccurring conditions to cross validate parameter fits (Kay, 

Rokem, et al. 2013). Over all sessions, runs, object pictures, and positions there were a 

total of 512 unique stimuli (each viewed and imagined), at least 2048 stimulus 

presentations, and at least 2048 acts of mental imagery, per subject. 

MR Acquisition Parameters 

7T MRI data was acquired at the Center for Magnetic Resonance Research (CMRR) 

at the University of Minnesota. The experimental fMRI runs were collected using a 7T 

Siemens Magnetom scanner and a Nova Medical head coil (CP Transmit / 32 channel 

receive coil). Whole-brain functional data was acquired with a gradient-echo EPI 

sequence at a resolution of 1.6mm3:  TR 2000 ms, TE 22.8 ms, FOV 130 × 130, Partial 

Fourier 7/8, 70 slices, GRAPPA R=2, multiband acceleration factor 2, anterior-posterior 

phase encode, transverse slice orientation. 

3T MRI control data was acquired at the Center for Biomedical Imaging (CBI) at the 

Medical University of South Carolina. The experimental fMRI runs were collected using 

a 3T Siemens Trio TIM scanner and a 32-channel receiver coil array. Whole-brain 

functional data was acquired with a gradient-echo EPI sequence at a resolution of 2.5 
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mm3: TR 2000 ms, TE 33 ms, FOV 100 x 100, 52 slices, multiband acceleration factor 2, 

anterior-posterior phase encode, transverse slice orientation.  

Prior to experimental runs we collected a 1-mm T1-weighted whole-brain anatomical 

volume (at 7T for subjects in the main experiment and at 3T for the control subject). We 

also collected standard GRE fieldmaps at each scanning session for the correction of EPI 

spatial distortions (Jezzard & Balaban 1995). 

Surface Reconstructions 

Structural T1 volumes were skull-stripped and used to obtain surface reconstructions 

(Freesurfer). Flatmaps used for displaying results and drawing retinotopic ROIs were 

prepared with pycortex (Gao et al. 2015). Briefly, T1-weighted volumes were passed to 

Freesurfer’s recon-all (version 6) for cortical reconstruction and segmentation, pial and 

white-matter surface rendering, and cortical inflation. We then made manual edits to the 

segmentations to ensure optimal surface quality. Digital cuts were made into the inflated 

surface using Blender (v2.78) and then processed by pycortex for flattening and 

rendering. Functional data to be displayed on surfaces were rigidly aligned to the above 

processed structural volumes using FSL FLIRT. 

Functional Image Correction and Alignment 

Functional scans were corrected and aligned within subject only. For each run, time 

series motion correction was performed through rigid alignment of all volumes to the 

middle volume (FSL MCFLIRT). Acquired fieldmaps were then used for spatial B0 

distortion correction (FSL FUGUE). Functional volumes were temporally resampled to 
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correct for slice timing differences (FSL slicetimer). Spatial transformations up to this 

pre-processing stage were then concatenated and applied to un-corrected and un-

registered volumes to minimize spatial resampling. An average of the time series from 

the run with the least amount of absolute movement was selected as the reference image 

for rigid alignment between runs (FSL FLIRT). Any residual misalignment was reduced 

via non-linear registration of all functional volumes to the same reference image (FSL 

FNIRT). Transforms for the last two registrations were concatenated and applied to the 

within-scan corrected images. 

Time-Series Modeling, Denoising, and Activation Estimation 

BOLD time-series modeling for each voxel in the corrected and registered functional 

volumes was performed using GLMdenoise (Kay, Rokem, et al. 2013) (Canonical HRF, 

visual cortex mask for PC-selecting voxels, noise-pool threshold defined as 99th 

percentile of 𝑅2 values, minimum of 700 voxels with highest 𝑅2 selected from visual 

cortex used to select number of principal components, 100 bootstrapping iterations). For 

each voxel this procedure output an estimate of activation amplitude per unique seen 

stimulus and an independent estimate of activation amplitude per unique imagined 

stimulus. Activation estimates were bootstrapped to obtain confidence intervals. 

Region of Interest (ROI) Identification 

We conducted independent retinotopic mapping experiments to identify visual areas 

V1, V2, V3, V3ab, V4, and LO. We utilized the mapping stimuli and population 

receptive field estimation (analyzePRF) technique from Kay et al. (Kay, Winawer, et al. 

2013; Dumoulin & Wandell 2008) to construct angle and eccentricity maps for subjects 
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1, 3, and control subject 4. Similar retinotopic maps were constructed using a standard 

traveling wave approach for subject 2 (Engel et al. 1997). These maps were overlaid onto 

flattened cortical surfaces and imported into Inkscape where phase reversals and 

eccentricity patterns were used to hand-draw continuous ROI boundaries as described by 

Hansen et al. (Hansen et al. 2007). Ventral and dorsal regions were delineated for V1, 

V2, and V3. Surface-defined ROIs were then transformed back to functional 3D 

volumetric space using pycortex (get_roi_masks function with gm_sampler = “thick”). A 

cortical ribbon mask (adopted from Freesurfer’s earlier segmentation) was prepared for 

all ROIs. 

To identify cortex within the intraparietal sulcus (IPS) functional volumes were 

registered to Montreal Neurological Institute (MNI) 1mm3 standard space (FSL FNIRT, 

3mm warp resolution). ROI’s were then defined using published probabilistic maps of 

ROIs in volumetric standard space (Wang et al. 2015).These probabilistic maps were 

thresholded at 10%; any voxel belonging to multiple ROIs under this threshold was 

assigned to the ROI for which it had the highest probability of membership. The 

registration transform was then inverted to bring these ROIs from standard space back 

into individual subjects’ native spaces.   

Voxel-wise Encoding Model Design, Estimation, and Analyses of 

Parameters 

The Feature-Weighted Receptive Field (fwRF) Encoding Model 

Imagery encoding models and visual encoding models were estimated using the 

feature-weighted receptive field (fwRF) approach that was developed in-house (St-Yves 



41 

 

& Naselaris 2017). The fwRF is a voxel-wise encoding model meaning that it can be used 

to predict activation in response to arbitrary stimuli for each voxel in a functional volume 

(summarized in Figure 3.4A). Specifically, the fwRF utilizes both classic receptive fields 

and visual feature tuning by defining them as two separable sets of parameters of the 

same model. First, the model makes the assumption that a voxel’s activity can be 

explained by multiple feature maps, each of which describes the degree to which a 

specific feature is present across the visual stimulus, preserving the topology of the visual 

field. Secondly, the model assumes that the region that a voxel responds to is relatively 

localized and fixed across all feature maps.  

For this study feature maps were constructed by convolving Gabor wavelets of 

different sizes, orientations, and spatial frequencies with the visual stimuli (note that this 

preserves the topology but not necessarily the resolution of the stimulus in native visual 

space). Rather than pooling over pixels in a localized region of the stimulus (as the 

standard pRF model does) the fwRF model pools over the pixels in a localized region of 

feature maps (called the feature pooling field). Feature pooling in this study was adjusted 

such that the overall pooling was consistent across all feature maps (of different 

resolutions) with respect to a visual field region (the classical receptive field) (see Figure 

3.4B). The fwRF objective is to minimize the squared error between the observed data 

and the prediction produced by a set of feature weights and receptive field. Feature 

weights were optimized for each voxel through stochastic gradient descent and RF size 

and locations were optimized through grid search. 



42 

 

 

Figure 3.4  The fwRF model. A) Schematic illustration of fwRF model training. Training was 

performed independently for vision and imagery using completely independent datasets. First, the 

visual stimuli were convolved with complex Gabor wavelets of various spatial frequencies, 

orientations, and sizes. The visual stimuli used for both the imagery and visual encoding models 

was the same. Feature maps were constructed by taking the magnitude of each complex 

convolution. A feature pooling field (f.p.f) is then applied to each feature map. The f.p.f is a 

Gaussian function of space that is projected onto each feature map to obtain a scalar output per 

feature map. These outputs are then weighted by feature weights (ω1, … , ωn) that are, collectively, 

a visual feature tuning function. The sum of these feature-weighted outputs is the fwRF model's 

predicted activation in response to a stimulus. For each voxel, the sum of squared errors between 

the model's predictions and the measured activations in a training set was minimized using 

stochastic gradient descent over the feature map weights and a brute-force search over a grid of 

receptive field sizes (σRF) and locations (μx, μy). For the imagery runs, measured activations 

correspond to imagined stimuli; for the vision runs, measured activation correspond to seen stimuli. 

B) The feature pooling field size σf.p.f. is constrained by the selected receptive field size σRF and 

the pooling field size σp.f. of the feature being pooled over. As a consequence, feature maps with 

σp.f. ≥ σRF  have zero weights. 
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For practical reasons, two versions of the fwRF were estimated for each subject: one 

“fine” model fit was performed on the voxels within labeled ROIs only (V ≈ 50K) while 

a “coarse” model was fit on whole-brain (all voxels available i.e. V ≈ 300K). The coarse 

fits were used to provide a brain-wide view of the model’s prediction accuracy. The fine 

model fits offered more precision in model parameter estimates and slightly better 

prediction accuracy. Note that both models produced consistent results for the voxels to 

which they were both applied. 

For the “fine” models the visual feature set consisted of Gabor wavelets at 4 

uniformly distributed orientations times 12 spatial frequencies (log-spaced between ω = 

0.35 and ω =11.0 deg-1) for a total of 48 features. Gabor wavelets spanned 4 standard 

deviations of the Gaussian envelope and were designed to have one cycle per standard 

deviation. The fine model utilized a uniform grid of 21 × 21 receptive locations times 12 

receptive field sizes (log-spaced between 0.22 and 8.75 degrees of visual angle). 

For the “coarse” models, visual feature sets consisted of Gabor wavelets at 4 different 

uniformly distributed orientations times 8 spatial frequencies (log-spaced between ω = 

0.96 and ω = 8.23 deg-1 for a total of 32 features. The coarse model utilized a uniform 

grid of 10 × 10 receptive locations times 6 receptive field sizes (log-spaced between 0.73 

and 4.37 degrees of visual angle). 

Training and Cross-Validation 

The fwRF was applied to vision and imagery datasets independently, ultimately 

producing two encoding models for each voxel. Data from the visual runs were used to 
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estimate the visual encoding models, while data from the imagery runs were used to 

estimate the imagery encoding models. In both cases, the input of the encoding models 𝑠𝑡 

during training is the exact visual stimulus that was presented during the visual 

experiment (including the cue). All of the following details therefore apply to both 

instances of fwRF training. 

Feature weights and receptive field parameters were estimated using a 𝑘-fold cross-

validation procedure. To do this the  𝑁total = 512 samples of activation per voxel 

(corresponding to the 512 unique object-position pairs) were split into k=16 randomly 

selected and nonoverlapping validation subsets (𝑁val = 32). For each fold of cross-

validation, one of these subsets was set aside for validation while the rest (k-1) were used 

as model-training sets to estimate a fwRF model for each voxel (the latter group was 

further broken up into training and hold out sets to prevent overfitting). The resulting 

fwRF models were used to predict the activation of each voxel in response to the held-out 

validation subset. This process was repeated k times so that there was a prediction of 

activation for all voxels in response to each of the 512 unique object-position pairs. For 

the “fine” model the process was repeated 𝑘 = 16 times, resulting in 16 distinct fwRF 

models for each voxel. For the “coarse” model the process was repeated 𝑘 = 8 times. For 

each voxel, the concatenated 512 activation predictions were compared to the 

corresponding measured activation from the brain to obtain a Pearson correlation 

coefficient characterizing the overall model prediction accuracy for this voxel (see 

bottom of Figure 3.1). Error estimates on prediction accuracy values were obtained by 
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sampling 100 times with replacement the 𝑘 models for each voxel and recalculating the 

correlation coefficient for each sample. 

Estimation of the feature weights for each model was performed using stochastic 

gradient descent with a learning rate of 5 × 10-3 and with a batch size of 96 for a 

maximum of 100 epochs. For the “fine” model 40% of the training data was held-out as 

an early stopping set; for the “coarse” model the hold-out was 50%. Parameter updating 

halted early if the held-out loss began to increase. Estimation of the receptive field 

location and size was performed by brute-force search over the minimum hold-out loss 

reached by all possible candidates on a grid (see Figure 3.4A). 

 A significance threshold on prediction accuracy (dashed grey lines in Figure 5.2A 

and Figure 5.3) was defined as three standard deviations (𝑝 < 0.01) from the mean of a 

null distribution over prediction accuracy that assumed no relationship between the 

model predictions and measured activities. This null distribution was built through 500 

iterations of shuffling the model’s predicted activity over conditions for each voxel and 

then measuring the correlation coefficient between this shuffled predicted activity and the 

corresponding measured activity for that voxel. Unless otherwise specified, analyses of 

receptive field attributes and spatial frequency tuning were applied only to voxels with a 

visual or imagery encoding model above this accuracy threshold (Pearson correlation 

coefficient ≥  .16).  
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Voxel Selection 

To ensure that our results did not reflect any response to the slight changes in hue and 

shape of the cue with condition, the following procedure was used to identify and discard 

any voxel that showed sensitivity to the 6-letter cues during either the imagery or the 

visual runs. The visual stimuli used to estimate each fwRF model included both the 

object picture and its associated cue. To test for sensitivity to the cue, we calculated 

cross-validated prediction accuracy using input stimuli that contained either the cues or 

the object pictures only. Voxels for which the cue-only stimuli resulted in above-

threshold prediction accuracy for either the imagery or the vision encoding model were 

discarded from any analysis of receptive field attributes of feature tuning. Only voxels for 

which the picture-only stimuli resulted in above-threshold prediction accuracy were 

retained for receptive field and feature tuning analyses. Error! Reference source not 

found. enumerates the number of voxels per ROI and subject that satisfied these 

conditions. In Figure 5.4B, we retain voxels for which either the visual (top) or the 

imagery (bottom) encoding models had above-threshold predication accuracy. In Figure 

5.4C-E we retain only voxels for which both the visual and imagery encoding models had 

above-threshold prediction accuracy. 

Figure 3.5 shows receptive fields of the discarded cue-responsive voxels. As 

expected, receptive fields tend be small and are concentrated at the center of the visual 

field where the cue was displayed. 
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Table 3.1 Number of selected voxels per ROI per subject. Each cell contains three rows of 

numbers. The top row gives the total number of voxels in the specified ROI. The middle row 

gives the number of voxels with a visual encoding model that exceeds the prediction accuracy 

threshold (left, blue) and the number of voxels with an imagery encoding model that exceeds 

threshold (right, orange). The bottom row (dark green) gives the number of voxels with a visual 

and imagery encoding model that both exceed the prediction accuracy threshold. 
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Figure 3.5 Receptive fields of removed voxels with cue responsivity. Circle plots showing the 

average raw receptive fields (locations and relative sizes) corresponding to voxels from 

each area that were well predicted by the cue and subsequently removed from further 

analyses. Each ROI (row) is partitioned by hemisphere (“L” = left and “R” = right), 

and/or dorsal (“d”) and ventral (“v”). Circle radius is one standard deviation of the 

corresponding Gaussian envelopes. As expected, the discarded voxels had small receptive fields 

centered on the location of the cue.  
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Receptive Field Size and Location 

As described above, for each voxel we fit k = 16 independent visual encoding models, 

and k = 16 independent imagery encoding models, each corresponding to a different 

training/validation split of the data. Thus, for each voxel we obtain 16 different estimates 

of receptive field size and location. Results on differences in the location Figure 5.6C-D 

and size Figure 5.6A-B between imagery and visual receptive were obtained by 

repeatedly sampling these estimates.  

To construct the plots in Figure 5.6C-D we sampled 1000 pairs of imagery and visual 

receptive field parameters at random from the k = 16 “fine” encoding models available 

for each voxel. Lines in Figure 5.6D show the average shift (over all samples) in 

receptive field location of individual voxels from vision to imagery. Values in Figure 

5.6C show the average over all sampled pairs and voxels in each ROI, and the error bars 

for each subject indicate one standard deviation of the sampling distribution and the 

yellow shading shows the same for combined subject data. Similarly Figure 5.6B shows 

the mean and one standard deviation of the differences between imagery and visual 

receptive field sizes. Illustrations of receptive fields in Figure 5.6A and Figure 3.5 show 

average receptive field locations and sizes over samples for individual voxels.   

To obtain the significance estimates displayed for all receptive field size and location 

results in Figure 5.6 we tested the hypothesis of a non-zero mean difference between 

imagery and visual receptive field parameters against the null hypothesis of no mean 

difference. To construct the null distribution we performed the same sampling process as 

above with the addition of randomly assigning the “imagery” or “vision” designation to 
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each sampled value for each voxel in the indicated ROI. We then calculated the mean 

difference between the receptive field parameters between each group. This process was 

repeated 1000 times, resulting in a histogram of differences in mean receptive field 

parameters for each ROI. The region outside the red shaded area in Figure 5.6B-C 

indicates values at significance level p < 0.01 for combined subject data. For each subject 

and point individually, the observed values with p < 0.01 are indicated by a black asterisk 

on the mean observed value. 

Spatial Frequency Tuning 

Tuning is a reflection of the relative preference of a voxel for a certain type of 

explanation (i.e. certain parts of the model). For example, if a voxel’s model was to 

crucially dependent on a certain set of features such that its prediction dropped 

significantly whenever the weights associated with those features were set to zero, then 

we would say that the voxel is tuned to these features. Such a dropout procedure (St-Yves 

& Naselaris 2017) was used to determine all spatial frequency tuning shown and 

analyzed in this study. To determine tuning for a given voxel to a specific frequency, we 

set all weights to 0 except those belonging to feature maps generated using Gabor 

wavelets of that frequency. We then calculated the Pearson correlation 𝜌 between the 

activation predicted by the model with only those weights and the measured activation. 

The value of 𝜌 was calculated for each spatial frequency and can be interpreted as a 

percentage of variance explained (David & Gallant 2005) by that frequency. In order to 

compare voxels to each other, we normalized these frequency tuning curves to make 

them independent of the total variance explained. Thus, the tuning function was defined 
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as the square of 𝜌 for each specific frequency divided by the sum of the square of 

these 𝜌's over all frequencies Figure 5.4A (top 3 plots show examples for individual 

voxels). Thus, two voxels that show the same tuning profile but different maximum 

explained variance would have the same tuning curve. A tuning value of 0 for a given 

spatial frequency means that the associated feature maps explained none of the variance 

in activation across stimuli; a tuning value of 1 means it uniquely explained all of the 

variance.   

Averaging the tuning distributions of all voxels within a ROI produces a tuning 

distribution at the level of ROI. Averages (dots in Figure 5.4A, bottom and Figure 5.4, 

Figure 5.6B-C) and error estimates were obtained by sampling with replacement 100 

times the 16 validation subsets and associated encoding models for each voxel and then 

averaging across all iterations and voxels in a single ROI.  

Consistent with previous studies (Henriksson et al. 2008), ROI-level tuning curves 

were found to empirically obey a log-Gaussian relationship. We thus performed nonlinear 

regressions to fit curves of this form to each tuning curve (curves Figure 5.4A-C). This 

fit was used to estimate the peak frequency values of the tuning curves (Figure 5.4D) and 

its shift (Figure 5.4E). The error estimate on the difference in peak frequency between 

imagery and vision tuning curves takes into account the uncertainty in the fitting 

procedure as well as the uncertainty in the ROI tuning points. 

To obtain significance estimates for Figure 5.4E we tested the hypothesis of a non-

zero difference between imagery and visual peak spatial frequencies against the null 
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hypothesis of no difference between peak frequencies. To construct the null distribution 

of peak frequency shift, we randomly shuffled the “vision” or “imagery” designation of 

voxel-wise tuning and calculated the mean frequency shift 1000 times. The region 

outside the red shaded area in Figure 5.4E indicates values with p < 0.01 for combined 

subject data. For each subject and point individually, the points with p < 0.01 are 

indicated by a black asterisk. 

Stimulus Identification 

An important measure of the validity of an encoding model is how well it can 

discriminate target stimuli that correspond to the measured activity from other “lure” 

stimuli, or in other words, how well it can decode imagined images (Naselaris et al. 

2014). Here we used pairwise “hits” as a measure of identification accuracy. A “hit” 

occurs when the measured voxel activity pattern for the cued target is more correlated 

with the predicted activity pattern for that same target than the predicted activity pattern 

for a non-cued lure target. Note that any visual stimuli (not just the ones used in the 

present study) could be used to build the lure set of images, just so long as they could be 

fed to the encoding models to produce a prediction. However, for simplicity we selected 

our lure images from stimuli seen in the experiment. Identification accuracy for a given 

target stimulus is the percentage of hits accumulated across all lure images. 

We performed two distinct types of identification. Position identification was used to 

determine if the encoding models successfully captured the way that object position was 

encoded in population activity (i.e. identify which of the 8 positions an object was 

imagined). Similarly, object identification was used to determine if the encoding models 
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successfully captured the way that specific objects, independent of position, were 

encoded in population activity (i.e. identify which one of the 64 different objects was 

imagined). For both types of identification, the cue was not included as part of either the 

target or lure stimuli. Thus, model predictions did not include any information about the 

cue (and I again emphasize that cue-responsive voxels were not included in this analysis, 

see section on Voxel Selection). 

Both identification of locations and of objects is performed in two parts. First, half of 

the activation samples (256) for each voxel were randomly selected (but balanced such 

that all locations or objects were represented in each set). This half of the samples was 

used to estimate a cross-validated prediction accuracy score (Pearson correlation 

coefficient) for each voxel. These scores were used to rank-order all voxels from low to 

high accuracy and subsequently split them into groups of 500. The second part involved 

using each group of 500 voxels to calculate identification accuracy on the remaining half 

of the activation samples (256). In order to factor out the contribution of position during 

object identification and vice-versa, the activity patterns of samples that corresponded to 

the same identification target (a position or an object) were concatenated across either all 

64 objects (for position identification) or all 8 positions (for object identification). This 

produced 8 series of concatenated voxel predictions and measured values for location 

identification, and 64 for object identification. We then evaluated the correlation matrix 

between all prediction series and measured series (see Figure 3.6 for an example of an 

object identification matrix). The percentage of identification “hits” is then simply the 
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fraction of entries for which the diagonal elements have a greater value than the other 

entries in the row corresponding to the “lure” predictions. 

To produce the curves shown in Figure 4.2, the previous procedure is repeated 100 

times for overlapping brackets of decreasing voxel validation accuracy (i.e., the top 

bracket contains the 500 voxels with the most accurate encoding model predictions, the 

second bracket contains the voxels with the 251st - 750th most accurate, etc.). Values on 

the x-axes of plots in Figure 4.2 give the largest (over the 100 repeats) of the smallest 

validation accuracy within each bracket. The standard error captures the variation of the 

identification “hits” percentage within each bracket.  

To estimate the level of identification due to chance, the real identities of the 

locations (objects) underwent 5 shuffling per each of the 100 repeats discussed above and 

a common histogram was built from these 500 values for each bracket. Chance level for 

hits, the center of the null distribution, is always 50%. The region outside the grey 

shading near the bottom of plots in Figure 4.2 correspond to identification score with 

significance level p < 0.01. 
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Figure 3.6 Object Identification Matrix. An example object identification matrix for one subject 

where each entry corresponds to the degree of correlation between the voxel activations predicted 

by the imagery encoding model for a single object picture (concatenated across all 8 positions) 

and the measured voxel activations in response to imagining the same object picture (darker 

orange is a stronger correlation). A “hit” is then counted every time the diagonal entry is higher 

than another “lure” entry along the same row.  
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Chapter 4 : Validation of the Imagery Encoding Model  

     Specific Aim 1:  Build voxel-wise imagery encoding models. Hypothesis: imagery 

encoding models, like visual encoding models, can be successfully measured from fMRI 

data, used to predict brain activity to new imagined stimuli, and used to decode the 

position and content of the imagined stimuli. 

Overview and Rationale   

In the context of visual neuroscience, encoding models are models that attempt to 

capture the transformations that turn seen pictures into evoked brain activity. In human 

neuroimaging, voxel-wise encoding models can be built by examining the relationship 

between changes in visual features seen by a subject and systematic changes in individual 

voxel activity. Importantly, these encoding models make predictions about how a voxel 

will respond to a given input/stimuli and the model is in fact trained by tweaking its 

parameters so that it makes predictions that are closer and closer to the observed activity 

of that voxel. Once the appropriate parameters (those that lead to good predictions) are 

learned, those parameters can be used to infer “what” or “where” in the visual world a 

given voxel is tuned to. In other words, voxel-wise encoding models can be used to 

estimate the way in which visual features are encoded in individual voxels during a 

certain task. For the task of vision, such models are now routinely estimated (Kay et al. 

2008; Naselaris et al. 2009; St-Yves & Naselaris 2017; Kay, Winawer, et al. 2013). For 

example, a relatively simple and popular encoding model is the population receptive field 

(pRF) model (Dumoulin & Wandell 2008) which estimates receptive fields (RFs), areas 

of the visual field that, when a stimulus is presented within it, evokes increased activity in 
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a neural unit such as a neuron. The pRF model estimates RFs for populations of neurons 

(i.e. a voxel) by presenting subjects with a high contrast stimuli that sweeps across the 

visual field as a bar or expands as a ring. The parameters of a given voxel’s receptive 

field, specifically its size and location, are then adjusted until its prediction of a voxel’s 

activity evoked by the stimuli closely matches that of the measured voxel activity evoked 

by that same stimuli. 

The relationship that we have derived between vision and imagery (that imagery 

activity can also be expressed as a function of s) suggests that we should be able to 

recover imagery encoding models in the same manner as with visual encoding models 

only with a slightly different conditioning. That is, instead of viewing s, imagine s (see 

Equation 6). These encoding models could in turn be used to probe the hypothesized 

differences between vision and imagery. In the following chapter I give a brief overview 

of the experimental design that we implemented to vary visual features in imagined 

visual space while measuring the corresponding changes in fMRI voxel-wise activation 

patterns, and how this data was used to build an imagery encoding model (iEM) 

independent of a visual task  
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Methods 

We measured whole-brain fMRI BOLD activity as three participants viewed and then 

imagined previously memorized object pictures in 1 of 8 different positions within the 

visual field. Each picture was associated with a six-letter cue and subjects familiarized 

themselves with picture-cue pairs prior to scanning. During vision runs, subjects were 

presented with both the cue (on which they fixated) and the picture in one of the positions 

while they passively viewed. During imagery runs, subjects were presented with the cue 

alone on which they fixated while imagining the matching picture. The color of the cue 

corresponded to the color of 1 of 8 brackets (each framing a portion of the stimulus field) 

and indicated the location in which the subject was to imagine the picture. For example, 

the cue “firtrk” written in blue means imagine the fire truck in the bottom left corner 

within the blue bracket. It is important to note that the colored brackets remained constant 

throughout all runs and the color-coded fixation-cues appeared in both conditions so that 

the only difference between vision and imagery conditions was the complete absence of 

the object picture during the imagery runs. The only source of variance during the 

imagery runs would therefore be the small changes in color and composition of the 6-

letter cue at the center (overall size of the cue remained constant) and importantly, the 

imagined image. 

To characterize the tuning properties of voxel activity during imagery, we used an 

encoding model estimation procedure developed in house: the feature weighted receptive 

field (fwRF) model (St-Yves & Naselaris 2017). The fwRF model is capable of 

describing not only the location and extent of receptive fields but also tuning to any 
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feature that can be extracted from the stimuli, such as spatial frequency. This model has 

been shown to recover receptive field properties and tuning functions consistent with 

known organizational principles of the visual cortex. The fwRF was used to estimate 

voxel-wise visual encoding models from the visual runs and imagery encoding models 

from the imagery runs. Encoding models specified tuning to spatial frequency and a 

receptive field location and size for each voxel. Each voxel therefore had two 

independent models, a visual encoding model and an imagery encoding model. Any 

voxel sensitive to the cues was discarded. All experimental runs performed with subjects 

1–3 were also performed on a 4th control subject (S4) where eye tracking was measured 

(using a SR Research EyeLink 1000 eye-tracker) to confirm that any results obtained in 

relation to the stimuli (whose location was intentionally manipulated) could not be 

accounted for by eye movement. For more detailed information on the experimental 

design, data acquisition and processing as well the specifics of the fwRF model training 

see Chapter 3 on Experimental Methods.   

Results  

Analysis of Encoding Model Performance   

A first and crucial test of the imagery encoding model (iEM) is to show that it can 

successfully explain variance in signal across mental images that were not used to train 

the model. To do this we performed a k-fold cross-validation analysis (see Methods for 

details). Briefly, the trained imagery models were used to generate predictions of voxel 

activity in response to held-out imagined pictures sets. The validation was then scored as 

the Pearson correlation coefficient (CC) between the predicted and measured activities 
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during imagery for each voxel. As a reference point, this was also done for the visual 

encoding models (vEMs) using held-out data from the vision runs. Therefore, each voxel 

had a validation score for the iEM and a validation score for the vEM. Figure 4.1 shows 

the cross-validation prediction accuracy for each voxel from the vEM (top row) and iEM 

(middle row) mapped onto a flattened cortical surface of each subject, while the bottom 

most row shows the distribution of iEM scores (orange) and vEM scores (blue) for all 

voxels as well as their joint distribution (green). All voxels falling above the horizontal 

grey line reached the significance threshold set on prediction accuracy (Pearson 

correlation coefficient ≥ .16, 𝑝 < 0.01 see methods for how this was calculated). The 

iEM was able to predict activation in response to imagined pictures well above 

significance for many voxels in all visual cortical areas considered here (see Error! 

Reference source not found. for count of significant voxels by visual area for all 

subjects).  

To further establish the validity of the iEM we performed model-based identification. 

That is, how well the model can pick out the cued imagined stimulus from other “lure” 

stimuli using predictions of activity patterns across voxels. We distinguish between two 

measures of identification performance: position identification (i.e. which of the 8 

positions the object was shown) and object identification (i.e. which one of the 64 

different objects was shown, regardless of its position). Most importantly, object 

identification must rely on some feature(s) of the object present in the stimulus, not just 

the area of the visual field that it happens to occupy, and therefore its success can rule out 
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certain confounds (such as spatial attention). In both cases, we used the pairwise accuracy 

(“hits”) to represent identification accuracy. 
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Figure 4.1 Cross validation accuracy of encoding models. Prediction accuracy (colorbar) 

of the visual encoding model (vEM; top row) and imagery encoding model (iEM; middle 

row) mapped on the flattened cortical surface for each subject. Bottom: joint histogram 

(green) and marginal histogram of prediction accuracy for imagery (orange) and visual 

(blue) encoding models across all voxels for subjects 1-3. The iEM makes accurate 

predictions of imagery activity (Pearson correlation ≥ 0.16, 𝑝 < .01; dashed grey lines) 

in all subjects.  
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Briefly, identification was assessed in groups of 500 voxels at a time, and for every 

cued target (an imagined object or position) a pattern of evoked activity was measured in 

the brain across all the voxels in that group. A hit was counted whenever the measured 

group pattern for a cued target was more correlated with the predicted group pattern for 

that same cued target than for some other non-cued “lure” target (see Figure 3.6 for 

example matrix of correlations). Predictions of activity patterns made by the imagery 

encoding models were accurate enough to identify position of (Figure 4.2, top) and 

object in (Figure 4.2, bottom) the imagined stimuli. This demonstrates that subjects were 

imagining the cued objects as instructed. Moreover, groups that contained voxels with 

higher prediction accuracies performed better identification. This suggests that the 

success of the model depends, to a degree, on the object-picture contained in the stimuli. 

Accurate identification of imagined objects would not be possible if variation in spatial 

attention, eye position or visual cues were the sole determinants of prediction accuracy. 
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Figure 4.2 Identification of imagined stimuli. Model performance in identifying the 

correct position (top) and object picture (bottom) of the imagined stimuli for each ROI in 

each subject. Curves show percentage of correct pairwise identification (colored shading 

indicates ± 𝑆𝐸; gray shading indicates statistical significance threshold of 𝑝 < .01 

(permutation test) for subpopulations of 500 voxels in visual area. Ordering along x-axis 

is by lowest prediction accuracy of all voxels in each subpopulation. 
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Analysis of the Learned Encoding Model Parameters  

The goal of aim 2 is to measure changes in encoded features across the visual cortex 

from vision to imagery. In order for this comparison to have meaning, we must first make 

sure that our model is assigning receptive field and tuning parameters that reflect known 

functional structure of the visual cortex during vision. Cortical maps of receptive field 

size, receptive field location and peak spatial frequency derived from visual encoding 

models (Figure 4.3, left) are consistent with maps observed in many previous studies, 

e.g., (Dumoulin & Wandell 2008; Kay et al. 2015; St-Yves & Naselaris 2017; Hansen et 

al. 2007). Namely, receptive field size increased and spatial frequency preference 

decreased with distance from foveal representations, and reversals in receptive field 

visual angle occurred over the boundaries between ROIs (note that ROI boundaries were 

drawn using a separate set of standard retinotopy mapping experiments). Interestingly, 

for every subject, the imagery encoding models also exhibit reversals at the boundaries of 

visual ROIs (Figure 4.3, top right) that are consistent with visual organization. Plots of 

visual receptive field locations show expected relationships between visual field 

quadrants and ventral/dorsal, left and right cortical hemispheres (Figure 4.4). 

Additionally, visual encoding models reproduce expected size-eccentricity relationships 

(Figure 4.5).  
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Figure 4.3 Anatomical layout of encoding model attributes.Visual angle (top row), 

average eccentricity (middle row), and spatial frequency tuning (bottom row) during 

vision (first column) and imagery (second column) shown on a flatted cortical surface for 

subject 1, displaying the retinotopic organization recovered by the encoding models.   
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Figure 4.4 Visual receptive fields. Circle plots showing the average raw receptive fields 

(locations and relative sizes) corresponding to a subset of voxels from each area during 

vision. Each ROI (row) is partitioned by hemisphere (“L” = left and “R” = right), and/or 

dorsal (“d”) and ventral (“v”) position in order to demonstrate specificity of model 

receptive field properties by quadrant of visual field. The dashed lines delineate the four 

quadrants of the visual field and the black hatched areas fill in the quadrant or side one 

would expect to see a concentration of receptive field locations (given known retinotopic 

organization of the human visual cortex).   
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Figure 4.5 Size-eccentricity relationships. The assigned visual receptive field size as a 

function of the assigned receptive field eccentricity for voxels from each ROI. In line 

with known organizational properties of the human visual cortex, this relationship 

becomes steeper with ascent of the visual hierarchy.  
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Control for Potential Eye-Movement Confounds 

As is shown above, the prediction of the imagery encoding models were accurate 

enough to identify imagined object pictures independently of their location (Figure 4.2). 

This result in itself can rule out any confound due to subtle eye movements in the 

direction of the imagined scenes. However, to demonstrate this directly, we ran our 

experiment with a fourth control subject while tracking the subject’s eye movements. We 

estimated and then validated imagery encoding models for this subject, obtaining results 

comparable to those obtained for subjects 1-3 (Figure 4.6). The following steps were 

taken to show that the subject did not have biased eye movement which might explain 

these imagery encoding model results.  

First, to confirm that the eye-tracker read-out was showing the correct relative 

location of the eyes fixation within the visual field, we ran an extra test run (in addition to 

standard calibration that was performed at the start of each run) in which a target dot 

appeared in 1 of 9 known positions spanning the area in which the experimental pictures 

were shown. The subject was instructed to fixate on the target as it appeared. Figure 

4.7A shows that the location of measured eye fixations (colored points) overlapped with 

the location of the target (marked with an X). Eye fixations were then measured during 

each vision and imagery run. As demonstrated by the example imagery run in Figure 

4.7B, the measured fixations were not systematically shifted relative to the different 

locations that the subject was instructed to imagine the object pictures.  

Next, to account for any overt eye movements that were not observable but still 

systematically varied with the stimuli, we created a simple linear model that attempted to 
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predict brain activity using eye fixations as input. For each run (n = 21) the simple linear 

model was trained on three-quarters of the data, where the target was the GLM beta 

weights assigned to a given condition (a picture and location) and the inputs were the x 

and y of the eye fixations during that condition. The resulting model weights were used to 

predict the beta values of the remaining left-out conditions (while taking care that this 

validation group had 2 of each position). These predictions were compared to the 

measured betas from the brain activity, giving a correlation coefficient (ρ) for each voxel. 

The flatmap in Figure 4.7C shows the average run performance score (ρ) for the eye-

fixation model for each voxel. The scale is the same as those shown in main in Figure 

4.1 and Figure 4.6, demonstrating that there are no areas in which eye fixations have 

prediction power. Finally, to ensure that the above eye-fixation model failed because 

there were no systematic biases in eye fixations, rather than failing due some other 

inherent issue of the model, we created “synthetic” eye fixations that varied in sync with 

changes in the position of the stimulus. When given this fabricated and systematically-

biased data, the model performed quite well (Figure 4.7D) in the visual cortex, showing 

that results in Figure 4.7C were due to a lack of overt biases in eye movement that might 

account for our main results. This further highlights the importance of eye tracking and 

other controls (i.e. the image identification) for potential confounds. 

Taken together, these results show that the subject fixated at the center of the visual 

field as instructed, no matter the position of the imagined stimulus, that there was no 

evident systematic bias in eye fixations related to position of stimulus, and that even with 
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eye movements controlled for, we still recovered the same imagery encoding model 

validation results that were observed in subjects 1–3 (Figure 4.6). 

 

Figure 4.6 Cross validation accuracy of encoding models and stimulus identification for 

control subject with eye-tracking. Results are displayed in a similar fashion as Figure 4.1 

and Figure 4.2 to demonstrate that data acquired at 3T with eye-tracking replicates the 

finding of the three subjects in the main experiment. A) Validation accuracy during 

imagery as a function of the validation accuracy during vision for each voxel 

(hexbinned). Marginal plots show the individual distributions of model validation for 

vision (blue) and imagery (orange). The red lines indicate the validation accuracy 

threshold, where the lower-right quadrant corresponds to voxels that are well predicted 

exclusively during vision while the upper-left quadrant correspond to voxels that are well 

predicted exclusively during imagery. The upper-right quadrant corresponds to voxels 

predicted in both modalities. Visual B) and imagery C) prediction accuracy plotted on the 

flattened cortical surface. Darker colors indicate higher prediction accuracy. D) Model-

based identification of imagined stimulus position accuracy from a subpopulation of 500 

voxels within each visual area plotted against the lowest prediction accuracy within that 

subpopulation of voxels. E) Same as in (D) but with identification of imagined stimulus 

picture content. In both cases, the gray shaded area represents one standard deviation of 

the distribution of identification accuracy due to chance. The colored-shaded area around 

each curve correspond to one standard deviation of the accuracy estimate. 
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Figure 4.7 Eye-tracking control results. A) Eye-tracking calibration results 

demonstrating that the eye-tracker was accurately tracking eye fixations. Xs mark the 

positions within the visual field the target appeared (each location in a different color) 

during an eye-tracking calibration test. The colored circles indicate the location of the 

subject’s fixation as measured by the eye-tracker, each colored to match the X marking 

the position of the target during that given fixation. B) Example eye fixations during the 

experiment demonstrating that the subject successfully fixated at center with no 

observable biases toward the location of the imagined picture. Plots show all fixations for 

all conditions in a sample imagery run separated by location of stimulus. The colored 

brackets are the same as was present for all imagery and vision runs. The color of the 

fixation points (as well as the relative location of the plot in which it appears) correspond 

to the position in which the picture occurred during that fixation. Center plot shows the 

center of mass of each group of fixations (color matches those in the other 8 plots) plotted 

together and zoomed in to 160x160 pixels to show their relative location in respect to 

each of the other positions. C) Flatmap showing the prediction performance of a linear 

model attempting to use eye fixations to predict brain responses to different stimulus 

positions. Scale is the same as those shown in Figure 4.1 and Figure 4.6, demonstrating 

that eye fixations had no prediction power. D) Results that would have been obtained had 

there been systematic biases in eye movement. Prediction accuracy results when the eye-

fixation model was given synthetic eye movements that varied in sync with the cued 

position of the imagined object picture. In this case the model performed quite well, 

ensuring that there was not an issue with the structure of the model itself, but that a total 

absence of systematic eye movements was underlying the lack of prediction power in (C). 
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Interpretation and Discussion  

The iEM is the first instance of a feature encoding model estimated directly from 

mental imagery: previous studies examining encoded features in imagery used models 

trained on visual data and only tested on imagery (Naselaris et al. 2014; Senden et al. 

2019). The iEM is built solely from fMRI data collected during mental imagery and is 

entirely independent from visual encoding model that we have built here for comparison. 

Our experimental design allowed us to remove virtually all retinal variance so that we 

could isolate the neural responses evoked from changes happening in the imagined visual 

space. Even with the only source of variance coming from internally generated imagery, 

the model was able to learn how to accurately predict voxel activity and to decode the 

content and location of new imagined stimuli in a manner similar to the established visual 

encoding model. We have thus demonstrated the feasibility and utility of the iEM as a 

novel tool for investigating mental images. These findings license us to use the iEM to 

directly infer the features that have been encoded during imagery across the visual 

hierarchy. The follow chapter explores the parameters of the imagery and visual encoding 

models and tests for differences in the encoding of imagined and seen stimuli.   
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Chapter 5 :  Signatures of Inference in a Generative Model: 

Shifts in Properties from Vision to Imagery 

Specific Aim 2:  Determine if signatures of inference in a generative model can be 

observed during mental imagery in the human brain. Hypothesis: (1) tuning to imagined 

features in lower visual areas will more closely resemble tuning to seen features in higher 

areas and (2) a gradient in this distortional effect that increases with hierarchical distance 

below the reactivated area, demonstrating key signatures of inference that follow from 

our formulation of mental imagery as inference in an internal generative model.  

Overview and Rationale   

In Chapters 2 and 3, I laid out the theoretical and technical tools needed to build 

encoding models, and in Chapter 4 I established that such models can be constructed 

from brain data during imagery alone and that these models contain meaningful 

information about the features encoded during mental imagery. In this chapter, I describe 

how we used these tools to explore how vision and imagery compare and how this varies, 

if at all, across visual areas.  

Following the relationships described in Chapter 2, if the HGM is a good model for 

both forms of visual experiences then we expect to see a gradient of increasing distortions 

moving down the levels of the visual hierarchy whereby receptive field and tuning 

properties of imagery shift away from vision properties for that level, and towards the 

vision properties of the source (clamped) area. Also note that the echo effect should only 

cause a distortion in all areas of the hierarchy below the clamped stage. Because of the 

assumed lossless reactivation of the clamped stage and the structure of the hierarchy 
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where each stage only “sees” the activity of the stage directly above or below it, inference 

will proceed above the clamped level exactly as it does during vision. Therefore, all areas 

above the clamped stage will converge to an activation state during imagery that is 

indistinguishable from vision, and increasing distortional effects will be seen below the 

clamped level. If such patterns between vision and imagery do exist we should be able to 

detect them using encoding models built and tested in Chapter 4. 

The specific features one would expect to find encoded druing mental imagery then 

follow from our hypothesis combined with the known organizational principles of 

encoded features during vision across the visual cortex. During vision, the types of 

features encoded in higher-level areas in the human visual hierarchy tend to be more 

abstract and of lower resolution relative to lower-level visual areas (Figure 5.1, left). For 

example, high-level areas respond preferentially to low spatial frequencies and are tuned 

to large portions of the visual cortex (i.e. they have large receptive fields), while low-

level areas respond preferentially to high spatial frequencies and have small precise 

receptive fields for working out high resolution details (Henriksson et al. 2008; Dumoulin 

& Wandell 2008; Kay, Winawer, et al. 2013; Grill-Spector et al. 2018).  

Therefore, we expect to find increasing divergence in such properties moving down 

the visual hierarchy whereby imagery receptive fields become relatively larger and more 

foveal and imagery spatial frequency preferences become relatively decreased (Figure 

5.1, right).  

 



76 

 

 

 

  

Figure 5.1 Hypothesized changes in receptive field and tuning properties. Schematic 

illustrating the change in resolution and encoded features (such as receptive field size 

and spatial frequency preference) during vision (blue) with ascension of the visual 

hierarchy. We hypothesize that at and below the clamped area, the features encoded 

during imagery (orange) will more closely resemble those of the clamped area during 

vision, resulting in a loss of resolution in the lower, more detail-oriented layers. 
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Methods 

Detailed descriptions of how the imagery and visual encoding models were built from 

the fMRI BOLD signal can be found in Chapter 2. Both encoding models specified a 

separate receptive field location and size as well as spatial frequency tuning for each 

voxel (see Figure 4.3 for an example of the retinotopic organization of these estimates). 

In order to assess how the encoding model attributes changed from vision to imagery 

across the visual hierarchy we defined regions of interest (ROIs) within the visual cortex 

for each subject. This was done using separate retinotopic mapping runs and standard 

probabilistic topographic maps. Differences between vision and imagery in terms of 

model accuracy, SNR, spatial frequency tuning, receptive field size and location were 

then calculated for each ROI in each subject.  

Results 

Imagery Encoding Model Prediction Accuracy and Signal-to-Noise Exhibit Graded 
Attenuation Across Hierarchical Levels. 

If during imagery an activity pattern in one visual area is clamped to an expected 

visual activity pattern, we should expect prediction accuracy of imagery and visual 

encoding models to be close to parity in this area. This was true in intraparietal sulcus 

(IPS), a collection of visual areas at the highest level of processing considered here 

(Figure 5.2A and Figure 5.3). Relative prediction accuracy of the imagery encoding 

model decreased with descent toward primary visual cortex (V1). This gradient is 

highlighted by noting that the slope of purple line (the best linear fit of iEM to vEM) 

approaches the line of parity (iEM accuracy = vEM accuracy) from low to high areas. 
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The distance from parity (slope of fitted line – 1; less negative numbers indicating 

stronger similarity) is plotted for each ROI and each subject in Figure 5.2B. The gradient 

in relative encoding model prediction accuracy is most likely due to the matched gradient 

in relative signal-to-noise (SNR; Figure 5.2C). The attenuation of SNR during imagery 

in the brain tracked an attenuation in signal amplitude (Figure 5.2D). Interestingly, this 

finding is in line with the hierarchical formulation of a generative model, as a loss of 

signal would be expected with each transformation taking the activation from the 

clamped level to lower levels. Noise was uniformly reduced during imagery at all 

processing levels and for all subjects (Figure 5.2E), a result that could be a consequence 

of clamping an additional stage during imagery which would effectively reduce the 

number of random variables in the system and therefore reduce noise. This prediction 

accuracy and SNR gradient serves as the first indication that the relationship between 

imagery and vision varies systematically across the visual cortex in line with the echo 

hypothesis. 
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Figure 5.2 Relative prediction accuracy of imagery encoding models (iEM) across visual areas. 

(A) joint histogram (green) and marginal histogram of prediction accuracy for imagery (orange) 

and visual (blue) encoding models for indicated area (subject 1 only; ordering of visual areas 

follows (Markov et al. 2013). Purple line shows slope (γ) of best linear fit of iEM to vEM 

prediction accuracy. Inflated brain surface map shows relative prediction accuracy (2d colormap) 

of the iEM and vEM. (B) Difference from parity (γ -1) for each area. (C) Median signal-to-noise 

ratio (SNR) for imagery activity relative to visual activity. (D) Relative signal (𝑆; i.e., activation 

amplitude) and (E) noise (𝑁).  
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Figure 5.3 Relative prediction Accuracy for subjects 2 and 3. Format as in Figure 

5.2. 
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Spatial Frequency Preference During Mental Imagery is Reduced Relative to Vision in Low-
Level Visual Areas 

The theory predicted that spatial frequency preference during imagery should 

decrease relative to visual spatial frequency preference with descent from the clamped 

level toward V1. Such decreases in spatial frequency preference during imagery relative 

to vision were in fact observed (Figure 5.4). Unlike encoding model prediction accuracy, 

loss of SNR in early visual areas cannot account for these effects. In other words, it is not 

the case that the model automatically assigns lower spatial frequency preferences to 

noisier voxels potentially leading to the observed shift in tuning for imagery. Rather than 

being somehow inherently linked to low frequencies, noisy voxels instead exhibit flat 

turning curves across all areas for both imagery and vision (dashed curves in Figure 5.5).  

In order to demonstrate the generality of the tuning shift phenomenon, we considered 

two different “spatial scales”: overall ROI population tuning shift and voxel-wise tuning 

shift. In the population shift, an overlapping but not necessarily identical group of voxels 

may be used (i.e. mean tuning of all the voxels in V1 that are well predicted during vision 

vs. mean tuning of all the voxels in V1 that are well predicted during imagery), while the 

voxel-wise shift can only be assessed in voxels that were well predicted by both vision 

and imagery (i.e. mean of shifts from vision to imagery within voxels). The two 

perspectives are indicated by the inset Venn diagrams in Figure 5.4B-D (individual 

shading of orange or blue circle indicate population tuning, and shading of the overlap in 

green indicate voxel-wise tuning) and can be linked to changes in activation amplitude 

during imagery in response to different spatial frequencies. If during imagery the 

amplitude decays uniformly across all neurons and features, it may be possible to see a 
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tuning shift at the level of ROI (already low activations during vision could drop low 

enough during imagery to have voxels removed from the imagery tuning average), but we 

would not expect to see any tuning shifts at the level of an individual voxel. Yet if the 

amplitude decay during imagery “spares” specific populations of neurons, we would 

expect to see tuning shifts at both the population level and the individual voxel level. As 

is shown in Figure 5.4B and C the spatial frequency tuning shift from vision to imagery 

is seen at both spatial scales. This is consistent with selective neuronal population 

changes in early visual areas leading to shifts toward the frequency tuning of the clamped 

area. All subsequent panels and analyses use the voxel-wise population.  

Receptive Field Location and Size are Altered During Imagery Relative to Vision in Low-
Level Visual Areas  

Another predicted effect of the echo transformation is that imagery receptive fields 

should be increasingly dilated and displaced toward the fovea relative to visual receptive 

fields with descent toward V1. In V1, imagery receptive fields were larger (Figure 

5.6A,B) and more foveal (Figure 5.6C,D) relative to vision for each subject. Consistent 

with our theory, the evidence for differences between imagery and visual receptive field 

attributes weakened with ascent toward high-level visual areas. 
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Figure 5.4 Differences in spatial frequency tuning between vision and imagery. Differences in 

spatial frequency tuning between vision and imagery. (A) Visual (blue) and imagery (orange) 

spatial frequency tuning curves for single voxels sampled from V1 and V3ab and population 

tuning curves for V1 (bottom). (B) Top: Population tuning curves during vision for all voxels in 

the indicated area that have an accurate vEM. Bottom: Population tuning curves during imagery 

for voxels that have an accurate iEM. Populations in top (blue circle in Venn diagram) and 

bottom (orange circle) plots are overlapping but not identical. (C) Population tuning curves for all 

voxels in the indicated area that have an accurate vEM and iEM. All subsequent panels use this 

population. (D) Peak spatial frequency of tuning curves in (C). (E) Difference between peak 

spatial frequency during imagery and vision. 
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Figure 5.5 Spatial frequency tuning curves for all ROIs and subjects. Spatial frequency tuning 

curves for all ROIs and subjects. Plots show the average tuning curves in each ROI in S1-3 for 

vision (blue) and imagery (orange). Solid lines represent the tuning of all voxels with a prediction 

accuracy above a threshold while dotted lines represent the tuning curves of all voxels below 

threshold (i.e., voxels for which either the imagery or vision encoding model gave poor 

predictions). This demonstrates that our modeling procedure does not induce a bias toward low 

frequency preferences for voxels with substantial unexplained variance. Rather, for such voxels 

the modeling procedure produces flat spatial frequency “tuning”. 
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Figure 5.6 Differences in receptive field location and size between vision and imagery. 

(A) Example visual and imagery receptive fields (RF) for single voxels (B) Average 

signed change in RF size from vision to imagery. Positive (negative) values indicate 

dilation (shrinkage). (C) Average signed magnitude of shift in RF location from vision to 

imagery. Negative values indicate a shift toward fovea. (D) Orientation and magnitude 

(line segments) and direction (color-wheel at far right) of RF location shifts (same voxels 

as in (B) and (C)) from vision to imagery. The red shaded area in (B) and (C) indicates 

significance level 𝑝 < .01 (permutation test) for combined subject data (yellow curve). In 

all panels asterix indicates significant difference from null value (red line, 𝑝 < .01, 

permutation test; red shading indicates significance threshold for combined data); shading 

on curves indicates ±𝑆𝐸. 
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Interpretation and Discussion  

Summary of Results 

We have shown, through building and leveraging imagery encoding models, that 

there is a gradient of distortion in imagery receptive field properties traveling down the 

visual processing stream. This distortion moves the representations encoded during 

imagery towards those seen in higher areas during vision. Specifically, imagery receptive 

fields are on average larger and more foveal, and tuning is shifted towards lower spatial 

frequencies relative to vision in lower-level areas. This is consistent with the echo effect 

that follows from our formulation of mental imagery as inference in an internal, 

hierarchical generative model. Furthermore, we have shown that, for the specific task 

performed by the subjects in our experiment, the level of clamping happens around area 

V4. The implications of this as well as other details and caveats of this study are 

discussed in detail in the following sections.  

On the Level of Clamping and Use of Complex Stimuli  

In this study we chose to use complex natural stimuli for two main reasons. First, 

such stimuli approximate what we see and imagine in real life (i.e., of the laboratory). 

Secondly, and more importantly, we chose to use complex stimuli because the purpose of 

our experiment was to test predictions about the differences between vision and imagery 

at all levels of the visual hierarchy, and complex natural stimuli are known to engage the 

visual system at all levels (Grill-Spector & Malach 2004; Einhäuser & König 2010; 

Çukur et al. 2013) in a subtly different manner than would the sum of their parts (Kayser 

et al. 2004; Carandini 2005; Snow et al. 2017). Complex stimuli thus satisfied a 
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fundamental requirement of our experimental design. Simple parametric stimuli (e.g., 

bars, gratings, dots) tend to robustly excite only low-level visual areas, and thus would 

have been a poor choice for our experiment. However, at first blush it might seem that 

using such complex stimuli may leave room for the subjects to "unsuccessfully imagine” 

the object (imagine a “zebra” but not imagine the details of the stripes) and might suggest 

that using simple stimuli (such as gratings, bars, dots vs. natural stimuli) would make it 

easier for subjects to “correctly imagine” the stimuli, subsequently closing the gap in the 

differences between vision and imagery that we found in lower areas. This idea however 

is based on a common but unfounded assumption and puts forth a scenario that is actually 

not inconsistent with our theory.  

First, such an argument presupposes that we know what performing imagery perfectly 

would imply for the neural activity, suggesting that in order for one to successfully 

imagine something, they must imagine it just as it were during vision. This seems 

unlikely, given the phenomenological and measured differences between vision and 

imagery. Under the generative interpretation to “imagine poorly” simply means to clamp 

high. Any lack of detail in imagined images therefore does not indicate a failure of the 

subject to imagine correctly but rather reflects a general limit on our capacity to 

experience the details of a complex object we are holding in our mind’s eye. In other 

words, our model describes why such a limit would exist. Such high-level clamping may 

help to explain why mental images lack the specificity of seen ones. High-level visual 

areas provide a poor substitute for the visual detail encoded in retinal activity during 

vision. Formulated as an echo transformation, inference conditioned on a high-level 
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representation of the stimulus will effectively low-pass filter the image representation. 

The strongest evidence for this effect comes from the reduced spatial frequency 

preference observed in V1 and V2 in all subjects during imagery. Therefore incidentally, 

our theory suggests a solution to the issue of indeterminacy discussed in the introduction: 

being able imagine a specific object without being able to imagine the details of that 

object is perfectly in line with clamping high. For the same reasons, our theory also 

explains why vision encoding models are somewhat successful at predicting and 

decoding imagery activity (Naselaris et al. 2014; Horikawa & Kamitani 2017), and 

characterizes further their intrinsic limitations. 

Secondly, it is important to note that a decrease in the differences between vision and 

imagery with the use of simpler stimuli/tasks than the one used here does not contradict 

our account of imagery, and in fact our model would predict such a change given 

variations in the level of reactivation. This is because we do not claim, nor does our 

theory compel us to claim, that clamping high is an invariant feature of mental imagery. 

In other words, our model does not dictate that there be a gradient in change along a set 

portion of the visual hierarchy, only that there exists a gradient in resolution of features 

encoded below the clamped level, wherever that may be. 

With that said, it seems at the present moment that natural imagery generally involves 

clamping relatively high as indicated by numerous studies finding the greatest similarities 

between vision and imagery in high-level visual cortex (Pearson et al. 2015). All 

experiments showing significant similarity between imagery and vision have also shown 

a high degree of asymmetry (quantified in many studies as the decoding accuracy of a 
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classifier) in the representations in the early visual cortex (Reddy et al. 2010; Lee et al. 

2012). Even in a study that specifically used simple gratings as stimuli, there was 

decreased performance of a classifier in V1 during imagery relative to vision (Bosch et 

al. 2014) indicating that even with the simplest stimuli there is still a change in the lowest 

areas and therefore clamping is likely to generally occur above this level.   

Generative vs. Adversarial Imagery 

We have interpreted the observed differences between vision and imagery as 

evidence of feedback from a high-level visual area clamped to an activity pattern that is 

identical to the mean activity pattern evoked during vision. Let’s call this interpretation 

“generative”. Yet we might consider an alternate interpretation in which a subject clamps 

low but imagines poorly. We will call this the “adversarial” interpretation. Under this 

interpretation the clamped activity pattern in V1 during imagery of s is not identical to 

the mean activity pattern evoked while seeing s. Rather, the activity pattern is identical to 

a blurred or displaced or otherwise corrupted version of s that we’ll call s′. This 

“adversarial image”, s′, might get the low-level details of s very wrong while still 

preserving enough of s that high-level areas can read off the same features they would if s 

were seen. It is possible that such an arrangement could lead to some, but we believe not 

all, of the effects we observed in our study. We find the generative interpretation more 

plausible than the adversarial interpretation for two reasons.  

First, the generative interpretation is most parsimonious. As is discussed above, the 

generative interpretation of  “imagining poorly” simply means clamping high (e.g. 

imagine the correct object “zebra” but fail to imagine the correct frequency of stripes). 
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The generative interpretation thus replaces the vague notion “imagines poorly” with a 

single discrete hyperparameter, i.e., the level of clamping. As I described above, 

clamping high limits spatial resolution and under-specifies features, even if the clamped 

activity pattern is a perfect reinstatement of a visual activity pattern. The generative 

interpretation thus attributes limits on the specificity of mental images to the limit of 

specificity in high-level visual areas that is built-in to the visual system. In contrast, the 

adversarial interpretation would require additional concepts to model and predict specific 

imperfections in the reinstatement of cortical activity patterns.   

Second and most importantly, the sign of the gradients in signal (i.e., activation 

amplitude) observed during mental imagery are most compatible with the generative 

interpretation. Under the generative interpretation signal should attenuate with distance 

below the clamped level. Signal attenuation with distance from source is a stable 

configuration for a system–like the visual system–with extensive feedback connections. 

For the adversarial interpretation to be compatible with our results signal would have to 

amplify with distance from the clamped level for all levels above in such a way that it can 

reach activation parity relative to vision near the top of the hierarchy. Such amplification 

would be unlikely to yield stable dynamics. 

Mental imagery and Attention 

Previous fMRI studies have shown that changes in signal amplitude, receptive field 

attributes and feature tuning can be induced by changes in a subject’s state of attention 

(Womelsdorf et al. 2006; Çukur et al. 2013; Klein et al. 2014; Kay et al. 2015; Vo et al. 

2017; Klein et al. 2018).In our study subjects were free to marshal attention as needed to 
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form mental images. It is therefore important to consider how the effects that we have 

attributed to clamping during mental imagery relate to previously observed attentional 

effects. Interestingly, from a purely descriptive perspective with regards to the brain areas 

most affected by imagery or attention, the effects we observed in our imagery study are 

the opposite of previously observed attention effects. In our study the largest differences 

between imagery and vision were seen in V1 and V2. These differences weakened with 

ascent of the visual hierarchy. In contrast several attention studies that reported robust 

changes in signal amplitude (gain), receptive field size and eccentricity (Klein et al. 2014; 

Kay et al. 2015; Vo et al. 2017) and/or feature tuning (Çukur et al. 2013) across different 

states of attention found these changes in high-level visual areas and reported no or 

smallest changes in V1-V3. Thus it is clear that previously observed attentional effects 

were not replicated in our study.  

The changes in encoding properties induced by changes in attention have often been 

interpreted as evidence of an attention-induced optimization of the allocation of neural 

resources. In contrast, we interpret the changes in encoding properties induced by mental 

imagery as evidence of an inference process that constrains representations of imagined 

visual features in low-level visual areas to resemble representations of seen features in 

high-level areas. Whether a similar inference process might be leveraged to explain the 

disparate effects on representation observed in attention experiments is an interesting 

topic for future research.  
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Chapter 6 : Conclusions and Insights Into the Opening 

Questions 

Summary of Dissertation and Results  

We tested the hypothesis that mental imagery is a form of inference conditioned on a 

clamped visual activity pattern at a single processing level in a hierarchical generative 

model. In Chapter 1, I described the current findings and open questions in the field of 

mental imagery that we used as a guide in building this hypothesis. In Chapter 2 I 

described how we developed a formalized treatment of this theory and showed 

analytically that under this hypothesis activity patterns during imagery are related to 

activity patterns during vision via an echo transformation, and that the effects of the echo 

transformation could in principle be revealed by estimating imagery encoding models. 

Following from these relationships, we predicted that the encoding models would 

uncover feature tuning in lower visual areas during imagery that closely resembled tuning 

to seen features in higher areas, as well as a gradient in this distortional effect that 

increased with hierarchical distance below the clamped area.  

In Chapter 3 I described in detail the novel fMRI experiment that we designed and 

carried out in order to test these predictions, whereby subjects were cued to imagined 

natural object pictures in different positions of the visual field. I also described the fwRF 

modeling approach that we used to estimate voxel-wise receptive field and tuning models 

from data collect during vision runs, and, for the first time, independently from data 

collected from imagery runs. In Chapter 4 I validate the imagery encoding models by 
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showing that they can accurately predict activity patterns in response to new stimuli and 

can be used to decode both the position and content of imagined objects.  

 By independently estimating separate visual and imagery encoding models for each 

voxel we were able to directly compare changes in encoded features from vision to 

imagery across the visual cortex of our subjects. In Chapter 5 I describe the results of this 

comparison, which corroborated all of the predicted effects, demonstrating relatively 

larger, more foveal receptive fields and lower spatial frequency tuning during imagery in 

lower-level visual areas. Additionally, I demonstrated how signal and noise changes from 

vision to imagery further favored the hierarchical, generative model. In the following 

sections I discuss the implications of our findings to our understanding of mental imagery 

by returning to the opening questions.  

The Nature of Mental Images and Their Utility 

Many aspects of the proposed theory align well with the iconophile stance, and while 

we may want to be wary of over-projecting our modern understanding of cognitive 

processes onto the writings of ancient thinkers, the re-instantiation of visual information 

even appears strikingly similar to Aristotle’s “echoes” of visual percepts. On the other 

hand, the theory we propose here also does not disagree with some aspects of the 

iconophobe perspective, given that the areas where mental images and percepts seem to 

be the most interchangeable (at and above the clamped stage) is where the neural code is 

considered to be more language-like than depictive. By providing evidence for a model of 

imagery that draws a relationship to vision and emphasizes its representation across a 

hierarchy, we have presented a portrayal of imagery that is both depictive and descriptive 
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in nature. Certainly, this will not settle the debate once and for all, but such findings do 

suggest that we should move away from thinking of imagery within this dichotomy and 

focus more on its hierarchical representations. 

Concerning utility, our theory is consistent with the intuition that mental imagery 

supports reasoning about things and scenes that are not currently present. Our theory 

formalizes this intuition by equating the special “reasoning” supported by mental imagery 

with inference in a hierarchical generative model. The theory thus implicitly asserts that 

we have mental images because inferring the visual consequences of a predicted or 

remembered cause can be useful. In visual areas below the clamped area, imagery 

facilitates inference about the lower-level details associated with, and left unspecified by, 

the clamped representation. The theory presented here thus views imagery as similar to 

the phenomenon of “amodal completion” discussed in Revina et al. (2018). It is also 

consistent with the model of Kosslyn and colleagues (Kosslyn et al. 2006) that treats 

mental imagery as the faculty that allows one to answer questions such as “Do giraffes 

have horns?” when no giraffe is handy to inspect. Note that mental imagery is not 

consistent with any model of vision that treats low and intermediate processing levels (or 

visual areas) as way-stations in the transformation of images into categorical or 

propositional representations (e.g., a deep neural network trained to classify objects). Our 

theory provides a coherent story for why visual information is encoded during imagery in 

lower areas. In other words, in direct contrast to Pylyshyn’s null hypothesis, our theory 

posits that structured activations in early visual cortex during imagery are not mere 
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epiphenomenal side effects of ordinary reasoning, but rather reflect the fact that low-level 

and intermediate representations are in fact worth reasoning about. 

If evidence for the theory presented here continues to accumulate it will be interesting 

to consider a question that the theory currently does not answer: does the visual system 

support inference because mental images help us to reason, or are we able to generate 

mental images because inference helps us to see?  

How do mental images differ from the ones we see? 

In contrast to Hume’s depiction of mental images as differing from percepts only in 

intensity, our results have revealed a significant change in the visual features encoded 

during mental imagery in the lower parts of the visual hierarchy. Therefore, it appears 

that visual images are not simply fainter versions of percepts but instead have a more 

complex relationship to vision: mental images closely resemble percepts in higher areas, 

but are distorted relative to percepts in terms of the representations they occupy in lower-

level areas. This would suggest that the details of imagined objects are difficult to make 

out not because they are faint, but because the resolution is simply not there.  

 Interestingly, recent studies have linked the subjective vividness of mental imagery 

to the similarity of representations in visual cortex during vision and imagery (Dijkstra et 

al. 2017, 2019). In the theory presented here the similarity between imagery and vision is 

determined, and crucially limited, by the hierarchical level at which an activity pattern is 

clamped. Our results suggest that in our experiments clamping occurred at least as high 

as V4. At and above V4 the distortion of spatial tuning and receptive field attributes 
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during mental imagery relative to vision were much less than in areas lower in the 

hierarchy. In summary, within our model, imagery differs from vision (both subjectively 

and empirically) in that the specific inference it imposes on the visual system results in a 

distortion in the features encoded below the clamped area. 

Vision Synthesis in the Absence of Retinal Input  

By tying mental imagery to inference we have provided a potential explanation for 

how mental imagery could utilize visual representations but encode them in different 

activity patterns. We have also given empirical support to the intuition that we imagine to 

“see” the visual consequences of predictions and memories. Our work also extends the 

power and relevance of the generative perspective on vision. Previous results relating 

vision to inference have supplied evidence that representations in biological visual 

systems are adapted to the structure of the visual environment (Olshausen & Field 1996; 

Karklin & Lewicki 2009; Berkes et al. 2011). Other studies relating vision to the related 

concept of predictive coding have supplied evidence that knowledge of the visual 

environment can be combined with contextual information to represent the visual 

structure of occluded scenes (Muckli et al. 2015) and of illusory contours (De Haas & 

Schwarzkopf 2018). The current results provide additional compelling evidence that 

highly structured representations can emerge independently of retinal input (Berkes et al. 

2011; Vetter et al. 2014) allowing the visual system to reason coherently about the visual 

environment even when there is nothing to see. 
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