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TIFFANY GRA Y BAKER. Heat shock protein-induced protection against cisplatin­

,,' induced hair cell death. (Under the instruction of Lisa L. Cunningham) 

Cisplatin is a highly successful and widely used chemotherapy for the treatment of 

various solid malignancies in both adult and pediatric patients. Side effects of cisplatin 

include nephrotoxicity and ototoxicity. Cisplatin's ototoxic effect results in part from 

damage to and death of cochlear hair cells. Mechanisms underlying cisplatin-induced 

hair cell death are poorly understood and have been attributed to DNA damage, oxidative 

stress, and inflammation. This study was designed to determine the role of p53 in 

cisplatin-induced hair cell death and to investigate heat shock proteins (HSPs) as 

potential protectants against cisplatin-induced hair cell death using adult mouse utricle as 

an in vitro model of mature mammalian hair cells. p53 is a well-known transcription 

factor involved in the DNA damage response. Usingp53-1
- mice and wild-type litter 

mates, results indicate that p53 is not necessary for cisplatin-induced death of hair cells 

and hearing loss. Heat shock has been previously shown to inhibit cisplatin-induced hair 

cell death. Since HSP70 is upregulated following sublethal heat shock, the role ofHSP70 

in heat shock-conferred protection against cisplatin was investigated. HSP70 is necessary 

for the protective effect conferred by heat shock against cisplatin-induced hair cell death. 

Constitutive expression of inducible HSP70 offered modest protection against cisplatin­

induced hair cell death, indicating that HSP70 is sufficient to protect against cisplatin. 

HSP32, a stress-inducible protein responsible for the catabolism of free heme, has been 

shown to protect against oxidative and inflammatory stress in multiple systems. Cobalt 

protoporphyrin IX (CoPPIX) -induced HSP32 was previously shown to inhibit cisplatin­

induced death of hair cells from neonatal rat cochlear explants. Results indicate that 
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HSP32 offers significant protection against cisplatin-induced hair cell death in cultured 

adult mouse utricle at multiple cisplatin concentrations, that CoPPIX induces expression 

ofHSP32 primarily in resident macrophages of mouse utricle, and that macrophages are 

necessary for the protection conferred by CoPPIX-induced HSP32 against cisplatin. Due 

to the robust protection conferred by HSP32, it may prove promising in the design of a 

co-therapy for the prevention of cisplatin-induced hearing loss. 

v 



CHAPTER 1: INTRODUCTION 

How the ear senses sound and balance 

The vertebrate organ responsible for detecting sound and balance is the ear. The ear can 

be subdivided into three parts: the outer ear, the middle ear, and the inner ear. These 

three components of the ear work together to transmit acoustic stimuli through air and 

fluid interfaces until they, ultimately, result in neuronal impulses sent to the brain. 

The outer ear, consisting of the pinna and ear canal, is the only portion of the ear 

that is externally visible. The pinna, made primarily of cartilage and skin, is the funnel­

like portion of the outer ear that collects and directs sound waves to the ear canal. 

Functions of the outer ear include a mild increase in the sound pressure level of acoustic 

stimuli and protection of the tympanic membrane and other more internal ear anatomy 

from the environment. The sound waves continue through the ear canal until they reach 

its most internal limit, the tympanic membrane. The tympanic membrane is a thin 

connective tissue sheet that serves as the interface between the outer ear and the middle 

ear. 

The middle ear is an air-filled space which contains the three middle ear bones or 

ossicles: malleus, incus, and stapes. Sound stimuli cause vibration of the tympanic 

membrane. The sound vibration is transmitted through the middle ear as a result of direct 

physical contact between the tympanic membrane and the inner ear bones. Thus, when 

sound pressure from the ear canal pushes on the tympanic membrane, the malleus moves 

within the middle ear. As all of the middle ear ossicles are connected to one another via 

small ligaments, movement of one results in movement of the others. The stapes, the last 



in the ossicular chain, has direct contact with the oval window, a thin membrane 

separating the air-filled middle ear cavity from the fluid-filled inner ear. Movement of 

the ossicular chain, results in a piston-like action of the stapes on the oval window, an 

energy which is transferred to an inner ear fluid, perilymph. Due to the impedance 

mismatch between air and perilymph, sound vibrations traveling through the middle ear 

must be amplified in order to be effectively transmitted to the fluid medium of the inner 

ear. Such amplification is achieved in two ways: (1) The surface area of the oval window 

is smaller than the surface area of the tympanic membrane, thus resulting in the transfer 

of increased energy per unit area at the oval window when compared to the tympanic 

membrane, and (2) the ossicles are arranged so that their combined movement results in a 

lever action which also boosts the energy contained in the already existing sound 

stimulus. Due to the delicate anatomy of the middle ear ossicular chain, mechanisms also 

exist which effectively attenuate vibrations that could potentially damage the middle ear. 

F or instance, two muscles, the tensor tympani and the stapedius muscle, will contract in 

the presence of loud sound in order to attenuate the vibrations transmitted to the inner ear. 

The inner ear, a collection of highly specialized organs designed to sense sound 

and balance, is housed in the bony labyrinth of the temporal bone. Each of the inner ear 

organs contains sensory hair cells which are responsible for the transduction of 

mechanical stimuli resulting from sound (organ of Corti) or head movement (ampullae, 

utricle, and saccule) into neuronal impulses. Hair cells are columnar, highly polarized 

cells with hair-like projections from their apical surfaces called stereocilia. Stereocilia 

are arranged in bundles. The stereocilia bundles of the cochlea and vestibular system are 

deflected in response to sound or head movement, respectively, which leads to the 
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opening of mechanically-gated ion channels located near the tips of the stereocilia 

(Hudspeth 1989). The mechanotransduction channel, which is yet to be identified, allows 

the influx of ions rather nonspecifically into the hair cells. This influx ofK+, Ca++, and 

Na+ ions into the hair cell is a consequence of the electrochemical gradient existing 

between the specialized fluid media of the inner ear, the endolymph (high K+) and the 

perilymph (low K+). Hair cells are arranged within inner ear sensory epithelia such that 

only their apical surfaces (containing stereocilia) are exposed to endolymph. Apical tight 

junctions between hair cells and neighboring supporting cells prevent the mixing of 

endolymph and perilymph. Specialized cells and cycling pathways in the inner ear work 

to maintain the ionic gradient between endolymph and perilymph (Hibino et al 2010; 

Wangemann 2006). Following the depolarization of hair cells, synaptic vesicles are 

released into synaptic clefts found between the hair cells and adjacent neurons. The 

stimulated auditory neurons then propagate action potentials which send the sound or 

balance stimulus information to the brain. 

The snail shell-shaped region of the inner ear is the cochlea which is home to the 

auditory organ known as the organ of Corti. The organ of Corti, like the balance organs, 

features a hair cell-containing sensory epithelium. However, the organ of Corti exhibits 

an extremely complex arrangement of hair cells and other cell types. The cochlea is a 

coiled bony tube lined with membranous structures that subdivide it into three smaller 

tubes: scala vestibuli, scala media, and scala tympani. The scala media is found in the 

middle of these three canals, and it is lined by Reissner's membrane superiorly and the 

basilar membrane inferiorly. Scala media contains K+ -rich endolymph. Superior to 

Reissner's membrane is the scala vestibuli. The scala vestibuli is filled with perilymph, a 
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relatively K+ -poor fluid which also fills the scala tympani. As the stapes footplate 

pushes on the oval window, that energy is then transferred to the scala vestibuli at the 

base of the cochlea. Upon reaching the most apical point of the cochlea (the 

helicotrema), the energy begins to move basally again through the scala tympani. Thus 

the scala vestibuli and scala tympani meet at the apex of the cochlea. The energy is 

finally dispersed by way of the fluid of the scala tympani pushing outward on the round 

window membrane which then bulges out from the basal portion of the scala tympani to 

the air-filled middle ear. The specialized morphology of the basilar membrane, the 

membrane segregating scala media from scala tympani, results in the tonotopic 

arrangement of the cochlea (i.e. high frequencies sensed at the base of the cochlea, low 

frequencies sensed apically). The basilar membrane oscillates in response to the sound 

energy moving through perilymph. The point of maximal oscillation in response to an 

individual stimulus is directly related to the frequency of the sound. When the basilar 

membrane is exposed to a multi-frequency stimulus, it will exhibit several oscillatory 

maxima along its length. Thus, the basilar membrane is dissecting a single sound into its 

constituent frequencies. These oscillations in the basilar membrane are often referred to 

as traveling waves. The louder a sound, the greater the amplitude of the traveling wave at 

the locations of the frequencies involved. The lateral wall of the scala media contains the 

stria vascularis, a group of specialized cells which are integral to maintaining the high K+ 

concentration in the endolymph, the fluid which fills the scala media. Reissner's 

membrane and the basilar membrane are fused at the apex of the cochlea, thus resulting 

in the sac-like character of the scala media. The hair cells of the organ of Corti have a 

specific arrangement of three to four rows of outer hair cells and a single row of inner 
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hair cells. The stereocilia of the outer hair cells are embedded in the ribbon-like tectorial 

membrane that runs the entire length of the organ of Corti. As mentioned before, 

deflection of the stereocilia bundles of hair cells results in their depolarization and 

subsequent signaling to adjacent neurons. The deflection of the stereocilia of hair cells in 

the organ or Corti results from the shearing forces created as a result of the movement of 

the tectorial membrane (superior to the hair cells) and the basilar membrane (inferior to 

the hair cells). The inner hair cells are those directly responsible for turning a sound 

stimulus into a neuronal signal to be sent to the brain. The outer hair cells act to amplify 

sound stimuli directed to the inner hair cells. Although still a debatable topic, this is 

likely the mechanism behind what has long been dubbed the cochlear amplifier. Outer 

hair cells contain a motor protein called prestin in their lateral cell membrane. Upon 

depolarization, outer hair cells contract, thus pulling down on the tectorial membrane, 

and changing its position relative to the hair bundles of the inner hair cells. 

The balance organs are found at the bases of the three semicircular canals (cristae 

ampulari) and in the vestibule (utricle and saccule). Each of these organs contains a 

small monolayer patch of hair cells and supporting cells. The three semicircular canals 

are oriented in different planes: horizontal, anterior, and posterior, and this unique 

arrangement allows their sensory epithelia (cristae ampulari) to detect angular 

acceleration of the head. Each semicircular canal terminates in a dilated chamber called 

an ampulla, which contains the crista. A narrow band of tissue, the cupula, spans the 

diameter of each ampulla, contacting the crista at one end. Angular head movement 

causes fluid within the narrow canals to move, thus applying pressure to the cupulae and 

triggering mechanotransduction in hair cells of the cristae. The utricle and saccule detect 

5 



linear acceleration of the head, as well as gravitational forces. The hair bundles of these 

otolith organs project into a gel-like medium. The gel layer is topped by a layer of small 

crystals or otoconia. Collectively, these otoconia act as a weight which, when moved, 

results in deflection of the hair cell bundles. The orientation of the hair cells in the otolith 

organs and the position of each organ in the skull determine the direction of movement 

sensed by these organs. In the case of both the semicircular canals and the vestibular 

otolith organs, it is the combination of signals from each sensory patch that ultimately 

allows humans to sense the orientation of their head in space. 

All non-mammalian vertebrates (i.e. fish, amphibians, reptiles, and birds) have the 

capacity to replace hair cells throughout their lives, a capability lost in postnatal 

mammals. Thus, a mammal that loses hair cells can never regain them, resulting in 

permanent hearing loss. Outer hair cells tend to be more sensitive to ototoxic insults than 

inner hair cells. Loss of either type of hair cell results in the worsening of an individual's 

hearing capacity. Outer hair cell loss, alone, results in decreased sensitivity to sound (due 

to loss of the cochlear amplifier), as well as a decrease in frequency resolution. Loss of 

inner hair cells results in loss of the capacity to sense sound at those frequency places 

along the cochlea that were affected. Currently, hair cell regeneration is a hot topic in the 

field of hearing research. Hearing loss in humans can occur as a result of: (1) genetics, 

(2) infection (bacterial/viral), (3) ototoxic drugs (aminoglycosides/cisplatin), (4) acoustic 

trauma, and (5) aging. Due to the morphological complexity of the mammalian cochlea, 

the creation of new hair cells is not sufficient to regain cochlear function in the face of 

the afore-mentioned insults. Such newly derived hair cells would have to be present in 

the proper organization within the already-existing cochlea and gain associations with the 
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appropriate neighboring cell types, such as neurons and supporting cells. Therefore, it 

will be a long time before mammalian hair cell regeneration will become a practical 

clinical reality. It is for this reason that the preservation of hair cells in the inner ear 

epithelia is critical to the preservation of human hearing for years to come. 

Cisplatin, an ototoxic drug 

Cisplatin (cis-PtCh(NH3)2) is a 300 d molecule that was first discovered in 1845 by 

Michel Peyrone. In the 1960's Rosenberg and colleagues discovered that cisplatin 

inhibits cell division (Rosenberg et al 1965). Cisplatin was accidentally formed during an 

experiment designed to test the effects of electricity on bacteria. The result was the 

formation of a platinum compound in the culture media which originated from the 

platinum coating on the submerged electrodes. Subsequent investigation revealed that 

the cis form of the platinum compound was the most effective at inhibiting bacterial cell 

division (Rosenberg et al 1967). A few years later, cisplatin was investigated as a 

potential chemotherapeutic agent. Cisplatin entered clinical trials for the treatment of 

cancer in 1971 and was approved by the FDA as an anti-neoplastic agent to treat ovarian 

cancer in 1978. Since its original approval, cisplatin remains a widely and successfully 

used chemotherapeutic drug for numerous adult and pediatric malignancies. Cancers 

commonly treated with cisplatin include bladder, ovarian, testicular, lung, head and neck, 

osteosarcoma, neuroblastoma, retinoblastoma, and medulloblastoma. 

Cisplatin has numerous effects on cells, due to the indiscriminating manner in 

which it covalently binds different types of molecules. This feature of cisplatin is what 

allows it to so readily bind DNA, thus performing the tell-tale antitumor role for which 
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cisplatin is known. In addition, cisplatin inhibits protein synthesis by interfering with 

polypeptide elongation (Heminger KA et al 1997; Rosenberg JM 1993). In vitro analysis 

of this phenomenon has revealed that cisplatin disrupts the formation of the initiation 

complex required for protein elongation to occur (Rosenberg JM 1993). Furthermore, 

cisplatin can inhibit protein translation by inhibiting synthesis of the translation 

machinery, itself. Due to the affinity for high mobility group (HMG) domains to interact 

with cisplatin-DNA adducts, proteins containing these domains are sequestered by the 

cisplatin-DNA adducts, thus preventing them from undergoing their normal activities in 

cells. Upstream binding factor (UBF) is a transcription factor responsible for initiating 

the transcription of ribosomal RNA (rRNA). UBF and other rRNA transcription 

machinery is hijacked by cisplatin-DNA adducts, thus preventing rRNA transcription in 

cisplatin-treated cells (Jordan P 1998). 

Cisplatin and cancer cells 

The primary mechanism by which cisplatin kills cancer cells stems from the direct 

interaction of cisplatin molecules with DNA. Cisplatin hydrolysis seems to be a rate­

limiting step in the formation of cisplatin-DNA ad ducts (Butour et a11985; Knox et al 

1986). The very reactive aquated cisplatin forms inter- and intrastrand DNA adducts 

which cause deformation of the DNA double helix. The majority of these adducts, and 

those believed responsible for the cytotoxic effects of cisplatin, are 1, 2-intrastrand cross­

links (Eastman 1986). 

Cells have intrinsic DNA repair mechanisms which mayor may not improve the 

quality of damaged DNA. Certain DNA damage recognition and/or repair molecules are 

known to interact with cisplatin-DNA adducts. The major DNA repair mechanism 
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responsible for the removal of cisplatin adducts is nucleotide excision repair (NER) 

(Huang et al 1994; Zamble et al 1996). This discovery has been further substantiated by 

evidence that some NER-deficient cells are more sensitive to cisplatin-induced death than 

those with intact NER (Furuta et al 2002; Koberle et al 2010; Selvakumaran et al 2003; 

Stubbert et al201 0; Wu et al 2003). Moreover, cisplatin resistance has been attributed to 

enhanced NER capacity (Ferry et a12000; Mukai et aI2002). Another class of DNA­

binding proteins that interact with cisplatin adducts are a family of the high mobility 

group proteins dubbed high mobility group box proteins (HMGBs), due to the presence 

of a B-box DNA-binding motif. HMGBs bind with very high affinity to the 1, 2-

intrastrand cross-links formed by cisplatin (Billings et a11992; Hughes et a11992; Pil & 

Lippard 1992). HMGB proteins, once bound to platinated DNA, are thought to act as a 

shielding mechanism which prevents NER-mediated repair of cisplatin-DNA adducts 

(Arioka et al 1999). The existence of the shielding mechanism is supported by the fact 

that the presence ofHMGBl on cisplatin adducts inhibits the ability ofNER proteins to 

bind the DNA, thus directly inhibiting the DNA repair process (Huang et al 1994; 

Zamble et aI1996). Interestingly, evidence exists linking HMGB proteins to the function 

ofp53, a transcription factor and major mediator of the DNA damage response. p53 

seems to enhance the ability ofHMGBl to bind cisplatin adducts, and HMGBI can 

stimulate binding ofp53 to its target sequences on DNA (Imamura et a12001; Jayaraman 

et al 1998). As with NER, the relative amount of HMGB protein expressed by cells has 

been correlated with cisplatin sensitivity (Arioka et al 1999). Although a lot is known 

about the removal or lack of removal of cisplatin-DNA adducts, it should be noted that 

many proteins recognize and interact with platinated DNA. In fact, novel proteins that 
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bind to these sites, such as TOX4, are still being discovered (du Puch et aI2011). The 

exact mechanisms linking these proteins to cell death are still not known. 

The DNA damage response involves recognition of the damage, cell cycle arrest, 

and, upon insufficient repair of the damage, activation of apoptosis. Cell cycle arrest and 

apoptosis are regulated by p53. p53 is a transcription factor that is normally degraded as 

quickly as it is transcribed, keeping total p53 protein levels fairly low in normal cells 

(Oren et al 1981). This rapid and perpetual degradation of p53 is mediated by ubiquitin 

ligases (e.g. murine double minute 2 (MDM2)) and the proteosome (Honda et a11997; 

Maki et al 1996). However, once a cell sustains DNA damage, p53 is stabilized via 

phosphorylation by phosphatidylinositol-3-kinase related kinases (PIKK), such as ataxia 

telangiectasia mutated protein (A TM) and ataxia telangiectasia and Rad3 related protein 

(ATR). ATM, ATR, and downstream serine/threonine-protein kinases Chk1 and Chk2, 

can phosphorylate p53 at Ser15 (ATM, ATR), Ser 37 (ATR), and Ser 20 (Chk1/Chk2) 

(Banin et al 1998; Canman et al 1998; Hirao et al 2000; Khanna et al 1998; Sakaguchi et 

al 1998; Shieh et al 2000; Tibbetts et al 1999). p53 phosphorylation inhibits the binding 

ofMDM2 to p53, thus preventing its ubiquitination and subsequent degradation and 

allowing it to accumulate in the cell (Shieh et al 1997). MDM2 not only inhibits p53 

activity by inducing its degradation, it also inhibits its transcriptional activity (Momand et 

aI1992). Thus, once free ofMDM2, p53 protein is allowed to undergo nuclear 

translocation to induce transcription of a variety of genes. Gene targets of p53 include 

regulators of the cell cycle, such as p21, pro-apoptotic proteins, such as the p53 

upregulated modulator of apoptosis (Puma) and the Bcl .. 2-associated X protein (Bax), as 

well as its own negative regulator MDM2 (Barak et a11993; el-Deiry et al1993; 
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Miyashita & Reed 1995; Nakano & Vousden 2001). At this first sign of DNA damage, 

p53 transcriptionally activates p21, resulting in cell cycle arrest (Ozaki & Nakagawara 

2011). Irreparable DNA damage ultimately leads to the transcription of pro-apoptotic 

targets ofp53, thus killing the cell. The molecular steps that trigger p53 to make the 

switch from cell cycle arrest to activation of pro-apoptotic transcriptional targets have 

only recently been elucidated. In 2010, a group discovered that for a period just after the 

onset of DNA damage, p53 is bound by a nuclear factor with BRCT domain 1 (NFBDl), 

thus preventing the phosphorylation ofp53 by ATM (Nakanishi et aI2007). At a later 

time point following the onset of DNA damage a sharp decline in NFBDI protein 

allowed ATM to activate p53. The tumor suppressive function ofp53 arises from its 

ability to prevent the inheritance of damaged DNA by daughter cells via the disruption of 

cell cycle progression and/or triggering pro-apoptotic events (Ozaki & Nakagawara 

2011). It is, therefore, no surprise that nearly half of all tumors harbor a p53 mutation 

(Olivier et al 2010; Soussi et al 2006). 

Due to the wide variety of tumors commonly treated with cisplatin, the exact role 

of p53 in cisplatin-induced tumor cell death is somewhat variable and ultimately depends 

on the tumor cell. However, p53 sensitizes certain tumors to the cytotoxic effects of 

cisplatin. Cisplatin-resistant tumor cell lines, including esophageal, bladder, and 

osteosarcoma cells, with non-functional p53 can be sensitized to cisplatin treatment upon 

exogenous expression of wild-type p53 or p53 targets (Ganjavi et al 2006; Pagliaro et al 

2003; Wang et aI2006). Further evidence for p53's role in cisplatin-induced cancer cell 

death stems from investigations into testicular germ cell tumors (TGCTs) which are 

hypersensitive to cisplatin treatment. Kerley-Hamilton et al. (2005) examined changes in 
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gene expression following cisplatin treatment of testicular germ cell-derived human 

embryonal carcinoma cells. This group identified 46 upregulated genes following 

cisplatin treatment, and it was postulated that over half of them were downstream of p53. 

p53 knockdown experiments revealed that inhibition of p53 not only decreased the 

sensitivity of these cells to cisplatin but also eliminated or lessened the upregulation of 

the cisplatin-responsive genes. A more recent study demonstrated direct links between 

p53 and the cisplatin-sensitive nature ofTGCTs (Gutekunst et aI2011). In this study 

siRNA knockdown ofp53 rescued TGCT cell lines from cisplatin-induced apoptosis in a 

dose-dependent manner. Furthermore, cisplatin-induced apoptosis of the cells was 

attributed to two transcriptional targets of p53, Puma and Noxa, and concomitant 

knockdown of Puma and Noxa completely rescued the cells from cisplatin-induced death. 

Reactive oxygen species (ROS) have also been implicated in the cisplatin-induced 

death of cancer cells (Pak et al 2011; Santandreu et al 2010). ROS are intermediates or 

byproducts of cellular respiration that, if not transformed into more stable molecules or 

eliminated by antioxidant systems, can cause damage to lipids, proteins, and nucleic 

acids. The types of damage incurred by ROS on cells includes lipid peroxidation, protein 

oxidation, and breaks in DNA. Thus, ROS could be a secondary mechanism by which 

cisplatin incites the DNA damage response. Examples ofROS include the superoxide 

anion and the hydroxyl radical. 

Cisplatin-induced nephrotoxicity 

Nephrotoxicity is a major dose-limiting side effect of cisplatin treatment that was first 

documented while cisplatin was in clinical trials (Pabla N and Dong 2008; Lippman, AJ 
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1973; Talley RW 1972). Approximately 30% of patients who receive cisplatin 

experience renal toxicity as a result (Arany I Et a12003; Beyer J et aI1997). Symptoms 

of cisplatin-induced nephrotoxicity, which can occur as early as 10 days into treatment, 

include decreased glomerular filtration rate, increased serum creatinine, increased blood 

urea nitrogen, and unbalanced electrolytes (Arany I et al 2003; Meyer and Madias, 1994; 

Hanigan and Devarajan 2003). Numerous aspects of cisplatin dynamics have been 

implicated in its ability to harm renal cells, including its route of entry by way of copper 

transporters and organic cation channels, its ability to incite the DNA damage response, 

its ability to tip the redox balance of a cell toward oxidative stress, as well as its ability to 

induce inflammation. 

The primary cell type affected by cisplatin in kidney is the renal proximal tubule 

cell (Wei Qet al 2007). These cells can die apoptotically and/or necrotically as a result of 

cisplatin treatment (Lieberthal W et al 1996). At least half of cisplatin molecules are 

thought to enter renal proximal tubule cells via the copper transporter Ctr 1 and the 

organic cation transporter OCT2 (Pabla and Dong 2008; Pabla N et al 2009; Y onezawa A 

et a12005; Ciarimboli Get al 2010). Once inside the cell, the nature of cisplatin-induced 

renal cell death is multifactorial. Molecular pathways responsible for the injury and 

death of proximal tubule cells include the DNA damage response, oxidative stress, and 

inflammation. 

p53, a major mediator of the DNA damage response in cells, is a major mediator 

in cisplatin-induced nephrotoxicity. Although the exact mechanism ofp53 upregulation 

following the exposure of renal tubule cells to cisplatin is unclear, it is most likely the 

result of the formation of cisplatin-DNA adducts and activation of DNA damage 
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recognition machinery, such as ATR (Pabla N 2007; Pabla and Dong 2008 review). The 

potential role of p53 in cisplatin-induced nephrotoxicity was first proposed in a study by 

Schnellmann and Cummings (2002). The results of this study demonstrated the early 

nature of p53 upregulation (4 h after the onset of cisplatin treatment) in rabbit proximal 

tubule cells, an event which occurred in advance of key apoptotic events. In addition, a 

pharmacological inhibitor of p53, pifithrin-a, protected the cultured cells from cisplatin­

induced apoptosis and death. Later studies confirmed these findings and demonstrated 

that dominant negative p53 with a point mutation in the DNA-binding domain also 

alleviated cisplatin-induced tubular cell apoptosis, thus demonstrating the role of DNA­

induced transcription in cisplatin-induced nephrotoxicity (Jiang et a12004). 

Transcriptional targets of p53 that have been implicated as mediators of cisplatin-induced 

nephrotoxicity, include Puma-a and p53-induced protein with death domain (PIDD) (Seth 

et al 2005; Jiang et al 2006). 

Oxidative stress has been a known contributor to cisplatin-induced nephrotoxicity 

for nearly two decades. The sources of cisplatin-induced oxidative stress in the kidney 

are multiple and include depletion of glutathione and disruption of the electron transport 

chain in mitochondria (Pabla and Dong 2008). Cisplatin, once inside the cell, becomes 

aquated and is highly reactive. Glutathione (GSH) is an endogenous non-enzymatic 

antioxidant responsible for aiding in cellular redox homeostasis. Glutathione reductase 

(GR) is an enzyme responsible for generating GSH in cells. Cisplatin reduces GR 

activity in porcine proximal tubular cells, resulting in a marked reduction in GSH levels 

(Kruidering M et a11997). Cisplatin-induced increases in reactive oxygen species (ROS) 

have been attributed to such a drop in GSH levels in renal cells. Cisplatin also inhibits 
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activity of Complex I in the electron transport chain, redirecting the flow of electrons 

through complex II, and, ultimately, increasing superoxide formation (Kruidering M et al 

1997). Along with those already discussed, other sources of increased ROS exist 

following the exposure of renal proximal tubule cells to cisplatin. Due to the apparent 

role of ROS in cisplatin-induced nephrotoxicity, many studies have been performed to 

investigate the potential protection conferred by antioxidants in this context. 

Inflammation is a major player in cisplatin-induced nephrotoxicity. Tumor 

necrosis factor a (TNF a) is secreted by resident kidney cells, such as renal tubular cells, 

as a result of cisplatin treatment (Ramesh G and Reeves 2004; Zhang B et al 2007). 

TNFa can induce extrinsic apoptotic cell death by way of interaction with TNF receptors 

(TNFR) which are classified as death receptors. TNFR1 and TNFR2, each of which are 

expressed in kidney, have each been implicated as necessary for cisplatin-induced tubular 

cell death (Ramesh G et a12003; Tsuruya K et aI2003). Pharmacological inhibitors and 

neutralizing antibodies against this well-known pro-inflammatory cytokine suppresses the 

secretion of other inflammatory mediators following cisplatin treatment in addition to 

ameliorating cisplatin-induced renal damage (Ramesh G and Reeves 2004). This group 

had similar results using TNFa-deficient mice. 

Cisplatin-induced ototoxicity 

Cisplatin is a widely-used and successful chemotherapeutic drug for treating a variety of 

solid tumors in both adult and pediatric patients. Side effects of cisplatin include 

ototoxicity, nephrotoxicity, and peripheral neuropathy (Helson et al 1978; Kedar et al 

1978; Lippman et al 1973; Talley et al 1973). The ototoxic effect of cisplatin is most 
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detrimental to patients in the years following treatment, since it has a direct impact on 

their quality of life. Such patients experience bilateral, progressive, and irreversible 

hearing loss. These effects are particularly devastating to the social and educational 

development of individuals younger than 5 years old who are stillieaming language and 

social skills (Li et a12004; Neuwelt & Brock 2010). 

Cisplatin causes significant permanent hearing loss in anywhere from 20-80% of 

patients, with an average of about 30% (Coradini et al 2007; Fausti et al 1994; Knight et 

a12005; Lewis et a12009; reviewed in Neuwelt & Brock 2010). This statistic is highly 

variable, in part, due to the risk factors that influence the likelihood of a patient to exhibit 

cisplatin-induced hearing loss. Such risk factors include genetics, patient age, cumulative 

cisplatin dose, and prior radiation to the base of the skull (Caronia et al 2009; Huang et al 

2007; Li et a12004; Ross et a12009; Schaefer et al1985; Schell et aI1989). The 

progressive nature of cisplatin-induced ototoxicity has only come to light fairly recently, 

as long-term follow up studies have been completed. A patient's hearing can continue to 

worsen up to 11 years following the cessation of cisplatin treatment (Bertolini et al 2004). 

Another reason for the wide range of incidence of cisplatin-induced hearing loss 

is the lack of standardized and/or effective monitoring protocols. These statistics may not 

accurately represent the proportion of patients experiencing hearing loss as some patients 

perceive a greater hearing deficit following cisplatin treatment than is indicated by their 

audiology exams (Einarsson et al 2010). Therefore, more patients are likely experiencing 

hearing loss than is indicated by the literature. Several grading scales have been 

established over the years in an attempt to effectively and accurately monitor cisplatin­

induced hearing loss in patients in a clinical setting, including: The National Cancer 
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Institute Common Terminology Criteria for Adverse Events (CTCAE), the American 

Speech-Language-Hearing Association Criteria (ASHA), Brock (Brock et aI1991), and 

Chang (Chang & Chinosornvatana 2010). Recently, the need for a standardized 

audiologic monitoring protocol of cisplatin-treated individuals on an international level 

has been recognized (Neuwelt & Brock 2010). 

Cisplatin and the inner ear 

Systemically-administered cisplatin damages multiple sites in the cochlea, including the 

organ of Corti, lateral wall, and spiral ganglion. Though the hair cells of the organ of 

Corti seem to die apoptotically (Garcia-Berrocal et a12007; Wang et aI2004), the events 

triggering apoptosis are not completely understood. Evidence from the literature points 

to the involvement of the three major effectors of cisplatin-mediated cochlear damage: 

the DNA damage response, an increase in reactive oxygen species (ROS), and the 

propagation of inflammatory mediators. 

Apoptosis 

Apoptosis, or programmed cell death, is a highly regulated process which allows cells to 

be removed from a tissue without interfering with the health of neighboring cells (Devitt 

& Marshall 2011). This ritualistic depletion of cells occurs naturally to insure proper 

development of multicellular organisms, for the purpose of cell turnover throughout an 

organism's life, as well as for the removal of damaged or stressed cells (Conradt 2009; 

Fulda et a12010; Jacobson et a11997; Steller 1995). Apoptosis was originally identified 

based on morphological changes within cells, including nuclear condensation, DNA 

fragmentation, cell shrinkage, and the formation of apoptotic bodies (Fulda et al 2010; 
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Kerr et al 1972). Currently, apoptosis is known as a complex array of molecular 

pathways all diverging on the tidy deconstruction of a cell. 

Two apoptotic pathways are commonly discussed: extrinsic and intrinsic. Both of 

these pathways require the activity of caspases. Caspases are aspartate-specific cysteine 

proteases that cleave a wide variety of proteins, ultimately for the purpose of efficiently 

dismantling cells (Kumar 2007). Apoptosis requires the activation of initiator caspases 

(2,8, 9, and 10) that subsequently activate executioner caspases (3, 6, and 7). The 

executioner caspases are responsible for the disassembly of cell infrastructure as well as 

the activation of other proteolytic enzymes in the cell that also work to break it down 

piece by piece. The major difference between the extrinsic and intrinsic apoptotic 

pathways is that the signal for the extrinsic pathway comes from outside the cell and is 

mediated by a death receptor at the cell surface, whereas the signals triggering the 

intrinsic pathway originate intracellularly (ex. DNA damage). The two pathways are not 

entirely distinct from one another in that they may converge on the mitochondria. 

The extrinsic pathway is activated when extracellular ligands bind to and activate 

their associated death receptors (ex. Fas receptor (FasR) & TNFR) (Ashkenazi & Dixit 

1998; Grell et al 1994; Itoh et al 1991). The death receptor then recruits its associated 

death domain protein to the intracellular side of the cell membrane (ex. Fas recruits Fas­

associated via death domain protein (F ADD); TNFR recruits TNFR type I-associated 

death domain protein (TRADD)) (Chinnaiyan et al1995; Hsu et aI1995). This series of 

events ultimately leads to the formation of a death-inducing signaling complex (DISC) at 

the cell membrane that consists of the death receptor, the death domain, and some 

recruited initiator caspase (Kischkel et al 1995). Once recruited, the initiator caspases 
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auto activate by cleaving one another (Muzio et al 1998). At this point, activated initiator 

caspases, such as caspase-8, are sufficient to activate caspase-3 (Stennicke et al 1998). 

Thus, the extrinsic pathway can stop at the direct activation of caspase-3 by initiator 

caspases, or it can converge on the intrinsic pathway and induce mitochondrial 

permeabilization. To perform the latter, the activated initiator caspases cleave BH3-

interacting domain death agonist (Bid) molecules to form truncated Bid (tBid) in the 

cytosol (Li et al 1998; Luo et al 1998). tBid interacts with proapoptotic members of the 

Bcl-2 family, such as Bax and Bcl-2 homologous antagonistlkiller (Bak), causing them to 

oligomerize and form pores in outer mitochondrial membrane (Kluck et al 1999; Lovell 

et al 2008; Mikhailov et a12003; Wei et aI2000). This results in mitochondrial 

permeability transition which allows the release of proteins from the mitochondrial 

intermembrane space into the cytosol. Proteins released into the cytosol as a result of the 

mitochondrial permeabilization include cytochrome c, Smac/Diablo, HtrA2/0mi, endoG, 

and AIF (Du et al 2000; Li et al 2001; Susin et al 1996; Suzuki et al 2001; Yang et al 

1997). Cytochrome c, normally a member of the electron transport chain of 

mitochondria, plays a very different role in apoptotic cell death. Once in the cytosol, 

cytochrome c associates with apoptotic protease activating factor 1 (Apaf-l) to form the 

apoptosome. The apoptosome is a complex of molecules (cytochrome c, heptameric 

Apaf-l, and adenosine triphosphate (ATP)) which, once formed, causes a conformational 

change in Apaf-l that allows for activation of caspase-9 (Zou et al 1999). Caspase-9 then 

activates the executioner caspase, caspase-3 (Li et aI1997). As mentioned previously, 

the intrinsic apoptotic pathway is initiated inside of the cell. Signals that can trigger 

intrinsic apoptosis include DNA damage and increased ROS. Exposure to such stimuli 
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results in activation of transcription factors with pro-apoptotic gene targets. For instance, 

DNA damage results in upregulation ofp53 which induces the transcription of Bax. 

Thus, the intrinsic mechanism of apoptosis completely bypasses the death receptors and 

begins at the mitochondrial level. 

Apoptosis is a highly regulated pathway, and a cell's fate is determined by the 

balance between pro- and anti-apoptotic signals. Pro-apoptotic proteins include the BH3-

only B-celllymphoma-2 (Bcl-2) family members, such as Bid, Bcl-2-like protein 11 

(Bim), Bcl-2 antagonist of cell death (Bad), Puma, and Noxa (Westphal et aI2011). 

Anti-apoptotic signals include Bcl-2 family pro-survival proteins, such as Bcl-2 and B­

cell lymphoma-extra large (Bcl-xL), as well as non-Bcl-2 family proteins, such as heat 

shock proteins (Garrido et a12006; Westphal et aI2011). 

Heat shock proteins 

Heat shock proteins (HSPs) are a highly conserved group of molecules responsible for 

the maintenance of cellular homeostasis in response to multiple stressors, including 

thermal and oxidative stress (Martindale & Holbrook 2002; Richter et al 2010). Six 

families of HSPs have been documented in mammalian cells, and they are classified 

according to molecular weight. There are 5 families of high molecular weight HSPs: 

HSPI00, HSP90, HSP70, HSP60, HSP40, and one family referred to as the small HSPs 

(15-30kD) (Khalil et a12011; Young 2010). HSPs come in both constitutive and 

inducible forms. The constitutive forms are involved in normal cell functions, whereas 

the inducible forms are transcriptionally upregulated in response to stress. Most of these 

proteins act as molecular chaperones, and, therefore, act to regulate the folding, transport, 
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and activity of proteins. Induction of HSPs, using an initial stress such as sublethal heat 

shock, has been shown to inhibit cell death caused by subsequent stress, an effect termed 

cross-tolerance. Due to the ability of HSPs to counteract cytotoxic mechanisms, HSPs 

are being investigated as potential therapies and therapeutic targets for a number of 

diseases. 

The HSP70 family represents one of the largest and most evolutionarily 

conserved of the HSPs (Karlin & Brocchieri 1998). HSP70 proteins are remarkably 

ubiquitous, in that they are present across phyla in both pro- and eukaryotic cells, with 

few exceptions (Macario et al 1999). Both constitutive (heat shock conjugate protein 

(Hsc) 70) and inducible forms of HSP70 proteins exist (Ingolia & Craig 1982; Lengyel et 

al 1980). HSP70 works to guide folding of newly synthesized polypeptides (Sousa & 

Lafer 2006), transport proteins across membranes (Pilon & Schekman 1999), and to 

unravel tangles ofmisfolded protein aggregates (Ben-Zvi et aI2004). The HSP70 family 

has a well-known structure and chaperoning mechanism which is dependent on ATP 

hydrolysis and co-chaperones. The HSP70 proteins have a specialized N-terminal ATP­

binding domain (NBD), as wells as a C-terminal substrate binding domain (SBD), which 

are connected by a flexible 10-residue linker region (Jiang et al 2006). The SBD is made 

up of a helical lid and a beta-sheet base, whose relative conformations allow the SBD to 

assume an open or closed state (Zhu et aI1996). The opening and closing of the SBD is 

an ATP-dependent process (McCarty et aI1995). When ATP is bound to HSP70, the 

chaperone is considered to be in a low-affinity state. However, upon ATP hydrolysis or 

in the presence of ADP, HSP70 binds with high affinity to hydrophobic regions of client 

polypeptides. Two types of co-chaperones mediate A TP-cycling and client binding to 
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HSP70 proteins, J proteins and nucleotide exchange factors (NEFs). J proteins encourage 

hydrolysis of ATP and keep substrates readily available to HSP70, thus keeping HSP70 

in a high-affinity state and allowing for high turnover rates of protein folding (Karzai & 

McMacken 1996; Liberek et aI1991). NEFs, such as Bcl-2-associated athanogene 1 

(BAG-I) and HSP70-binding protein (HspBP 1) in eukaryotes, are responsible for the 

exchange of ADP for ATP which allows for release of the client protein (Brehmer et al 

2001; Harrison et al 1997; Shomura et al 2005; Sonderrnann et al 2001). 

Evidence exists implicating apoptosis as the primary mechanism of inner ear hair 

cell death as a result of cisplatin treatment. The first evidence that hair cells were dying 

apoptotically from cisplatin treatment came in 1998 (Liu et al 1998). In this study the 

investigators observed that cisplatin treatment of P3 rat cochlear explants exhibited 

increased TUNEL-positive staining and decreased hair cell survival. When caspase 

inhibitors were implemented alongside cisplatin treatment, the tissue exhibited virtually 

no TUNEL staining. Shortly after these investigations, several other groups reported 

similar findings. Alam et al. (2000) reported the presence ofTUNEL-positive staining 

and condensed, pyknotic nuclei in cochleae of gerbils that had received systemic cisplatin 

injections. This group took the mechanistic story a little further by attempting to 

investigate the roles of pro-apoptotic Bax and anti -apoptotic Bcl-2 by immunochemistry. 

Their data indicated that cisplatin treatment increased levels of Bax and decreased levels 

ofBcl-2 in the cochlea, thus tipping the balance in these cells toward apoptotic death. 

Watanabe et al. (2001) reported executioner caspase 3 activation in the vestibular organs 

of cisplatin-treated guinea pigs. That same year, a group showed that vitamin E reduced 

cisplatin-induced TUNEL staining in hair cells of the organ of Corti, an observation 
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which indicated a potential link between reactive oxygen species production and 

cisplatin-induced apoptosis in the inner ear (Teranishi et aI2001). Due to difficulties 

associated with culturing inner ear sensory organs, such as the large number of animals 

required to achieve an appropriate sample size, Devarajan et al. published the first paper 

in which an auditory cell line was used to elucidate mechanisms behind cisplatin-induced 

apoptosis in cells of the inner ear (2002). As seen in other cell types undergoing 

apoptosis, Devarajan et al. revealed that cisplatin treatment ofHEI-OCl cells caused p53 

stabilization, initiator caspase 8 activation, truncation of Bid, mitochondrial translocation 

of Bax, cytochrome c release to the cytosol, and caspase 9 activation, in that 

chronological order. p53 activation following cisplatin treatment of neonatal rat cochlear 

and utricular explants was demonstrated in 2003, although the localization of the 

stabilized p53 (i.e. in which cell types p53 was expressed) were not clear (Zhang et al). 

Wang et al. performed what is probably the most convincing study for the role of 

apoptosis in cisplatin-induced hair cell death and hearing loss (2004). TUNEL-positive 

staining was observed in ears of cisplatin-treated guinea pigs, and hair cell nuclear 

morphology in these samples was described as apoptotic in the basal and middle cochlear 

turns. Organ of Corti immunostaining revealed that cisplatin caused Bax to move from 

the cytosol to the mitochondria, cytochrome c to be released from mitochondria, and 

caspase 3 to become activated. These data represent the first in vivo evidence to 

corroborate the mechanistic findings from HEI-OCI cells. Furthermore, Wang et al. 

provided evidence for the cleavage of fodrin, the activation of c-jun N-terminal kinase 

(JNK), and the phosphorylation of c-jun by western blot. Finally, these investigators 

implemented the use of minipumps for perfusion of caspase and JNK inhibitors into the 
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fluids of the inner ear. Cisplatin-induced hearing loss was prevented by inhibitors of 

caspase 3 and caspase 9. Interestingly, inhibitors of caspase 8 and JNK did not improve 

the hearing of cisplatin-treated animals. On the contrary, the JNK inhibitor actually 

worsened the cisplatin-induced hearing loss. In summary, inner ear studies have shown 

that cisplatin induces morphological changes indicative of apoptosis, translocation of 

Bax, release of cytochrome c, and caspase activation in hair cells. The next step to 

understanding cisplatin-induced ototoxicity, is knowing how cisplatin causes apoptosis. 

Three modes of action have been touched on in the literature: DNA damage, ROS 

production/antioxidant depletion, and inflammation (Fig. 1-1). 
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Figure 1-1. Cisplatin-induced hair cell death. Cisplatin has been shown to induce the 

apoptotic death of hair cells by inducing DNA damage, producing reactive oxygen species 

(ROS), and inducing production of inflammatory cytokines. HSPs have been shown to 

prevent apoptosis in various model systems at different points in the apoptotic pathway. The 

points at which HSPs inhibit apoptosis are included in this figure. Furthermore, two 

pharmacological agents that protect against cisplatin-induced hair cell death, pifithrin-a and 

etanercept, are depicted here. 



Apoptosis of hair cells: evidence for DNA damage 

DNA damage has been implicated as a major player in cisplatin-induced hair cell death. 

However, little knowledge exists concerning how the DNA damage response affects hair 

cell survival, and the identities of DNA damage-associated proteins involved in pathways 

leading to hair cell death are unknown. As with cancer cells, cisplatin-DNA adduct 

formation has been documented in guinea pig cochleae (van Ruijven et al 2005a). Also, 

HMOB 1 levels increase in cochleae of cisplatin-treated rats (Li et al 2006). The increase 

in HMOB 1 could be indicative of a high concentration of cisplatin-DNA adducts and/or 

disruption ofNER mechanisms. The p53 inhibitor pifithrin-a inhibits cisplatin-induced 

death of hair cells of cochlear and utricular explants from neonatal rats (Zhang et al 

2003). This is of particular interest due to the notoriety ofp53 as a tumor suppressor and 

as a major mediator of the DNA damage response in many cell types. The current study 

includes experiments designed to define the role of p53 in cisplatin-induced hair cell 

death. 

Apoptosis of hair cells: evidence for ROS production 

In the early 1990's, indirect evidence of a role for oxidative stress in cisplatin-treated 

cochleae was reported (Ravi et a11995; Rybak et aI1995). Ravi et al. is the first example 

of a study designed to investigate cisplatin-induced ototoxicity in a rat model. They 

eventually determined an ototoxic dose of cisplatin (16mg/kg) and investigated the 

antioxidant protein levels and activity in the cochleae of these cisplatin-treated animals. 

The results of this study indicated that glutathione (OSH) levels decreased in correlation 

with increased threshold shift (i.e. increased hearing loss). Furthermore, they revealed 

that cisplatin caused a decrease in activity of aSH peroxidase and OSH reductase, while 
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increasing activity other antioxidant enzymes (superoxide dismutase (SOD), catalase, and 

malondialdehyde). In a follow-up paper, this group demonstrated that a potential 

chemoprotectant protected rats from cisplatin-induced hearing degeneration, in part due 

to the prevention of GSH depletion in the cochlea (Rybak et al 1995). To summarize, 

these studies were the first to link antioxidants and, indirectly, reactive oxygen species 

(ROS) to cisplatin-induced ototoxicity. 

The first direct evidence of cisplatin-induced reactive oxygen species production 

by inner ear tissue was documented in 1996 (Clerici et al). In this study, 

electroparamagnetic resonance spectrometry (EPR) was used to directly measure the 

amount of hydroxyl radicals produced by guinea pig cochlear explants following ten 

minutes of cisplatin exposure. The results of this study indicated that cisplatin-treated 

cochlear explants had OH- spin adduct peak magnitudes that were greater than those of 

explants in cisplatin-free culture conditions. Since then, the majority of investigation into 

cisplatin-induced hearing loss has been focused on inhibiting the formation of and/or 

neutralizing reactive oxygen species production. 

Apoptosis of hair cells: propagation of inflammatory mediators 

Several cell lines have been established as model systems for hair cells. One cell line, 

House Ear Institute-organ of Corti 1 (HEI -OC 1), was designed to represent hair cells 

from the cochlea, whereas UB/UE-l cells are a model for vestibular hair cells. Each of 

these cell lines was established from inner ear sensory organs of the transgenic 

Immortomouse ™ and is conditionally immortal in that they are capable of differentiating 

under specific culture conditions. The UBIUE-l cell line, originally described in 1999, 
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was established from P2 immortomouse utricles (Lawlor et al). UBIUE-l cells were 

originally established for the purpose of developing a model useful to the study of hair 

cell differentiation. These cells proliferate readily at 33°C, and differentiate into three 

different utricular cell types at 39°C: one resembling supporting cells, and two 

resembling precursors to sensory hair cells. HEI -OC 1 cells were established in 2003 

from P7 Immortomouse cochleae (Kalinec et al). HEI-OCI cells express proteins in 

common with supporting cells, sensory cells, and ganglion cells of the organ of Corti. 

Due to the apparent sensitivity of this cell line to ototoxic agents, the authors suggested 

that it be used as a model system for investigating potential mechanisms associated with 

ototoxic drug-induced cell death, as well as screening potential otoprotectants. As with 

any model system, there are pro's and con's to using cell lines as models for inner ear 

sensory epithelia. Due to limitations regarding the use of organotypic cultures in 

research, these cell lines are very useful for working out potential molecular pathways 

exhibited by hair cells. For instance, cochleae and utricles are comprised of 

heterogeneous populations of cells, and it is difficult to separate the specific cell types 

from one another for the purpose of culturing them. In addition, many animals must be 

sacrificed in order to complete an experiment using inner ear organ culture. However, 

these cell lines are not hair cells as they express markers of multiple cell types and are 

therefore more primitive than the terminally differentiated hair cells they are commonly 

used to represent. Also, while HEI -OC 1 cells have proven to be susceptible to cisplatin­

induced death, they are not sensitive to the aminoglycoside antibiotics, the other major 

class of ototoxic drugs. Finally, these cell lines are homogeneous, monolayer cell 

populations, and, therefore, cannot truly represent the interactions between the multiple 
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cell populations present in the highly organized inner ear. For these reasons, studies 

performed using these cell lines should always be confirmed with animal work in 

differentiated sensory epithelia. 

Cisplatin treatment results in the production of pro-inflammatory cytokines in 

inner ear-derived cell lines, as well as in sensory organs of the inner ear. HEI-OCI and 

UB/uE-l cells exhibit increased secretion and transcription of pro-inflammatory 

cytokines, most notably tumor necrosis factor alpha (TNFa), following cisplatin 

treatment (Kim et a12008; So et aI2007). Increased expression of these cytokines was 

also detected in vivo. Kim et al. (2008) demonstrated that rats treated with cisplatin plus 

Etanercept, a commercially available TNFa inhibitor, exhibited decreased serum levels of 

TNFa compared to rats treated with cisplatin alone. Furthermore, cochleae from 

Etanercept-treated rats contained lower levels of cytokine mRNA. Exogenous TNFa 

reduces viability of HEI -OC 1 cells, as well as hair cells of neonatal cochlear explants 

(Dinh et al 2008; So et al 2007). As a whole, these data suggest that the propagation of 

inflammatory cytokines, such as TNFa, may play an important role in cisplatin-induced 

hair cell death. 

The current study was designed to further elucidate the mechanism(s) by which 

cisplatin kills hair cells, as well as to examine the potential protective effects of specific 

heat shock proteins against cisplatin-induced hair cell death. The project is divided into 

three aims: (1) to determine the role of p53 in cisplatin induced hair cell death, (2) to 

identify specific heat shock proteins capable of protecting against cisplatin-induced hair 

cell death, and (3) to determine the mechanism(s) by which HSP 32 inhibits cisplatin­

induced hair cell death. 
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CHAPTER 2: GENERAL METHODS (The following methods were used in each of 
the three aims of this project, any methods specific to one aim is discussed in the 
chapter dedicated to that aim.) 

Animals 

All mice were maintained in the central animal care facility at the Medical University of 

South Carolina (Charleston, SC, USA). Mice were euthanized via carbon dioxide 

asphyxiation and then decapitated. All animal protocols were approved by the MUSC 

Institutional Animal Care and Use Committee. 

CBAIJmice 

Adult CBAll mice (4 to 6 weeks old) were obtained from Harlan Laboratories, Inc. 

(Indianapolis, IN, USA). 

C57Bl16J mice 

Adult C57Bl/6J mice (4 to 6 weeks old) were obtained from The Jackson Laboratory (Bar 

Harbor, ME). 

Genotyping 

Tail clips, acquired from mice at three weeks of age, were lysed using DirectPCR Lysis 

Reagent (Tail; Viagen Biotech lOl-T, Los Angeles, CA, USA). DNA contained in the 

resultant lysates was amplified by one-step polymerase chain reaction (PCR) using the 

appropriate primers (TaqMan Core Reagent Kit, Applied Biosystems no. N808-0228, 

Foster City, CA, USA). PCR products were then subjected to electrophoresis on a 2% 

low-melt agarose gel. Following electrophoresis, gels were incubated in ethidium 



bromide and photographed under UV light to visualize the PCR products. The migration 

pattern of the PCR products was used to determine the genotype. 

Culture of adult mouse utricle 

Culture of utricles from adult mice has been previously described (Cunningham 2006). 

To summarize, dissections were performed in a sterile tissue culture hood. Once 

collected, the utricles were cultured free-floating in culture medium in a 24-well tissue 

culture plate. The culture medium was a 2:1 v/v mixture of basal medium Eagle (Sigma, 

St. Louis, MO, USA) and Earle's balanced salt solution (Invitrogen, Carlsbad, CA, USA) 

which was supplemented with 5% fetal bovine serum (Invitrogen) and 50 U/mL 

penicillin G (Sigma). Later in the project, these culture media were replaced with a 

dissecting medium composed of M199 (Invitrogen) and a culture medium of DMEM/F 12 

(Invitrogen), each supplemented with 5% fetal bovine serum (Invitrogen) and 50 U/mL 

penicillin G. The dissecting medium was changed from the bicarbonate-buffered 

BME/EBSS medium to a HEPES-buffered Ml99-based medium. This change was made 

in order to keep the pH of the utricle-containing medium as constant as possible during 

dissections, which, depending on the number of utricles collected, could last from 30 min 

to over 2 h. Utricles were maintained in an incubator at 37°C in a 5% C02/95% air 

environment. 

Cisplatin was supplied as a 1 mg/mL stock solution (Teva Parenteral Medicine, 

Inc., Irvine, CA, USA) and diluted in culture medium. Final cisplatin concentrations 

ranged from 10-60 J,lg/mL (33.3-200 J,lM). Cisplatin was not added to control cultures. 

Co (III) protoporphyrin IX chloride (CoPPIX) was provided in powder form (Frontier 
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Scientific, Inc., Logan, UT, USA). A ImM CoPPIX solution was prepared by dissolving 

. the powder in 0.2 M NaOH, lowering the pH below 8 with 1 M HCI, and bringing the 

solution to volume with IX phosphate buffered saline (PBS). The 1 mM solution of 

CoPPIX was then filter-sterilized with a 0.22 11m filter. The 1 mM CoPPIX was further 

diluted in culture medium resulting in final concentrations ranging from 10-40 11M. 

CoPPIX -treated utricles were cultured in CoPPIX for 12 h (Kim et aI., 2006). Utricles 

treated with CoPPIX alone were returned to culture media following CoPPIX incubation. 

For utricles undergoing both CoPPIX and cisplatin treatments, the CoPPIX media was 

replaced with cisplatin-containing culture media and incubated in cisplatin for 24 h. Zn 

(II) protoporphyrin IX (ZnPPIX) was provided in powder form (Frontier Scientific, Inc.) 

and made as previously described (Francis et aI, in press). Briefly, 3.1 mg ZnPPIX was 

dissolved using DMSO and 0.2 M NaOH to make a 50 mM stock solution. The stock 

solution was brought to a 100 11M working concentration with culture media and filter 

sterilized. 

Immunohistochemistry 

Immunohistochemistry was performed similarly to the protocol described in Taleb et ai. 

(2008). Utricles were fixed in 4% paraformaldehyde for a short (1 h at room temperature 

(RT)) or long (overnight at 4°C) fix depending on the antibody being used. They were 

then washed in 0.1 M Sorensen's phosphate buffer (SPB). Otoconia were dissolved by 

incubating utricles in Cal-ex decalcifying solution for 2 min (Fisher Scientific, Fair 

Lawn, NJ, USA). Otoconia removal was followed by washes in 0.1 M SPB. Utricles 

were subjected to 0.1 M sodium borohydride solution followed by washes in 0.1 M SPB. 

Utricles were incubated in blocking solution (2% bovine serum albumin, 0.8% normal 
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goat serum, 0.4% Triton X in IX PBS) at room temperature for 3 h. Utricles were 

exposed to the primary antibodies simultaneously overnight at 4°C. (Primary antibodies: 

calmodulin (Sigma C 3545; 1:150), calbindin (Chemicon no. AB1778, Temecula, CA, 

USA; 1 :200), myosin 7a (Proteus 25-6790; 1: 1 00), p53 (Cell Signaling 2524; 1: 1 000), 

HSP32/HO-1 (Abeam ab13248; 1:300), SOX2 (Santa Cruz sc17320; 1:500))). Following 

primary antibody incubation, utricles were washed with blocking buffer before 

incubation with secondary antibodies. Secondary antibodies were diluted in blocking 

solution (Alexa 488-conjugated goat anti-mouse IgG (Invitrogen no. A11001, 1:500), 

Alexa 488-conjugated goat anti-rabbit IgG (Invitrogen no. All 008; I :500), Alexa 488-

conjugated goat anti-rat 488 (Invitrogen no. All 006; 1 :500), Alexa 594-conjugated goat 

anti-rabbit IgG (Invitrogen no. Al1012; 1 :500), Alexa 594-conjugated goat anti-mouse 

IgG (Invitrogen no. All 005; 1 :500) Alexa 594-conjugated donkey anti-goat IgG 

(Invitrogen no. AII058), Alexa 647-conjugated goat anti-rabbit IgG (Invitrogen no. 

A21244)). Utricles were incubated in secondary antibody solution for 4 h in the dark at 

RT on a rocker and then mounted on glass slides using Fluoromount G (Southern 

Biotech, Birmingham, AL, USA). Utricles were visualized using a Zeiss Axioplan 2 

fluorescent microscope and a high resolution monochrome digital camera (Zeiss 

Axiocam MR). Imaging software was used for the purpose of performing hair cell counts 

(Axio Vision 40 V 4.6.3.0). Hair cells were counted in each of ten 900 Jlm2 areas (five 

striolar (calmodulin and calbindin-positive), five extrastriolar (calmodulin-positive, 

calbindin-negative). (Alternatively, hair cell counts were performed on myosin 7a­

labeled utricles, in which case only hair cells of the extrastriolar region were counted.) 

Cell counts from the 5 striolar and 5 extrastriolar regions were averaged separately and 
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reported as striolar or extrastriolar hair cell densities. Hair cell density is reported as the 

. mean number of hair cells per unit area for each utricle ± SEM. 

Western blotting 

Cultured utricles were homogenized in a O.lmL dounce homogenizer containing RIPA 

buffer (150 mM NaCI, 1 mM EDT A, 1 % NP-40, 0.250/0 Na-deoxycholate, 0.1 % SDS), 

lmM sodium orthovanadate, and lmM sodium fluoride. The resultant supernatants were 

resuspended in 5X SDS Laemmli sample loading buffer. The samples were subjected to 

SDS PAGE using 4-20% Tris-HCI minigels (Bio-Rad, Hercules, CA, USA). The 

proteins were then transferred to a 0.45 or 0.2 J..lm-pore Immobilon-P PVDF membrane 

(Millipore, Billerica, MA, USA). Membranes were blocked in 5% milk in IX phosphate 

buffered saline with 0.1 % Tween 20 (PBST). Protein bands were visualized by 

chemiluminescence using either SuperSignal® West Dura Extended Duration Substrate, 

or SuperSignal® West Femto Maximum Sensitivity Substrate (Pierce Biotechnology, 

Rockford, IL, USA) and developed using CL-XPosure™ Film (Pierce Biotechnology). 

All antibodies were diluted in 5% milk PBST. An antibody against actin was used as a 

loading control (#A2066, Sigma). Membranes were incubated in the appropriate HRP­

conjugated secondary antibodies. Membranes were stripped between antibodies using 

Re-Blot Plus Strong Solution (lOX) (#2504, Millipore). Results were quantified by 

densitometry using ImageJ software (Image Processing and Analysis in Java, 

http://rsb.info.nih.gov/ij/index.html). 
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Real-time quantitative RT-PCR (qRT-PCR) 

Real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) 

experiments were performed similarly to Cunningham and Brandon (2006). Treated 

utricles were preserved and stored in RNAlater RNA Stabilization Reagent (Qiagen, 

Valencia, CA, USA). Following utricle homogenization in a ImL dounce homogenizer, 

total RNA was collected (RNAEasy, Qiagen). RNA was reverse-transcribed (TaqMan, 

Applied Biosystems, Foster City, CA, USA), and the resulting cDNA was used for SYBR 

Green (Applied Biosystems) real-time PCR amplification mRNA transcript (Table 2-1). 

The ~~Ct method was used to calculate the fold change in the target transcript for each 

experimental group relative to the control group. Each ~Ct value was calculated by 

subtracting the mean Ct value of the normaliser (18S or GAPDH) from the individual Ct 

values for a target. Because each experiment was performed in triplicate, each treatment 

group had three Ct values. The three ~Ct values for each target were then averaged. At 

that point the ~~Ct values for a particular target were calculated by subtracting the mean 

~Ct value of each treatment group from the mean ~Ct value of the control group. 

Finally, assuming 100% efficacy of the primer set, the calculation 2L\L\Ct was performed to 

give the fold change in the target relative to control. When at least three biological 

replicates were performed, the mean 2L\L\Ct value for those replicates are graphed and error 

bars represent the SEM for those values. When less than three biological replicates were 

performed, the 2L\L\Ct values from a representative experiment are depicted graphically 

with no error bars. 
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Statistical analysis 

Results are presented as mean ± standard error of the mean (SEM). Data were analyzed 

using statistical software SYSTAT 8.0 (San Jose, CA, USA) and Graphpad 3.0 (La Jolla, 

CA, USA). Tests included ANOVA, 2-way analysis of variance (ANOVA), 3-way 

ANOVA, and 2-way repeated measures analysis of variance (RM-ANOVA). Post-hoc 

testing included Tukey's and Dunnett's multiple comparisons. Results were considered 

significant when the p-value was less than 0.5. 

36 



Gene Primer set Product size Reference 

18S F: 5'-TTCGGAACTGAGGCCATGATT-3' 
100 (Y oshida et al 1999) 

R: 5'-TTTCGCTCTGG TCCGTCTTG-3' 

GAPDH F: 5'-TGTGTCCGTCGTGGATCTGA-3' 
150 (Han et at 2010) 

R: 5'-TTGCTGTTGAAGTCGCAGGAG-3' 

HSP90 F: 5'-GTGCGTGTTCATTCAGCCAC-3' (Cunningham & 
100 

R: 5'-GCAATTTCTGCCTGAAAGGC-3' Brandon 2006) 

HSP70 F: 5'-AGGCCAGGGCTGGTATTACT-3' 

170 (Yoshida et at 1999) 
R: 5'-AATGACCCGAGTTCAGGATG-3' 

HSP32 F: 5'-CTCACAGATGGCGTCACTTCGTCA-3' 
152 (Kim et at 2006) 

R: 5'-TTGCCAACAGGAAGCTGAGA-3' 

HSP27 F: 5'-GAGAACCGAACGACCGTCC-3' (Cunningham & 
100 

R: 5'- CCCAATCCTTTGACCTAACGC-3' Brandon 2006) 

IL-IO F: 5' -GACAACAT ACTGCT AACCGACCTC-3' 
252 (Yin et at 2010) 

R: 5'-ATCACTCTTCACCTGCTCCACT-3' 

Table 2-1. Primer sets used in qRT -peR experiments. 



CHAPTER 3: Cispiatin and p53 

Cisplatin is a widely and successfully used chemotherapeutic drug, a major side effect of 

which is ototoxicity. Cisplatin causes damage to multiple cell types in the cochlea, 

including the sensory hair cells. Though the ototoxic effects of cisplatin have been 

recognized for over three decades, the molecular mechanisms behind cisplatin-induced 

hair cell death are largely unknown. 

The primary mechanism by which cisplatin kills cancer cells is through DNA 

damage, and some evidence exists supporting the involvement of DNA damage in 

cisplatin-induced hair cell death. Cancer cells and hair cells differ greatly in their mitotic 

activity. Cancer cells are rapidly dividing, whereas mammalian hair cells are terminally 

differentiated and undergo no division postnatally. It is for this reason that the 

mechanism(s) of cisplatin-induced death of these two cell types might differ. As in 

cisplatin-treated cancer cells, cisplatin-DNA adducts have been observed in cochlear hair 

cells of cisplatin-treated animals (van Ruijven et aI2005a). Furthermore, HMGBl, a 

protein involved in DNA damage recognition, was shown to increase in cochleae of 

cisplatin-treated rats (Li et al 2006). In 2003 p53 was implicated in cisplatin-induced hair 

cell death (Zhang et aI2003). This group demonstrated that a pharmacological inhibitor 

ofp53, pifithrin-u, protected against cisplatin-induced death of hair cells in explants of 

neonatal organ of Corti. Recently, pifithrin-u was shown to exhibit some off-target 

effects. In other words, this compound has been shown to act on molecules other than 

p53 (Davidson et al 2008). Thus, the current study was designed to examine the role of 

p53 in cisplatin-induced hair cell death usingp53-1
- mice. 



Methods 

p53-1- mice 

p53 knockout breeders (p53+I
) were ordered from Jackson Laboratories. This strain was 

constructed via insertion of a neomycin cassette into the Trp53 gene locus (Jacks et al 

1994). The neomycin resistance cassette disrupts 40% of the p53 coding sequence, 

resulting in a complete lack ofp53 protein synthesis (Jacks et aI1994). Asp53-1- and 

p53+1
- mice are predisposed to tumor development, all mice were monitored for tumor 

formation, and sacrificed in the case that tumors developed and/or the mice reached 6 

months of age for p53-1
- and 10 months for p53+1

-. Genotyping was performed as 

suggested on the JAX website, using the same primers as originally described: 

5' ACA GCG TGG TGG TAC CTT AT 3' oIMR7777 

5' TAT ACT CAG AGC CGG CCT 3' oIMR7778 

5' CTA TCA GGA CAT AGC GTT GG 3' oIMR8306 

Cisplatin administration and auditory brainstem response (ABR) 

Numerous labs have tried various protocols in an attempt to achieve a cisplatin-induced 

hearing loss in mice with little success. After amassing a list of those protocols that had 

been tried and failed (both published and not), several new protocols were attempted to 

no avail. Finally, through correspondence with Nichole Schmitt, the following protocol 

was implemented which results in minimal mortality of the mice and a threshold shift in 

the 32 kHz frequency of about 25 dB. Prior to the publication of this protocol by Dr. 
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Schmitt, More et al. (201 0) published the same protocol, with the exception of saline 

supplementation. 

ABR thresholds of anesthetized p53-1- and p53+1+ mice were measured prior to 

(pre-test) and 72 h after (post-test) cisplatin treatment. Anesthesia was given as an IP 

injection of a ketamine chloride (100 mg/kg; Fort Dodge Animal Health, Dodge, 10, 

USA) and xylazine chloride (20 mg/kg; Ben Venue Laboratories, Bedford, OH, USA) 

cocktail. ABR measurements were performed following the protocol described in 

Francis et al. (in press) using software and equipment from Intelligent Hearing Systems 

(Miami, FL, USA). Following anesthesia, the mouse subject was kept warm using a 

heating pad and placed in a sound-proof chamber. Three platinum subdermal needle 

electrodes were then placed at appropriate positions for performing the ABR: a non­

inverting electrode at the vertex, an inverting electrode near the mastoid process behind 

the left ear, and a reference electrode at the hip (FH-E2-12 Grass Technologies, West 

Warwick, RI, USA). A high-frequency transducer was used to deliver sound stimuli 

(IHS). Pure tones at 8, 16, and 32 kHz were presented at a rate of 19.3/s. Each wave 

form represented an average of 1024 stimulus presentations. Responses were filtered 

using a 300 Hz high pass filter and a 3000 Hz low pass filter. Responses were recorded 

beginning with the highest intensity and decreasing at 10 dB intervals until nearing 

threshold. 5 dB intervals were used to pinpoint the hearing threshold. The hearing 

threshold for a particular frequency was determined as the lowest intensity level at which 

a response was detectable in the ABR waveform. The cisplatin-induced hearing loss 

protocol was modified from More et al. (201 0) by adding a pre-cisplatin hydration as 

suggested by Nichole Schmitt, as well as post-cisplatin saline supplementation. Mice 
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were given 36 h to recover from anesthesia and then received 400 ~L saline 

intraperitoneally followed 30 min later by a single intraperitoneal injection of cisplatin 

(20 mg/kg) or saline. Subcutaneous saline (3 mL) was given every 24 h following the 

cisplatin injection. ABR thresholds were measured 72 h after the cisplatin was 

administered (ABR post-test). Threshold shifts were calculated by subtracting the ABR 

threshold at a given frequency as determined at the pre-test from the ABR threshold of 

that same frequency as determined from the post-test. Following the ABR post-test mice 

were sacrificed without recovering from anesthesia. The cochleae were removed from 

each animal and processed for whole mount immunochemistry using anti-myosin 7a as 

previously described in Taleb et al. (2009). 
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Results: Cisplatin and p53 

p53 is not necessary for cisplatin-induced hair cell death in vitro 

In order to determine if p53 is necessary for cisplatin-induced hair cell death in vitro, 

utricles from p53-1
- mice and their wild-type littermates were exposed to cisplatin for 24 

h. The utricles were then fixed and cell counts were performed. Utricles from both p53-1
-

and p53+1+ mice exhibited similar amounts of hair cell death following cisplatin treatment 

(Fig. 3-1) (2-way ANOVA: Fj ,47=2. 72, p=O.055). Therefore, p53 is not necessary for 

cisplatin-induced hair cell death in vitro. 
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Figure 3-1. p53 is not required for cisplatin-induced hair cell death in vitro. 
Utricles from p53-1

- mice and their wild-type littermates were treated with 0, 30, 40, or 
60 fJ,g/mL (0, 100, 133.3, or 200 fJ,M) cisplatin for 24 h. Cell counts were performed 
on stained utricles. p53-1- and p53+1+ utricles exhibited similar hair cell densities 
following cisplatin treatment (2-way ANOVA: F3,47=2. 72, p=O.055). Datapoints 
represent the mean ± SEM for n = 4-13 utricles per condition. 



p53 is not necessary [or cisplatin-induced hearing loss or cochlear hair cell death in 

VIVO 

In order to examine the role of p53 in cisplatin-induced hearing loss and cochlear hair 

cell death in vivo, p53-1
- mice and their wild-type littermates were treated with systemic 

cisplatin. Mice underwent hearing testing via pretest ABRs prior to receiving a single 

cisplatin injection (20 mg/kg, IP). Post-test ABRs were performed 72 h after the cisplatin 

injection. Control mice received IP saline as a vehicle control for cisplatin. Cochleae 

from these mice were preserved for immunochemistry. ABR results indicate significant 

threshold shifts in both p53+1+ and p53-1- mice following cisplatin treatment (F],]8 = 

17.39, p = 0.0006) (Fig. 3-2). A significant effect of frequency was observed, with 

greatest threshold shift occurring at 32 kHz (F2,36 = 6.35, P = 0.0038). There was no 

significant difference in threshold shift as a result of cisplatin treatment between the two 

genotypes (RM-ANOVA: F],lS=l. 72, p=0.21). Although it seems as though a difference 

may exist between ABR threshold shifts of saline-injected control p53+1+ and p53-1- mice, 

this is not likely the case. Statistically, there was no main effect of genotype across 

frequencies (RM-ANOVA: F},}s=0.25, p=O. 62). In the first group of saline-injected 

animals tested, two p53+1+ individuals exhibited a threshold shift greater than would be 

expected by natural variation in the testing (f'J 1 Odb). However, it is possible that this 

threshold shift was a result of otitis media and not an effect of genotype on the hearing 

capacity of these animals. Such a threshold shift was not seen in saline-injected p53+1+ 

mice in later experiments. These data indicate that p53 is not required for cisplatin­

induced hearing loss. 
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Figure 3-2. p53-I-mice are not protected from cisplatin-induced hearing loss. p53-1
-

mice and their wild-type littermates were injected with 20 mg/kg cisplatin or saline. 
Mice underwent ABR measurements prior to, as well as 72 h following injection. 
Cisplatin induced significant threshold shifts in both genotypes (F},}s = 17.39, P = 
0.0006). No significant difference in threshold shifts existed betweenp53-1

- and 
p53+1

+ mice (RM-ANOVA: F},}s=l. 72, p=0.21). Statistical analysis revealed no main 
effect of genotype (RM-ANOVA: F},}s=0.25, p=O. 62). Data points represent the mean ± 
SEMfor n = 4-8 mice per condition. 



Cochleae were harvested from p53+1+ and p53-1- mice following post-test ABR 

measurements. A control ( or saline) cochlea reveals a typical pattern of three rows of 

outer hair cells (OHCs) and a single row of inner hair cells (IHCs) present from base to 

apex. Previous studies have shown that cisplatin-exposed cochleae typically exhibit loss 

of OHCs in the base with subsequent OHC loss progressing toward the apex and loss of 

IHCs occurring only at very high cisplatin doses (Cardinaal et a12000; van Ruijven et al 

2005b). Cochleae from cisplatin-treated p53+1+ and p53-1-mice exhibited loss of OHCs in 

the base, but no OHC loss in the middle or apical turns (Fig. 3-3). No IHC loss was 

observed. No outer hair cells were missing in the apex and middle turns of both 

genotypes treated with either saline or cisplatin. The finding that cochleae from p53-1-

and p53 +1+ mice exhibited similar loss of hair cells in the basal turns indicated that p53 is 

not necessary for cisplatin-induced cochlear hair cell death. The ABR results were 

consistent with the pattern of hair cell loss as seen by the cochlear whole mounts. The 

most significant cisplatin-induced threshold shift occurred at the highest frequency tested, 

32 kHz. The 32 kHz place, according to mathematical derivation, is located in the basal 

third of the mouse cochlea (Muller et al 2005). 
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Figure 3-3. p53-I-mice are not protected from cisplatin-induced cochlear hair cell 
death. Cochleae were removed from cisplatin- and saline-injected p53-/- and +/+ mice 
following ABR post-test. Organ of Corti whole mount preparations were stained with 
primary antibody against myosin 7a, and visualized with DAB. Representative images 
from each treatment group are presented in the micrograph. Dramatic hair cell loss is 
evident in the basal turns of cochleae from mice of both genotypes following cisplatin 
treatment. 



p53 is upregulated in stroma, but not in sensory cells o{cultured utricle 

Because there are multiple cell types in the utricle, it was necessary to identify the 

specific cell types in which p53 is upregulated following cisplatin treatment. Utricles 

were treated with cisplatin for 6 h, fixed, and stained with antibodies against p53 and 

myosin 7a (Fig. 3-4). Hoechst was used for visualization of nuclei. These utricles were 

imaged by confocal microscopy at three specific planes in the z dimension: (1) hair cell 

nuclei, (2) supporting cell nuclei, and (3) stroma. Results indicate that p53 is not 

stabilized in hair cells or supporting cells, whereas p53 is markedly upregulated in the 

nuclei of cells in the stroma. According to these data, cisplatin does not induce p53 

activation in adult sensory epithelium, which supports the idea that cisplatin-induced hair 

cell death occurs independently ofp53. 
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Figure 3-4. Cisplatin-treated mouse utricles exhibit p53 stabilization in stroma. 
Utricles were treated with 0 or 25 J.!g/mL (83.3 J.!M) cisplatin for 6 h and processed for 
immunochemistry (myosin7a (purple), total p53 (green)). As indicated in these 
confocal micrographs, cisplatin-induced p53 stabilization is restricted to stroma. No 
upregulation ofp53 was observed in either the hair cell or supporting cell layers. 



Discussion: Cisplatin and p53 

The transcription factor p53 was investigated as a potential player in the death of 

cisplatin-treated hair cells. Both in vitro and in vivo data acquired by using p53-1- and 

p53+1+ utricles and mice indicate that p53 is not necessary for cisplatin-induced hair cell 

death or hearing loss (Figs. 3-1, 3-2, & 3-3). The lack ofp53 upregulation in hair cells 

and supporting cells of cisplatin-treated utricles lends further support to these findings, 

especially in light of the marked upregulation of p53 in the stroma (Fig. 3-4). 

Historically, the DNA damage response has been implicated in cisplatin-induced death of 

rapidly dividing tumor cells. In addition, evidence for involvement of the DNA damage 

response in cisplatin-induced hair cell death exists. A previous report indicated that a 

p53 inhibitor, pifithrin-a, protected against cisplatin-induced hair cell death in vitro 

(Zhang et al 2003). Based on the fact that pharmacological inhibitors can exhibit off­

target effects, one must consider that the protective effect of pifithrin-a against cisplatin­

induced hair cell death may not be p53-mediated. A recent report demonstrated that 

pifithrin-a not only inhibits p53 function but also the function of another p53 family 

member, p73 (Davidson et al 2008). p73 is upregulated in response to specific modes of 

DNA damage, including cisplatin treatment (Gong et a11999; Strano et a12005). Like 

p53, p73 is stabilized via a phosphorylation event that results in reduced degradation of 

the protein, followed by its accumulation in cells and subsequent ability to 

transcriptionally activate its targets. Many of the transcriptional targets of p73 and p53 

overlap and include the proapoptotic proteins Bak (Graupner et al 2011), Noxa (Martin et 

aI2009), and Puma (Melino et aI2004). In light of the lack of any apparent role for p53 

in cisplatin-induced hair cell death, it is possible that the protection conferred by 
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pifithrin-a against cisplatin-induced hair cell death is mediated by p73 inhibition. Thus, 

p73 may be a major mediator of cisplatin-induced hair cell death. 

The use of p53-1
- mice is a potential limitation to this study, in that such long-term 

knockouts are known to develop compensatory mechanisms to replace the function(s) of 

the missing protein. The expression levels of other p53 family members, such as p73, 

were not examined in this study; however, their expression could be different than that 

observed in wild-type mice due to the absence ofp53. 

The results of the present study indicate that p53 is not a major instigator of hair 

cell death caused by the chemotherapeutic drug cisplatin. This conclusion was reached 

using in vitro and in vivo studies in a p53-1- mouse model to investigate the role of this 

notorious transcription factor and mediator of the DNA damage response. p53-1- mice 

were equally as susceptible to cisplatin-induced hair cell death and hearing loss as their 

wild-type littermates. Furthermore, immunochemical studies revealed a complete lack of 

p53 upregulation in hair cells and supporting cells of cultured utricles in response to 

cisplatin treatment. 
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CHAPTER 4: Cisplatin and HSPs 

Heat shock proteins are a class of molecules intrinsic to cells which, once upregulated, 

can playa protective role. Non-lethal heat shock preconditioning results in the 

upregulation of heat shock proteins (HSPs), a group of molecules known to be protective 

against a variety of cellular stresses (Martindale & Holbrook 2002; Richter et al 2010). 

Previously, we have shown that heat shock protects against both cisplatin- and 

aminoglycoside-induced hair cell death (Cunningham & Brandon 2006). 

The most highly-inducible HSP in response to heat shock is HSP70. HSP70 is the 

most ubiquitous and evolutionarily-conserved HSP (Karlin & Brocchieri 1998). In a 

number of systems, HSP70 inhibits apoptotic cell death by preventing oligomerization of 

Bax, release of cytochrome-c and second mitochondria-derived activator of caspases 

(Smac) from mitochondria, formation of a functional apoptosome, and even cell death 

subsequent to caspase 3 activation (Beere et a12000; Evans et a12010; Jaattela et a11998; 

Jiang et a12009; Stankiewicz et a12005; Tsuchiya et aI2003). Moreover, HSP70 inhibits 

amino glycoside-induced hair cell death in vitro and hearing loss in vivo (Taleb et al 2009; 

Taleb et aI2008). 

Another heat shock protein, HSP32, has potential as a protectant against cisplatin­

induced hair cell death and, potentially, hearing loss. Like other heat shock proteins, 

HSP32 (also called heme oxygenase-I, HO-l), is upregulated in response to a variety of 

stressors, including thermal stress. However, unlike many heat shock proteins, HSP32 is 

not a molecular chaperone. HSP32 is an enzyme responsible for heme catabolism, the 

products of which include bilirubin, carbon monoxide (CO), and free iron (Tenhunen et 

al 1968; 1969). Bilirubin and CO have known antioxidant and anti-inflammatory 



properties (Hayashi et al 1999; Kirkby & Adin 2006; Otterbein et al 2000; Stocker et al 

1987). Pharmacological induction of HSP32 is protective against multiple insults in 

many tissue types, including ischemia-reperfusion injury in liver and retina (Sun et al 

2010; Tsuchihashi et aI2007). HSP32 has been shown to protect human renal proximal 

tubule cells from cisplatin-induced toxicity in vitro, and HSP32 knockout mice are more 

susceptible to cisplatin-induced nephrotoxicity than their wild-type counterparts 

(Shiraishi et al 2000). HSP32 has recently been shown to mediate the protective effect of 

celastrol against aminoglycoside-induced hair cell death (Francis et aI, in press). In 

addition pharmacological induction of HSP32 using cobalt protoporphyrin IX chloride 

(CoPPIX) protects neonatal cochlear explants from cisplatin-induced hair cell death (Kim 

et aI2006). 

The current study was designed to identify whether specific heat shock proteins, 

such as HSP70 and/or HSP32, can protect against cisplatin-induced hair cell death. 
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Methods 

HSP70.1/3-1- mice 

HSP70.113-1
- mice have inactivated HSP70.1 and HSP70.3 genes. Both HSP70.1 and 

HSP70.3 were inactivated by insertion of a single neo gene on chromosome 17 (Hunt et 

aI2004). HSP70.113-1
- mice were obtained from the Mutant Mouse Regional Resource 

Center at the University of California at Davis. Since HSP70.113-1
- mice are viable and 

fertile, mating pairs were established between knockout mice, and all offspring were 

HSP70.113-1
- genotype. Wild-type B6129SF2/J mice were obtained from the Jackson 

Laboratory (Bar Harbor, ME, USA) and used as strain controls. 

rHSP70i-expressing transgenic mice 

rHSP70i-expressing transgenic mice were provided by Dr. Wolfgang Dillmann 

(University of California San Diego). rHSP70i-expressing transgenic mice constitutively 

express rat inducible HSP70 (rHSP70i) (Marber et al 1995). rHSP70i-expressing 

transgenic mice are on a BALB/c x C57BL/6 background. Wild-type female CB6Fl 

mice (Jackson Laboratory) were mated with male rHSP70i-expressing transgenic mice. 

Wild-type littermates served as controls. Genotyping was performed as described in the 

general methods section. The following primers resulted in a 280-bp product of the 

CMV-IE sequence of the transgene: forward primer 5'­

ATTACGGGGTCATTAGTTCATAGCC-3', reverse primer 5'-

GT AGGAAAGTCCCAGT AGGAAAGTCCCAT AAGGTCATGT -3.' 

54 



Heat shock preconditioning 

The heat shock preconditioning protocol was performed as described by Cunningham and 

Brandon (2006). Utricles and surrounding media ('" 1 mL total volume) were transferred 

from 24-well culture plates into sterile 1.5-mL microcentrifuge tubes. Tubes containing 

utricles to be heat shocked were placed in a 43°C water bath for 30 min. Immediately 

following heat shock, utricles and media were transferred back into their original wells in 

the 24-well plate and allowed to recover at 37°C/5% C02 for 6 hours before any 

additional treatment. Control utricles were transferred to sterile 1.5-mL microcentrifuge 

tubes, and they were placed in the 37°C incubator for 30 min before they were transferred 

back to their original wells in the 24-well plate. 
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Results 

Heat shock inhibits cisplatin-induced hair cell death 

We previously showed that heat shock preconditioning inhibits cisplatin-induced hair cell 

death at a single cisplatin concentration (Cunningham & Brandon 2006). HSP induction 

in response to heat shock was examined by western blotting (Fig. 4-1). The heat-shocked 

utricles were exposed to 43°C for 30 min, followed by a 6 h recovery period at 37°C. 

Heat shock resulted in upregulation of HSPs 27, 32, 40, and 70 with little change in HSPs 

90 and 60. 

In order to examine the protective effect of heat shock across the cisplatin dose­

response curve, heat-shocked and control utricles were treated with cisplatin at a range of 

concentrations for 24 h. Following cisplatin treatment, the utricles were fixed, stained 

with calmodulin and calbindin, and hair cells were counted. In control (non heat­

shocked) utricles, cisplatin treatment resulted in a dose-dependent loss of hair cells. 

Utricles that were heat-shocked prior to cisplatin treatment had significantly greater hair 

cell survival across the dose-response curve (2-way ANOVA: F6,160 = 5.778, 

p<O.OOOl)(Fig.4-2). 
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Figure 4-1. HSP expression following heat shock. Control and heat-shocked utricles were 

homogenized, and the resultant Iysates were analyzed by western blot using antibodies against 

HSP27, HSP32, HSP40, HSP60, HSP70, HSP90, and actin. Results indicate that sublethal 

heat shock of adult mouse utricle upregulates HSP70, HSP40, HSP32, and HSP27. 
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Figure 4-2. Heat shock inhibits cisplatin-induced hair cell death. Control and heat­
shocked utricles were exposed to 0, 10, 15,20, 25,40, or 50 Jlg/mL (0, 33.3, 50, 66.7, 
83.3, 133.3, or 166.6 JlM) cisplatin for 24 h. Hair cell counts were performed on 
calmodulin and calbindin-stained utricles. Heat shock resulted in significant protection 
against cisplatin-induced hair cell death (2-way ANOVA: F6,160 = 5.778, p<O. 0001). 
Data points represent the mean ± SEMfor n = 5-40 utricles per condition. Asterisks 
(*) denote significant differences in hair cell density between utricles that were heat­

shocked and those that were not. 



HSP70 is required for the protective effect o(heat shock 

HSP70 was highly-induced in response to heat shock (Fig. 4-1). In order to determine 

whether HSP70 is necessary for the protective effect conferred by heat shock against 

cisplatin-induced hair cell death, we used utricles from HSP70.JI3-1
- and wild-type mice. 

Utricles of both genotypes were either maintained at 37°C or heat-shocked. Utricles were 

treated with either 0 or 20 J.lg/mL (66.7 J.lM) cisplatin for 24 h. Heat shock had a 

significant protective effect against cisplatin-induced hair cell death in wild-type utricles 

(2-way ANOVA: F],54 = 8.975, p<O.OJ)(Fig. 4-3). However, there was no significant 

protective effect of heat shock in the HSP70-1
- utricles (2-way ANOVA: F],39 = 0.029, 

p>0.05). These data indicate that HSP70 may be necessary for the protective effect of 

heat shock against cisplatin-induced hair cell death. 

59 



c-r1 
S1 ......... 
o 
~ 1 --~ 1 
(J) 

~1 
C 
°en 
c: 
Q) 

"C 

15 
o 
s... 
"(6 
::r:: 

Hsp70+1+ 

~""" Hsp70 "/-

Cisplatin -

H at shock -

+ .+ 

-
Figure 4-3. Hsp70 is required for the protective effect of heat shock. Control and heat­
shocked utricles from adult wild-type and Hsp70-1- mice were exposed to 20 Jlg/mL (66.7 JlM) 

cisplatin for 24 h. Cell counts were performed on stained utricles. Heat shock inhibited 
cisplatin-induced hair cell death in HSP70+1+ utricles (2-way ANOVA: F/ ,54 = 8.975, 
p <O.Ol) , but not in utricles from HSP70-1

- mice (2-way ANOVA: F/,39 = 0.029, 

p >O. 05). Data points represent the mean ± SEMfor n = 5-18 utricles per condition. 

Asterisks (*) denote significant differences in hair cell density in the extrastriolar region. 

"NIS " Not significant. 



Constitutive expression o[rHSP70i inhibits cisplatin-induced hair cell death 

In order to investigate whether HSP70 is sufficient to confer protection against cisplatin­

induced hair cell death, utricles from transgenic mice that constitutively express rHSP70i 

(and their wild-type littermates) were treated with cisplatin for 24 h. Constitutive 

rHSP70i expression had a significant protective effect against cisplatin-induced hair cell 

death (2-way ANOVA: F4,116 = 59.063, p<O.OOOJ) (Fig. 4-4). These results demonstrate 

that HSP70 is sufficient to provide partial protection against cisplatin-induced hair cell 

death, although the protective effect ofHSP70 expression doesn't appear to be as robust 

as that of heat shock. 

61 



-
C1) 
o 

o 

• rHSP70i CE 
-0- Wild-type 

20 40 
Cisplatin concentration (~lg'mL) 

60 

Figure 4-4. rHsp70i constitutive-expression (eE) inhibits cisplatin-induced hair cell 

death. Utricles from rHsp70i transgenic mice and their wild-type littermates were 
treated with 0,25,30,40, or 50 ~g/mL (0,83.3,100,133.3, or 166.6 ~M) cisplatin for 
24 h. Cell counts were performed on calmodulin and calbindin-stained utricles. 
Results reveal a main effect of genotype, indicating that constitutive expression of 
rHSP70i protects against cisplatin-induced hair cell death (2-way ANOVA: F4,lJ6 = 

59.063, p<O.OOOl). Data points represent the mean ± SEMfor n = 7-24 utricles per 

condition. 



HSP 32 induction inhibits cisplatin-induced hair cell death 

In addition to HSP70, heat shock also results in induction of HSP32 (Fig. 4-1 & 4-5). In 

order to examine the protective effect of HSP32 against cisplatin-induced hair cell death, 

we utilized the chemical HSP32 inducer CoPPIX (Drummond & Kappas 1982; Ferrandiz 

& Devesa 2008). We first tested the specificity ofHSP32 induction with CoPPIX by 

qRT-PCR for which utricles were exposed to 10 JlM CoPPIX for 12 h (Fig. 4-6 A). 

Next, we tested for CoPPIX specificity at the protein level by western blot for which 

utricles were treated with 20 JlM CoPPIX for 12 h (Fig. 4-6 B). After treatment, utricles 

were processed for western blotting using antibodies against HSP27 (Upstate Cell 

Signaling Solutions #06-517, 1: 1 000), HSP32 (R & D Systems #MAB3776, 1: 1000), 

HSP40 (Cell Signaling #4868, 1: 1000), HSP60 (Cell Signaling #4870, 1: 1000), HSP70 

(Cell Signaling #4872, 1: 1000), HSP90 (Cell Signaling #4874, 1: 1 000), and actin (Sigma 

#A2066, 1 :1000). HSP32 was robustly upregulated following CoPPIX treatment of 

utricles, while the other HSPs were not induced, thus confirming that CoPPIX is a 

specific inducer of HSP32 in utricles. 
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Figure 4-5. HSP32 is transcriptionally upregulated in adult mouse utricle following heat 
shock. Utricles were preserved in RNA later at 1, 3, 6, and 12 h following heat shock and 
processed for qRT-PCR. Data points represent the mean ± SEMfor three biological 

replicates. 
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Figure 4-6. CoPPIX induces HSP32 expression in adult mouse utricle. (A)Utricles were 

treated with 10 11M CoPPIX for 12 h and processed for qRT-PCR. (B) Utricles were treated 

with 20 11M CoPPIX for 12 h and processed for western blotting. 



We next used CoPPIX treatment to determine ifHSP32 induction is protective against 

cisplatin-induced hair cell death. Utricles were treated with CoPPIX for 12 h and then 

treated with cisplatin for 24 h. Utricles were processed for immunohistochemistry and 

hair cells were counted. Results indicate a significant protective effect of CoPPIX 

treatment against cisplatin-induced hair cell death (2-way ANOVA: F4,69 = 4.24, p=O. 004) 

(Fig. 4-7). These data indicate that HSP32 induction by CoPPIX inhibits hair cell death 

caused by cisplatin. 
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Figure 4-7. CoPPIX inhibits cisplatin-induced hair cell death. Control and CoPPIX­
treated (20 J.1M for 12 h) utricles were exposed to 0, 25, 30, 40, or 50 J.1g/mL (0, 83.3, 
100, 133.3, or 166.6 JlM) cisplatin for 24 h. Hair cell counts were performed on 
calmodulin and calbindin-stained utricles. These data indicate that CoPPIX offers 
robust protection against cisplatin-induced hair cell death (2-way ANOVA: F4,69 == 

4.24, p==O.004). Bars represent the mean ± SEMfor n == 5-7 utricles per condition. 

Asterisks (*) denote significant differences in hair cell density between utricies that 

received CoPPIX and those that did not. 



In order to further confirm that the protective effect of CoPPIX was due to the 

induction ofHSP32, we utilized an inhibitor of heme-oxygenase activity, zinc 

protoporphyrin IX (ZnPPIX) (Maines 1981; Wong et al 2011). Utricles were treated with 

20 ~M CoPPIX for 12 h followed by 25 ~g/mL (83.3 ~M) cisplatin for 24 h. 0 or 10 J..lM 

ZnPPIX was present for the entire 36 h. Utricles were processed for 

immunohistochemistry and hair cells were counted. ZnPPIX abrogated the protective 

effect of CoPPIX (Fig. 4-8). ZnPPIX and cisplatin treatment combined exhibited more 

toxicity than cisplatin treatment, alone (Tukey's multiple comparison test: p<O. 001). 

These results indicate that HSP32 mediates the protection conferred by CoPPIX against 

cisplatin-induced hair cell death. 
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Figure 4-8. ZnPPIX inhibits protection conferred by CoPPIX against cisplatin-induced 
hair cell death. Utricles were treated with 10 f.!M ZnPPIX for 36 h in the presence of 
20 f.!M CoPPIX and/or 25 f.!g/mL (83.3 flM) cisplatin. Hair cell counts were performed 
on myosin7a-stained utricles. The HSP32 inhibitor ZnPPIX abolished the protective 
effect of CoPPIX against cisplatin-induced hair cell death (Tukey's multiple 
comparisons: p<O.001). Bars represent the mean ± SEMfor n = 7-12 utricles per 
condition. Asterisks (*) denote significant differences in hair cell density from 
control. 



HSP70 and HSP 32 do not demonstrate synergistic protection against cisplatin-induced 

hair cell death 

In order to investigate whether HSP70 and HSP32 might work synergistically to protect 

against cisplatin-induced hair cell death, utricles from rHSP70i transgenic mice and their 

wild-type littermates were exposed to 0 or 20 JlM CoPPIX for 12 h, followed by 

treatment with cisplatin for 24 h. Hair cell counts revealed that, as seen in previous 

experiments, CoPPIX was protective against cisplatin-induced hair cell death at 25 

Jlg/mL (83.3 JlM) cisplatin (3-way ANOVA: F/,/06 =14.47, p<O.001) (Fig. 4-9). In 

addition, rHSP70i CE utricles had significantly more hair cells remaining following 

treatment with 25 Jlg/mL (83.3 JlM) cisplatin when compared to wild-type utricles (t-test: 

p<O.05). However, CoPPIX pretreatment ofrHSP70i transgenic utricles did not offer 

greater protection than either rHSP70i or HSP32 alone (3-way ANOVA: F/,/06 = 0.74, p = 

0.39). These data indicate that rHSP70i and HSP32 together do not demonstrate a 

synergistic protection. 
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Figure 4-9. Combined expression of HSP70 and HSP32 does not protect against 
cisplatin-induced hair cell death more than either condition alone. rHSP70i CE mice and 

their wild-type littermates were treated with 0 or 20 J.lM CoPPIX for 12 h, followed by 

treatment with 0, 25, or 50 J.lg/mL (0, 83.3, or 166.6 flM) cisplatin for 24 h. CoPPIX was 
protective against cisplatin-induced hair cell death at 25 llg/mL (83.3 ~M) cisplatin (3-

way ANOVA: F},}06 =14.47, p<0.001). rHSP70i CE utricles had significantly more 
hair cells remaining following treatment with 25 Jlg/mL (83.3 f.lM) cisplatin when 
compared to wild-type utricles (t-test: p<0.05). CoPPIX pretreatment ofrHSP70i 
transgenic utricles did not offer greater protection than either rHSP70i or HSP32 alone 
(3-way ANOVA: F},}06 = 0.74, p = 0.39). Bars represent the mean ± SEMjor n = 4-14 

utricles per condition. Asterisks (*) denote significant differences in hair cell density between 

HSP70 WT utricles that received CoPPIX or not. t denotes significant differences between 

hair cell density ojHSP70 WT and rHSP70i CE utricles. 



Discussion 

Heat shock provides robust protection against cisplatin-induced hair cell death at multiple 

cisplatin doses in adult mouse utricle (Fig. 4-2). Protection of heat shock against 

cisplatin-induced hair cell death was reported previously at a single cisplatin dose 

(Cunningham & Brandon 2006). In addition, heat shock has been shown to protect 

against other ototoxic agents, such as aminoglycoside antibiotics (Cunningham & 

Brandon 2006). Previous studies of cisplatin-induced ototoxicity have implicated DNA 

damage, ROS, and inflammation in the apoptotic death of hair cells. Thus, the 

mechanism of protection by HSPs against cisplatin-induced hair cell death is likely multi­

faceted. HSPs can protect cells from oxidative stress by preventing the accumulation and 

aggregation of ROS-damaged proteins, as well as by helping denatured and/or damaged 

proteins return to their native conformations (Jolly & Morimoto 2000; Martindale & 

Holbrook 2002; Mayer & Bukau 2005; Yamamoto et aI2000). The protection conferred 

by HSPs is not limited to protein interactions; HSPs have been shown to inhibit lipid 

peroxidation and oxidative damage to DNA, as well (Martindale & Holbrook 2002; Park 

et al 1998; Su et al 1999). In addition, individual HSPs, such as HSP90, HSP70, and 

HSP27, have been shown to inhibit apoptosis at multiple points along the apoptotic 

pathway (Beere et al 2000; Concannon et al 2003; Concannon et al 2001; Evans et al 

2010; Jaattela et al 1998; Jiang et a12009; Pandey et a12000a; Pandey et a12000b; 

Pasupuleti et a12010; Rodina et a12007; Stankiewicz et a12005; Tsuchiya et aI2003). 

Furthermore, a heat shock protein with a chaperone-unrelated function, HSP32, is a 

known inhibitor of oxidative stress and inflammation in multiple tissue types (Blancou et 

al 2011; Gozzelino et al 2010; Kirkby & Adin 2006; Paine et al 2010; Ryter et al 2006). 
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Unfortunately, heat shock is not the most practical of inner ear therapies, in that perfusion 

of the inner ear with warm liquid would be invasive and uncomfortable for patients prior 

to receiving chemotherapy. Therefore, it is necessary to identify specific HSPs capable 

of protecting against cisplatin-induced hair death that might be upregulated 

pharmacologically. 

HSP70, a highly upregulated HSP following heat shock of adult mouse utricle, 

was shown to be necessary for the protection conferred by heat shock and sufficient to 

protect against cisplatin-induced hair cell death (Figs. 4-3 & 4-4). Though statistically 

significant, the results of these experiments are not striking. One reason for this could lie 

in the model systems tested. The inducible HSP70 that is constitutively expressed by the 

transgenic HSP70 mice is only 2.5 fold higher than what is normally expressed in the 

mouse utricle (Fig. 4-10). Therefore, HSP70 may be more protective against cisplatin­

induced hair cell death at higher concentrations. On the other hand, HSP70 constitutive 

expression was shown to inhibit aminoglycoside-induced hair cell death and hearing loss 

(Taleb et al 2009; Taleb et al 2008). The robust protective effect of rHSP70i constitutive 

expression against aminoglycosides but not cisplatin, may be indicative of a different 

mechanism of cell death from these two well-known ototoxic agents. The results of the 

HSP70-1
- experiment may have been more convincing had the sample size been larger. 

Mice of this genotype are smaller at birth than wild-type counterparts, and mutant males 

exhibit improper spermatocyte morphology (Hunt et al 2004). These are potential 

reasons for the small brood sizes we experienced when mating exclusively homozygous 

knockout mice. Future experimentation with alternative model systems, such as 

adenoviral transfections for overexpression of HSP70 and conditional 

73 



HSP70 

actin 

HSP70 WT rHSP70i CE 

Figure 4-10. Expression ofHSP70 by HSP70 WT and rHSP70i CE utricles. Utricles 

from HSP70 WT and rHSP70i CE mice were processed for western blotting using antibodies 

against HSP70 and actin. 
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HSP70 knockout or HSP70 siRNA to inhibit HSP70 upregulation following heat shock, 

may offer more definitive results regarding the potential protection of HSP70 against 

cisplatin-induced hair cell death. 

The use of HSP70-1
- mice was a limitation of this study, in that germline 

knockouts typically develop compensatory mechanisms to replace the function(s) of the 

missing protein. Due to the ubiquitous and multifunctional nature of HSP70, it is 

possible that other heat shock proteins are upregulated in the HSP70-1
-, in order to 

compensate for the loss ofHSP70. The current study did not incorporate an examination 

of such compensatory mechanisms. 

HSP32 (a.k.a. heme oxygenase-I) offered robust protection against cisplatin­

induced hair cell death (Figs. 4-7 & 4-8). The mechanism of protection conferred by 

HSP32 could be two-fold, due to the well-documented antioxidant and anti-inflammatory 

effects of the byproducts of heme catabolism bilirubin and co. Cisplatin is known to 

cause oxidative stress in the inner ear (Clerici et al 1996; Ravi et al1995; Rybak et al 

1995). Thus, bilirubin may effectively counteract the production of reactive oxygen 

species induced by cisplatin. Cisplatin treatment of auditory cells is known to cause 

secretion of pro-inflammatory cytokines, most notably TNFa (Kim et a12008; So et al 

2008; So et al 2007). TNFa is toxic to hair cells, and inhibition of TNFa has been shown 

to protect hair cells from cisplatin-induced injury (Dinh et al 2008; Haake et al 2009; So 

et a12007). HSP32 expression in tissues is known to suppress TNFa release (Devey et al 

2009; Ferenbach et a12010; Inoue et a12001). CO, alone, recapitulates this feature of 

HSP32 upregulation (Chen et a12010b; Otterbein et a12000). Furthermore, CO has been 

shown to protect against ototoxic drugs in inner ear model systems. The CO scavenger, 
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hemoglobin, was shown to abrogate the protection of HSP32 against cisplatin-induced 

hair cell death in neonatal rat cochlear explants (Kim et al 2006). In addition, CO has 

been shown to inhibit aminoglycoside-induced hair cell death (Francis et aI, in press). 

Since the pharmacological agent CoPPIX was used to upregulate HSP32 in the 

utricles, it was necessary to confirm that the protective effect of CoPPIX could be 

attributed to heme oxygenase activity. Therefore, a known inhibitor of heme-oxygenase 

activity, ZnPPIX, was used. Results indicate that ZnPPIX abrogated the protective effect 

of CoPPIX against cisplatin-induced hair cell death (Fig. 4-8). Therefore, CoPPIX 

protects hair cells from cisplatin by inducing HSP32 expression in the utricle. 

One may use the findings of this study when comparing the mechanisms by which 

hair cells die from cisplatin and aminoglycosides. HSP70 strongly protects against 

aminoglycoside-induced hair cell death and hearing loss (Taleb et al 2009; Taleb et al 

2008). However, our data indicate that HSP70 does not offer strong protection against 

cisplatin-induced hair cell death. Thus, heat shock proteins are providing evidence in 

support of different mechanisms of cell death by these two highly-studied ototoxins. One 

notable difference between the mechanisms of cell injury caused by cisplatin and 

arninoglycosides is the initial DNA adduct formation by cisplatin. As this is not an event 

that occurs in aminoglycoside-induced ototoxicity, this is a good place to begin 

comparing and contrasting otoprotectants that differentially protect against these two 

agents. 

In conclusion, heat shock preconditioning, as well as the induction of individual 

heat shock proteins, is protective against cisplatin-induced hair cell death. The results of 
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this study imply that HSPs, particularly HSP32, are good candidates for the design of a 

fature co-therapy to prevent cisplatin-induced hearing loss in human patients. 
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CHAPTER 5: Cisplatin and macropbages 

Heme oxygenases are responsible for the catabolism of free heme in cells. Three heme 

oxygenases exist: HSP32 (HO-1), HO-2, and HO-3. HSP32 is a stress-inducible heme 

oxygenase that is expressed by myeloid and endothelial cells of many organ systems, 

including eye, liver, spleen, vasculature, lung, gastrointestinal tract, and central nervous 

system (Aztatzi-Santillan et a120IO; Durante 2010; Fan et a120II; Ferenbach et a120IO; 

Immenschuh et aI20IO; Maines et a1I986; Raval & Lee 2010; Takagi et aI20IO). HO-2 

is constitutively expressed, with particularly high expression levels in testis and brain 

(Trakshel et al 1986; 1988). The third member of the heme oxygenase family, HO-3, is 

likely an HO-2 pseudogene that has yet to be definitively detected at the protein level 

(Hayashi et al 2004; McCoubrey et al 1997). 

The inducible heme oxygenase, HSP32, is known to have antioxidant and anti­

inflammatory effects on tissues through the production of bilirubin and CO, thus acting as 

a protectant against various insults (Kirkby & Adin 2006). HSP32-deficient mice and 

humans exhibit pro-inflammatory phenotypes (Agarwal et a11996; Kapturczak et al 

2004; Koizumi 2007; Poss & Tonegawa 1997; Radhakrishnan et a12011; Yachie et al 

1999; Yet et al 1999). Many studies in the literature suggest that HSP32-inducing agents 

are protective against pro-oxidative and -inflammatory insults, such as 

ischemialreperfusion (I/R) injury, bacterial infection, and atherosclerosis (Devey et al 

2009; Durante 2010; Fan et a1201l; Ferenbach et a120IO; Roach et a12009; Sun et al 

2010). The ability of HSP32 to protect against liver I/R injury has been attributed to the 

resident macrophages of the liver, Kupffer cells (Devey et al 2009). In this study, 

liposomal clodronate was administered intravenously to deplete kupffer cells from the 
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liver, and results indicated that Kupffer cells were required for hepatocyte survival 

following IIR. As HSP32 was expressed exclusively in kupffer cells, HSP32-null mice 

were used to determine the role of HSP32 in liver IIR injury. HSP32-null mice exhibited 

increased hepatic injury following IIR than did their wild-type counterparts. The ability 

of HSP32 to induce macrophage-mediated protection against these injuries has been 

attributed to a change in macrophage phenotype that results in a switch from pro- to anti­

inflammatory cytokine secretion following HSP32 upregulation. Devey et al. (2009) 

went on to further investigate the macrophages of HSP32-null and wild-type animals to 

determine the role of HSP32 in macrophage differentiation. They found that there was a 

difference in several macrophage markers, thus segregating HSP32-null macrophages 

from HSP32-expressing macrophages into "resident" or non-inflammatory and 

"inflammatory" groups, respectively. Several reports have indicated that inhibition or 

deficiency of HSP32 results in increased TNFa secretion, whereas induction of HSP32 

results in decreased TNFa and increased IL-IO (Drechsler et a12006; Inoue et a12001; 

Sheikh et aI2011). CO, alone, has similar effects on cytokine expression to HSP32 

(Chen et a12010b; Otterbein et aI2000). 

The role for heme oxygenase molecules in inner ear pathology has only begun to 

be investigated. It wasn't until the early 2000's that HSP32 and HO-2 were known to be 

expressed in cochlea (Fairfield et a12004; Watanabe et aI2003). Soon after in 2006, a 

group of investigators set out to determine the efficacy of an HSP32-inducer, cobalt 

protoporphyrin IX (CoPPIX), as a protectant against cisplatin-induced hair cell death in 

neonatal rat cochlear explants (Kim et al 2006). 
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Efforts have been made, mostly in immortalized auditory cell lines, to work out 

Jhe mechanism(s) behind HSP32-mediated protection of hair cells against drug-induced 

toxicity. The protective effect of HSP32 in inner ear has been attributed to the 

antioxidant and anti-inflammatory effects of this enzyme. Kim et al. demonstrated that 

the CO scavenger hemoglobin was able to inhibit the protective effect of CoPPIX­

induced HSP32 against cisplatin in both HEI-OCI cells and neonatal cochlear explants 

(2006). These results led them to the conclusion that the protection conferred by HSP32 

against cisplatin was primarily through the antioxidant properties of CO. Later, the same 

group of investigators began looking at the role of HSP32 on cytokine production by 

HEI-OCI cells. They used ELISA and PCR in order to demonstrate the effect ofHSP32 

expression on the secretion of pro-inflammatory cytokines by cisplatin-treated HEI-OCI 

cells. Their results indicated that HSP32 inhibits cisplatin-induced pro-inflammatory 

cytokine (TNFu, IL-lP, and IL-6) transcription and secretion in cisplatin-treated HEI­

OC 1 cells and mouse cochleae (So et al 2008). 

Previous studies of HSP32-conferred protection against inner ear insults have yet 

to link protective mechanisms in auditory cell lines to intact sensory epithelia. In 

addition, it is necessary to link such mechanisms of HSP32-mediated protection to the 

protein's site of expression within inner ear epithelia. The current study was designed to 

identify cell types responsible for CoPPIX-induced HSP32 expression and to further 

elucidate the mechanism behind this protection against cisplatin-induced hair cell death. 

The hypothesis is that CoPPIX induces HSP32 expression in macrophages of adult mouse 

utricle, resulting in a change in cytokine expression that is protective against cisplatin­

induced hair cell death. 
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Methods 

.~ CX3CRI GFP/+ mice 

CX3CRl GFPIGFP mice have an EGFP gene in place of the CX3CRI gene, therefore they 

express GFP instead of CX3CRI (Jung et al 2000). Mice with GFP in place of each 

CX3CRI allele express no CX3CRI protein. CX3CRI is a seven-transmembrane G-

protein-coupled receptor for the chemokine fractalkine. CX3CRI is expressed by 

monocytic, natural killer, dendritic and microglial cells in mice. The homozygous 

CX3CRI knockout mice (CX3CRl GFPIGFP) exhibit normal development and fertility. 

CX3CR1GFPIGFP male mice were acquired from Jackson Laboratories and bred with 

cS7BI/6 females to produce CX3CRI heterozygous mice (CX3CR1GFPI+). This model 

system has been used in previous studies of inner ear macrophages (Sato et al 2008; 

20 I 0; Sautter et al 2006). CX3CR1GFPI+ utricles were used for studies of utricular 

macrophages, since previous studies of inner ear macrophages indicated that the CX3CRl 

GFPIGFP h h d·f~ b h . . . d d macrop ages ave I lerent e aVlor In response to otOtOXIC rugs compare to 

heterozygote and wild-type macrophages (Sato et al2010). (Note: CX3CRl GFPIGFP = 

homozygous nulljor CX3CR1, but express GFP; CX3CR1GFPI+ =heterozygous expression 

ojCX3CRl and GFP; CX3CR1+1+ = wild-type expression ojCX3CR1, with no GFP 

expression.) 



Results 

... 
CoPPIX upregulates HSP32 in resident macrophages of utricle 

Due to the protective nature of HSP32 against cisplatin-induced hair cell death, it was 

important to identify which cell type( s) in the utricle upregulate HSP32 in response to 

CoPPIX. We treated utricles with 20 JlM CoPPIX for 12 h. The utricles were 

subsequently fixed and stained for HSP32 (Fig. 5-1). HSP32 immunoreactivity was not 

detected supporting cells, and minimal upregulation was observed in hair cells after 

CoPPIX treatment. However, HSP32 immunoreactivity was most prominent in another 

cell type in the stromal layer beneath the sensory epithelium that was morphologically 

dissimilar to hair cells or supporting cells. These HSP32-expressing cells were 

morphologically similar to macrophages (Bhave et a11998; Hirose et a12005; Warchol 

1997). In order to confirm the identity of the primary HSP32-expressing cells as 

macrophages, CX3CR1GFPIGFP utricles were treated with 0 or 20 JlM CoPPIX for 12 h. 

Some macrophages expressed HSP32 in the absence of CoPPIX, whereas many more 

expressed HSP32 following CoPPIX treatment. Some unknown cell type(s) around the 

periphery of the utricle also upregulated HSP32 following CoPPIX treatment (data not 

shown). These data suggest that the main cell type responsible for HSP32 upregulation 

following CoPPIX treatment of the adult mouse utricle is the macrophage. 
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Figure 5-1. HSP32 is upregulated primarily in resident macrophages of adult mouse 
utricle. Utricles were treated with 0 (a, b, e, f, i, j) or 20 JlM (c, d, g, h, k, 1) CoPPIX. 
Utricles were stained for the hair cell marker myosin 7a (a, c), the supporting cell 
marker SOX2 (e, g), or were CX3CR1GFPIGFP utricles which have GFP-expressing 
macrophages (i, k). All utricles were stained with an anti-HSP32 antibody (b, d, f, h, j, 
1). These data indicate that HSP32 results in upregulation of HSP32 in macrophages 
of adult mouse utricle. No HSP32 upregulation was detectable in the hair cells or 
supporting cells. Confocal micrographs are presented. Scale bars represent 5 pm in 
the hair cell and supporting cell rows (a-h) and 10 pm in the macrophage row (i-I). 



Liposomal Clodronate depletes macrophages without killing hair cells 

.. In order to examine the role of macrophages in mediating the protective effect of HSP32 

induction, we utilized liposomal clodronate (LC) to deplete resident macrophages. LC 

(a.k.a. liposomal dichloromethylene-bisphosphonate) selectively kills macrophages 

because only cells with phagocytic activity take up liposomes (van Rooijen & Hendrikx 

2010; Van Rooijen & Sanders 1994). Once inside macrophages, the lipid membranes of 

these multilamellar liposomes are broken down by lysosomal enzymes, thus allowing 

accumulation of the very polar clodronate molecule in the macrophages. Upon 

accumulation of enough clodronate, the macrophages undergo apoptosis (van Rooijen et 

al 1996). Utricles from CX3CR1 GFP1
+ mice were treated with 0, 0.1, 0.5, 1, 2, 4, or 8 mM 

LC for 48 h. Utricles were fixed and stained for myosin 7a and OFP-positive 

macrophages and hair cells were counted from maximum intensity projections of 

confocal z-stacks taken of entire utricles. Liposomal clodronate resulted in depletion of 

macrophages at 2, 4, and 8 mM concentrations (Dunnett's multiple comarisons: p<O.Ol) 

(Fig. 5-2A) without loss of hair cells (Dunnett's multiple comarisons: p>O.05) (Fig. 5-

2B). 
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Figure 5-2. Liposomal clodronate (LC) depletes macrophages from utricle without 
killing hair cells. CX3CR1 GFP1

+ utricles were treated with 0, 0.1, 0.5, 1, 2, 4, and 8 mM 
LC for 48 h. Utricles were fixed and stained for myosin7a. (A) Confocal z-stack 
images were acquired for each utricle. Macrophage counts were performed on 
maximum intensity projection images from each z-stack. Liposomal clodronate 
depleted macrophages from the utricular epithelium at 2, 4, and 8 mM concentrations 
(Dunnett 's multiple comparisons: p <O. 01). (B) Hair cell counts were performed for 
each utricle. Liposomal clodronate had not significant effect on hair cell density at the 
concentrations investigated (Dunnett 's multiple comparisons: p >O. 05) . Bars 
represent the mean ± SEM for n = 4-10 utricles per condition. Asterisks (*) denote 
significant differences in cell numbers compared to control. 



Depletion of resident macrophages inhibits the protective e(fect o(HSP32 against 

cisplatin-induced hair cell death 

In order to determine whether macrophages are necessary for the protective effect of 

HSP32 against cisplatin-induced hair cell death, 4 mM LC was used to deplete 

macrophages from CX3CRJ GFP1
+ utricles prior to CoPPIX treatment. Utricles were 

treated with 4 mM LC for 48 h. Following this period in LC, the utricles were allowed to 

sit in drug-free culture media for 24 h. Then the utricles were exposed to 20 JlM CoPPIX 

for 12 h with subsequent incubation in 30 Jlg/mL (100 JlM) cisplatin for 24 h. These 

utricles were then fixed and underwent immunochemical staining for the hair cell marker 

myosin 7a. LC was not toxic to hair cells at 4 mM concentration (I'ukey's Multiple 

Comparisons: p> 0.05). CoPPIX + cisplatin treatment resulted in increased hair cell 

density compared to cisplatin treatment, alone (I'ukey's Multiple Comparisons: p<O.OJ). 

Significantly fewer hair cells remained in the LC + CoPPIX + cisplatin group when 

compared to the CoPPIX + cisplatin group (I'ukey's Multiple Comparisons: p<O. OJ), as 

well as the control group (I'ukey's MUltiple Comparisons: p<O.OOJ). These results 

indicate that LC abrogates the protective effect of CoPPIX, thus indicating a role for 

macrophages in hair cell survival (Fig. 5-3). 
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Figure 5-3. Liposomal clodronate-mediated macrophage depletion inhibits protection 
conferred by CoPPIX against cisplatin-induced hair cell death. Utricles were treated with 
4 mM LC for 48 h, allowed to incubate in drug-free culture media for 24 h, then treated with 0 
or 20 ~M CoPPIX for 12 h, followed by 0 or 30 ~g/mL (100 JlM) cisplatin for 24 h. Utricles 
were fixed and processed for immunochemistry. Hair cell counts were performed on 
myosin7a-stained utricles. LC abolished the protective effect of CoPPIX against cisplatin 
induced hair cell death (Tukey's multiple comparisons: p<O.OJ). Bars represent the mean ± 
SEMfor n = 4-6 utricles per condition. Asterisks (*) denote significant difference in hair cell 
density relative to control utricles. 



HSP32 causes a change in cvtokine expression of cis plat in-treated utricles 

~In order to determine the mechanism by which increased HSP32 expression protects 

against cisplatin-induced hair cell death, utricles were treated with 0 or 20 flM CoPPIX 

for 12 h followed by 0 or 30 flg/mL (100.0 J.lM) cisplatin for 18 h and processed for qRT­

PCR to detect changes in transcript of the anti-inflammatory cytokine IL-1 O. Results 

indicate that IL-1 0 mRNA is twice as abundant in cisplatin-treated utricles that also 

underwent CoPPIX pretreatment than in utricles treated with cisplatin, alone (Fig. 5-4). 
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Figure 5-4. HSP32 increases transcription ofIL-lO in presence of cisplatin. Utricles were 
treated with 0 or 20 ~ CoPPIX for 12 h followed by treatment with 0 or 30 Jlg/mL (100 JlM) 
cisplatin for 18 hours. Utricles were then processed for qRT-PCR. Each treatment group was 
plated in triplicate. 



Discussion 

"Immunochemistry revealed and increase in expression ofHSP32 in macrophages of adult 

mouse utricle following CoPPIX treatnlent (Fig. 5-1). While HSP32 expression is known 

to occur primarily in macrophages of other organs, such as liver, lung, and spleen, this is 

the first report of such a phenomenon in the utricle. 

qRT -PCR experiments revealed a role for cytokine production in the protective 

effect of HSP32 expression by macrophages against cisplatin-induced hair cell death 

(Fig. 5-4). The increase in IL-l 0 transcript in the cisplatin + CoPPIX treatment group 

when compared to the cisplatin group falls in line with the results of other similar studies 

(Drechsler et a12006; Inoue et a12001). It seems as though HSP32 or CO triggers a 

change in macrophage phenotype, causing increased IL-l 0 secretion (Chen et al 201 Ob; 

Drechsler et a12006; Inoue et a12001; Otterbein et a12000; Sheikh et a12011). TNFa 

has been implicated as a potential mediator of cisplatin-induced ototoxicity. HSP32 

induces IL-IO expression, an event which seems to coincide with the ability ofHSP32 to 

inhibit TNFa expression (Drechsler et al 2006; Inoue et a12001). Recently, a publication 

emerged in which IL-l 0 was shown to inhibit transcriptional elongation of TNFa, thus 

supporting a direct role for IL-I 0 in this process (Smallie et al 20 I 0). Furthermore, IL-

10-1- mice exhibit worse hearing than their wild-type counterparts in a model of 

experimental autoimmune hearing loss (EAHL) (Zhou et a12011). The same study 

demonstrated that exogenous IL-I 0 can improve hearing in mice with EAHL. Thus, IL-

10 inducers may prove useful as potential co-therapies for the prevention of cisplatin­

induced hearing loss. 
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Removal of macro phages from utricle using LC effectively demonstrated the 

protective nature of macro phages against cisplatin-induced hair cell death (Fig. 5-3). The 

finding that the protective effect ofHSP32 is mediated by resident macrophages indicates 

that macrophages are important determinants of hair cell survival versus death in 

response to cisplatin. This is especially true in light of recent reports regarding the 

importance of other cell types, such as supporting cells, in governing hair cell life and 

death (Lahne & Gale 2008). These findings also illustrate the importance of studying 

whole tissues rather than monolayer cells, to test potential otoprotectants and ototoxins. 

Studies of intact tissues are necessary in order to fully understand hair cell death and 

survival in the context of these important signals from surrounding cell types. 

In conclusion, cisplatin-induced hair cell death is a complex process that involves 

not only intracellular hair cell signals, but also interactions between hair cells and 

neighboring macrophages. The current study provides evidence that macrophages offer 

protection against cisplatin-induced hair cell death, a feature which could be manipulated 

for use in the future as a co-therapy to prevent cisplatin-induced hearing loss in humans. 
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Chapter 6: Future directions toward designing a co-therapy for the prevention of 
cisplatin-induced hearing loss 

Cisplatin is an extremely successful and widely-used chemotherapy for the 

treatment of many solid tumors in both adults and children. Ototoxicity, though not 

necessarily dose-limiting, is a major side-effect of cisplatin that negatively affects quality 

of life following treatment in at least one-third of patients receiving the drug. Due to the 

efficacy of cisplatin in treating such a wide range of tumors and the lack of an effective 

replacement for the drug., it is unlikely that cisplatin will fall out of favor as a 

chemotherapy. Therefore, it is imperative to design a co-therapy for the prevention of 

cisplatin-induced ototoxicity. It is important to note that a co-therapy designed for use 

with cisplatin must not interfere with the anti-neoplastic properties of this 

chemotherapeutic drug. Thus, either the mechanism of action of the co-therapy must not 

aid in tumor growth or cisplatin tolerance, or the drug must be administered locally to the 

ear. 

Uncovering mechanisms behind cisplatin-induced hair cell death is imperative for 

the design of the most effective co-therapy. Now that p53 has been ruled out as an 

effector of the DNA damage response in hair cells, other candidates can be investigated. 

p73 is a promising player as an initiator of apoptosis following cisplatin treatment. This 

p53 family member is known to be inhibited by the pharmacological agent pifithrin-a. 

Future experiments designed to test the relevance of p73 to cisplatin-induced hair cell 

death involve the use of pifithrin-a on p53-1
- utricles. If pifithrin-a protects hair cells of 

cultured utricles in the absence of p53 protein, this would be a good indication of a 

potential involvement of p73 in cisplatin-induced hair cell death. Subsequent studies 

would use western blot to detect p73 activation in cisplatin-treated utricles, as well as 



'. 

immunochemistry to determine cell types in which p73 is activated. Preliminary data 

indicate that, unlike p53, p73 is expressed in utricular hair cells (Fig. 6-1). 

HSP70 was shown protect against cisplatin-induced hair cell death; however, this 

protection was not as good as HSP32. The model systems used to determine the potential 

of HSP70 as a potential protectant against cisplatin-induced hair cell death were not ideal. 

Therefore, future studies regarding HSP70 as a potential co-therapy for use against 

cisplatin-induced hearing loss should include studies designed to more definitively 

determine the efficacy of HSP70 against cisplatin-induced hair cell death. Such model 

systems could include viral transfection ofHSP70 to overexpress it in the utricular 

epithelium, as well as silencing studies to demonstrate the necessity of HSP70 in the 

protection conferred by heat shock. 

HSP32 offers robust protection against cisplatin-induced hair cell death, thus 

implying the potential for HSP32, its byproducts, or HSP32-related mechanisms of 

protection for use as a co-therapy against cisplatin-induced hair cell death. The first step 

toward designing a cisplatin co-therapy involving HSP32 would require in vivo studies 

designed to further test hypotheses presented herein. It is necessary to determine that the 

preservation of hair cells in vitro translates to preservation of hearing in the face of 

cisplatin treatment. LC is used more often in in vivo than in vitro settings, and would, 

therefore, be an extremely useful tool for the depletion of resident macrophages from the 

inner ear prior to HSP32 upregulation in order to confirm that the in vitro evidence for a 

macrophage-mediated protection in the utricle translates to the functional cochlea. 

However, a protocol for administration of LC to the inner ear has not, yet, been 
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established. Such a protocol would require a route of administration that would introduce 

LC into blood circulation and allow LC to efficiently reach inner ear macrophages. 

Known experimental inducers ofHSP32, such as CoPPIX and heme, are not 

promising for use as clinical therapies (Paine et a1201 0). It is therefore necessary to 

begin experimenting with HSP32-inducing agents that are already approved for human 

use, such as statins and polyphenols. Statins are commonly used to lower LDL 

cholesterol levels in blood by inhibiting a rate-limiting enzyme, 3-hydroxy-3-

methylglutaryl-CoA reductase, in cholesterol synthesis. Recently, statins have been 

shown to have multiple effects aside from that of lowering cholesterol, including 

regulating inflammation (Bu et al 2011). Furthermore, several statins have been shown 

to induce HSP32 expression (Chen et a12010a; Kwok et a12011). Current evidence 

strongly indicates that statins are excellent candidates for a co-therapy to prevent 

cisplatin-induced hearing loss. First, statins have been shown have anticancer effects, as 

well as to act synergistically with cisplatin against osteosarcoma and ovarian cancer, a 

feature that would allow systemic administration of this potential co-therapy (Fromigue 

et a12008; Roudier et a12006; Taylor-Harding et a12010). Secondly, statins have been 

shown to protect against cisplatin-induced nephrotoxicity in rodents, thus inhibiting a 

dose-limiting side effect of cisplatin treatment (An et a12011; Iseri et a12007). Thirdly, 

statins have been approved for long-term use by humans. Due to the progressive nature 

of cisplatin-induced ototoxicity, it is likely that patients would benefit from taking statins 

for an extended period of time following cisplatin treatment. The benefits of such a long­

term statin treatment may extend beyond prevention of hearing loss to prevention of 

cancer recurrence, as statins have been shown to prevent cancer metastasis and 

94 



... 

development (Demierre et aI2005). Currently, no investigations into statins as 

protectants against cisplatin-induced ototoxicity have been published. Polyphenols are a 

group of plant-derived molecules with antioxidant capabilities. A polyphenol found in 

green tea, EGCG, is a known HSP32-inducer, and it has been shown to inhibit cisplatin­

induced hair cell death in vitro (Romeo et a12009; Schmitt et aI2009). Furthermore, like 

statins, EGCG has been shown to inhibit cisplatin-induced nephrotoxicity, as well as to 

sensitize tumors to cisplatin therapy (Chan et a12006; El-Mowafy et al201 0; Sahin et al 

2010; Singh et a12011; Yunos et aI20ll). 

In addition, if the protection conferred by HSP32 is primarily due to an IL-l 0-

mediated inhibition ofTNFa, known therapeutic TNFa inhibitors, such as etanercept, 

infliximab, and cardiac glycosides, may be beneficiaL The role of TNFa in cisplatin­

induced hearing loss has yet to be definitively determined. Due to the existence of 

multiple pro-inflammatory cytokines, germ-line TNFa knockout mice have likely 

compensated for the absence ofTNFa by the time they have matured. In fact, such 

compensation has been documented (Miyoshi et aI2005). For this reason, the use of a 

conditional TNFa knockout mouse strain would be much more effective in determining 

the role of this cytokine in cisplatin-induced hair cell death and hearing loss. 
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Figure 6-1. p73 expression by hair cells of adult mouse utricle. Untreated utricles were 
fixed and stained with antibodies against total p73 (green) and myo7a (red). Confocal images 

are presented. Scale bar represents 10pm. 
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