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ABSTRACT 

Gonorrhea is the second most common sexually transmitted bacterial infection in 

the United States, with nearly 600,000 cases reported in 2018 by the Centers for Disease 

Control. Alarmingly, the causative agent Neisseria gonorrhoeae has developed resistance 

to a number of antimicrobials over the last century. With limited options remaining, the CDC 

now recommends dual therapy with ceftriaxone and azithromycin to decrease the likelihood 

of resistance development. However, strains with combined cephalosporin and macrolide 

resistance have now emerged, raising concerns of a post-antibiotic future in which 

untreatable gonorrhea would impose enormous human and economic cost. The discovery 

and development of novel antigonococcal agents is, therefore, necessary to avoid a public 

health crisis.  

The pharmacologic receptors for β-lactams are a group of transpeptidases known 

as penicillin-binding proteins (PBP), which catalyze the cross-linkage of peptidoglycan, an 

essential component of the bacterial cell wall that plays major roles in cell growth and 

division. N. gonorrhoeae develops chromosomally mediated β-lactam resistance via 

alterations of PBPs affecting drug affinity, specifically through the acquisition of mutations in 

the penA gene encoding PBP2. Resistant strains harbor mosaic penA alleles encoding PBP2 

variants containing around 60 amino acid changes compared to wild-type. In this work, we 

examine inhibition of a mosaic form of N. gonorrhoeae PBP2 from the cephalosporin-

resistant strain H041, seeking to understand better which features of ligand structure 

enhance or diminish PBP2 binding in order to develop more effective PBP2 inhibitors.  

First, we report structure-activity relationships (SAR) for the cephalosporin class of 

β-lactams against PBP2 from N. gonorrhoeae H041 with the goal of identifying or designing 

cephalosporins effective against resistant strains. We find that structural features of the C7 

acylamino side chain (R1) correlate highly with the second-order rate of PBP2H041 



 xvii 

acylation, including increased size, modest lipophilicity, and two ring systems separated 

by a single branch point. The C3 side chain (R2) makes lesser, but still important, 

contributions to inhibition, with electronegative elements and planarity enhancing activity. 

We also found that many of the features enhancing target inhibition (e.g., lipophilicity, 

aromaticity) diminish antimicrobial activity against the H041 strain, perhaps due to 

decreased accumulation in the periplasm. Finally, we identify cefoperazone as highly 

active against PBP2H041 and similarly active against N. gonorrhoeae H041 both in vitro 

and in vivo compared to ceftriaxone. Second, we report the in silico discovery of novel 

noncovalent PBP2 inhibitors possessing a 1,1’-biphenyl system. Arylamide JEK-42 and 

its isosteric sulfonamide derivative JMT-1 are capable of inhibiting PBP2 from both β-

lactam-susceptible and -resistant gonococcal strains. Their cross-inhibition of P. 

aeruginosa PBP3, predicted binding modes showing interaction with highly conserved 

residues, and structural similarities to bicyclic β-lactam scaffolds indicate their potential for 

broader activity against class B PBPs. Using the structural similarities between JEK-42, 

JMT-1, and bicyclic β-lactam scaffolds (i.e., penam, carbapenem, and cephem), a three-

point pharmacophore was generated that can be used to identify additional PBP-inhibitory 

scaffolds. Third, we report the synthesis of 127 derivatives of JMT-1, showing specific 

substitutions that enhance the inhibition of PBP2 derived from both β-lactam-susceptible 

and -resistant strains. In keeping with the cephalosporin SAR, hydrophobic substitutions 

enhance PBP2 inhibition, likely through increased van der Waals contact with the active 

site, but they can also result in diminished antimicrobial activity. Together, our efforts yielded 

10 compounds that show near full inhibition of PBP2 from susceptible and resistant strains, 

as well as large zones of gonococcal growth inhibition in disc diffusion assays. These 

studies lay the groundwork for the development of several structurally diverse 

antigonococcal chemotypes, thereby increasing the probability of producing a successful 

preclinical candidate. 
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CHAPTER 1: Introduction  
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1.1 Neisseria gonorrhoeae  

1.1.a. Epidemiology and clinical features of gonococcal disease 

Neisseria gonorrhoeae is a Gram negative diplococcus responsible for the sexually 

transmitted infection (STI) gonorrhea. Gonorrhea is a global problem and, despite a sound 

public health infrastructure, a growing issue in the United States. There are nearly 600,000 

cases reported annually by the Centers for Disease Control (CDC)1 and 87 million cases 

reported annually by the World Health Organization (WHO),2 and as with many infectious 

diseases, the true number of cases is expected to be much higher due to asymptomatic 

infection and underreporting. In the United States, overall rates of infection showed a 

substantial decline until 2009, reaching a low of 98.1 cases per 100,000 person years; in 

the last decade, however, an upward trend in infection rates has begun and persisted, 

with 179.1 cases per 100,000 person years reported in 20181 (Figure 1.1). The highest 

reported rates are seen among the following groups: adolescents and young adults, racial 

minorities, men who have sex with men (MSM) and persons living in the southeastern 

states1 (Figure 1.1). Symptomatic disease is generally associated with urethritis in men 

and cervicitis in women, although rectal and pharyngeal gonorrhea are not uncommon. 

Untreated, the infection can spread in an ascending pattern, resulting in epididymitis in 

males and pelvic inflammatory disease (PID) in females. These complications can result 

in serious sequelae, including infertility and ectopic pregnancy. Disseminated gonococcal 

infections result most commonly in suppurative arthritis or tenosynovitis but can cause 

more serious disease, such as endocarditis or meningitis.3-8 Importantly, gonococcal 

infection results in mucosal disruption and can therefore increase the risk of both 

transmitting and contracting human immunodeficiency virus (HIV).9,10 
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Figure 1.1: Epidemiology of gonococcal disease in the United States. A. Reported incidence of 
gonorrhea in the United States over the last 70 years. The absolute incidence is shown in black, 
and the rate of change is shown in red. B. Incidence of gonorrhea stratified by age and sex. Data 
are from 2018. C. Incidence of gonorrhea stratified by age and ethnicity. Data are from 2018. D. 
Estimated incidence in gonorrhea stratified by sexual behavior. Values are modeled based on 
interviews of a random sample of reported cases (n = 6,482 patients). Key: men who have sex with 
men (MSM), men who have sex with women (MSW), women (W).  E. Heat map of gonococcal 
incidence by state. All data are from CDC infectious disease surveillance. 
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1.1.b. Emerging antimicrobial resistance  

Historically, gonorrhea was treated with sulfanilamide or penicillin, but due to 

increased prevalence of resistant strains, the Centers for Disease Control & Prevention 

(CDC) called for their withdrawal as recommended antibiotics for gonococcal infections 

due to emerging resistance.11-20 With the subsequent withdrawal of spectinomycin,21-25 

tetracyclines,26-30 and fluoroquinolones31-38 for the same reason, only third-generation 

cephalosporins (e.g., ceftriaxone and cefixime) remained as CDC-recommended drugs of 

choice in the United States39,40 (Figure 1.2). In the last two decades, strains of N. 

gonorrhoeae with decreased susceptibility to extended-spectrum cephalosporins (ESCs) 

have emerged, prompting concerns that gonococcal infections may soon become 

untreatable using monotherapy.41-59 For this reason, treatment guidelines now recommend 

dual therapy with ceftriaxone and azithromycin in the United States and Europe.60,61 

Alarmingly, strains exhibiting high-level resistance to ESCs have now been isolated on 

most continents (Asia, Australia, Europe, North America, and South America),62-87 and 

macrolide resistance has become increasingly common.48,88-93 While combined ESC and 

macrolide resistance is exceedingly rare, a few such cases have been reported.78-80 This 

rapidly changing landscape of antimicrobial resistance indicates that the currently used 

dual regimen will not provide a long-term solution for antigonococcal chemotherapy.94-98  
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In addition to the human costs, STIs have a substantial impact on the national and 

global economies. Diagnosis and treatment alone cost the United States healthcare 

system $16B annually, with gonococcal infections contributing an estimated $162M in 

direct costs.99 With the present surge of multidrug-resistant gonorrhea, disease 

prevalence and severity are expected to rise due to treatment failure, augmenting the 

economic burden of gonorrhea and its sequelae. To date, there have been no strains 

exhibiting high resistance to ESCs isolated in the United States; however, with the recent 

international transmission of a ESC-resistant clone from Asia to Canada,67 the arrival of 

such a strain to the United States seems imminent. It is predicted that if antimicrobial-

resistant N. gonorrhoeae were to become established in North America, there will be 5.9 

million new cases, an added cost of approximately $780M, over a seven-year period.100  

1.2 β-Lactams and their biological targets 

1.2.a. Penicillin-binding proteins as the molecular targets for β-lactam antibiotics 

The pharmacologic receptors for β-lactams are a group of DD-transpeptidases 

known as penicillin-binding proteins (PBPs), which catalyze the cross-linkage of 

peptidoglycan via the formation of isopeptide bonds.101-103 Peptidoglycan is a mesh-like 

polymeric macromolecule consisting of glycan strands of β-1,4-linked N-acetylmuramic 

acid and N-acetylglucosamine covalently linked to L-alanyl-ɣ-D-glutamyl-L-diaminoacyl-D-

alanine peptide chains via amidation of the muramic acid carboxyl group by the L-alanine 

amino group104 (Figure 1.3). Cross-linkage of peptidoglycan units occurs when a unit of 

endogenous pentapeptide substrate, L-alanyl-ɣ-D-glutamyl-L-diaminoacyl-D-alanyl-D-

alanine, forms an isopeptide bond between the penultimate D-alanine and the side chain 

amine of the diaminoacyl residue at the expense of the D-alanyl-D-alanine peptide bond, 

a process catalyzed by the PBPs (Figure 1.4). Peptidoglycan is an essential component 

of the bacterial cell wall and plays major roles in cell growth and division, as well as 

protection from osmotic or tensile stress, and it has a natural turnover rate dictated by the 
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processes of synthesis and autolysis.104,105 There are three classes of PBP: class A are 

bifunctional enzymes, with transpeptidase and transglycosylase functionalities; class B 

are monofunctional transpeptidases; and class C catalyze either carboxypeptidase or 

endopeptidase reactions.102,103 Whereas PBPs of classes A and B are generally essential 

for the survival of bacteria, class C can often be genetically deleted without significant 

effects on cell growth or morphology. 

The transpeptidase active site contains three conserved motifs: SxxK, SxN, and 

KTG (where x denotes a variable residue)106 (Figure 1.5). The catalyzed reaction involves 

three steps: Michaelis-Menten binding of peptide substrate, acylation, and deacylation. It 

is proposed that the KTG lysine serves as an electrostatic anchor for the pentapeptide 

carboxy terminus to allow initial recognition of the substrate.107-112  In N. gonorrhoeae 

PBP2, there is evidence that the KTG threonine then rotates in response to carboxylate 

binding, acting as a trigger that initiates the acylation reaction by allowing β3 strand 

rotation for formation of the oxyanion hole.113 The SxxK lysine acts as a base, polarizing 

the hydroxymethylene sidechain of the SxxK serine to form a pseudo-alkoxide nucleophile 

that attacks the carbonyl carbon of the peptide substrate’s penultimate D-Ala.107-112 The 

resulting substitution reaction goes through a tetrahedral intermediate stabilized by an 

oxyanion hole made up of the backbone amides of the SxxK serine and a residue following 

the KTG motif.114-117  Upon resolution of the tetrahedral intermediate, the terminal D-

alanine is eliminated to form an activated L-alanyl-ɣ-D-glutamyl-L-diaminoacyl-D-alanyl 

acyl enzyme, at which time the carbonyl carbon undergoes nucleophilic attack by the 

diaminoacyl residue of an adjacent peptidoglycan strand.  
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Figure 1.5: Conserved active site motifs in the PBPs. The example shown is PBP2 of N. 
gonorrhoeae. 
 
 

β-lactam antibiotics mimic the D-Ala-D-Ala terminus of the peptidyl substrate.118-124  

In the presence of a β-lactam, the serine nucleophile instead attacks the carbonyl carbon 

of the cyclic amide, but upon resolution of the tetrahedral intermediate, the leaving group 

remains tethered to the acyl-enzyme, blocking deacylation125-127 (Figure 1.4). The reaction 

of β-lactams with PBPs is described by Equation 1, where E·S is the noncovalent 

enzyme-lactam complex, E−S′ is the acyl-enzyme complex, and P is the hydrolyzed β-

lactam.  

 

 

The second-order rate constant (k2/Ks) is a direct measure of the reactivity of a β-

lactam with a PBP, and these rate constants can exceed 106 M-1s-1 against PBPs of 

susceptible strains.128 As described above, the rate of deacylation (k3) is slow, occurring 

on the order of one reaction per hour.129-132  

 

𝐸 + 𝑆		
			"!			%⎯'		𝐸 ⋅ 𝑆		

			##			)⎯'		𝐸 − 𝑆$		
			#$				)⎯⎯'		𝐸 + 𝑃 
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Four PBPs are encoded by the genome of N. gonorrhoeae.133  PBP1 (class A), 

and PBP2 (class B) are both essential and are potential targets for bactericidal activity; 

however, because PBP2 is inhibited at tenfold lower penicillin concentrations than PBP1, 

it is generally accepted to be the clinical target for susceptible strains. While PBP3 and 

PBP4 (class C) are nonessential, deletion of both in one strain results in pleiomorphy and 

slowed growth.111  

1.2.b. Factors affecting β-lactam acylation of PBPs 

As shown in Equation 1, there are two component steps to β-lactam acylation of 

PBPs: formation of the precovalent enzyme-lactam complex (Ks) and reaction of the serine 

nucleophile with the lactam ring to form the covalent acyl-enzyme (k2). The first step is 

determined by factors affecting affinity of the β-lactam for the active site of the PBP, 

including complementarity of size, shape, and charge; however, very little is known about 

how these features contribute to the binding of β-lactams. Isothermal titration calorimetry 

(ITC) and surface plasmon resonance (SPR) are not especially useful to this end, as they 

can only report an apparent association constant (Ka) due to the overall reaction being 

covalent. Mutation of the nucleophilic serine to alanine has been performed in our 

laboratory, however, and in ITC studies of this modified system, we have shown that 

affinity is important for acylation.134 Whereas Kd of ceftriaxone was measured to be 2.3 µM 

against PBP2 derived from a fully susceptible strain of N. gonorrhoeae, no heat exchange 

was seen upon titration of millimolar ceftriaxone into PBP2 derived from cephalosporin-

resistant strains. Previous studies have indicated that the common acylamino side chain 

of many β-lactams may be an important driver of affinity against PBPs, but more rigorous 

analyses were not done to determine which characteristics specifically enhance or hinder 

acylation.135-139  In one instance, a high-affinity penicillin analogue was designed with a 

specific acylamino group that rendered it orders of magnitude more active than other β-

lactams (k2/Ks = 1.5×107 M−1s-1).140,141 Finally, complex formation is largely dependent 
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upon the active site architecture of the specific PBP being studied. Each bacterial species 

has its own collection of PBPs, and beyond the conserved motifs, there is considerable 

sequence variation. Resistant mutants arising from target modification complicate this 

problem further.  

 In addition to side chains and overall topology of the molecule, another factor, the 

Cohen parameter c, describes the precovalent complementarity of β-lactams in the PBP 

active site.142,143 The Cohen parameter is defined as the distance between the carboxylate 

carbon and the amide oxygen in bicyclic β-lactam systems (Figure 1.6). Lower Cohen 

parameters are correlated with higher complementarity, likely due to a physical 

requirement created by the distance between the carboxylate-binding residues and the 

oxyanion hole created by the SxxK serine and a β3 residue following the KTG motif. 

 

 

 

Figure 1.6: Illustrations of Woodward height and Cohen parameter for several classes of β-lactam 
antimicrobials.  
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The acylation reaction by β-lactams is determined by factors governing 

nucleophilic attack of the lactam ring, including both target and ligand factors. Target 

factors involve the electronic environment of the serine and how this environment affects 

its ability to act as a nucleophile. From studies of the mechanistically analogous serine 

protease chymotrypsin, as well as studies assigning protonation states to active site 

lysines in several PBPs, it is widely accepted that the SxxK motif lysine polarizes the serine 

hydroxyl group, forming an activated pseudo-alkoxide.107-112 The acid-base chemistry of 

the SxxK serine and lysine has been shown to be key to this process and is influenced by 

the local environment of the active site. For a Brønsted-Lowry acid or base to function 

optimally in a catalytic cycle, its pKa must be near the effective pH at the reaction site so 

that its protonation state can be readily restored.144-147 In the case of the conserved SxxK 

residues of PBPs, there are three predominating factors influencing protonation states: 

local electrostatics, the presence of an extensive hydrogen bonding network, and the Born 

effect.148,149 The presence of additional nearby ionizable groups can influence the pKa of 

an ionizable residue in accordance with the thermodynamic tendency away from 

Coulombic repulsion.150 The presence of the KTG lysine adjacent the SxxK lysine in PBPs 

will, therefore, decrease the pKa of both toward surrounding pH. The active site of PBPs 

also contains an extensive hydrogen bonding network, including a direct SxxK serine-

lysine donor-acceptor pair. The favorable energy of this interaction results in an increase 

in the acidity of the serine hydroxyl group due to the stabilization of its conjugate base.151  

Finally, the Born effect prescribes that the ionized state of an acid or base exists more 

readily in a hydrophilic environment – when buried in a protein, the pKa is perturbed to 

favor the neutral species (i.e., the pKa of the SxxK lysine is decreased).152  In studies on 

the pH dependence of E. coli PBP5 activity, these general principles have been supported 

experimentally, with results showing that the SxxK lysine is in its free-base form at optimal 

catalysis.108 Further, disruption of the residue’s pKa by substitution with arginine’s 
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guanidine side chain results in a 600-fold decrease in the second order rate constant for 

penicillin binding.153  

The preeminent ligand factor affecting β-lactam binding to PBPs is the activation 

of the lactam ring itself to reaction with nucleophiles, a property determined by the p-orbital 

character of the lactam nitrogen. In monocyclic 2-azetidinone systems, the amide system 

is stabilized by resonance, decreasing the electrophilicity of the carbonyl group. In bicyclic 

systems, however, the amide nitrogen is geometrically constrained to an sp3 hybridized 

trigonal pyramidal geometry, decreasing this resonance effect.154-159 The result is that in 

bicyclic systems, the lactam ring exhibits much higher intrinsic reactivity to nucleophiles. 

The amount of nitrogen p-orbital character can be measured by the distance of the 

nitrogen from the base of the trigonal pyramid defined by its three bond-pair substituents, 

a parameter known as the Woodward height160-162 (Figure 1.6). 

1.2.c. Major classes of β-lactam antimicrobials 

Monobactams are the simplest class of β-lactam antimicrobials, possessing a 

monocyclic 2-azetidinone system with an N-sulfonic acid moiety (Figure 1.7) the base 

structure of which was first isolated from Chromobacterium violaceum.163-165 Due to their 

monocyclic structure, they are the least activated of the β-lactam antimicrobials, and their 

activity is thought to be a consequence predominantly of their ease of entry into PBP active 

site. However, there is evidence to suggest that the electron-withdrawing inductive effect 

of the N-sulfonic acid serves to disrupt amide resonance, albeit slightly, lending to partial 

p-orbital character of the nitrogen’s hybrid orbitals.166 There is currently only one 

monobactam in clinical use, aztreonam, which exhibits potent inhibition of Gram-negative 

PBPs.167-170 It finds limited utility clinically, however, as it has no activity against Gram-

positive or anaerobic bacteria. 
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Figure 1.7: Structures of major classes of β-lactams in clinical use. 
 
 
 

Penams are a class of β-lactams possessing an azabicyclo[3.2.0]heptane ring 

system, a carboxylic acid moiety at C3, and a sulfur atom at position one (Figure 1.7). 

They exhibit a large Woodward height (h ~ 0.4 Å) due to strain imparted by 5-membered 

ring fusion, and as such, exhibit good intrinsic reactivity to nucleophiles. Interestingly, 

molecules of the penam class can exist in two distinct conformational states, one in which 

the C3 carboxylate is in an equatorial position in relation to the ring system and one in 

which it is axial171-187 (Figure 1.6). In the equatorial position, it contributes to a lower Cohen 

distance (c ~ 3.9 Å) and, thus, a better fit to the geometric requirements of the PBP active 

site. In the axial position, the structure is considered inactive (c ~ 4.3 Å). The existence of 

two equally populated states related by rotation results in lowered activity compared with 

lactams possessing constrained carboxylate α-carbons. The prototypic and most well-

known penam is penicillin G, or benzylpenicillin, discovered in cultures of Penicillium 

chrysogenum in the 1920s.188  The other natural product penam is penicillin V, or 

phenoxymethylpenicillin. In the absence of β-lactamases, the natural penicillins show 

good Gram-positive activity but fail to inhibit the growth of many Gram-negative 

organisms.189-193  A great deal of medicinal chemistry has been executed on the penam 

scaffold to modulate the spectrum of this class, resulting in many structural subclasses. 

The penicillinase-resistant penicillins (e.g., nafcillin, oxacillin, cloxacillin, dicloxacillin), as 

the name implies, were introduced specifically to combat the acquisition of narrow-
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spectrum β-lactamases and do not exhibit improved Gram-negative activity over the 

natural product compounds;194-204 the aminopenicillins (e.g., ampicillin, amoxicillin) show 

better Gram-negative activity but are generally outperformed by the natural penicillins 

against Gram-positive organisms;205-207 the carboxypenicillins (e.g., carbenicillin, 

ticarcillin) exhibit rather potent Gram-negative inhibition while retaining good Gram-

positive coverage;208-212 and the ureidopenicillins (e.g., piperacillin, mezlocillin, azlocillin) 

show similar spectrum to the carboxypenicillins but generally possess increased potency 

in comparison.208,209,211,213,214 

Cephems are a class of β-lactams possessing an azabicyclo[4.2.0]oct-2-ene ring 

system, a carboxylic acid moiety at C4, and a sulfur atom at position one (Figure 1.7) 

These systems generally exhibit low Woodward heights (h ~ 0.3 Å) due to conformational 

flexibility afforded by having a 6-membered ring fusion; however, there exists a 

competitive enamine resonance, resulting from the delocalization of the nitrogen’s lone 

electron pair into the π electron system of the dihydrothiazine ring, that contributes to 

disrupted amide resonance.155,159,215 A unique feature of cephem-based compounds is 

their chemistry at the C3 position, which can act as a leaving group upon ring opening due 

to the aforementioned enamine resonance. The departure of a C3 leaving group results 

in the formation of an exocyclic olefin that may enhance the thermodynamic stability of the 

acyl enzyme complex, thereby decreasing regeneration of apoenzyme.216 Whether or not 

it is a leaving group, C3 can participate in long range inductive effects with the β-lactam 

amide moiety, and strongly electron withdrawing groups are postulated to enhance the 

electrophilicity of the active carbonyl.159,217,218 A fixed, low Cohen parameter is 

characteristic of the class due to sp2 hybridization of C4 (c ~ 3.2 Å) (Figure 1.6).  

The first identified cephem, cephalosporin C, was isolated from 

Acremonium chrysogenum and showed only marginal antimicrobial activity;219-225 

however, its many semisynthetic derivatives have enjoyed great success as potent 
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therapeutics. The cephalosporins are categorized into “generations” based on medicinal 

chemistry and antimicrobial spectrum (Figure 1.8). First generation agents generally 

possess an aromatic acylamino side chain at C7 and possess potent Gram-positive 

activity.226-232 While second generation agents explore other aromatic acylamino groups 

at C7, much of the variation found in this generation is from the replacement of the acetoxy 

group with various nucleophiles (i.e., carbamates, heterocyclic mercaptans, and pyridines) 

(Figure 1.8). Second generation agents largely exhibit broader spectrum than their earlier 

counterparts, with some showing potent inhibition of Gram negatives with high intrinsic 

resistance.233-240 Among the key findings of this iteration of cephalosporin design was the 

alkoxyimino moiety, seen in cefuroxime, which confers resistance to degradation by serine 

β-lactamases.241-243 This functional group became a mainstay in the design of third 

generation agents, while the aryl group was modified to an aminothiazole, a change found 

to enhance Gram negative activity (Figure 1.8). One notable outlier is cefoperazone, 

which borrows its C7 acylamino group from the ureidopenicillin piperacillin. This group 

exhibits not only further expanded spectrum compared to previous generations, but also 

good stability to serine β-lactamases.244-259 In the fourth generation, various quaternary 

nitrogen-containing C3 were examined to enhance passive transport through the Gram 

negative outer membrane, decrease affinity for β-lactamases, and promote departure of 

the leaving group.260-266 Fifth generation agents are specifically engineered to combat 

various resistance problems while attempting to maintain spectrum.267-280 In general, these 

compounds maintain the alkoxyimino group, exchange the aminothiazole for an 

aminothiadiazole, and exhibit planarity in their C3 substituents.  
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Carbapenems are a class of bicyclic β-lactams possessing an 

azabicyclo[3.2.0]hept-2-ene ring system, a carboxylic acid moiety at C3, and a carbon 

atom at position one (Figure 1.7). The carbapenems are thought to be the most 

intrinsically active of known β-lactams – their rapid acylation of PBPs and potent 

antimicrobial activity have been ascribed to a highly activated lactam ring system, as 

shown by experiments examining the kinetics of base hydrolysis.156,162 Crystallographic 

structures reveal a high Woodward coefficient (h ~ 0.5 Å) attributable to the geometric 

constraints introduced by the unsaturation between C2 and C3 and the replacement of 

sulfur with carbon at position one. Similar to the cephems, the carbapenems exhibit a fixed 

Cohen distance due to an sp2 hybridized C3, but the bond angles imposed by a 5-

membered fused ring position the carboxylate slightly further from the lactam (c ~ 3.5 Å) 

(Figure 1.6). The C6 R-hydroxyethyl side chain possessed by molecules of this class 

represents a significant departure from penams and cephems, which generally exhibit 

large and variable aminoacyl side chains at this position. Differences in activity and 

spectrum among compounds of this class are, therefore, dictated almost exclusively by 

the side chain at C2. Since the isolation of thienaymycin from Streptomyces cattleya in the 

1970s,281,282 only four carbapenems have been approved for clinical use by the FDA: 

imipenem, doripenem, meropenem, and ertapenem.283-286 Given their broad spectrum, as 

well as their stability against β-lactamases afforded by their C6 R-hydroxyethyl side chain 

and trans C5-C6 geometry,287-289 the carbapenems have found most of their clinical utility 

as antimicrobials of last resort in infections with multidrug resistant organisms. 
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1.3. β-lactams in the treatment of Neisseria gonorrhoeae  

1.3.a. Overview of antimicrobial resistance  

The discovery of penicillin and other compounds capable of inhibiting bacterial 

growth revolutionized modern medicine and continues to shape its practice. These 

therapies not only provided a means of pharmacologically managing conditions and 

injuries that in the past killed or impaired many, but also provided avenues to prevent 

infection post-operatively and in immunosuppressed patients, including those undergoing 

solid organ transplant, those with advanced stage HIV / AIDS, and those receiving 

myelotoxic cancer therapies. However, with increased and sometimes improper use of 

antibiotics, resistance to these and other drugs has emerged in a number of common 

pathogens, thereby limiting treatment options. Prominent examples include methicillin 

resistant Staphylococcus aureus (MRSA),290 vancomycin resistant enterococcus (VRE),291 

multidrug resistant nosocomial pathogens (Pseudomonas aeruginosa, Klebsiella 

pneumonia, Stenotrophomonas maltophilia, etc.),292-294 and sexually transmitted infections 

(Neisseria gonorrhoeae, Mycoplasma genitalium).295,296 In 2014, the WHO began to warn 

of a post-antibiotic era, citing antimicrobial resistance as among the most dangerous 

current threats to public health.297 With the increasing prevalence of strains resistant to 

the existing armamentarium of antimicrobials, there is a great and manifest need for the 

development of new drugs to treat these infections.  

Antimicrobial resistance is classically ascribed to any combination of the following 

processes: decreased accumulation at the site of action, drug inactivation by degradative 

or modifying enzymes, overproduction of endogenous substrates, or target alteration by 

either chromosomal or enzymatic means (Figure 1.9). While N. gonorrhoeae employs 

multiple mechanisms in achieving β-lactam resistance, among its most powerful tools is 

the modification of the penicillin-binding proteins. 
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1.3.b. Gonococcal β-lactam resistance not mediated by PBPs 

Because peptidoglycan crosslinking occurs in the periplasmic space, β-lactams must 

permeate the bacterial outer membrane to exert their cytotoxic effects. Hydrophilic small 

molecules require aqueous channels known as porins to cross this barrier, and bacteria 

have developed several mechanisms for restricting entry298 including global decreases in 

porin expression,299-302 shifts in expression from one porin type to another of smaller 

channel radius,303 and porin mutations resulting in impaired permeation through the 

channel.304 In Neisseria gonorrhoeae, changes in antimicrobial permeability are mediated 

in part by mutations in porB1B encoding the major outer membrane protein porin B1b, 

known as the penB resistance determinant.305 These mutations are located at positions 

120 and 121 on loop 3, which lies within the β-barrel in crystal structures of several porins 

(including N. meningitidis porin B).304,305 It is hypothesized that these mutations perturb 

the structure of the pore constriction, thereby disallowing entry of larger solutes; however, 

penB is phenotypically silent in the absence of efflux overexpression.306 Changes to other 

pore-forming elements may also diminish the periplasmic accumulation of β-lactams in N. 

gonorrhoeae, such as point mutations to the pilQ gene encoding secretin PilQ acquired 

by laboratory strains.307 This type of mutation, known as the penC resistance determinant, 

decreases β-lactam susceptibility, but its disruption of transformation and piliation make it 

unlikely to be found in clinical isolates.  

As illustrated by mutations to porB1b and pilQ, changes in outer membrane 

permeability alone frequently do not alter susceptibility significantly and are often 

associated with additional resistance mechanisms.308 Another mechanism responsible for 

diminished intracellular accumulation is the production of multiunit macromolecular 

machineries that extrude amphipathic xenobiotic compounds, including dyes, detergents, 

solvents, and antimicrobials. These efflux pump systems can be categorized structurally 

into the following families: the ATP-binding cassette (ABC) family, the resistance-
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nodulation-cell division (RND) family, the multidrug and toxic compound extrusion (MATE) 

family, and the small multidrug resistance (SMR) family.309,310 These families are 

distinguished from one another by species specificity, macromolecular structure, substrate 

range, and energy source. While baseline expression of efflux systems can afford survival 

in the presence of certain classes of antimicrobials (i.e., intrinsic resistance), their 

overexpression is of key concern in the development of marked or multidrug resistance.311 

N. gonorrhoeae possesses a tripartite multiple transferable resistance (Mtr) efflux pump 

system belonging to the RND family.312-316 The Mtr system has broad substrate specificity 

that includes many classes of antimicrobial drugs, cationic antimicrobial peptides, natural 

antibiotics, and detergents.312,317,318 It is encoded by the mtrCDE gene complex and 

regulated by the opposing actions of an activator (mtrA) and a repressor (mtrR).319-322 

Several mutations conferring resistance are observed this system, but the most common 

are single missense mutations to a 13 base-pair inverted repeat in the mtrR promoter 

region.320,323-326 Nonconservative mutations in the mtrR DNA binding region have also 

been reported.324,326,327 These loss-of-function mutations in mtrR result in the derepression 

of mtrCDE, allowing for the overexpression of efflux components and a concomitant 

increase in their assembly. 

A final, less ubiquitous mechanism by which bacteria hinder antimicrobial entry is 

the formation of biofilms.328,329 The biofilm state reduces the overall surface area of 

antimicrobial exposure, relative to the bacterium’s planktonic form. Permeation is also an 

issue, with thicker biofilms being generally more difficult to fully eliminate. The observed 

antimicrobial tolerance is likely influenced by more than simple diffusion mechanics, 

however. Studies of expression programs indicate cells in a biofilm go into a dormant 

“persister” state that renders them less susceptible to antimicrobial drugs targeting protein 

synthesis and cellular division.330,331 The gonococcus has developed means of hindering 

antimicrobial access by decreasing exposed bacterial surface area as well. Expression of 
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surface molecules (i.e., phase variable pili, opacity-associated proteins, and 

lipooligosaccharide) promotes gonococcal interactions in vitro, resulting in microcolony 

aggregation and, ultimately, in biofilm formation.332-335 Gonococcal aggregation has been 

shown to increase ceftriaxone tolerance in vitro, with cultivable bacteria being isolated 

after 24-hour exposure to 1 µg/mL.329 In the same set of experiments, residual gonococcal 

viability was found even in a 10 µg/mL treatment group, as measured by ATP production. 

This phenomenon is relevant in vivo as well, as there is evidence of gonococcal biofilm 

formation in cervical biopsies of patients with gonococcal cervicitis.336 

Another mechanism of resistance is production of enzymes that inactivate the 

molecule by addition or removal of chemical moieties or destroy it by hydrolysis.337 Several 

classes of modifying enzymes have been identified that catalyze the following reactions: 

acetylation of aminoglycosides, chloramphenicol, and streptogramins; phosphorylation of 

aminoglycosides and chloramphenicol; and adenylation of aminoglycosides and 

lincosamides.338-343 These reactions alter molecular moieties critical to interaction with 

antimicrobial targets, thereby diminishing binding. The predominating degradative 

enzymes are the hydrolytic β-lactamases, which cleave β-lactams at the active amide 

bond, rendering them incapable of participating in the covalent inhibition process 

characteristic to the class.344-348 High-level gonococcal resistance to penicillin can also be 

achieved through the acquisition of plasmids containing the blaTEM-1 gene, which encodes 

a TEM-1 β-lactamase capable of hydrolyzing penicillins, rendering them inactive.18,19,349 

Although no extended-spectrum β-lactamases (ESBLs) have yet been reported in 

gonococcal isolates, another plasmid containing blaTEM-135 has been identified.350-352 From 

structural and functional comparisons, it is proposed that the encoded TEM-135 

penicillinase may be a direct precursor to an ESBL capable of hydrolyzing 

cephalosporins.351 
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Less studied resistance mechanisms involve the modulation or evolution of 

pathways that compensate for loss of an essential cellular component or enzyme. Bacteria 

are capable of making sophisticated global adaptations to metabolism, including shifts 

between glycolytic and oxidative pathways, alterations in fructose utilization, or changes 

in fatty acid oxidation.353-357 Many of these changes are postulated to result in modulation 

of cell wall autolytic activity and other cell surface properties. In gonococcal strains 

exhibiting mosaic penA, whose gene products likely function suboptimally as 

transpeptidases, compensatory metabolic changes ameliorate fitness defects. It has been 

shown that introduction of mosaic penA41 to a wild-type strain results in the development 

of spontaneous mutations in the acnB gene encoding the TCA cycle enzyme aconitase B, 

as well as in other metabolism-related genes, and that these mutations increase the 

fitness of strains harboring mosaic penA alleles to near-wild-type levels.353 While the exact 

effect of these mutations remains unknown, there are large global shifts in the expression 

of genes involved in energy and carbon metabolism that occur in the presence of a specific 

acnB-G348D mutation, a change that slows the interconversion of citrate and isocitrate by 

the enzyme. 

There are yet additional resistance mechanisms in N. gonorrhoeae that have not 

yet been fully elucidated. Factor X, as it is termed, is a nontransformable determinant of 

unknown identity that can increase penicillin MICs as much as 6-fold.358   
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Table 1.1: Summary of non-PBP-mediated β-lactam resistance in N. gonorrhoeae. *Only seen in 
laboratory strains. **Plasmid-mediated. ***Observed in laboratory strains transformed with mosaic 
penA. Have not yet been confirmed in clinical isolates. 
 

 

1.3.c. Target modification involving gonococcal PBP2  

Target modification is a common mechanism of antimicrobial resistance in which 

the target active site is obscured or its topology altered to diminish binding of the 

antimicrobial. This can be accomplished by mutations to the gene encoding the target,359 

enzymatic addition of chemical moieties to critical contact atoms,360,361 or conformational 

changes resulting from interaction with other macromolecules.362,363 There exist several 

examples of pathogens with modified PBPs that exhibit diminished acylation by β-lactams. 

The MRSA mecA determinant is a notable example of target modification; this gene 

encodes a homolog of the S. aureus β-lactam target possessing a closed active site, such 

that β-lactams cannot gain access for inhibition.364-366 S. pneumoniae develops 

chromosomally-mediated high resistance to β-lactams through the acquisition of 

mutations in any or all of five of its PBPs.367-374 While point mutations can contribute to a 

Target (gene) Function Mutations Consequence Mechanism  
MtrCDE 
(mtrR) 

Efflux pump 
system 

Single nucleotide 
deletion in 
promoter region, 
G45D 

Overexpression Increased efflux 

PorB1b 
(porB1b) 

Porin G120K, G120D, 
A121D 

Altered 
constriction pore  

Reduced influx  

PilQ (pilQ)* Pore-forming 
secretin of type 
IV pilus 

E666K Disruption of pore 
formation 

Reduced influx 

Opa, Pil, LgtE intercellular 
interactions 

None Aggregation, 
biofilm formation 

Decreased 
permeability 

Factor X Unknown Unknown Unknown Unknown 
TEM-1, TEM-
135 (blaTEM)** 

Penicillinase - Expression from 
plasmid 

Hydrolysis  

aconitase B 
(acnB)*** 

TCA cycle 
enzyme (citrate 
à isocitrate) 

G348D Decreased flux 
through TCA 
cycle, changes in 
expression of 
metabolic genes 

Compensatory 
changes in 
energy 
metabolism 

MleN 
(mleN)*** 

malate-2H+ / 
lactate-Na+ 
antiporter 
 

ΔA467 Uncharacterized Uncharacterized 
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resistant phenotype, the hallmark of pneumococcal resistance is horizontal transfer of 

portions of the pbpx gene from resistant commensal streptococci with that of 

pneumococcus, generating a low-affinity mosaic PBP2x protein. E. faecium not only 

acquires point mutations in pbp5 under selective pressure, but it also begins to 

overexpress the low-affinity PBP5 mutant.375-377 Point mutations to the ftsl gene encoding 

PBP3 have been shown to commonly contribute to β-lactam resistance in H. influenzae,378-

381 and alterations in PBP1 have been reported in penicillin-resistant C. perfringens.382,383 

Biochemical and molecular studies have shown that a majority of the decrease in 

susceptibility seen in β-lactam-resistant strains of N. gonorrhoeae is due to chromosomal 

alterations resulting in the modification of PBP2.358,384 First, isolated membrane preparations 

from β-lactamase-negative penicillin-resistant gonococci show marked reduction in 

acylation of PBP2 by [3H]-penicillin G.385,386 These results have been replicated in purified 

protein assays, showing decreased acylation of PBP2 from penicillin- and cephalosporin-

resistant strains by a variety of β-lactams.384,387-390 Additionally, when penA genes from 

resistant strains are transformed into the fully susceptible standard FA19 (i.e., in the 

absence of other resistance determinants), susceptibility to β-lactams plummets.128,358,384,385 

In early studies of penicillin resistance, transformation of penA genes from chromosomally 

resistant strains isolated in Australia caused a 100- to 400-fold increase in the minimum 

inhibitory concentrations (MIC) of penicillin. More recently, transformation of the penA gene 

from a CephDS strain (penA35) into FA19 resulted in 20- and 40-fold increases in the MICs 

of ceftriaxone and cefixime, respectively, while transformation of the penA gene from a 

CephR strain (penA41) resulted in 300- and 500-fold increases. The MICs exceeded the 

European Committee on Antimicrobial Susceptibility Testing (EUCAST) clinical resistance 

breakpoint of 0.125 μg/mL in both cases (0.31 μg/mL and 1.6 μg/mL for ceftriaxone and 

cefixime, respectively). These experiments establish mutations in PBP2 as the primary β-

lactam resistance determinant in N. gonorrhoeae.  
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1.3.d. PBP2 modifications resulting in penicillin resistance 

The first use of penicillin against gonococcal infection was in a case of gonococcal 

ophthalmia neonatorum in 1930.391 Due to its success in treating the affected infant, and 

with growing concerns of sulfonamide resistance at the time, penicillin was tested against 

gonococcal urethritis in the early 1940s. In several studies, therapeutic efficacies of 76-

100% were obtained in men after verified sulfonamide failure.11,13,393-397 Penicillin thus 

replaced sulfonamides as first-line treatment for gonococcal infections. Despite early 

success, the proportion of penicillin-resistant gonococcal strains climbed steadily over the 

coming years.15 In a longitudinal study of 5,700 isolates, conducted from 1959 to 1967, a 

marked temporal increase in resistance was observed.14 At the outset of the study, 63% 

of isolates were susceptible to 0.01 µg/mL, and all isolates were susceptible to 0.3 µg/mL. 

Eight years later, only 13% were susceptible to 0.01 µg/mL, and 83% were susceptible to 

0.3 µg/mL, with 9% showing resistance to concentrations greater than 1.0 µg/mL. During 

this period, prescribed doses were increased to maintain satisfactory cure rates, and an 

increasing number of treatment failures were reported.398-405 In 1976, the first gonococcal 

strains possessing plasmid-borne penicillinases were identified in California,17-20,406 but the 

growing prevalence of chromosomally mediated resistance is what eventually drove 

reevaluation of treatment guidelines and a search for more efficacious 

therapies.16,385,386,407-412 

Examination of the penA sequences of chromosomally mediated penicillin-

resistant N. gonorrhoeae (CMRNG) revealed that their PBP2 variants generally contain 5 

to 8 amino acid changes compared to wild-type enzyme from FA19.413,414 A key mutation 

is the insertion of an Asp (Asp346a) after position 346415,416  (Figure 1.10). This insertion 

is positioned in the transpeptidase domain immediately adjacent to another Asp (Asp346), 

which forms a functionally significant hydrogen bond with Ser363 of the SXN motif.388 The 

hydrogen bond is maintained in the Asp364a mutant, and the insertion appears to confer 
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increased flexibility to the β2c-β2d loop.397,389 Additionally, the side chain of Asp346a 

projects toward the β-lactam binding site, so while the precise mechanism of resistance is 

not entirely clear, it has been proposed that the insertion may sterically hinder antibiotic 

binding during Michaelis-Menten complex formation or electronically hinder breakage of 

the β-lactam ring during acylation.389 PBP2 variants of PenR strains generally possess 

additional mutations in the carboxy-terminal region, further decreasing the acylation rate 

and reducing susceptibility.387,389 Interestingly, these mutations do not greatly change the 

structure of the enzyme, even locally, indicating that the mechanism of resistance may be 

dependent upon protein dynamics. 

 

 

Figure 1.10: Changes to the active site of penicillin-resistant FA6140 as a result of an Asp346a 
insertion. PBP2WT is shown in yellow. PBP26140 is shown in grey. 
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1.3.e. PBP2 modifications resulting in cephalosporin resistance 

After the withdrawal of fluoroquinolones in the early-to-mid 2000s, cephalosporins 

were the only remaining drugs indicated for the treatment of gonococcal infections.39 

However, in the last two decades, cephalosporin resistance has emerged as well.41-59 

Among the first reported cases of reduced susceptibility (CephDS) was the Swedish 35/02 

strain in 2002.417 The 35/02 strain exhibits MIC values of 0.38 and 0.094 µg/mL for 

cefixime and ceftriaxone, respectively, corresponding to 25- and 60-fold increases 

compared to a wild-type reference strain 119/05. Many additional CephDS strains were 

isolated in Sweden, the UK, and the United States around this time, showing MICs of 0.19-

0.38 and 0.094-0.125 µg/mL for cefixime and ceftriaxone, respectively.417 

The primary difference between penicillin-resistant and ESC-resistant strains is the 

number and types of penA mutations present. Whereas PenDS/R strains contain relatively 

few mutations in PBP2, CephDS/R strains possess penA alleles encoding PBP2 variants 

with around 60 amino acid changes compared to the wild type protein (Figure 1.11). It is 

proposed that these penA genes are acquired by horizontal transfer events between N. 

gonorrhoeae and commensal Neisseria species (e.g., N. flavescens, N. cinerea, N. 

lactamica, etc.).45,46,418,419 The commensal species, occupying microbiological niches in 

the urogenital tract and pharynx, develop chromosomal resistance through frequent 

exposure to antimicrobials and subsequently act as reservoirs for antimicrobial resistance 

genes.420,421 When prolonged gonococcal infection occurs at these sites, these genes are 

readily acquired by the gonococci by transformation and subsequent homologous 

recombination, resulting in a “mosaic” allele encoding a PBP2 variant with lowered 

cephalosporin acylation.390,417 Three mutations in mosaic PBP235/02 (encoded by the 

penA35 allele), G545S, I312M, and V316T, are significant for decreased ESC 

susceptibility in 35/02,422 but when incorporated into wild type penA and transformed into 
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the PenSCephS FA19 strain, resistance to ESC increased only marginally.128 However, 

when these three mutations were reverted to wild-type in the penA35 background, they 

were found to have a prominent effect on resistance (Table 4.2). This result indicates that 

these resistance mutations require other mutations present in the penA35 mosaic to exert 

their effects, a phenomenon known as epistasis.  

 

 

Figure 1.11: Mosaic penA allele and PBP2 structure. A. Mosaic penA alleles are created by N. 
gonorrhoeae through homologous recombination of the penA allele of wild-type N. gonorrhoeae 
with those of β-lactam-resistant Neisseria commensal species. B. The PBP2 variants encoded by 
mosaic penA have around 60 mutations compared to wild-type enzyme (H041 shown, mutations 
indicated as red spheres).  
 
 
 

By generating chimeric penA in which segments, or modules, of penA35 were 

reverted to the wild-type sequence, information was gained on which mutations in penA35 

contribute to β-lactam resistance. FA19 transformants with wild-type module 4 (comprising 

residues 489 to 528) on a penA35 background showed the greatest increase in 

susceptibility, indicating one or more mutations in this region are critical to resistance.128 
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Subsequent transformation experiments with penA35 alleles lacking individual module 4 

mutations showed that F504L, A510V, and N512Y also contribute to β-lactam resistance in 

the 35/02 strain, with A510V seeming to specifically affect penicillin susceptibility. 

Cephalosporin-resistant gonorrhea was first identified in 2009, as a single case 

involving a female Japanese sex worker with a pharyngeal infection.62,63 Pharyngeal cultures 

came back positive two weeks after standard therapy with ceftriaxone, and infection 

clearance was only achieved by a repeat dose upon follow-up. While cultures for the 

patient’s second presentation were not tested (indicating the potential for reinfection, rather 

than treatment failure), the isolated strain, known as H041, exhibits MIC values of 8 and 2 

µg/mL for cefixime and ceftriaxone, respectively, corresponding to 6,000- and 3,000-fold 

increases compared to PenSCephS strain FA19. Its notable resistance to many other 

antibiotics marks H041 as the first identified pan-resistant strain. This sentinel event in the 

timeline of antibiotic resistance led the WHO to declare N. gonorrhoeae a “superbug” in 

2012 and the CDC to update its designation to “urgent threat” in 2013.423 

The penA gene from the H041 strain (penA41) is a mosaic containing 13 additional 

mutations compared to penA35. When transformed into FA19, the penA41 allele increases 

the MICs  of ceftriaxone and cefixime by 300- and 570-fold, respectively.384 Three mutations, 

A311V, T316P, and T483S, were identified in the penA41 allele that, when incorporated into 

the penA35 allele, confer a majority of the increased resistance seen in H041 compared to 

35/02. A311V and T316P are located near the serine nucleophile (Ser310) and are expected 

to affect α2 in some yet unconfirmed way. T483 is predicted to recognize the carboxylate 

moiety of β-lactam antibiotics via its hydroxyl group, and while T483S is a conservative 

mutation, loss of the methyl group likely alters this interaction. An H541N mutation is present 

in many nonmosaic and mosaic penA from strains with decreased cephalosporin 

susceptibility as well.45,46,417,422,424-426 In all, the work revealed a total of eight mutations that 

together confer a majority of the ESC resistance seen in H041 (Table 1.2, Figure 1.12). 
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Figure 1.12: Mutations identified as critical to β-lactam resistance in PBP2H041. Resistance 
mutations (yellow) highlighted within the active site of an acyl-enzyme structure of ceftriaxone 
(green) in complex with a transpeptidase-only construct of PBP2H041. Polar contacts are shown as 
black dashed lines. Figure taken from Singh et al., 2020.134 

 
 
 

Transformation of N. gonorrhoeae with a penA construct containing these eight 

mutations alone (8M) was unsuccessful, indicating an insurmountable loss of fitness from 

a decrease in PBP2 transpeptidase activity [unpublished]. Further experiments revealed 

that just one mutation, T483S, is responsible for this failure. A construct lacking this 

mutation (7M) successfully transformed N. gonorrhoeae, but to a much lesser level of 

resistance. It is thus apparent that background epistatic mutations are required for the 

T483S mutation to contribute to resistance without loss of transpeptidase activity. 

Transformation experiments have identified these mutations as substitutions within 
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hydrophobic cores of the protein distant from the active site – A437V, L447V, and F462I 

[unpublished]. A construct including 8M plus the three epistatics (11M) successfully 

transformed into N. gonorrhoeae, indicating restored transpeptidase activity. Reversal of 

T483S in 11M reduced MICs of transformed bacteria to the same values as for 7M, 

confirming the influence of this mutation, and the lack of influence of the epistatic 

mutations, on ESC resistance.  

Structural analysis of PBP2H041 reveals that several of these mutations act to restrict 

protein dynamics required for efficient acylation.134 First, the side chain of S545 participates 

in a hydrogen bonding interaction with the side chain of T498, disallowing its rotation upon 

recognition of the β-lactam carboxylate. This “locking” of T498 hinders β3 strand twisting 

and, thus, oxyanion hole formation. It also affects the final position of the β-lactam by 

presenting an alternative hydrogen bonding partner for the carboxylate moiety. Second, 

F504L and N512Y appear to prevent hinging of the β3-β4 loop toward the active site, altering 

key interactions with the β-lactam acylamino side chain. In fact, the β3-β4 loop occupies an 

“outbent” conformation in both apo  and acyl forms of PBP2H041. Finally, the α2 mutations 

A311V, I312M, and T316P cause no obvious structural changes in PBP2H041. However, the 

A311V and I312M mutations involve increased size of hydrophobic side chains and may 

increase hydrophobic packing around α2, decreasing its mobility in the acylation reaction.  

 CephR N. gonorrhoeae has now been reported several times since the emergence 

of H041. The first case of successful transmission occurred with the French strain F89, 

isolated in 2010. Initially reported in a man who has sex with men (MSM) with urethritis, 

the strain came back in a positive repeat urethral culture 3 weeks after cefixime therapy.70 

Clearance was attained with gentamicin on follow-up. The strain was subsequently 

reported in Spain in two sexually related MSM.64 It exhibits MICs of 4 and 2 µg/mL for 

cefixime and ceftriaxone, respectively, and also it possesses resistance to many other 

antimicrobials. The penA gene of F89 possesses only one additional mutation compared 
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to penA35, A501P. Interestingly, alterations at the 501 position had been hypothesized as 

contributing to cephalosporin resistance only two years prior to F89’s isolation. Tomberg 

et al., while conducting molecular studies of penA35, noted the frequency of A501V in 

nonmosaic penA from gonococcal strains with reduced cephalosporin 

susceptibility128,418,424,425 (Table 1.2). They found not only that transformation of penA35-

A501V into FA19 increased its MICs for cefixime and ceftriaxone 2.5-fold compared to 

penA35, but also that cefixime’s second order acylation rate against a purified PBP235/02-

A501V construct is half that seen with PBP235/02. The 501 position continues to be the 

subject of much investigation due to its differential effects on different classes of β-

lactams. Despite further increasing cephalosporin resistance, mutations at this position 

appear to restore some susceptibility to penams and carbapenems.128,427  

 

 

Figure 1.13: The impact of A501P on the structure of the β3 strand. P501 causes a displacement 
of T500, a critical residue involved in oxyanion hole formation. 
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Transformation of FA19 with a diverse set of penA35-A501X genes revealed that 

only specific mutations could increase cephalosporin resistance while maintaining 

essential transpeptidase function.428 Among these, A501P (found in NgF89) and A501R 

(not yet observed in clinical strains) had the biggest impact, increasing  MICs for cefixime 

and ceftriaxone by 5-fold compared to a penA35-transformed control. Consistent with 

previous data from Bharat et al., every successful penA35-A501X transformant had some 

restoration of penicillin G susceptibility. The differential effect of mutations at the 501 

position on the various classes of β-lactams may have to do with perturbation of the 

oxyanion hole. Kinking of β3 strand by the introduction of a proline could displace the 

oxyanion hole more distally from S310. Because the distance between the C4 carboxylate 

and lactam carbonyl in the cephem framework is typically short, and assuming the SxN, 

SxxK, and KTG residues act as an electrostatic anchor for the carboxylate, the lactam 

oxygen may not make the appropriate contacts with both S310 and T500 when in its 

oxyanionic state, rendering the cephalosporins universally less able to acylate structures 

with the 501P mutation.  

More reports of full cephalosporin resistance are continuing to emerge at an 

accelerated rate worldwide, including strains from the following countries: China, Japan 

(GU140106, FC428, FC460, FC498), France (F90), England (G97687/G7944), Denmark 

(GK124), Australia (A8806, A7536, A7846), Argentina, and Canada (47707). The PBP2 

mutants harbored by most of these strains (excluding that reported in Argentina, which is 

nonmosaic) possess structural similarities, sharing A311V and T483S mutations known to 

contribute to resistance through studies of H041 (Table 1.2). The functional significance 

of additional mutations in penA alleles from these strains has not yet been examined. 

Interestingly, sufficient genetic relatedness was found in six of these strains to consider 

them clonal, providing the first evidence of sustained international transmission of 

cephalosporin-resistant N. gonorrhoeae. 
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Non-mosaic PBP2 can also result in ESC resistance, although so far they have 

done so to a lesser extent. As mentioned previously, A501V is seen in a variety of non-

mosaic penA alleles of strains with reduced ESC susceptibility.418,424,425 In addition to 

providing evidence for the role of potential mutations at the 501 position in a mosaic penA, 

Tomberg et al. also showed the impact of a variety of these mutations in a non-mosaic 

penA4 background.428 The resulting penA4-A501X transformants exhibited MICs 2- to 14- 

fold higher for cephalosporins compared to a penA4-transformed control. A statistical 

approach was used to determine if additional common mutations, G542, P551S, and 

P551L, have an effect on decreased ESC susceptibility in non-mosaic PBP2 variants. In 

this study, Whiley et al. determined that strains harboring non-mosaic penA with any of 

the three mutations exhibit a significant decrease in ESC susceptibility, with G542-, 

P551S-, and P551L-harboring strains exhibiting median MICs 7.5-, 3.8-, and 7.5-fold 

higher than pooled strains lacking the mutations.429 In 2014, a strain possessing a non-

mosaic PBP2 variant with P551S was isolated from a young man with purulent urethritis. 

Its ceftriaxone MIC was 0.5 µg/mL, marking it as the first reported strain of N. gonorrhoeae 

having full resistance to ceftriaxone in the absence of a mosaic PBP2 variant.69 
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1.3.f. PBP1 modifications contributing to β-lactam resistance 

While its primary mechanism of β-lactam resistance is the acquisition of mutations 

in the penA gene encoding PBP2, N. gonorrhoeae can also acquire mutations in ponA, 

the gene encoding the other β-lactam target PBP1, that diminish its acylation.430 A specific 

mutation in ponA, L421P (the “ponA1 determinant”), is common and reduces the rate of 

PBP1 acylation by a variety of β-lactams by 50-75%. Despite this significant reduction, 

ponA1 is not sufficient for clinically significant resistance alone because the ponA1 gene 

fails to transform FA19 to a higher level of β-lactam resistance. Moreover, it fails to 

transform a series of laboratory-generated intermediate-resistant strains to higher levels 

of resistance. However, reversion of ponA1 to wild-type in FA6140 reduces its penicillin 

MIC by two-fold, indicating that this mutation requires the presence of a number of other 

determinants in order to exert its effect. 

1.4. Use of additional antimicrobial classes as antigonococcal therapeutics 

1.4.a. FDA-approved therapies 

With the fall of β-lactams as useful antigonococcal agents, it may seem attractive 

to look toward FDA-approved therapies from other antimicrobial classes. However, as 

aforementioned, N. gonorrhoeae has developed marked resistance to a number of other 

classes of antimicrobials as well, including sulfonamides, spectinomycin, tetracyclines, 

and fluoroquinolones. Some approved therapies show continued activity against 

gonococcal isolates, but with each comes a drawback making it a suboptimal candidate 

for widespread use (Table 1.3).  

In vitro susceptibility to spectinomycin is currently high globally, with rare cases of 

resistance, but there is concern that, given rapid resistance development before, resistance 

is likely to be selected again. In several countries, gentamicin has been used in combination 

with doxycycline for the syndromic management of urogenital infections, and several studies 

had shown high microbiological cure rates with the regimen, but no specific data on 
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pharyngeal and anorectal infection existed until a study of gentamicin in combination with 

azithromycin showed that microbiological cure was achieved in 100% of subjects, including 

10 cases of pharyngeal infection.431 Moreover, according to a recent meta-analysis, the cure 

rate of single dose is 91.5% across 3 studies with 346 total participants.432,433 An additional 

meta-analyses comparing 23 oral and parenteral therapies found gentamicin to rank highly 

among them,434 but a third found cure rates with high variability.435 While this could be an 

option for cases of treatment failure with other agents, gentamicin is unfavorable as a first-

line agent because of the risk for ototoxicity and nephrotoxicity,436,437 and there exists no 

data on the relationship between gentamicin MIC and pharmacokinetics with clinical 

outcomes to establish evidence-based microbiological resistance breakpoints. Finally, a 

randomized control trial comparing 240 mg intramuscular gentamicin and 500 mg 

intramuscular ceftriaxone failed to demonstrate noninferiority of the regimen.438,439 The 

bacterial cell wall synthesis inhibitor fosfomycin shows good in vitro activity as well, 

exhibiting a median MIC of 8-16 μg/mL in several studies.440-444 Studies of acute and 

subacute gonococcal urethritis treated with fosfomycin yielded cure rates greater than 

90%,445,446 but rapid resistance selection in vitro raises concern for widespread use.447 

Nonetheless, a small clinical trial found 3 g oral fosfomycin trometamol (96.8% cure rate) to 

be noninferior to 250 mg intramuscular ceftriaxone (95.3% cure rate).448 Like gentamicin, 

fosfomycin suffers from a lack of data allowing the establishment of evidence-based 

microbiological resistance breakpoints. The glycylcycline tigecycline also shows in vitro 

activity against gonococcal isolates,444,449,450 but its primary biliary clearance raises concern 

that the drug will not accumulate sufficiently in the urine to treat gonococcal urethritis.451 

Carbapenems must bind PBPs in the same way as other β-lactams, and their 

activity is dictated by the ability to undergo the same nucleophilic substitution reaction to 

form the inactive acyl enzyme. With this mechanistic similarity, known carbapenems 

expectedly show decreased efficacy in penicillin- and ESC-resistant strains of N. 



 41 

gonorrhoeae due to changes in the PBP2 active site. Due to the aforementioned structural 

differences between classes, however, carbapenem reactivity with the target is still much 

higher than that of penams or cephems, with meropenem and ertapenem exhibiting MICs 

against H041 of 0.125 and 0.064 µg/mL, respectively.63 In a study examining in vitro 

activity of ertapenem against clinical N. gonorrhoeae isolates, the antimicrobial potency of 

ertapenem was comparable to that of ceftriaxone, with a median MIC of 0.032 µg/mL for 

both compounds For isolates with mosaic penA alleles conferring ceftriaxone resistance 

(MIC = 0.5 to 4 μg/mL), however, resistance to ertapenem was much less pronounced 

(MIC = 0.016 to 0.064 μg/mL).452 While elevated MICs can be seen in strains possessing 

mosaic penA alleles,427,452,453 the A501P mutation in PBP2 conferring further 

cephalosporin resistance, as seen in strain F89, restores carbapenem susceptibility to 

near-wild-type levels.427 In 2018, after reported treatment failures with both ceftriaxone 

and spectinomycin, the English strain G97687/G7944 was ultimately cleared with a 3-day 

course of intravenous ertapenem, demonstrating its clinical promise as a treatment of last 

resort.76 

In addition to well-established antimicrobials, newly FDA-approved therapies are 

emerging as promising in the treatment of gonococcal infections. One such drug is the 

novel fluoroquinolone delafloxacin. In early studies of its in vitro activity, it was consistently 

found to inhibit the growth of N. gonorrhoeae clinical isolates more potently than 

ciprofloxacin.454-456 However, in a Phase 3 randomized control trial of 460 patients, oral 

administration of 900 mg delafloxacin resulted in only an 85.1% cure rate for urogenital 

gonorrhea (compared to 91.0% for 250 mg intramuscular ceftriaxone).457 Novel 

fluorocycline eravacycline also shows good activity in vitro,444 but its similar 

pharmacokinetic profile to tigecycline raises doubts about its ability to treat gonococcal 

urethritis.  
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Table 1.3: Summary of antigonococcal data for FDA-approved therapies. 
 

FDA-approved 
Therapy In vitro Data In vivo Data Limitations 

gentamicin 
aminoglycoside 

 

MIC90 = 8 μg/mL 
(333 strains)458 

 
MIC90 = 8 μg/mL 

(25 strains)459 
 

MIC90 = 12 µg/mL 
(32 strains)442 

 
MIC90 = 4 µg/mL 

(99 strains)460 

 

 
 
62-98% microbiological 
cure rates among 5 
studies using gentamicin 
monotherapy435 
 
91.5% pooled 
microbiological cure rate 
from meta-analysis using 
gentamicin monotherapy 
432,433 
 
100% microbiological 
cure rate in combination 
with azithromycin (202 
subjects)431 
 
Successful noninferiority 
trial of 240 mg IM in 
combination with 2 g 
azithromycin PO (versus 
500 mg ceftriaxone IM 
with 2 g azithromycin 
PO)461 
 
Found to rank highly in 
meta-analysis comparing 
23 oral and parenteral 
therapies (p  score = 
0.83 versus 0.924 for 
ceftriaxone)434 

 
 

Failed in non-
inferiority trial 
against ceftriaxone 
comparator group 
438,439 
 
Adverse effect 
profile436,437 
 
No official evidence-
based resistance 
breakpoints 

fosfomycin 
 

 
 

MIC90 = 16 µg/mL 
(89 strains)440 

 
MIC90 = 16 μg/mL 

(51 strains)441 

 
MIC90 = 24 μg/mL 

(32 strains)442 
 

MIC range 8-48 μg/mL 
(15 strains)443 

 
MIC90 = 32 μg/mL 

(112 strains)444 

 
 

0% microbiological cure 
rate (17 subjects)462 
 
90% microbiological cure 
rate (70 subjects)446 
 
92% microbiological cure 
rate (85 subjects)445 
 
Successful small-scale 
noninferiority trial versus 
ceftriaxone (62 subjects)  
448 

Rapidly selected 
resistance in vitro447 
 
No official evidence-
based resistance 
breakpoints 
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ertapenem 
carbapenem 

 
MIC = 0.064 µg/mL 

against H04163 
 

MIC90 = 0.25 μg/mL 
(112 strains)444 

 
MIC90 = 0.25 μg/mL 

(52 strains)453 

 
MIC90 = 0.008 μg/mL  

(22 strains)463 

MIC90 = 0.062 μg/mL 
(654 strains)464 

MIC90 = 0.064 μg/mL 
(257 strains)452 

 

 
Cure of patient infected 
with international FC428 
clone76 

 
Elevated MICs in the 
presence of β-
lactam resistance 
determinants453,452 

delafloxacin 
fluoroquinolone 

 
MIC90 ≤ 0.004 µg/mL  

(10 strains)454 
 

MIC90 = 0.03 µg/mL  
(44 strains)455 

 
MIC90 = 0.125 µg/mL 

(117 strains)456 

 

900 mg PO failed in 
noninferiority RCT 
against 250 mg 
ceftriaxone IM (85.1% 
cure versus 91.0%)457 

Modestly elevated 
MICs seem to result 
in treatment 
failure457 

tigecycline 
glycylcycline 

 
MIC90 = 0.5 µg/mL  

(54 strains)449 
 

MIC90 = 0.5 µg/mL  
(112 strains)444 

 
MIC90 = 0.25  

(120 strains)450 
 

NA Biliary clearance451 

 
eravacycline 
fluorocycline 

 

 
 

MIC90 = 0.25 µg/mL 
(112 strains) 444 

 

 

NA Biliary clearance465 
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1.4.b. Novel analogues of known antimicrobial classes 

In addition to considering existing drugs from diverse antimicrobial classes, the 

synthesis of novel, potent derivatives of these classes is another potential strategy (Table 

1.4). New broad-spectrum semisynthetic fluoroquinolones avarofloxacin and sitafloxacin 

exhibit good in vitro activity against gonococcal clinical isolates, with MIC values ranging 

from ≤ 0.001 to 1 μg/mL (compared to ≤ 0.001 to > 32 μg/mL for ciprofloxacin).466-468 

Macrolide derivatives known as bicyclolides (e.g., modithromycin, EDP-322) have had 

promising results in vitro as well, including activity against strains with decreased 

macrolide susceptibility.469 The MIC range of modithromycin and EDP-322 against 

gonococcal strains of varying resistance profiles were found to be 0.004 to 256 μg/mL and 

0.008 to 16 μg/mL, respectively. Unfortunately, high level azithromycin resistance (defined 

as an MIC ≥ 256 μg/mL) correlates with decreased susceptibility to these agents as well. 

Two newly developed 2-aryl carbapenems, SM-295291 and SM-369926, have shown 

variable in vitro antigonococcal activity against clinical isolates (MIC90 ≤ 1 μg/mL).470 The 

design and synthesis of novel carbapenem structures that show specifically enhanced 

affinity for the PBP2 transpeptidase domain in the presence of CephR mutations thus 

presents another strategy for the development of effective therapies against highly 

resistant strains. 
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Table 1.4: Summary of antigonococcal data for experimental therapeutics belonging to classes of 
FDA-approved therapies. 
 

Derivative Compound Derivative Class Results 
 

avarofloxacin (JNJ-Q2) 
 

fluoroquinolone 

 
MIC90 = 0.25 μg/mL 

(75 strains)468 

 

sitafloxacin fluoroquinolone 

 
MIC90 = 0.5 μg/mL 

(47 strains)467 
 

MIC90 = 0.25 μg/mL 
(250 strains)466 

 

modithromycin macrolide 
(bicyclolide) 

 
MIC90 = 1 μg/mL 
(254 strains)469 

 

EDP-322 macrolide 
(bicyclolide) 

 
MIC90 = 1 μg/mL 
(254 strains)469 

 

SM-295291 carbapenem 

 
MIC90 < 1 μg/mL 
(16  strains)469 

 

SM-369926 carbapenem 

 
MIC90 < 1 μg/mL 

(16 strains)469 

 
 

1.4.c. Identification of new antimicrobial targets 

Several antimicrobial compounds with novel mechanisms of action have been 

designed or discovered in the last decade, many of which show in vitro activity against 

multi-drug resistant N. gonorrhoeae (Table 1.5). Some successful compounds utilize 

known strategies for antimicrobial activity, including novel mechanisms of protein 

synthesis inhibition (e.g., pleuromutilin BC-3781, fluoroketolide solithromycin, and 

boronate AN3365) and modes of topoisomerase inhibition (e.g., aminobenzimidazole 

VXc-486, spiropyrimidinetrione ETX0914, tricyclic 2-quinolone REDX05391, and 

triazaacenaphthylene gepotidacin). BC-3781, AN3365, VXc-486, and REDX05931 show 

early promise in vitro, with good antimicrobial potency against panels of gonococcal 
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strains. REDX05391 has been further tested in a murine model of gonococcal infection. 

In this study, significant reductions in gonococcal colonization load were seen with the oral 

administration of single 10, 30, or 60 mg/kg doses, and full infection clearance was seen 

in the group given 60 mg/kg.471 Solithromycin and ETX0914 have advanced to small 

clinical trials of urogenital gonococcal infection, with results indicating a 91% cure rate with 

oral administration of 1 g solithromycin and a 96% cure rate with 2 g ETX0914.472,473 

Interestingly, in strains exhibiting lowered macrolide susceptibility, solithromycin remains 

effective in vitro; however, similar to the bicyclolides, when tested against isolates with 

high-level azithromycin resistance, solithromycin begins to fail. 

Other compounds in the pipeline exhibit entirely novel mechanisms of antimicrobial 

action. One such mechanism is the depletion of essential lipids. FabI is an NADPH-

dependent trans-2-enoyl-acyl carrier protein reductase identified as a key enzyme in 

bacterial fatty acid synthesis. MUT056399, a specific FabI inhibitor, was originally 

developed as an anti-staphylococcal agent. Its measured IC50 against S. aureus FabI is 

12 nM, and its MIC90 against MRSA is 0.12 µg/mL. In studies of spectrum, MUT056399 

was shown to have activity against N. gonorrhoeae, exhibiting an MIC90 of 0.25 µg/mL.474 

LpxC is a UDP-3-O-acyl-N-acetylglucosamine deacetylase involved in lipid A 

biosynthesis. LPC-067, an LpxC inhibitor designed specifically to target N. gonorrhoeae, 

exhibits MICs of 0.1 µg/mL against FA19 and 1.0 µg/mL against 35/02.475 Further 

iterations of design, synthesis, and testing have yielded LPC-067 analogues with MICs of 

0.005 µg/mL and 0.05 µg/mL against the two strains, respectively.   
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Table 1.5: Summary of antigonococcal data for experimental therapeutics with mechanisms of 
action distinct from current FDA-approved therapies. 
 

Compound Target Mechanism Results 

BC-3781  
(lefamulin) 

 
23S ribosomal 

RNA 
Inhibited protein 

synthesis 

 
MIC90 = 0.5 μg/mL  

(24 strains)476 
 

MIC90 = 1 μg/mL  
(251 strains)477 

 
 

CEM-101 
(solithromycin) 

 

23S ribosomal 
RNA 

Inhibited protein 
synthesis 

MIC90 = 0.25 μg/mL  
(246 strains)478 

GSK2251052 / 
AN3365 

leucyl-tRNA 
synthetase 

Inhibited protein 
synthesis 

 
MIC90 = 0.5 μg/mL  

(28 strains)479 
 

VXc-486 gyrase B 
Dysfunctional 

transcription, DNA 
replication 

 
MIC90 = 0.125 μg/mL  

(220 strains)480 

 

ETX0914 / 
AZD0914 

(zoliflodacin) 
gyrase B 

Dysfunctional 
transcription, DNA 

replication 

 
MIC90 = 0.25 μg/mL  

(250 strains)481 
 

MIC90 = 0.125 μg/mL  
(37 strains)482 

 
MIC90 = 0.125 μg/mL  

(873 strains)483 

 

REDX05391 gyrase B 
topoisomerase IV 

Dysfunctional 
transcription, DNA 

replication 

 
MIC(WHO L) = 4 µg/mL484 

 
MIC(ATCC49226) = 0.12 

µg/mL484 

 

MUT056399 FabI Depletion of essential 
lipids 

 
MIC90 = 0.25 μg/mL  

(10 strains)474 

 

LPC-067 LpxC Diminished lipid A 
synthesis 

 
MIC(FA19) = 0.1 µg/mL475 

 
MIC(35/02) = 1 µg/mL475 

 

GSK2140944 
(gepotidacin) 

gyrase A, 
topoisomerase IV 

Dysfunctional 
transcription, DNA 

replication 

 
MIC90 = 0.25 μg/mL  

(25 strains)485 
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1.5. Development of non-β-lactam PBP inhibitors 

1.5.a. Tetrahedral intermediate mimics 

In addition to novel PBP-inhibiting compounds based on active β-lactam 

frameworks, non-β-lactam compounds can also be explored as antigonococcal agents, 

including other covalent inhibitors leveraging the nucleophilic serine. Electron-poor 

boronic acids have been known to inhibit serine proteases for several decades,486 and, 

after early work showing their utility as β-lactamase inhibitors,487-489 have more recently 

been examined as PBP inhibitors as well (Figure 1.14). In 2003, Pechenov et al. explored 

several electrophilic functional groups as potential mimics of the transient tetrahedral 

oxyanion intermediate generated in the PBP catalytic cycle, and among these, dipeptidic 

boronate 1 was found active against several low molecular weight PBPs, exhibiting its 

most potent inhibitory activity against N. gonorrhoeae PBP3 (Ki = 0.370 µM).490 Later, a 

1.6 Å crystal structure of tripeptide analogue 2 in complex with E. coli PBP5 (Ki = 13 µM) 

revealed a covalent adduct in which the Oɣ of Ser44 is bonded to the inhibitor boron and 

one boronic acid oxygen projects into the oxyanion hole comprising the backbone amides 

of Ser44 and His216, establishing this class of compounds as true tetrahedral intermediate 

mimics117 (Figure 1.15A). Another peptidic boronate 3, which possesses a diaminopimelic 

acid as its diaminoacyl group, has been shown to bind with high affinity to Actinomadura 

R39 DD-peptidase (Ki = 32 nM). In a 2.4 Å crystal structure, 3 was found to bind R39 DD-

peptidase in a mode similar to that seen in previous studies of boronates and E. coli PBP5, 

with the boron covalently bound to nucleophilic Ser49, and one boronate oxygen 

occupying the oxyanion hole491 (Figure 1.15B). 
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Figure 1.14: Structures of boronic acid transpeptidase inhibitors. 
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Figure 1.15: Crystal structures of boronic acid transpeptidase inhibitors in complex with their 
targets, showing their tetrahedral intermediate mimicry. A. Compound 2 (green) in complex with E. 
coli PBP5. B. Compound 3 (green) in complex with Actinomadura R39 DD-peptidase. C. Compound 
5 (green) in complex with Actinomadura R39 DD-peptidase. D. Compound 5 (green) in complex 
with Actinomadura R39 DD-peptidase, showing a unique tricovalent binding mode. 
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Structure-guided design strategies led to the development of 

acylaminoethylboronic acids such as 4, which inhibits both Actinomadura R39 DD-

peptidase (IC50 = 0.27 µM) and S. aureus PBP1b (IC50 = 20 µM).492,493 In further 

explorations of the class, acylaminomethylboronic acids were found to inhibit 

Actinomadura R39 DD-peptidase as well, and subsequent derivatization of this scaffold 

yielded 5, which has been shown to inhibit PBPs of classes A (S. pneumoniae PBP1b, 

IC50 = 26 μM), B (S. pneumoniae PBP2x, IC50 = 138 μM), and C (Actinomadura R39 DD-

peptidase, IC50 = 0.6 μM).494 Distinguishing the methylboronic acids, which mimic a C-

terminal glycine, from their alanine-like predecessors is the formation of a tricovalent 

complex within the transpeptidase active site, as shown by crystal structures of 5 and 

close analogues in complex with R39 DD-peptidase (Figure 1.15D).495 In these structures, 

the boronic acid oxygens have been displaced by Oɣ of nucleophilic Ser49, Oɣ of SxN 

Ser298, and Nε of KTG Lys410. However, a tetrahedral oxyanion-occupying state similar 

to prior published structures was seen in some molecules of the asymmetric unit (Figure 

15.C), leading the authors to hypothesize that the ligands bind similarly at the outset, but 

that a lack of bulk at Cα allows the ligand to move more freely after initial binding.  

A final set of boronic acid-containing scaffolds is the (dihydroxyboranyl)benzoic 

acids and [(hydroxyboranyloxy)]benzoic acids. Initial studies found that the m-

(dihydroxyboranyl)benzoic acid fragment inhibits R39 DD-peptidase, and subsequent 

design of 5-acylamino derivatives yielded mid-micromolar inhibitor 6 (IC50 = 23 µM).496 

Recent work presents bicyclic o-[(hydroxyboranyl)oxy]benzoic acids as potent inhibitors 

of E. coli PBP5, with 7 exhibiting an IC50 of 1.6 nM.497 Although these compounds were 

found to have surprisingly little antimicrobial activity alone, they were able to potentiate 

meropenem activity against highly resistant E. coli and K. pneumoniae in a dose-

dependent manner due to their potent metallo-β-lactamase inhibition. 
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Table 1.6: Activity of boronic acid compounds against bacterial transpeptidases. aThermodynamic 
equilibrium constant (Ki). bHalf-maximal inhibitory concentration (IC50). 
 

Compound Species Target Activity Reference 

1 
N. gonorrhoeae PBP3 0.37 μMa 

 490 N. gonorrhoeae PBP4 34 μMa 
E. coli PBP5 16 μMa 

2 E. coli PBP5 13 μMa 117 

3 Actinomadura 
spp. 

R39 DD-
peptidase 32 nMa  491 

4 
Actinomadura 

spp. 
R39 DD-

peptidase 0.27 μMb  492,493 
S. aureus PBP1b 20 μMb 

5 

Actinomadura 
spp. 

R39 DD-
peptidase 0.36 μMa 495 

Actinomadura 
spp. 

R39 DD-
peptidase 0.6 μMb 

 494 S. pneumoniae PBP1b 26 μMb 
S. pneumoniae 

R6 PBP2x 138 μMb 

6 Actinomadura 
spp. 

R39 DD-
peptidase 23 μMb 496 

7 E coli PBP5 1.6 nMb 497 
 

Additional tetrahedral intermediate analogues synthesized by Pechenov et al. 

include peptidic and peptidomimetic aldehydes 8, α-trifluoromethyl ketones 9, and α-

chloromethyl ketones 10 490 (Figure 1.16). However, these analogues are less potent than 

their boronate parent compound (Ki values of 60 μM for both 8 and 9 against N. gonorrhoeae 

PBP3, no measurable inhibition by 10), and activated carbonyl analogues of other boronic 

acid R39 DD-peptidase inhibitors identified by Woon et al. were found to be inactive up to 1 

mM.493 These data indicate that creation of a potent activated carbonyl inhibitor may prove 

a futile effort. That said, Dzhekieva et al. hypothesized that attachment of a specific 

peptidoglycan fragment was key to inhibition and synthesized compound 11, a direct α-

trifluoroketone analogue of 3, with Ki values of 0.37 µM and 13.5 µM against Actinomadura 

R39 DD-peptidase and B. subtilis PBP4a, respectively.498 A crystal structure of 11 in complex 

with R39 DD-peptidase reveals a tetrahedral adduct with Oɣ of Ser49 and the oxygen from 

the inhibitor ketone positioned in the oxyanion hole formed by Ser49 and Thr413 (Figure 

1.17A). 



 53 

 
 

Figure 1.16: Structures of activated carbonyl transpeptidase inhibitors. 

 

 

 
 
 
Figure 1.17: Crystal structures of activated carbonyl transpeptidase inhibitors in complex with their 
targets, showing their tetrahedral intermediate mimicry. A. Compound 11 (green) in complex with 
Actinomadura R39 DD-peptidase. B. Compound 14 (green) in complex with β-lactamase OXA-10. 
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The chemically similar cyclobutanones were originally synthesized for their 

potential as β-lactamase or transpeptidase inhibitors, with the rationale that they, like the 

α-trifluoromethyl and α-chloro ketones, would be able to form a stable enzyme-bound 

hemiketal. However, several early studies failed to produce agents with any inhibitory 

activity against either β-lactamases or transpeptidases499,500 until Lowe & Swain reported 

the synthesis of compound 12, capable of inhibiting both E. coli R-TEM and B. cereus I, 

as well as Streptomyces R61 DD-peptidase.501 Later, the 7,7-dichloro compound 13 was 

also found to inhibit both β-lactamases and R61 DD-peptidase.502,503 Structural studies on 

factors influencing hemiketal formation have led to compound 14, 98% of which exists in 

the hemiketal state at equilibrium in methanol.504 In addition to structure-activity 

relationships showing a correlation of methyl hemiketal formation with activity, crystal 

structures with serine lactamase OXA-10 show their tetrahedral intermediate mimicry, with 

nucleophilic Ser67 bound covalently to C6 and the hemiketal oxygen occupying the 

oxyanion hole created by Ser67 and Phe208 505  (Figure 1.17B). With these new insights 

into the synthesis of more electrophilic cyclobutanone scaffolds, as well as definitive 

evidence of their hemiketal-based mechanism, perhaps this class can be approached for 

new attempts at harnessing their PBP-inhibitory potential. 
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Table 1.7: Activity of activated carbonyl compounds against bacterial transpeptidases. 
aThermodynamic equilibrium constant (Ki) unless indicated otherwise. bMeasured Ki divided by two 
under the assumption that one enantiomer is inactive.  
 

Compound Species Target Activitya Reference 

8 
N. gonorrhoeae PBP3 60 μM 

490 N. gonorrhoeae PBP4 >1 mM 
E coli PBP5 >1 mM 

9 
N. gonorrhoeae PBP3 60 μM 

490 N. gonorrhoeae PBP4 >1 mM 
E. coli PBP5 >1 mM 

10 
N. gonorrhoeae PBP3 ~1 mM 

490 N. gonorrhoeae PBP4 >1 mM 
E. coli PBP5 >1 mM 

11 Streptomyces 
spp. 

R61 DD-
peptidase ~0.9 mM 501 

12 
Actinomadura 

spp. 
R39 DD-

peptidase 0.37 μMb 
498 

B. subtilis PBP4a 13.5 μMb 

13 Streptomyces 
spp. 

R61 DD-
peptidase ~1 mM  502, 503 

 

The phosphonates are another structural class initially examined as inhibitors of 

serine proteases, and later expanded to β-lactamases and PBPs due the enzymes’ 

mechanistic similarities (Figure 1.18). Designed with the rationale that a phosphonate 

should form a tetrahedral adduct with the nucleophilic serine similar to that observed with 

boronic acids, the acetamidomethylphosphonate 15 was the first of its class to show 

potent inhibition of a β-lactamase, capable of phosphonylating Enterobacter cloacae P99 

at a rate of 1,120 M-1s-1.506 Equally impressive was the stability of the complex, which 

underwent regeneration of the apo-enzyme (k3) at a rate of 2.32×10-6 s-1. However, this 

molecule failed to inhibit Streptomyces R61 DD-peptidase, as did its retro-amide 

analogue.507  Soon after, a p-nitro analogue of this compound (16) was shown to be a 

weak inhibitor of R61 DD-peptidase (k2/Ki = 0.07 M-1s-1), giving credence to the idea of 

phosphonates as transpeptidase inhibitors.508  
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Figure 1.18: Structures of phosph(on)ate transpeptidase inhibitors. 

 

Since then, a great deal of work has been done to elucidate the basic inhibitory 

mechanisms of this class. First, the phosphoester substituent acts as a leaving group, as 

evidenced by the formation of stoichiometric quantities of alcohol upon β-lactamase 

inactivation. Moreover, good leaving group ability is key for the covalent reaction to 

proceed.509 This was further illustrated by experiments with phosphonamidates, which 

exhibited much slower rates due to the relative instability of deprotonated amines.510,511 

The rate-determining step for this subclass is the acquisition of a proton, a requirement 

that may limit their utility in the absence of a general acid catalyst.510 Proof of covalent 

adduct formation with β-lactamases was eventually obtained by electrospray mass 

spectrometry,512 and later crystal structures showed the formation of covalent complexes 

mimicking the β-lactam tetrahedral intermediate state.513-515 In a 2.0 Å structure of TEM-1 

in complex with 16, the nucleophilic Ser70 is phosphonylated by the inhibitor, the oxyanion 

hole created by Ser70 and Ala237 is occupied by the unsubstituted phosphonate oxygen, 
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and the p-nitrophenol leaving group has departed515 (Figure 1.19A). Other studies have 

examined structure-activity relationships of the alkyl side chain, demonstrating that the 

incorporation of an (acetamido)methyl group increases the rate of β-lactamase 

inactivation by 10,000-fold.511 Complementarity (in this case, mimicry of the β-lactam R1 

acylamino group) is, therefore, requisite for fast β-lactamase inactivation. Li et al. 

established, however, that a sulfonamidomethyl isostere is suitable.516 Compound 17 is 

not only an inhibitor of E. cloacae P99 (1.2×103 M-1s-1), but was also identified as another 

weakly inhibitory compound against Streptomyces R61 DD-peptidase (k2/Ki = 0.06 M-1s-1). 

 

 
 
 

Figure 1.19: Crystal structures of phosph(on)ate transpeptidase inhibitors in complex with their 
targets, showing their tetrahedral intermediate mimicry. A. Compound 16 (green) in complex with 
β-lactamase TEM-1. B. Compound 18 (green) in complex with Streptomyces R61 DD-peptidase. C. 
Compound 19 (green) in complex with Streptomyces R61 DD-peptidase. 
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Cyclic phosphonates like 18,517 while demonstrating improvement compared to 

their acyclic analogues (R61 DD-peptidase k2/Ki = 0.46 M-1s-1), still suffer from a lack of 

potency. However, they offer the benefit of generating a stable ligand-enzyme complex. 

As with the β-lactams, when the leaving group is ejected upon reaction with the target, it 

remains tethered to the phosphonate and hinders hydrolysis of the resulting complex (R61 

DD-peptidase k3 = 3.4×10-5 s-1). A phosphonate analogue of 18 was found to inactivate the 

E. cloacae P99 β-lactamase more rapidly (k2/Ki = 9.8×103 M-1s-1 versus 6.7×103 M-1s-1), 

albeit with a faster off-rate (k3 = 9.8×10-2 s-1 versus 1.1×10-3 s-1), but its activity against 

transpeptidases was never reported.518 Further derivatization of salicyloyl phosphate and 

cyclic benzoyl phosphonate led to compounds capable of inactivating P99 at rates of over 

104 M-1s-1,519 but only compound 19 was tested against transpeptidases. Its inactivation 

rate against Streptomyces R61 DD-peptidase was measured to be 24 M-1s-1 (k3 = 8.9×10-

5 s-1), a 50- to 400-fold improvement over previous phosphonates for which inhibition data 

is available.520 Crystal structures of 18 and 19 in complex with R61 DD-peptidase confirm 

tetrahedral intermediate mimicry, showing phosphonylation of nucleophilic Ser62, as well 

as occupancy of the oxyanion hole created by Ser62 and T301 by the anionic oxygen520 

(Figure 1.19B & C). The emergence of salicyloyl phosphate and cyclic benzoyl 

phosphonates led to the pursuit of acyl and diacyl phosph(on)ates as inhibitors of β-

lactam-recognizing enzymes.521-527 In general, these compounds are poor substrates of 

both β-lactamases and DD-peptidases, with low enough turnover to be considered 

irreversible inhibitors.521,528 Among these, benzoyl phosphonate 20 was identified as a 

poor inhibitor of transpeptidase activity, exhibiting a rate of inactivation of 0.005 M-1s-1 

against R61 DD-peptidase.528 Additional variations of the phosphonate have been 

attempted for β-lactamase inhibition, including mercaptophosphonates,529.530 2-aryl-2-

(methoxyimino)acetylamino phosphonates,531 but no activity data against transpeptidases 

is available for these scaffolds. 
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Other phosphonate and phosphate analogues take advantage of the moiety as an 

electrostatic anchor rather than an electrophilic center. The potential for acylation by acyl 

phosphonates was leveraged with the development of electron withdrawn 

ketophosphonates.532,533 While these molecules inhibited β-lactamases, no evidence was 

found for the formation of a covalent tetrahedral adduct. Moreover, no substantial inhibition 

of R61 DD-peptidase was seen. Inhibition of β-lactam-recognizing enzymes by citrate and 

isocitrate and their amino derivatives,534,535 as well as high-occupancy crystal structures 

showing their binding in the active sites of β-lactamases,534,536 led to the synthesis and 

testing of a series of phosphonic acid isosteres.535 One such compound, 21, is a 

bioisostere of aminocitrate that exhibits 53% inhibition of Actinomadura R39 DD-peptidase 

at 500 μM. Naturally occurring phosphates, including guanosine monophosphate and 

inosine monophosphate, are reported micromolar inhibitors of β-lactamases as well, but 

no data is available on potential transpeptidase inhibition.537 Phosphate analogues of 

active boronic acids synthesized by Woon et al. have also shown little inhibitory potency, 

with the most active (22) showing 35% inhibition of R39 DD-peptidase at 1 mM.493 

Dzhekieva et al. have had similar results, with the direct phosphate analogue of boronic 

acid 3 and α-trifluoroketone 11 showing no inhibition of R39 DD-peptidase up to 2 mM.498 

Heterocyclic methylphosphates have also shown promise as inhibitors of β-

lactamases,538,539 but no data on transpeptidase inhibition have been reported. 

Overall, while synthesized molecules of this class have shown promise in the 

inhibition of β-lactamases, all attempts to date have yielded quite poor inhibitors of 

transpeptidases. Most compounds of these classes suffer from a slow on-rate, a major 

determinant of covalent inhibitors’ potency, and a need for additional derivatization to 

increase complementarity with the transpeptidase active site. However, their properties as 

electrophiles allow them to inhibit both serine- and metallo-β-lactamases as well as PBPs, 

opening possibilities for the development of dual inhibitors. 
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Table 1.8: Activity of phosphate and phosphonate compounds against bacterial transpeptidases. 
aSecond-order rate of reaction with the target (k2/Ki). bPercent inhibition of target activity at 500 µM. 
cPercent inhibition of target activity at 1 mM. 
 

Compound Species Target Activity Reference 

16 Streptomyces 
spp. 

R61 DD-
peptidase 0.07 M-1s-1 a 508 

17 Streptomyces 
spp. 

R61 DD-
peptidase 0.06 M-1s-1 a 511 

18 Streptomyces 
spp. 

R61 DD-
peptidase 0.46 M-1s-1 a 517 

19 Streptomyces 
spp. 

R61 DD-
peptidase 24 M-1s-1 a 520 

20 Streptomyces 
spp. 

R61 DD-
peptidase 0.005 M-1s-1 a 528 

21 Actinomadura 
spp. 

R39 DD-
peptidase 53%b 535 

22 Actinomadura 
spp. 

R39 DD-
peptidase 35%c 493 

 

1.5.b. β-lactam mimics 

Other inhibitory chemotypes rely on mimicry of the substrate in a manner similar 

to the β-lactams, frequently through acylation of the target by an activated carbonyl 

electrophile (Figure 1.20). The first ɣ-lactam-based PBP inhibitors were attempted shortly 

after the discovery of penicillin. These molecules were close analogues of penams, such 

as penicillin G, but showed neither antimicrobial activity nor hydrolysis in aqueous 

solution.540-542 This lack of success continued with a variety of monobactam, penam, 

oxapenam, and carbapenam derivatives failing to show any antimicrobial activity.543-546 

It was known at the time that a bicyclic β-lactam’s ability to acylate its target is, in 

part, due to disrupted amide resonance, and that one valuable measurement of this 

disruption is the pyramidalization of the lactam nitrogen.154-162  In computational studies, 

1-azabicyclo[3.2.0]heptane systems were predicted to have high degrees of N-

pyramidalization; however, synthesized molecules of this scaffold still failed to exhibit any 

appreciable antimicrobial activity.547,548 It was not until the introduction of the 2-oxo-1-

azabicyclo[3.2.0]hept-6-enes (23), which combine a high degree of bicyclic strain with a 
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competing enamine resonance also known to contribute to amide destabilization,155,159,215 

that the ɣ-lactam class gained traction as antimicrobials.549 Subsequent penem and 

carbapenem derivatives (24 & 25), which incorporate the resonant olefin into less strained 

systems, also showed marginal antimicrobial activity with limited spectrum, indicating that 

for the ɣ-lactam to have utility as a potent PBP-acylating scaffold, additional activation of 

the ring system would likely be required.550-553  

Much of the work that followed was conducted to determine structure-activity 

relationships for the class. With the diminished carbonyl electrophilicity seen in ɣ-lactams 

compared to β-lactams, affinity for the transpeptidase active site becomes a much more 

critical aspect of target binding and biological activity. While penems and carbapenems 

lacking an acylamino group still possess antimicrobial activity, their ɣ-lactam analogues 

generally do not.554 Further computational studies examined the optimal placement and 

stereochemistry of the acylamino side chain, determining that 7R-substitution provides the 

most morphological resemblance to the β-lactams (Figure 1.21). These analyses also 

suggested that, like cephalosporins, the bicyclic olefinic ɣ-lactams can be activated by 

long-range electron-withdrawing inductive effects at the C3 position. The relationship 

between biological activity and the C3-substituent is supported by the increased potency 

of compounds possessing cyano, carboxylic, and sulfonyl moieties compared to those 

with methyl and acetoxy groups.554,555 
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Figure 1.21: Structural alignments of ɣ-lactams with penicillin G. A. Alignment of penicillin G (grey) 
with ɣ-lactams 24 (magenta) and 25 (lime), showing good agreement of key features. B. Alignment 
of penicillin G with the 7S stereoisomer ɣ-lactam 24. There is still good agreement between 
features, consistent with the activity of both stereoisomers. C. Alignment of penicillin G with an 
inactive 1H-pyrrole-2,3-dione derivative. The inactivity of this scaffold suggests that the 3-oxo group 
projects into space unfavorable for productive binding to the transpeptidase active site. D. 
Alignment of penicillin G with pyrazolidin-5-one 27, showing retention of feature agreement from 
24, but with a more activated ring system. E. Alignment of penicillin G with an inactive δ-lactam 
derivative. The inactivity of this scaffold suggests that the larger, more flexible ring system group 
presents conformational uncertainty and projects into space unfavorable for productive binding to 
the transpeptidase active site. 
 
 
 Parallel efforts to increase the reactivity of the β-lactam ring itself led to the 

syntheses of 1,2-diazetidin-3-ones.556,557 The resulting scaffolds were too successful, 

however, because they lacked the stability to be useful in drug-like molecules. Seeing this 

work, and recognizing a need for more reactivity in the ɣ-lactam ring system, Jungheim et 

al. designed and synthesized a series of bicyclic pyrazolidin-5-ones (26) that, despite a 

bulky and ill-positioned gem-dimethyl group, exhibited good antimicrobial activity.558 

Development of novel synthetic schema, in combination with the structure-activity 
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relationship data available for ɣ-lactam derivatives of penems and carbapenems, allowed 

derivatization of this class to yield highly biologically active compounds 27 and 28.559-566 

Compound 27 exhibits good spectrum, and decreases cell wall synthesis and crosslinking 

without effects on the synthesis of other macromolecules. It binds E. coli PBP3 at 

concentrations as low as 0.1 µg/mL.567 Compound 28 has antimicrobial activity against a 

variety of Gram positive and Gram negative species, and exhibits high potency against E. 

coli PBP3 as well (IC50 = 0.25 µg/mL).568,569  

Further exploration of structure-activity relationships in this active scaffold has led 

to very few positive results. Modifications at C7 based on the 6R-hydroxyethyl side chain 

of carbapenems led to a reduction in activity,570 as did expansion to a more cephem-like 

[4.3.0] bicyclic system.566,571,572 Notably, removal of the C7 substituent altogether 

decreases antimicrobial potency but does not abolish it entirely.573  Monocyclic pyrazolidin-

5-ones suffer from a similar lack of potency.574 That these C7-unsubstituted and 

monocyclic pyrazolidin-5-ones retain antimicrobial activity while their monoaza analogues 

do not, indicates the marked activation of this scaffold, and demonstrates its promise in 

the development of PBP-acylating antimicrobials. 

Other attempts have been made to activate ɣ-lactam ring systems, including the 

introduction of electron-withdrawing groups to the ring itself. Synthesis of bicyclic 1H-

pyrrole-2,3-diones showed adduct formation with methanol, indicating successful 

activation and potential for PBP acylation;575 however, these compounds lack 

antimicrobial activity, and fit poorly into the transpeptidase active site (Figure 1.21). Other 

groups have surveyed additional ring strain through the synthesis of bridged ɣ-lactams. 

To this end, the 7-oxo-1-azabicyclo[3.2.1]oct-2-ene 29 was synthesized.576 The compound 

has an IC50 of 5 μM against both PBP3 and PBP4 of P. aeruginosa and exhibits modest 

antimicrobial activity against a variety of species. 
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In kinetics studies to determine which other cyclic amides, if any, hold promise in 

transpeptidase or serine protease acylation, hydrolysis of monocyclic lactams was 

measured to determine reactivity with nucleophiles. Surprisingly, δ-valerolactam 

underwent alkaline hydrolysis at a rate almost equivalent to that of β-propiolactam 

(second-order rate constants of 1.21×10-4 M-1s-1 and 2.37×10-4 M-1s-1, respectively), while 

all other ring sizes were 40- to 1,700-fold less reactive.577 However, early syntheses of 

direct δ-lactam penam analogues yielded no biological activity.578 Even in the context of 

the activated diaza scaffold discussed above, δ-lactams failed to show much potency 

despite high pseudo-first order rates of alkaline hydrolysis (k = 8.8×10-4 s-1).569 Through 

computational modeling and structural alignment of the synthesized compounds with 

known actives, it was concluded that the disparity between chemical reactivity and 

biological activity could be explained by three factors unique to the larger ring system that 

decrease productive binding to the transpeptidase active site: 1) the spatial arrangement 

of the acylamino side chain, 2) additional steric bulk, and 3) increased conformational 

freedom (Figure 1.21).  

 

Table 1.9: Activity of ɣ-lactams against bacterial transpeptidases. aHalf-maximal inhibitory 
concentration (IC50). bApproximation from PBP-binding shown for isolated membrane proteins.  
 

Compound Species Target Activitya Reference 
27 E. coli PBP3 ~1.5 μg/mLb 567 
28 E. coli PBP3 0.25 μg/mL 569 

29 P. aeruginosa PBP3 5 μM 576 P. aeruginosa PBP4 5 μM 
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Lactivicin (30), a cycloserine- and ɣ-lactone-containing natural product, has also 

been shown to inhibit a variety of PBPs at micromolar concentrations579 (Figure 1.22). It 

is highly active against Gram positive organisms, but its modest Gram negative activity 

revealed a need for derivatization. Early analogues employing acylamino side chains 

similar to third-generation cephalosporins (31) exhibited improved antimicrobial spectrum, 

likely due to enhanced outer membrane permeability, as well as improved interactions 

with the transpeptidase active site.580,581 Improved target inhibition by such modifications 

was later shown by phenoxylacetyl lactivicin 32, an analogue of penicillin V, which is 6- 

and 40-fold more potent against two different S. pneumoniae PBP2x variants than the 

parent compound.582 Further attempts to extend spectrum involved the use of specific, 

charged acylamino side chains employed in antipseudomonal cephalosporins. Compound 

33, which shares an acylamino group with ceftazidime, shows both increased potency 

against Gram negatives and enhanced inhibition of pseudomonal PBPs.583 Conjugation of 

this molecule to siderophoric 4,5-dihydroxyphthalimide (compound 34) improves its 

uptake into Gram negative bacilli without negatively affecting target inhibition, enhancing 

its antimicrobial activity by as much as 500-fold.583.584 

Through mechanistic studies conducted by Macheboeuf et al., it is now known that 

the lactivicins inhibit PBPs covalently via an acylation reaction distinct from β-lactams.582 

In a crystal structure of lactivicin in complex with S. pneumoniae PBP1b, Oɣ of nucleophilic 

Ser460 has formed a covalent bond with the cycloserine carbonyl carbon, causing the 

cycloserine ring to open and, by resonance, the ɣ-lactam as well (Figure 1.23). The 

oxygen of the resulting ester carbonyl is located in the oxyanion hole formed by Ser460 

and Thr654. The ɣ-lactone ɣ-carboxylate group makes polar contacts with the side chains 

of Thr652 (KTG) and Thr654, and the carbonyl oxygen of the cycloserine N-acetyl group 

contacts Asn518 (SxN). The structure has marked similarities with a PBP1b-cefotaxime 

acyl-enzyme structure,585 indicating a similarity of precovalent binding mode that allows 
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the acylation reactions to proceed. Like β-lactams, lactivicins probably act as C-terminal 

peptidomimetics, where the ɣ-lactone ɣ-carboxylate acts as the C-terminus, an 

electrostatic anchor that helps to position the electrophilic carbonyl for attack by the serine 

nucleophile, while the acetylamino group aids in complex formation by mimicking the 

peptide bond of a third amino acid.  

The reactivity of the lactivicin cycloserine (4-aminoisoxazolidin-3-one) moiety has 

led to the exploration of novel isoxazolidin-5-one compounds. While several of the initial 

compounds to come out of this work, including 35, had only marginal antimicrobial activity, 

they readily formed adducts with methanol, showing that they are reactive to nucleophilic 

species.586 It should be noted that many of these molecules are esterified and would likely 

be manifold more potent as carboxylic acids. Cao et al. subsequently designed and 

synthesized a series of 3-alkoxyisoxazolidin-5-ones possessing carboxylic acid moieties 

in accordance with the geometric requirements established for transpeptidase inhibition 

by β-lactams.587 These compounds represent a significant improvement over earlier 

efforts, with the 3-isopropoxyisoxazolidin-5-one 36 inhibiting B. subtilis growth at 0.2 

µg/mL. Target inhibition was confirmed via spectroscopic PBP labeling with a dansylated 

version of the 5-methoxy analogue, but no determinations of potency were made. 
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Figure 1.23: Crystal structure of lactivicin in complex with S. pneumoniae PBP1b. A. Lactivicin 
(LTV, green) covalently bound in the transpeptidase active site of PBP1b. B. Overlay of covalently 
bound cefotaxime with lactivicin. C. Detailed view of lactivicin interactions (polar contacts are shown 
as black dashed lines).  
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Table 1.10: Activity of lactivicins against bacterial transpeptidases. aHalf-maximal inhibitory 
concentration (IC50) unless otherwise denoted. bSecond-order acylation rate constant (k2/Ks).  
 

Compound Species Target Activitya Reference 

30 

B. subtilis PBP1 0.28 μg/mL 

579 

B. subtilis PBP2 1.0 μg/mL 
B. subtilis PBP3 12 μg/mL 
B. subtilis PBP4 0.05 μg/mL 

E. coli PBP1a 5.0 μg/mL 
E. coli PBP1b 14 μg/mL 
E. coli PBP2 22 μg/mL 

S. pneumoniae R6 PBP2x 380 M-1s-1 b 
582 S. pneumoniae 5204 PBP2x 0.6 M-1s-1 b 

32 S. pneumoniae R6 PBP2x 2,150 M-1s-1 b 582 S. pneumoniae 5204 PBP2x 25 M-1s-1 b 

33 
P. aeruginosa PBP1a 0.046 μM 

583 P. aeruginosa PBP1b 1.23 μM 
P. aeruginosa PBP2 33.3 μM 
P. aeruginosa PBP3 0.092 μM 

34 
P. aeruginosa PBP1a 0.03 μM 

583 P. aeruginosa PBP1b 0.27 μM 
P. aeruginosa PBP2 3.7 μM 
P. aeruginosa PBP3 0.046 μM 

 

A more recently identified class of β-lactam-mimicking compounds is the 1,6-

diazabicyclo[3.2.1]octan-7-ones (DBO), which possess a 5-membered diazacyclic system 

resembling that seen in pyrazolidinones 26-28 discussed above, as well as a bridged 

structure similar to 29 (Figure 1.24). The DBO carbonyl is activated by a disruption of urea 

resonance caused by geometric constraints of the bicyclic system on the bridgehead 

nitrogen side, and by an electron-withdrawing inductive effect on the N-sulfonic acid side, 

as shown in the prototypical compound NXL104 (avibactam, 35). Avibactam was originally 

developed as a covalent β-lactamase inhibitor with a fast on-rate (k2/Ki > 104 M-1s-1) 

against a variety of classes, as well as a slow off-rate (k3 < 10-3 s-1).588-591 Early crystal 

structures of avibactam with serine β-lactamases show carbamoylation of the serine 

nucleophile and occupancy of the oxyanion hole by the carbonyl oxygen.590,592-594 Unlike 

other β-lactamase inhibitors, however, avibactam exhibits intrinsic antimicrobial 

activity.595,596 In subsequent investigations of this activity, it was found to bind PBPs with 
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low- to mid-micromolar affinity, with a notable preference for PBP2 from a variety of 

species.597,598 From these data, the DBO scaffold has become a jumping off point for one 

of the first successful ventures into dual inhibition.  

Many derivatization efforts have focused on modification of the avibactam 2-

carbamoyl moiety. Synthesis and testing of direct N-alkyl and N-aryl derivatives was 

reported by Blizzard et al., who explored a series of carbocyclic and heterocyclic 

substitutions.599 Interestingly, N-(pyridin-2-yl) compounds exhibited nanomolar inhibition 

of class A, C, and D β-lactamases, but they failed to show much synergy with 

carbapenems against resistant Gram negative bacilli. The best synergy results were 

obtained with N-(pyrrolidin-3-yl) and N-(piperidin-4-yl) analogues, the latter of which has 

been pursued as MK7655 (relebactam, 36). While relebactam’s carbapenem-potentiating 

effects are well documented,600-603 it has relatively weak intrinsic antimicrobial activity,604 

and its PBP-binding profile has not been characterized. Further investigations of the 2-

carbamoyl group led to the N-alkoxycarboxamides FPI1459 (nacubactam, 37) and 

FPI1465 (38).  Nacubactam is an N-(2-aminoethoxy) derivative with potent β-lactamase 

inhibition and better intrinsic antimicrobial activity than either avibactam or relebactam 

against a variety of problematic Gram negative species.605 In keeping with its improved 

intrinsic activity, it also inhibits E. coli PBP2 more potently than avibactam, with an IC50 of 

0.12 μg/mL. FPI1465 is a ring-constrained N-(pyrrolidin-3-yloxy) analogue of nacubactam 

with similar antimicrobial activity.606 Although its reported IC50 against E. coli PBP2 is 

higher than that reported for nacubactam, the enzymatic assays reported by King et al. 

were done under conditions of simultaneous addition rather than preincubation. 

Comparing results from similar techniques, both compounds represent an ~5-fold 

improvement over avibactam. A 2.9 Å crystal structure of FPI1465 in complex with E. coli 

PBP1b reveals marked similarities between the PBP binding modes of DBOs and β-

lactams606 (Figure 1.25). The nucleophilic Ser510 is carbamoylated, and the ligand 
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carbonyl oxygen occupies the oxyanion hole created by Ser510 and Thr701. The sulfonic 

acid makes polar contacts with Thr699 (KTG) and Thr701, similar to what is seen in 

complex structures of aztreonam, ampicillin, and cephalexin, and it is also within hydrogen 

bonding distance of Ser572 (SxN).607 Neither the FPI1465 2-carbamoyl group nor the 

aztreonam C3 acylamino group contact Asn574 (SxN), a common point of interaction with 

6-acylamino and 7-acylamino groups of penams and cephems, respectively. A final 

subclass arising from modifications to the 2-carbamoyl group are the diacylhydrazines 

FPI1523 (39), FPI1602 (40), WCK5153 (41), and WCK5107 (zidebactam, 42). FPI1523 is 

a simple acetyl derivative with 20-fold better E. coli PBP2 inhibition than avibactam, as 

well as 8- to 16-fold better antimicrobial activity against E. coli transformed with a variety 

of β-lactamases.606 FPI1602, WCK5153, and zidebactam are a series of nitrogen 

heterocycle-substituted acyl hydrazines of increasing ring size. Of the compounds 

reported by King et al., FPI1602 is the most potent single agent antimicrobial, with MICs 

less than 0.5 μg/mL against E. coli transformed with a variety of β-lactamases and good 

activity against NDM-1-producing clinical isolates of E. coli and E. cloacae.606 It exhibits 

E. coli PBP2 inhibition similar to FPI1523. WCK5153 and zidebactam have been 

characterized largely for their considerable antipseudomonal properties.608 They exhibit 

submicromolar inhibition of P. aeruginosa PBP2, as well as antimicrobial activity against 

even metallo-β-lactamase-producing strains. While they are potent inhibitors of PBP2 from 

K. pneumoniae and A. baumanii as well, WCK5153 and zidebactam are only capable of 

inhibiting growth of non-MBL-producing K. pneumoniae and fail against A. baumanii 

entirely.609-611 
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Figure 1.25: Crystal structure of DBO FP1465 in complex with E. coli PBP1b. A. FPI1465 
covalently bound in the transpeptidase active site of PBP1b. B. Overlay of covalently bound 
aztreonam structure.607 C. Detailed view of FPI1465 interactions (polar contacts shown as black 
dashed lines). 
 
 
 

Other groups have explored the chemistry of the 3- and 4-positions. One such 

example is ETX2514/durlobactam (43), a 3-unsaturated 3-methyl analogue of avibactam. 

Durlobactam shows good antimicrobial activity against a series of Gram negative bacilli, 

including K. pneumoniae and S. maltophila.612 However, despite its relatively rapid 

carbamoylation of A. baumanii PBP2 and its marked potentiation of carbapenem and 

sulbactam activity against metallo-β-lactamase-producing strains, durlobactam does not 

have significant intrinsic anti-acinetobacter activity itself.612,613 Durlobactam is a poor 

antipseudomonal agent, perhaps due to its poor carbamoylation of P. aeruginosa PBPs.  
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Additional 3-unsaturated DBOs include 2-decarbamoyl 4-(oxazol-4-yl) product 

CPD3 (44) and its 2-aminomethyl analogue CPD4 (45). In this work, Levy et al. explored 

a series of 4-substituted analogues and found that, with few exceptions, those with a 4-

heterocyclic moiety are more potent than the unsubstituted parent compound.614 CPD3 

and CPD4 are both nanomolar E. coli PBP2 inhibitors, but addition of the aminomethyl 

group seen in CPD4 improves its antimicrobial potency considerably, making it among the 

most intrinsically active of the DBOs reported to-date (mean MIC values of 0.031 μg/mL 

and 1 μg/mL against E. coli and P. aeruginosa clinical isolates, respectively). Fused 

pyrazolo[3,4-e] (NXL105, 46) and oxazolo[4,5-e] (47) products and derivatives show 

intrinsic activity against E. coli and a series of P. aeruginosa strains, but no further reports 

of spectrum or PBP inhibition could be found.615-618 However, resistance to these 

compounds in E. coli has been ascribed to mutations in the mrdA gene encoding PBP2, 

indicating significant binding in susceptible strains.615 ETX1317 (48) occupies unique 

chemical space, with a 2-fluoroacetic acid in place of the sulfonic acid seen in other DBOs. 

ETX1317 has potent intrinsic antimicrobial activity, with a median MIC of 0.25 μg/mL 

against a panel of 1,875 clinical isolates of Gram negative enterics, and has been shown 

to bind E. coli PBP2 from membrane preparations.619 
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Table 1.11: Activity of DBOs against bacterial transpeptidases. aHalf-maximal inhibitory 
concentration (IC50) unless otherwise denoted. bConducted with simultaneous addition of inhibitor 
and substrate, as opposed to an inhibitor preincubation period usually used for IC50 measurements. 
cSecond-order carbamoylation rate constant (k2/Ks). 
 

Compound Species Target Activitya Reference 

35 

E. coli PBP2 0.92 μg/mL 

597 

P. aeruginosa PBP2 1.1 μg/mL 
P. aeruginosa PBP3 1.8 μg/mL 
P. aeruginosa PBP4 11 μg/mL 
H. influenza PBP2 3.0 μg/mL 

S. pneumoniae PBP3 8.1 μg/mL 
S. aureus PBP2 51 μg/mL 
S. aureus PBP3 156 μg/mL 

E. coli PBP2 0.59 μM 614 
E. coli PBP2 63 μMb 606 

K. pneumoniae PBP2 2 μg/mL 598 
37 E. coli PBP2 0.12 μg/mL 605 
38 E. coli PBP2 14.8 μMb 606 
39 E. coli PBP2 3.2 μMb 606 
40 E. coli PBP2 3.6 μMb 606 

41 
P. aeruginosa PBP2 0.14 μg/mL 608 
A. baumanii PBP2 0.01 μg/mL 609 

K. pneumoniae PBP2 0.07 μg/mL 610 

42 
P. aeruginosa PBP2 0.26 μg/mL 608 
A. baumanii PBP2 0.01 μg/mL 609 

K. pneumoniae PBP2 0.08 μg/mL 610 

43 

A. baumanii PBP1a 180 M-1s-1 b 

612 

A. baumanii PBP2 1,800 M-1s-1 b 

A. baumanii PBP3 3.37 M-1s-1 b 
P. aeruginosa PBP1a 12 M-1s-1 b 

P. aeruginosa PBP2 24.3 M-1s-1 b 

P. aeruginosa PBP3 60 M-1s-1 b 

E. coli PBP1a 120 M-1s-1 b 

E. coli PBP2 17,000 M-1s-1 b 

E. coli PBP3 2.3 M-1s-1 b 
44 E. coli PBP2 25 nM 614 
45 E. coli PBP2 10 nM 614 
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1.5.c. Other reactive (presumed covalent) inhibitors 

There are several identified PBP inhibitors that possess functional groups reactive 

to nucleophiles, but which have not been fully characterized as covalent in mechanism. 

Two such classes are the arylalkylidene rhodanines and arylalkylidene iminothiazolidin-4-

ones, identified as inhibitory scaffolds in a high-throughput screen and subsequently 

derivatized to yield 49 and 50 620 (Figure 1.26). These compounds exhibit single-digit 

micromolar inhibition of S. aureus PBP2a and are active against a series of diverse 

transpeptidases, including S. pneumoniae PBP2x, E. coli PBP3, E. coli PBP5, 

Streptomyces R61 DD-peptidase, and Actinomadura R39 DD-peptidase. They were also 

shown to inhibit growth of several pathogens and confirmed to inhibit cell wall synthesis in 

[3H]-glycine incorporation assays. Arylalkylidene rhodanine 51 was identified in a high-

throughput screen, this time against PBP2 of N. gonorrhoeae.621 This compound was 

found to have much more potent antimicrobial activity (2 µg/mL) than expected from its 

modest target inhibition (153 µM), suggesting potential off-target effects. The 

arylalkylidene rhodanines and arylalkylidene iminothiazolidin-4-ones contain an electron 

withdrawing olefin motif that can act as a Michael acceptor, and the former have been 

shown to bind covalently to cysteine residues through nucleophilic attack by the side chain 

thiol.622 Moreover, they have been found to inhibit S. pneumoniae PBP2x 

noncompetitively.620 These molecules may, therefore, bind to the activated serine 

nucleophile of transpeptidases through a similar mechanism (Figure 1.27). The 

arylalkylidene rhodanine structure is considered a pan-assay interference (PAIN) 

compound substructure, but because derivatization can result in high selectivity for a given 

target, it is considered a privileged scaffold.612 
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Figure 1.26: Structures of arylalkylidene rhodanine and arylalkylidine iminothiazolidin-4-one 
transpeptidase inhibitors. 

 

 

 

 

Figure 1.27: Proposed mechanism of arylalkylidene rhodanine PBP inhibition. 
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Table 1.12: Activity of arylalkylidene rhodanines and arylalkylidene iminothiazolidin-4-ones against 
bacterial transpeptidases. aHalf-maximal inhibitory concentration (IC50). bPercent inhibition at 50 
µM. cPercent inhibition at 100 µM. 
 

Compound Species Target Activity Reference 

49 

S. aureus PBP2a 5 µMa 

620 

S. pneumoniae PBP2x, S 96%b 
S, pneumoniae PBP2x, R 90% c 

E. coli PBP3 87% b 
E. coli PBP5 94% b 

Streptomyces spp. R61 DD-
peptidase 75% b 

Actinomadura spp. R39 DD-
peptidase 95% b 

50 

S. aureus PBP2a 9 µMa 

620 

S. pneumoniae PBP2x, S 31% b 
S, pneumoniae PBP2x, R 90%c 

E. coli PBP3 86% b 
E. coli PBP5 83% b 

Streptomyces spp. R61 DD-
peptidase 44% b 

Actinomadura spp. R39 DD-
peptidase 55% b 

51 N. gonorrhoeae PBP2 153 µMa 621 
 

1.5.d. Noncovalent inhibitors 

Physical screening of molecules against PBPs has resulted in the discovery and 

development of many classes of noncovalent inhibitors, but very few have been pursued 

for optimization and development into preclinical leads. Some initial hits were found 

serendipitously in the course of other experiments, followed by more purposeful physical 

screening (Figure 1.28). In early studies of S. aureus PBP2a, it was noted that 

chromatographic stationary phase Cibacron blue (52) bound the protein tightly, such that 

it would not elute upon introduction of a salt gradient.624 Subsequent testing of Cibacron 

blue revealed that it is a mid-micromolar inhibitor of PBP2a, and screening of chemically 

similar compounds from a Merck collection allowed the identification of the more potent 

Erie yellow (53), which exhibits an IC50 of 13 µM. No antimicrobial data was reported for 

these hits, however. In another study, a PBP inhibitor was found by testing a hit from 

screens against a different enzyme. Physical screening of a cyclic heptapeptide 
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bacteriophage display library revealed 54 to inhibit activity of a synthetic catalytic antibody 

with β-lactamase-like activity.625 During biochemical characterization, 54 was found to 

inhibit TEM-1, as well as several high- and low-molecular weight PBPs to varying 

degrees.626 Although this scaffold was subject to some minor derivatization, the β-

lactamases were the primary focus of this work, and none of the analogues were tested 

against PBPs. No antimicrobial data was reported from these studies.  

 

 

 

Figure 1.28: Structures of transpeptidase inhibitors discovered through serendipity. 
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Focused physical screening with the aim of discovering more drug-like small 

molecule PBP inhibitors followed these initial ventures (Figure 1.29). One class of such 

inhibitors was identified from small parallel physical screens against MRSA PBP2a, 

Streptococcus pneumoniae PBP2x, and Enterococcus faecium PBP5.627 The screen and 

subsequent analogue search, synthesis, and testing identified anthranilic acid-derived 

arylsulfonamides and their isosteric arylamide derivatives as mid- to high-micromolar 

inhibitors of the tested PBPs.627,628 The most potent inhibitors from each scaffold, 55 and 

56, exhibit half-maximal inhibition of MRSA PBP2a at 80 µM and 210 µM, respectively. 

Both compounds show only marginal suppression of staphylococcal growth, however. 

Shortly thereafter, high-throughput screening of a 50,000-compound library from the 

ChemBridge Corporation identified a number of compounds that exhibit activity against N. 

gonorrhoeae PBP2 in the micromolar range.621 While a few of the compounds from this 

study possess functional groups concerning for nonspecific binding (e.g., arylalkylidene 

rhodanine 51 above), arylsulfonamides 57 and 58 are promising hits, exhibiting half-

maximal inhibition of PBP2 at 50 µM and 56 µM, respectively, as well as comparable 

activities against penicillin-susceptible and -resistant strains of N. gonorrhoeae (MIC = 8-

16 µg/mL).621  

Screening for antimicrobial natural products has also successfully identified PBP-

inhibitory compounds. The endophytic fungus Aspergillus TJ23 was found to inhibit the 

growth of ATCC43300 (MRSA) in vitro.629 Subsequent separation of liquid culture 

components yielded the active species 59, a meroterpenoid metabolite with a 

dioxabicyclo[2.2.1]heptane skeleton. This compound, named aspermerodione, inhibits 

MRSA growth at 32 µg/mL and PBP2a at 18.4 µM. 
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Figure 1.29: Structures of transpeptidase inhibitors identified through physical screening methods. 
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In another study, a fragment-based docking protocol was used against the active 

site of E. coli PBP5.631 The computational analysis revealed the 4-quinolone scaffold as a 

putative binder of the active site, and upon synthesis of derivatized 4-quinolones, several 

were shown to inhibit high molecular weight PBPs of E. coli at mid-micromolar 

concentrations. While the best inhibitor reported, 63, demonstrates affinity for every PBP 

from E. coli, this compound showed no suppression of E. coli growth up to 1 mM.  

Among the most successful noncovalent PBP inhibitors discovered to date are the 

1,2,4-oxadiazoles (Figure 1.30). The prototype of this class, 64, was identified from a 

high-throughput virtual screen of the ZINC database against MRSA PBP2a, with energy 

scoring performed by four separate algorithms.632 The hydroxyl derivative 65 is a 

micromolar-range inhibitor of PBP2a with antimicrobial activity against a series of Gram 

positive organisms (MIC = 1-2 µg/mL against a series of staphylococci and enterococci). 

The compound was also observed to be on-target, inhibiting [3H]-alanine incorporation into 

peptidoglycan without effects on the synthesis of protein or polynucleotides. From 

extensive exploration of the scaffold through medicinal chemistry, 66 has emerged as a 

promising antimicrobial candidate, exhibiting favorable pharmacokinetic properties as well 

as efficacy in a murine model of staphylococcal peritonitis.633-635 While the 1,2,4-

oxadiazoles have excellent activity against staphylococci and other Gram positives,634-636 

no antimicrobial data against Gram negative organisms has been published. Additional 

computational work has been done to determine quantitative structure-activity 

relationships (QSAR) for the class using comparative molecular field analysis (CoMFA), 

comparative molecular similarity indices analysis (CoMSIA), and field-based 3D-QSAR, 

but no compounds designed with the guidance of these models have been reported.637 
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Figure 1.30: Structures of transpeptidase inhibitors identified through in silico screening methods. 
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While many of the noncovalent PBP inhibitors mentioned here are in need of 

additional testing and medicinal chemistry to achieve standards of potency and selectivity 

required of a preclinical lead, these studies suggest that novel classes of PBP-targeted 

drugs may provide a workable route toward antimicrobials that 1) circumvent the changes 

associated with resistance that affect β-lactam binding, and 2) proactively avoid the 

potential issue of ESBL acquisition by N. gonorrhoeae. Moreover, because there are so 

few examples of successful compounds from which to draw, this is an area of need in 

antigonococcal therapeutic discovery.  
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Table 1.13: Activity of noncovalent inhibitors against bacterial transpeptidases. aHalf-maximal 
inhibitory concentration (IC50) unless otherwise noted. bPercent inhibition at 1 mM. 
cThermodynamic equilibrium constant (Ki) 
 

Compound Species Target Activitya Reference 
52 S. aureus PBP2a 24 µM 624 
53 S. aureus PBP2a 13 µM 624 

54 

E. coli PBP1b 28.6 µM 

626 

E. coli PBP3 62.5 µM 
E. coli PBP5 6.3 µM 

E. faecium PBP5 21.6 µM 

Streptomyces spp. R61 DD-
peptidase 26.8 µM 

55 
S. aureus PBP2a 80 µM 

 628 E. faecium PBP5 0%b 
S. pneumoniae PBP1b 60%b 

56 
S. aureus PBP2a 210 µM 

627 E. faecium PBP5 32%b 
S. pneumoniae 5204 PBP2x 59%b 

57 N. gonorrhoeae PBP2 50 µM 621 
58 N. gonorrhoeae PBP2 56 µM 621 
59 S. aureus PBP2a 18.4 µM 629 
60 S. pneumoniae 5204 PBP2x 219 µM 630 

61 
S. pneumoniae 5204 PBP2x 71 µM 

630 S. pneumoniae R6 PBP2x 336 µM 
S. pneumoniae PBP1b 259 µM 

62 
S. pneumoniae 5204 PBP2x 72 µM 

630 S. pneumoniae R6 PBP2x 255 µM 
S. pneumoniae PBP1b 88 µM 

63 

E. coli PBP1a/1b 27 µMc 

631 
E. coli PBP2 26 µMc 
E. coli PBP3 27 µMc 
E. coli PBP4 4.8 µMc 
E. coli PBP5/6 220 µMc 

65 S. aureus PBP2a 8 µg/mL 632 
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1.6. Goal and Significance  

With the emergence and spread of multi-drug resistant strains, the therapeutic 

landscape for Neisseria gonorrhoeae has become increasingly barren. The bacterium has 

demonstrated a strong proclivity for development of resistance against each FDA-

approved therapy tried in the last 90 years. Furthermore, any existing FDA-approved 

alternatives suffer from some weakness, and other experimental therapies that show 

promise are still in the early stages of their development. For this reason, continued efforts 

to identify antigonococcal compounds using all avenues of drug discovery (e.g., 

repurposing of FDA-approved therapies, in silico tools, physical screening, etc.) are 

necessary to ensure a future in which disease caused by this pathogen is still treatable.  

Much work has been done in our laboratory regarding the structural mechanisms 

of PBP2-mediated β-lactam resistance in Neisseria gonorrhoeae. In the past several 

years, our efforts have been focused on determining how specific amino acid changes in 

mosaic PBP2, including that expressed by strain H041, affect its structure, function, and 

ability to bind various β-lactams. In this project, the focus was reframed toward the ligand 

to examine what features are shared among active compounds with the goal of designing 

new compounds, or unearthing existing ones, capable of inhibiting PBP2 variants from 

both β-lactam-susceptible and -resistant strains. Here, we report data from three studies. 

The first is an analysis of the structure-activity relationships for inhibition of PBP2H041 by 

cephalosporins, as well as for antimicrobial activity against the strain itself. The second 

applies the knowledge gained from the structure-activity relationships to discover several 

novel scaffolds capable of inhibiting PBP2. Finally, the third explores the chemical space 

surrounding one of the identified scaffolds using medicinal and synthetic chemistry in order 

to improve potency and begin the process of hit-to-lead optimization.   
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2.1. Materials 

Fifth Generation cephalosporins were kindly provided by Basilea (ceftobiprole), 

Merck (ceftolozane), and Allergan (ceftaroline). Other cephalosporins were purchased 

from TCI America Inc, Sigma Aldrich Inc, and Alfa Aesar Inc, and Bocillin-FL was 

purchased from ThermoFisher Scientific Inc. Compounds coded NSC in the text were 

kindly provided by the Developmental Therapeutics Program at NCI from their Open 

Chemicals Repository. Compounds coded Z/EN, CB, and STK/STL were purchased from 

Enamine Ltd, ChemBridge Corp, and Vitas-M Chemicals Ltd, respectively. 

2.2. Biochemical and microbiological methods 

2.2.a. Cloning, expression, and purification of truncated N. gonorrhoeae PBP2 

constructs 

Truncated constructs comprising only the transpeptidase domain of PBP2 (tPBP2) 

were generated as previously described.389 The expression construct was transformed 

into Escherichia coli BL21 (DE3) cells; 2 L of cell culture were grown at 37 °C, and protein 

expression was induced by addition of 0.3 mM isopropyl β-D-thiogalactoside, followed by 

overnight incubation at 20 °C. Cells were harvested by centrifugation, lysed in 20 mM Tris-

HCl (pH 8.0), 500 mM NaCl, and 10% glycerol (TNG), and the MBP-PBP2 fusion protein 

was purified on a 5 mL HisTrap FF Ni2+ affinity column (GE Healthcare, Piscataway, NJ). 

The fusion protein was pooled, mixed with His6-tagged TEV protease at a molar ratio of 

50:1, and dialyzed overnight at 4 °C against TNG to allow cleavage of the fusion protein 

and to remove imidazole. The resulting digest was then passed over a 5 mL HisTrap HP 

column equilibrated with TNG. Purified tPBP2 did not elute in the flow-through but instead 

was eluted by a TNG/15 mM imidazole step gradient. Uncleaved fusion protein, His6-TEV, 

and His6-maltose-binding protein remained bound to the column and were eluted with a 

TNG/250 mM imidazole wash step. The purified protein was pooled, dialyzed into 20 mM 

Tris (pH 8.0), 500 mM NaCl, and 10% glycerol, and concentrated by ultrafiltration. 
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2.2.b. Site directed mutagenesis of tPBP2H041 

A K361E mutation was introduced into tPBP2H041 using the QuikChange Lightning 

Kit (Agilent, Santa Clara, CA). The forward 5’-CATTATGCAAGAATCTTCCAACGTCG-3’ 

and reverse 5’-CCGCGCACATCCAAAGTA-3’ primers were used to amplify the plasmid 

DNA containing penA41 as per the manufacturer’s recommended protocol. The amplified 

PCR product was treated with Dpn1 enzyme and then used to transform in E. coli BL21 

(DE3) cells. The mutant was confirmed by sequencing. 

2.2.c. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)-
based binding assay for Bocillin-FL  
 

The rate of acylation of PBP2 by the  fluorescent Bocillin-FL638 was determined by 

time-course kinetics experiments in which 1 μM tPBP2 was incubated with Bocillin-FL 

under pseudo-first order conditions. Aliquots were removed at specified time points 

between 2 seconds and 1 hour, and the reaction quenched by 4X SDS-PAGE sample 

buffer. Samples were heated at 95°C for 2 minutes, and acylated protein was separated 

from free Bocillin-FL using 12% Mini-Protean TGX SDS-PAGE gels. Gels were scanned 

using a Kodak EDAS 290 UV imaging system, followed by staining with Coomassie R-250 

to confirm equal loading. Bocillin-FL-bound PBP2 was quantified by densitometry using 

ImageJ.639 Data were normalized to the maximum fluorescence intensity and fit to a one-

phase association curve to determine pseudo-first order rate constants, which were 

plotted against Bocillin-FL concentration and fit to a linear regression to give the second-

order acylation rate as the slope.  

2.2.d. SDS-PAGE-based competition binding assay for β-lactams 
 

Acylation rates for β-lactam compounds were derived by determining the 

concentration of β-lactam required to inhibit half the binding of a known amount of Bocillin-

FL. tPBP2 was co-incubated with a specified concentration of Bocillin-FL (10 or 100 μM) 

and increasing concentrations (1 μM to 1 mM) of β-lactam for 1 hour. Samples were 
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denatured, separated by SDS-PAGE, and imaged as above. Data were normalized to the 

maximum fluorescence intensity and fit to a four-parameter inhibitor-response curve to 

determine half-maximal inhibitory concentrations (IC50), and the acylation rates of the β-

lactams were determined by the following relationship: 

𝑘%
𝐾&. (𝐵𝑂𝐶) ∙ [𝐵𝑂𝐶] = 	𝑘% 𝐾&. (𝛽𝐿) ∙ 𝐼𝐶'((𝛽𝐿) 

 
2.2.e. SDS-PAGE-based binding assay for noncovalent inhibitors 
 

Potency of noncovalent inhibitors was measured by determining the concentration 

of compound required to inhibit half the binding of a known amount of Bocillin-FL. PBP 

was incubated with 1 µM to 1 mM test compound for one hour, followed by the addition of 

1 µM Bocillin-FL. The reaction was allowed to proceed for a time period corresponding to 

the linear phase of Bocillin-FL binding for the PBP used. Samples were denatured, 

separated by SDS-PAGE, and imaged as above. Data were normalized to the maximum 

fluorescence intensity to give fractional residual activity. For IC50 determinations, data 

were then fit to a four-parameter inhibitor-response curve. 

2.2.f. Crystallization of tPBP2H041 in complex with cefoperazone 

tPBP2H041  was concentrated to 13 mg/mL, and crystallization conditions were set 

using a Gryphon liquid dispensing system (Art Robbins, Sunnyvale, CA, USA) in a 96-well 

sitting drop format in which 200 nL protein solution was mixed with 200 nL well solution. 

Crystals were obtained at 18°C over wells containing 37-40% PEG 600, buffered with 0.1 

M CHES at pH 9.1-9.3. Crystals appeared after 3-4 days and exhibited a plate-like 

morphology. 

To generate an acylated complex of tPBP2H041, crystals were soaked in a 60 mM 

solution of cefoperazone for 30 minutes at room temperature, followed by flash freezing 

without adding cryo-protectant. Diffraction data were collected at a wavelength of 1.00 Å 
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on a MX300-HS detector at the SER-CAT 22-BM beamline at the Advanced Photon 

Source in Argonne, IL, USA. 360° of data were collected in 1° oscillations, with an 

exposure time of 2 s/frame and a crystal-to-plate distance of 220 mm, and were processed 

using HKL2000.640 The structure was solved by refinement of the tPBP2H041 structure. 

Cefoperazone was modeled using the |Fo|-|Fc| difference electron density map, followed 

by iterative cycles of model building and refinement using the graphics programs O641 or 

COOT642, and REFMAC.643 The stereochemistry of models was analyzed with 

PROCHECK.644 

2.2.g. Disc diffusion against Neisseria gonorrhoeae 

N. gonorrhoeae (FA19 and H041) was streaked onto gonococcal medium base 

(GCB) agar plates and incubated overnight at 37°C under 5% CO2. The next day, N. 

gonorrhoeae growth was collected from the overnight plates, resuspended in GCB+ 

(composed of GCB broth, supplements I and II, 20 mM NaHCO3, and 10 mM MgCl2), and 

diluted to a final OD600 of 0.18. Aliquots of dilute gonococcal cells (200 µL, ~50,000 CFU) 

were added to 3 mL GCB top agar (GCB broth + 0.7% agar), and the mixtures were gently 

poured onto new GCB plates and allowed to set. For each compound tested, 5 µL of a 2 

mg/mL solution in DMSO (10 µg total) was pipetted onto a disc, and each disc was placed 

on a prepared plate. Plates were then incubated at 37°C under 5% CO2 for 24 hours, at 

which time the diameter of the zone of inhibition was measured. These experiments were 

conducted in the laboratory of Robert Nicholas, PhD, at the University of North Carolina 

Chapel Hill.  

2.2.h. Minimum inhibitory concentrations against Neisseria gonorrhoeae 

Neisseria gonorrhoeae H041 was passaged on GCB plates and resuspended at 

an OD600 of 0.18. GCB plates containing 2-fold changes in concentrations of test 

compound were poured on the day of the experiment, and agar dilution minimum inhibitory 

concentrations (MIC) were determined by the spot method. Briefly, aliquots (~50,000 
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CFU) of each clone were spotted onto the antimicrobial-containing plates, and the plates 

were incubated overnight. The next morning, the plates were examined, and the MIC was 

reported as the lowest concentration of antimicrobial suppressing growth (growth is 

defined as > 5 colonies growing in the spot of inoculation). MIC determinations were 

repeated a minimum of two times. These experiments were conducted in the laboratory of 

Robert Nicholas, PhD, at the University of North Carolina Chapel Hill. 

2.3. Computational methods 

2.3.a. Pharmacophore-constrained docking of β-lactams against tPBP2 variants 

Structures used in pharmacophore-constrained docking experiments can be 

accessed through the Protein Databank. PDB accession codes: 6P53 (tPBP2WT 

apoenzyme), 6P54 (tPBP2WT-ceftriaxone), 6VBC (tPBP2H041 apoenzyme), 6VBD 

(tPBP2H041-ceftriaxone). tPBP2 coordinates were prepared by protonation at pH 7.4, 

explicit solvation with water, and minimization under the AMBER12 forcefield.645 The 

minimized structure was then allowed to relax by with a short (1,000 ps) molecular 

dynamics simulation at 2 fs resolution using the Nosé-Poincaré-Andersen (NPA) 

algorithm.646 A pharmacophore model was then generated to constrain the β-lactam ring 

to the area surrounding Ser310 of PBP2, including the oxyanion hole formed by Ser310 

and Thr500. Selected β-lactams were then docked to the receptor using an induced-fit 

protocol in which compounds were first placed in the active site using the pharmacophore 

and scored using the London dG algorithm. The top 50 scored conformers were then refined 

against the AMBER12 forcefield with flexible rotation of receptor side chains and rescored 

using GBVI/WSA dG algorithm. All rescored conformers were retained for analysis by 

energy score amplitude, as well as protein-ligand interaction fingerprint (PLIF). All 

calculation used Molecular Operating Environment 2018.01.   
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2.3.b. Quantitative-structure activity relationship (QSAR) for cephalosporins 
against N. gonorrhoeae H041  
 

Partial least squares (PLS) analysis was used to examine the relationship between 

activity measurements, reported as log(k2/Ks), and descriptor variables, including 

structural and molecular properties of the cephalosporins tested. The generated PLS 

model was validated using the square of the correlation coefficient obtained by the leave-

one-out cross-validation method. The resulting model was also validated using y-

randomization, as well as application to a small test set of null cephalosporins. All 

analyses, including descriptor calculations and PLS model generation, were conducted in 

MOE 2018.01.  

 To examine the relationship between MICs and molecular descriptors, a 

classification QSAR model was developed, with an activity cutoff set at median MIC ≤ 4 

μg/mL. Cefdinir consistently modeled as an outlier, as it exhibits a low rate of PBP2 

acylation and yet has high antimicrobial potency, and likely has a different mechanism of 

action (e.g., rapid PBP1 acylation). For this reason, it was excluded from the model. The 

generated classification model was validated using the leave-one-out cross-validation 

method, as well as by y-randomization. All analyses, including descriptor calculations and 

model generation, were conducted in MOE 2018.01.  

2.3.c. Homology modeling and rigid alignment of class B PBPs 

To generate homology models of class B penicillin-binding proteins, amino acid 

sequences were obtained from the NCBI Protein database and used as templates in the 

SWISS-MODEL server.647 Template searching and target-template sequence alignment 

were then performed by BLAST and HHBlits analysis of the PDB repository to identify 

structural models of highly similarity. The best templates were selected according to 

sequence identity, quality of the available structural data, and the Global Model Quality 

Estimation (GMQE). Models were exported to the Structural Analysis and Verification 
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Server (SAVES) v5.0, and their overall stereochemical quality was checked in 

PROCHECK. Crystal structures of additional class B PBPs were accessed (PDB 

accession codes can be found in Table 3.6), and all models were subjected to sequence 

alignment and rigid-body superposition to examine conservation of residues. 

2.3.d. tPBP2-ceftriaxone structure-guided docking of JEK-42 and JMT-1 to tPBP2 
variants 
 

Using tPBP2-ceftriaxone complex coordinates (tPBP2WT-ceftriaxone: 6P54, 

tPBP2H041-ceftriaxone: 6VBD), pharmacophore constraints were placed around the 

cephem C4 carboxylate (CO2
- centroid, radius 2.0 Å) and the acyl carbonyl oxygen 

(hydrogen bond acceptor, radius 1.0 Å). The receptor was prepared for docking by the 

deletion of ceftriaxone from the active site and subsequent protonation at pH 7.4. 

Prototype PBP2 inhibitors (amide JEK-42 and sulfonamide JMT-1) were then docked to 

the receptor using an induced-fit protocol in which ligands were first placed in the active site 

using the pharmacophore and scored using the London dG algorithm. The top 10 scored 

conformers were then refined against the AMBER12 forcefield with flexible rotation of 

receptor side chains and rescored using the GBVI/WSA dG algorithm, and the top rescored 

conformer was retained. The tPBP2-JMT complex was prepared for molecular dynamics 

by explicit solvation with water and minimization under AMBER12 forcefield. The 

minimized structure was then allowed to equilibrate with a short (100 ps) molecular 

dynamics simulation (NPA algorithm, time step = 2 fs) with constraints placed on bond 

length. After equilibration, the solvated complex underwent 5 ns of molecular dynamics 

without constraints, and the overall structure of the complex, energies of ligand-receptor 

interaction, and trajectories of ligands were analyzed. These experiments were conducted 

in MOE 2018.01.  
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2.3.e. Virtual screening of fragments against a three-point pharmacophore 

 The base structures of JEK-42 and JMT-1, N-acetylanthranilic acid and N-

(methylsulfonyl)anthranilic acid, were flexibly aligned to the bicyclic penam, carbapenem, 

and cephem systems using a stochastic conformational search. From the alignment, a 

consensus pharmacophore was generated using a 100% threshold and 1.0 Å tolerance, 

yielding a model with three features: anionic (radius = 0.7 Å), hydrophobic/aromatic (radius 

= 0.9 Å), and hydrogen bond accepting (radius = 1.0 Å). This model was used to screen 

a custom ZINC library of 790,417 molecular fragments, defined as having a molecular 

weight < 250, for matching structures. This experiment  was conducted in MOE 2018.01. 

2.3.f. Validation of in silico methods for Pseudomonas aeruginosa PBP3  

β-lactam antibiotic structures were uploaded to the Database of Useful Decoys: 

Enhanced (DUD-E) server,648 and physicochemically matched decoy structural files were 

generated. All structures, true ligands and decoys, were combined into a single file for 

docking. The transpeptidase domain of PBP3 (PDB accession code: 3PBN) was prepared 

for docking using by protonation at pH 7.4, addition of partial charges, and the 

identification of potential binding sites by the calculation of alpha spheres. True ligands 

and decoys were then docked flexibly to the receptor using the rigid-receptor DOCK6.5 

protocol with 1,000 orientations.649 The compounds were scored against the AMBER 

forcefield and ranked. Receiver operator and enrichment curves were generated from the 

docking scores and ranks, and an area under the curve (AUC) was calculated for each. 

 Using MOE 2018.01, coordinates for the transpeptidase domain of PBP3 prepared 

by removal of crystallographic waters and ions, correction of structural incompletions, 

addition of partial charges, and protonation at physiologic pH. The structure was then 

energy minimized and allowed to relax with a short (500 ps) molecular dynamics 

simulation at 2 fs resolution using the NPA algorithm. The active site was defined by the 

cluster of alpha spheres containing the active serine residue (Ser294), and the database 
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of β-lactams and decoys was then docked flexibly to the defined site using triangle matching. 

Top conformers were refined against the AMBER12 forcefield with flexible rotation of 

receptor side chains, and conformers were ranked via GBVI/WSA dG scoring. Receiver 

operator and enrichment curves were generated from the docking scores and ranks, and an 

AUC was calculated for each. 

2.3.g. In silico virtual screen against Pseudomonas aeruginosa PBP3 

A custom library of 100,000 ligands derived from the ZINC database650 was docked 

to previously prepared P. aeruginosa PBP3 coordinates using the rigid-receptor DOCK6.5 

protocol above. Ranked ligands with docking scores two standard deviations below the 

mean of all docked compounds (Z < -2) were selected for consensus analysis via an 

induced-fit docking protocol in MOE2018.01 as done for the database of β-lactams and 

decoys above. Molecules were scored according to their overall binding by both protocols 

(i.e., sum of ranks), as well as agreement between protocols (i.e., difference between ranks).  

2.4. Synthetic methods  

2.4.a. Synthesis of 5-fluoro-2-(4'-methyl-[1,1'-biphenyl]-4-carboxamido)benzoic acid 
(JEK-42) 
 

To a solution of 4’-methyl-[1,1’-biphenyl]-4-carboxylic acid (1.0 eq) in DCE were 

added oxalyl chloride (1.1 eq) and DMF (cat.) with stirring. Acyl chloride formation was 

allowed to proceed for 12 hours at room temperature. Volatiles were removed under 

reduced pressure to give 4’-methyl-[1,1’-biphenyl]-4-carbonyl chloride, which was used 

without further workup. A solution of methyl 2-amino-5-fluorobenzoate (1.0 eq) in 

anhydrous DCM was added, followed by pyridine (1.0 eq) portionwise, and the reaction 

was allowed to proceed at room temperature for 8 hours. After completion, as determined 

by TLC, the reaction was acidified to pH 2 with 1 M HCl, and the product was extracted 

with dichloromethane. The combined organic phases were washed with saturated 

NaHCO3 and brine, dried over Na2SO4, and filtered. Solvent was then removed under 
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reduced pressure, and the crude reaction mixture was purified by trituration using 

dichloromethane and hexanes. 

To a stirred solution of product methyl 5-fluoro-2-(4'-methyl-[1,1'-biphenyl]-4-

carboxamido)benzoate in tetrahydrofuran, 1 M aqueous LiOH (2 eq) was added. The 

reaction was allowed to proceed with stirring at room temperature overnight. Solvent was 

then evaporated under reduced pressure, and the residue was subsequently diluted with 

water and acidified to pH 2 using 1 M HCl. The mixture was then extracted using EtOAc, 

and the combined organic phases were washed with brine, dried over Na2SO4, and filtered. 

Solvent was then removed under reduced pressure to provide 5-fluoro-2-(4'-methyl-[1,1'-

biphenyl]-4-carboxamido)benzoic acid as a white solid. The product was purified by normal 

phase flash chromatography using a dichloromethane / methanol mobile phase. Products 

needing additional purification were recrystallized from ethyl acetate and hexanes. 

2.4.b. General procedure I: Synthesis of 2-(arylsulfonamido)benzoic acids 

Arylsulfonyl chloride (1.0 eq) and methyl 2-aminobenzoate (1.0 eq) were dissolved 

in anhydrous dichloromethane and stirred for 10 minutes, at which time pyridine (1.0 eq) 

was added dropwise. The reaction was allowed to proceed with stirring at room 

temperature for 12 h. After completion, as determined by TLC, the reaction was acidified 

to pH 4 with 1 M HCl, and the product was extracted with dichloromethane. The combined 

organic phases were washed with brine, dried over Na2SO4, and filtered. Solvent was then 

removed under reduced pressure, and the crude reaction mixture was purified by 

trituration using dichloromethane and hexanes. 

To a stirred solution of product methyl 2-(arylsulfonamido)benzoate in 

tetrahydrofuran, 1 M aqueous LiOH (2 eq) was added. The reaction was allowed to 

proceed with stirring at room temperature overnight. Solvent was then evaporated under 

reduced pressure, and the residue was subsequently diluted with water and acidified to 

pH 2 using 1 M HCl. The mixture was then extracted using EtOAc, and the combined 



 99 

organic phases were washed with brine, dried over Na2SO4, and filtered. Solvent was then 

removed under reduced pressure to provide the corresponding 2-

(arylsulfonamido)benzoic acid as an off-white solid. The product was purified by normal 

phase flash chromatography using a dichloromethane / methanol mobile phase. Products 

needing additional purification were recrystallized from ethyl acetate and hexanes. 

2.4.c. General procedure II: Synthesis of N-(2-(1H-tetrazol-5-
yl)phenyl)benzenesulfonamides 
 

Arylsulfonyl chloride (1.0 eq) and methyl 2-aminobenzonitrile (1.0 eq) were 

dissolved in anhydrous dichloromethane and stirred for 10 minutes, at which time pyridine 

(1.0 eq) was added dropwise. The reaction was allowed to proceed with stirring at room 

temperature for 12 h. After completion, as determined by TLC, the reaction was acidified 

to pH 5 with HCl, and the product was extracted with dichloromethane. The combined 

organic phases were washed with brine, dried over Na2SO4, and filtered. Solvent was then 

removed under reduced pressure, and the crude reaction mixture was purified by 

trituration using dichloromethane and hexanes. 

To a stirred solution of product 2-(arylsulfonamido)benzonitrile (1.0 eq) in DMSO, 

sodium azide (1.0 eq) and copper(II) sulfate (0.02 eq) were added. The reaction was 

heated to 150 °C and allowed to proceed with stirring for 1 h. After cooling, the reaction 

mixture was diluted with water and acidified to pH 2 using 1 M HCl. The mixture was then 

extracted using EtOAc, and the combined organic phases were washed with brine, dried 

over Na2SO4, and filtered. Solvent was then removed under reduced pressure to provide 

the corresponding N-(2-(1H-tetrazol-5-yl)phenyl)benzenesulfonamide as an off-white 

solid. The product was purified by normal phase flash chromatography using a 

dichloromethane / methanol mobile phase. Products needing additional purification were 

recrystallized from ethyl acetate and hexanes. 
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CHAPTER 3: Structure-Activity Relationships of Cephalosporins against 
Penicillin- and Cephalosporin-Resistant Neisseria gonorrhoeae H041  
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3.1. Introduction 

The cephalosporins are a structurally diverse class of antibiotics divided into 

generations based on their timeline of development, as well as specific medicinal chemical 

modifications that affect activity and antimicrobial spectrum. While the 3rd generation 

agents cefixime and ceftriaxone have been the most commonly prescribed cephalosporins 

for gonorrhea over recent years, few members of this class have been tested against ESC-

resistant (ESCR) strains. This is especially the case for 4th and 5th generation 

cephalosporins such as ceftaroline and ceftobiprole that have been approved relatively 

recently. Building structure-activity relationships (SAR) for cephalosporins against their 

PBP2 target and an ESCR strain of N. gonorrhoeae offers the potential to address ESCR 

N. gonorrhoeae in two ways: it may reveal existing FDA-approved cephalosporins that 

exhibit efficacy against such strains, and suggest ways in which the efficacy of specific 

cephalosporins can be improved by chemical modification.  

Here, we report a quantitative structure-activity relationship (QSAR) of 22 

cephalosporins for inhibition of PBP2 from H041 and antimicrobial activity against N. 

gonorrhoeae. The data reveal key features of cephalosporins that enhance formation of the 

precovalent PBP2-cephalosporin complex, as well as those that may independently hinder 

or enhance antimicrobial activity. The study also reveals that FDA-approved agents 

cefoperazone (Cefobid, Pfizer), ceftaroline (Teflaro, Allergan), and ceftobiprole (Zevtera, 

Basilea) acylate mosaic PBP2 at higher rates than ceftriaxone, and that cefoperazone 

exhibits higher antimicrobial activity against H041. Overall, our data reveal there is 

considerable potential in adopting and/or adapting these cephalosporins as anti-gonococcal 

agents to address ESCR N. gonorrhoeae.  
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3.2. Computational predictions of precovalent cephalosporin-PBP2 interactions  
 
3.2.a. Pharmacophore-constrained docking of cephalosporins against tPBP2H041 

In order to identify residues of PBP2 involved in the recognition of cephalosporins 

in the precovalent complex, cephalosporins were docked to the active site of tPBP2H041. A 

pharmacophore constraint (shown in Appendix A) was used to confine the β-lactam ring 

system to the area around the Ser310 nucleophile and the oxyanion hole formed by the 

amide nitrogens of Ser310 and Thr500, and the refined poses for all compounds remained 

largely within the volume specified. Protein-ligand interaction fingerprints (PLIF) of all 

poses were generated for each molecule, their interactions with individual residues were 

analyzed by frequency and type of interaction (Figure 3.1), and the predominant 

interactions were used to generate a consensus pharmacophore (Figure 3.2).  

For all cephalosporins, S310 and T500 contact the β-lactam carbonyl oxygen with 

side chain and main chain hydrogen bonding interactions, respectively, while K313 and 

K497 are predominantly involved in side chain ionic interactions with the cephem C4 

carboxylate group. In addition, most of the cephalosporins contact T347, K361, S483, and 

S545. The C4 carboxylate moiety participates in additional hydrogen bonding interactions 

with the hydroxyl group of S483, and in most poses, S1 of the cephem dihydrothiazine 

ring participates in weak hydrogen bonding with the side chain hydroxyl group of T347. 

Electronegative elements of many of the cephalosporin R2 groups make side chain and 

main chain polar contacts with K361, including the thiotriazinone (TTN) moiety of 

ceftriaxone (Figure 3.3A). Finally, the common amide moiety of all R1 groups makes 

variable polar contacts within the active site. In some poses, the amide nitrogen 

participates in hydrogen bonding with S545 and the carbonyl oxygen with N364, while in 

others, the C7-N bond is rotated such that the carbonyl oxygen interacts with S545. This 

rotation also affects the position of the R1 aromatic ring systems of several cephalosporins, 

leading to two distinct conformational states: one in which the rings reach toward the 
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hydrophobic pocket formed by Y422 on the α8-β2f loop, and one in which they project 

toward Y544 on the β5-α11 loop (Figure 3.3B). The aromatic rings do not make 

substantial formal contacts with the active site in either of these conformations, however. 

Closer inspection of the poses reveals two possible binding modes for all 

cephalosporins examined: a “major pose” is observed for approximately 60% of poses 

(131/220), and a “minor pose”  for 40% (89/220) (Figure 3.4). While there appear to be to 

no differences in docked energy scores for the major pose (-6.39 ± 0.56 kcal·mol-1) over 

the minor pose (-6.54 ± 0.79 kcal·mol-1, p = 0.17), compounds with faster acylation rates 

tend to occupy the minor pose (OR = 0.38, p = 0.01). Representative examples of each 

pose for ceftriaxone and cefoperazone are shown in Figure 3.5. In the major pose, the C4 

carboxylate of the cephalosporin interacts with Oɣ of S483, and the β-lactam ring is 

positioned away from the nucleophile (Figure 3.5A and C). In the minor pose, the 

carboxylate is situated within the hydrogen bonding network created by K313 and S310, 

bringing the β-lactam ring in closer proximity to S310 (Figure 3.5B and D). Interestingly, 

neither pose overlaps with ceftriaxone observed in the crystal structure of tPBP2H041 

acylated by this antibiotic134 (Figure 3.6). Of the two binding modes, the minor pose 

appears more favorable for initiation of the acylation reaction. The β-lactam carbonyl is 

well-situated for attack by the Oɣ of S310 and for subsequent stabilization of the resulting 

tetrahedral intermediate by the oxyanion hole created by the amides of S310 and T500 

(Figure 3.5B and D).  
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Figure 3.1: Protein-ligand interaction fingerprints (PLIFs) for pharmacophore-constrained induced-fit 
docking of cephalosporins to tPBP2H041. A. Heat map of cephalosporin-tPBP2H041 interactions colored 
by number of poses interacting with a given residue. B. Heat map of cephalosporin-tPBP2H041 
interactions, colored by the cephalosporin moiety interacting with a given residue. Key: cefoperazone 
(CFP), ceftaroline (CPT), ceftobiprole (BPR), ceftriaxone (CRO), ceftizoxime (ZOX), cefotaxime (CTX), 
ceftazidime (CAZ), cefixime (CFM), cefepime (FEP), cefpodoxime (CPD), ceftolozane (TOL), cefdinir 
(CDR), cefaclor (CEC), ceftibuten (CTB), cefuroxime (CXM), cefmetazole (CMZ), cefoxitin (FOX), 
cefsulodin (CFS), cephalexin (LEX), cefazolin (CFZ), cephalothin (LOT), cephaloridine (LOR) 
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Figure 3.3: Positioning of the R1 and R2 groups of ceftriaxone within the active site of tPBP2H041. 
A. The thiotriazinone (TTN) R2 of ceftriaxone (CRO, orange) makes contact with K361 (yellow) in 
a majority of docked poses. B. The 2-(aminothiazol-4-yl)-2-(alkoxyiminoacetyl) (ATAO) R1 group of 
CRO (orange) adopts two conformations in the docked poses, consistent with electron density seen 
in the published crystal structure of tPBP2H041 acylated by ceftriaxone.134 In each conformation, R1 
is in close proximity to Y422 or Y544 (both yellow). 
 

 



 107 

 

 

Figure 3.4: Statistical analysis of docked poses, showing two distinct predicted binding modes. A. 
Pie chart showing relative abundance of the two predicted binding modes. B. Predicted binding 
mode abundance stratified by second-order acylation rate constant. C. Pooled energy scores for 
poses in each of the two predicted binding modes. Error bars are standard deviation. 
 



 108 

 
 
 

Figure 3.5: Representative poses of ceftriaxone and cefoperazone docked to tPBP2H041. A. In the 
major pose predicted by the pharmacophore-constrained docking protocol, the C4 carboxylate of 
ceftriaxone interacts with S483, its R2 side chain interacts with K361, and the β-lactam ring system 
is not optimally oriented for nucleophilic attack by S310. Ceftriaxone (CRO) is shown in orange, 
and potential hydrogen bonds made by the antibiotic are indicated by dashed lines. B. In the minor 
pose for CRO, the C4 carboxylate interacts with the side chains of K313 and S310, and the β-
lactam ring is available for attack by S310. C. Cefoperazone (CFP) in the major pose. D. CFP in 
the minor pose. 
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Figure 3.6: Overlay of docked ceftriaxone poses with tPBP2H041-CRO complex structure. Docked 
precovalent poses of ceftriaxone (major in orange, minor in purple) show marked differences from 
the acylated structure (green). In the minor pose, in which the β-lactam ring is well-positioned for 
attack by nucleophilic Oɣ of S310, the aromatic thiazole ring has moved further from its final position 
near α8.  
 

3.2.b. Pharmacophore-constrained docking of cephalosporins against tPBP2WT 

 

In order to draw more direct comparisons between  tPBP2H041 and tPBP2WT,  the 

panel of cephalosporins was docked to the active site of tPBP2WT using the same 

pharmacophore-constrained docking protocol as above. Because T498 rotation has been 

shown as critical for triggering the acylation reaction, the protocol was run for both apo 

and ceftriaxone-bound (T498-rotated) forms of tPBP2WT. PLIF analysis for each ligand 

docked to apo-tPBP2WT is shown in Figure 3.7. In this system, the side chains of S310 

and T500 contact the β-lactam carbonyl oxygen with side chain hydrogen bonding 

interactions, and T483 and S362 are predominantly involved in side chain hydrogen 

bonding interactions with the cephem C4 carboxylate group. In most poses, S1 of the 
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cephem dihydrothiazine ring participates in weak hydrogen bonding with the side chain 

hydroxyl group of T347. The common C7 acylamino moiety on R1 of all cephalosporins 

forms a hydrogen bond with N364 in some poses, and some R1 aromatic ring systems 

make contact with R502 and H514 of the β3-β4 loop. Large R2 groups adopt two distinct 

conformations in the dataset: one in which electronegative elements make side chain and 

main chain polar contacts with K361 on α4 and one in which they are rotated toward 

residues on α11. A representative pose is shown in Figure 3.9A.  

The picture is significantly different for the poses of cephalosporins docked to a 

structure of tPBP2WT in which the T498 side chain is rotated toward the active site (Figure 

3.8). First, the C4 carboxylate is in direct contact with the side chains of K497, T498, and 

T500 in a majority of poses, consistent with the post-covalent crystal structures of cefixime 

and ceftriaxone in complex with tPBP2WT (Figure 3.10). In these poses, the β-lactam ring 

is in a more favorable position for attack by Oɣ of Ser310. Similar to what is seen in docking 

against the apo structure, S1 of the dihydrothiazine ring participates in weak hydrogen 

bonding interactions with the side chain of T347. The R1 adopts a position in which the C7 

acylamino forms consistent hydrogen bonding interactions with the side chain of N364, 

and aromatic systems generally come in close enough proximity to Y422 to form H-𝜋 or 

𝜋-𝜋 interactions with its side chain. While there is a small subset of poses in which R2 

groups interact with K361, a majority occupy the cleft between the α10-β3 loop and α11, 

consistent with a crystal structure of tPBP2WT-ceftriaxone in which the leaving group is 

trapped before departure. A representative pose for this analysis is shown in Figure 3.9B. 

Together, the results of our docking experiments suggest that the initial recognition of the 

C4 carboxylate is similar for tPBP2WTand tPBP2H041. Subsequent rotation of T498 in 

tPBP2WT may result in a dramatic change in ligand position preparing it for acylation, a 

repositioning that does not occur in tPBP2H041 due to locking of T498 by a hydrogen bond 

with S545.  
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Figure 3.7: Protein-ligand interaction fingerprints (PLIFs) for pharmacophore-constrained induced-fit 
docking of cephalosporins to apo tPBP2WT. A. Heat map of cephalosporin-tPBP2WT interactions colored 
by number of poses interacting with a given residue. B. Heat map of cephalosporin-tPBP2WT 
interactions, colored by the cephalosporin moiety interacting with a given residue. Key: cefoperazone 
(CFP), ceftaroline (CPT), ceftobiprole (BPR), ceftriaxone (CRO, ceftizoximine (ZOX), cefotaxime (CTX), 
ceftazidime (CAZ), cefixime (CFM), cefepime (FEP), cefpodoxime (CPD), ceftolozane (TOL), cefdinir 
(CDR), cefaclor (CEC), ceftibuten (CTB), cefuroxime (CXM), cefmetazole (CMZ), cefoxitin (FOX), 
cefsulodin (CFS), cephalexin (LEX), cefazolin (CFZ), cephalothin (LOT), cephaloridine (LOR) 
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Figure 3.8: Protein-ligand interaction fingerprints (PLIFs) for pharmacophore-constrained induced-fit 
docking of cephalosporins to tPBP2WT with T498 rotated toward the active site, as is seen in the 
ceftriaxone-bound structure . A. Heat map of cephalosporin-tPBP2WT interactions colored by number of 
poses interacting with a given residue. B. Heat map of cephalosporin-tPBP2WT interactions, colored by 
the cephalosporin moiety interacting with a given residue. Key: cefoperazone (CFP), ceftaroline (CPT), 
ceftobiprole (BPR), ceftriaxone (CRO, ceftizoximine (ZOX), cefotaxime (CTX), ceftazidime (CAZ), 
cefixime (CFM), cefepime (FEP), cefpodoxime (CPD), ceftolozane (TOL), cefdinir (CDR), cefaclor 
(CEC), ceftibuten (CTB), cefuroxime (CXM), cefmetazole (CMZ), cefoxitin (FOX), cefsulodin (CFS), 
cephalexin (LEX), cefazolin (CFZ), cephalothin (LOT), cephaloridine (LOR) 
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Figure 3.9: Representative poses of ceftriaxone docked to tPBP2WT. A. When docked to apo  
tPBP2, the C4 carboxylate of ceftriaxone interacts with T483, and the β-lactam ring system is not 
optimally oriented for nucleophilic attack by S310. Ceftriaxone (CRO) is shown in orange, and 
potential hydrogen bonds made by the antibiotic are indicated by dashed lines. B. When docked to 
tPBP2WT in which T498 is rotated toward the active site, the C4 carboxylate interacts with the side 
chains of T498 and T500, and the β-lactam ring is available for attack by S310. 
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Figure 3.10: Overlay of docked ceftriaxone poses with tPBP2WT-CRO complex structure. Docked 
precovalent poses of ceftriaxone with apo tPBP2WT (orange) show marked differences from the 
acylated structure (green). When T498 is rotated toward the active site, however, the docked poses 
(purple) better resemble the post-covalent state. 
 

3.3. Activity data for cephalosporins against N. gonorrhoeae strain H041 and its 
PBP2 
 
3.3.a. Second-order acylation rate constants against tPBP2H041 

As a prerequisite to determining the second-order rates of acylation for the panel 

of cephalosporins against tPBP2H041, we first measured the second-order acylation rate of 

Bocillin-FL against tPBP2H041 using a time-dependent gel-based assay (Figure 3.11). The 

obtained value, 275 ± 9 M-1s-1, is consistent with values previously reported for 

[14C]penicillin G against PBP2 from H041.384 k2/Ks was then determined for each 

cephalosporin with a gel-based competition assay using Bocillin-FL (untransformed 

inhibition data shown in Appendix B). The 22 cephalosporins exhibit a wide range of 

activities against tPBP2H041(Table 3.1), with acylation rates ranging from 0 to over 10,000 
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M-1s-1. Three of the cephalosporins exhibit 2-7 fold faster rates of acylation than third-

generation ceftriaxone (1,710 ± 320 M-1s-1). These are the third-generation agent 

cefoperazone (11,800 ± 1,300 M-1s-1) and the fifth-generation agents ceftaroline (10,900 

± 1,700 M-1s-1) and ceftobiprole (3,230 ± 190 M-1s-1). Ceftizoxime (third-generation) 

exhibits activity comparable to that of ceftriaxone (1,000 ± 210 M-1s-1), whereas several 

other third-generation cephalosporins exhibit slightly slower rates of acylation, including 

cefotaxime (880 ± 120 M-1s-1), ceftazidime (780 ± 150 M-1s-1), cefixime (720 ± 60 M-1s-1), 

and cefpodoxime (590 ± 90 M-1s-1). The remaining cephalosporins exhibit very slow 

acylation rates; in fact, for four of these, cephalexin, cefazolin, cephalothin, and 

cephaloridine, rates could not be measured.  

 

 

 
Figure 3.11: Second-order rate of acylation of Bocillin-FL against tPBP2H041. A. Time-dependent 
acylation of tPBP2H041 at various Bocillin-FL concentrations. Each curve was used to derive the 
pseudo first-order rate constant, ka. B. Plot of ka against the concentration of Bocillin-FL, where the 
slope is the second order acylation rate constant (k2/Ks). A minimum of three kinetics experiments 
were completed for each concentration. Error bars are standard deviation. 
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Table 3.1: Second-order acylation rates and minimum inhibitory concentrations for the selected 
panel of cephalosporins. aThe acylation rate constant for each cephalosporin was derived from 
kinetic measurements of the formation of the acyl-enzyme complex, as described in Chapter 2. The 
rates were determined by a competition assay with Bocillin-FL. Values were derived from a 
minimum of three separate determinations. Error is expressed as standard deviation. bThe 
minimum inhibitory concentration (MIC) for each cephalosporin was determined using an agar 
dilution protocol, as described in Chapter 2. Values were derived from a minimum of two separate 
determinations. †Inhibition plot could not be fit due to lack of a plateau at the highest concentration 
used; however, approximately 50% inhibition was seen at 10 mM. ‡Inhibition plot could not be fit 
due to minimal inhibition seen at the highest concentration used. *Cephamycin – possesses a C7-
OMe group. All IC50 curves are shown in Appendix B. 
 

Ceph R1 R2 
k2/Ks  

(M-1s-1)a 

median MIC 
(µg/mL)b 

[range] 

CFP 

 

 

11,800 ± 
1,300 1 [1] 

CPT 

 
 

10,900 ± 
1,700 2 [1-4]  

BPR 

  

3,230 ± 
190 4 [2-4] 

CRO 

  

1,710 ± 
320 2 [1-4] 

ZOX 

 

H 1,000 ± 
210 6 [4-8] 

CTX 

 
 

880 ± 120 6 [4-8] 

CFM 

 

 720 ± 60 6 [4-8] 
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CAZ 

 

 
790 ± 150 24 [16-32] 

FEP 

 
 

630 ± 50 32 [16-32] 

CPD 

 

 590 ± 90 16 [16] 

TOL 

 
 

200 ± 20 >32  

CDR 

 
 82 ± 7 1.5 [1-2] 

CEC 
 

Cl 29 ± 4 >32  

CTB 

 

H 19.1 ± 0.2 >32  

CXM 

 
 

6.8 ± 0.2 16 [16] 

FOX* 
  

3.3 ± 0.6 3 [2-4] 

CMZ* 
  

3.6 ± 0.1 32 [32] 

CFS 

  
0.8 ± 0.1 >32  

LEX 
 

CH3 ~ 0.3† >32  
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CFZ 
  

~ 0‡ 12 [8-16]  

LOT 
  

~ 0‡ 32 [32] 

LOR 
  

~ 0‡ 16 [16] 

 

Examining the acylation data qualitatively, it appears that the R1 side chain has a 

significant impact on tPBP2H041 acylation rate, as seen in pairwise comparisons of 

compounds with identical R2 side chains (Table 3.2). These pairings exhibit up to 3,000-

fold differences in activity (e.g., cefoperazone versus cefmetazole). By contrast, the R2 

side chain has a much lower impact on acylation rate, as evidenced by the narrow range 

of values obtained for cephalosporins containing the 2-(2-aminothiazol-4yl)-2-

(alkoxyimino)acetyl (ATAO) moiety at R1. 
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Table 3.2: Pairwise comparisons of cephalosporins with identical R2. aSecond-order acylation rate 
constants taken from Table 1. bQuotient of second-order acylation rate constants for fast- versus 
slow-acylating cephalosporin. †Cephamycin – possesses C7-OMe group. ‡Inhibition plot could not 
be fit due to minimal inhibition seen at the highest concentration used. 
 

Ceph R1 R2 
k2/Ks 

(M-1s-1)a 
Fold-

Changeb 

CFP 

  

11,800 ± 1,300 
3,300 

CMZ† 
 

3.6 ± 0.1 

ZOX 

 
H 

1,000 ± 210 

52 

CTB 

 

19.1 ± 0.2 

CTX 

  

880 ± 120 
∞ 

LOT 
 

~ 0‡ 

CAZ 

 
 

790 ± 150 
∞ 

LOR 
 

~ 0‡ 

CFM 

  

720 ± 60 

8.8 

CDR 

 

82 ± 7 
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CFM 

  

6.8 ± 0.2 
2.1 

FOX† 
 

3.3 ± 0.6 

 

 

3.3.b. Antimicrobial activity against N. gonorrhoeae H041 

Minimum inhibitory concentrations (MICs) were determined for the panel of 

cephalosporins using agar dilution (Table 3.1). The tested compounds exhibit varying 

degrees of antimicrobial potency against H041, ranging from 1 to >32 μg/mL. Consistent 

with the acylation data, cefoperazone shows slightly more inhibition of bacterial growth 

than ceftriaxone (1 vs 2 μg/mL), albeit within the error of dilution. Despite their rapid target 

acylation rates against tPBP2H041, the MICs for ceftaroline and ceftobiprole are similar or 

slightly higher compared to ceftriaxone. By contrast, cefdinir and cefoxitin, which both 

exhibit relatively low acylation rates against tPBP2H041, inhibit the growth of H041 at 

concentrations comparable to ceftriaxone (MIC = 1.5 and 3 μg/mL, respectively). The anti-

gonococcal activity of the remaining cephalosporins is generally weaker, falling in the 

range of 8 to 16 μg/mL. Cephalothin, ceftazidime, cefaclor, cefsulodin, and cephalexin are 

exceptionally poor antimicrobials, and cannot inhibit growth of the H041 strain except at 

concentrations of 32 μg/mL or more. In general, antimicrobial potency correlates relatively 

poorly with acylation rate because MICs are also influenced by the degree of permeation 

through porins and efflux rates, in addition to reactivity with the PBP target.   
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3.4. Quantitative structure-activity relationship for cephalosporins against N. 
gonorrhoeae strain H041 and its PBP2 
 
3.4.a. Partial least squares QSAR for second-order acylation rate constant against 
tPBP2H041 
 

Correlation of acylation data for the 18 cephalosporins with measurable acylation 

rates with their molecular descriptors yielded a partial least squares model with an r2 of 

0.995 and a cross-validated r2 of 0.957 (Fig. 3.12A). In addition to its high degree of 

predictability within the training set, the model successfully predicts near-zero activity for 

four cephalosporins not in the training set that have unmeasurable acylation rates against 

tPBP2H041 (Table 3.3). To assess the probability of chance correlation, y-randomization 

was performed, in which activity values were randomly assigned to a structure. This 

yielded an r2 of 0.937 and a cross-validated r2 of 0.067 (Figure 3.12B), indicating that 

correlations seen in the model are not random. Definitions of descriptors used in QSAR 

models can be found in Appendix C. 

From the PLS model, it can be seen that the second-order acylation rate of 

tPBP2H041 by cephalosporins is greatly affected by the van der Waals surface area and 

lipophilicity of the R1 substituent, with large, modestly lipophilic groups being favored. 

Other features of the R1 substituent were also found to correlate with high activity, 

including overall shape, connectivity, and topology. The contributions of these variables 

indicate that active molecules possess a high degree of unsaturation and cyclicity, with 

modest heteroatom counts and branching. The R2 side chain makes relatively less 

contribution to acylation compared to R1 but does have some effect. R2 groups containing 

a large number of hydrogen bond acceptors appear to confer higher acylation rates. The 

model also points to partial positive charge and hydrophobicity of R2 as being favorable, 

the former of which may be an indirect result of inductive effects by electronegative atoms 

in R2 of highly active compounds.  
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Figure 3.12: Partial least squares quantitative structure activity relationship of cephalosporins 
against tPBP2H041. A. PLS QSAR model of tPBP2H041 acylation rate constant data, generated using 
the physicochemical and structural descriptors shown in Table 3.3. The model exhibits high internal 
validity by direct application to the training set (r2 = 0.995) and by leave-one-out cross validation 
(X-r2 = 0.957). B. QSAR validation by y-randomization. Random assignment of second-order 
acylation rate constants to physicochemical and structural descriptors shown in Table 3.3 yields a 
poor PLS model of tPBP2H041-inhibitory activity (X-r2 = 0.067).  
 

 

Table 3.3: Partial least squares QSAR model of tPBP2H041 acylation rate constant data. aDescriptor 
definitions can be found in Appendix C. 
 

Descriptora Moiety Coefficient Importance 
vdw_area R1 + 4.8926 1 

Kier1 R1 - 4.5005 0.9198 
zagreb R1 - 0.8829 0.1804 
KierA2 R1 + 0.6690 0.1367 
chi0v R1 + 0.5917 0.1209 

BCUT_SLOGP_0 R1 - 0.5145 0.1052 
BCUT_SLOGP_1 R1 - 0.3783 0.0773 

a_ICM R1 + 0.3723 0.0761 
SlogP_VSA7 R2 + 0.3679 0.0752 

BCUT_SLOGP_3 R1 - 0.3626 0.0741 
BCUT_SMR_3 R1 - 0.1991 0.0407 

a_acc R2 + 0.1939 0.0396 
BCUT_PEOE_3 R1 - 0.1797 0.0367 
GCUT_PEOE_2 R2 + 0.1737 0.0355 
BCUT_PEOE_0 R1 + 0.1693 0.0346 

PEOE_VSA_FPNEG R1 + 0.1104 0.0226 
Q_RPC+ R2 + 0.0854 0.0175 
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Table 3.4: Application of PLS QSAR to a test set of null cephalosporins. aSecond-order acylation 
rates for tPBP2H041, as reported in Table 3.1. bSecond-order acylation rates computed using the 
model reported in Table 3.3 and Figure 3.12. Test set computations exhibit an overall root mean 
square error of 12.4 M-1s-1 compared to true acylation rate. 
 

Cephalosporin k2/Ks (M-1s-1)a Predicted k2/Ks (M-1s-1)b 
cephalexin (LEX) ~ 0.3† 2.6 
cefazolin (CFZ) ~ 0‡ 0.1 

cephalothin (LOT) ~ 0‡ 1.4 
cephaloridine (LOR) ~ 0‡ 24.6 

 

 

3.4.b. Classification QSAR for antimicrobial activity against Neisseria gonorrhoeae 
H041 
 

 Since MIC values obtained were in discrete, two-fold increments, classification 

QSAR was used to examine the relationship between MIC and the cephalosporin molecular 

descriptors rather than PLS QSAR. Using a median MIC cut-off of ≤4 μg/mL, we defined 5 

cephalosporins as active and 16 as inactive. The resulting model has an overall predictive 

accuracy of 100% (p = 0.0005) and cross-predictive accuracy of 100% (p = 0.0005) (Figure 

3.13A). As for the acylation-based QSAR, the validity of the model was checked by y-

randomization to assess the probability of chance correlation (Figure 3.13B). While the 

structural features driving acylation rate are largely the lipophilicity and topology of R1, 

antimicrobial activity is enhanced by overall hydrophilicity of the molecule. Features shown 

to contribute to greater activity include more hydrogen bonding elements, increased water 

solubility, and formal charge. Similar to acylation, the model also indicates that antimicrobial 

activity is enhanced by specific cephalosporin shape and topology, consistent with this 

activity being dependent upon their inhibition of tPBP2H041. 
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Figure 3.13: Classification quantitative structure activity relationship of cephalosporins against N. 
gonorrhoeae H041. A. Classification QSAR model of antimicrobial activity against Neisseria 
gonorrhoeae H041, generated using the descriptors shown in Table 3.5. The model exhibits high 
predictive power (100% accuracy upon direct application to the test set, as well as cross-validation). 
B. QSAR validation by y-randomization. Random assignment of MIC values to physicochemical 
and structural descriptors shown in Table 3.5 yields a poor classification model of N. gonorrhoeae 
H041 antimicrobial activity (X-A = 0.81). 
 
 
Table 3.5: Classification QSAR model of Neisseria gonorrhoeae H041 antimicrobial activity data. 
aDescriptor definitions can be found in Appendix C. 
 

Descriptora Importance 
PEOE_VSA+1 0.402125 
SlogP_VSA0 0.390994 

PEOE_VSA+0 0.376126 
zagreb 0.368061 

PEOE_VSA+4 0.363402 
SlogP_VSA1 0.363401 
PEOE_VSA-1 0.356382 
PEOE_VSA+3 0.342549 
PEOE_VSA+6 0.332761 
PEOE_VSA-4 0.330928 
SMR_VSA4 0.301794 
SMR_VSA3 0.295544 

PEOE_VSA-3 0.293242 
SlogP_VSA4 0.287767 
SlogP_VSA2 0.280906 

a_donacc 0.250032 
chi1v_C 0.249221 

GCUT_PEOE_1 0.237011 
h_logS 0.233228 
KierFlex 0.225164 
FCharge 0.219874 
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3.5. Importance of Lys361 to tPBP2H041-cephalosporin complex formation 

3.5.a. Homology modeling of class B PBPs and alignment with published crystal 
structures 
 

As noted above, the docking data reveal a potential hydrogen bond between K361 

of α4 in tPBP2H041 and polar R2 side chains. Examination of crystal structures and 

homology models of class B PBPs from several species shows that a positively charged 

residue is highly conserved at this position in many Gram-negative pathogens (Figure 

3.14, Table 3.5), including several belonging to the multi-drug resistant ESKAPE group, 

suggesting that it may be important for the transpeptidase activity of class B PBPs. By 

contrast, this residue is not conserved in class B PBPs of Gram-positive bacteria.  

 

 

Figure 3.14: Alignment of ⍺4 of class B PBPs showing conservation of a lysine residue in several 
important Gram negative pathogens. N. gonorrhoeae PBP2 shown in teal, E. coli PBP3 shown in 
chartreuse, P. aeruginosa PBP3 shown in magenta, and A. baumanii PBP3 shown in orange. 
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Table 3.6: Superimposition of class B PBPs. aResidues from rigid structural alignment that 
generate a receptor surface analogous to the shallow cleft containing K361 in PBP2 of N. 
gonorrhoeae. bPredominant formal charge of the cleft. *No structural data available – homology 
model constructed using SWISS-MODEL. 
 

Morphology Organism Class B PBP Residuesa Chargeb 

Gram negative 

N. gonorrhoeae PBP2H041 H348, Y350, K361 ++ 
N. gonorrhoeae PBP2WT (3EQU) H348, Y350, K361 ++ 
N. meningitidis PBP2* V382, H386, V397 + 
P. aeruginosa PBP3 (3PBN) S334, K348 + 
P. aeruginosa PBP3a* A329, R331, N342 + 

E. coli PBP3 (4BJP) A345, Y347, K358 + 
A. baumanii PBP3 (3UE3) H376, Y378, K389 + 
H. influenzae PBP2* W378, K379, H383, 

E394 
++/- 

H. influenzae PBP3* A365, R367, N378 + 
H. pylori PBP2 (5LP4) W349, K350, H354, 

E365 
+/- 

H. pylori PBP3* F367, Q381 ∅ 

Gram 
positive 

S. aureus PBP2a (5M1A) E447, S461 - 
S. pneumoniae PBP2x (5OAU) W374, D375, H394 +/- 
S. pneumoniae PBP2x (1PYY) D375, E378, H394 +/- 
S. pneumoniae PBP2x (1QME) W374, D375, H394 +/- 
S. pneumoniae PBP2b (2WAE) W424, Y425, Y442 ∅ 

E. faecalis PBP4 (6BSQ) K468, N481 + 
E. faecium PBP5 (6MKA) S466, Y479 ∅ 
B. subtilis PBP2a* D398, E402, Y413 - - 
B. subtilis PBP2b* W352, R363, K493 ++ 
B. subtilis PBP3* E455, T468 - 

Atypical 
M. tuberculosis PBPA (3LO7) G263, K280 + 
B. burgdorferi PBP2* W347, K348, H352, 

H363 
+++ 
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Table 3.7: Homology model template-target matching parameters for class B PBPs. aData 
acquisition method and resolution for template molecule. bPrimary structure sequence identity 
between template and target molecules, reported as a percentage. cGlobal Mean Quality Estimate 
for the generated homology models. 
 

Target Template Methoda Identityb GMQEc 

B. subtilis PBP2a  
(SIQ60944.1) 

S. aureus PBP2 (2olv.1) X-ray, 2.8 Å 32.6 0.59 

B. subtilis PBP2b  
(ARW31327.1) 

S. thermophilus PBP2x 
(5u47.1.A) 

X-ray, 2.0 Å 33.5 0.64 

B. subtilis PBP3 
(KIU10857.1) 

E. faecium PBP2’ 
(5e31.1) 

X-ray, 2.3 Å 38.7 0.70 

H. influenzae PBP2  
(KPH67935.1) 

H. pylori PBP2/MreC 
(5lp5.1) 

X-ray, 2.7 Å 31.1 0.58 

H. influenzae PBP3  
(BAF48352.1) 

P. aeruginosa PBP3 
(4kqr.1) 

X-ray, 2.0 Å 41.4 0.63 

H. pylori PBP3 
(CAX30260.1) 

P. aeruginosa PBP3 
(4kqr.1) 

X-ray, 2.0 Å 28.1 0.57 

P. aeruginosa PBP3a 
(CAA64770.1) 

P. aeruginosa PBP3 
(4kqr.1) 

X-ray, 2.0 Å 49.8 0.74 

N. meningitidis PBP2 
(RGB21187.1) 

H. pylori PBP2/MreC 
(5lp5.1) 

X-ray, 2.7 Å 32.9 0.56 

B. burdorferi PBP2 
(ARS33437.1) 

 H. pylori PBP2/MreC 
(5lp5.1) 

X-ray, 2.7 Å 27.0 0.58 

 
 
 
Table 3.8: Homology model quality measures for class B PBPs. aPercent of residues with 
geometries in favorable or acceptable regions of the Ramachandran plot. bPercent of residues with 
geometries in favorable or acceptable regions of χ1- χ2 plot. cLog-odds score for overall homology 
model geometry. 
 

Model Ramachandran (%)a χ1- χ2 (%)b G-factorc 

B. subtilis PBP2a  96.8 98.8 -0.14 
B. subtilis PBP2b  97.9 98.7 -0.15 
B. subtilis PBP3  97.9 99.0 -0.12 

H. influenzae PBP2  99.2 99.7 -0.16 
H. influenzae PBP3  99.1 99.0 -0.09 

H. pylori PBP3 98.4 98.9 -0.25 
P. aeruginosa PBP3a 99.5 98.9 -0.11 
N. meningitidis PBP2 99.0 98.8 -0.17 
B. burdorferi PBP2 97.5 98.6 -0.23 
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3.5.b. Second-order acylation rate constants of select cephalosporins against a 
tPBP2H041-K361E mutant 
 

To determine its influence on cephalosporin binding to tPBP2H041, Lys361 was 

mutated to Glu, and the acylation rates of several cephalosporins with representative 

electronegative or electropositive R2 side chains were determined. The second-order 

acylation rate of Bocillin-FL against tPBP2H041-K361E is 57 ± 1 M-1s-1, a 5-fold decrease 

compared to the native enzyme (Figure 3.15). The second-order acylation rates of 

ceftriaxone (290 ± 70 M-1s-1) and cefoperazone (370 ± 60 M-1s-1) are both markedly lower 

against the K361E mutant, with reductions of 83% and 97%, respectively (Table 3.8). 

Ceftazidime (560 ± 180 M-1s-1) and cefepime (410 ± 130 M-1s-1) also exhibit lower acylation 

rates, although less pronounced. These data indicate that in tPBP2H041, the R2 side chain 

binds the shallow cleft between the β2c-β2d loop and the α10-β3 loop containing K361 in 

the pre-covalent state.  

 

 

Figure 3.15: Second-order rate of acylation of Bocillin-FL against tPBP2H041-K361E. A. Acylation 
of tPBP2H041-K361E by Bocillin-FL was detected under pseudo-first order conditions using various 
ligand concentrations to determine rate constant ka. B. The pseudo-first-order rates of acylation (ka) 
were plotted against the concentration of Bocillin-FL to yield a plot whose slope is the second order 
acylation rate constant (k2/Ks). A minimum of three kinetics experiments were completed for each 
concentration. Error bars are standard deviation. 
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Table 3.9: Second-order acylation rates for select cephalosporins against tPBP2H041-K361E. 
aSecond order acylation rate constants against native tPBP2H041, as reported in Table 3.1. bThe 
acylation rate constant for each cephalosporin was derived from kinetic measurements of the 
formation of the acyl-enzyme complex, as described in Chapter 2. The rates were determined by a 
competition assay with Bocillin-FL. Values were derived from a minimum of three separate 
determinations. Error is expressed as standard deviation. cThe fractional acylation rate compared 
to that with native tPBP2H041.  
 

Ceph R2 
k2/Ks  

(M-1s-1)a 
K361E k2/Ks  

(M-1s-1)b 
Fractional 
Activityc 

CFP 
 

11,800 ± 1,300 370 ± 60 0.03 

CRO 
 

1,710 ± 320 290 ± 70 0.17 

CAZ 
 

790 ± 150 560 ± 180 0.70 

FEP 
 

630 ± 50 410 ± 130 0.64 

 

 

3.5.c. Docking of select cephalosporins to a tPBP2H041-K361E mutant 
 

When this mutation is modeled in silico and the above docking protocol repeated, 

the generated poses for ceftazidime and cefepime position R2 toward the mutated residue 

due to electrostatic attraction, whereas the R2 side chains of ceftriaxone and cefoperazone 

become oriented away from this region (Figure 3.16). The repulsion of electronegative R2 

by E361 seen in these models may be the basis for differential effects of the mutant on 

cefoperazone and ceftriaxone versus ceftazidime and cefepime. 
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3.6. Further evaluation of cefoperazone as a potential antigonococcal agent 

3.6.a. Crystallographic analysis of a tPBP2H041-CFP complex structure 

The rapid acylation of tPBP2H041 by cefoperazone compared to ceftriaxone, as well 

as its more favorable energetics of binding in the docked models, suggests it may bind 

more favorably in the transpeptidase active site compared to other cephalosporins. To 

examine this, the crystal structure of tPBP2H041 acylated by cefoperazone was determined 

at 2.2 Å resolution, obtained by soaking crystals of tPBP2H041 with antibiotic (Table 3.9).  

Overall, the structure is very similar to the reported tPBP2H041-CRO structure (C𝝰 

rmsd = 0.123 Å), including the “outbent” conformation of the β3-β4 loop (Figure 3.17). 

The unbiased |Fo|-|Fc| difference electron density map shows cefoperazone covalently 

bound to Ser310 (Figure 3.18). Electron density is observed for a majority of the 

cefoperazone molecule, with the exception of C3 of the dihydrothiazine ring, C6 of the 2,3-

dioxopiperazine ring, and the p-phenol substituent on R1. The lack of density at 

dihydrothiazine C3 and 2,3-dioxopiperazine C6 is consistent with the presence of a 

mixture of conformational states for these flexible ring systems. Cefoperazone forms a 

number of polar contacts with active site residues of tPBP2H041 (Figure 3.18). These 

include hydrogen bonds between the acyl carbonyl oxygen and the oxyanion hole 

comprising the main chain amides of Ser310 and Thr500, and between the C7 acylamino 

carbonyl oxygen and the side chain of Asn364 from the SxN motif. The C4 carboxylate 

forms hydrogen bonds with the main chain of Ser545 and the side chain of Thr500. The 

hydrophobic 2,3-dioxopiperazine ring system is positioned over the Y422 side chain, and 

the p-phenol system is solvent exposed. The tPBP2H041-CFP structure does not show a 

great deal of overlap with either the major or minor pose of cefoperazone from our docking 

models (Figure 3.19).  
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Table 3.10: X-ray diffraction data and model refinement statistics for a preliminary crystal structure 
of tPBP2H041 in complex with cefoperazone. 

Data collection:  
Space group P212121 
Cell dimensions:  

a, b, c (Å) 50.2, 60.6, 109.1 
α, β, γ (o) 90.0, 90.0, 90.0 

Resolution range (Å) 40.56 - 2.17 
Rmerge* (%) 23.6 (60.9) 
Completeness (%) 100 (99.8) 
Redundancy 13.6 (13.9) 
<I>/<σI> 22.4 (6.1) 
No. of unique reflections 17,766 (1,688) 

Refinement:  
Resolution (Å) 40.56 - 2.17 
No. of non-hydrogen protein 
atoms 

2,457 

No. of antibiotic atoms 37 
No. of water oxygen atoms 108 

Rcryst/Rfree (%) 0.179/0.225 
RMS deviations from ideal 
stereochemistry 

 

bond lengths (Å) 0.003 
bond angles (o) 0.8 

B factors:  
Mean B factor (main chain) 
(Å2) 

23.4 

RMS. deviation in main chain 
B factors (Å2) 

1.0 

Mean B factor (side chains & 
waters) (Å2) 

28.3 

RMS deviation in side chain 
B factors (Å2) 

1.8 

 Ramachandran plot:  
Residues in most favored 
region (%) 

93.4 

Residues is generously 
allowed region (%) 

6.6 

Residues in additional 
allowed region 

0.0 

Residues in disallowed 
region 

0.0 
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Figure 3.17: Overlay of ceftriaxone- and cefoperazone-acylated structures of tPBP2H041. 
Superimposition of tPBP2H041 in complex with ceftriaxone (aqua) and cefoperazone (pink) shows 
that the structures are nearly identical. Ceftriaxone and cefoperazone are shown as teal and 
magenta sticks, respectively. Note the ‟outbent” conformation of the β3-β4 loop in both complexes. 
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Figure 3.19: Overlay of docked cefoperazone poses with tPBP2H041-CFP complex structure. 
Docked precovalent poses of cefoperazone (major in orange, minor in purple) show marked 
differences from the acylated structure (green sticks). In the minor pose, in which the β-lactam ring 
is well-positioned for attack by nucleophilic Oɣ of S310, the hydrophobic 2,3-dioxopiperazine ring 
has moved quite far from its final position near α8.  
 
 
  



 136 

3.6.b. In vivo testing of cefoperazone in a gonococcal model of infection 

As noted above, cefoperazone exhibits an acylation rate against tPBP2H041 higher 

than ceftriaxone, suggesting it may have therapeutic potential to treat gonorrhea. To 

examine this, cefoperazone (60 or 120 mg/kg TID) was administered intraperitoneally to 

two groups of BALB/c mice infected with N. gonorrhoeae H041 (Figure 3.20). A 120 mg/kg 

TID dosing regimen results in 100% culture negativity by day 3, with a mean time-to-

clearance of 2.1 days (n = 9), and shows equivalent efficacy to an identical regimen of 

ceftriaxone (n = 10, mean time-to-clearance 1.6 days, log-rank p = 0.15). By contrast, a 

gentamicin control regimen results in 100% culture negativity by day 4, with a mean time-

to-clearance of 3.1 days (n = 8, log-rank p = 0.02 versus CFP, log-rank p = 0.0004 versus 

CRO). Quantitative differences in colonization load are seen beginning at 1 day for 

cefoperazone- and ceftriaxone-treated groups compared to vehicle control (two-way RM 

ANOVA p < 0.01), while no such differences are seen until day 2 for the gentamicin-treated 

group (two-way RM ANOVA p < 0.01). While a general trend toward decreased colonization 

load is seen with administration of 60 mg/kg cefoperazone TID or 60 mg/kg ceftriaxone TID, 

neither regimen is able to attain full infection clearance by day 8.
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Figure 3.20: Evaluation of cefoperazone in a murine model of gonococcal infection. A. Kaplan-
Meier curve for culture positivity in mice treated with 120 mg/kg intraperitoneal (IP) cefoperazone 
or ceftriaxone three times daily (TID). *Historical data from the Jerse laboratory. **Positive control 
group was given 48mg/kg gentamicin IP once daily (QD). B. Colonization load by day for groups 
treated with 120 mg/kg IP cefoperazone or ceftriaxone TID. C. Kaplan-Meier curve for culture 
positivity in mice treated with 60 mg/kg IP cefoperazone or ceftriaxone TID. D. Colonization load 
by day for groups treated with 60 mg/kg IP cefoperazone or ceftriaxone TID.   
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3.7. Discussion 
 

The goal of the current work is to elucidate which features of the cephalosporin 

class of β-lactam antibiotics are important for antimicrobial activity against cephalosporin-

resistant Neisseria gonorrhoeae H041 through inhibition of PBP2. We find that the 

structure of the R1 (C7 acylamino) side chain of cephalosporins has a profound effect on 

the second-order rate of tPBP2H041 acylation, while the R2 (C3) side chain plays a subtler 

role. Through molecular docking simulations of the precovalent ligand-receptor complex, 

we show that aromatic and hydrophobic groups on R1 extend toward a hydrophobic patch 

of the tPBP2H041 active site, and electronegative elements of R2 interact with K361. We 

also show that antimicrobial activity correlates somewhat with tPBP2H041 inhibition, but is 

complicated by a need to evade additional resistance mechanisms present in the 

organism. Finally, we observe that cefoperazone acylates tPBP2H041 at a rate 7-fold faster 

than ceftriaxone, and it exhibits comparable activity to ceftriaxone against N. gonorrhoeae 

H041 both in vitro and in vivo. 

3.7.a. Contributions of R1 to  tPBP2H041-cephalosporin complex formation.  

In this study, we found evidence of a key role for R1 structure and properties in the 

second-order rate of acylation of tPBP2H041. The unfavorable contributions of several 

atomic lipophilicity descriptors indicate that the R1-binding region of the PBP2H041 active 

site is not tolerant of highly hydrophobic moieties. However, the atomic molar refractivity 

descriptors show that this region cannot be extremely polar either. It therefore appears 

that while there may be areas where hydrogen bonding is advantageous (e.g., interaction 

of the acylamino moiety in mimicry of the peptide substrate), the R1 side chain should 

contain groups of modest hydrophobicity, such as aromatic- and heteroaromatic ring-

containing systems. In addition, the total van der Waals surface area of the R1 group 

contributes positively to acylation rate, suggesting a critical role for size of the 

cephalosporin in tPBP2H041 acylation. Hence, while the ATAO side chains (van der Waals 
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volume V ~ 200 Å3 , distribution coefficient  logD7.4 = -0.7) seen in many third-generation 

cephalosporins, as well as the chemically similar thiadiazolyl variants possessed by fifth-

generation agents, generally confer some activity, the larger (V > 400 Å3) and more 

lipophilic (logD7.4 = 0.6) 2,3-dioxopiperazinyl moiety of cefoperazone dramatically 

increases acylation rate.  

Shape and topology also play critical roles, with high degrees of unsaturation and 

cyclicity being associated with higher rates of acylation. Illustrating this trend is the vast 

difference in acylation rates between cefmetazole, which has a negligible acylation rate 

and is the only cephalosporin in our study lacking a ring system on R1, and cefoperazone, 

which has two ring systems and exhibits the highest rate among the cephalosporins 

tested. Also apparent in the R1 topological parameters is a preference for modest numbers 

of heteroatoms, as well as a moderate degree of branching. The former is illustrated by 

the low activity conferred by the tetrazolyl R1 of cefazolin, and the latter is apparent from 

differences in acylation rates between compounds with 2-unsubstituted acylamino groups 

(e.g., cephalothin and cephaloridine) and those with a single branch point at this position 

(e.g., ceftriaxone and cefoperazone). The exception is that several compounds with 2-

substituted acylamino groups have very poor activity, including cephaloridine, cephalexin, 

and cefaclor. These, however, are suboptimal for tPBP2H041 acylation because they 

possess a small R1 with sulfonic acid or primary amine moieties. Energy score analysis of 

docking data for R2-paired compounds suggests that these R1 groups impact precovalent 

Michaelis complex formation by altering affinity for tPBP2H041 rather than acylation (Figure 

3.21). With the exception of ceftizoxime and ceftibuten, the faster acylating compound of 

each pair shows a more favorable binding energy with the tPBP2H041 active site. 
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Figure 3.21: Energy score analyses for docking of cephalosporins against tPBP2H041. A. Overall 
energy scores for the cephalosporins tested, rank ordered by second-order acylation rate (n = 10 
poses), show a correlation of computational affinity with activity. B. Comparisons of energy scores 
for cephalosporins with different R1 and identical R2. “High-affinity” indicates the molecule of the 
pair exhibiting more rapid acylation (e.g., cefoperazone). “Low-affinity” indicates the molecule of 
the pair exhibiting slower acylation (e.g., cefmetazole). N-methyltetrazole (NMTT), pyridyl (pyr). C. 
Comparisons of energy scores for cephalosporins with similar R1 and different R2 show a 
preference for negative electrostatics. 2-(2-aminothioazol-4-yl)-2-(alkoxyimino)acetyl (ATAO), 
thiophen-2-ylacetyl (thioAc). 
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Previous studies have also indicated that the R1 side chain may be an important 

driver of affinity against PBPs. In a qualitative structure-activity relationship of penicillin 

analogues against E. faecium PBP5, it was found that azlocillin (k2/Ks = 15 M-1s-1) exhibits 

much more rapid acylation of the target than piperacillin (k2/Ks = 2.2 M-1s-1), ampicillin 

(k2/Ks = 1.8 M-1s-1), or Bocillin-FL (k2/Ks = 1.1 M-1s-1).135 In a separate study of 

Streptomyces R61 DD-peptidase, penicillin G (k2/Ks = 10,300 M-1s-1) was shown to be 

manifold more potent than penicillin V (k2/Ks = 1,500 M-1s-1), carbenicillin (k2/Ks = 830 M-

1s-1), and ampicillin (k2/Ks = 107 M-1s-1).136  Since the β-lactams examined in these 

experiments are all penicillin analogues, which possess geminal dimethyl groups at the 

R2 position, one can conclude that differences in activity are imparted by R1. This idea is 

further supported by the differing specificities of compounds with identical R2 for various 

transpeptidases. For example, in membrane preparations of E. coli, cefoperazone exhibits 

very different apparent affinities for PBPs (PBP3 > PBP1b > PBP2 > PBP1a > PBP4) from 

cefmetazole (PBP4 > PBP1a = PBP1b > PBP3 > PBP2).651,652   

The strong influence of the R1 group on the activities of cephalosporins is important 

to consider in light of recent new understanding of how PBP2 is acylated by ESCs. Structures 

of tPBP2WT acylated by cefixime or ceftriaxone reveal significant movement of the β3-β4 loop 

toward the active site, where several residues form a cluster around the aminothiazole ring, 

and such interactions may contribute to the affinity of ESCs for PBP2 .113 The situation is very 

different in tPBP2H041 because movement of the loop appears restricted by mutations 

conferring resistance to ESCs, resulting in fewer interactions involving the aminothiazole in 

the acylated complex.134 Interestingly, the electron density obtained for tPBP2H041 in 

complex with ceftriaxone shows a potential dual conformation of R1, which can also be 

seen in our docking data (Figure 3.3). Such a dual conformation indicates a lack of a 

preferred, high-affinity binding mode for ceftriaxone with tPBP2H041. While the β3-β4 loop 

is still locked in an “outbent” conformation in the tPBP2H041-CFP structure reported here, 
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the modeled R1 assumes an unexpected position in the modeled binding mode that may 

help to explain part of the increase in cefoperazone’s tPBP2H041 acylation rate. Instead of 

the aromatic p-phenol group participating in π-π interactions with Y422, the 2,3-

dioxopiperazine moiety lies flat in the active site, making considerable van der Waals 

contacts with Y422 and the surrounding residues (Figure 3.22). Perhaps, then, the ideal 

cephalosporin for acylation of tPBP2H041 is one whose R1 can either 1) induce the hinging 

in the β3-β4 loop to form more extensive contacts with the transpeptidase active site or 2) 

create sufficient contacts in the absence of such hinging. 

 

 

 

 

Figure 3.22: Contact of the 2,3-dioxopiperazine moiety of cefoperazone with tPBP2H041 in a 
preliminary complex crystal structure. While the 2,3-dioxopiperazine does not make any polar 
contacts with active site residues, it creates a large area of van der Waals contact with Y422 and 
surrounding residues. tPBP2H041 and its surface are shown in cyan, and cefoperazone and its 
surface mesh are shown in orange. 
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3.7.b. Contributions of R2 to  tPBP2H041-cephalosporin complex formation.  

We also found that structural variations in R2 can have effects on tPBP2H041 

acylation, albeit to a lesser extent than R1. First, planar R2 groups are correlated with faster 

acylation rates. In fact, the four fastest acylating compounds (i.e., cefoperazone, 

ceftaroline, ceftobiprole, and ceftriaxone) all have planar R2 groups with extended ring 

systems, conferring several-fold increases in acylation when compared with compounds 

of similar R1 group (e.g., ceftobiprole versus cefdinir). Second, the hydrogen bonding 

capacity of R2 also appears to affect acylation, as exemplified by the thiotriazinone (TTN) 

moiety conferring a 1.5- to 3-fold enhancement over other ATAO-containing 

cephalosporins. Our docking data suggest that the electronegativity and hydrogen 

bonding capability of R2 enhances affinity for the tPBP2H041 active site (Figure 3.21). In 

addition to influencing precovalent ligand-receptor complex formation, the R2 group can 

also participate in long-range inductive effects through the conjugated cephem 

system.217,218 Thus, atoms in R2 may also exert an electron-withdrawing inductive effect, 

thereby activating the β-lactam carbonyl for more rapid acylation. This is best illustrated 

by the differences in acylation rate between cefaclor (29 ± 4 M-1s-1) and cephalexin (~0.3 

M-1s-1), which have identical R1 groups but R2 groups with opposite inductive effects.  

Finally, we found no correlation between the presence or absence of a C3 leaving 

group on the dihydrothiazine ring of the cephalosporin and tPBP2H041 acylation. These C3 

substituents are expelled by resonance upon acylation, and cephalosporins containing 

leaving groups are thought to form more stable acyl-enzyme complexes, thereby 

decreasing the rate of deacylation (k3) and regeneration of the PBP in apo form.653 Our 

data are in keeping with the idea that departure of a C3 leaving group affects k3 but not 

the rate of acylation. Nevertheless, given that tPBP2H041 has an enhanced rate of 

deacylation compared to tPBP2WT,134 the leaving group should be taken into consideration 

when selecting or designing antigonococcal therapeutics. 
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In recent years, there have been several attempts to utilize the R2 side chain of 

cephalosporins to reduce susceptibility to β-lactamases, and to enhance cell-wall 

permeability and PBP-binding affinity.654-656 As an example, the planar vinylpyrrolidinone 

side chain of ceftobiprole was designed to bind a narrow groove within the active site of 

S. aureus PBP2a.656 Although there have been no design efforts of this nature against N. 

gonorrhoeae PBP2 to date, our model can be used to make predictions about the structure 

of an R2 side chain that would be expected to increase acylation rate. Generally, 

tetravalent nitrogen-containing leaving groups lead to poor acylation against tPBP2H041, 

as in the case of ceftolozane, cefsulodin, and cephaloridine. This is consistent with 

previous studies showing that, although zwitterionic cephalosporins are distinguished by 

their superior transport through porins and decreased affinity for β-lactamases, they suffer 

from a loss of affinity for PBPs.266 By contrast, ceftaroline and ceftobiprole, which also 

contain nitrogen cations, acylate tPBP2H041 rapidly. Their formal positive charges are more 

distal to the bicyclic cephem core compared to others, suggesting a specific spatial 

discrimination against such a feature.  

In the docked models, larger heterocyclic R2 groups are shown to interact 

predominantly with K361 and surrounding residues, a finding corroborated by 

compromised acylation of a tPBP2H041-K361E mutant by cefoperazone and ceftriaxone. 

By contrast, a crystal structure of tPBP2WT acylated by ceftriaxone with the C3 leaving 

group intact shows R2 interacting with residues immediately prior to α11, similar to the 

structure of S. aureus PBP2a in complex with ceftobiprole.657 Surprisingly, very few poses 

from our docking studies adopt this conformation. These differences may indicate a 

different binding mode between PBP2WT and PBP2H041, or they may suggest a shift in 

position that accompanies the acylation reaction. 
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3.7.c. Interactions of the C4 carboxylate with S483 

In addition to providing structural insight into the trends above for R1 and R2, the 

docking data also model how the bicyclic cephem scaffold might fit into the active site 

during formation of the tPBP2H041-cephalosporin precovalent complex. In the docking 

models, most of the cephalosporins interact directly with S483, which is mutated in 

PBP2H041 compared to PBP2WT (from threonine) and contributes to cephalosporin 

resistance.384 Previously, Tomberg et al. postulated that S483 is important for recognition 

of the C4 carboxylate. In tPBP2H041, a small pocket comprising S362, T/S483, and K497 

binds the carboxylate (Figure 3.23), orienting the cephem in a position where the β-lactam 

carbonyl is inaccessible to the serine nucleophile (Figure 3.5). This binding mode differs 

significantly from what is seen in acylated structures of either tPBP2WT or tPBP2H041. In 

post-covalent crystal structures of tPBP2WT acylated by cefixime or ceftriaxone, the C4 

carboxylate interacts instead with the Oɣ of T498, which has rotated to accommodate the 

ligand, bringing the β-lactam ring into optimal position for reaction with S310.113 In the acyl-

enzyme structure of tPBP2H041 with ceftriaxone, the C4 carboxylate interacts with S545 in 

the post-covalent state to generate a binding mode distinct from that observed in 

tPBP2WT.134 
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Repetition of the cephalosporin docking analyses with tPBP2WT shows that the C4 

carboxylate interacts with T483 in the apo form, occupying a very similar position to what 

is seen in the major pose of our tPBP2H041 docking data. This suggests a similar initial 

binding mode for both tPBP2WT and tPBP2H041 in which T/S483 plays a critical role in 

carboxylate recognition (Figure 3.24). Additional experiments, in which the 

cephalosporins were docked against the T498-rotated form of tPBP2WT, yield binding 

modes showing the carboxylate occupying a position closer to that seen in the acyl 

structure (Figure 3.25). However, in tPBP2H041, the T498 side chain participates in a 

hydrogen bonding interaction with the S545 side chain, preventing its rotation to contact 

the β-lactam carboxylate during acylation.134 As a result, it appears that the cephalosporin 

receives no enzymatic guidance toward a reactive position (represented in our dataset as 

the minor pose) when bound to tPBP2H041, slowing the acylation rate. Our data do not 

explain the final position of the carboxylate in acylated structure of tPBP2H041, however. 

Although this final position may be achieved during the course of the acylation reaction, 

more work is needed to confirm the importance residue 483 in initial carboxylate 

recognition. 
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Figure 3.24: Overlay of ceftriaxone docked to apo tPBP2WT with the major pose of ceftriaxone 
docked to tPBP2H041. Docked precovalent poses of ceftriaxone with apo tPBP2WT (orange) are very 
similar to the major pose reported from docking with tPBP2H041 (teal).  
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Figure 3.25: Overlay of ceftriaxone docked to T498-rotated tPBP2WT with the minor pose of 
ceftriaxone docked to tPBP2H041. T498 rotation toward the active site in response to carboxylate 
binding orients the β-lactam ring in preparation for acylation, and also orients the aromatic thiazole 
toward its final position near α8 (tPBP2WT complex shown in orange). In the absence of this rotation, 
the ligand receives no enzymatic guidance toward a reactive position (tPBP2H041 shown in teal). 
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3.7.d. Correlations between acylation rate and antimicrobial activity 

There is some correlation between acylation rate and antimicrobial activity for the 

set of cephalosporins. For example, cefoperazone and ceftriaxone, which acylate 

tPBP2H041 rapidly, exhibit the most potent antimicrobial activity, while cefaclor, cefsulodin, 

cephalexin, and cephalothin, which do not acylate tPBP2H041, exhibit the least. Some 

cephalosporins, however, deviate significantly from this trend. One reason for these 

discrepancies can be seen in the antimicrobial activity model, the descriptors of which 

reflect the ability of a molecule to access the periplasm by traversing the predominant porin 

in N. gonorrhoeae PorB1b , as well as their propensity to be substrates for efflux by the 

MtrCDE system. In fact, the same amphipathic features of cephalosporins that favor rapid 

acylation of tPBP2H041 (i.e., large, lipophilic R1 and polar R2) also result in decreased 

diffusion through porins and increased efflux.317,318 Examples of cephalosporins susceptible 

to such factors include ceftaroline and ceftobiprole, whose rapid acylation rates contrast 

with relatively weak antimicrobial potency. This is especially the case for ceftaroline, which 

is relatively hydrophobic compared to other cephalosporins (logD7.4 = 1.03), and is 

relatively ineffective against H041 in vitro.444 The picture is less clear for ceftobiprole, 

whose relative hydrophilicity (logD7.4 = -2.33) suggests it less likely to be removed from 

the gonococcal cell by efflux pumps. However, MtrCDE confers resistance to a number of 

cationic species and may also transport ceftobiprole.312 Strategic addition of anionic 

groups to cephalosporins exhibiting rapid tPBP2H041 acylation may therefore increase 

antimicrobial activity by increasing aqueous solvation and avoiding efflux mechanisms.  

Another reason for the weak correlation between k2/Ks and antimicrobial activity is 

that some cephalosporins may acylate PBP1 more rapidly than PBP2. For example, 

cefdinir and cefoxitin exhibit very slow acylation rates versus tPBP2H041, but high 

antimicrobial activity (MICs are 1.5 and 3 μg/mL, respectively), consistent with them 

targeting PBP1 rather than PBP2. In fact, cefdinir and cefoxitin generally show preferential 
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binding to class A and class C PBPs from a number of bacterial species,658-665 and early 

studies of PBPs from N. gonorrhoeae show that cefoxitin acylates PBP1 more rapidly than 

PBP2 in penicillin-susceptible and -resistant strains.666  

3.7.e. The potential of cefoperazone to treat ESC-resistant gonorrhea 

This work has revealed the third-generation compound cefoperazone is nearly 7-

fold more active against tPBP2H041 than ceftriaxone, is comparably potent against the 

H041 strain, and performs similarly in a mouse model of infection. This is consistent with 

previous studies of gonococcal PBPs that showed cefoperazone bound to PBP2 in 

membrane preparations at concentrations of less than 10-3 µg/mL.666 It is also consistent 

with the high activity of ureido penicillins and cephalosporins against class B PBPs from 

several Gram negative pathogens.589,651,667-669 To date, cefoperazone has been reported 

as being highly effective against infections by both penicillin-susceptible and -resistant 

gonococci.670-672 Its activity against the H041 strain reported here suggests cefoperazone 

has potential to address ESC-resistant N. gonorrhoeae conferred by mosaic penA due to 

its higher acylation activity against PBP2 compared to ceftriaxone. Cefoperazone is FDA-

approved and safe for use in most patients, with tolerated daily doses up to multiple grams 

and a similar side effect profile to other β-lactam antimicrobials.673 Cephalosporins with N-

methyltetrazole (NMTT) leaving groups at R2, such as cefoperazone, have been 

associated with an increase in prothrombin time (PT) via the inhibition of vitamin K 

dependent ɣ-carboxylases by NMTT and its symmetric disulfide oxidation product; 

however, the IC50 is quite high for each species (~200 and 600 µM, respectively).674 

Generally, this inhibition results in increases in PT without increases in clinically significant 

bleeding.675 One study shows increased risk with cefoperazone specifically, but cases and 

controls are poorly matched (i.e., the exposed group had many more comorbidities 

associated with bleeding).676 While the pharmacokinetics of cefoperazone may be less 

favorable than ceftriaxone for treating urogenital infections, with a t1/2 of 1-2 hours (versus 
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6-8 hours for CRO) and primarily biliary excretion (versus primarily renal for CRO),677 it 

may have utility in the treatment of mucosal infections due to its relative lipophilicity. In the 

murine model of gonococcal infection, 120 mg/kg cefoperazone administered TID 

exhibited similar efficacy to an identical regimen of ceftriaxone. With optimized dosing 

guided by pharmacokinetics, cefoperazone may offer another clinical option for highly 

resistant gonococcal infections in a relatively barren therapeutic landscape.  

3.7.f. Significance 

The overall picture emerging from our studies is that rapid tPBP2H041 acylation is 

promoted by a large R1 (C7 acylamino side chain) with modestly lipophilic properties, and 

an electronegative R2 (C3 side chain) with a planar structure. Unfortunately, these 

properties render cephalosporins less permeable to the Gram negative outer membrane 

and more prone to efflux, but strategic placement of anionic groups may help to overcome 

these barriers. Finally, we have shown that cefoperazone holds promise as an 

antigonococcal agent for strains harboring mosaic penA alleles. 
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CHAPTER 4: Discovery of Novel PBP-Inhibitory Chemotypes as Potential 
Antigonococcal Agents 
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4.1. Introduction 

Due to their status as critical antibacterial targets, and given the rising number of 

bacteria resistant to existing β-lactams, the PBPs have become the subjects of numerous 

drug discovery ventures. Many efforts have centered on the modification of the β-lactam 

or lactivicin framework, adding novel side chains predicted to show enhanced interaction 

with the active site. Others have focused on tetrahedral intermediate mimicry via the 

reaction of phosphonates, boronates, and cyclobutanones with the serine nucleophile. 

However, if the mutations in PBP2 conferring cephalosporin resistance do so in part by 

decreasing reactivity to electrophiles, these strategies may prove fruitless.  

Another, perhaps more urgent, reason to explore non-β-lactam agents as PBP 

inhibitors is the emergence of highly efficient hydrolytic enzymes. Nearly 1,000 unique β-

lactamases have been identified in clinical isolates across species, and extended-

spectrum β-lactamases (ESBLs) have emerged in many Gram negative bacteria, 

including the highly resistant ESKAPE pathogens (Enterococcus, Staphylococcus, 

Klebsiella, Acinetobacter, Pseudomonas, and Enterobacter), necessitating the 

identification of alternatives to the current therapies.345 While strains of Neisseria 

gonorrhoeae capable of producing β-lactamases have been isolated, they are rarer than 

strains harboring chromosomal resistance determinants. Moreover, only penicillinases have 

been reported in the gonococcus to date.18,19,349 Recently, however, plasmids containing 

blaTEM-135 have been identified,350-352 several of which possess an M182T mutation seen in 

many ESBL.351 It is proposed that this mutation stabilizes the active site and may allow 

additional mutations to the encoded TEM-135 penicillinase that broaden its spectrum.  

For these reasons, high throughput methods (e.g., in silico and physical screening) 

have been employed with the goal of discovering novel chemotypes that inhibit PBPs 

noncovalently. Although several investigations have identified a number of chemical 

scaffolds as inhibitors of various class B PBPs, such molecules tend to lack potency and 
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require a great deal of optimization by medicinal chemistry. The identification of new PBP-

inhibitory scaffolds should be continued, as it may increase the number of eventual 

successful molecules against the target by affording diverse candidates for development. 

While the specific QSAR models developed in Chapter 3 were constructed using activity 

data from cephalosporins, the general trends they reveal about features necessary for 

PBP2 inhibition can be applied to the identification of novel inhibitors. In this chapter, the 

discovery of two novel N. gonorrhoeae PBP2 inhibitors (JEK-42 and JMT-1) possessing 

a common 1,1’-biphenyl moiety is described. These compounds are capable of inhibiting 

PBP2 of both β-lactam-susceptible (tPBP2WT) and -resistant (tPBP2H041) strains, and they 

show antimicrobial activity against N. gonorrhoeae FA19 and H041 in disc diffusion 

assays. Interestingly, they also show inhibition of P. aeruginosa PBP3. Through modeling 

of their PBP2 binding modes by docking and molecular dynamics, we show the potential 

for interaction with a number of residues conserved across class B PBPs, as well as 

possible β-lactam mimicry. Finally, we present a three-point pharmacophore model 

constructed from the structural similarities between these molecules and β-lactams to aid 

in the identification of additional scaffolds. Overall, our data reveal that JEK-42 and JMT-1 

are attractive initial hits for medicinal chemical optimization. 
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4.2. Identification of 2-(biphenylamido)benzoic acids and isosteres as PBP2 inhibitors 
 
4.2.a. Physical screen of (biphenylamido)benzoic acids against tPBP2WT 

 

Figure 4.1: Structures of compounds reported by Kirkpatrick et al. (coded JEK-XX).  
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From the ligand binding data (i.e., cephalosporin docking data and structure-

activity relationships) described in Chapter 3, we found that large, somewhat lipophilic 

groups of high cyclicity are favored in the direction of the cephalosporin R1 side chain. This 

information, in combination with the knowledge that active β-lactam antimicrobials require 

a specific spatial arrangement of their carboxylate and carbonyl groups for binding to 

PBPs,142 led to the selection of a group of (biphenylamido)benzoic acids as possible PBP2 

binders (Figure 4.1), 24 of which were synthesized and provided by Joy Kirkpatrick. 

Testing of these compounds against tPBP2WT revealed 2-(4’-methyl-[1,1'-biphenyl]-4-

amido)-5-fluorobenzoic acid (JEK-42) and 2-(4’-methyl-[1,1'-biphenyl]-3-amido)-5-

fluorobenzoic acid (JEK-45) as active in a competition assay with Bocillin-FL, exhibiting 

89 ± 5% and 86 ± 4% inhibition at 100 μM, respectively (Figure 4.2A). The beginnings of 

a structure-activity relationship can be seen from comparisons within this dataset (Figure 

4.2B). First, a switch from anthranilic acid to its meta- or para-benzoic acid analogues 

results in little to no PBP2 inhibition. The substitution pattern of the anthranilic acid moiety 

also affects inhibition, with 3-substituted and fully unsubstituted systems showing greatly 

diminished activity compared to 4- and 5-substituted analogues. Next, a [1,1'-biphenyl]-4-

amido or [1,1'-biphenyl]-3-amido structure is preferred, as [1,1'-biphenyl]-2-amido 

analogues of these compounds suffer a stark loss of potency. Finally, a 4’-methyl 

substitution appears to enhance inhibition considerably, as the only 4’-desmethyl 

analogue with any activity is the weak inhibitor JEK-30 (27 ± 10% inhibition). Due to its 

reasonable inhibition of tPBP2WT at the concentration assayed, as well as the commercial 

availability of its building blocks, JEK-42 was selected as a hit compound for further testing 

and derivatization. 
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Figure 4.2: Inhibition data for JEK compounds against tPBP2WT. A. Values were determined in a 
purified protein assay in which tPBP2WT was preincubated with 100 µM compound, followed by 
addition of 1 µM Bocillin-FL. Data are presented as a fraction of DMSO control. Error bars are 
standard deviation. B. Structural features of PBP2-inhibitory (green) and -noninhibitory (red) 
compounds.  
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JEK-42 was resynthesized from 4'-methyl-[1,1'-biphenyl]-4-carboxylic acid and 

methyl 5-fluoroanthranilate using the method shown in Scheme 4.1. The compound was 

tested for inhibition of tPBP2H041 at 100 µM and showed 99 ± 1% suppression of activity 

(Figure 4.3A). Further evaluation in a disc diffusion assay against N. gonorrhoeae FA19 

and H041 revealed that JEK-42 inhibits growth of these strains with 18.0  ± 0.9 mm and 

15.3  ± 0.4 mm zones of inhibition, respectively (Figure 4.3B). This inhibition is 

comparable to a ceftriaxone control disc, which shows zones of inhibition measuring 19.3 

± 1.3 mm against FA19 and 14.6 ± 3.8 mm against H041. To assess the possibility for 

broad-spectrum activity, the compound was also assayed against Pseudomonas 

aeruginosa PBP3, against which it showed 74 ± 1% inhibition (Figure 4.3A). 

 

 

 

Scheme 4.1: Synthesis of JEK-42 from 4’-methyl-[1,1’-biphenyl]-4-carboxylic acid. a. DMF, DCE, 
N2, RT, 12 h. b. pyridine, DCM, N2, RT, 8 h. c. 1:1 THF/H2O, RT, 12 h. 
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Figure 4.3: Activity data for JEK-42. A. PBP inhibition was determined in a purified protein assay 
in which a given PBP was preincubated with 100 µM compound, followed by addition of 1 µM 
Bocillin-FL. Data are presented as a fraction of DMSO control. B. Antimicrobial activity was 
determined in a disc diffusion assay against susceptible reference gonococcal strain FA19 and 
multi-drug resistant H041 at 10 µg per disc. Data for a ceftriaxone control disc (CRO) are shown. 
Error bars are standard deviation. 

 

4.2.b. Synthesis and testing of a sulfonamide derivative of JMT-1 

To examine the effect of modifications to the carbonyl group of JEK-42, simple 

isosteric substitution of the amide with a sulfonamide was performed to give 5-fluoro-2-

(4'-methyl-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-1), obtained from 4'-methyl-

[1,1'-biphenyl]-4-sulfonyl chloride and methyl 5-fluoroanthranilate using the synthetic 

method shown in Scheme 4.2. JMT-1 was screened at 100 µM against both tPBP2WT and 

tPBP2H041, against which it showed 93 ± 7% and 84 ± 2% inhibition, respectively (Figure 

4.4A). The compound was found to have antimicrobial activity as well, albeit slightly less 

than that of JEK-42. In disc diffusion assays, JMT-1 exhibits a 16.7 ± 1.2 mm zone of 

inhibition against N. gonorrhoeae FA19 and a 10.8 ± 0.4 mm zone of inhibition against N. 

gonorrhoeae H041 (Figure 4.4B). The compound is also active against P. aeruginosa 

PBP3, showing 70 ± 2% inhibition at 100 µM (Figure 4.4A).  
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Scheme 4.2: Synthesis of JMT-1 from 4’-methyl-[1,1’-biphenyl]-4-sulfonyl chloride. a. pyridine, 
DCM, N2, RT, 12 h. b. 1:1 THF/H2O, RT, 12 h. 
 

 

 

Figure 4.4: Activity data for sulfonamide derivative JMT-1. A. PBP inhibition was determined in a 
purified protein assay in which a given PBP was preincubated with 100 µM compound, followed by 
addition of 1 µM Bocillin-FL. Data are presented as a fraction of DMSO control. B. Antimicrobial 
activity was determined in a disc diffusion assay against susceptible reference gonococcal strain 
FA19 and multi-drug resistant H041 at 10 µg per disc. Data for a ceftriaxone control disc (CRO) 
are shown. Error bars are standard deviation. 
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4.3. Prediction of the binding modes of JEK-42 and JMT-1 

4.3.a. In tandem docking and molecular dynamics against tPBP2WT and tPBP2H041 

Important for inhibition by the amides and sulfonamides is the presence of an 

anthranilic acid motif, and not its meta- or para-aminobenzoic acid analogues. This is 

perhaps due to the same constraints placed on β-lactam antimicrobials for their mimicry 

of the D-Ala-D-Ala substrate of peptidoglycan. Depending upon the C1-C2-N-C dihedral 

(or C1-C2-N-S in the case of sulfonamides), the distance between the carboxylate carbon 

and the amide oxygen in these molecules (analogous to the Cohen distance in β-lactams) 

ranges from 2.5 Å to 5.0 Å. Thus, in certain conformations, the reported scaffolds may be 

capable of mimicking β-lactams in their binding to PBPs. A comparison of the structural 

similarities among cephems, JEK-42, and JMT-1 is shown in Figure 4.5. 

 

 

Figure 4.5: Structural similarities between cephems and the base scaffolds of JEK-42 and JMT-1. 
The examined PBP2 inhibitors share a triad of features, including an acidic group, a hydrogen bond 
acceptor, and a hydrophobic/aromatic group.  

  



 163 

Initial attempts to crystallize these compounds in complex with tPBP2 variants 

were unsuccessful, perhaps due to their limited affinity and aqueous solubility. For this 

reason, in silico tools were employed to model their potential binding modes. Using 

constraints informed by structures of PBP2 variants in complex with ceftriaxone, ligands 

JEK-42 and JMT-1 were flexibly docked into the active sites of tPBP2WT and tPBP2H041, 

followed by 5 ns molecular dynamics simulations to assess the stability of the generated 

poses. While substantial movement of the ligand anionic group is observed in the first 500 

ps for simulations of JEK-42 and JMT-1 in complex with tPBP2WT (Figures 4.6 and 4.7), 

the modeled complexes are stable for the remaining 4.5 ns according to measurements 

of ligand-tPBP2 interaction energy, ligand internal energy, and root mean square deviation 

(rmsd) of the ligand from its initial position (Figures 4.6 and 4.9). The tPBP2H041 complexes 

are stable for the entirety of the simulation by these same measures (Figures 4.6, 4.8, 

and 4.10). Overall, the consistency of energy scores and ligand positions indicate that the 

in silico analyses generated reasonable hypotheses for the ligands’ true binding modes at 

equilibrium.  

In the modeled poses, JMT-1 shows a more favorable interaction energy with both 

tPBP2WT and tPBP2H041 compared to JEK-42, due in large part to improved electrostatics 

(Table 4.1). However, while the sulfonamide may provide better contact with the active 

site, it appears to do so at the expense of ligand internal energy, as JMT-1 must assume 

a higher energy conformation for binding to the transpeptidase active site. A majority of 

this energy comes from angle bending and intramolecular electrostatic repulsion. 

Interestingly, while JMT-1 exhibits a significant reduction in interaction energy with 

tPBP2H041 compared to tPBP2WT, there is no such reduction for JEK-42. This is a possible 

explanation for the relative activities of the compounds against tPBP2H041 in the in vitro 

competition assay with Bocillin-FL.  



 164 

Table 4.1: Summary data for molecular dynamics simulations of JEK-42 and JMT-1 in complex 
with tPBP2. aAverage energy calculated from the state of the system in intervals of 500 ps (n = 11). 
bOverall variation in tPBP2 complex structure, as calculated by the alignment and superimposition 
of 11 states representing the system at 500 ps intervals. cTotal ligand displacement from its initial 
position. 
 

 Receptor tPBP2WT tPBP2H041 

 Ligand JEK-42 JMT-1 JEK-42 JMT-1 
Ligand-

Receptor 
Interaction 
Energies 

(kcal mol-1)a 

Overall -155.3 ± 11.8 -234.7 ± 9.8 -123.2 ± 4.9 -158.4 ± 
12.6 

van der 
Waals -26.1 ± 4.3 -26.4 ± 4.6 -29.1 ± 3.7 -32.2 ± 3.7 

Electrostatics -129.0 ± 16.4 -208.5 ± 
16.2 -123.2 ± 4.9 -125.9 ± 

13.8 

Ligand 
Internal 
Energy 

(kcal mol-1)a 

Overall 60.5 ± 7.2 131.9 ± 6.4 56.0 ± 8.2 152.4 ± 4.7 
Strain 8.1 ± 3.7 10.1 ± 4.5 9.1 ± 4.3 9.9 ± 4.5 

Angle Bend 21.6 ± 4.3 37.8 ± 5.3 19.5 ± 3.7 41.3 ± 3.3 
Out of Plane 3.7 ± 1.8 2.8 ± 1.5 4.2 ± 1.6 5.0 ± 1.9 

Torsion 29.2 ± 4.0 21.9 ± 3.9 23.4 ± 3.8 27.0 ± 4.3 
van der 
Waals 11.0 ± 2.1 11.6 ± 2.2 13.4 ± 2.5 9.1 ± 1.3 

Electrostatics -16.1 ± 4.0 47.4 ± 4.7 -15.0 ± 6.4 57.7 ± 3.4 
Complex rmsd (Å)b 0.920 1.114 0.554 1.013 
Ligand rmsd (Å)c 2.4 1.5 1.3 1.9 
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Figure 4.6: Energy and position analyses for molecular dynamics simulations of JEK-42 and JMT-
1 in complex with tPBP2WT and tPBP2H041. A. Potential energy of interaction was calculated for the 
tPBP2WT-JMT complexes at intervals of 250 ps. Data beyond 500 ps were fit to linear regressions 
to determine change in attractive/repulsive forces in the active site over time. All slopes are 
statistically insignificant. B. Ligand potential energy was calculated for poses in complex with 
tPBP2WT at intervals of 250 ps. Data beyond 500 ps were fit to linear regressions to determine 
change in pose energetic favorability over time. All slopes are statistically insignificant. C. Ligand 
displacement from its initial pose was calculated at intervals of 500 ps. Data beyond 500 ps were 
fit to linear regressions to determine ligand movement over time. All slopes are statistically 
insignificant. D. Potential energy of interaction analysis for tPBP2H041-JMT complexes. All slopes 
are statistically insignificant. E. Ligand potential energy analysis for tPBP2H041-JMT complexes. All 
slopes are statistically insignificant. F. Ligand displacement analysis for tPBP2H041-JMT complexes.  
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Figure 4.7: Change in positions of JEK-42 (A) and JMT-1 (B) in the active site of tPBP2WT over the 
first 500 ps of molecular dynamics simulations. A. In the first 500 ps of the molecular dynamics 
simulation, JEK-42 moves to an rmsd of 2.4 Å, much of which is accounted for by the flipping of 
the anthranilic acid moiety. At the start of the simulation (ligand and receptor shown in yellow), the 
carboxylic acid faces T498, and the aromatic ring is angled such that it faces S310. At the end of 
the initial phase of the simulation (ligand shown in purple, receptor shown in pink), it has rotated 
approximately 90° such that the carboxylic acid now faces S310 and S362. B. JMT-1 moves to an 
rmsd of 1.5 Å in the first phase of the simulation. Like JEK-42, its carboxylic acid faces T498 at the 
start of the simulation (shown in orange), and by 500 ps (ligand shown in teal, receptor shown in 
cyan), the aromatic ring has rotated approximately 60° such that the carboxylic acid faces S310 
and S362.  
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For all complexes examined, a carbonyl or sulfonyl oxygen is positioned within the 

oxyanion hole created by the main chain nitrogens of Ser310 and Thr500, a position that 

is well-maintained throughout all molecular dynamics simulations (Figure 4.11A). An 

additional hydrogen bond is observed between the second sulfonyl oxygen of JMT-1 and 

the side chain of Thr500. Also consistent across models is the position of the 1,1’-biphenyl 

system, which projects into a hydrophobic patch comprising Phe420 and Tyr422 (Figure 

4.11B). In the distribution of states seen over the course of the simulations, these 1,1’-

biphenyl systems assume two predominant positions related by rotation: one in which the 

secondary aromatic ring forms H-π interactions with Asn364, and one in which it 

participates in π-stacking with Phe420. There is another less abundant state in which the 

ring participates in π-stacking with Tyr422. 

 

 

Figure 4.11: Common interactions of JEK-42 and JMT-1 with tPBP2. A. The carbonyl or sulfonyl 
oxygens of the ligands fits into the oxyanion hole created by the main chain nitrogens of S310 and 
T500 over the course of the molecular dynamics simulations. Polar contacts with the main chain 
are shown as black dashed lines. B. The biphenyl moieties of all three ligands sit in a hydrophobic 
patch of tPBP2 surface created by the side chains of F420 and T422 and can participate in either 
π-π interactions with these residues, or in H-π interactions with the N364 side chain. 
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Differences among the modeled complexes are apparent in the positioning of the 

acidic moieties of the ligands. For models of JEK-42 and JMT-1 in complex with tPBP2WT, 

the anthranilic acid moieties adopt different orientations, perhaps due to differences in the 

geometries of their carbonyl (sp2) and sulfonyl (sp3) functional groups (Figure 4.9). JEK-

42 is positioned such that the anthranilic acid ring is angled toward β3 and α11, with its 

carboxylate contacting the side chains of Ser310, Ser362, and Lys497. In the JMT-1 

complex, the anthranilic acid moiety occupies a more central position in the active site, 

and its carboxylate makes contacts with the side chains of Lys313, Thr483, Lys497, and 

Thr498. By contrast, in tPBP2H041-bound poses, the anthranilic acid moieties of JEK-42 

and JMT-1 are nearly identical (Figure 4.10). In the absence of Thr498 rotation toward a 

bound acidic group, the carboxylate participates in hydrogen bonding with Ser545 and 

Thr500, and the aromatic ring lies flat along the floor of the active site.  

4.3.b. Homology modeling and rigid alignment of class B PBPs 

As noted above, the docking and molecular dynamics data reveal potential 

interactions of the 1,1’-biphenyl systems of JEK-42 and JMT-1 with N364 and F420 of 

PBP2. As part of the SxN motif, N364 is highly conserved in bacterial transpeptidases. 

Examination of crystal structures and homology models of class B PBPs (model statistics 

for which are shown in Chapter 3) reveals that F420 is also highly conserved, with an 

aromatic residue being present at this position in many Gram-negative and Gram-positive 

pathogens (Figure 4.12, Table 4.2). If the proposed binding modes for JEK-42 and JMT-

1 are correct, conservation of both N364 and F420 indicates promise for inhibition of a 

variety of class B PBPs and, thus, potential for broad spectrum antimicrobial activity. 
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Figure 4.12:  Alignment of ⍺8 of class B PBPs showing conservation of an aromatic residue in 
several important Gram negative and Gram positive pathogens. A. In Gram negative pathogens, 
aromatic residues are conserved at the positions of F420 and Y422, creating an aro-x-aro motif. N. 
gonorrhoeae PBP2 (teal), E. coli PBP3 (chartreuse), P. aeruginosa PBP3 (magenta), P. aeruginosa 
PBP3a (pink), A. baumanii PBP3 (light orange), H. influenzae PBP3 (blue), H. pylori PBP3 (grey). 
B. In Gram positive pathogens, an aromatic residue at the position of F420 is frequently conserved, 
but there is generally a glutamine at the position of Y422. S. aureus PBP2a (green), S. pneumoniae 
PBP2x (purple), E. faecalis PBP4 (maroon), E. faecium PBP5 (pink), B. subtilis PBP2b (yellow), B. 
subtilis PBP3 (orange). 
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Table 4.2: Superimposition of class B PBPs. aResidues from rigid structural alignment that occupy 
the same position as F420 in PBP2 of N. gonorrhoeae. bResidue type. *No structural data available 
– homology model constructed using SWISS-MODEL. 
 

Morphology Organism Class B PBP F420a Typeb 

 N. gonorrhoeae PBP2-H041 F420 aromatic 
 N. gonorrhoeae PBP2-WT (3EQU) F420 aromatic 
 N. meningitidis PBP2* I462 hydrophobic 
 P. aeruginosa PBP3 (3PBN) Y407 aromatic 
 P. aeruginosa PBP3a* F401 aromatic 

Gram E. coli PBP3 (4BJP) F417 aromatic 
negative A. baumanii PBP3 (3UE3) Y448 aromatic 

 H. influenzae PBP2* I461 hydrophobic 
 H. influenzae PBP3* Y438 aromatic 
 H. pylori PBP2 (5LP4) I432 hydrophobic 
 H. pylori PBP3* Y441 aromatic 
 S. aureus PBP2a (5M1A) Y519 aromatic 
 S. pneumoniae PBP2x (5OAU) F450 aromatic 
 S. pneumoniae PBP2x (1PYY) F450 aromatic 
 S. pneumoniae PBP2x (1QME) F450 aromatic 

Gram S. pneumoniae PBP2b (2WAE) F450 aromatic 
positive E. faecalis PBP4 (6BSQ) Y540 aromatic 

 E. faecium PBP5 (6MKA) Y538 aromatic 
 B. subtilis PBP2a* I523 hydrophobic 
 B. subtilis PBP2b* Y420 aromatic 
 B. subtilis PBP3* Y526 aromatic 

Atypical M. tuberculosis PBPA (3LO7) I337 hydrophobic 
B. burgdorferi PBP2* I431 hydrophobic 
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4.4. Virtual screen of a molecular fragment library for putative PBP2 inhibitors. 
 
 The design of compounds applying the 4’-methyl-[1,1’-biphenyl] system to other 

C-terminal peptidomimetic functionalities may yield additional, more potent inhibitors of N. 

gonorrhoeae PBP2. To this end, a three-point pharmacophore comprising the common 

characteristics of bicyclic β-lactams (i.e., penams, carbapenems, and cephalosporins) 

together with JEK-42 and JMT-1 was generated from a flexible alignment of the scaffolds 

using a stochastic conformational  search (Figure 4.13). This pharmacophore was then 

employed to search an ~800,000-ligand fragment-like subset of the ZINC virtual database 

for putative inhibitors of N. gonorrhoeae PBP2, yielding 139,444 matching conformers 

(Figure 4.14). 

 

 

Figure 4.13: Pharmacophore model developed from the flexible alignment of JEK-42 and JMT-1 
with bicyclic β-lactam scaffolds. Common features were identified using a threshold of 100% and a 
tolerance of 1.0 Å. The resulting model consists of three features: anionic (red mesh, radius = 0.7 
Å), hydrophobic/aromatic (green mesh, radius = 0.9 Å),  hydrogen bond acceptor (cyan mesh, 
radius = 1.0 Å). JEK-42 is shown in purple, JMT-1 is shown in teal, and β-lactams are shown in 
grey. 
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Figure 4.14: Pharmacophore search of a virtualized library of molecular fragments. A. A three-
point pharmacophore consisting of one anionic feature (radius = 0.7 Å), one hydrophobic/aromatic 
feature (radius = 0.9 Å), and one hydrogen bond accepting feature (radius = 1.0 Å) was used to 
search a virtual library of molecular fragment structures, yielding 139,444 matching conformations. 
B. Example 2-(1,2,4-oxadiazol-5-yl)benzoic acid fragment shown in a pharmacophore-matching 
conformation (rmsd = 0.1 Å). C. Example 2-(1,2,4-oxadiazol-5-yl)benzoic acid (green) fragment 
modeled into the active site of tPBP2WT. Polar contacts are indicated by black dashed lines. 
 
 

Predictably, while the screen revealed a few structures that diverge significantly 

from known inhibitors, it predominantly yielded matches that represent simple derivatives 

of the above scaffolds. A majority of the putative hits can be divided into four structural 

categories. The first grouping is the most β-lactam-like, consisting of polycyclic carbonyl-

containing structures substituted at the β-position with a carboxylic acid (Figure 4.15). 

The carbonyl groups are varied and include lactams, lactones, and acyclic amides. 

Because β-lactams generally form low-affinity Michaelis complexes with PBPs, fragments 

i through iv are likely not the best starting points for the design of potent inhibitors. More 
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interesting are the bridged structures v through viii, which can be used to investigate the 

effects of bulk and volume of the hydrophobic feature, in comparison to monocyclic 

systems that are flat, flexible, or both. The second grouping (ix-xi) consists of saturated 

carbocyclic carboxylic acids substituted at the 2-position with an amide, similar to JEK-42 

but with more conformational flexibility at the position of the hydrophobic feature (Figure 

4.16). The third grouping contains benzoic acid analogues substituted at the 2-position 

with various amide isosteres, including esters (xii, acetyl salicylic acid), ketones (xiii), 

ureas (xiv and xv), and 5-membered heterocycles (i.e., 1,3,4-oxadiazole xvi,1,2,4-

oxadiazole xvii, thiazoles xviii and xix, imidazole xx, and 1,3,4-triazole xxi) (Figure 4.17). 

Incorporation of these types of functional groups in place of the amide seen in JEK-42 or 

the sulfonamide seen in JMT-1 would help to explore specific requirements of shape and 

conformational flexibility at the hydrogen bond accepting feature. The fourth grouping 

(xxii-xxvi) contains fragments that combine the structural modifications of the first three 

(Figure 4.18). In all, the results from this experiment provide multiple avenues for the 

discovery of additional PBP-inhibitory molecules. 

 

 
 
 

Figure 4.15: Structures of polycyclic fragments resembling β-lactams.  
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Figure 4.16: Structures of unsaturated carbocyclic fragments. 
 
 
 

  
 
 

Figure 4.17: Structures of fragments possessing amide bioisosteres. 
 
 
 

 
 
 

Figure 4.18: Structures of fragments possessing combinations of attributes from sets in Figures 
4.15-4.17. 
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4.5. Discussion 

 In this work, we report the discovery of prototype PBP2 inhibitors and the creation 

of models for the identification or design of others. First, we show that JEK-42 and its 

isosteric derivative JMT-1 are PBP2-inhibitory scaffolds with antimicrobial activity against 

N. gonorrhoeae FA19 and H041. We also show that they are capable of inhibiting PBP3 

from ESKAPE pathogen P. aeruginosa. With this cross-inhibition in mind, we present 

models for the binding of these compounds in which they resemble β-lactam 

antimicrobials, presumably mimicking the C-terminal D-Ala-D-Ala motif of peptidoglycan in 

a similar manner. Finally, we present a pharmacophore model used in the identification of 

putative PBP2 inhibitors through screening of a fragment library, putative hits from which 

serve as a source of guidance for future analogue design. 

4.5.a. Arylamides and arylsulfonamides 

To date, two studies have reported inhibition of PBPs by arylamides: a small 

physical screen followed by a structural similarity search for inhibitors of S. aureus PBP2a 

and S. pneumoniae PBP2x,627 and subsequent combinatorial chemistry to explore the 

scaffold, conducted in the Gobec laboratory.628 Their best hit was 5-bromo-2-(3-

propoxybenzamido)benzoic acid, with an IC50 of 230 μM against PBP2a and 155 μM 

against PBP2x (Figure 4.19). They also observed that only amides of anthranilic acids 

(i.e., o-aminobenzoic acids) exhibit significant inhibition of either PBP2a or PBP2x, 

consistent with the results of our initial screen. The structures explored previously were 

limited to substituted phenyl systems, so the 1,1’-biphenyl system reported in JEK-42 

represents a departure into novel chemical space for PBP inhibition. In the same 

publications from the Gobec laboratory, arylsulfonamides derived from anthranilic acid 

were also shown to possess PBP-inhibitory activity.627,628 Around the same time, in a high-

throughput physical screen conducted by Fedarovich et al., additional arylsulfonamides 

were identified as inhibitors of N. gonorrhoeae PBP2.621 The best hits from those studies 
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were 5-bromo-2-(naphthalene-2-sulfonamido)benzoic acid (IC50 = 80 μM against 

SauPBP2a) and N-(4-hydroxynaphthalen-1-yl)naphthalene-1-sulfonamide (IC50 = 50 μM 

against NgPBP2), respectively (Figure 4.19). Notably, this scaffold, unlike its carboxamide 

isostere, does not seem to require a carboxylic acid for inhibition. However, the active 

compounds lacking a carboxylic acid do possess an ionizable phenolic OH situated para 

to the sulfonamide. The chemical space examined in previous studies was limited largely 

to naphthyl moieties, so again, the 1,1’-biphenyl system reported in JMT-1 is novel.  

 

 

 

Figure 4.19: Structures of reported arylamide and arylsulfonamide PBP inhibitors. 
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While there are many available compounds belonging to these chemotypes for 

testing, future studies focusing on synthetic and medicinal chemistry may prove more 

useful. Amide synthesis from acyl chlorides is generally facile, and its broad functional 

group tolerance allows access to molecules with a variety of topologic and electronic 

structures. Most simple derivatives can be attained from their corresponding carboxylic 

acids and amines in two steps in excellent yield, as shown in Scheme 4.3. Fortunately, 

similar to the amides, the synthesis of sulfonamides from their corresponding sulfonyl 

chlorides and anthranilic acids can also be achieved in few steps in the presence of a 

variety of functional groups. In cases of derivatives for which the sulfonyl chloride is 

unavailable, other methods employing dediazotization or organometallic agents provide 

access to this functional group, as shown in Scheme 4.4. 
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4.5.b. Molecular dynamics and cross-inhibition of other class B PBPs – evidence 
for broad specificity 

Due to key structural similarities between cephalosporins and the described 

scaffolds, we propose that JEK-42 and JMT-1 may bind the transpeptidase active site in 

a manner similar to cephalosporins, where the 1,1’-biphenyl system corresponds to R1 

and the anthranilic acid substitution corresponds to R2. Docking and molecular dynamics 

of JEK-42 and JMT-1 yield poses similar to acylenzyme complexes of ceftriaxone with 

tPBP2WT and tPBP2H041 113,134 (Figure 4.20). In poses of both ligands in both receptors, 

the carbonyl or sulfonyl oxygen occupies the same position as the acyl oxygen of 

ceftriaxone within the oxyanion hole. While the positions of anionic groups are variable 

due to the different geometric constraints of each scaffold, they are generally in the same 

region of the active site in comparisons of the same tPBP2 variant. Moreover, the 1,1’-

biphenyl system projects in the same direction as the 2-aminothiazol-4-yl group of 

ceftriaxone. There is better overlap with the tPBP2H041-ceftriaxone structure, with the 

aromatic rings fitting into the hydrophobic area of PBP2 surface created by F420 and 

Y422. The basis for inhibition of both tPBP2WT and tPBP2H041 by JEK-42 and JMT-1 may, 

therefore, be that they 1) mimic the peptide C-terminus in a manner similar to β-lactams, 

and 2) avoid the requirement for β3-β4 hinging proposed to enhance contacts of the 

cephalosporin thiazole with the tPBP2WT active site. This, in combination with their 

predicted interactions with highly conserved residues, suggests that JEK-42 and JMT-1 

may be capable of inhibiting a variety of class B PBPs. This hypothesis is further 

strengthened by the compounds’ abilities to inhibit P. aeruginosa PBP3, another class B 

PBP with only 40% sequence identity. 
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Figure 4.20: Overlay of ceftriaxone (CRO) acyl structures with JEK-42 and, JMT-1. A. Published 
tPBP2WT-CRO complex superimposed on final positions of ligands from molecular dynamics 
simulations with tPBP2WT (receptor shown in grey, CRO shown as orange sticks, JEK-42 shown 
as purple sticks, JMT-1 shown as teal sticks). B. Published tPBP2H041-CRO complex superimposed 
on final positions of ligands from molecular dynamics simulations with tPBP2H041 (same color 
scheme as above). 
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4.5.d. Guidance for further derivatization 

 The three-point pharmacophore screen of fragments proposes a number of 

changes that can be made to the anthranilic acid moiety, including replacement of the 

aromatic system with bridged polycyclic or flexible saturated carbocycles. The more 

interesting aspect of the fragment screen, however, is perhaps the variety of amide 

isosteres that emerged, including the 1,2,4-oxadiazoles. Many 1,2,4-oxadiazoles have 

now been reported with activity against S. aureus PBP2a,633-636 and the class is discussed 

in detail in Chapter 1. Briefly, shown in Figure 4.21 is the current lead compound from this 

series, exhibiting an MIC of 4 µg/mL against MRSA, low in vitro cytotoxicity, favorable 

murine pharmacokinetics, and efficacy in a murine model of staphylococcal peritonitis.635 

Another amide isostere emerging from the pharmacophore screen with precedent in the 

literature is urea. The 2-ureidobenzenesulfonic acids, also discussed in Chapter 1, were 

reported as inhibitors of S. pneumoniae PBP2x.630 The reported IC50 for the ureido 

compound shown in Figure 4.21 against PBP2x is 71 µM. Application of these isosteres, 

and others from the screen results, to our system will provide important information about 

the steric and electronic requirements of the PBP2 active site at the location occupied by 

the amide and sulfonamide of JEK-42 and JMT-1, respectively.  
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Figure 4.21: 1,2,4-oxadiazole and 2-ureidobenzenesulfonic acid PBP inhibitors. 
 
 
4.5.e. Significance 

Here we report the identification and initial characterization of two novel inhibitors 

of PBP2 from N. gonorrhoeae: 2-(arylamido)benzoic acid JEK-42 and 2-

(arylsulfonamido)benzoic acid JMT-1. The overall picture emerging from studies of these 

compounds is that they are not susceptible to the PBP2 modifications that result in 

cephalosporin resistance, and that they may be capable of inhibiting a number of other 

class B PBPs due to 1) their structural resemblance to β-lactams and 2) predicted 

interactions with highly conserved residues.  
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CHAPTER 5: Derivatization of Identified PBP-Inhibitory Chemotypes 

 

 

 

 

 

 

 

 

 

 

 

 

  



 188 

5.1 Introduction 

Chapter 4 outlines the discovery of novel PBP2-inhibitory chemotypes proposed 

to mimic the binding of β-lactams and, thus, the bacterial peptidoglycan D-Ala- D-Ala motif. 

The next phase of our investigation is the derivatization of these molecules, with the goal 

of enhancing in vitro potency against N. gonorrhoeae PBP2 and against the pathogen 

itself. In this chapter, the synthesis of 127 analogues of JMT-1, as well as their PBP2-

inhibitory and antigonococcal activity, is described. 

 

 
 
 
 

Figure 5.1: Structures of prototype compounds JEK-42 and JMT-1. 
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5.2. Derivatization of JMT-1 sulfonamides 

Sulfonamide synthesis is achievable in two simple steps from commercially 

available sulfonyl chloride starting materials, shown in Scheme 5.1. The first step is 

substitution of the sulfonyl chloride (a) with either a methyl anthranilate or 2-

aminobenzonitrile. The methyl benzoate products are treated with lithium hydroxide (b) to 

afford the corresponding carboxylic acid, and benzonitrile products undergo a 1,3-dipolar 

cycloaddition with sodium azide under copper (II) sulfate catalysis (c) to generate the 

corresponding tetrazole. All JMT-1 derivatives reported herein were prepared using this 

route.  

 

 
 
 

Scheme 5.1: Synthesis of JMT-1 derivatives. a. pyridine, DCM, N2, RT, 12 h. b. 1:1 THF/H2O, RT, 
8 h. c. CuSO4·5H20, DMSO, 150°C, 1 h. 
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5.2.a. Modifications to the anthranilic acid moiety I: Substitution at positions 4 
through 6 
 

 
 
 

Figure 5.2: Structures of compounds JMT-2 through JMT-15, which possess substitutions on the 
anthranilic acid moiety of JMT-1.  
 

To begin, we surveyed each position on the anthranilic acid moiety of JMT-1 to 

determine functional groups and substitution patterns that increase inhibition of PBP2. For 

all compounds synthesized, inhibition of tPBP2WT and tPBP2H041 was determined at 100 

µM using the previously described competition assay with Bocillin-FL. Compounds 

showing >80% inhibition of both variants at 100 µM were tested at 10 µM. Data for this 

initial series are shown in Figure 5.3 and Figure 5.4. Examining the compound set from 

Kirkpatrick et al. screened earlier (as described in Chapter 4), substitution at the 3-position 

was already found to abolish activity of carboxamido compounds related to JEK-42, so 

under the assumption that JEK-42 and its sulfonamide isostere JMT-1 bind similarly to 

PBP2, this position was not examined. The data show that the fully unsubstituted version 

(JMT-2) is less active at 100 µM than JMT-1, with 71 ± 4% inhibition of tPBP2WT compared 

to 93 ± 7% for JMT-1. A switch of the 5-fluoro moiety to the 4-position (JMT-3) did not 

change activity significantly; however, the 4,5-difluoro compound JMT-4 exhibits a sharp 
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increase in potency, inhibiting tPBP2WT and tPBP2H041 fully at 100 µM and showing 87 ± 

6% inhibition against tPBP2H041 at 10 µM. Note the 6-fluoro product was not obtained in 

sufficient yield and purity for testing.  

 

Figure 5.3: Inhibition data for JMT-2 through JMT-15 against tPBP2WT and tPBP2H041 at 100 µM. 
Values were determined in a purified protein assay in which tPBP2 was preincubated with 100 µM 
compound, followed by addition of 1 µM Bocillin-FL. Data are presented as a fraction of activity of 
the DMSO control. Error bars are standard deviation. 
 

 

Figure 5.4: Inhibition data for selected anthranilic acid-substituted derivatives of JMT-1 against 
tPBP2H041 at 10 µM. Compounds exhibiting greater than 80% inhibition of both tPBP2WT and 
tPBP2H041 activity at 100 µM (Figure 5.3) were tested. Values were determined in a purified protein 
assay in which tPBP2H041 was preincubated with 10 µM compound, followed by addition of 1 µM 
Bocillin-FL. Data are presented as a fraction of activity of the DMSO control. Error bars are standard 
deviation. 
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To examine the effects of increasing atomic radius at the 4- and 5-positions, 

analogues with additional halogens were synthesized. Analogues chlorinated (JMT-5 & 

JMT-6) or brominated (JMT-7 & JMT-8) at 4- and 5-positions are active at 100 µM, with 

the 5-bromo compound JMT-8 exhibiting 96 ± 2% inhibition of tPBP2H041 at 10 µM. The 5-

iodo product could not be synthesized in sufficient yield for testing. Further increases in 

bulk were explored with a series of methyl substitutions at the 4- and 5-positions, revealing 

the 4-methyl analogue JMT-9 to be the more active. Interestingly, while JMT-9 exhibits 85 

± 9% inhibition of tPBP2H041 at 10 µM, the 5-methyl analogue JMT-10 fails to inhibit 

tPBP2H041 fully at 100 µM. The 6-position was also surveyed by testing 6-methyl analogue 

JMT-11, whose relatively weak inhibition indicates that substitution at this position is not 

favored.  

Given the lesser activity of methyl compounds compared to their halogenated 

analogues, it can be inferred that either activity is dependent upon a very specific van der 

Waals radius of substituents to the anthranilic acid, or upon the polarizability of these 

substituents. To answer this question, analogues possessing a trifluoromethyl group at 

the 4- (JMT-12) or 5-position (JMT-13) were synthesized and potently inhibited both 

tPBP2WT and tPBP2H041. The relative potencies of compounds JMT-12 and JMT-13 (97 ± 

1% and 99 ± 1% inhibition, respectively, of tPBP2H041 at 10 µM) suggest that both van der 

Waals radius and polarizability of substituents correlate positively with PBP2 inhibition. 

All generated compounds discussed to this point possess anthranilic acid moieties 

substituted with hydrophobic functional groups. In order to assess the effects of polarity, 

4- (JMT-14) and 5-methoxy (JMT-15) compounds were generated. JMT-14 is more active 

than JMT-15 against tPBP2H041 but not more than the prototype JMT-1, indicating 

tolerance of modestly polar groups at this position rather than any preference for them. To 

explore polarity further, synthesis of a 5-nitro analogue was also attempted, but the 

desired product was not found on mass spectrometric analysis of the crude reaction 
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mixture.  In all, the pattern emerging from these initial derivatization studies suggests the 

following in terms of tPBP2 inhibition: 

4-CF3 ~ 5-CF3 ~ 5-Br > 4-Cl ~ 4,5-diF ~ 4-Br ~ 4-Me >  

5-Cl > 4-OMe > 5-OMe ~ 4-F > H > 6-Me 

Compounds exhibiting >75% inhibition of tPBP2H041 at 10 µM were tested in disc 

diffusion assays against N. gonorrhoeae FA19 and H041 (Figure 5.5). Consistent with 

their enzymatic inhibition, compounds JMT-12, and JMT-13 exhibit the most potent 

antimicrobial activity against both strains. JMT-12, a 4-trifluoromethyl analogue of 

prototype JMT-1, inhibits growth of N. gonorrhoeae FA19 and H041 up to 20.5 ± 0.7 mm 

and 15.5 ± 1.8 mm, respectively, from the edge of a disc impregnated with 10 µg 

compound. JMT-13, the 5-trifluoromethyl analogue, shows a 19.0 ± 1.0 mm zone of 

inhibition against FA19 and a 16.3 ± 1.1 mm zone of inhibition against H041. JMT-5 also 

shows good antimicrobial activity against both strains, in contrast with JMT-8, which 

shows a stark reduction in potency against H041.  

 

 

Figure 5.5: Disc diffusion data for potent anthranilic acid-substituted derivatives of JMT-1 against 
N. gonorrhoeae FA19 and H041. Compounds exhibiting greater than 75% inhibition of tPBP2H041 
activity at 10 µM were tested against susceptible reference gonococcal strain FA19 and multi-drug 
resistant H041 at 10 µg per disc. 
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5.2.b. Modifications to the anthranilic acid moiety II: Isosteric replacement of the 
carboxylic acid for a 1H-tetrazol-5-yl moiety 
 

 
 
 

Figure 5.6: Structures of compounds JMT-16 through JMT-25, which possess a 1H-tetrazol-5-yl 
moiety at C1 in place of the carboxylic acid seen in JMT-1. 
 
 

Next, we examined the effect of isosteric replacement of the carboxylic acid group 

of the anthranilic acid moiety on PBP2 inhibition. The 1H-tetrazol-5-yl system was chosen 

for these derivatives, as it confers favorable drug-like properties (e.g., improved 

membrane permeability and resistance to some forms of xenobiotic metabolism) and is 

easily accessed from nitriles using a copper(II)-catalyzed 1,3-dipolar cycloaddition. 
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fluoro (JMT-17), 5-chloro (JMT-18), 5-methyl (JMT-21), and 5-methoxy (JMT-25) 

compounds. Consistent with results for the anthranilic acid compounds, substitution with 

a trifluoromethyl group yields excellent tPBP2 inhibition, with 4- (JMT-22) and 5-

substituted (JMT-23) molecules showing 89 ± 4% and 83 ± 12% inhibition, respectively, 

of tPBP2H041 at 10 µM.  
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Figure 5.7: Inhibition data for JMT-16 through JMT-25 against tPBP2WT and tPBP2H041 at 100 µM. 
Values were determined in a purified protein assay in which tPBP2 was preincubated with 100 µM 
compound, followed by addition of 1 µM Bocillin-FL. Data are presented as a fraction of activity of 
the DMSO control. Error bars are standard deviation. 

 

Figure 5.8: Inhibition data for 1H-tetrazol-5-yl derivatives of JMT-1 against tPBP2H041 at 10 µM. 
Compounds exhibiting greater than 80% inhibition of both tPBP2WT and tPBP2H041 activity at 100 
µM (Figure 5.7) were tested against tPBP2H041 at 10 µM. Values were determined in a purified 
protein assay in which tPBP2 was preincubated with 10 µM compound, followed by addition of 1 
µM Bocillin-FL. Data are presented as a fraction of activity of the DMSO control. Error bars are 
standard deviation. 
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As for the anthranilic acid compounds, the antimicrobial activity of the tetrazoles 

was tested against N. gonorrhoeae strains FA19 and H041. Overall, antimicrobial activity 

is weaker than for the carboxylic acid parent compounds (Figure 5.9). Trifluoromethyl 

compounds JMT-22 and JMT-23 inhibit growth of N. gonorrhoeae within less than 15 mm 

of the disc. Interestingly, whereas the 5-bromo carboxylic acid JMT-8 exhibits excellent 

activity against FA19 but only modest activity against H041, its tetrazole analogue JMT-

19 seems to show very little difference between strains. JMT-19 is the most potent of this 

series, exhibiting 17.3 ± 1.8 mm and 16.0 ± 1.4 mm zones of inhibition against FA19 and 

H041, respectively.  

 

Figure 5.9: Disc diffusion data for potent 1H-tetrazol-5-yl derivatives of JMT-1 against N. 
gonorrhoeae FA19 and H041. Compounds exhibiting greater than 75% inhibition of tPBP2H041 
activity at 10 µM were tested against susceptible reference gonococcal strain FA19 and multi-drug 
resistant H041 at 10 µg per disc. 
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5.2.c. Modifications to the anthranilic acid moiety III: Replacement of aromatic ring 
with heterocyclic carboxylic acids 
 
 
 

 
 
 

Figure 5.10: Structures of compounds JMT-26 through JMT-30, which possess nitrogen-containing 
heterocyclic carboxylic acids in place of the anthranilic acid seen in JMT-1. 
 
 

A series of sulfonamides synthesized from nitrogen-containing heterocycles were 

attempted to create scaffolds more closely resembling β-lactam antimicrobials. Inhibition 

data for this series against tPBP2 are shown in Figure 5.11. Pyrrolidine (JMT-26) and 
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similar to most penams, it fails to show any inhibition at 100 µM. Cephem-like 6-membered 

ring systems were also examined, but the incorporation of neither piperidine (JMT-29) nor 

tetrahydro-1,3-thiazine (30) improves activity.  

To determine if loss of the anthranilic acid moiety abolishes PBP2 binding fully, the 

compounds were also tested at 1 mM. At this concentration, compounds JMT-26 through 

JMT-30 all inhibit tPBP2WT, indicating a severe reduction in affinity, but not a complete 

loss. Because of their low inhibition, none of these analogues was tested against N. 

gonorrhoeae. 
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Figure 5.11: Inhibition data for JMT-26 through JMT-30 against tPBP2WT and tPBP2H041 at 100 µM. 
Values were determined in a purified protein assay in which tPBP2 was preincubated with 100 µM 
compound, followed by addition of 1 µM Bocillin-FL. Data are presented as a fraction of activity of 
the DMSO control. Error bars are standard deviation. 
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5.2.d. Modifications to the biphenyl ring system I: Replacement of the 4’-methyl 
group 

 

 

Figure 5.12: Structures of compounds JMT-31 through JMT-39, which lack the biphenyl 4’-methyl 
group seen in JMT-1. 
 
 

To determine the importance of the 4’-substituent to PBP2 inhibition, a series of 

4’-desmethyl analogues (JMT-31 through JMT-39) were synthesized. Inhibition data for 

this series against tPBP2 are shown in Figure 5.13 and Figure 5.14. The first of these, 

JMT-31 through JMT-35, possess entirely unsubstituted biphenyl secondary aromatic 

systems. These compounds are generally much less active than their 4’-methylated 

counterparts, showing minimal inhibition of tPBP2WT at 100 µM. However, the 5-bromo 

analogue JMT-35 inhibits both tPBP2WT and tPBP2H041 fully at this concentration, and it 

retains some activity against tPBP2H041 upon dose reduction to 10 µM (66 ± 17% 

inhibition). Its relative potency among compounds of this series supports the assertion that 

a large, polarizable, hydrophobic group at C5 enhances inhibition.  

To survey other positions on the biphenyl secondary aromatic ring, a small number 

of 3’-methyl analogues (JMT-36 through JMT-39) were generated, which are marginally 

less active than their 4’-methyl parent compounds. The most active of those synthesized 

and tested is the 5-bromo analogue JMT-38, which exhibits 71 ± 8% inhibition of tPBP2H041 
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at 10 µM, again supporting the requirement for a large, polarizable group at C5. Overall, 

the lesser activity of 4’-desmethyl compounds indicates that substitution at the 4’-position 

enhances PBP2-inhibitory potency. 

 

Figure 5.13: Inhibition data for JMT-31 through JMT-39 against tPBP2WT and tPBP2H041 at 100 µM. 
Values were determined in a purified protein assay in which tPBP2 was preincubated with 100 µM 
compound, followed by addition of 1 µM Bocillin-FL. Data are presented as a fraction of activity of 
the DMSO control. Error bars are standard deviation. 

 

Figure 5.14: Inhibition data for 4’-desmethyl derivatives of JMT-1 against tPBP2H041 at 10 µM. 
Compounds exhibiting greater than 80% inhibition of both tPBP2WT and tPBP2H041 activity at 100 
µM  (Figure 5.13) were tested against tPBP2H041 at 10 µM. Values were determined in a purified 
protein assay in which tPBP2 was preincubated with 10 µM compound, followed by addition of 1 
µM Bocillin-FL. Data are presented as a fraction of activity of the DMSO control. Error bars are 
standard deviation. 
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Figure 5.15: Structures of compounds JMT-40 through JMT-58, which possess a 4’-methoxy in 
place of the 4’-methyl group seen in JMT-1. TTZ: 1H-tetrazol-5-yl 
 
 

Since the 4’-substituent appears to be important for inhibition of PBP2, compounds 

with various 4’-substituents were synthesized to explore physicochemical requirements at 

this position. First, the influence of polarity was assessed by incorporation of a 4’-methoxy 

group (JMT-40 through JMT-58). Inhibition data for this series against tPBP2 are shown 

in Figure 5.16 and Figure 5.17. In general, this change yields less active compounds by 

direct comparison with 4’-methyl analogues, indicating that a polar group at this position 

is not favored. However, there are a few in the series that inhibit PBP2 relatively well. For 

example, 4- (JMT-46, JMT-55) and 5-trifluoromethyl (JMT-47, JMT-56) compounds are 

active, as well as 5-bromophenyl tetrazole JMT-52. In fact, JMT-46 and JMT-56 exhibit 

94 ± 0% and 91 ± 2% inhibition of tPBP2H041, respectively, at 10 µM. Again, the activity 

conferred by these hydrophobic, polarizable 4- and 5-substitutions to the anthranilic acid 

or phenyltetrazole moiety further emphasizes the benefit of such groups at these positions. 
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Figure 5.16: Inhibition data for JMT-40 through JMT-58 against tPBP2WT and tPBP2H041 at 100 µM. 
Values were determined in a purified protein assay in which tPBP2 was preincubated with 100 µM 
compound, followed by addition of 1 µM Bocillin-FL. Data are presented as a fraction of activity of 
the DMSO control. Error bars are standard deviation. 

 

 

Figure 5.17: Inhibition data for 4’-methoxy derivatives of JMT-1 against tPBP2H041 at 10 µM. 
Compounds exhibiting greater than 80% inhibition of both tPBP2WT and tPBP2H041 activity at 100 
µM (Figure 5.16) were tested against tPBP2H041 at 10 µM. Values were determined in a purified 
protein assay in which tPBP2 was preincubated with 10 µM compound, followed by addition of 1 
µM Bocillin-FL. Data are presented as a fraction of activity of the DMSO control. Error bars are 
standard deviation. 
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Figure 5.18: Structures of compounds JMT-59 through JMT-83, which possess a halogen in place 
of the 4’-methyl group seen in JMT-1. TTZ: 1H-tetrazol-5-yl 
 
 

The next parameter to be examined was a change in van der Waals radius at the 

4’-position. To this end, a series of 4’-halogenated molecules was synthesized, and 

inhibition data are shown in Figure 5.19 and Figure 5.20. While the 4’-fluoro (JMT-59 

through JMT-67) analogues are among the least active compounds reported in these 

studies, large hydrophobic substitutions on the anthranilic acid moiety again enhance 

PBP2-inhibitory activity. The 5-bromoanthranilic acid and 4-methylanthranilic acid 

analogues JMT-62 and JMT-63 are the only compounds of this group to fully inhibit both 

tPBP2WT and tPBP2H041 at 100 µM. They exhibit 45 ± 14% and 54 ± 18% inhibition of 

tPBP2H041, respectively, at 10 µM. In all cases, the 4’-chloro compounds (JMT-68 through 

JMT-83) are more potent than their 4’-fluoro analogues. However, the 4’-chloro 

substitution still appears to confer less activity than the 4’-methyl parent structure. Taken 

together, these data suggest that increasing van der Waals radius at the 4’-position is 

associated with increased inhibition, but potential effects of 4’-substituent polarizability 
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cannot be dismissed. Consistent with data from other series, the 4- (JMT-74) and 5-

trifluoromethylanthranilic acid (JMT-75) compounds are still quite active, inhibiting 

tPBP2H041 89 ± 4% and 86 ± 6%, respectively, at 10 µM. 

 

Figure 5.19: Inhibition data for JMT-59 through JMT-83 against tPBP2WT and tPBP2H041 at 100 µM. 
Values were determined in a purified protein assay in which tPBP2 was preincubated with 100 µM 
compound, followed by addition of 1 µM Bocillin-FL. Data are presented as a fraction of activity of 
the DMSO control. Error bars are standard deviation. 

 

Figure 5.20: Inhibition data for 4-fluoro and 4-chloro derivatives of JMT-1 against tPBP2H041 at 10 
µM. Compounds exhibiting greater than 80% inhibition of both tPBP2WT and tPBP2H041 activity at 
100 µM (Figure 5.19) were tested against tPBP2H041 at 10 µM. Values were determined in a purified 
protein assay in which tPBP2 was preincubated with 10 µM compound, followed by addition of 1 
µM Bocillin-FL. Data are presented as a fraction of activity of the DMSO control. Error bars are 
standard deviation. 
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Figure 5.21: Structures of compounds JMT-84 through JMT-100, which possess a 4’-
trifluoromethyl group in place of the 4’-methyl group seen in JMT-1. TTZ: 1H-tetrazol-5-yl 
 
 

To examine the effects of polarizability at the 4’-position further, a series of 4’-

trifluoromethyl analogues was synthesized. Inhibition data for this series against tPBP2 

are shown in Figure 5.22 and Figure 5.23. Analogues JMT-84 through JMT-100 are the 

most active series of compounds from the collection of biphenyl 4’-position modifications, 

with nearly all exhibiting full inhibition of both tPBP2WT and tPBP2H041 at 100 µM. Their 

potent activity in the context of a variety of 4- and 5-substituted anthranilic acid and 

phenyltetrazole moieties suggests a role for both van der Waals radius and polarizability 

at the 4’-position. From the combined data on compounds derivatized at the 4’-position, 

the following pattern has emerged with respect to tPBP2 inhibition:  

CF3 > CH3 > Cl ~ OMe > F > H 

As in other series, the most active compounds from the 4’-trifluoromethyl series are the 4- 

and 5-trifluoromethylanthranilic acid analogues JMT-90 and JMT-91, which exhibit full 

inhibition of tPBP2H041 at 10 µM. By contrast with other series, however, there are several 

other promising molecules among the 4’-trifluoromethyl analogues. For example, JMT-86 
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(4,5-difluoroanthranilic acid), JMT-87 (5-bromoanthranilic acid), JMT-88 (4-

methylanthranilic acid), JMT95 ((5-fluorophenyl)tetrazole), and JMT-98 ((5-

methylphenyl)tetrazole) all show greater than 90% inhibition of tPBP2H041 at 10 µM.  

 

Figure 5.22: Inhibition data for JMT-84 through JMT-100 against tPBP2WT and tPBP2H041 at 100 
µM. Values were determined in a purified protein assay in which tPBP2 was preincubated with 100 
µM compound, followed by addition of 1 µM Bocillin-FL. Data are presented as a fraction of activity 
of the DMSO control. Error bars are standard deviation. 

 

Figure 5.23: Inhibition data for 4’-trifluoromethyl derivatives of JMT-1 against tPBP2H041 at 10 µM. 
Compounds exhibiting greater than 80% inhibition of both tPBP2WT and tPBP2H041 activity at 100 
µM (Figure 5.22) were tested against tPBP2H041 at 10 µM. Values were determined in a purified 
protein assay in which tPBP2 was preincubated with 10 µM compound, followed by addition of 1 
µM Bocillin-FL. Data are presented as a fraction of activity of the DMSO control. Error bars are 
standard deviation. 
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Several of the most active compounds from the 4’-derivatized collection, defined 

as exhibiting greater than 75% inhibition against tPBP2H041 at 10 µM, were tested against 

N. gonorrhoeae FA19 and H041 in disc diffusion assays (Figure 5.24). The most potent 

antigonococcal yet, JMT-84, is seen in this group. This anthranilic acid analogue with 4-

fluoro and 4’-trifluoromethyl substitutions inhibits the growth of N. gonorrhoeae FA19 and 

H041 up to 21.2 ± 1.9 mm and 17.5 ± 0 mm, respectively, from discs imbued with 10 µg 

compound. Consistent with what was seen for the initial derivatives, phenyltetrazole 

compounds appear to perform worse than their anthranilic acid analogues in measures of 

antimicrobial potency. Data for JMT-47, JMT-56, JMT-74, JMT-90, JMT-91, and JMT-96 

are pending. 

 

 

Figure 5.24: Disc diffusion data for potent 4’-substituted derivatives of JMT-1 against N. 
gonorrhoeae FA19 and H041. Compounds exhibiting greater than 75% inhibition of tPBP2H041 
activity at 10 µM were tested against susceptible reference gonococcal strain FA19 and multi-drug 
resistant H041 at 10 µg per disc. 
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5.2.e. Modifications to the biphenyl ring system II: Changes to the secondary 
aromatic system 
 

 
 
 

Figure 5.25: Structures of compounds JMT-101 through JMT-118, which possess a 4-
cyclohexylphenyl group in place of the 1,1’-biphenyl system seen in JMT-1. TTZ: 1H-tetrazol-5-yl 
 
 

Next, we wanted to observe the effect of increased flexibility at the distal ring 

system on PBP2-inhibitory activity. Inhibition data for this series against tPBP2 are shown 

in Figure 5.26 and Figure 5.27. Somewhat surprisingly, replacement of the secondary 

biphenyl aromatic ring with a cyclohexyl group (JMT-101 through JMT-118) yields active 

compounds despite the absence of a 4’-substituent. This indicates that flexibility at this 

position may allow a conformation that involves more or better contacts with the PBP2 

active site. The most active compound of the cyclohexylphenyl series is the 5-

trifluoromethylanthranilic acid JMT-108, which inhibits tPBP2H041 fully at 10 µM. Other 

potent inhibitors include 4,5-difluoroanthranilic acid JMT-103, (5-fluorophenyl)tetrazole 

JMT-112, and (5-methylphenyl)tetrazole JMT-115, all of which exhibit greater than 90% 

inhibition of tPBP2H041 at 10 µM.  
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Figure 5.26: Inhibition data for JMT-101 through JMT-118 against tPBP2WT and tPBP2H041 at 100 
µM. Values were determined in a purified protein assay in which tPBP2 was preincubated with 100 
µM compound, followed by addition of 1 µM Bocillin-FL. Data are presented as a fraction of activity 
of the DMSO control. Error bars are standard deviation. 

 

 

Figure 5.27: Inhibition data for 4-cyclohexylphenyl derivatives of JMT-1 against tPBP2H041 at 10 
µM. Compounds exhibiting greater than 80% inhibition of both tPBP2WT and tPBP2H041 activity at 
100 µM (Figure 5.26) were tested against tPBP2H041 at 10 µM. Values were determined in a purified 
protein assay in which tPBP2 was preincubated with 10 µM compound, followed by addition of 1 
µM Bocillin-FL. Data are presented as a fraction of activity of the DMSO control. Error bars are 
standard deviation. 
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Figure 5.28: Structures of compounds JMT-119 through JMT-128, which possess a bicyclo[4.4.0] 
ring system in place of the 1,1’-biphenyl system seen in JMT-1.  
 
 

Less conservative changes were also made to the 1,1’-biphenyl system, including 

fusion to naphth-2-yl (JMT-119 through JMT-121), 5,6,7,8-tetrahydronaphth-2-yl (JMT-

122 through JMT-124), and 1,4-benzodioxan-6-yl (JMT-125 through JMT-128) systems. 

Inhibition data for this series against tPBP2 are shown in Figure 5.29 and Figure 5.30. 

Each of these changes substantially decreases inhibition. The most active among this 

series of bicyclo[4.4.0] compounds are the 5,6,7,8-tetrahydronaphth-2-yl analogues, with 

4-fluoro compound JMT-122 exhibiting 97 ± 1% and 84 ± 2% inhibition of tPBP2WT and 

tPBP2H041, respectively, at 100 μM. JMT-122 was further tested against tPBP2H041 at 10 

µM but showed minimal inhibition at this concentration.  
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Figure 5.29: Inhibition data for JMT-119 through JMT-128 against tPBP2WT and tPBP2H041 at 100 
µM. Values were determined in a purified protein assay in which tPBP2 was preincubated with 100 
µM compound, followed by addition of 1 µM Bocillin-FL. Data are presented as a fraction of activity 
of the DMSO control. Error bars are standard deviation. 

 

 

Figure 5.30: Inhibition data for bicyclo[4.4.0] derivatives of JMT-1 against tPBP2H041 at 10 µM. 
Compounds exhibiting greater than 80% inhibition of both tPBP2WT and tPBP2H041 activity at 100 
µM were tested against tPBP2H041 at 10 µM. Values were determined in a purified protein assay in 
which tPBP2 was preincubated with 10 µM compound, followed by addition of 1 µM Bocillin-FL. 
Data are presented as a fraction of activity of the DMSO control. Error bars are standard deviation. 
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Potent PBP2 inhibitors from the final set of biphenyl modifications were tested 

against N. gonorrhoeae FA19 and H041 in disc diffusion assays, revealing the second 

most potent antigonococcal to emerge from these studies (Figure 5.31). JMT-108, a 5-

trifluoromethylanthranilic acid analogue from the cyclohexylphenyl series, exhibits large 

zones of inhibition against both FA19 (20.0 ± 0 mm) and H041 (16.0 ± 0.7 mm). Other 

compounds showing good antimicrobial activity include JMT-103, JMT-107, and JMT-

113, all of which show zones of inhibition greater than 15 mm against both strains. No 

bicyclo[4.4.0] compounds were tested due to their poor performance in PBP2 inhibition 

assays. 

 

Figure 5.31: Disc diffusion data for potent cyclohexylphenyl derivatives of JMT-1 against N. 
gonorrhoeae FA19 and H041. Compounds exhibiting greater than 75% inhibition of tPBP2H041 
activity at 10 µM were tested against susceptible reference gonococcal strain FA19 and multi-drug 
resistant H041 at 10 µg per disc. 
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5.3. Prediction of the binding modes of the most potent JMT-1 derivatives 

The most potent PBP2 inhibitors (JMT-13 and JMT-108) and the most potent 

antigonococcal (JMT-84) were docked to the active sites of tPBP2WT and tPBP2H041 with 

guidance from the molecular dynamics simulations of JEK-42 and JMT-1 reported in 

Chapter 4.  In the modeled complexes, a sulfonyl oxygen is positioned within the oxyanion 

hole created by the main chain nitrogens of Ser310 and Thr500, and the 1,1’-biphenyl 

system extends toward N364 and F420 (Figure 5.32). In the tPBP2WT complexes, the 

carboxylic acid forms hydrogen bonds with the side chains of S362, S483, K497 and T498, 

and in the tPBP2H041 complexes, it forms hydrogen bonds with the side chain of T500 and 

S545. Because the changes to JMT-1 represented in these molecules do not add 

opportunities for strong hydrogen bonding, the resulting increases in potency likely have 

to do with enhanced van der Waals interactions with the active site. Computationally, this 

appears to be the case. On the anthranilic acid moiety of the molecule, the 5-

trifluoromethyl groups of JMT-13 and JMT-108 contribute 2-fold more van der Waals 

interaction energy to ligand-receptor complex formation than the 5-fluoro group of JMT-1 

(-0.7 kcal·mol-1 v -1.7 kcal·mol-1) (Figures 5.33 & 5.34), while the 4-fluoro group of JMT-

86 augments interaction only marginally (-0.9 kcal·mol-1). With respect to the secondary 

ring of the 1,1’-biphenyl system, the cyclohexyl system seen in JMT-108 show similar 

receptor interactions to the methylphenyl group of JMT-1 and JMT-13 (-8.8 kcal·mol-1 v -

8.6 kcal·mol-1). However, the trifluoromethylphenyl system of JMT-84 makes more 

extensive contact with the active site surface (-10.5 kcal·mol-1). 
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Figure 5.32: Docked poses of compounds showing potent tPBP2 inhibition and antigonococcal 
activity. A. When docked to tPBP2WT with guidance from the predicted JMT-1 binding mode, potent 
compounds show similar interactions with the transpeptidase active site. The docked structure of 
JMT-13 is shown in green, JMT-84 is shown in orange, and JMT-108 is shown in purple. Predicted 
hydrogen bonds are shown as dashed lines. B. Potent compounds docked to tPBP2H041 with 
guidance from the predicted JMT-1 binding mode show similar interactions with the transpeptidase 
active site. The docked structure of JMT-13 is shown in green, JMT-84 is shown in orange, and 
JMT-108 is shown in purple. Predicted hydrogen bonds are shown as dashed lines. 
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Figure 5.33: Surface rendering of modeled JMT-1 derivatives in complex with tPBP2WT. A. The 
trifluoromethyl group seen on the anthranilic acid moiety of JMT-13 and JMT-108 (ligand shown as 
teal sticks, surface shown as teal mesh) and the 4-fluoro group of JMT-84 (ligand shown as 
magenta sticks, surface shown as magenta mesh) create more surface contact with the active site 
of tPBP2WT than the 5-fluoro group of JMT-1 (ligand shown as orange sticks, surface shown as 
orange mesh).  B. The trifluoromethylphenyl group of JMT-84 (ligand shown as magenta sticks, 
surface shown as magenta mesh) exhibits a closer contour to the tPBP2WT surface (shown in grey) 
than the methylphenyl group of JMT-1 and JMT-13 (ligand shown as teal sticks, surface shown as 
teal mesh), while the cyclohexyl group of JMT-108 (ligand shown as yellow sticks, surface shown 
as yellow mesh) shows only marginally increased contact with the active site surface. 
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Figure 5.34: Surface rendering of modeled JMT-1 derivatives in complex with tPBP2H041. A. As in 
tPBP2WT, the trifluoromethyl group seen on the anthranilic acid moiety of JMT-13 and JMT-108 
(ligand shown as teal sticks, surface shown as teal mesh) and the 4-fluoro group of JMT-84 (ligand 
shown as magenta sticks, surface shown as magenta mesh) create more surface contact with the 
active site of tPBP2H041 than the 5-fluoro group of JMT-1 (ligand shown as orange sticks, surface 
shown as orange mesh).  B. The trifluoromethylphenyl group of JMT-84 (ligand shown as magenta 
sticks, surface shown as magenta mesh) exhibits a closer contour to the tPBP2H041 surface (shown 
in grey) than the methylphenyl group of JMT-1 and JMT-13 (ligand shown as teal sticks, surface 
shown as teal mesh), while the cyclohexyl group of JMT-108 (ligand shown as yellow sticks, surface 
shown as yellow mesh) shows only marginally increased contact with the active site surface. 
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5.4. Discussion 
 

In this work, we present the derivatization of the prototype N. gonorrhoeae PBP2 

inhibitor JMT-1 with the goal of identifying modifications that enhance or diminish in vitro 

activity against both PBP2 and gonococci. First, we show that substitution of the JMT-1 

anthranilic acid moiety with hydrophobic groups at C4 or C5 is preferred for PBP2 

inhibition, and that isosteric replacement of the C1 carboxylic acid with a 1H-tetrazol-5-yl 

group results in compounds with similar activity. Next, we show that 4’-substitution of the 

1,1’-biphenyl system is required for potent inhibition, but that this requirement is eliminated 

if the structure is changed to a more flexible 4-cyclohexylphenyl system. Modeling of the 

most potent compounds suggest the modifications to JMT-1 responsible for increasing 

tPBP2 inhibition do so through augmented van der Waals interactions with the 

transpeptidase active site. 

 
5.4.a. Summary of potent antigonococcal compounds and structure-activity 
relationships  
 

Compounds showing potent tPBP2 inhibition and antigonococcal activity are 

shown in Table 5.1. Overall, the most potent JMT-1 derivatives possess lipophilic 

polarizable groups at the 4- and 5-positions of an anthranilic acid moiety. Increasing van 

der Waals radius at C4 or C5 appears to be correlated with greater activity as well, with 

six of the ten best compounds possessing a trifluoromethyl or bromo substituent. High 

activity is also observed in compounds 4,5-disubstituted with fluorine atoms, suggesting 

that there is a preference for a somewhat large area of hydrophobic surface at these 

positions. Phenyltetrazoles are generally less active against gonococci, and especially 

against H041, than their anthranilic acid analogues despite similar inhibition of tPBP2. This 

is perhaps due to the relative lipophilicity of the tetrazole-containing molecules (5-methyl-

1H-tetrazole logD7.4 = -2.2) compared to corresponding carboxylic acids (acetic acid 

logD7.4 = -3.0). In both FA19 and H041, compounds must traverse the outer membrane 
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through porins that select for highly solvated, hydrophilic molecules. In H041, not only are 

these porins mutated to restrict entry,306 but there is also an overexpressed MtrCDE efflux 

system with the ability to extrude hydrophobic xenobiotics.317.318 Exceptions to this trend 

are the 5-bromophenyltetrazoles, which show improved antigonococcal activity compared 

to their 5-bromoanthranilic acid analogues and have a very narrow difference in activities 

between FA19 and H041. 

Modifications to the 1,1’-biphenyl end of the JMT-1 scaffold also result in some 

improvements in activity. Overall, compounds with larger hydrophobic groups at the 4’-

position (i.e., 4’-methyl and 4’-trifluoromethyl) tend to have better activity compared to 

smaller or more hydrophilic derivatives. Interestingly, while elimination of the 4’-substituent 

greatly diminishes activity of 1,1’-biphenyl compounds, incorporation of a 4’-unsubstituted 

cyclohexyl group causes no such decrease in activity and in fact, yields some of the most 

potent antigonococcal compounds resulting from these studies. 
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Table 5.1: Summary data for the JMT-1 derivatives showing the most potent antigonococcal 
activity. aPurified protein assay in which PBP2 is pre-incubated with compound or DMSO for 1 hour, 
followed by the addition of 1 µM Bocillin-FL. Value reported is percent inhibition. bDisc diffusion 
assay performed with 10 µg compound per disc. Value reported is zone of inhibition. Errors are 
standard deviation. 
 

Compound Structure tPBP2H041 
10 µMa 

FA19b 

(mm) 
H041b 
(mm) 

JMT-5 

 

92 ± 8% 18.8 ± 
1.9 

15.3 ± 
0.4 

JMT-12 

 

97 ± 1% 20.5 ± 
0.7 

15.5 ± 
1.8 

JMT-13 

 

99 ± 1% 19.0 ± 
1.0 

16.3 ± 
1.1 

JMT-19 

 

76 ± 3% 17.3 ± 
1.8 

16.0 ± 
1.4 

JMT-84 

 

77 ± 16% 21.2 ± 
1.9 

17.5 ± 
0 
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JMT-86 

 

93 ± 2% 16.8 ± 
1.3 

15.3 ± 
0.4 

JMT-103 

 

96 ± 1% 19.8 ± 
1.5 

15.5 ± 
1.4 

JMT-107 

 

84 ± 10% 19.5 ± 
1.3 

17.0 ± 
0.5 

JMT-108 

 

99 ± 1% 20.0 ± 
0 

16.0 ± 
0.7 

JMT-113 

 

87 ± 8% 18.2 ± 
0.6 

17.3 ± 
1.3 
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The most active compounds identified in the course of these studies were flexibly 

aligned using a stochastic conformational search, yielding an eight-point pharmacophore 

shown in Figure 5.35. This pharmacophore is generally supported by previous data on 

the inhibition of S. aureus PBP2a and S. pneumoniae by similar compounds,627,628 with 

the unique addition of the 1,1’-biphenyl system. Representation of the 1,1’-biphenyl 

system with two hydrophobic features, where only one is required to be aromatic, 

increases design capabilities by allowing the incorporation of a variety of 4-substituted 

phenyl systems like in the 4-cyclohexylphenyl series.  

 
 
 
Figure 5.35: Flexible alignment and consensus pharmacophore based on the JMT-1 derivatives 
with the most potent antigonococcal activity.  
 

 

Experiments published by other laboratories have determined zones of inhibition 

by several FDA-approved antimicrobials against N. gonorrhoeae strains with varied 

susceptibility profiles63,678  (Table 5.2). For example, with 0.5 µg penicillin G, the 

susceptible reference strain WHO F is inhibited with a 13.2 mm zone of inhibition, while 

neither penicillin-resistant strain (WHO K and H041) is inhibited at all. Similarly, a 0.5 µg 
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ceftriaxone disc inhibits the growth of WHO F with a 14.2 mm zone of inhibition, while it 

displays a decrease in potency against WHO K (6.7 mm) and fails to inhibit H041. By 

contrast, the reported JMT-1 derivatives inhibit both FA19 and H041 to similar degrees. It 

should be noted that the masses of compound used in each disc is slightly different in the 

assays reported, as each takes into account the pharmacokinetic and pharmacodynamic 

factors determining efficacy, as well as epidemiologic values for susceptibility versus 

resistance. Since the reported JMT-1 analogues represent a novel, experimental class, 

no such data exists. Thus, the 10 µg quantity used in these studies is not calibrated for 

direct comparisons of potency. Nonetheless, the large zones of inhibition seen against 

both reference strain FA19 and multidrug resistant H041 indicate real antimicrobial activity 

that is quite promising for the early development of a new class of compounds. 

Table 5.2: Calibrated dichotomous sensitivity disc diffusion literature values for FDA-approved 
antimicrobials against N. gonorrhoeae with varied susceptibility profiles. †Taken from Mal et al., 
2016.678  ‡Taken from Ohnishi et al., 2011.63  
 

Compound 
(mass, µg) 

WHO F† 
(PenSCephS) 

WHO K† 
(PenRCephDS) 

H041‡ 
(PenRCephR) 

penicillin G (0.5) 13.2 mm 0 mm 0 mm 
ceftriaxone (0.5) 14.2 mm 6.7 mm 1 mm 
ciprofloxacin (1) 15 mm 0 mm 1 mm 

spectinomycin (100) 11 mm 16 mm 9 mm 
 
 

5.4.b. Future testing of potent antigonococcal compounds 

We have only just begun the hit-to-lead optimization and overall development 

processes for the reported scaffolds, and much more foundational work needs to be 

completed toward their biochemical and biological characterization. This includes more 

precise measures of potency against both the target (i.e., IC50 determinations against 

tPBP2WT and tPBP2H041) and pathogen (i.e., MIC determinations against N. gonorrhoeae 

strains), as well as measures of selectivity (i.e., cytotoxicity experiments against hepatic 

and renal lines). Additional experiments are needed to ensure the antigonococcal activity 
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results from transpeptidase inhibition. Such experiments include macromolecular 

synthesis assays measuring the incorporation of [14C]-diaminopimelate, microscopy for 

the observation of filament formation, and peptidoglycan cross-link formation assays 

measuring D-Ala release. If compounds are identified that show potent, on-target, 

selective antigonococcal activity, these compounds can be tested in the murine infection 

model described in Chapter 3. 

Despite their lesser antigonococcal activity in vitro, tetrazole-containing derivatives 

should not yet be abandoned due to their potentially favorable properties in vivo. 

Xenobiotic carboxylic acids are commonly conjugated by phase II metabolic enzymes to 

acyl glucuronides and acyl coenzyme A thioesters.679,680 These modifications mask the 

acidic group critical to PBP2 inhibition, and the resulting acyl metabolites are reactive 

species implicated in hepatotoxicity. Tetrazoles, by contrast, are resistant to coenzyme A 

conjugation and form nonreactive N-glucuronide conjugates.681,682 Moreover, as 

mentioned above, tetrazole compounds are more lipophilic (5-methyl-1H-tetrazole logD7.4 

= -2.2) than analogous carboxylic acids (acetic acid logD7.4 = -3.0), potentially improving 

their lipid bilayer permeability and bodily distribution.683 This property may be 

advantageous in the treatment of gonococcal cervicitis and pharyngitis by increasing 

accumulation at the site of infection. Taking into account the modest losses in activity seen 

in JMT-1 analogues upon replacement of the carboxylic acid with a tetrazole, the potential 

for improved pharmacokinetics could ultimately outweigh such losses. 

5.4.c. Future design strategies 

In addition to biological characterization of the most potent compounds from these 

experiments, another immediate goal is further derivatization of the scaffolds, especially 

since the anthranilic acid moiety of JMT-1 provides ample opportunity to explore additional 

chemical space. First, there is a need for data on the 6-fluoroanthranilic acid compound. 

While the 6-methyl analogue exhibited poor activity, substitution with a smaller fluorine 
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may better approximate the shape of the post-covalent cephalosporin complex after 

elimination of the C3 leaving group (Figure 5.36). Thus, the potency of such an analogue 

will provide insight into whether these compounds adopt a binding mode similar to the β-

lactams after acylation. There is also a need for the investigation of less conservative 

substitutions on the anthranilic acid moiety, as the current dataset does not contain a great 

deal of structural diversity. Some modifications that can be incorporated to develop more 

comprehensive structure-activity relationships are the following: 1) polar hydrogen 

bonding substituents, including hydroxy and amino functionalities; 2) extended and 

branched aliphatics, such as ethyl and isopropyl groups; 3) bulkier 4,5-disubstitutions, 

including methylenedioxy and fused cyclopentyl groups; and 4) additional carboxylic acid 

isosteres, including those shown in Figure 5.37.684 

 

Figure 5.36: Overlay of ceftriaxone after leaving group departure and 2-(4’-methyl-[1,1'-biphenyl]-
4-amido)-6-fluorobenzoic acid.  
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Figure 5.37: Carboxylic acid bioisosteres. HA: hydroxamic acid, HIT: 3-hydroxyisothiazole, HIO: 
3-hydroxyisoxazole, TZD: thiazolidinedione, OZD: oxazolidinedione, CPD: 1,3-cyclopentanedione, 
TNA: tetronic acid, TMA: tetramic acid, OODZ: 5-oxo-1,2,4-oxadiazole, OTDZ: 5-oxo-1,2,4-
thiadiazole, TODZ: 5-thioxo-1,2,4-oxadiazole, TTDZ: 5-thioxo-1,2,4-thiadiazole. 

 

There is also opportunity to explore the 1,1’-biphenyl moiety of JMT-1. In our 

dataset, it was observed that incorporation of a methyl or trifluoromethyl group at the 4’-

position enhances PBP2-inhibitory activity compared to substituents with smaller van de 

Waals radii (i.e., H, F, and Cl). In this vein, the effects of shape and bulk should be 

assessed further by the incorporation of larger, more diverse groups, including branched 

aliphatics (e.g., isopropyl and t-butyl) and small carbocycles (e.g., cyclopropyl and 

cyclobutyl). The effect of 2’-substitution, as well as disubstitution, should also be 

examined. Finally, replacement of one or both rings with various aromatic or saturated 

heterocycles and carbocycles should be attempted. Sulfonyl chloride starting materials 

can be obtained through Suzuki cross-coupling reactions with thioacetate compounds, 

followed by oxidation with N-chlorosuccinimide685,686  (Scheme 5.2). 
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Scheme 5.2: Proposed synthesis of 4’-methyl[1,1’-biphenyl]-4-sulfonyl chloride from S-acetyl 4-
bromothiophenol. a. Pd(dppf)2Cl2·CH2Cl2, Cs2CO3, 10:1 THF/H2O, 100°C. b. 1:5 2 M HCl / MeCN, 
RT. 
 

Amide analogues similar to JEK-42 should be made for the most active JMT-1 

derivatives as well. Fortunately, benzoic acid starting materials can be obtained from 

similar syntheses using Suzuki cross-coupling reactions with methyl esters, followed by 

alkaline hydrolysis (Scheme 5.3). For a discussion of other possible changes to the 

sulfonamide functionality, see Chapter 4.  

 

 
 
 
Scheme 5.3: Proposed synthesis of 4’-methyl[1,1’-biphenyl]-4-carboxylic acid from methyl 4-
bromobenzoate. a. Pd(dppf)2Cl2·CH2Cl2, Cs2CO3, 10:1 THF/H2O, 100°C. b.1:1 THF/H2O, RT. 
 
 
 
5.4.d. Significance 

 Here we describe the synthesis 127 novel structures and their testing for inhibition 

of N. gonorrhoeae PBP2. We found that larger hydrophobic substitutions at C4 and C5 of 

the anthranilic acid moiety (e.g., bromo, trifluoromethyl) improve PBP2 inhibition, as does 

a trifluoromethyl substitution at C4’ of the 1,1’-biphenyl system. Interestingly, we also 

found that while lack of substitution at the C4’ position results in decreased inhibition, 

modification of the secondary aromatic ring to a conformationally flexible cyclohexyl group 
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yields strong inhibition. Docked models predict the increased potency imparted by these 

substitutions is due to more favorable van der Waals interactions with the PBP2 active site 

compared to prototype JMT-1. Overall, the activity data coming from these early hit-to-

lead optimization studies show the promise of this scaffold. It is capable of inhibiting PBP2 

variants derived from both β-lactam-susceptible and -resistant strains and shows 

antigonococcal activity against both reference strain FA19 and multidrug resistant H041.   
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CHAPTER 6: Conclusion  
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6.1. Summary 

Over the last several decades, N. gonorrhoeae has developed resistance to 

sulfonamides, penicillin, spectinomycin, tetracyclines, macrolides, fluoroquinolones, and 

now cephalosporins. With this proclivity for resistance development in mind, the CDC 

began recommending dual antimicrobial regimens of ceftriaxone with azithromycin or 

doxycycline, but patterns of increasing resistance to these agents globally have raised 

concerns of a future in which gonorrhea is untreatable. Therefore, continued efforts to 

identify antigonococcal compounds using all avenues of drug discovery are necessary to 

keep pace with the development of resistance. The body of work coming out of our 

laboratory has focused for several years on the structural biology of the penicillin-binding 

proteins, and more recently on the mechanisms of β-lactam resistance conferred by 

mutations in PBP2 of N. gonorrhoeae. In this project, emphasis was placed on ligand 

structure, specifically on the identification of features enhancing PBP2 inhibition, with the 

ultimate goal of designing novel antigonococcal agents. We report three studies to this 

end. 

In Chapter 3, we outlined structure-activity relationships (SAR) for the 

cephalosporin class of β-lactams against cephalosporin-resistant Neisseria gonorrhoeae 

H041. We found that structural features of the C7 acylamino side chain (R1) correlate 

highly with the second-order rate of tPBP2H041 acylation, with larger groups of modest 

lipophilicity containing multiple ring systems (e.g., the 2,3-dioxopiperazine side chain of 

cefoperazone) conferring greater activity. While the data suggest that the C3 side chain 

(R2) plays a less obvious role, a combination of electronegative elements and planarity 

(e.g., the pyridylthiazole side chain of ceftaroline) can enhance tPBP2H041 acylation 

considerably. 

Through molecular docking simulations of the precovalent ligand-receptor 

complex, we gained insight into how these features may enhance inhibition. In the docked 
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models, aromatic and hydrophobic groups on R1 are shown extending toward a 

hydrophobic patch of the tPBP2H041 active site, and in a preliminary crystal structure of 

cefoperazone in complex with tPBP2H041, the 2,3-dioxopiperazine moiety lies flat in this 

hydrophobic patch against the side chain of Y422. The models also show electronegative 

elements of R2 interacting with K361. The importance of this residue for cephalosporin 

binding is supported by a stark reduction in the rate of acylation by ceftriaxone upon its 

mutation to a glutamate. We also found that many of the features enhancing target 

inhibition (e.g., lipophilicity, aromaticity, etc.) diminish antimicrobial activity against the 

H041 strain, perhaps due to decreased accumulation in the periplasm. Finally, we 

observed that cefoperazone acylates tPBP2H041 much more rapidly than most other 

cephalosporins, and it exhibits comparable activity to ceftriaxone against N. gonorrhoeae 

H041 both in vitro and in vivo. 

 

 

 
 

Figure 6.1: Features of cephalosporins enhancing the second-order rate of tPBP2H041 acylation, 
illustrated by cefoperazone. 
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In Chapter 4, we applied qualitative trends emerging from the cephalosporin SAR 

to identify novel noncovalent PBP2 inhibitors possessing a 1,1’-biphenyl system. JEK-42 

and its isosteric derivative JMT-1 inhibit both tPBP2WT and tPBP2H041, and are capable of 

inhibiting growth of both β-lactam-susceptible (FA19) and -resistant (H041) gonococcal 

strains. Their cross-inhibition of P. aeruginosa PBP3 provides evidence of their potential 

for broader activity against class B PBPs. Models of their binding modes show that these 

molecules may bind in a way that mimics the precovalent complex formed by β-lactam 

antimicrobials. These models also show the 1,1’-biphenyl system interacting with highly 

conserved residues N364 and F420. Using the structural similarities between JEK-42, 

JMT-1, and bicyclic β-lactam scaffolds (i.e., penam, carbapenem, and cephem), a three-

point pharmacophore was generated that was then used to screen a virtual library of 

molecular fragments, yielding many structures for testing against PBP2 and N. 

gonorrhoeae as potential inhibitors. 
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Figure 6.2: Predicted tPBP2 binding mode of antigonococcal prototypes.  JEK-42 is shown in its 
predicted binding mode with tPBP2WT. Areas of interaction for the shared acidic (red), hydrophobic 
(green) and hydrogen bond accepting (cyan) features of JEK-42 and JMT-1 are shown. 
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In Chapter 5, we began the process of hit-to-lead optimization by exploring the 

chemical space surrounding the prototype molecules to determine the effects of specific 

substitutions on PBP2 inhibition and antigonococcal activity. In all, 127 derivatives of JMT-

1 were synthesized and tested. First, PBP2 inhibition by the JMT-1 sulfonamide scaffold is 

improved by the presence of hydrophobic, polarizable groups (e.g., bromo, trifluoromethyl) 

at C4 or C5 of the anthranilic acid moiety. Second, replacement of the C1 carboxylic acid 

with a bioisosteric 1H-tetrazol-5-yl group results in compounds with similar target inhibition 

but lesser antimicrobial activity. Third, a substitution at the 4’-position of the 1,1’-biphenyl 

system promotes potent inhibition, but is not required when the secondary aromatic ring is 

modified to a more flexible cyclohexyl group. In all, 10 molecules show promise as 

antigonococcal agents from in vitro measures of target inhibition and antimicrobial activity 

and will be tested further. These structures will also serve as the basis for future inhibitor 

design. 
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Figure 6.3: Structures of JMT-1 derivatives. A. JMT-13 and JMT-108 are the most potent inhibitors 
of N. gonorrhoeae PBP2. Both show 99 ± 1% inhibition of tPBP2H041 at 10 µM. JMT-84 shows 
slightly lesser target inhibition but is the most potent antigonococcal agent, yielding 21.2 ± 1.9 mm 
and 17.5 ± 0 mm zones of inhibition against N. gonorrhoeae FA19 and H041, respectively. B. There 
is additional space in the tPBP2 active site that can be explored by derivatization of the JMT series. 
Composite surface for superimposed inhibitors shown in orange mesh. Receptor surface of 
tPBP2WT shown in grey. 
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6.2. Common features among published PBP-inhibitory compounds 
 
 Returning to the literature with additional insight and sharper focus provided by 

these studies, pervasive trends become apparent in reported inhibitors of diverse PBPs 

from a variety of bacterial species. Many inhibitors are structurally similar to the JMT series 

(Figure 6.4). In combination with the inhibition of P. aeruginosa PBP3 reported for JMT-1 

and JMT-2 in Chapter 4, these similarities suggest that JMT compounds may be capable 

of inhibiting the growth of a variety of pathogens. What is novel about the molecules 

reported in this work is the incorporation of the 1,1’-biphenyl system, whose secondary 

aromatic ring is uniquely capable of interacting with highly conserved N364 (of the SxN 

motif) and F420 of N. gonorrhoeae PBP2 according to the modeling data presented in 

Chapters 4 and 5. The predicted interactions with highly conserved residues provide 

further support for the hypothesis that these compounds may exhibit broad spectrum 

activity beyond N. gonorrhoeae.  
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Figure 6.4: Flexible alignment of JMT-84 with published noncovalent PBP inhibitors. 
Commonalities among the compounds examined include acidic (red), aromatic (orange) and 
hydrogen bond accepting (cyan) features. 
 
 
6.3. Future Directions 

The data presented on cephalosporin activity against N. gonorrhoeae H041 and 

its PBP2 provide a means of identifying cephalosporins with high activity against ESCR 

strains harboring mosaic penA alleles. First, cefoperazone should be investigated further 

for its application to gonococcal infections through the determination of murine 

pharmacokinetic parameters and subsequent dose optimization. Second, the generated 

QSAR models can also be applied to additional cephalosporins reported in the literature, 

including experimental compounds that were never developed, as well as those currently 

used solely in veterinary medicine. Finally, because the QSAR has been constructed using 

features of R1 and R2 separately, it can be used to computationally evaluate a series of 

carboxylic acids (R1) and sulfur nucleophiles (R2) for attachment to 7-

aminocephalosporanic acid according to Scheme 6.1.  
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Scheme 6.1: Proposed synthesis of novel cephalosporins from 7-aminocephalosporanic acid. 

 

Hit-to-lead optimization for JEK-42 and JMT-1 is underway, and many additional 

substitutions have been proposed for the scaffolds in Chapter 5, including less 

conservative modifications of the anthranilic acid and 1,1’-biphenyl moieties. Importantly, 

more biochemical and biological characterization is needed for the most potent molecules, 

including the determination of half-maximal inhibitory concentrations (IC50) against PBP2, 

minimum inhibitory concentrations (MIC) against N. gonorrhoeae strains, and half-

maximal eukaryotic cytotoxic doses (TD50). Macromolecular synthesis assays, 

microscopic observation of gonococcal morphology, or peptidoglycan cross-linking assays 

should also be conducted to confirm the compounds are on-target. If potent, on-target, 

selective antigonococcal compounds emerge, these compounds can be tested in the 

murine infection model described in Chapter 3. Potent antigonococcal compounds should 

also be tested for inhibition of additional class B PBPs, as well as for antimicrobial activity 

against a variety of pathogens. 
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6.4. Overall impact 

Together, these studies lay the groundwork for an antimicrobial discovery program 

targeted against the PBPs, with possibilities ranging from β-lactams to derivatives of the 

JMT series to entirely new, as yet unidentified chemotypes. The structure-activity 

relationships for cephalosporins against N. gonorrhoeae H041 provide mathematical 

models for in silico prediction of cephalosporin potency that can be employed in selecting 

semisynthetic cephalosporins from the literature, or in the design of entirely novel 

structures. In the latter case, such a model helps to reduce attrition by guiding the 

synthesis of molecules that are likely to be active in both enzymatic assays against 

tPBP2H041 and antimicrobial assays against N. gonorrhoeae H041. The synthesis and 

testing of JEK-42 and JMT-1 marks the discovery of two novel antimicrobial scaffolds that 

act through the inhibition of PBPs. These scaffolds are likely not susceptible to β-

lactamases, and based on preliminary data, it appears they are not vulnerable to the same 

PBP2 modifications that result in resistance to cephalosporins. Finally, the creation of 

pharmacophore models from structural similarities in PBP inhibitors allows the in silico 

discovery of yet other scaffolds to pursue, opening the possibilities for chemically diverse 

leads and, thus, greater odds of generating a successful drug candidate.  
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Appendix A. Pharmacophore-constrained cephalosporin docking parameters 
 

 

 
Figure A.1: Placement constraints for docking of cephalosporins to tPBP2H041. Criteria for 
placement in the docking protocol include: 1) a carboxylate centroid near proposed electrostatic 
anchor K497 and 2) a lactam ring adjacent S310 and projecting toward the oxyanion hole defined 
by S310 and T500.  A. Full receptor view. B. Detailed view. 

 

 

 

Figure A.2: Energy scores for pharmacophore-constrained docking of penams (A) and 
carbapenems (B). AMX: amoxicillin, AMP: ampicillin, MZC: mezlocillin, PNG: penicillin G, PNV: 
penicillin V, PPC: piperacillin, TCC: ticarcillin, IMI: imipenem, DORI: doripenem, MERO: 
meropenem, ERTA: ertapenem. 
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Appendix B. Untransformed activity data (IC50) for cephalosporins against 
tPBP2H041 

 
 

Figure B.1: tPBP2H041 IC50 curves for cephalosporins reported in Chapter 3. CFP: cefoperazone 
(2.5 ± 0.3 µM, r2 = 0.966), CPT: ceftaroline (2.6 ± 0.4 µM, r2 = 0.987), BPR: ceftobiprole (0.9 ± 0.1 
µM, r2 = 0.990), CRO: ceftriaxone (1.8 ± 0.3 µM, r2 = 0.977), ZOX: ceftizoxime (2.9 ± 0.8 µM, r2 = 
0.974), CTX: cefotaxime (3.0 ± 0.5 µM, r2 = 0.993). BOC10x: co-incubation with 10 µM Bocillin-FL, 
BOC-100x: co-incubation with 100 µM Bocillin-FL. n ≥ 3 determinations for each. Error bars are 
standard deviation. 
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Figure B.2: tPBP2H041 IC50 curves for cephalosporins reported in Chapter 3, continued. CAZ: 
ceftazidime (3.6 ± 0.6 µM, r2 = 0.991), CFM: cefixime (3.8 ± 0.4 µM, r2 = 0.983), FEP: cefepime 
(4.4 ± 0.4 µM, r2 = 0.966), CPD: cefpodoxime (4.7 ± 1.0 µM, r2 = 0.979), TOL: ceftolozane (14.7 ± 
1.8 µM, r2 = 0.985), CDR: cefdinir (33.8 ± 2.9 µM, r2 = 0.968). BOC10x: co-incubation with 10 µM 
Bocillin-FL. n ≥ 3 determinations for each. Error bars are standard deviation. 
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Figure B.3: tPBP2H041 IC50 curves for cephalosporins reported in Chapter 3, continued. CEC: 
cefaclor (97.0 ± 16.5 µM, r2 = 0.908), CTB: ceftibuten (144 ± 1 µM, r2 = 0.932), CXM: cefuroxime 
(400 ± 10 µM, r2 = 0.931), FOX: cefoxitin (840 ± 130 µM, r2 = 0.878), CMZ: cefmetazole (770 ± 10 
µM, r2 = 0.959), CFS: cefsulodin (3.7 ± 0.5 mM, r2 = 0.911). BOC10x: co-incubation with 10 µM 
Bocillin-FL. n ≥ 3 determinations for each. Error bars are standard deviation. 
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Figure B.4: tPBP2H041 inhibition data for cephalosporins classified in Chapter 3 as inactive. LOT: 
cefelothin (13 ± 4% inhibition), LEX: cephalexin (54 ± 8% inhibition), CFZ: cefazolin (26 ± 4% 
inhibition), LOR: cephaloridine (12 ± 9% inhibition). 1,000x Ceph:BOC: co-incubation of 10 mM 
cephalosporin with 10 µM Bocillin-FL. Error bars are standard deviation. 
 

 

Figure B.5: tPBP2H041-K361E IC50 curves for cephalosporins reported in Chapter 3. CFP: 
cefoperazone (1.6 ± 0.2 µM, r2 = 0.975), CRO: ceftriaxone (2.0 ± 0.5 µM, r2 = 0.984), CAZ: 
ceftazidime (11.1 ± 3.6 µM, r2 = 0.950), FEP: cefepime (13.4 ± 5.1 µM, r2 = 0.955). BOC10x: co-
incubation with 10 µM Bocillin-FL, BOC-100x: co-incubation with 100 µM Bocillin-FL. n ≥ 3 
determinations for each. Error bars are standard deviation. 
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Appendix C. Quantitative structure-activity relationship descriptors 
 
Table C.1: Definitions of physicochemical descriptors using the quantitative structure-activity 
relationships developed in Chapter 3. 
 

Descriptor Definition 

a_acc 
Number of hydrogen bond acceptor atoms 
(excluding acidic atoms, but including 
atoms that function as both hydrogen bond 
donors and acceptors) 

a_donacc 
Number of hydrogen bond donor atoms 
plus number of hydrogen bond acceptors 
atoms 

a_ICM 

Mean atom information content / entropy of 
element distribution. Sum of pilogpi for all i, 
where pi = ni/n, ni is the number of 
occurrences of atomic number i in the 
molecule, and n is the total number of 
atoms. 

BCUT_PEOE_0 

Smallest eigenvalue of a modified 
adjacency matrix in which each ij entry 
takes the value 1/sqrt(bij), where bij is the 
formal bond order between bonded atoms i 
and j. The diagonal takes the value of 
PEOE partial charges. 

BCUT_PEOE_3 

Largest eigenvalue of a modified adjacency 
matrix in which each ij entry takes the value 
1/sqrt(bij), where bij is the formal bond order 
between bonded atoms i and j. The 
diagonal takes the value of PEOE partial 
charges. 

BCUT_SLOGP_0 

Smallest eigenvalue of a modified 
adjacency matrix in which each ij entry 
takes the value 1/sqrt(bij), where bij is the 
formal bond order between bonded atoms i 
and j. The diagonal takes the value of 
atomic contribution to logP(o/w). 

BCUT_SLOGP_1 

Second eigenvalue of a modified adjacency 
matrix in which each ij entry takes the value 
1/sqrt(bij), where bij is the formal bond order 
between bonded atoms i and j. The 
diagonal takes the value of atomic 
contribution to logP(o/w). 

BCUT_SLOGP_3 

Largest eigenvalue of a modified adjacency 
matrix in which each ij entry takes the value 
1/sqrt(bij), where bij is the formal bond order 
between bonded atoms i and j. The 
diagonal takes the value of atomic 
contribution to logP(o/w). 

BCUT_SMR_3 
Largest eigenvalue of a modified adjacency 
matrix in which each ij entry takes the value 
1/sqrt(bij), where bij is the formal bond order 
between bonded atoms i and j. The 
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diagonal takes the value of atomic 
contribution to molar refractivity. 

chi0v 

Atomic valence connectivity index (order 0) 
from Hall, calculated as the sum of 1/sqrt(vi) 
over all heavy atoms i with vi > 0. 
 
For heavy atom i, let vi = (pi-hi)/(Zi-pi-1) 
where pi is the number of s and p valence 
electrons.   

chi1v_C 

Carbon valence connectivity index (order 
1), calculated as the sum of 1/sqrt(vivj) over 
all bonds between carbon atoms i and j 
where i < j. 
 
For heavy atom i, let vi = (pi-hi)/(Zi-pi-1) 
where pi is the number of s and p valence 
electrons.   

FCharge Total formal charge. 

GCUT_PEOE_1 

Second eigenvalue of a modified distance 
adjacency matrix in which each ij entry 
takes the value 1/sqrt(dij), where dij is the 
graph distance between atoms i and j. The 
diagonal takes the value of PEOE partial 
charges. 

GCUT_PEOE_2 

Third eigenvalue of a modified distance 
adjacency matrix in which each ij entry 
takes the value 1/sqrt(dij), where dij is the 
graph distance between atoms i and j. The 
diagonal takes the value of PEOE partial 
charges. 

h_logS 
log of aqueous solubility (mol/L) using a 7-
parameter model based on Hueckel Theory 
with r2 = 0.83, RMSE 0.85 on 1,708 
molecules. 

Kier1 
First kappa shape index: (n-1)2/m2, where n 
is the number of atoms in a hydrogen-
suppressed molecular graph and m is the 
number of bonds. 

KierA2 
Second alpha modified shape index: s(s-
1)2/m2 where s = n+a, where a is a 
correction factor derived from the covalent 
radii of bonded atoms. 

KierFlex Kier molecular flexibility index: 
(KierA1)(KierA2)/n. 

PEOE_VSA_FPNEG 

Fractional negative polar van der Waals 
surface area: sum of approximate van der 
Waals surface area vi (Å2) for each atom i 
with partial charge qi < -0.2, divided by the 
total van der Waals surface area. 

PEOE_VSA-1 
Sum of approximate van der Waals surface 
area vi (Å2) for each atom i whose 
contribution to PEOE qi is in the range [-0.1, 
0.05). 
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PEOE_VSA-3 
Sum of approximate van der Waals surface 
area vi (Å2) for each atom i whose 
contribution to PEOE qi is in the range [-0.2, 
-0.15). 

PEOE_VSA-4 
Sum of approximate van der Waals surface 
area vi (Å2) for each atom i whose 
contribution to PEOE qi is in the range [-
0.25, -0.2). 

PEOE_VSA+0 
Sum of approximate van der Waals surface 
area vi (Å2) for each atom i whose 
contribution to PEOE qi is in the range [0, 
0.05). 

PEOE_VSA+1 
Sum of approximate van der Waals surface 
area vi (Å2) for each atom i whose 
contribution to PEOE qi is in the range 
[0.05, 0.1). 

PEOE_VSA+3 

Sum of approximate van der Waals surface 
area vi (Å2) for each atom i whose 
contribution to PEOE qi is in the range 
[0.15, 0.2). 

PEOE_VSA+4 

Sum of approximate van der Waals surface 
area vi (Å2) for each atom i whose 
contribution to PEOE qi is in the range [0.2, 
0.25). 

PEOE_VSA+6 
Sum of approximate van der Waals surface 
area vi (Å2) for each atom i whose 
contribution to PEOE qi > 0.3. 

Q_RPC+ 
Relative positive partial charge: the largest 
positive qi divided by the sume of positive 
qi. 

SlogP_VSA0 
Sum of approximate van der Waals surface 
area vi (Å2) for each atom i whose 
contribution to logP(o/w) Li ≤ -0.4. 

SlogP_VSA1 

Sum of approximate van der Waals surface 
area vi (Å2) for each atom i whose 
contribution to logP(o/w) Li is in the range (-
0.4, 0.2]. 

SlogP_VSA2 

Sum of approximate van der Waals surface 
area vi (Å2) for each atom i whose 
contribution to logP(o/w) Li is in the range (-
0.2, 0]. 

SlogP_VSA4 

Sum of approximate van der Waals surface 
area vi (Å2) for each atom i whose 
contribution to logP(o/w) Li is in the range 
(0.1, 0.15] 

SlogP_VSA7 

Sum of approximate van der Waals surface 
area vi (Å2) for each atom i whose 
contribution to logP(o/w) Li is in the range 
(0.25, 0.30]. 

SMR_VSA3 

Sum of approximate van der Waals surface 
area vi (Å2) for each atom i whose 
contribution to molar refractivity Ri is in the 
range (0.35, 0.39]. 
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SMR_VSA4 

Sum of approximate van der Waals surface 
area vi (Å2) for each atom i whose 
contribution to molar refractivity Ri is in the 
range (0.4, 0.44]. 

vdw_area 
area of van der Waals surface (Å2) 
calculated using connection table 
approximation. 

zagreb 
Zagreb index: the sum of squares of heavy 
atom degree di over all heavy atoms i. 
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Appendix D. Characterization of synthesized compounds by ESI-MS and 1HNMR  

5-fluoro-2-(4'-methyl-[1,1'-biphenyl]-4-carboxamido)benzoic acid (JEK-42). The reaction 
of 4'-methyl-[1,1'-biphenyl]-4-carboxylic acid afforded JEK-42 as a white powder. 1H NMR 
(600 MHz, D3COCD3): δ = 12.19 (s, 1H), 9.00 (dd, J = 5.2, 9.3 Hz, 1H), 8.09 (d, J = 8.4 
Hz, 2H), 7.84 (d, J = 8.5 Hz, 2H), 7.86 (m, 1H), 7.64 (d, J = 8.2 Hz, 2H), 7.50 (dq, J = 3.2, 
9.3 Hz, 1H), 7.32 (d, J = 7.9 Hz, 2H), 3.08 (s, 3H). ESI-MS for C21H16FNO3: [M-H]- 
calculated 348.1, found 348.2 
 
5-fluoro-2-(4'-methyl-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-1). The reaction of 
4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded 
JMT-1 as a beige powder. 1H NMR (600 MHz, D3COCD3): δ = 10.73 (s, 1H), 7.87 (d, J = 
8.5 Hz, 2H), 7.80 (m, 1H), 7.79 (d, J = 8.6 Hz, 2H), 7.67 (dd, J = 3.1, 9.1 Hz, 1H), 7.57 (d, 
J = 8.1 Hz, 2H), 7.43 (dq, J = 3.0, 10.3 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 2.35 (s, 3H). ESI-
MS for C20H16FNO4S: [M-H]- calculated 384.1, found 384.2 
 
2-(4'-methyl-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-2). The reaction of 4'-
methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded JMT-
2 as a white powder.  ESI-MS for C20H17NO4S: [M-H]- calculated 366.1, found 366.2 
 
4-fluoro-2-(4'-methyl-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-3). The reaction of 
4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded 
JMT-2 as a beige powder. ESI-MS for C20H16FNO4S: [M-H]- calculated 384.1, found 384.2 
 
4,5-difluoro-2-(4'-methyl-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-4). The 
reaction of 4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I 
afforded JMT-4 as a beige powder. ESI-MS for C20H15F2NO4S: [M-H]- calculated 402.1, 
found 402.2 
 
4-chloro-2-(4'-methyl-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-5). The reaction of 
4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded 
JMT-5 as a white powder. 1H NMR (600 MHz, D3COCD3): δ = 11.27 (s, 1H), 8.02 (d, J = 
8.5 Hz, 1H), 7.96 (d, J = 8.6 Hz, 2H), 7.84 (d, J  = 8.5 Hz, 2H), 7.74 (d, J = 2.0 Hz, 1H), 
7.58 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.26 (dd, J = 2.0, 8.5 Hz, 1H), 2.35 (s, 
3H). ESI-MS for C20H16ClNO4S: [M-H]- calculated 400.0, found 400.2, 402.2 
  
5-chloro-2-(4'-methyl-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-6). The reaction of 
4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded 
JMT-6 as a white powder. ESI-MS for C20H16ClNO4S: [M-H]- calculated 400.0, found 
400.2, 402.2 
 
4-bromo-2-(4'-methyl-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-7). The reaction of 
4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded 
JMT-7 as a white powder. ESI-MS for C20H16BrNO4S: [M-H]- calculated 444.0, found 
444.1, 446.1 
 
5-bromo-2-(4'-methyl-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-8). The reaction of 
4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded 
JMT-8 as a white powder. ESI-MS for C20H16BrNO4S: [M-H]- calculated 444.0, found 
444.2, 446.1 
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4-methyl-2-(4'-methyl-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-9). The reaction of 
4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded 
JMT-9 as a white powder. ESI-MS for C21H19NO4S: [M-H]- calculated 380.1, found 380.2 
 
5-methyl-2-(4'-methyl-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-10). The reaction 
of 4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded 
JMT-10 as a white powder. ESI-MS for C21H19NO4S: [M-H]- calculated 380.1, found 380.2 
 
6-methyl-2-(4'-methyl-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-11). The reaction 
of 4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded 
JMT-11 as a white powder. ESI-MS for C21H19NO4S: [M-H]- calculated 380.1, found 380.3 
 
4-(trifluoromethyl)-2-(4'-methyl-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-12). The 
reaction of 4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I 
afforded JMT-12 as a white powder. 1H NMR (600 MHz, D3COCD3): δ = 11.29 (s, 1H), 
8.23 (d, J = 8.2 Hz, 1H), 8.02 (d, J = 0.6 Hz, 1H), 7.95 (d, J  = 8.6 Hz, 2H), 7.84 (d, J = 8.7 
Hz, 2H), 7.58 (d, J = 8.2 Hz, 2H), 7.46 (dd, J = 1.1, 8.2 Hz, 1H), 7.29 (d, J = 7.8 Hz, 2H), 
2.35 (s, 3H). ESI-MS for C21H16F3NO4S: [M-H]- calculated 434.1, found 434.2 
 
5-(trifluoromethyl)-2-(4'-methyl-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-13). The 
reaction of 4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I 
afforded JMT-13 as a white powder. 1H NMR (600 MHz, D3COCD3): δ = 11.39 (s, 1H), 
8.29 (s, 1H), 8.02 (d, J = 8.5 Hz, 1H), 7.91 (m, 2H), 7.84 (d, J = 8.3 Hz, 2H), 7.58 (d, J = 
7.9 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 2.35 (s, 3H). ESI-MS for C21H16F3NO4S: [M-H]- 
calculated 434.1, found 434.2 
 
4-methoxy-2-(4'-methyl-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-14). The 
reaction of 4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I 
afforded JMT-14 as an off-white powder. ESI-MS for C21H19NO5S: [M-H]- calculated 396.1, 
found 396.2 
 
5-methoxy-2-(4'-methyl-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-15). The 
reaction of 4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I 
afforded JMT-15 as an off-white powder. ESI-MS for C21H19NO5S: [M-H]- calculated 396.1, 
found 396.3 
 
N-(2-(1H-tetrazol-5-yl)-5-fluorophenyl)-4'-methyl-[1,1'-biphenyl]-4-sulfonamide (JMT-16). 
The reaction of 4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure II afforded JMT-16 as a white powder. ESI-MS for C20H16FN5O2S: [M-H]- 
calculated 408.1, found 408.3 
 
N-(2-(1H-tetrazol-5-yl)-4-fluorophenyl)-4'-methyl-[1,1'-biphenyl]-4-sulfonamide (JMT-17). 
The reaction of 4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure II afforded JMT-17 as a white powder. ESI-MS for C20H16FN5O2S: [M-H]- 
calculated 408.1, found 408.2 
 
N-(2-(1H-tetrazol-5-yl)-4-chlorophenyl)-4'-methyl-[1,1'-biphenyl]-4-sulfonamide (JMT-18). 
The reaction of 4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure II afforded JMT-18 as a white powder. ESI-MS for C20H16ClN5O2S: [M-H]- 
calculated 424.1, found 424.2, 426.3 
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N-(2-(1H-tetrazol-5-yl)-4-bromophenyl)-4'-methyl-[1,1'-biphenyl]-4-sulfonamide (JMT-19). 
The reaction of 4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure II afforded JMT-19 as a white powder. 1H NMR (600 MHz, D3COCD3): δ = 10.70 
(s, 1H), 8.15 (d, J = 2.3, 1H), 8.03 (d, J = 8.6 Hz, 1H), 7.79 (m, 1H), 7.73 (dd, J = 2.3, 8.9 
Hz, 1H), 7.53 (d, J = 8.2 Hz, 2H), 7.27 (d, J = 7.9 Hz, 2H), 7.03 (d, J = 8.6 Hz, 2H) 2.35 
(s, 3H). ESI-MS for C20H16BrN5O2S: [M-H]- calculated 468.0, found 468.2, 470.2 
 
N-(2-(1H-tetrazol-5-yl)-5-methylphenyl)-4'-methyl-[1,1'-biphenyl]-4-sulfonamide (JMT-
20). The reaction of 4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure II afforded JMT-20 as a white powder. ESI-MS for C21H19N5O2S: [M-H]- 
calculated 404.1, found 404.3 
 
N-(2-(1H-tetrazol-5-yl)-4-methylphenyl)-4'-methyl-[1,1'-biphenyl]-4-sulfonamide (JMT-
21). The reaction of 4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure II afforded JMT-21 as a white powder. ESI-MS for C21H19N5O2S: [M-H]- 
calculated 404.1, found 404.3 
 
N-(2-(1H-tetrazol-5-yl)-5-(trifluoromethyl)phenyl)-4'-methyl-[1,1'-biphenyl]-4-sulfonamide 
(JMT-22). The reaction of 4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to 
General Procedure II afforded JMT-22 as a white powder. ESI-MS for C21H16F3N5O2S: [M-
H]- calculated 458.1, found 458.2 
 
N-(2-(1H-tetrazol-5-yl)-4-(trifluoromethyl)phenyl)-4'-methyl-[1,1'-biphenyl]-4-sulfonamide 
(JMT-23). The reaction of 4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to 
General Procedure II afforded JMT-23 as a white powder. ESI-MS for C21H16F3N5O2S: [M-
H]- calculated 458.1, found 458.2 
 
N-(2-(1H-tetrazol-5-yl)-5-methoxyphenyl)-4'-methyl-[1,1'-biphenyl]-4-sulfonamide (JMT-
24). The reaction of 4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure II afforded JMT-24 as a beige powder. ESI-MS for C21H19N5O3S: [M-H]- 
calculated 420.1, found 420.3 
 
N-(2-(1H-tetrazol-5-yl)-4-methoxyphenyl)-4'-methyl-[1,1'-biphenyl]-4-sulfonamide (JMT-
25). The reaction of 4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure II afforded JMT-25 as an off-white powder. ESI-MS for C21H19N5O3S: [M-H]- 
calculated 420.1, found 420.3 
 
((4'-methyl-[1,1'-biphenyl]-4-yl)sulfonyl)proline (JMT-26). The reaction of 4'-methyl-[1,1'-
biphenyl]-4-sulfonyl chloride according to General Procedure I afforded JMT-26 as a white 
powder. ESI-MS for C18H19NO4S: [M-H]- calculated 344.1, found 344.2 
 
3-((4'-methyl-[1,1'-biphenyl]-4-yl)sulfonyl)thiazolidine-4-carboxylic acid (JMT-27). The 
reaction of 4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I 
afforded JMT-27 as a white powder. ESI-MS for C17H17NO4S2: [M-H]- calculated 362.1, 
found 362.2 
 
5,5-dimethyl-3-((4'-methyl-[1,1'-biphenyl]-4-yl)sulfonyl)thiazolidine-4-carboxylic acid 
(JMT-28). The reaction of 4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to 
General Procedure I afforded JMT-28 as a white powder. ESI-MS for C19H21NO4S2: 
calculated 390.1, found 390.2 
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1-((4'-methyl-[1,1'-biphenyl]-4-yl)sulfonyl)piperidine-2-carboxylic acid (JMT-29). The 
reaction of 4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I 
afforded JMT-29 as a white powder. ESI-MS for C19H21NO4S: [M-H]- calculated 358.1, 
found 358.3 
 
3-((4'-methyl-[1,1'-biphenyl]-4-yl)sulfonyl)-1,3-thiazinane-4-carboxylic acid (JMT-30). The 
reaction of 4'-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I 
afforded JMT-30 as a white powder. ESI-MS for C18H19NO4S2: [M-H]- calculated 376.1, 
found 376.2 
 
2-([1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-31). The reaction of [1,1'-biphenyl]-4-
sulfonyl chloride according to General Procedure I afforded JMT-31 as a white powder. 
ESI-MS for C19H15NO4S: [M-H]- calculated 352.1, found 352.2 
 
4-fluoro-2-([1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-32). The reaction of [1,1'-
biphenyl]-4-sulfonyl chloride according to General Procedure I afforded JMT-32 as a beige 
powder. ESI-MS for C19H14FNO4S: [M-H]- calculated 370.1, found 370.2 
 
5-fluoro-2-([1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-33). The reaction of [1,1'-
biphenyl]-4-sulfonyl chloride according to General Procedure I afforded JMT-33 as an off-
white powder. ESI-MS for C19H14FNO4S: [M-H]- calculated 370.1, found 370.2 
 
5-bromo-2-([1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-34). The reaction of [1,1'-
biphenyl]-4-sulfonyl chloride according to General Procedure I afforded JMT-34 as a white 
powder. ESI-MS for C19H14BrNO4S: [M-H]- calculated 430.0, found 430.0, 432.1 
 
5-methyl-2-([1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-35). The reaction of [1,1'-
biphenyl]-4-sulfonyl chloride according to General Procedure I afforded JMT-35 as a white 
powder. ESI-MS for C20H17NO4S: [M-H]- calculated 366.1, found 366.2 
 
4-fluoro-2-(3'-methyl-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-36). The reaction 
of 3’-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded 
JMT-36 as an off-white powder. ESI-MS for C20H16FNO4S: [M-H]- calculated 384.1, found 
384.2 
 
5-fluoro-2-(3'-methyl-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-37). The reaction 
of 3’-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded 
JMT-37 as an off-white powder. ESI-MS for C20H16FNO4S: [M-H]- calculated 384.1, found 
384.2 
 
5-bromo-2-(3'-methyl-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-38). The reaction 
of 3’-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded 
JMT-38 as a white powder. ESI-MS for C20H16BrNO4S: [M-H]- calculated 444.0, found 
444.1, 446.2 
 
5-methyl-2-(3'-methyl-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-39). The reaction 
of 3’-methyl-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded 
JMT-39 as a white powder. ESI-MS for C21H19NO4S: [M-H]- calculated 380.1, found 380.3 
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4-fluoro-2-(4'-methoxy-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-40). The reaction 
of 4’-methoxy-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I 
afforded JMT-40 as a beige powder. ESI-MS for C20H16FNO5S: [M-H]- calculated 400.1, 
found 400.2 
 
5-fluoro-2-(4'-methoxy-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-41). The reaction 
of 4’-methoxy-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I 
afforded JMT-41 as an off-white powder. ESI-MS for C20H16FNO5S: [M-H]- calculated 
400.1, found 400.3 
 
4,5-difluoro-2-(4'-methoxy-[1,1'-biphenyl]-4-sulfonamido)benzoic acid  (JMT-42). The 
reaction of 4’-methoxy-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure 
I afforded JMT-42 as a beige powder. ESI-MS for C20H15F2NO5S: [M-H]- calculated 418.1, 
found 418.2 
 
5-bromo-2-(4'-methoxy-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-43). The 
reaction of 4’-methoxy-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure 
I afforded JMT-43 as a beige powder. ESI-MS for C20H16BrNO5S: [M-H]- calculated 460.0, 
found 460.0, 462.1 
 
4-methyl-2-(4'-methoxy-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-44). The 
reaction of 4’-methoxy-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure 
I afforded JMT-44 as an off-white powder. ESI-MS for C21H19NO5S: [M-H]- calculated 
396.1, found 396.3 
 
5-methyl-2-(4'-methoxy-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-45). The 
reaction of 4’-methoxy-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure 
I afforded JMT-45 as a white powder. ESI-MS for C21H19NO5S: [M-H]- calculated 396.1, 
found 396.3 
 
4-(trifluoromethyl)-2-(4'-methoxy-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-46). 
The reaction of 4’-methoxy-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure I afforded JMT-46 as a white powder. ESI-MS for C21H16F3NO5S: [M-H]- 
calculated 450.1, found 450.2 
 
5-(trifluoromethyl)-2-(4'-methoxy-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-47). 
The reaction of 4’-methoxy-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure I afforded JMT-47 as a white powder. ESI-MS for C21H16F3NO5S: [M-H]- 
calculated 450.1, found 450.1 
 
4-methoxy-2-(4'-methoxy-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-48). The 
reaction of 4’-methoxy-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure 
I afforded JMT-48 as a beige powder. ESI-MS for C21H19NO6S: [M-H]- calculated 412.1, 
found 412.3 
 
5-methoxy-2-(4'-methoxy-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-49). The 
reaction of 4’-methoxy-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure 
I afforded JMT-49 as an off-white powder. ESI-MS for C21H19NO6S: [M-H]- calculated 
412.1, found 412.3 
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N-(2-(1H-tetrazol-5-yl)-5-fluorophenyl)-4'-methoxy-[1,1'-biphenyl]-4-sulfonamide (JMT-
50). The reaction of 4’-methoxy-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure II afforded JMT-50 as a white powder. ESI-MS for C20H16FN5O3S: [M-H]- 
calculated 424.1, found 424.3 
 
N-(2-(1H-tetrazol-5-yl)-4-fluorophenyl)-4'-methoxy-[1,1'-biphenyl]-4-sulfonamide (JMT-
51). The reaction of 4’-methoxy-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure II afforded JMT-51 as a white powder. ESI-MS for C20H16FN5O3S: [M-H]- 
calculated 424.1, found 424.2 
 
N-(2-(1H-tetrazol-5-yl)-4-bromophenyl)-4'-methoxy-[1,1'-biphenyl]-4-sulfonamide (JMT-
52). The reaction of 4’-methoxy-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure II afforded JMT-52 as a white powder. ESI-MS for C20H16BrN5O3S: [M-H]- 
calculated 484.0, found 484.2, 486.2 
 
N-(2-(1H-tetrazol-5-yl)-5-methylphenyl)-4'-methoxy-[1,1'-biphenyl]-4-sulfonamide (JMT-
53). The reaction of 4’-methoxy-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure II afforded JMT-53 as a white powder. ESI-MS for C21H19N5O3S: [M-H]- 
calculated 420.1, found 420.3 
 
N-(2-(1H-tetrazol-5-yl)-4-methylphenyl)-4'-methoxy-[1,1'-biphenyl]-4-sulfonamide (JMT-
54). The reaction of 4’-methoxy-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure II afforded JMT-54 as a white powder. ESI-MS for C21H19N5O3S: [M-H]- 
calculated 420.1, found 420.3 
 
N-(2-(1H-tetrazol-5-yl)-5-(trifluoromethyl)phenyl)-4'-methoxy-[1,1'-biphenyl]-4-
sulfonamide (JMT-55). The reaction of 4’-methoxy-[1,1'-biphenyl]-4-sulfonyl chloride 
according to General Procedure II afforded JMT-55 as a white powder. ESI-MS for 
C21H16F3N5O3S: [M-H]- calculated 474.1, found 474.3 
 
N-(2-(1H-tetrazol-5-yl)-4-(trifluoromethyl)phenyl)-4'-methoxy-[1,1'-biphenyl]-4-
sulfonamide (JMT-56). The reaction of 4’-methoxy-[1,1'-biphenyl]-4-sulfonyl chloride 
according to General Procedure II afforded JMT-56 as a white powder. ESI-MS for 
C21H16F3N5O3S: [M-H]- calculated 474.1, found 474.3 
 
N-(2-(1H-tetrazol-5-yl)-5-methoxyphenyl)-4'-methoxy-[1,1'-biphenyl]-4-sulfonamide (JMT-
57). The reaction of 4’-methoxy-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure II afforded JMT-57 as an off-white powder. ESI-MS for C21H19N5O4S: [M-H]- 
calculated 436.1, found 436.2 
 
N-(2-(1H-tetrazol-5-yl)-4-methoxyphenyl)-4'-methoxy-[1,1'-biphenyl]-4-sulfonamide (JMT-
58). The reaction of 4’-methoxy-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure II afforded JMT-58 as an off-white powder. ESI-MS for C21H19N5O4S: [M-H]- 
calculated 436.1, found 436.3 
 
4-fluoro-2-(4'-fluoro-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-59). The reaction of 
4’-fluoro-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded 
JMT-59 as a beige powder. ESI-MS for C19H13F2NO4S: [M-H]- calculated 388.1, found 
388.2 
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5-fluoro-2-(4'-fluoro-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-60). The reaction of 
4’-fluoro-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded 
JMT-60 as a beige powder. ESI-MS for C19H13F2NO4S: [M-H]- calculated 388.1, found 
388.1 
 
4,5-difluoro-2-(4'-fluoro-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-61). The 
reaction of 4’-fluoro-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I 
afforded JMT-61 as a beige powder. ESI-MS for C19H12F3NO4S: [M-H]- calculated 406.0, 
found 406.2  
 
5-bromo-2-(4'-fluoro-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-62). The reaction of 
4’-fluoro-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded 
JMT-62 as a white powder. ESI-MS for C19H13FBrNO4S: [M-H]- calculated 448.0, found 
448.0, 450.0 
 
4-methyl-2-(4'-fluoro-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-63). The reaction 
of 4’-fluoro-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded 
JMT-63 as an off-white powder. ESI-MS for C20H16FNO4S: [M-H]- calculated 384.1, 
found 384.2 
 
5-methyl-2-(4'-fluoro-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-64). The reaction 
of 4’-fluoro-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded 
JMT-64 as an off-white powder. ESI-MS for C20H16FNO4S: [M-H]- calculated 384.1, found 
384.2 
 
5-methoxy-2-(4'-fluoro-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-65). The reaction 
of 4’-fluoro-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded 
JMT-65 as an off-white powder. ESI-MS for C20H16FNO5S: [M-H]- calculated 400.1, found 
400.2 
 
N-(2-(1H-tetrazol-5-yl)-4-fluorophenyl)-4'-fluoro-[1,1'-biphenyl]-4-sulfonamide (JMT-66). 
The reaction of 4’-fluoro-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure II afforded JMT-66 as a white powder. ESI-MS for C19H13F2N5O2S: [M-H]- 
calculated 412.1, found 412.2 
 
N-(2-(1H-tetrazol-5-yl)-4-methylphenyl)-4'-fluoro-[1,1'-biphenyl]-4-sulfonamide (JMT-67). 
The reaction of 4’-fluoro-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure II afforded JMT-67 as a white powder. ESI-MS for C20H16FN5O2S: [M-H]- 
calculated 408.1, found 408.3 
 
4-fluoro-2-(4'-chloro-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-68). The reaction of 
4’-chloro-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded 
JMT-68 as an off-white powder. ESI-MS for C19H13ClFNO4S: [M-H]- calculated 404.0, 
found 404.1, 406.1 
 
5-fluoro-2-(4'-chloro-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-69). The reaction of 
4’-chloro-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded 
JMT-69 as a white powder. ESI-MS for C19H13ClFNO4S: [M-H]- calculated 404.0, found 
404.1, 406.1 
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4,5-difluoro-2-(4'-chloro-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-70). The 
reaction of 4’-chloro-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I 
afforded JMT-70 as an off-white powder. ESI-MS for C19H12ClF2NO4S: [M-H]- calculated 
422.0, found 422.2, 424.1 
 
5-bromo-2-(4'-chloro-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-71). The reaction 
of 4’-chloro-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded 
JMT-71 as a white powder. ESI-MS for C19H13BrClNO4S: [M-H]- calculated 463.9, found 
464.1, 466.1 
 
4-methyl-2-(4'-chloro-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-72). The reaction 
of 4’-chloro-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded 
JMT-72 as a white powder. ESI-MS for C20H16ClNO4S: [M-H]- calculated 400.0, found 
400.2, 402.1 
 
5-methyl-2-(4'-chloro-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-73). The reaction 
of 4’-chloro-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I afforded 
JMT-73 as a white powder. ESI-MS for C20H16ClNO4S: [M-H]- calculated 400.1, found 
400.1, 402.2 
 
4-(trifluoromethyl)-2-(4'-chloro-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-74). The 
reaction of 4’-chloro-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I 
afforded JMT-74 as a white powder. ESI-MS for C20H13ClF3NO4S: [M-H]- calculated 454.0, 
found 454.1 
 
5-(trifluoromethyl)-2-(4'-chloro-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-75). The 
reaction of 4’-chloro-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I 
afforded JMT-75 as a white powder. ESI-MS for C20H13ClF3NO4S: [M-H]- calculated 454.0, 
found 454.2, 456.0 
 
4-methoxy-2-(4'-chloro-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-76). The 
reaction of 4’-chloro-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I 
afforded JMT-76 as an off-white powder. ESI-MS for C20H16ClNO5S: [M-H]- calculated 
416.0, found 416.2, 418.2 
 
5-methoxy-2-(4'-chloro-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-77). The 
reaction of 4’-chloro-[1,1'-biphenyl]-4-sulfonyl chloride according to General Procedure I 
afforded JMT-77 as an off-white powder. ESI-MS for C20H16ClNO5S: [M-H]- calculated 
416.0, found 416.2, 418.2 
 
N-(2-(1H-tetrazol-5-yl)-5-fluorophenyl)-4'-chloro-[1,1'-biphenyl]-4-sulfonamide (JMT-78). 
The reaction of 4’-chloro-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure II afforded JMT-78 as a white powder. ESI-MS for C19H13ClFN5O2S: [M-H]- 
calculated 428.0, found 428.2, 430.3 
 
N-(2-(1H-tetrazol-5-yl)-4-fluorophenyl)-4'-chloro-[1,1'-biphenyl]-4-sulfonamide (JMT-79). 
The reaction of 4’-chloro-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure II afforded JMT-79 as a white powder. ESI-MS for C19H13ClFN5O2S: [M-H]- 
calculated 428.0, found 428.2, 430.2 
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N-(2-(1H-tetrazol-5-yl)-5-methylphenyl)-4'-chloro-[1,1'-biphenyl]-4-sulfonamide (JMT-80). 
The reaction of 4’-chloro-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure II afforded JMT-80 as a white powder. ESI-MS for C20H16ClN5O2S: [M-H]- 
calculated 424.1, found 424.3, 426.2 
 
N-(2-(1H-tetrazol-5-yl)-4-methylphenyl)-4'-chloro-[1,1'-biphenyl]-4-sulfonamide (JMT-81). 
The reaction of 4’-chloro-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure II afforded JMT-81 as a white powder. ESI-MS for C20H16ClN5O2S: [M-H]- 
calculated 424.1, found 424.2, 426.2 
 
N-(2-(1H-tetrazol-5-yl)-5-methoxyphenyl)-4'-chloro-[1,1'-biphenyl]-4-sulfonamide (JMT-
82). The reaction of 4’-chloro-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure II afforded JMT-82 as a beige powder. ESI-MS for C20H16ClN5O3S: [M-H]- 
calculated 440.1, found 440.2, 442.2 
 
N-(2-(1H-tetrazol-5-yl)-4-methoxyphenyl)-4'-chloro-[1,1'-biphenyl]-4-sulfonamide (JMT-
83). The reaction of 4’-chloro-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure II afforded JMT-83 as an off-white powder. ESI-MS for C20H16ClN5O3S: [M-H]- 
calculated 440.1, found 440.2, 442.2 
 
4-fluoro-2-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-84). The 
reaction of 4’-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure I afforded JMT-84 as a beige powder. 1H NMR (600 MHz, D3COCD3): δ = 11.60 
(s, 1H), 8.11 (dd, J = 6.5, 8.9 Hz, 1H), 8.06 (d, J = 8.5 Hz, 2H), 7.95 (d, J  = 8.7 Hz, 2H), 
7.93 (d, J = 8.5 Hz, 2H), 7.83 (d, J = 8.2 Hz, 2H), 7.47 (dd, J = 2.5, 11.1 Hz, 1H), 6.93 (dt, 
J = 2.5, 8.1 Hz, 1H). ESI-MS for C20H13F4NO4S: [M-H]- calculated 438.0, found 438.2 
 
5-fluoro-2-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-85). The 
reaction of 4’-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure I afforded JMT-85 as an off-white powder. 1H ESI-MS for C20H13F4NO4S: [M-
H]- calculated 438.0, found 438.2 
 
4,5-difluoro-2-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-86). 
The reaction of 4’-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure I afforded JMT-86 as a beige powder. 1H NMR (600 MHz, D3COCD3): δ = 11.14 
(s, 1H), 8.02 (d, J = 8.6 Hz, 2H), 7.93 (m, 5H), 7.83 (d, J  = 8.3 Hz, 2H), 7.67 (dd, J = 7.1, 
12.4 Hz, 1H). ESI-MS for C20H12F5NO4S: [M-H]- calculated 456.0, found 456.2 
 
5-bromo-2-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-87). The 
reaction of 4’-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure I afforded JMT-87 as a white powder. ESI-MS for C20H13BrF3NO4S: [M-H]- 
calculated 498.0, found 498.1, 500.2 
 
4-methyl-2-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-88). The 
reaction of 4’-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure I afforded JMT-88 as an off-white powder. ESI-MS for C21H16F3NO4S: [M-H]- 
calculated 434.1, found 434.2 
 
 
 



 309 

5-methyl-2-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-89). The 
reaction of 4’-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure I afforded JMT-89 as an off-white powder. ESI-MS for C21H16F3NO4S: [M-H]- 
calculated 434.1, found 434.2 
 
4-(trifluoromethyl)-2-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-
90). The reaction of 4’-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonyl chloride according to 
General Procedure I afforded JMT-90 as a white powder. ESI-MS for C21H13F6NO4S: [M-
H]- calculated 488.0, found 488.2 
 
5-(trifluoromethyl)-2-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-
91). The reaction of 4’-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonyl chloride according to 
General Procedure I afforded JMT-91 as a white powder. ESI-MS for C21H13F6NO4S: [M-
H]- calculated 488.0, found 488.2 
 
4-methoxy-2-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-92). 
The reaction of 4’-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure I afforded JMT-92 as an off-white powder. ESI-MS for C21H16F3NO5S: [M-H]- 
calculated 450.1, found 450.2 
 
5-methoxy-2-(4'-trifluoromethyl)-[1,1'-biphenyl]-4-sulfonamido)benzoic acid (JMT-93). 
The reaction of 4’-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonyl chloride according to General 
Procedure I afforded JMT-93 as a white powder. ESI-MS for C21H16F3NO5S: [M-H]- 
calculated 450.1, found 450.2 
 
N-(2-(1H-tetrazol-5-yl)-5-fluorophenyl)-4'-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonamide 
(JMT-94). The reaction of 4’-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonyl chloride according 
to General Procedure II afforded JMT-94 as a white powder. ESI-MS for C20H13F4N5O2S: 
[M-H]- calculated 462.1, found 462.2 
 
N-(2-(1H-tetrazol-5-yl)-4-fluorophenyl)-4'-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonamide 
(JMT-95). The reaction of 4’-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonyl chloride according 
to General Procedure II afforded JMT-95 as a white powder. ESI-MS for C20H13F4N5O2S: 
[M-H]- calculated 462.1, found 462.2 
 
N-(2-(1H-tetrazol-5-yl)-4-bromophenyl)-4'-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonamide 
(JMT-96). The reaction of 4’-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonyl chloride according 
to General Procedure II afforded JMT-96 as a white powder. ESI-MS for C20H13BrF3N5O2S: 
[M-H]- calculated 522.0, found 522.1, 524.2 
 
N-(2-(1H-tetrazol-5-yl)-5-methylphenyl)-4'-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonamide 
(JMT-97). The reaction of 4’-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonyl chloride according 
to General Procedure II afforded JMT-97 as an off-white powder. ESI-MS for 
C21H16F3N5O2S: [M-H]- calculated 458.1, found 458.2 
 
N-(2-(1H-tetrazol-5-yl)-4-methylphenyl)-4'-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonamide 
(JMT-98). The reaction of 4’-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonyl chloride according 
to General Procedure II afforded JMT-94 as a white powder. ESI-MS for C21H16F3N5O2S: 
[M-H]- calculated 458.1, found 458.2 
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N-(2-(1H-tetrazol-5-yl)-5-methoxyphenyl)-4'-(trifluoromethyl)-[1,1'-biphenyl]-4-
sulfonamide (JMT-99). The reaction of 4’-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonyl 
chloride according to General Procedure II afforded JMT-99 as a beige powder. ESI-MS 
for C21H16F3N5O3S: [M-H]- calculated 474.1, found 474.3 
 
N-(2-(1H-tetrazol-5-yl)-4-methoxyphenyl)-4'-(trifluoromethyl)-[1,1'-biphenyl]-4-
sulfonamide (JMT-100). The reaction of 4’-(trifluoromethyl)-[1,1'-biphenyl]-4-sulfonyl 
chloride according to General Procedure II afforded JMT-100 as a white powder. ESI-MS 
for C21H16F3N5O3S: [M-H]- calculated 474.1, found 474.3 
 
2-((4-cyclohexylphenyl)sulfonamido)-4-fluorobenzoic acid (JMT-101). The reaction of 4-
cyclohexylbenzenesulfonyl chloride according to General Procedure I afforded JMT-101 
as a beige powder. ESI-MS for C19H20FNO4S: [M-H]- calculated 376.1, found 376.2 
 
2-((4-cyclohexylphenyl)sulfonamido)-5-fluorobenzoic acid (JMT-102). The reaction of 4-
cyclohexylbenzenesulfonyl chloride according to General Procedure I afforded JMT-102 
as an off-white powder. ESI-MS for C19H20FNO4S: [M-H]- calculated 376.1, found 376.2 
 
2-((4-cyclohexylphenyl)sulfonamido)-4,5-difluorobenzoic acid (JMT-103). The reaction of 
4-cyclohexylbenzenesulfonyl chloride according to General Procedure I afforded JMT-
103 as a beige powder. ESI-MS for C19H19F2NO4S: [M-H]- calculated 394.1, found 394.2 
 
2-((4-cyclohexylphenyl)sulfonamido)-5-bromobenzoic acid (JMT-104). The reaction of 4-
cyclohexylbenzenesulfonyl chloride according to General Procedure I afforded JMT-104 
as a white powder. ESI-MS for C19H20BrNO4S: [M-H]- calculated 436.0, found 436.1, 
438.1 
 
2-((4-cyclohexylphenyl)sulfonamido)-4-methylbenzoic acid (JMT-105). The reaction of 4-
cyclohexylbenzenesulfonyl chloride according to General Procedure I afforded JMT-105 
as a white powder. ESI-MS for C20H23NO4S: [M-H]- calculated 372.1, found 372.3 
 
2-((4-cyclohexylphenyl)sulfonamido)-5-methylbenzoic acid (JMT-106). The reaction of 4-
cyclohexylbenzenesulfonyl chloride according to General Procedure I afforded JMT-106 
as a white powder. ESI-MS for C20H23NO4S: [M-H]- calculated 372.1, found 372.3 
 
2-((4-cyclohexylphenyl)sulfonamido)-4-(trifluoromethyl)benzoic acid (JMT-107). The 
reaction of 4-cyclohexylbenzenesulfonyl chloride according to General Procedure I 
afforded JMT-107 as a white powder. ESI-MS for C20H20F3NO4S: [M-H]- calculated 426.1, 
found 426.2 
 
2-((4-cyclohexylphenyl)sulfonamido)-5-(trifluoromethyl)benzoic acid (JMT-108). The 
reaction of 4-cyclohexylbenzenesulfonyl chloride according to General Procedure I 
afforded JMT-108 as a white powder. 1H NMR (600 MHz, D3COCD3): δ = 11.27 (s, 1H), 
8.28 (s, 1H), 7.87 (m, 4H), 2.60 (tt, J  = 2.8, 11.5 Hz, 1H), 1.79 (dt, J = 2.8, 12.2 Hz, 4H), 
1.70 (dtt, J = 1.5, 3.0, 12.9 Hz, 1H), 1.40 (ddt, J = 1.7, 12.7, 24.0 Hz, 4H), 1.25 (ddt, J = 
3.1, 12.7, 23.9 Hz, 1H). ESI-MS for C20H20F3NO4S: [M-H]- calculated 426.1, found 426.3 
 
2-((4-cyclohexylphenyl)sulfonamido)-4-methoxybenzoic acid (JMT-109). The reaction of 
4-cyclohexylbenzenesulfonyl chloride according to General Procedure I afforded JMT-109 
as an off-white powder. ESI-MS for C20H23NO5S: [M-H]- calculated 388.1, found 388.3 
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2-((4-cyclohexylphenyl)sulfonamido)-5-methoxybenzoic acid (JMT-110). The reaction of 
4-cyclohexylbenzenesulfonyl chloride according to General Procedure I afforded JMT-110 
as an off-white powder. ESI-MS for C20H23NO5S: [M-H]- calculated 388.1, found 388.3 
 
N-(2-(1H-tetrazol-5-yl)-5-fluorophenyl)-4-cyclohexylbenzenesulfonamide (JMT-111). The 
reaction of 4-cyclohexylbenzenesulfonyl chloride according to General Procedure II 
afforded JMT-111 as a white powder. ESI-MS for C19H20FN5O2S: [M-H]- calculated 400.1, 
found 400.3 
 
N-(2-(1H-tetrazol-5-yl)-4-fluorophenyl)-4-cyclohexylbenzenesulfonamide (JMT-112). The 
reaction of 4-cyclohexylbenzenesulfonyl chloride according to General Procedure II 
afforded JMT-112 as a white powder. ESI-MS for C19H20FN5O2S: [M-H]- calculated 400.1, 
found 400.2 
 
N-(2-(1H-tetrazol-5-yl)-4-bromophenyl)-4-cyclohexylbenzenesulfonamide (JMT-113). The 
reaction of 4-cyclohexylbenzenesulfonyl chloride according to General Procedure II 
afforded JMT-113 as a white powder. 1H NMR (600 MHz, D3COCD3): δ = 10.63 (s, 1H), 
8.14 (d, J = 2.2, 1H), 7.75 (d, J = 8.9, 1H), 7.71 (m, 1H), 7.67 (d, J = 8.4 Hz, 2H), 7.31 (d, 
J = 8.3 Hz, 2H), 2.53 (d, J = 8.3 Hz, 2H), 2.53 (tt, J = 2.9, 11.6 Hz, 1H), 1.76 (dt, J  = 4.2, 
22.3 Hz, 4H), 1.69 (dtt, J = 1.5, 2.9, 12.8 Hz, 4H), 1.36 (ddt, J = 2.0, 12.8, 23.0 Hz, 1H) 
1.24 (ddt, J = 3.5, 12.7, 22.9 Hz, 1H). ESI-MS for C19H20BrN5O2S: [M-H]- calculated 460.0, 
found 460.2, 462.2 
 
N-(2-(1H-tetrazol-5-yl)-5-methylphenyl)-4-cyclohexylbenzenesulfonamide (JMT-114). 
The reaction of 4-cyclohexylbenzenesulfonyl chloride according to General Procedure II 
afforded JMT-114 as a white powder. ESI-MS for C20H23N5O2S: [M-H]- calculated 396.2, 
found 396.3 
 
N-(2-(1H-tetrazol-5-yl)-4-methylphenyl)-4-cyclohexylbenzenesulfonamide (JMT-115). 
The reaction of 4-cyclohexylbenzenesulfonyl chloride according to General Procedure II 
afforded JMT-115 as a white powder. ESI-MS for C20H23N5O2S: [M-H]- calculated 396.2, 
found 396.3 
 
N-(2-(1H-tetrazol-5-yl)-5-(trifluoromethyl)phenyl)-4-cyclohexylbenzenesulfonamide (JMT-
116). The reaction of 4-cyclohexylbenzenesulfonyl chloride according to General 
Procedure II afforded JMT-116 as a white powder. ESI-MS for C20H20F3N5O2S: [M-H]- 
calculated 450.1, found 450.2 
 
N-(2-(1H-tetrazol-5-yl)-5-methoxyphenyl)-4-cyclohexylbenzenesulfonamide (JMT-117). 
The reaction of 4-cyclohexylbenzenesulfonyl chloride according to General Procedure II 
afforded JMT-117 as an off-white powder. ESI-MS for C20H23N5O3S: [M-H]- calculated 
412.1, found 412.3 
 
N-(2-(1H-tetrazol-5-yl)-4-methoxyphenyl)-4-cyclohexylbenzenesulfonamide (JMT-118). 
The reaction of 4-cyclohexylbenzenesulfonyl chloride according to General Procedure II 
afforded JMT-118 as a white powder. ESI-MS for C20H23N5O3S: [M-H]- calculated 412.1, 
found 412.3 
 
4-fluoro-2-(naphthalene-2-sulfonamido)benzoic acid (JMT-119). The reaction of 
naphthalene-2-sulfonyl chloride according to General Procedure I afforded JMT-119 as a 
beige powder. ESI-MS for C17H12FNO4S: [M-H]- calculated 344.0, found 344.2 
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5-fluoro-2-(naphthalene-2-sulfonamido)benzoic acid (JMT-120). The reaction of 
naphthalene-2-sulfonyl chloride according to General Procedure I afforded JMT-120 as 
an off-white powder. ESI-MS for C17H12FNO4S: [M-H]- calculated 344.0, found 344.1 
 
5-methyl-2-(naphthalene-2-sulfonamido)benzoic acid (JMT-121). The reaction of 
naphthalene-2-sulfonyl chloride according to General Procedure I afforded JMT-121 as 
an off-white powder. ESI-MS for C18H15NO4S: [M-H]- calculated 340.1, found 340.2 
 
4-fluoro-2-((5,6,7,8-tetrahydronaphthalene)-2-sulfonamido)benzoic acid (JMT-122). The 
reaction of 5,6,7,8-tetrahydronaphthalene-2-sulfonyl chloride according to General 
Procedure I afforded JMT-122 as a beige powder. ESI-MS for C17H16FNO4S: [M-H]- 
calculated 348.1, found 348.2 
 
5-fluoro-2-((5,6,7,8-tetrahydronaphthalene)-2-sulfonamido)benzoic acid (JMT-123). The 
reaction of 5,6,7,8-tetrahydronaphthalene-2-sulfonyl chloride according to General 
Procedure I afforded JMT-123 as an off-white powder. ESI-MS for C17H16FNO4S: [M-H]- 
calculated 348.1, found 348.2 
 
5-methyl-2-((5,6,7,8-tetrahydronaphthalene)-2-sulfonamido)benzoic acid (JMT-124). The 
reaction of 5,6,7,8-tetrahydronaphthalene-2-sulfonyl chloride according to General 
Procedure I afforded JMT-124 as an off-white powder. ESI-MS for C18H19NO4S: [M-H]- 
calculated 344.1, found 344.2 
 
2-((2,3-dihydrobenzo[b][1,4]dioxine)-6-sulfonamido)benzoic acid (JMT-125). The reaction 
of 2,3-dihydrobenzo[b][1,4]dioxine)-6-sulfonyl chloride according to General Procedure I 
afforded JMT-125 as an off-white powder. ESI-MS for C15H13NO6S: [M-H]- calculated 
334.0, found 334.1 
 
2-((2,3-dihydrobenzo[b][1,4]dioxine)-6-sulfonamido)-4-fluorobenzoic acid (JMT-126). The 
reaction of 2,3-dihydrobenzo[b][1,4]dioxine)-6-sulfonyl chloride according to General 
Procedure I afforded JMT-126 as a beige powder. ESI-MS for C15H12FNO6S: [M-H]- 
calculated 352.0, found 352.1 
 
2-((2,3-dihydrobenzo[b][1,4]dioxine)-6-sulfonamido)-5-fluorobenzoic acid (JMT-127). The 
reaction of 2,3-dihydrobenzo[b][1,4]dioxine)-6-sulfonyl chloride according to General 
Procedure I afforded JMT-127 as an off-white powder. ESI-MS for C15H12FNO6S: [M-H]- 
calculated 352.0, found 352.1 
 
2-((2,3-dihydrobenzo[b][1,4]dioxine)-6-sulfonamido)-5-methylbenzoic acid (JMT-128). 
The reaction of 2,3-dihydrobenzo[b][1,4]dioxine)-6-sulfonyl chloride according to General 
Procedure I afforded JMT-128 as an off-white powder. ESI-MS for C16H15NO6S: [M-H]- 
calculated 348.1, found 348.2 
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Appendix E. Pharmacophore screening of FDA-approved therapies for putative PBP 
inhibitors 
 
 
 

 

Figure E.1: Pharmacophore search of a virtualized library of FDA-approved drugs. A. A three-point 
pharmacophore consisting of one anionic feature (radius = 0.7 Å), one hydrophobic/aromatic 
feature (radius = 0.9 Å), and one hydrogen bond accepting feature (radius = 1.0 Å) was used to 
search a virtual library of FDA-approved drug structures, yielding 1,862 matching conformations. 
B. Enalapril shown in a pharmacophore-matching conformation (rmsd = 0.6 Å). 
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Figure E.2: Example structures of ACE inhibitors matching the three-point pharmacophore model. 
 
 

  

O

O
N
HO

N

HO O

O

O
N
HO

N

HO O

O

O
N
HO

N

HO O

N
H

N

O
HO O

O

O
N
HO

N

HO O

N

O

H2N

N
H

HO O

enalapril ramipril

lisinopriltrandalopril

benazeprilquinapril

OH

O

O

O



 315 

 

 

Figure E.3: Example structures of other C-terminal peptide and peptoid drugs matching the three-
point pharmacophore model. 
 
 

 

 

 

Figure E.4: Example structures of additional miscellaneous drugs matching the three-point 
pharmacophore model. 
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Figure E.5: Modeled binding modes of example FDA-approved pharamacophore matches with 
tPBP2WT. A. Enalapril (ENP, green). B. Lifitegrast (LFG, green). C. Argatroban (AGB, green). Polar 
contacts are indicated by black dashed lines. 
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Appendix F: High-throughput virtual screen for inhibitors of Pseudomonas 
aeruginosa PBP3 
 

 

Figure F.1: In silico screen performance characteristics. A. Physicochemical properties of ligands (β-
lactams) and matched decoys, C. Comparison of ligand and decoy energy scores (***p < 0.001). D, 
E. Receiver-operator curves for true ligand detection. F, G. Enrichment curves for true ligands versus 
the full rank-ordered dataset (AUC 0.682 and 0.684, respectively). 
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Figure F.2: High-throughput virtual screen against P. aeruginosa PBP3. A. Rigid-receptor dock 
rank-ordered energy scores. B. Rigid-receptor dock energy score distribution. C. Induced fit 
consensus dock rank-ordered energy scores. D. Induced fit consensus dock energy score 
distribution. E. Inhibition of P. aeruginosa PBP3 by 1 mM of purchased compounds exhibiting 
favorable scores from the high-throughput virtual screen. F. Least energy conformer for 
NSC605657, a mid-micromolar, dose-dependent inhibitor of PBP3 identified from the high-
throughput virtual screen. 
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Figure F.3: NSC605657 (norbadione A) inhibition of P. aeruginosa PBP3. A. NSC605657 is a 2-
oxatricyclo[6.3.1.0⁴,¹²]dodeca-1(11),4,6,8(12),9-pentaen-3-one comprising two pulvinic acid 
moieties. B. NSC605657 exhibits dose-dependent inhibition of PBP3 with half-maximal activity at 
78.1 ± 1.4 μM (n = 3 replicates per concentration, r2 = 0.967). 
 
 
 
 
 

 
 

Figure F.4: Screening of 2H-chromene (A) and cinnamic acid (B) compounds against PBP3. 
Values were determined in a purified protein assay in which PBP3 was preincubated with 
compound, followed by addition of 1 µM Bocillin-FL. Data are presented as a fraction of DMSO 
control. 
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Figure F.5: 2H-chromene inhibition of P. aeruginosa PBP3. A. NSC119893, NSC122391, and 
Z19713177 are 2H-chromenes with carboxylate or phenolate moieties.  B. NSC119893, 
NSC122391, and Z19713177 exhibit dose-dependent inhibition of PBP3 with half-maximal 
inhibitory activities at 41.1 ± 2.5 µM (n = 3 replicates per concentration, r2 = 0.982), 75.0 ± 14.1 μM 
(n = 4 replicates per concentration, r2 = 0.924), and 83.5 ± 17.2 μM (n = 3 replicates per 
concentration, r2 = 0.910), respectively. 
 
 
 
 
 

 

Figure F.6: Proposed mode of PBP3 inhibition by 2H-chromenes. A) Flexible alignment to show 
common features of most potent inhibitors from the class (hydrogen bond donors, magenta; 
hydrogen bond acceptors, cyan; interchangeable donors/acceptors, rose; anionic atoms, red; 
aromatic centers, orange; hydrophobic atoms, green). B) Least energy conformer for 2H-chromene 
NSC119893 docked against P. aeruginosa PBP3, polar contacts shown in black.  
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Figure F.7: Screening of 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones against PBP3. Values were 
determined in a purified protein assay in which PBP3 was preincubated with compound, followed 
by addition of 1 µM Bocillin-FL. Data are presented as a fraction of DMSO control. 

 

 

 

Figure F.8: STK577136 and STK704344 inhibition of P. aeruginosa PBP3. A. STK57716 and 
STK704344 are 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones with aromatic substitutions at their 1-, 4-, 
and 5-positions. B. STK577136 and STK704344 exhibit dose-dependent inhibition of PBP3 with 
half-maximal activities at 25.8 ± 1.9 μM (n = 3 replicates per concentration, r2 = 0.980) and 24.9 ± 
2.7 μM (n = 3 replicates per concentration, r2 = 0.983), respectively. 
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Figure F.9: Proposed mode of PBP3 inhibition by 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones. A) 
Flexible alignment to show common features of most potent inhibitors from the class (hydrogen 
bond donors, magenta; hydrogen bond acceptors, cyan; interchangeable donors/acceptors, rose; 
anionic atoms, red; aromatic centers, orange; hydrophobic atoms, green). B) Least energy 
conformer for 3-hydroxy-1,5-dihydro-2H-pyrrol-2-one STK704344 docked against P. aeruginosa 
PBP3, polar contacts shown in black. 
 
 

 

Figure F.10: Structures of additional PBP3-inhibitory chemotypes. Other non-β-lactam PBP 
inhibitors found in the course of this work include quinolines and quinoline analogues Q, 
arylsulfonamides S, triazoles and tetrazoles T, 4-thiazolidinones (rhodanines) R, and 2-
thioxodihydropyrimidine-4,6(1H,5H)-diones (barbituric acids) B. 
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Figure A.11: Screening of quinolones, quinazolines, and quinoxalines Q against PBP3. Values 
were determined in a purified protein assay in which PBP3 was preincubated with compound, 
followed by addition of 1 µM Bocillin-FL. Data are presented as a fraction of DMSO control. 

 

 

 

 

Figure F.12: Proposed mode of PBP3 inhibition by quinoxalines Q. A. Flexible alignment to show 
common features of most potent quinolines (hydrogen bond donors, magenta; hydrogen bond 
acceptors, cyan; interchangeable donors/acceptors, rose; anionic atoms, red; aromatic centers, 
orange; hydrophobic atoms, green). B) Least energy conformer for quinoline STK549604 docked 
against P. aeruginosa PBP3, polar contacts shown in black. 
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Figure F.13: Screening of sulfonamides S against PBP3. Values were determined in a purified 
protein assay in which PBP3 was preincubated with compound, followed by addition of 1 µM 
Bocillin-FL. Data are presented as a fraction of DMSO control. 

 

 

 

 

Figure F.14: Proposed mode of PBP3 inhibition by sulfonamides S. A. Flexible alignment to show 
common features of most potent arylsulfonamides (hydrogen bond donors, magenta; hydrogen 
bond acceptors, cyan; interchangeable donors/acceptors, rose; anionic atoms, red; aromatic 
centers, orange; hydrophobic atoms, green). B. Least energy conformer for arylsulfonamide 
CB7453894 docked against P. aeruginosa PBP3, polar contacts shown in black. 
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Figure F.15: Screening of azoles (A), 4-thiazolidinones (B), and pyrimidine-4,6(1H,5H)-diones (C) 
against PBP3. Values were determined in a purified protein assay in which PBP3 was preincubated 
with compound, followed by addition of 1 µM Bocillin-FL. Data are presented as a fraction of DMSO 
control. 
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Figure F.16: Proposed modes of PBP3 inhibition by azoles, 4-thiazolidinones, and pyrimidine-
4,6(1H,5H)-diones. A-C. Flexible alignment to show common features of most potent azoles (A), 
4-thiazolidinones (B), and pyrimidine-4,6(1H,5H)-diones (C) (hydrogen bond donors, magenta; 
hydrogen bond acceptors, cyan; interchangeable donors/acceptors, rose; anionic atoms, red; 
aromatic centers, orange; hydrophobic atoms, green). D-F. Least energy conformers for 
aryltetrazole Z26552032 (D), 4-thiazolidinone CB6126765 (E), and pyrimidine-4,6(1H,5H)-dione 
CB5376753 (F) docked against P. aeruginosa PBP3, polar contacts shown in black. 
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Table F.1: PBP3 inhibition data for NSC605657 analogues identified through substructure and 
similarity searches of the PubChem database. Most potent hits (defined as >50% inhibition at 100 
µM) are highlighted in green. 
 

Compound Inhibition at 1 mM (%) Inhibition at 100 μM (%) 
NSC5897 13.7 ± 6.8 ND 

NSC167376 NS ND 
NSC311454 NS ND 
NSC338986 46.9 ± 12.9 NS 
NSC621468 57.5 ± 17.5 NS 
NSC81924 NS  ND 
NSC631509 22.8 ± 20.9 ND 
NSC155504 28.1 ± 5.8 ND 
NSC32899 79.8 ± 5.3 NS 
NSC347512 NS ND 
NSC3483 81.3 ± 15.8 8.5 ± 3.1 

NSC720435 NS ND 
NSC119893 92.3 ± 4.3 72.9 ± 3.6 

NSC157 98.5 ± 1.9 NS 
NSC19027 NS ND 
NSC19801 38.1 ± 29.7 ND 
NSC101137 NS ND 
NSC155476 9.1 ± 4.4 ND 
NSC215568 11.0 ± 9.9 ND 
NSC720435 NS ND 

EN300-41020 NS ND 
Z90122589 NS ND 

Z1946684614 NS ND 
Z905065810 50.7 ± 18.9 8.9 ± 2.5 
Z95232844 22.6 ± 11.7 ND 
Z223849600 51.3 ± 6.8 NS 
Z19713177 66.1 ± 12.8 53.1 ± 28.4 

EN300-305263 10.0 ± 2.7 ND 
NSC122391 74.8 ± 19.5 58.9 ± 3.9 
NSC622475 NS ND 
STL099530 NS ND 
STL099536 NS ND 
STK007398 26.2 ± 10.6 ND 
STK034285 47.3 ± 17.6 ND 
STK447520 13.9 ± 6.5 ND 
STK791461 NS ND 
STK837716 NS ND 
STK987640 NS ND 
STL058314 NS ND 
STL061985 NS ND 
STL295948 NS ND 
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Table F.2: PBP3 inhibition data for compounds predicted to have activity from structure-activity 
relationships of noncovalent inhibitors against PBP3.  
 

Compound Inhibition at 1 mM (%) Inhibition at 100 μM (%) 
STK369807 95.2 ± 2.4 21.5 ± 7.1 
STK888755 41.4 ± 10.7 ND 
STK270718 24.8 ± 19.6 ND 
STK522653 82.8 ± 16.4 31.4 ± 4.2 
STK549572 88.4 ± 4.7 39.8 ± 4.8 
STK522651 48.8 ± 14.2 ND 
STK522656 85.8 ± 7.8 NS 
STL048854 67.7 ± 23.1 43.4 ± 0.3 
STK541644 98.1 ± 1.4 44.5 ± 8.9 
STK328887 NS ND 
STK887542 NS ND 
STK994187 51.2 ± 9.8 NS 
STK191801 80.6 ± 11.3 NS 
STK718016 NS ND 
STK577136 88.3 ± 7.2 86.5 ± 0.7 
STL031938 55.5± 17.6 23.2 ± 10.3 
STK460513 NS ND 
CB6140541 NS ND 
CB6126765 80.9 ± 14.1 95.8 ± 3.8 
CB6130015 44.3 ± 8.1 ND 
STL031936 39.0 ± 27.9  ND 
STK704344 97.5 ± 2.2 96.2 ± 2.4 
STK818923 85.0 ± 7.8 10.3 ± 5.7 
Z26552032 95.9 ± 1.7 54.8 ± 14.6 
STK192475 97.2 ± 2.8 35.4 ± 9.3 
STK197617 97.3 ± 1.6 29.1 ± 1.4 
STK197649 95.1 ± 8.4 15.3 ± 3.0 
STK197654 96.0 ± 2.6 38.2 ± 1.9 
STK542406 66.3 ± 20.1 42.2 ± 8.0 
STK549604 90.7 ± 4.9 66.1 ± 5.9 
STL336609 75.9 ± 13.9 31.7 ± 3.0 
STK059577 90.3 ± 4.7 76.8 ± 7.0 
STK572022 94.3 ± 3.2 NS 
STK576161 96.1 ± 2.7 NS 
STK589175 NS ND 
STK596018 95.6 ± 4.7 NS 
STK626827 91.8 ± 4.4 NS 
STK631838 98.8 ± 2.4 NS 
STK818556 87.9 ± 7.1 NS 
STK818561 89.6 ± 5.6 NS 
STK819418 48.7 ±5.1 ND 
STK098795 NS ND 
STL361235 55.7 ± 12.4 9.8 ± 5.5 
STK095131 28.4 ± 14.4 ND 
STK052461 13.2 ± 4.5 ND 
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STK129507 20.6 ± 15.0 ND 
STK071540 8.6 ± 6.3 ND 
STK634916 NS ND 
STK029374 NS ND 
STK871156 NS ND 
STK871000 NS ND 
STK202948 30.6 ± 2.7 ND 
STK070625 NS ND 
STK084156 44.4 ± 23.3 ND 
STK010482 NS ND 
STK057971 NS ND 
STL040105 NS ND 
STK041773 NS ND 
CB5477031 96.2 ± 2.4 68.5 ± 7.9 
CB5530695 91.8 ± 6.1 NS 
CB6624338 51.9 ± 7.6 NS 
CB7647715 NS ND 
CB5151615 87.8 ± 6.9 NS 
CB5730506 96.4 ± 1.7 56.7 ± 7.3 
CB5729373 67.0 ± 10.5 NS 
CB5737652 88.2 ± 6.7 50.5 ± 17.4 
CB7630081 85.1 ± 3.6 66.8 ± 11.2 
CB5214931 66.9 ± 7.0 43.2 ± 7.1 
CB5218577 97.9 ± 1.2 61.0 ± 9.1 
CB5247550 39.5 ± 21.8 ND 
CB5238280 53.9 ± 28.0 ND 
CB5376753 83.7 ± 10.5 46.0 ± 5.5 
CB5376658 83.7 ± 5.9 NS 
CB5175181 66.4 ± 11.8 NS 
CB5228302 64.7 ± 5.5 4.3 ± 2.4 
CB5228304 64.0 ± 8.8 NS 
CB6155033 82.3 ± 8.0 36.8 ± 21.4 
CB7453894 76.1 ± 7.8 76.8 ± 4.5 
CB5940861 80.4 ± 3.2 33.1 ± 2.2 
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