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ABSTRACT 

KEVIN M. BRAUNSCHEIDEL. Effects of the abused inhalant toluene on mPFC-
dependent cognitive behaviors and associated neural activity . Under the 
direction of JOHN J. WOODWARD.  

Volatile organic solvents like toluene induce euphoria and intoxication when 

inhaled at high concentrations.  Inhalant misuse is linked to behavioral, cognitive, 

and anatomical deficits in humans leading to a reduced productivity and quality of 

life. Yet, preclinical studies on the effect of inhalants on executive control in animal 

models are limited.  We address this gap in knowledge using rodent models in two 

ways: first, by examining the long-lasting effects of repeated toluene inhalation 

during adolescence on several measures of executive function in adulthood and 

second, by studying the effects of acute toluene inhalation on risk/reward decision 

making and related neurocircuitry. Repeated inhalation of toluene during 

adolescence blunted acquisition of operant and Pavlovian learning in adulthood 

without affecting probabilistic discounting, progressive ratio breakpoint, latent 

inhibition or reversal learning.  Acute toluene vapor inhalation, however, caused a 

dose-dependent, sex-independent deficit in behavioral flexibility during 

probabilistic discounting, a pattern that implicates dysfunctional medial prefrontal 

cortex (mPFC) activity. To address this hypothesis, we virally expressed the 

genetically encoded calcium sensor GCaMP6f in glutamatergic mPFC neurons 

and monitored calcium transients during during task performance using in vivo 

fiber photometry. Peaks in  GCaMP6f activity shifted from pre-risky to pre-safe 

choice during contingency updating, an effect that was eliminated by acute toluene 

exposure. mPFC activity in toluene-treated animals also did not distinguish 

between risky/large wins and safe/small wins. Interestingly, previous studies from 

our lab demonstrated a toluene-induced long-term depression of AMPA-mediated 

synaptic activity in deep-layer mPFC neurons. This effect was dependent on 

endocannabinoids (EC) synthesis and presynaptic cannabinoid receptor (CB1R) 

function. Here, we found that pharmacological inhibition of CB1Rs in the mPFC or 

systemically did not mitigate toluene’s effect on probabilistic discounting. 

Behavioral flexibility in this task also depends on functional mPFC-basolateral 

amygdala (BLA) neurocircuitry.  Electrophysiological interrogation of BLA neurons 

innervated by the mPFC using ex vivo slice electrophysiology and optogenetics 

revealed a CB1R-dependent decrease in excitatory synaptic transmission 

following toluene application. These data elucidate learning and behavioral 

flexibility deficits caused by toluene, including insights on potential mPFC-BLA- 

and CB1R-dependent mechanisms.  
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CHAPTER 1: BACKGROUND AND SIGNIFICANCE 

 

Introduction 

The term “inhalants” refers to any highly volatile, non-combusted substance 

that is inhaled to experience a euphoric high (Balster et al., 2009; Siegel et al., 

2009; Gigengack, 2014; Johnston et al., 2018). Human abusers commonly achieve 

this high by either “sniffing” fumes directly from a canister or concentrating the 

substance in a bag and “huffing” the vapor (3000 – 15,000 ppm), several times 

over the course of 15 minutes to several hours (Bowen et al., 2006). Inhalants are 

chemically and pharmacologically diverse and include anesthetics, alkyl nitrates, 

nitrous oxide, and volatile organic solvents (Marsolek et al., 2010; Beckley and 

Woodward, 2013; Johnston et al., 2018). Whereas other illicit substances are often 

difficult or expensive to obtain, inhalants are an ingredient in many common 

household products (e.g. spray paints, cleaners, and adhesives).  As a result of 

their accessibility, it is not surprising that adolescents constitute a significant 

percentage of the overall inhalant-abusing population. In 2018, 662,000 American 

adolescents reported abusing inhalants (Substance Abuse and Mental Health 

Services Administration, 2019). This number is likely an underestimation as it does 

not account for delinquent and homeless individuals, populations that are 

particularly  susceptible to inhalant abuse (see Inhalant abuse: epidemiology). 

Despite the prevalence of inhalant abuse only a handful of NIH funded grants are 

devoted to their study  (NIH Reporter). 
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Inhalant Abuse: Epidemiology    

  
The National Institute on Drug Abuse estimates that roughly 23.4 million 

American adults have used inhalants at least once in their lives (Tice, 2016) while 

846,000 adults are active users (Substance Abuse and Mental Health Services 

Administration, 2019).   However, given their ease of accessibility, low cost, and 

low rates of testing, inhalant abuse is particularly high among adolescent 

populations.  Inhalant abuse in the United States peaked in the 1970’s and has 

been largely in decline ever since (Marsolek et al., 2010; Halliburton and Bray, 

2016). Despite this, it has been suggested that usage rates may be on the rise in 

middle school populations (Johnston et al., 2018) and currently, the lifetime 

prevalence in American primary school populations remains 6-8% (Kann et al., 

2016; Johnston et al., 2018), second to marijuana in terms of illicit substance 

abuse.   

Inhalant abuse is a global phenomenon. Other well-developed nations 

including Canada, Japan and several Western European countries report 

comparable or lower lifetime usage rates compared to the United States (Kikuchi 

and Wada, 2003; Adlaf et al., 2004; ESPAD Group, 2016). A particular burden, 

however, is placed on impoverished or isolated communities (Perron and Howard, 

2009). For example, groups of young Native Americans have been found “bagging” 

gasoline in rural Alaska (Eggertson, 2014). In India, 35% of homeless children 

reported huffing toluene-containing whitener (Praveen et al., 2012) and a 

staggering 91% of children living on the streets of Upper Egypt have been reported 

to abuse inhalants (Elkoussi and Bakheet, 2011). Native populations in the United 
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states (Kaufman, 1973; Beauvais et al., 2002),  Australia (Cairney et al., 2002) and 

eastern Slovakia (Važan et al., 2011) also report some of the highest rates of 

inhalant abuse.  These findings extend to the most impoverished countries of 

Europe, as high lifetime prevalence has been reported in Croatia (25%), Slovenia 

(14%), Greece (13%), Estonia (13%), Georgia (12%) and Austria (10%) (ESPAD 

Group, 2016).  A similar trend is observed across the United States where some 

of the poorest states (Alabama, Arkansas, Mississippi, West Virginia) report the 

highest lifetime prevalence  (all > 9.9%) of inhalant abuse (Kann et al., 2016). This 

socio-economic correlation is also supported by Kann et al.’s finding of higher 

lifetime inhalant abuse rates in large urban school districts relative to the entire 

state. For instance, there is a much higher inhalant use prevalence in teens 

residing in Baltimore (11.6%) and the District of Columbia (11.5%) compared to 

the state of Maryland’s overall prevalence (8.5%).  

The driving force of these high rates of inhalant abuse are undoubtedly 

multi-faceted, but  poor or absent parenting in these regions may be one common 

factor (Fleschler et al., 2002; Siegel et al., 2009; Elkoussi and Bakheet, 2011). In 

fact, a 2011 longitudinal study of 8,182 American teenagers (89,219 person-period 

observations) found that poor parenting is associated with initiation of inhalant use, 

with parental drug use being a risk factor and parental monitoring being protective 

(Nonnemaker et al., 2011). It is, therefore unsurprising that socially marginalized 

youths (including those in juvenile detention or socially impoverished conditions) 

have high rates of inhalant abuse across the Americas (Tapia‐Conyer et al., 1995; 

Howard and Jenson, 1999; Dell and Hopkins, 2011)   
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Not all low socio-economic status areas report high rates of inhalant abuse. 

In fact, in some of South America’s poorest countries, teenagers report lower 

average lifetime prevalence of inhalant abuse (2.7-5.5%)  than the United States 

(6.7%) (Hynes-Dowell et al., 2011; Johnston et al., 2018). Conversely, the lifetime 

prevalence of inhalant abuse is 16.55% in Brazil despite their relatively high GDP.  

This could be explained by the sociocultural history of individuals with higher 

socioeconomic status abusing lança and loló (ether containing perfumes), 

especially during Carnival (Hynes-Dowell et al., 2011; Sanchez et al., 2013). 

Similarly, 27.9% of Kingston University students in London  admitted to past-year 

“hippy crack” (nitrous oxide) abuse and many of these students intended to 

continue use of the drug (Ehirim et al., 2018). If this finding extends across other 

English populations it may help explain the relatively high lifetime prevalence of 

inhalant use (9%) across all UK adolescents (ESPAD Group, 2016). 

Sex differences in usage rates have been reported for other drugs of abuse 

(ESPAD Group, 2016; Johnston et al., 2018).  With regards to inhalants, these 

differences have also been reported but are largely inconsistent across specific 

populations and time (Batis, 2017).  For example, in American middle schools, girls 

have a higher lifetime prevalence than boys, but this observation is reversed by 

the end of high school (Johnston et al., 2018). In Europe, lifetime prevalence in 

male adolescents has historically been higher than females, yet recent trends have 

clouded these differences (ESPAD Group, 2016). Therefore, future investigations 

should consider sex-related differences in inhalant abuse on a population-by-

population basis. 
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Toluene Pharmacology 

Organic solvents are perhaps the most accessible inhalant as illustrated by 

U.S. Poison Control data which describes cases involving over 3000 different 

solvent containing products (Marsolek et al., 2010). Despite the general dearth of 

basic neuroscience research on inhalants, there is a relative abundance of data 

on toluene (methylbenzene). This was driven by initial studies examining the 

toxicity of high concentrations of toluene-containing products like adhesives, paints 

and paint thinners (Malm and Lying-Tunell, 1980; King et al., 1981; Streicher et al., 

1981; Fornazzari et al., 1983; Hormes et al., 1986). Other research was concerned 

with exposure by industry workers to chronic, sub-abuse vapor concentrations 

(Apostoli et al., 1982; Foo et al., 1991; Morata et al., 1993; Neubert et al., 2001a, 

2001b). The original hypothesis on the mechanism for toluene was that due to its 

small, lipophilic structure, it altered neuronal activity as a result of cellular 

membrane disruption (Oh and Kim, 1976; Lebel and Schatz, 1990). This idea has 

since been challenged by numerous studies describing the interaction between 

toluene and a variety of neuronal receptor systems. 

Bioavailability 

Following inhalation of toluene fumes, the majority of vapor is exhaled 

unchanged. The rest enters the bloodstream through the alveoli and distributes 

through the body (Garcia, 1994).  Blood concentration in rats reaches 60% of the 

peak concentration about 10 minutes following inhalation and declines to 30% 

about 40 minutes following inhalation (Benignus et al., 1981).  Only about 3% of 
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inhaled toluene reaches the brain (Benignus et al., 1981) and it is mostly eliminated 

from the central nervous system 30 min following inhalation (Gerasimov et al., 

2002). 

Glutamate Receptors 

Glutamate is the major excitatory neurotransmitter in the brain and the 

glutamatergic system is critically involved in developing and maintaining an 

addiction to abused substances (Kalivas, 2009). A seminal series of 

electrophysiology experiments using expression of recombinant receptors showed 

that toluene dose-dependently inhibited the N-methyl-D-aspartate subtype of 

ionotropic glutamate receptor (GluNs) at concentrations that did not affect 

membrane integrity (Cruz et al., 1998). These effects were rapid, reversible, and 

subunit selective, with GluN1/2B receptors being more sensitive than GluN1/2A or 

GluN1/2C. These authors also showed that toluene does not act as a competitive 

inhibitor of glutamate, but may reduce channel function by interfering with the 

domains involved in channel gating. Although a specific toluene-sensitive domain 

has not been identified, toluene inhibition is not altered by transmembrane domain 

mutations that reduce the inhibitory  potency of alcohol (Smothers and Woodward, 

2016).  Toluene inhibition of native neuronal NMDARs has since been shown in 

rodent medial prefrontal cortex (mPFC), nucleus accumbens, and hippocampus 

(Bale et al., 2005; Beckley and Woodward, 2011; Beckley et al., 2016). 

Upregulation of glutamatergic signaling has been reported following repeated drug 

treatment. For instance, the NMDA component of glutamate-mediated synaptic 
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events was enhanced following four days of bath-applied toluene to hippocampal 

cell cultures (Bale et al., 2005) Repeated inhalation also increased expression of 

GluN subunits in the mPFC and nucleus accumbens (Williams et al., 2005). 

Increases in hippocampal GluN protein levels persist following a protracted drug 

abstinence (Furlong et al., 2016). In contrast to these findings, other studies have 

shown that repeated episodes of toluene inhalation reduces ifenprodil binding to 

mesocorticolimbic GluN2B-containing receptors without affecting overall protein 

expression  (Dick et al., 2015), and impairs NMDAR-mediated synaptic plasticity 

in the hippocampus (Bale et al., 2005) and mPFC (Cruz et al., 2019). Taken 

together, these results suggest that toluene acutely inhibits NMDA signaling, but 

that homeostatic mechanisms following multiple drug treatments may be in place 

to counteract this inhibition. 

In contrast to NMDA receptors, the other major ionotropic glutamate 

receptors including 2-amino-3-(3-hydroxy5-methyl-isoxazol-4-yl) propanoic acid 

(GluA) or kainate receptors are not inhibited by toluene (Cruz et al., 1998; Bale et 

al., 2005). Likewise, bath-applied toluene does not have immediate effects on 

AMPAR function in rodent brain slices (Bale et al., 2005; Beckley and Woodward, 

2011; Beckley et al., 2016). Rather, when toluene is applied to rodent prefrontal 

cortex or accumbens, GluA-mediated excitatory signaling slowly begins to 

decrease, an effect that persists long after toluene clearance.  Toluene’s effect on 

GluA signaling was blocked by chelating internal calcium stores, inhibiting internal 

calcium release by ryanodine receptors, and blocking cannabinoid receptor type 

1, which, together, support an endocannabinoid-mediated mechanism (Beckley 
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and Woodward, 2011; Beckley et al., 2016). Following repeated toluene treatment, 

changes in GluA protein or mRNA are largely absent. Williams and colleagues 

(2005) described one exception where increased mPFC GluA2/3 was detected 

following multiple toluene treatments, but they note that this particular subunit is 

often co-expressed with GluNs (which are also increased).  Alternatively, increases 

in calcium-impermeable GluA2/3 could be a neuroprotective homeostatic 

response to prevent excitotoxicity (Talos et al., 2006) 

Few studies exist on the interaction between toluene and metabotropic 

glutamate receptors (mGluR). In one of three such studies, Del Re and colleagues 

determined that toluene does not alter mGluR(Gi)-dependent GIRK signaling (Del 

Re et al., 2006).  In a second study, a single toluene exposure caused differential 

changes in gene expression of Gq-protein coupled mGluR1 and mGluR7 receptors 

(Hester et al., 2011). While the behavioral consequences of this effect are currently 

unknown, another Gq-protein coupled mGluR (mGluR5) has been shown to be 

involved in toluene-induced motor incoordination and learning impairments (Chan 

et al., 2012). Taken together, the existing data suggest that toluene may alter 

signaling by Gq-, but not Gi-protein coupled mGluRs. 

 

GABA Receptors 

In addition to its inhibition of excitatory glutamatergic signaling, toluene 

enhances the activity of recombinant inhibitory gamma-aminobutyric acid (GABAA) 

receptors (Beckstead et al., 2000). This inhibition also occurs in brain slices as 

toluene enhances GABA-mediated synaptic inhibition in the CA1 of the  
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hippocampus (MacIver, 2009).  Similar to toluene’s effect on glutamate receptors, 

repeated exposure has been shown to alter GABA receptor expression throughout 

the brain. For instance, following toluene treatment/use, GABAA α1 subunit protein 

expression is decreased in the substantia nigra and ventral tegmental area 

(Williams et al., 2005) and GABAA-mediated currents are diminished (Bale et al., 

2005). Curiously, however, following a protracted period of drug abstinence, 

GABAA receptor protein is upregulated in the medial prefrontal cortex, 

ventromedial striatum, and dorsolateral striatum (Williams et al., 2005; Furlong et 

al., 2016). The compensatory response of the central nervous system to repeated 

toluene exposures are, therefore, complex and should not be generalized.  

 

Other Receptors 

Toluene interacts with several other receptor systems, although the 

literature is sparse in comparison with that for glutamate and GABA; for review, 

see (Beckley and Woodward, 2013). Many of toluene’s effects are consistent with 

its role as a CNS depressant. For example, toluene is a positive allosteric 

modulator of ionotropic glycine receptors (Beckstead et al., 2000, 2001) and 

stimulates 5HT2C receptors (Rivera-garcía et al., 2015), while it inhibits nicotinic 

acetylcholine receptors (Bale et al., 2002), L-type neuronal calcium channels (Tillar 

et al., 2002; Shafer et al., 2005), gap junction connexins (Del Re and Woodward, 

2005), and P2X2- or P2X4- ATP receptors (Woodward et al., 2004). Paradoxically, 

toluene may lead to increases in overall neuronal activity as it enhances 5-HT3 

receptor function (Lopreato et al., 2003) and 5HT2A signaling (Rivera-garcía et al., 
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2015), inhibits BK and GIRK potassium channels (Del Re et al., 2006), potentiates 

P2X3 ATP receptor function (Woodward et al., 2004), and promotes release of 

intracellular calcium stores (MacIver, 2009; Beckley and Woodward, 2011).  

However, research on the effect of toluene on these systems is still nascent and 

more studies are required to fully understand how these actions contribute to 

toluene’s effect on brain function.   

 

Inhalant Use Disorder: Replicating Symptomology in Preclinical Models 

Clinical Presentation 

Intoxication occurs after inhaling concentrated vapors (3000 – 15,000 ppm) 

of inhalants several times over the course of 15 minutes to several hours (Bowen 

et al., 2006). Individuals report positive effects including euphoria, disinhibition, 

and excitement that lasts 15 – 60 minutes following use of the drug (Flanagan and 

Ives, 1994; Anderson and Loomis, 2003; Gigengack, 2014). While the addictive 

potential of inhalants was first posited in the mid-1900s (Clinger and Johnson, 

1951; Glaser and Massengale, 1962), a specific disorder related to inhalant use 

was underdiagnosed through the early 2000s, with one meta-analysis classifying 

only 8% of inhalant users as individuals with a disorder (Wu and Ringwalt, 2006). 

With the adoption of the DSM-5, inhalant abuse and dependence is now defined 

using similar diagnostic criteria as traditional drugs of abuse including symptoms 

such as drug tolerance, drug cravings, and physical withdrawal during drug 

abstinence (American Psychiatric Association, 2013).  Comparison of two similarly 

sourced populations shows that approximately 46% of individuals who use 
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inhalants now meet criteria for an inhalant abuse disorder (Ridenour et al., 2015), 

up from 35% in 2006 (Ridenour et al., 2007).  

 

Preclinical modeling of drug reward-related behaviors 

In order to better address the cellular, molecular, and systems neuroscience 

basis of addiction, researchers have developed numerous preclinical models 

(Sanchis-Segura and Spanagel, 2006) with operant-based drug self-administration 

being the gold standard. In this paradigm, animals learn to self-administer a drug 

(orally or intravenously via a chronically implanted catheter) for multiple hours per 

day over the course of several weeks. This is usually followed by drug-cue 

extinction, reinstatement or relapse trials to detect changes in drug seeking or 

craving.  The development of a rodent model of inhalant self-administration has 

lagged behind other drugs of abuse presumably due to the difficulty in controlling 

inhalant concentrations and overcoming initial aversive effects associated with 

solvent odor. In the first of exactly two published attempts to do so, four squirrel 

monkeys outfitted with a custom inhalation helmets were trained to press a lever 

to receive toluene vapor infusions (Weiss et al., 1979). This approach required a 

significant investment of time and economic resources and has not been repeated. 

The second study involved a single, 30 min intravenous administration of a 

toluene-containing solution in mice (Blokhina et al., 2004). This approach is 

problematic for studying inhalant addiction for several reasons: 1) it does not mimic 

the inhaled route of administration in humans, 2) as a solvent, toluene can induce 

significant vein damage (Kulkarni et al., 2015), and 3) it prevents the study of 
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critical aspects of addiction that require multiple administration sessions; as such, 

this study has not been repeated.   

With the difficulties noted above in the use of inhalant self-administration 

protocols, researchers have relied on other techniques to describe the effect of 

toluene on addiction-related behaviors. For instance, drugs of abuse cause 

characteristic changes in locomotor activity both acutely, and over time 

(sensitization). Toluene inhalation has been shown to cause biphasic effects on 

goal-directed behavior that is typical of central nervous system (CNS) depressants: 

low concentrations of toluene increase (and high concentrations decrease) fixed-

rate responding for a food reward in mice, rats and pigeons (Weiss et al., 1979; 

Glowa, 1981; Glowa et al., 1983; Wood et al., 1983). Toluene generates an 

inverted-U dose-response curve on locomotion, similar to that produced by other 

CNS depressants.  (Kjellstrand et al., 1985; Wood and Colotla, 1990; Riegel and 

French, 1999a; Lo et al., 2009). Brief, repeated schedules of high-concentration 

toluene vapor exposures designed to model human consumption patterns also 

causes locomotor sensitization (Himnan, 1984; Batis et al., 2010; Páez-martínez 

et al., 2020). Behavioral sensitization has also been reported in several strains of 

mice, with the ethanol-avoiding DBA/2J strain being particularly susceptible 

(Bowen et al., 2010). Locomotor sensitization cross-sensitizes between toluene 

and other drugs of abuse including diazepam and cocaine (Wiley et al., 2003) and 

in a drug discrimination task, toluene substitutes for CNS depressants including 

ethanol and pentobarbital (Rees et al., 1987a, 1987b). Paradoxically, toluene also 

cross-sensitizes with cocaine and will substitute for amphetamine-driven operant 
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behavior (Beyer et al., 2001; Bowen, 2006). While toluene has CNS depressant 

effects, these results suggest that toluene is not strictly a depressant, supporting 

clinical observations and its mixed pharmacological profile discussed 

above(Flanagan and Ives, 1994; Anderson and Loomis, 2003; Gigengack, 2014). 

Although studies of drug-induced changes in locomotor activity are 

important, they do not fully encapsulate motivated behaviors relating to drug 

memories. To address this, scientists often use a conditioned place preference 

test to measure the association of a rewarding experience with the context in which 

it was experienced. Like all other drugs of abuse, toluene generates this hedonic 

association in rodents (Funada et al., 2002; Wayman and Woodward, 2018). In  

addition to CPP, intracranial self-stimulation (ICSS) can be used to assess the 

effect of drugs on reward-processing. To conduct this task, rodents are implanted 

with an electrode in the median forebrain bundle and then trained to operantly 

respond for different frequencies of activation.  Stimulation of this tract is highly 

reinforcing, as it activates limbic structures involved in reward (Stevens Negus and 

Miller, 2014). The response rate in the presence of a drug compared to baseline 

is a good measure of how primed the reward neurocircuitry is compared to 

baseline. Animals treated with any of the following substances have lower ICSS 

response rates (i.e. the animal needs less stimulation to feel reward): 

amphetamine, methamphetamine, MDMA, cocaine, nicotine, diazepam, and 

caffeine (Bauer et al., 2013, 2014; Stevens Negus and Miller, 2014) . This effect 

represents drug-primed sensitization of reward signaling in the brain (Stevens 

Negus and Miller, 2014).  Surprisingly, initial reports showed that glue vapors 
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containing 25% toluene increased ICSS threshold (Yavich et al., 1994). Studies 

using pure toluene vapor, however, have demonstrated the expected decreases 

in ICSS response rate, an effect that requires mGluR2/3 and GABAA activity. 

(Chan et al., 2012, 2015; Tracy et al., 2014, 2016; Wu et al., 2018). Further 

research is needed to identify the specific glutamate and GABA neurocircuitry 

mediating this toluene induced sensitization. 

Striatal dopamine release dictates reward-related behaviors and is 

pathologically disrupted in individuals with drug and alcohol dependence and in 

rodents undergoing preclinical models of addiction (Volkow et al., 2019). Toluene 

evokes the release of dopamine in the ventral striatum (Stengård et al., 1994; 

Gerasimov et al., 2002; Riegel et al., 2007) via direct stimulation of ventral 

tegmental neurons, the main dopaminergic input to the nucleus accumbens 

(Riegel and French, 1999b; Nimitvilai et al., 2016). Extracellular dopamine is 

responsible for toluene’s effects on locomotion (Riegel et al., 2003; Apawu et al., 

2015). Acute toluene also increases dopaminergic neuronal activation measured 

by increases in c-Fos expression in the striatum and ventral tegmental area (Lo et 

al., 2009; Perit et al., 2012).  

Toluene effects on the striatum may have neurotransmitter system 

specificity. For instance, the enhancing effects of toluene on the ventral tegmental 

area are 100x more potent than alcohol and accomplished via independent 

signaling involving muscarinic and GABA-(A and B) receptors (Nimitvilai et al., 

2016). Toluene also induces an endocannabinoid mediated inhibition of 

glutamatergic transmission in D2- but not D1-receptor-containing nucleus 
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accumbens core neurons (Beckley et al., 2016) and D1 receptor expression is not 

altered by repeated exposure to toluene vapor (Páez-martínez et al., 2020). 

Further, blocking D2 receptors in the accumbens prevents toluene-induced 

locomotor activity (Riegel and French, 1999a). These results suggest a major role 

for D2-containing striatal neurons in mediating changes in reward processing by 

toluene. 

Studies on the neurobiology of reward processing in human inhalant users 

did not exist until recently when Jain and colleagues measured BOLD fMRI 

responses in response to drug cues to compare craving among inhalant users and 

control subjects (Jain et al., 2020).  Among other regions, inhalant cues increased 

activity in the dorsal striatum and prefrontal cortex, dopamine-rich regions that are 

involved in habit formation. These results are an important finding in the pursuit of 

treatments for inhalant abuse in humans. For instance, it was recently reported 

that substitution therapy using lavender oils and perfume reduced cravings in 

inhalant abusers although these comparisons were only made against baseline 

cravings and thus do not control for a placebo effect  (Kalayasiri et al., 2018).  

 

Emotional Regulation 

Abstinence from all major drugs of abuse results in a negative emotional 

state (American Psychiatric Association, 2013) that can increase an individual’s 

risk of relapse (Koob and Moal, 2005; Wise and Koob, 2013). The term 

“amotivational syndrome” has even been suggested as a characteristic feature in 

inhalant users (Wada et al., 2005). Inhalant users have a high lifetime prevalence 
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of mood (48%) and anxiety (36%) disorders that developed following onset of 

inhalant abuse (Wu and Howard, 2007).  It follows that people with inhalant use 

disorders are more likely to be receiving professional treatment for emotional 

issues (Wu and Ringwalt, 2006). Negative affect  has been consistently replicated 

in animal models on drug relapse (Wise and Koob, 2013; Volkow et al., 2019). 

Although in rodents toluene is acutely anxiolytic (Lo et al., 2000), abstinence from 

binge-like toluene inhalation regimen increases vertical rearing (Duncan et al., 

2012), a marker of fear and anxiety (Lever et al., 2006). However chronic 

intraperitoneal injections of toluene in mice does not affect anxiety or depression-

like behaviors measured by an elevated plus maze or emergence tests (Lin et al., 

2010).  

 Emotional distress leading to drug relapse is associated with enhanced 

sensitivity to brain stress systems including the amygdala, habenula, and 

hypothalamus (Koob et al., 2014; Roberto et al., 2017).  Although well studied for 

other drugs of abuse, there is a paucity of data on the effects of toluene on these 

systems.  A single study by Perit and colleagues (2012) found that an acute 10 or 

30 min exposure to 5000 ppm toluene increased c-Fos immunoreactivity, a proxy 

for cellular activity, in the rat amygdala (basolateral and central), hypothalamus 

(anterior, paraventricular, and medial preoptic), but not the habenula 1.5 hours 

after drug exposure. More studies of this type are needed to identify the cellular 

and molecular determinants involved in the negative emotional state that can 

accompany inhalant abuse. Together with the other findings discussed in this 
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section, data from these types of studies are critical for developing effective 

strategies for treating disorders related to inhalant abuse. 

 

The Prefrontal Cortex: Executive Function & Top-Down Control of Behavior 

The prefrontal cortex (PFC), a specialized sub-division of the frontal lobe, is 

a hub for executive function and exerts control over a variety of sub-cortical areas 

(Kesner and Churchwell, 2011; Widge et al., 2019). Interrogation of the PFC and 

its non-human mammalian homologues has led to at least four overlapping 

theorems on its functionality: “domain specificity”, “level of processing”, “rule-

learning based on complexity”, and “top-down control” (Kesner and Churchwell, 

2011). Domain specificity posits that the main role of the PFC is to support working 

memory defined as a specialized process by which internalized stimuli are held 

“online” to guide behavior in the absence of external stimuli (Goldman-Rakic, 

1996).  Owen, Petrides, and colleagues suggest subdividing regions of the PFC 

on the basis of different levels or complexity of processing (Petrides, 1996; Owen, 

1997) . A third model also suggests subdividing the PFC into at least five regions, 

but these regions each dictate discrete rules or strategies rather than working 

memory (Wise et al., 1996; Wise, 2008). Finally, according to the top-down 

executive control model, the PFC engages in executive functions by maintaining 

patterns of activity that represent goals (Miller and Cohen, 2001). This model also 

suggest subdivisions of the PFC based not only on anatomy, but also subcortical 

(especially limbic) projections.  Under this model, the rodent PFC is broken down 

into the following subdivisions, each of which have human homologues (Kesner 
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and Churchwell, 2011): dorsomedial (anterior cingulate and precentral), 

ventromedial (prelimbic, infralimbic, medial orbitofrontal), lateral (anterior insula 

and lateral orbitofrontal), and ventral (ventral orbitofrontal and ventrolateral 

orbitofrontal). Throughout this dissertation the PFC will be discussed in the context 

of mediating top-down cognitive control with a focus on the ventromedial PFC 

since this region appears to be involved in maladaptive goal-based decision 

making repoprted in individuals with substance use disorders (Kalivas et al., 2009; 

Volkow et al., 2019) 

Cognitive “top-down” control of executive function refers to the ability to 

regulate cognitive activity and behaviors needed to achieve a central goal, 

especially in the presence of intermediate steps or distractions (Botvinick and 

Braver, 2015; Shenhav et al., 2017).  This incredibly complex process includes 

monitoring interactions with the world, evaluating the results of actions, and making 

adjustments in behaviors to better reach the intended goals. Thus, executive 

control includes functions such as working memory, temporal processing, 

planning, flexibility, and decision making. Pathological failures of cognitive control 

spans many psychiatric illnesses (Gruner and Pittenger, 2017; Ryman et al., 2018; 

Yang et al., 2018) including substance use disorders (Butler and Le Foll, 2019), 

where drug relapse is common despite known negative consequences and 

expressly wanting to quit.  

Drugs of abuse impair PFC function consistent with the notion of weakened 

top-down control in individuals with substance use disorders. For instance, 

reduced PFC reactivity to negative reinforcers predicts marijuana and cocaine use 
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in humans  (Blair et al., 2018) and activating the PFC can reduce drug craving in 

humans (Terraneo et al., 2016; Coles et al., 2018). Descending cortico-striatal 

pathways seem especially important (Winstanley et al., 2010; Tang et al., 2015) 

as  imaging studies in humans have demonstrated that activity in the PFC is linked 

to striatal function, and inversely associated with sensitivity to hedonic effects of 

psychostimulants (Volkow et al., 1999, 2002; Blair et al., 2018). Further, reduced 

expression or function of striatal D2Rs is linked to decreased activity in the 

dorsolateral PFC in human subjects with substance use disorders (Volkow et al., 

2013).  Moreover, the function of the PFC in addicted individuals has been shown 

to predict clinical outcomes, with disrupted connectivity between PFC and striatal 

regions being a consistent finding among individuals addicted to various drug 

classes (Tomasi and Volkow, 2013). 

Studies in animals corroborate the importance of the PFC and its 

descending striatal projects in regulating addiction-related behaviors (Kalivas, 

2009; Peters et al., 2009; Rocha and Kalivas, 2010; Shen and Kalivas, 2013). For 

instance, mPFC activity is inhibited in cocaine seeking rodents, and optogenetic 

excitation of the mPFC during abstinence results in reduced drug seeking (Chen 

et al., 2013).  In line with human studies, specific fronto-striatal pathways are 

involved in drug-seeking behaviors in rodents. For instance, nucleus accumbens 

core-projecting prelimbic neurons (PL-NAcc) promote, while nucleus accumbens 

shell-projecting infralimbic neurons (IL-NAcs) block psychostimulant seeking 

behavior (Peters et al., 2009; Rocha and Kalivas, 2010; Ball and Slane, 2012; 

Augur et al., 2016). These effects may be drug-specific, as  reinstatement of heroin 
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seeking was enhanced by activation of IL-NAcs neurons (Bossert et al., 2011, 

2012) and reinstatement of alcohol self-administration was facilitated by 

inactivation  of the PL-NAcc (Willcocks and McNally, 2013). These data strongly 

support the involvement of PFC-NA in regulating substance abuse-related 

behaviors in rodents, although the specific sub-circuitry does not generalize among 

different drugs of abuse.  

Recent work from our lab and others have described the effect of toluene 

on electrophysiological properties in the mPFC. Bath-applied toluene does not 

alter current-evoked spiking in rat mPFC slices (Beckley and Woodward, 2011) but 

does alter the function of numerous ligand- and voltage-gated channels in this 

region (see: Toluene Pharmacology). This includes a persistent, endocannabinoid-

mediated depression of AMPA signaling in deep-layer PL pyramidal neurons 

(Beckley and Woodward, 2011).  Mimicking human inhalant exposure patterns in 

rats with repeated toluene inhalation treatments in vivo, however,  increases the 

excitability of deep-layer PL neurons, an effect that is mediated by a decrease in 

afterhyperpolarization current (Armenta-Resendiz et al., 2018). This treatment also 

increased synaptic strength and reduced inhibitory transmission in the PL as 

measured by extracellular recordings (Cruz et al., 2019).  

The effect of toluene vapor inhalation on mPFC-NA signaling is circuit 

specific. Following a single binge-like exposure to toluene, current-evoked firing of 

deep layer PL-NAcs neurons is reduced while that of deep layer PL-NAcc neurons 

is enhanced (Wayman and Woodward, 2017). Moreover, the expression of toluene 

CPP was blocked when IL-NAcs were chemogenetically silenced (Wayman and 
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Woodward, 2018). The mPFC also indirectly impacts striatal circuitry by regulating 

toluene-induced synaptic strengthening of accumbens projecting dopamine 

neurons in the VTA. Pharmacologically enhancing mPFC activity prior to toluene 

inhalation prevents increases in the AMPA/NMDA ratio of NAc-projecting VTA DA 

neurons, while pharmacologically inhibiting the mPFC prior to exposure to a 

previously ineffective (and less than abused) concentration of toluene vapor 

increases the AMPA/NMDA ratio of these neurons (Beckley et al., 2013) 

Interestingly, this study also showed that toluene inhalation has no effect on the 

AMPA/NMDA ratio of VTA DA neurons that project to the mPFC.  These studies 

provide strong evidence that toluene alters the function of specific frontostriatal 

networks that likely underly maladaptive decision making in inhalant abusers.  

 

Toluene-induced Cognitive Dysfunction  

The sequelae of inhalant addiction extend beyond changes in reward value 

processing and cue reactivity. Early studies on recreational inhalant users mention 

impairments in memory, attention and judgements compared with control and even 

polydrug users (Korman et al., 1980; Hormes et al., 1986). Impaired processing 

speeds can even be detected after a single drug experience (Stollery, 1996). Other 

studies have demonstrated reductions in IQ, working memory, behavioral 

flexibility, attention, and response inhibition in inhalant abusers (Howard et al., 

2008; Lubman et al., 2008; Yuncu et al., 2015). Some toluene-induced 

impairments in cognition appear to recover (e.g. paired-associations, response 

inhibition) while others (e.g. visual motor speed, learning and memory, and 



  22  

executive control) persist despite a protracted period of drug abstinence in inhalant 

abusers  (Dingwall et al., 2011; Takagi et al., 2011).   

These lasting deficits are likely due in part to long-lasting damage to white 

matter, tissue that is particularly susceptible to toluene due to its high lipid content 

and toluene’s high lipid:water coefficient. Toluene damages cortical white matter, 

as well as the corpus callosum, areas that are essential for executive function 

(Rosenberg et al., 1988, 2002; Kornfeld et al., 1994; Filley et al., 2004; Marulanda 

and Colegial, 2005). Prolonged inhalant abuse can even produce toluene 

leukoencephalopathy, a form of dementia (Hormes et al., 1986; Rosenberg et al., 

1988; Filley et al., 1990, 2004; Filley, 2013). In fact, the degree of cerebral white 

matter injury correlates with the severity of cognitive impairment (Filley et al., 

1990).  

In line with human studies, chronic exposure of rodents to toluene causes 

a wide range of impairments in cognitive behaviors including, impaired novel object 

recognition, spatial learning, and inhibitory avoidance when tested with little or no 

drug abstinence (Baydas et al., 2005; Batis et al., 2010; Tin et al., 2012).  

Persistent behavioral effects following drug abstinence are mixed: deficits in 

learning and memory, have been reported, but more complicated tasks such as 

outcome devaluation and Pavlovian-to-instrumental transfer are not altered (Dick 

et al., 2014; Furlong et al., 2016; Braunscheidel et al., 2017). Motivational changes 

were not observed in two of these studies (Dick et al., 2014; Braunscheidel et al., 

2017). However, Furlong et. al (2016a) did note an increase in progressive ratio 

breakpoint in animals with a history of toluene inhalation. Subtle deficits in 
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behavioral flexibility were also reported although these might generalize to overall 

learning deficits, and not flexible decision making impairments, per se. (Furlong et 

al., 2016; Braunscheidel et al., 2017).   

Stark changes in delay discounting, where rats are tasked with choosing to 

wait progressively longer periods of time for a large food reward, are noted in 

animals with a distant history of toluene inhalation (Furlong et al., 2016).  Other 

drugs of abuse cause a leftward shift in delay discounting as rodents are unwilling 

to wait long periods of time for a large reward (Simon et al., 2007; Mendez et al., 

2010). This reflects the human condition (Petry, 2001; Kirby and Petry, 2004) and 

is usually interpreted as increased impulsivity in drug treated animal. Toluene, 

however, causes a rightward shift in delay discounting, as animals wait longer for 

a large reward (Furlong et al., 2016). This change was accompanied by increased 

inhibitory GABAA1 protein in the PL. Similar rightward shifts in delayed 

discounting have been observed following pharmacological lesioning of the mPFC  

(Churchwell et al., 2009; Gill et al., 2010) and recent reports show that subsets of 

PL neurons encode reward value during this task (Sackett et al., 2019).  

Interestingly, Bowen and colleagues previously reported that gestational toluene 

treatments (every other day from gestational day 8 to 20) altered performance in 

a waiting-for-reward task in the resulting brood.  In this appropriately named task, 

rats simply need to wait progressively longer periods of time for reward delivery 

following a series of lever presses. Rats whose mothers were treated with toluene 

received significantly more rewards than their untreated counterparts (Bowen et 

al., 2009). Taken together, these results suggest that the effects of toluene on 
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mPFC-dependent complex decisions where time is a salient factor persist despite 

protracted drug abstinence. 

With regards to modeling toluene-induced dementia, leukoencephalopathy 

was not observed in rats with a near lifetime of toluene exposure (Ranson and Del 

Bigio, 2018). However, treating rodents with chronic, intermittent toluene vapor 

binges does result in region-specific white matter abnormalities, with deficits in the 

anterior commissure noted following a month of treatments (Duncan 2012).  

Rearing (vertical plane exploration) deficits were also identified, but they preceded 

any changes in white matter abnormalities and persisted following white matter 

recovery suggesting separate underlying mechanisms. Rearing more likely reflects 

either fear and anxiety or non-specific increases in motivation and arousal and not 

higher ordered executive function (Lever et al., 2006). As such, and in agreement 

with the general lack of an effect on complicated decision making in other 

preclinical studies, the corpus callosum was not affected in this study while other 

white matter deficits showed recovery following 8 weeks of drug abstinence 

(Duncan 2012) .  

 

Concluding Remarks  

Much of our understanding on the pharmacology and neurobiology of 

volatile organic solvents abuse comes from studies of toluene, a methylated form 

of benzene found in a variety of paints, paint thinners, and glues. Still, inhalants 

are a severely understudied drug of abuse despite their worldwide use and 

addictive potential. Maladaptive decision making in substance use disorders are 
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driven by drug-induced changes in the prefrontal cortex, a key brain area involved 

in top-down control over complex decision making. The following chapters add to 

an emerging literature on the effects of toluene on cognitive function and prefrontal 

cortical physiology.  Understanding how toluene vapor inhalation impacts the 

prefrontal cortex is critically important for developing targeted treatment strategies 

for inhalant abusers. 
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CHAPTER 2: PERSISTENT COGNITIVE AND 

MORPHOLOGICAL ALTERATIONS INDUCED BY 

REPEATED EXPOSURE OF ADOLESCENT RATS 

TO THE ABUSED INHALANT TOLUENE 
 

INTRODUCTION 

 Since drug addiction may develop following chronic use, it is important to 

understand the effects of repeated, long-term toluene exposure on behavior and 

cognition. Results from preclinical studies reveal that chronic exposure to toluene 

can cause a wide range of cognitive and behavioral impairments including 

sensitization to drug-induced hyperlocomotion, impaired novel object recognition, 

spatial learning, and inhibitory avoidance (Batis et al., 2010; Baydas et al., 2005; 

Huerta-Rivas et al., 2012).  In addition, clinical studies in human toluene abusers 

also report cognitive deficits such as decreases in IQ and impairments in executive 

functions such response inhibition, behavioral flexibility, working memory, and 

attention (Howard et al., 2008; Lubman et al., 2008; Yuncu et al., 2015). Although 

these studies of chronic toluene exposure are essential to understanding the 

drug’s effects on cognition, most of them assessed behavioral performance shortly 

following the last toluene exposure. While important, it is also critical to examine 

whether there are changes in cognitive function following a more protracted period 

of abstinence. 

Drug abstinence results in a negative emotional state, increased anxiety, 

and social withdrawal – all of which increase an individual’s risk of relapse 

(Goodwin et al., 2002; Mcgregor et al., 2008; Wise and Koob, 2013). 
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Understanding the behavioral profile during drug abstinence is essential for 

effective treatment of substance use disorders. The few studies concerning 

toluene’s effects following protracted abstinence are somewhat inconsistent and 

results vary based on the cognitive measure tested. For example, while deficits in 

object recognition, operant conditioning, delay discounting, progressive ratio 

responding, and contingency monitoring have been observed, protracted 

abstinence from chronic toluene exposure does not affect Pavlovian-to-

instrumental transfer, outcome devaluation, anxiety or spatial memory (Lin et al., 

2010; Dick et al., 2014; Furlong et al., 2016). Further, while inhalant-induced 

deficits in behavioral flexibility have been detected in humans after a short 

abstinence period (5-9 days), their effects in a protracted abstinence rodent model 

are subtle (Dick et al., 2014; Yuncu et al., 2015; Furlong et al., 2016).   

One of the more commonly studied forms of behavioral flexibility involves 

training a subject to respond to a certain set of rules for a reward, and measuring 

the ability to adjust behavior when a new rule is introduced unexpectedly. Efficient 

completion of these tasks is critically-dependent on the integrity of the prefrontal 

cortex (Hamilton and Brigman, 2015). Moreover, disrupting communication 

between the medial prefrontal cortex (mPFC) and nucleus accumbens core (NAc) 

impairs shifting between strategies by increasing perseverative responding (Block 

et al., 2007).  This circuitry is part of a larger network that controls the transition 

to habitual drug use, where prelimbic mPFC-NAc connectivity is essential for the 

initiation of drug-seeking behaviors (Everitt and Robbins, 2005; Stefanik et al., 

2013). Both behavioral flexibility and drug addiction require structural 
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modifications in the mPFC and NAc to permit the formation and maintenance of 

new synapses. The postsynaptic dendritic spine is a key component of this 

neuroplasticity, with long-thin immature spines giving way to mushroom-headed 

spines over the course of excitatory synaptic growth (Holtmaat et al., 2006).  While 

nearly every drug of abuse examined to date alters dendritic spine morphology in 

the mPFC and NAc (Mulholland, Chandler, & Kalivas, 2016; Spiga et al., 2014), 

it is not known whether similar changes occur following toluene exposure. 

There is a particularly high incidence of inhalant abuse in adolescents due 

to the low cost and high availability of toluene-containing products  (e.g. paint 

thinners, nail polish, permanent markers) (Johnston et al., 2015).  In the present 

study, adolescent rats were chronically exposed to abuse levels of toluene vapor 

and then allowed to recover in their home cage for a protracted abstinence (CTA). 

When rats reached adulthood, we assessed two types of behavioral flexibility – 

strategy set-shifting and reversal learning – and examined the density and sub-

types of dendritic spines in mPFC and NAc. The results from these studies show 

that toluene exposure during adolescence produces selective impairments in 

cognitive function during adulthood that are accompanied by alterations in 

dendritic spine morphology that are region- and spine-subtype specific.  

 

MATERIALS AND METHODS 

Animals 

Sixty-seven male Sprague-Dawley Rats (post-natal day (P) 32 on arrival; 

Harlan Laboratories, Indianapolis, IN) were housed in pairs in polypropylene 
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cages on a reverse light cycle (lights off at 0900 h) in a climate controlled room 

with ad libitum access to food and water unless otherwise noted. Each rat was 

acclimated to handling for 5 min per day for at least 2 days prior to toluene 

exposure. All procedures were performed in compliance with the Medical 

University of South Carolina IACUC protocols.  

Toluene Inhalation 

On the day before the first toluene exposure, adolescent rats (P38) were 

habituated to the exposure chamber (30x30x30cm) for 15 min. On each of the 

following 5 days (P39-43), a binge-like regimen was used to mimic adolescent 

human toluene abuse. Sessions consisted of two, 15 min exposures to 10,500 

ppm toluene generated using a sevoflurane vaporizer (Penlon Limited; flow rate 

4L/min, 8% volume). Each exposure was separated by 2 h of recovery in the home 

cage. We have previously used gas chromatography to validate this protocol for 

generating abuse-level toluene concentrations (Beckley et al., 2013).  Importantly, 

these exposures fall within human consumption patterns: 15 min to several hours 

at 5000 to 15000 ppm (Brouette and Anton, 2001; Bukowski, 2001). Interestingly, 

Gmaz et al. (2012) exposed Long-Evans rats to 5000 ppm toluene for 30 min and 

determined that the resulting brain toluene concentrations (500-1000 μmol/l) 

would be similar to those experienced by humans inhaling toluene-containing 

products. Similar exposure protocols have been used to study the effect of chronic 

exposure to abuse levels of toluene vapor (Moser and Balster, 1981; Bowen et 

al., 2009; Dick et al., 2014; Furlong et al., 2016). Control rats were exposed to 

chambers filled with air on the same schedule as above. Housing pairs were 
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placed in the same drug treatment group to avoid potential exposure of air-treated 

controls to toluene.  Animal weights were recorded every day following toluene 

exposure, and once every 3-5 days thereafter.  

Operant Conditioning 

Lever Press Training 

Rats (eighteen toluene-, seventeen air-treated) were first habituated to 

20% sweetened condensed milk (SCM), the reward used throughout these 

studies. During reward exposure, each rat pair was given free access to 10 ml 

SCM for two days before exposure to the operant chambers. Subjects were 

monitored to ensure both rats sampled the SCM.  Lever press training was 

subsequently conducted in operant chambers (Med Associates, St. Albans, VT) 

that began during adulthood (P60) and proceeded as described previously (Brady 

and Floresco, 2015). Briefly, rats were first trained to lever press on a fixed-ratio 

(FR) 1 schedule for 45 μl SCM dispensed from a central feeding well over the 

course of three phases (1-3).  Phase 1 (30 min session) began with both levers 

extending, each of which were reinforced on an FR1 schedule. Rodents moved 

on to phase 2 if they made 50 responses for two consecutive days.  Phase 2 was 

identical to phase 1, except that levers retracted 20 s when pressed and then 

were presented again.  Rodents progressed to phase 3 if they made 50 responses 

for two consecutive days. Phase 3 lasted 30 to 45 min and consisted of 100 trials. 

During each trial, one of the two levers were extended for 10 s in a pseudorandom 

order. If the rat responded on the lever, it was retracted for 20 s and a reward was 

delivered to the feeding well. If the extended lever was not pressed during a trial, 



  31  

it was retracted, and the house light was illuminated for a 30 s time out period 

which was recorded as an “omission”. Once a subject reached criteria (10 or fewer 

omissions per session for two consecutive days) a side preference test was 

performed as previously described (Brady & Floresco, 2015; Floresco, Block, & 

Tse, 2008).  For each of 60 trials, both levers extended simultaneously and were 

reinforced on an FR1 schedule.  A trial concluded when two presses occurred, 

which resulted in lever retraction for 20 s. The preferred side was defined as the 

side that a rat pressed first most often across trials. 

 

Visual Cue Discrimination 

Rats were trained to respond to only the lever under an illuminated light 

(visual cue) in order to receive reinforcement.  Rats received daily session of 100 

trials.  Each trial started with a visual cue light turning on above one of two lever 

slots. Three s later the house light turned on and both levers were inserted into 

the chamber.  The visual cue was presented in a pseudorandom order across 

trials to indicate which lever would elicit a reward when pressed. Responses on 

this “active” lever delivered reward on a FR1 schedule. Responding on either lever 

caused both levers to retract for 20 s.  If neither lever was pressed within 10 s, 

both were retracted and the house light was illuminated for a 30 s time out period, 

recorded as an “omission”. Rats were trained to a criterion of two consecutive 

sessions with less than 10 omissions. They were then subjected to the strategy 

shift to response discrimination.  
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Strategy Set-Shift to a Response Discrimination 

During this phase, rats were required to shift their strategy and use an 

egocentric spatial response strategy, wherein responding on one lever (i.e. left vs 

right lever) now delivered the reward irrespective of the position of the visual cue 

(Brady and Floresco, 2015). We chose to use this visual cue-response shift 

because our primary interest was in ascertaining how toluene exposure may 

affect PFC functioning, and previous studies have shown that performance on this 

type of shift is more sensitive to disruption following PFC inactivation (Floresco et 

al., 2008). Reinforced levers were counter-balanced against the rats preferred 

location as determined by the side preference task. The manner in which the set-

shift was administered was varied across two experiments.  Group “A” consisted 

of eight toluene- and nine air-treated rats that received a “within-session” shift, 

where the session started with 20 “reminder trials” of the visual cue rule. On the 

21st trial, rats were required to use a response rule to obtain reward.  A separate 

group (“B”) consisted of eight toluene- and eight air-treated rats that completed 

this task “between-sessions”, where the strategy shift occurred without any 

reminder trials (i.e. the last training trial and first training trial were separated by 

24 h). Sessions ended once at least 30 trials were completed and a rat achieved 

criterion performance (8 consecutive correct responses). Primary dependent 

variables for this task were trials to criterion and errors to criterion. Incorrect 

responses on illuminated levers were further categorized as either perseverative 

errors (if >4 in a block of 16 trials) or regressive errors (if ≤4 in a block of 16). 

During the strategy shift, an incorrect response on an unlit lever was classified as 
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a never reinforced error.  Lever press latency, and accuracy during reminder trials 

were also recoded.   

 

Reversal Learning 

Once rats achieved criterion performance (8 consecutive correct lever 

presses under 30 trials for two days in a row) on the strategy shift task, the 

response discrimination was reversed so that responses on the previously 

incorrect lever were now reinforced, as described previously (Brady and Floresco, 

2015).  Again, the visual cue lights were illuminated above one of the levers on 

each trial, but here, they served as distractors. Rats from group A were tested for 

reversal learning using a within-session reversal shift while rats from group B were 

tested using a between-session task design.  Primary dependent variables for this 

task were trials to completion and errors to criterion. Sessions ended once 10 

consecutive correct responses were made and at least 30 trials had occurred.  

Errors were further categorized as either congruent or noncongruent with visual 

cue.   Lever press latency, and accuracy during reminder trials were also 

recorded. 

  

Progressive Ratio Test 

After achieving criterion performance on the reversal phase of the task, 

animals from both group A and group B performed a progressive ratio task using 

the following schedule of reinforcement: responses per reward (rounded) 

=  5ereward number∗0.2 − 5 (Richardson and Roberts, 1996). Each reward delivery 
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preceded a 4 s timeout period. All testing occurred over a single 16 h period that 

terminated if no rewards were delivered within a 1 h period. 

 

Classical Conditioning 

A separate cohort of 32 rats were divided into 4 groups (n=8/group) to test 

the interaction between drug history (CTA vs air) and cue pre-exposure (pre 

exposed, “PE” vs non pre exposed, “NPE”) on classical conditioning using a 

procedure based on Nonkes et al. (2012). CTA and air-treated rats were 

acclimatized to SCM one day before training began (see 2.3.1). On P60, rats were 

placed in operant chambers (Med Associates, St. Albans VT) for two sessions of 

food well location training. During these 60 min sessions, 45 µl of SCM were 

delivered on a variable interval (VI, 3 min average inter-trial interval) for 15 trials 

to ensure frequent visits to the well during future testing.  For the next 6 days, half 

of the rats underwent cue pre exposure sessions. Rats were food deprived for 2 

h before each session.  These 60 min sessions consisted of a 60 s compound 

cue (tone + stimulus lights) delivered on a VI (3 min average inter-trial interval) for 

15 trials with no reward delivery. On these training days, NPE rats were placed in 

operant boxes without any cues for the same amount of time as their PE peers. 

This training resulted in four groups (air-PE, air-NPE, CTA-PE, CTA-NPE). 

Rats next underwent eight days of classical conditioning sessions.  Rats 

were food deprived for 2 h before each session. During these 40 min test 

sessions, a 60 s compound cue was delivered on a VI (3 min average inter-trial 

interval) for 10 trials. This cue was paired with the delivery of 45 µl SCM 30 s into 
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cue presentation. The primary dependent variable used to measure cue-reward 

association strength was the elevation ratio, X/(X+Y). “X” equals the number of 

food well entries during the 30 s period following cue onset, when reward was 

available. “Y” equals the number of entries during the 30 s preceding cue onset, 

when reward was not available. Latency to approach the food well following cue 

onset and SCM delivery were also recorded. Cue-reward pairing was 

extinguished over the next three sessions using the same program in the absence 

of the SCM reward. 

 

Dendritic Spine Analysis 

At PD 93-97 (7 days following the progressive ratio task, and approximately 

7 weeks after the last toluene exposure) rats from the within-session behavioral 

flexibility test (group A) were processed for dendritic spine labeling and 

classification as previously reported (Uys et al., 2015).  First, rats were 

anesthetized with urethane (3g/kg, i.p.) and perfused with 300ml saline-free 0.1M 

phosphate buffer (PB) followed by 300 ml 1.5% paraformaldehyde (PFA). Brains 

were blocked and post-fixed for 1 h in 1.5% PFA and then sliced into 150 µm 

coronal sections using a vibratome.  Tungsten particles (1.3 µm diameter) were 

coated with DiI and then applied to coronal slices using a Helio Gene gun (Bio-

Rad, Hercules, CA) fitted with a 3.0 µm polycarbonate filter (BD Biosciences, San 

Jose, CA).   The lipophilic dye was allowed to spread through the samples 

overnight in PB at 4°C. The next day, slices were washed once in PB and then 

mounted onto slides with ProLong Gold (Life Technologies, Carlsbad, CA) and 
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coverslipped.  Slices were imaged using a Zeiss LSM 510 confocal microscope 

and 63x oil immersion objective (Plan-Apochromat; NA = 1.4). Voxel size (49 x 49 

x 100 nm) was set according to the Nyquist theorem. On average, three to five 

dendritic segments 50 µm in size from basal dendrites were collected and imaged. 

Each segment was second-order, 25 µm from any branch point, and began 50-

100 µm from the soma.  Images were deconvolved using AutoQuant (Media 

Cybernetics, Rockville, MD) and subsequently modeled using Imaris (Bitplane, 

Zurich, Switzerland) software. Based on previously reported specifications 

(Trantham-Davidson et al., 2016; Lin, Lo, Lyu, & Lai, 2017), spines were classified 

into subtypes using the following parameters: spine length < 0.75 µm, stubby; 

spine length between 0.75 µm and 3.0 µm, long-thin; spine length < 3.5 µm, head 

width minimum > 0.3 µm, and head width maximum > minimum neck width *1.5, 

mushroom; spine length ≥ 3.0 µm, filopodia.  Two-headed spines were counted 

manually.   

 

Statistics 

Lever press and visual discrimination data were analyzed with two-tailed 

unpaired t-tests using Prism 7 (Graphpad Software San Diego, CA).  One rat 

(CTA, group B) failed to progress through phase 1 of training, assigned a value 

of 10 days for this training phase (max number of days to criteria observed), and 

then removed from the remainder of the study. Three rats (two air, group A; one 

CTA, group B) failed to meet criteria in phase 3 after 8 days, but subsequently 

passed visual cue training criteria and were included in the remainder of 
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behavioral studies. Two outliers (one CTA, group A; one air, group A) as 

determined by Grubbs test were removed from the statistical analysis of figure 

2.1A. Behavioral flexibility data were analyzed with 2-way ANOVA with task as 

the within subject factor and drug experience as the between subject factor (Prism 

7). Error data from these experiments were analyzed with two-tailed unpaired t-

tests. Classical conditioning and extinction data were analyzed using a three-way 

ANOVA using SPSS (SPSS, Armonk, NY) with cue and drug experience as 

between subject factors and test session (time) as the within subject, repeated 

factor. Since the purpose of these experiments was to explore the effects of CTA 

over time under a single set of cue experiences, we further analyzed any drug 

experience x time interactions revealed by the three-way ANOVA within each cue 

exposure condition using a two-way repeated measures ANOVA.  Dendritic spine 

analyses were conducted using a mixed model (SAS Proc Mixed, SAS Institute 

Inc., Cary, NC) with a first order autoregressive covariance matrix across the 

sequential slices within rats.  

 

RESULTS 

Toluene Vapor Inhalation Attenuates Weight Gain 

CTA rats weighed significantly less than air-treated controls by the fifth day 

of treatment. This difference persisted until the first day of lever press training 

(P60), but weights were not significantly different during behavioral flexibility 

testing (supplementary figure 2.1). 
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CTA Causes Persistent Operant Conditioning Deficits 

In order to identify potential drug-induced deficits in operant conditioning, 

we noted the initial operant responding and number of days required to meet 

criteria during training. During initial lever press training, CTA rats pressed for 

reward significantly fewer times than air treated controls [t(31)=2.095, p<0.05] 

(Figure 2.1A).  CTA rats took significantly longer to reach lever pressing criteria 

during phase 1 compared to air treated controls [t(33)=3.05, p<0.01] (Figure 2.1B). 

This deficit was not present during subsequent training: lever press training phase 

2 [t(32)=0, p>0.999], lever press training phase 3 [t(32)=0.72, p=0.923], visual cue 

training [t(32)=0.36, p=0.994] (figure 2.1C-E).  Both test groups (i.e. “A” or “B”, see 

methods) progressed through training at comparable rates (supplementary table 

1). Finally, the number of training days did not correlate with future strategy shifting  

 

Figure 2.1. A history of toluene exposure during adolescence impairs acquisition 

of operant behavior in adulthood.  A) CTA exposed rats had fewer lever presses 

for a reward (20% sweetened condensed milk) on day one of operant training. 

B) CTA rats reached lever press training phase 1 criteria in significantly more 

days compared to control. C-E) CTA and air exposed rats progressed through 

the remainder of operant training in equivalent number of days. Data shown are 

mean ± SEM; *p<0.05, **p<0.01; air n=17, CTA n=17. 
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(Pearson r=-0.033, p=0.86) or reversal learning (Pearson r=0.096, p=0.61) 

performance. Taken together, these data suggest that there is a toluene-induced 

deficit in operant conditioning, but not visual discrimination. 

 

Within-Session Tests of Behavioral Flexibility: 

Strategy Set-Shifting 

Eighteen rats (nine air, nine toluene; group A) were trained to lever press 

for a SCM reward in response to a visual cue. Once rats met the criteria of 8 correct 

lever presses in a row in under 30 trials, they were tested for their ability to shift to 

a new discrimination strategy (i.e. switch to a location based rule) using a within-

session test design (i.e. testing occurred immediately after 20 training reminder 

trials at the start of the test session).  Analysis of these data revealed no detectable 

differences in performance during the first twenty reminder trials on test day as 

measured by overall accuracy and response latency (all t’s< 1.09, p’s>0.29, 

supplementary figure 2.2A,B). A 2-way ANOVA revealed a main effect of task 

(F1,16=116.6, p<0.0001), but no task x drug interaction (F1,16=0.0373, p=0.8494) or 

main effect of drug (F1,16=0.3939, p=0.5397; figure 2.2A). Sidak’s post hoc 

revealed no differences in the number of trials to criteria between CTA rats and air 

treated controls during the reminder trials or the strategy set shift task itself (all t’s 

<0.59, p’s >0.81; figure 2.2A). There were no group differences in errors to criteria, 

response latency or errors committed in CTA rats compared to air treated controls 

(all p’s >0.05; figure 2.2B, supplementary figure 2.2C, 2.3).  
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Reversal Learning 

Following completion of the set shift to the location-based rule, rats were 

tested on a reversal of this discrimination (i.e. learn that the previously inactive 

lever was now the only active lever) using a within-session test design (i.e. the 

reversal shift occurred immediately after 20 training reminder trials within the same 

session). There were no detectable differences between air and CTA rats in 

performance during the first twenty reminder trials on test day as measured by 

overall accuracy and response latency (all t’s<1.16, p’s>0.26; supplementary 

figure 2.2D,E).  A 2-way ANOVA revealed a main effect of task (F1,16=56.6, 

p<0.0001), but no task x drug interaction (F1,16=0.0829, p=0.7772) or main effect 

of drug (F1,16=0.0004, p=0.9835; figure 2.2C). Sidak’s post hoc revealed no 

differences in the number of trials to criteria between CTA rats and air treated 

controls during the reminder trials or the reversal learning task itself (all t’s <0.21, 

p’s >0.97; figure 2.2C). There were no group differences in errors to criteria or error 

subtypes committed in CTA rats compared to air treated controls (p >0.05; figure 

2.2D, supplementary figure 2.2F, 2.3). 
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Figure 2.2. A history of adolescent toluene exposure did not affect within-session 

set-shifting or reversal learning in adulthood. (A & B) CTA and air exposed rats 

reached set-shift criteria in the same number of trials and committed the same 

number of errors during a within-session test design. (C & D) CTA and air 

exposed rats reached reversal learning criteria in the same number of trials and 

committed the same number of errors during a within-session test design.  Data 

shown are mean ± SEM; air n=9, CTA n=9. 

 
 

Between-Session Tests of Behavioral Flexibility: 

Test of behavioral flexibility involve suppression of responding of an initial 

rule, exploring alternative rules, and the establishment/maintenance of an new 

rule (Block et al., 2007). Learning and extinction deficits have been observed both 

in acute and chronic toluene use in both humans (Yuncu et al., 2015)  and rodents 

(Dick et al., 2014). Since a history of toluene exposure could be affecting the 
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strength of the existing rule memory (Floresco & Jentsch, 2011) we expanded the 

amount of time between training and testing (“between-session” tests) and in a 

separate cohort of animals measured their behavioral flexibility.  In this paradigm, 

testing occurred 24h after the last visual set training session. 

 

Strategy Set-Shifting 

A separate group of sixteen rats (eight air, eight toluene; group B) was 

trained to lever press in response to a visual cue. Subjects were then tested on 

their ability to shift strategy between-session (i.e. with no reminder trials before the 

set shift and during the same session). A 2-way ANOVA revealed a task x drug 

interaction (F1,14=7.842, p<0.05) as well as main effects of task (F1,14=197.6, 

p<0.0001) and drug (F1,14=5.955, p<0.05).  This effect was driven by CTA rats 

reaching criterion performance more rapidly than control rats when the rule 

switched to being dependent on lever-location (Sidak’s post-hoc p<0.01; figure 

2.3A). There was no difference in performance during the last day of visual cue 

discrimination training (Sidak’s post-hoc p=0.9372; figure 2.3A). The enhanced 

performance was also reflected in the trend towards decreased errors committed 

by CTA rats compared to controls [t(14)=2.00, p=0.066; figure 2.3B]. There were 

no significant differences in the types of errors committed or number of trials 

omitted during testing (all p’s >0.08; supplementary figure 2.4). 
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Reversal Learning 

Once trained on the location-based rule, rats were tasked to reverse their 

responding. A 2-way ANOVA revealed a main effect of task (F1,14=84.55, p<0.001), 

but no task x drug interaction (F1,14=0.1186, p=0.7361) or main effect of drug 

F1,14=0.2026, p=0.6601; figure 2.3C). Sidak’s post hoc revealed no differences in 

the number of trials to criteria between CTA rats and air treated controls during last 

training task or during the reversal learning task itself (all t’s <0.57, p’s >0.82; figure 

 

Figure 2.3.  Toluene exposure during adolescence improved between-session 

set-shifting, but not reversal learning in adulthood. CTA rats reached set-shift 

criteria in fewer trials as compared to air-exposed controls (A) and showed a 

trend towards fewer errors (B). (C & D) CTA rats reached reversal learning 

criteria in the same number of trials and committed the same number of errors 

as air-exposed controls. Data shown are mean ± SEM; **p<0.01. Data shown 

are mean ± SEM; air n=8, CTA n=8. 
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3c). There were no significant differences in total errors during testing [t(14)=0.73, 

p=0.4807; figure 2.3D] 

 

Progressive Ratio 

In order to determine if the operant conditioning deficits observed were due 

to a decreased motivation for obtaining SCM reward, we measured responding 

using a progressive ratio reinforcement regimen in these same rats. All rats from 

the behavioral flexibility experiments were included in this study.  There were no 

differences between CTA and air-treated controls in response breakpoint, active 

lever presses, or inactive lever presses (all t’s<0.85, p’s>0.05; figure 2.4). These 

results suggest that the deficits in operant conditioning are not easily attributable 

to deficits in motivation to obtain a food reward.  

 

Figure 2.4.  A history of toluene exposure during adolescence does not alter 

motivation for a food reward. A) CTA rats had a comparable breakpoint 

compared to controls using a progressive ratio schedule of reinforcement. B) 

The number of presses of active and inactive levers was not different between 

CTA and air-exposed rats. Data shown are mean ± SEM; air n=17, CA n=17. 
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Toluene Vapor Inhalation Causes Persistent Classical Conditioning Deficits  

Acquisition and Latent Inhibition 

 The associative learning phenomena of latent inhibition – where previous 

exposure to a non-reinforced cue blunts future conditioning to that cue – has also 

been proposed to play a role in behavioral flexibility (Chess et al., 2012; Nonkes 

et al., 2012). Blunted latent inhibition may increase exploration of previously 

irrelevant rule sets during a strategy shift that could lead to an apparent facilitation 

of shifting. Given that CTA resulted in somewhat more rapid shifting to a novel 

rule when rats were tested using a between-session protocol, we tested whether 

latent inhibition was altered in adult rats with CTA. In so doing, we characterized 

classically conditioned approach behavior, and extinction of this behavior, in both 

cue naïve and cue pre-exposed rats. 

Results from the between-session strategy shifting test suggest that 

toluene exposure may cause long term deficits in latent inhibition of a previously 

irrelevant cue to future cue-reward associations. By including both a cue pre-

exposed (PE) and a non-cue pre-exposed (NPE) group of air and CTA rats, this 

classical conditioning task design allowed us to test the effect of CTA on both 

classical conditioning and latent inhibition. We tested 8 rats in each of the drug x 

cue exposure combinations (air-PE, air-NPE, CTA-PE, CTA-NPE). 

Conditioning was primarily measured using an elevation ratio, (X/(X+Y)), 

where X equals the number of food well approaches during the first 30 s of cue 

(when reward was available) and Y equals the number of approaches during the 

30 s prior to cue onset (when reward was unavailable). As predicted by latent 
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inhibition cue pre-exposure blunted elevation ratios over the course of 8 test 

sessions (main effect of cue, F1,7=15.70, p<0.001). While there was no main effect 

of drug (F1,7=2.599, p=0.118), there was a drug x time interaction (F1,7=2.04, 

p<0.05).  Subsequent partitioning of this interaction revealed a significant 

difference between treatment groups in the NPE condition (main effect of drug; 

F1,7=2.331, p<0.05) but not in PE condition (main effect of drug; F1,7=0.98, 

p=0.450] (Figure 2.5A).  This interaction was reflected by the decreased latency in 

initiating food well approach behavior in response to cue over time in NPE (drug x 

time F1,7=2.626, p<0.05), but not PE (drug x time F1,7=0.689, p=0.681; Figure 

2.5B). CTA decreased elevation ratio within the first day of training as well (main 

effect of drug; F1,2 = 4.597, p<0.05), but there was no evidence of a drug x time 

 

Figure 2.5. CTA mitigates the acquisition rate of classical conditioning without 

impairing latent inhibition. CTA and air treated animals were either naïve to the 

CS (NPE) or pre-exposed (PE) to the CS during the training phase. Conditioning 

was measured as the elevation ratio defined as X/(X+Y) where X is the number 

of food well entries during the first 30 s of cue and Y is the number of entries 30 

s prior to cue onset.  A) CTA blunted the conditioning acquisition curve over the 

course of eight test days in NPE but not PE rats. B) CTA also delayed food well 

approach in response to CS, indicative of blunted CS-US association. Data 

shown are mean + SEM; drug x test day interaction *p<0.05; all groups n=8.  
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interaction (F1,7=0.124, p=0.727; supplementary figure 5). These data indicate that 

CTA retards classical conditioning of a cue to a reward, but does not affect how a 

pre-exposure to a cue impedes subsequent associative learning about that cue. 

  

Extinction of Classically Conditioned Approach Behavior 

 There were no main effects of drug (F1,7=0.599, p=0.455), cue (F1,7=0.011, 

p=0.918) or drug x time interactions (F1,7=0.507, p=0.605) on elevation ratios over 

the course of three extinction trials (Figure 2.6A). Interestingly, there was a drug x 

time interaction within the first extinction session (F1,2=4.711, p<0.05; figure 2.6B) 

that reflected a significant difference between groups in the PE condition 

(F1,2=6.117, p<0.05), but not the NPE animals (F1,7=0.5637, p=0.47; figure 2.6A).  

Neither a history of cue exposure nor CTA alone affected elevation ratios during 

this first extinction session (main effect of cue F1,2=0.591; main effect of drug, 

F1,2=0.448, p=0.593). Further, the drug x time interaction was not observed during 

acquisition of approach behavior (F1,7=0.124, p=0.727 supplementary figure 2.5).   

These data suggest that CTA enhances extinction of classically conditioned 

approach behavior only when the subject has previous experience of a non-

reinforced cue within the first extinction session. 
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Changes in Dendritic Spine Morphology Caused by Toluene Vapor Inhalation 

To supplement findings from the behavioral studies, we measured dendritic 

spine density and morphology in neurons from two critical nodes in appetitive 

behavior, the mPFC and NAc (figure 2.7A-E). There were no detectable 

differences in dendritic spine density on basal dendrites of layer 5 prelimbic mPFC 

of CTA vs control rats (figure 2.7E).  Conversely, toluene exposure during 

adolescence caused a lasting increase in dendritic spine density of NAc medium 

spiny neurons (main effect of drug F1,4=6.10, p<0.05; figure 2.7F) Post-hoc 

analysis revealed that this effect was driven by an increased prevalence of long- 

 
Figure 2.6. CTA enhances extinction of classically conditioned approach 

behavior only within the first extinction session. CTA and air treated animals 

were either cue-naïve (NPE) or pre-exposed (PE) to cue during the training 

phase. Conditioning was measured as the elevation ratio defined as X/(X+Y) 

where X is the number of food well approaches during the first 30 s of cue and 

Y is the number 30 s prior to cue onset.  A) CTA did not affect extinction 

progression over the course of three days. B) However, CTA-PE rats 

extinguished responding quicker than their air-PE counterparts within the first 

day of extinction testing. Data shown are mean + SEM; random well entry (dotted 

line); drug x time interaction *p<0.05; all groups n=8. 
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thin spines [t(60)=4.68; p<0.001]. There were no detectable differences in the 

length or head diameter of any spine subtype in either region tested (data not 

shown).  Interestingly, there was a strong positive correlation between strategy-

shifting (but not reversal learning) performance and medial PFC (but not NAc) 

spine density, further implicating the reliance of this behavior on the mPFC 

(Spearman r=0.667, n=17, p<0.01). 

 

 

 

Figure 2.7. Chronic exposure to toluene during adolescence causes persistent 

increases in dendritic spine density in a spine subtype and region-specific 

manner. (A) Representative image of a DiI-labeled pyramidal neuron from the 

prelimbic medial prefrontal cortex. Insets show representative spine segment 

image (B) after deconvolution, (C) modeling, and (D) overlay.  (E) Chronic 

adolescent toluene exposure does not alter basal dendritic spine density in 

deep-layer mPFC neurons in adults.  (F) Chronic adolescent toluene exposure 

increases spine density in medium spiny neurons of the NAc, an effect driven by 

the long-thin spine subtype. Data shown are mean +SEM; main effect F1,4=6.10 

*p<0.05; post-hoc t(60)=4.68, *** p<0.001; air n=8, CTA n=9. 
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DISCUSSION 

The Effect of Toluene on Motivated Behavior 

In this study, we investigated whether repeated exposures to abuse-level 

concentrations of toluene vapor (10,500 ppm) during adolescence induced 

persistent cognitive effects (Lubman et al., 2008; Gmaz et al., 2012; Dick et al., 

2014).  The results indicate that adolescent exposure to toluene retarded operant 

conditioning in adulthood consistent with observed instrumental learning deficits 

reported by Dick et al. (2014).  The lever press training protocol used in this study 

had three phases.  Phase 1 is a simple operant conditioning setup where levers 

remain extended throughout each session, and it was during this phase of training 

where deficits induced by toluene exposure were apparent.  The next two phases 

contain an occasion setter, namely lever extension/retraction that signals reward 

availability.  Here, no differences between groups were observed.  The lack of 

effect during this phase may reflect the fact that the retraction of levers recruits 

cue-related attentional mechanisms that aid in task performance and could 

compensate for deficits in simple operant conditioning. The deficits shown in the 

present study are not likely attributable by a decreased motivation for SCM reward, 

as CTA rats reached a similar breakpoint under a progressive ratio level of 

responding compared to control, similar to that previously reported using a sucrose 

reward (Dick et al., 2014). Rather, these effects likely reflect impairments in the 

initial formation of action-outcome associations.   

Exposure of adolescent rats to toluene vapor resulted in an initial reduction 

in weight gain. This finding mirrors reports in humans indicating that inhalant 
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abusers often present as emaciated and is consistent with results from other 

rodent studies (Ryu et al., 1998; Duncan et al., 2012; Dick et al., 2014). The 

reduced body weight of CTA rats at the beginning of operant training could 

contribute to the observed deficits, as underweight rats might reach satiety quicker 

than heavier counterparts. However, both CTA and Air rats quickly consumed 5 ml 

of SCM in the days preceding operant training as part of the reward exposure 

protocol. This volume far exceeds the mean volumes consumed in lever press 

phase 1 (~1 ml air, ~0.5 ml CTA). Weight differences disappeared soon after 

operant training began and thus likely did not confound strategy shifting or reversal 

learning.  

 

Behavioral Flexibility and Memory Retrieval   

We next studied the effect of CTA on two types of behavioral flexibility – 

strategy set-shifting and reversal learning – in adulthood using either a within-

session or between-session test design.  There were no differences in behavioral 

flexibility in CTA rats that completed tasks within-session, suggesting that chronic 

toluene exposure does not produce long term deficits in set-shifting or reversal 

learning.   Interestingly CTA rats performed a strategy shift quicker compared to 

controls when tested using a between-session design.  

On the surface, the apparent improvement in set-shifting displayed by CTA 

rats may be interpreted as an enhancement in flexibility.  While this is a possibility, 

it is important to note that CTA only accelerated shifting using a between-session 

shift, suggesting that these effects may not reflect a uniform enhancement in the 
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mechanisms underlying shifting.  Tasks which require behavioral flexibility typically 

present situations necessitating suppression of a previously relevant strategy 

alongside simultaneous acquisition and maintenance of a new strategy. With 

regards to the former, suppression of old strategies may be facilitated if there are 

underlying impairments in the consolidation, maintenance or retrieval of these 

strategies. In fact, pharmacologically destabilizing initial memories leads to 

enhanced reversal learning (Weiner et al., 1986) and extradimensional set-shifting 

(Crofts et al., 2001). Furthermore, increasing the time between training and testing 

can also degrade memories and lead to poorer retrieval (Floresco & Phillips, 2001). 

With respect to the present study, retrieving the previously held response strategy 

is theoretically more important to completing between-session compared to within-

session shifts because there are no reminder trials to jumpstart responding to the 

initial attentional set (visual cue). Interestingly, chronic exposure to 2000PPM 

toluene produces hippocampal cell loss that does not recover following 90 days of 

abstinence (Zhvania et al.,2012), and CTA alters hippocampus-dependent 

behaviors such as operant conditioning, delay discounting and contingency 

monitoring (Dick et al., 2014, Furlong et al., 2016).  In attempting to explain the 

apparent improvement in set-shifting observed in one of our experiments, it is 

possible that CTA disrupted access to memories regarding the previously acquired 

discrimination rule via perturbations in hippocampal functioning.  In turn, during 

between-session testing, poorer retrieval of this rule within the appropriate task 

context would lead to more rapid learning of the novel rule.  On the other hand, the 

lack of improvement in shifting in CTA rats given reminder trials of the within-
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session shifts may be attributable to a reactivation of memories associated with 

the old rule that caused a comparable amount of interference of learning of the 

new rule in both groups.  As such, when the within- and between- session data are 

considered together, it appears that CTA rats have persistent deficits in appetitive 

memory recall, but not necessarily enhanced behavioral flexibility. 

One important caveat of these conclusions is the lack of differences when 

comparing within- vs between-session reversal learning. Two factors could explain 

this discrepancy. First, reversal learning was assessed after strategy set-shifting 

and side preference testing. This ensured that tasks proceeded in order of 

increasing difficulty, but also resulted in an incorrect lever choice that was 1) 

naturally preferred and 2) illuminated 50% of trials (a previously reinforced cue). 

Second, strategy set-shifting and reversal learning are dependent on  two distinct 

prefrontal regions, the mPFC and orbitofrontal cortex, respectively (Floresco, 

Zhang, & Enomoto, 2009; Ghods-Sharifi, Haluk, & Floresco, 2008; Hamilton & 

Brigman, 2015). Nevertheless, the finding that CTA only affected set-shifting and 

not reversal learning suggests that impairments in memory retrieval induced by 

these manipulations may be more apparent when distinct discrimination strategies 

are required, rather than situations requiring the use of the same basic strategy 

(i.e. always press a lever in one location) and a mere shift between stimulus-

reward associations.  

 

The Effect of Latent Inhibition on Behavioral Flexibility 
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Upon changes in reinforcement contingencies that occur during strategy or 

reversal shifts, animals must acquire and then maintain a new strategy.  Previous 

exposure to a non-reinforced cue has been repeatedly shown to block future 

conditioning to that cue, a phenomenon called latent inhibition.  Although latent 

inhibition has traditionally been studied using Pavlovian conditioning paradigms, 

this idea can be conceptualized as “learned irrelevance” of cues in an operant 

conditioning scenario (although this definition is simplistic, for review: see (Meyer 

and Louilot, 2014)).  Blunted latent inhibition has been observed in serotonin 

knockout (5HTT-/-) mice (Nonkes et al., 2012) and in spontaneously hypertensive 

rats, which are used as a in a rodent model of ADHD (Calzavara et al., 2009). 

Interestingly, both of these animal models also induce more rapid shifts in behavior 

upon changes in reinforcement contingencies that occurred between sessions 

(Chess et al.,2012; Nonkes et al., 2012). Furthermore, the enhanced shifting 

observed in spontaneously hypertensive rats was not observed following a within-

session shift, in a manner similar to the present findings (Chess et al., 2012).  The 

present studies reveal that CTA does not cause persistent latent inhibition deficits 

indicating that memory of previously non-reinforced cues likely do not play a role 

in the acquisition of new response strategies in the between-session tests of 

behavioral flexibility.  

An additional novel finding from the latent inhibition study is that CTA 

enhances extinction progression within the first day of extinction compared to air-

treated controls only when rats have previous experience with non-reinforced 

cues. This group was most similar to rats in the between-session behavioral 
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flexibility tasks in that both had experience with a non-reinforced cue, and were 

tested 24h after the last training session.  The enhanced extinction specific to CTA-

NPE rats might be the cause of the decreased perseveration (and thus, enhanced 

performance) by CTA rats in between-session set-shifting.  

 

Prolonged Abstinence from Addictive Substances Alters Postsynaptic 

Neuron Morphology in the Nucleus Accumbens  

 

Addictive substances affect frontal-striatal pathways and are thought to 

impair “top-down” regulation of compulsive drug-seeking behaviors. Chronic 

toluene exposure has been reported to decrease dendritic complexity in superficial 

cortical layers following 48 h of abstinence (Pascual and Bustamante, 2010, 2011; 

Pascual et al., 2011). The present findings add to these data by showing that 

protracted abstinence from toluene exposure (7 weeks) is associated with 

increases in long-thin spines in the NAc. The effect of drugs of abuse on spine 

morphology is variable, presumably due to different mechanisms of action, 

differences in drug treatment (chronic vs acute), and time of measurement (no 

abstinence vs hours or weeks; for review see: Mulholland, Chandler, & Kalivas, 

2016; Spiga et al., 2014).  Similar to toluene, chronic treatment with cocaine 

(Rasakham et al., 2014), alcohol (Uys et al., 2013; Peterson et al., 2015) and 

nicotine (Gipson et al., 2013) causes selective and persistent enhancements in the 

NAc dendritic spine morphology.   

The increased presence of long thin spines in the NAc might reflect an 

increase in silent synapses and thus deactivation of the region (Grueter et al., 

2013).  This could explain the impaired acquisition of operant and classical 
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conditioning induced by CTA, both of which are blunted by NA lesions (Meredith 

et al., 2008).  This explanation does not, however, address the specific 

enhancements in both extinction learning and delay dependent strategy set shifting 

caused by CTA since extinction is considered a novel memory rather than 

degradation of an initial memory (although unlearning can occur; for review see: 

Todd, Vurbic, & Bouton, 2014).  

 

CONCLUSIONS  

While strategy set-shifting was enhanced in CTA rats, this effect was only 

observed if there was long period of time before training and testing. This 

enhancement was not observed when a simple reversal of stimulus-reward 

associations was made. To assess the generality of these findings, future research 

should test whether CTA enhances behavioral flexibility exclusively when other 

dissimilar discrimination strategies are used (e.g. by using different textured levers 

or nose poke holes associated with different odors). Deficits in operant 

conditioning, classical conditioning and enhanced extinction following classical 

conditioning suggest that the behavioral flexibility “enhancements” in CTA rats may 

actually reflect specific impairments in appetitive memory recall. This would explain 

the lack of differences in behavioral flexibility when using a within-session test 

design that relies less on memory recall. Lasting changes in appetitive behavior 

may reflect specific anatomical alterations in neuroanatomy responsible for goal 

directed action. To this end, we observed an increase in immature dendritic spines 

in the NAc of CTA rats. This could prevent synaptic plasticity and thus behavioral 
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flexibility in certain situations. Future studies should explore the cellular/molecular 

changes (e.g. enhanced GABAergic interneuron activity, upregulated D2 receptor 

expression, etc.) driving this aberrant NAc morphology.   
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CHAPTER 3 THE ABUSED INHALANT TOLUENE 

IMPAIRS MEDIAL PREFRONTAL CORTEX 

ACTIVITY AND RISK/REWARD DECISION MAKING 

DURING A PROBABILISTIC DISCOUNTING TASK 
 

INTRODUCTION 

Preclinical models of toluene intoxication report that acute exposure to 

toluene impairs simple behaviors such as locomotion and object recognition (Batis 

et al., 2010; Huerta-Rivas et al., 2012; Montes et al., 2017).  Deficits in more 

complex forms of cognition that are mediated by the medial prefrontal cortex 

(mPFC) have also been observed following chronic exposure to toluene vapor, 

despite varying lengths of abstinence (Baydas et al., 2005; Dick et al., 2014; 

Furlong et al., 2016; Braunscheidel et al., 2017). These effects may be mediated 

in part by neurophysiological perturbations within the frontal lobes, as previous 

work in our lab has shown that toluene causes long-term depression of AMPA 

currents in mPFC neurons (Beckley and Woodward, 2011).  

 Little is known regarding the effects of inhalants on evaluative processes 

involving decisions under conditions of uncertainty or risk. One way to assess 

these functions in rats is with a probabilistic discounting task. In this task, rats are 

trained to choose between two levers, one a small, certain “safe” reward that 

always delivers a smaller reward, while the other delivers a large, uncertain “risky” 

reward under varying schedules of reinforcement probability. The neural circuitry 

that mediates this form of decision making has been studied in some detail and 

includes the basolateral amygdala, nucleus accumbens shell, lateral habenula, 
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medial orbitofrontal cortex and notably, the mPFC (Ghods-Sharifi et al., 2009; St. 

Onge and Floresco, 2010; Stopper and Floresco, 2011, 2014; Stopper et al., 

2014). Pharmacological inactivation of the mPFC impairs flexible decision making 

on this task, in that rats are slower to update choice biases as reward probabilities 

change (St. Onge and Floresco, 2010). This profile is distinct from those induced 

by inactivation of cortical or subcortical brain regions mentioned above.  Given 

these considerations, the present study used a probabilistic discounting task to 

test the hypothesis that acute toluene exposure induces a hypoactive mPFC, 

leading to behavioral inflexibility during probabilistic discounting. To identify 

toluene-induced changes in mPFC activity during the task, we virally expressed 

the genetically encoded calcium sensor GCaMP6f in glutamatergic mPFC neurons 

and monitored calcium transients in real-time using in vivo fiber photometry while 

rats performed the task. Our results provide physiological evidence for the mPFC’s 

theorized role in updating expected values of actions and implicates mPFC 

dysfunction in the decision-making deficits caused by toluene. 

MATERIALS AND METHODS 

Animals 

 Sprague-Dawley Rats (45 male, 34 female, post-natal day (P) 32 on arrival; 

Envigo RMS, Indianapolis, IN) were housed in pairs in polypropylene cages on a 

reverse light cycle (lights off at 0900) in a climate-controlled room with food and 

water delivered ad libitum. At approximately P60, rodents were food restricted to 

maintain 85-95% of their free feeding weight (weight at time of testing: males, 

275-300g; females, 200-230g). All procedures were performed in compliance with 
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Medical University of South Carolina IACUC protocols. The behavioral training 

and testing schedule is outlined in Figure 3.1A.  

 

Lever Press Training 

 Rats were habituated to a reward of 20% sweetened condensed milk 

(SCM), by giving them free access to 10 ml SCM for two days prior to operant 

training. Over the course of two phases, rats (P60-70) were trained to lever press 

in operant chambers (Med Associates, St. Albans, VT) for SCM delivered to a 

central feeding well via a pump-activated syringe. Phase 1 (2-5 days; 30 min 

sessions) began with one lever (left or right, pseudo-randomly assigned) 

reinforced with 45 µl SCM on an FR1 schedule.  Upon meeting criteria (50 presses 

for 2 consecutive days), the presented lever was switched, and rats were tested 

to criteria before moving on to phase 2. Phase 2 (6-7 days; 60-minute sessions) 

consisted of 90 trials separated by 35s. Each session began with an illuminated 

house light and 2s later, the left or right lever extended in a pseudo-random order.  

When pressed, the lever retracted, and 45 µl SCM was delivered on 75% of trials.  

If a lever was not pressed within 20s, it retracted, and the trial was recorded as 

an omission. Following completion of two consecutive days of training with less 

than 10 omissions per session, the time to omission was reduced to 10s. When 

rats met criteria again, the lever reward probability reduced to 50%. When rats 

met criteria a third time, a side preference test was performed as previously 

described (Brady and Floresco, 2015; Braunscheidel et al., 2017). Briefly, for each 

of 60 trials, both levers extended simultaneously and were reinforced on an FR1 
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schedule. A trial concluded when two presses occurred, which resulted in lever 

retraction for 20s. The preferred side was defined as the side that a rat pressed 

first most often across trials.  Rodents then began training in the probabilistic 

discounting task.  

 

Probabilistic Discounting 

 Figure 3.1B illustrates the probabilistic discounting procedure used to 

assess risk/reward decision making in rodents (St. Onge and Floresco, 2009; 

Brady and Floresco, 2015).  This two-lever choice task consists of a “safe” lever 

that delivered a small reward (30 µl SCM) 100% of the time and a “risky” lever 

that delivered a large reward (90 µl SCM) with varying probability of 

reinforcement.  The risky lever was assigned to the non-preferred lever position 

as determined by the side preference test. Each session consisted of 90 trials 

separated into 5 blocks and each block started with 8 forced-choice trials that set  
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the probability of reinforcement for the following 10 free-choice trials. The 

probability of obtaining a large reward was varied from low-to-high (“ascending”) 

or high-to-low (“descending”) with the following probabilities: 100%, 50%, 25%, 

12.5%, 6.25% (Figure 3.1C).  Each trial lasted 35s and began with an illuminated 

house light and 2 s later levers extended into the chamber. A press on either lever  

Figure 3.1.   Probabilistic discounting training and test design.  (A) 

Behavioral timeline and corresponding rat age. (B) Flow chart detailing a single 

trial of the probabilistic discounting task. (C) Breakdown of the 10 different 

behavioral blocks within the probabilistic discounting task. Odds were presented 

either in ascending or descending order. (D) Toluene inhalation chamber 

schematic. (E) Test day progression. 
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caused both of them retract and turned the house light off.  On rewarded trials, 

reward was delivered to the central feeding well. These “wins” were paired with a 

discriminative cue: a flashing light above the food well to indicate whether the 

reward was small or large (safe win: 2 pulses, 0.35 s pulse width, 0.5 Hz; risky 

win: 5 pulses, 0.35 s pulse width, 0.5 Hz).  On non-reinforced “loss” trials, no cue 

light was provided.  If a lever was not pressed in 10s, it was recorded as an 

omission and the houselights were extinguished for 25s.  Following ~20 days of 

training (5-6 days per week), rats exhibited stable responding (two-way ANOVA 

on three consecutive testing days yields no block x day interaction or main effect 

of day, p > 0.1) and were tested for probabilistic discounting following exposure 

to air or toluene vapor.  

 

Toluene Exposure 

 For acute intoxication studies, rodents underwent two days of probabilistic 

discounting with testing occurring 30 min after a brief (15 min) exposure to an air-

filled chamber (30x30x30cm, 4 L/min, Figure 3.1D-E).  On toluene test days, the 

vapor chambers were filled with toluene vapor at concentrations relevant to 

human solvent abuse (Brouette and Anton, 2001; Bukowski, 2001; Gmaz et al., 

2012) via a sevoflurane vaporizer (Penlon Limited; flow rate 4L/min) as previously 

described (Wayman & Woodward 2017). Toluene vapor concentrations within the 

chamber were intermittently monitored with a portable toluene gas detector (DOD 

Technologies, Cary, IL).  To establish a dose-effect, each rat was first tested 

following exposure to 10,500 ppm toluene, given two weeks off, retrained to 
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baseline performance, and tested again following exposure to 6,000 ppm toluene. 

At these doses, rats exhibit lethargy after ~10 minutes of exposure and were 

nearly immobile after 15 minutes. Rats fully regained ambulation following 

approximately 15 minutes of recovery in the home cage (unpublished 

observations).   

 A subset of rats were exposed to a binge-like regimen of, twice daily, 15 

minute exposures to10,500 ppm toluene (12 male, 12 female) or air (12 male, 12 

female) during adolescence (P39-P43) as described previously (Braunscheidel, 

et al, 2017). Rats were then tested with the descending odds probabilistic 

discounting task during adulthood. Rodents tested on the ascending odds version 

were not treated with air exposures during adolescence. 

 

Fiber Photometry 

 A subset of 11 rodents underwent stereotaxic surgery prior to lever press 

training. Deep anesthesia was achieved via an isoflurane vaporizer (Penlon Ltd, 

1L/min, 5% induction, 2-3% maintenance) and  300 nl of AAV1-CaMKII-GCaMP6f 

(Addgene, Watertown MA) was injected into the prelimbic portion of the mPFC 

(AP: +2.95; ML: -0.6; DV: -2.85 mm). A custom-made fiber optic ferrule (400 µm 

diameter patch cord in a 2.5 mm ferrule, ThorLabs, Newton NJ) was implanted at 

these coordinates and secured in place using dental cement (Land Dental Mfg., 

Wheeling, IL).  Post-mortem inspection revealed that two rats lacked viral 

expression under the fiber optic ferrule, and one ferrule terminated in the anterior 

cingulate cortex, leaving 8 rats with appropriate viral expression and ferrule 



  65  

placement. Rats recovered in their home cage for 7 days before beginning lever 

press training. Following stable probabilistic discounting performance (~5-6 

weeks), rats were tested in an operant chamber modified to permit fiber access. 

Rats performed in this chamber for two consecutive days before experimental 

testing and recording.  

 In order to test for an effect of our toluene exposure paradigm on baseline 

mPFC activity, rats were then given one month of home cage recovery and tested 

a final time in an inactive operant chamber. Probabilistic discounting test days were 

mimicked in that baseline testing occurred 30 minutes after a 15-minute exposure 

to air or 10,500 ppm toluene (counter-balanced) with one week off in between 

testing. Calcium events were identified in MATLAB using the findpeaks function 

with the following filters: MinPeakProminence = 4, MinPeakDistance = 0.25, and 

MinPeakWidth = 0.5. One rat’s headcap dislodged during this test and data from 

this animal were not included in the analysis baseline mPFC activity.  

 Data were acquired using custom-built imaging equipment based on that 

described by the Deisseroth lab (Lerner et al., 2015), with modifications. 

Illumination was provided by 405 nm and 490 nm fiber collimated LEDs (Thorlabs; 

30 µW per channel) connected to a four-port fluorescence mini-cube (Doric 

Lenses). The combined LED output passed through a 400 µm optical fiber (0.48 

NA) pigtailed to a rotary optical swivel (FRJ_1x1_PT, Doric Lenses) and 

connected to the implanted fiber using a ceramic sleeve or pinch connector 

(Thorlabs). Emission light was focused onto a photoreceiver (Newport model 

2151; DC low setting) and sampled at 6.1 kHz by a RZ5P lock-in digital processor 
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(TDT) controlled by Synapse software (TDT). Excitation light was sinusoidally 

modulated at 531 Hz (405 nm) and 211 Hz (490 nm) via software control of an 

LED light driver (Thorlabs). Real-time demodulated emission signals from the two 

channels were acquired at a frequency of 0.93084 kHz and stored offline for 

analysis. Lever press activity and resulting output were collected using TTL inputs 

to the digital processor. Data were processed using custom written functions in 

MATLAB (MathWorks) software. The signals for each channel were first fitted to 

a polynomial versus time curve and then subtracted from one another to calculate 

the ΔF/F time series.  Video of the test sessions were recorded using a C930e 

webcam (Logitech) affixed to the top of the operant chamber. 

 

Experimental Design and Statistical Analysis 

 The primary dependent variable of the probabilistic discounting test was 

risky lever preference, expressed as proportion risky choice (number risky lever 

presses / total lever presses) during each of the 5 behavioral blocks separated by 

likelihood of a rewarded risky lever press. Additional performance variables 

including omissions, latency to choice, win-stay (number of risky lever presses 

following a risky win / total number of risky wins), and lose-shift (number of safe 

lever presses following a risky loss / total number of risky losses) were also 

recorded. Only free-choice trials were considered in behavioral analyses.  

Probabilistic discounting data were analyzed with  2-way ANOVA with reward 

probability and toluene exposure as repeated, within-subject factors using  Prism 

8 (Graphpad Software San Diego, CA). A Greenhouse-Geisser correction was 
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applied to account for repeated measures and Dunnett’s test corrected for 

multiple comparisons. Win-stay, lose-shift, and omissions were analyzed with 

Sidak’s multiple comparison test.   

 Fiber photometry measures in air vs toluene conditions were compared 

with paired t-tests. Comparisons within treatment (i.e. air or toluene exposure) 

were Z-normalized with MATLAB (MathWorks) software in order to compare 

signal before and after risky and safe choices. GCaMP6f activity preceding risky 

vs safe lever choice during discounting was analyzed with 2-way ANOVA with 

reward probability and choice as within-subject factors. Sidak’s multiple 

comparison test was used to directly compare activity during each reward 

probability block. An alpha value of 0.05 was used in all analyses.   

 

RESULTS 

Sex Differences in Baseline Probabilistic Discounting 

Males and females reached similar levels of baseline probabilistic discounting: 

Figure 3.2 summarizes baseline probabilistic discounting behavior in male 

and female Sprague-Dawley following ~4 weeks of training. Males and females 

had similar risky lever preference (Fig. 3.2A) in the descending odds (two-way 

ANOVA, sex x block interaction F(4, 88) = 1.73, p = 0.15; main effect of sex F(1, 22) = 

2.18, p = 0.15) and ascending odds tests (sex x block interaction  F(4, 72) = 0.22, p 

= 0.93; main effect of sex F(1, 18) = 0.26, p = 0.62). Choice data was then sorted on 

a trial-by-trial basis in order to study the effect of recent outcomes on subsequent 

choice. Figure 3.2B illustrates the effect of recent positive reinforcement on choice  
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strategy, measured as the probability of choosing the risky lever following a risky 

win (“win-stay”). Males and females showed similar levels of win-stay behavior in 

the descending (student’s t test, t(22) = 0.54, p = 0.60) and ascending odds task 

(t(18) = 1.26, p = 0.22). Fig. 3.2C details the effect of recent negative feedback 

sensitivity on choice strategy, measured as the probability choosing the safe lever 

Figure 3.2. Male and female Sprague Dawley rats acquire similar levels of 

probabilistic discounting. Rats were trained at least twenty days on the 

probabilistic discounting task with descending odds (top panels) or ascending 

odds (bottom panels) until responding stabilized.  Performance over the final 

three days of training were averaged and compared to test for sex differences in 

baseline task performance. (A) Proportion of risky choice within each probability 

block (B, C) Choice strategy across all trials.  Win-stay (B) indicates choice of 

risky lever after risky win while lose-shift (C) indicates choice of safe lever after 

risky loss. (D) Time to choice selection within each probability block. Omissions 

across all trials (E) indicate no lever press within 10 s time period. Data shown 

are mean ± sem; descending odds, all n = 12; ascending odds, all n = 10; two-

way ANOVA and Sidak’s test, *p<0.05, **p<0.01. Student’s t-test, *p<0.05, 

***p<0.01. 
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following a risky loss (“lose-shift”).  Males and females showed similar levels of 

lose-shift behavior in the descending (student’s t test, t(22) = 1.09. p = 0.29) and 

ascending odds task (t(18) = 0.13, p = 0.89). 

 

Choice Latency and Omissions: 

Choice latency and omission data may reflect decision speed, impulsivity 

and/or general motivation to lever press for reward. Females were significantly 

quicker than males in making a lever selection during probabilistic discounting in 

the descending odds task (two-way ANOVA, sex x block interaction F(4, 88) = 11.0, 

p < 0.0001; main effect of sex F(1, 22) = 25.6, p < 0.0001). The main effect of sex 

was also evident in the ascending odds task (F(1, 18) = 13.2, p = 0.0019) despite the 

lack of a sex x block interaction (F(4, 72) = 1.630, p = 0.1761). Females also omitted 

significantly fewer trials than males during the descending (student’s t test, t(22) = 

3.94. p = 0.0007) and ascending odds task (t(18) = 2.12, p = 0.048). Taken together, 

these data suggest that females may be more engaged with the probabilistic 

discounting task than their male counterparts.  

 

Effect of Acute Toluene Inhalation on Probabilistic Discounting  

Toluene impairs shifts in choice biases 

 Figure 3.3 shows the effect of toluene vapor on probabilistic discounting 

under conditions of descending (top two panels) or ascending odds (bottom two 

panels). Under control conditions, both males and females trained on the 

descending version of the task displayed a strong choice preference for the risky 
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option during the early part of the session, when reward probabilities were 

relatively high, but preference gradually shifted towards the small certain option as 

reward probabilities decreased over a session. The opposite profile was observed 

in rats trained on the ascending version of the task (Fig. 3.3A). When odds of 

receiving a large reward decreased, acute exposure to toluene vapor 30 min prior 

to testing increased the proportion of risky choices made by male (two-way 

ANOVA, drug x block interaction,  main effect of drug, F(1.511, 16.62) = 15.7, p = 

0.0003) and female rats (two-way ANOVA, main effect of drug, F(1.746, 19.20) = 16.8, 

p < 0.0001). Dunnett’s test revealed a significant effect of toluene dose on this 

effect, as exposure to 10,500 ppm toluene caused a more pervasive disruption in 

risk preference than 6,000 ppm toluene in male rats (10,500 ppm vs. baseline, 

50%, 25%, 12.5% and 6.25% block: all q(11) > 2.77, p < 0.034; 6,000 ppm vs. 

baseline, 50% block, q(11) = 2.72, p = 0.036). This dose-dependent effect was also 

evident in females (10,500 ppm vs. baseline, 50%, 25%, 12.5% and 6.25% block: 

all q(11) > 3.13 , p < 0.018; 6,000 ppm vs. baseline, 25% and 12.5% block, both 

q(11) > 3.49, p <0.010).   

In contrast to these results, rats trained on the ascending version of the task 

and exposed to toluene vapor showed a reduction in the proportion of risky choices 

when odds of receiving a large reward increased during the task (Fig. 3.3A, bottom 

panels).  This effect was observed in males (two-way ANOVA, main effect of drug, 

F(1.981, 17.83) = 29.4, p <0.0001) and females (main effect of drug F(1.1861, 16.75)  = 11.1 

, p = 0.0010).  Dunnett’s test revealed a significant effect of dose of this effect in 

male (10,500 ppm vs. baseline, 6.25%, 12.5%, 25%, and 50% block: q(9) > 3.09, p 
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< 0.024) ;  6,000 ppm vs. baseline, all blocks, q(9) < 1.32, p > 0.38) and in female 

rats (10,500 ppm vs. baseline, 12.5%, 50% blocks, q(9) >  2.75, p < 0.041 ; 6,000 

ppm vs. baseline,  all blocks, all q(9) < 1.40, p > 0.31).   These findings reveal that 

the effect of toluene on risk preference is dependent on the order in which the odds 

of risky reinforcement are presented. Nonetheless, under both conditions, rats 

demonstrated impaired behavioral flexibility, as they were slower to modify their 

choice biases in response to changes in probabilities of obtaining the large/risky 

reward. 

 

Choice Strategy 

  Choice data were sorted on a trial-by-trial basis in order to study the effect 

of recent outcomes on subsequent choice (Fig. 3.3B-C).  Fig. 3.3B illustrates the 

effect of toluene on recent positive reinforcement, measured as win-stay behavior.  

Toluene (10,500 ppm) produced a strong trend for an increase in win-stay behavior 

vs. baseline in males when odds were presented in descending order (top panels, 

Dunnett’s test, q(11) = 2.50, p = 0.053). This trend was also observed in females 

(Dunnett’s test, q(11) = 2.16, p = 0.095). Interestingly, during the ascending phase 

of the task (bottom panels), 6,000 ppm toluene increased win-stay behavior in 

female (Dunnett’s test, q(9) = 4.05, p = 0.0053), but not male rats (Dunnett’s test, 

q(9) =1.73, p = 0.20).   

 Fig. 3.3C details the effect of toluene on recent negative feedback 

sensitivity, measured as lose-shift behavior. Exposure to both doses of toluene 

vapor decreased lose-shift behavior in male (Dunnett’s test, 10,500 ppm vs. 
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baseline, q(11) = 3.89, p = 0.0047; 6,000 ppm vs. baseline q(11) = 3.12, p = 0.018) 

and female rats (10,500 ppm vs. baseline q(11) = 3.17, p = 0.016) when odds 

descended during testing (upper panels). However, when the odds of receiving a 

large reward increased over the session (bottom panels), exposure to 10,500 ppm 

toluene enhanced lose-shift behavior in both male (Dunnett’s test, q(9) = 4.35 , p = 

0.0034) and female rats (q(9) =3.18, p = 0.020).  Taken together, these data 

suggest that impaired flexible decision making induced by toluene exposure is 

driven by perturbations in negative feedback sensitivity, and that this is 

exacerbated (or mitigated, depending on task) by increased sensitivity to recently 

rewarded actions.   

 

Choice Latency and Omissions  

 In the descending odds version of the task, choice latency (Fig. 3.3D, top 

panels) decreased following treatment with 10,500 ppm toluene in blocks where 

reinforcement was unlikely (Dunnett’s test, 10,500 ppm vs. baseline, 6.25% block, 

q(11) = 2.54, p = 0.049) and females (Dunnett’s test, 50% block, q(11) = 3.11, p = 

0.018, 6.25% block q(11) = 3.69, p = 0.0066).  Interestingly, exposure to 6,000 ppm 

toluene vapor increased choice latency in male rats during blocks when risky 

reinforcement was guaranteed (Dunnett’s test, 100% block, q(11) = 2.62, p = 0.043) 

(Fig. 3.3D, bottom panels). Toluene had no effect on choice latency in male or 

female rats in any block of the ascending odds version of the task (male, all q(9) < 

2.13 , p > 0.10 ; female, all q(9) < 1.78 , p > 0.18, Fig. 3.2E). Toluene exposure 

caused a minor, but statistically significant, decrease in the number of omissions 
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in two instance during the descending odds task (Dunnett’s test, males, 10,500 

ppm vs. baseline, q(11) = 2.58, p = 0.046; females, 6,000 ppm vs. baseline, q(11) = 

3.91, p = 0.0054). There were no differences in omissions detected for the 

ascending odds task (all q(9) < 1.39 , p > 0.32). These data suggest that toluene 

can decrease choice latency and promote task engagement (decreased 

omissions), but other factors need to be taken into consideration (sex, duration of 

task, task-type) when interpreting the effect of toluene on impulsivity and general 

motivation.  

 

Effect of adolescent toluene exposure on probabilistic discounting in 

adulthood 

Probabilistic discounting training in adults is not significantly affected by adolescent 

exposure to toluene 

  Previous studies suggest that toluene abuse during adolescence can 

impair cognitive performance in adulthood in humans (Dingwall et al., 2011; Scott 

and Scott, 2014; Yuncu et al., 2015). and rodents (Dick et al., 2014; Furlong et al., 

2016; Braunscheidel et al., 2017). Table 3.1 shows that acute exposure to toluene 

vapor during adolescence did not significantly alter risk preference of adult rats in 

the descending odds probabilistic discounting task during any of the first four 

weeks of training (week average). Transient increases in choice latency were 

observed in toluene-treated rats vs. control (two-way ANOVA, main effect of 

treatment, males, week 3, F(1,18) = 8.99, p = 0.0077; females, week 2 F(1,22) =7.90, 

p = 0.010) 
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Figure 3.3. Toluene impairs flexible decision making during probabilistic 

discounting. Male and female rats were trained at least twenty days on the 

probabilistic discounting task with descending odds (top panels) or ascending 

odds (bottom panels) until responding stabilized. (A) Proportion of risky choice 

within each probability block following acute exposure to air or toluene (6,000; 

10,500 ppm). (B, C) Choice strategy across all trials.  Win-stay (B) indicates 

choice of risky lever after risky win while lose-shift (C) indicates choice of safe 

lever after risky loss. (D) Time to choice selection within each probability block. 

Omissions across all trials (E) indicate no lever press within 10 s time period. 

Data shown are mean ± sem; descending odds, all n = 12; ascending odds, all 

n = 10; two-way ANOVA and Dunnett’s test comparing each dose to baseline, 

*p<0.05, **p<0.01, ***p<0.001, colored to match dose. 
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but these differences were no longer significant by week 4 (main effect of 

treatment, males, F(1,18) = 3.43, p = 0.080; females, F(1, 22) = 1.66, p = 0.21). 

Likewise, a transient decrease in lose-shift behavior was detected in male rats in 

week 3 (Welch’s test, t (17.37) = 2.36, p = 0.030), but this recovered by week 4 (t(17.80) 

= 1.35, p = 0.20).  Lose-shift behavior also decreased in females during week 4 of 

training (t(19.53) = 2.19, p = 0.041). The average number of omissions transiently 

increased in female rats treated with toluene during adolescence compared to air-

treated control (week 1, t(13.13) = 2.58, p = 0.023,  week 2, t(14.09) = 0.69, p = 0.50). 

 

A history of adolescent toluene exposure does not alter the effects of toluene 

on decision making in adulthood 

 To test whether prior exposure to toluene may sensitize or mitigate its effect 

on probabilistic discounting when animals are exposed again as adults, 

adolescent-exposed rats were tested during adulthood following an acute 

exposure to 10,500 and 6,000 ppm toluene (Fig. 3.4A). As shown above, toluene 

(10,500 ppm) shifted risk preference in male (main effect of drug, F(1.946, 21.41) = 

6.45, p = 0.0068; Dunnett’s test, 10,500 ppm vs. baseline, 50% and 25% block, 

both q(11) > 3.46, p < 0.0012) and female rats (F(1.847, 20.32) = 7.43, p = 0.0045;  50%, 

25%, 12.5%, 6.25% blocks, all q(11) > 2.64, p < 0.042).  Interestingly, the lower 

dose of toluene (6,000 ppm) increased risky choice preference exclusively when 

reinforcement was guaranteed in male (Dunnett’s test, 6,000 ppm toluene vs. 

baseline, 100% block, q(11) = 4.71 , p = 0.0012) and female rats (q(11) = 2.71, p = 

0.037). (Fig. 3.4B) While toluene increased win-stay behavior in this cohort, this  



  76  

Table 3.1. First four weeks of probabilistic discounting training in adult rats 

treated 10x with 10,500 ppm toluene vapor during adolescence vs. air 

treated controls. Proportion risky choice and choice latency were compared 

over five blocks with the probability of risky reward equal to 100%, 50%, 25%, 

12.5%, and 6.25%.  Win-stay, lose-shift, and omissions were compared across 

the entire session. 

 

 

 

 

Table 1. First four weeks of probabilistic discounting training in adult rats treated 10x with
10500 ppm toluene vapor during adolescence vs air treated controls. Proportion risky choice
and choice latency were compared over five blocks with the probability of risky reward equal to
100%, 50%, 25%, 12.5%, and 6.25%. Win-stay, lose-shift, and omissions were compared across
the entire session.

Male

Week 1 2 3 4

Block Air Toluene Air Toluene Air Toluene Air Toluene

P
ro

p
o

rt
io

n

R
is

ky
 C

h
o

ic
e 100% 0.66 ± 0.06 0.62 ± 0.05 0.84 ± 0.02 0.82 ± 0.05 0.89 ± 0.03 0.90 ± 0.03 0.92 ± 0.03 0.96 ± 0.01

50% 0.65 ± 0.05 0.57 ± 0.06 0.71 ± 0.05 0.72 ± 0.06 0.67 ± 0.05 0.81 ± 0.05 0.73 ± 0.06 0.79 ± 0.05

25% 0.54 ± 0.07 0.51 ± 0.07 0.46 ± 0.05 0.48 ± 0.07 0.42 ± 0.07 0.46 ± 0.05 0.44 ± 0.06 0.51 ± 0.08

12.5% 0.45 ± 0.07 0.47 ± 0.05 0.37 ± 0.07 0.34 ± 0.06 0.23 ± 0.06 0.30 ± 0.08 0.22 ± 0.04 0.28 ± 0.05

6.25% 0.36 ± 0.06 0.40 ± 0.04 0.28 ± 0.06 0.25 ± 0.04 0.15 ± 0.04 0.17 ± 0.04 0.19 ± 0.04 0.16 ± 0.03

C
h

o
ic

e

La
te

n
cy

 (
s)

100% 1.04 ± 0.01 1.13 ± 0.09 0.88 ± 0.09 0.90 ± 0.07 0.72 ± 0.05 0.75 ± 0.07 0.65 ± 0.06 0.70 ± 0.08

50% 1.12 ± 0.08 1.43 ± 0.15 1.15 ± 0.14 1.09 ± 0.10 1.01 ± 0.06 1.15 ± 0.10 0.99 ± 0.14 1.00 ± 0.08

25% 1.42 ± 0.13 1.69 ± 0.27 1.75 ± 0.17 1.75 0.14 1.46 ± 0.17 1.99 0.17 1.32 ± 0.08 1.67 ± 0.16

12.50% 1.75 ± 0.14 1.97 ± 0.22 1.65 ± 0.15 1.96 ± 0.19 2.01 ± 0.15 2.64 ± 0.17 1.50 ± 0.08 2.07 ± 0.24

6.25% 1.74 ± 0.14 2.25 ± 0.33 1.79 ± 0.20 2.37 ± 0.33 2.07 ± 0.13 2.91 ± 0.30 2.01 ± 0.18 2.36 ± 0.22

Win-Stay 0.58 ± 0.06 0.53 ± 0.05 0.61 ± 0.05 0.62 ± 0.06 0.60 ± 0.06 0.64 ± 0.06 0.61 ± 0.05 0.69 ± 0.06

Lose-Shift 0.41 ± 0.04 0.45 ± 0.05 0.46 ± 0.05 0.46 ± 0.04 0.49 ± 0.05 0.33 ± 0.04# 0.49 ± 0.04 0.41 ± 0.05

Omissions 4.7 ± 1.29 5.1 ± 1.88 4.6 ± 2.32 4.0 ± 1.06 7.4 ± 1.36 11 ± 1.51 5.4 ± 1.13 6.9 ± 1.15

Female

Week 1 2 3 4

Block Air Toluene Air Toluene Air Toluene Air Toluene

P
ro

p
o

rt
io

n

R
is

ky
 C

h
o

ic
e 100% 0.57 ± 0.05 0.58 ± 0.05 0.82 ± 0.04 0.79 ± 0.05 0.91 ± 0.03 0.90 ± 0.03 0.97 ± 0.01 0.96 ± 0.02

50% 0.50 ± 0.04 0.57 ± 0.05 0.68 ± 0.05 0.63 ± 0.05 0.73 ± 0.05 0.76 ± 0.04 0.79 ± 0.03 0.83 ± 0.03

25% 0.44 ± 0.03 0.51 ± 0.05 0.53 ± 0.05 0.46 ± 0.05 0.51 ± 0.05 0.51 ± 0.04 0.47 ± 0.05 0.51 ± 0.05

12.5% 0.37 ± 0.04 0.41 ± 0.06 0.34 ± 0.05 0.35 ± 0.04 0.29 ± 0.03 0.37 ± 0.06 0.25 ± 0.04 0.33 ± 0.06

6.25% 0.29 ± 0.03 0.36 ± 0.05 0.24 ± 0.04 0.28 ± 0.04 0.16 ± 0.02 0.26 ± 0.04 0.15 ± 0.03 0.24 ± 0.06

C
h

o
ic

e

La
te

n
cy

 (
s)

100% 0.89 ± 0.08 1.07 ± 0.09 0.58 ± 0.05 0.78 ± 0.08 0.52 ± 0.05 0.69 ± 0.07 0.51 ± 0.05 0.62 ± 0.08

50% 0.90 ± 0.07 0.99 ± 0.10 0.60 ± 0.06 0.81 ± 0.07 0.58 ± 0.06 0.73 ± 0.08 0.63 ± 0.08 0.70 ± 0.08

25% 0.87 ± 0.07 1.01 ± 0.08 0.70 ± 0.06 0.95 ± 0.08 0.76 ± 0.06 0.97 ± 0.10 0.77 ± 0.08 0.88 ± 0.08

12.50% 0.92 ± 0.06 1.13 ± 0.12 0.76 ± 0.05 1.09 ± 0.09* 0.97 ± 0.10 1.07 ± 0.08 0.96 ± 0.09 1.18 ± 0.07

6.25% 0.97 ± 0.07 1.20 ± 0.11 0.98 ± 0.09 1.20 ± 0.10 1.19 ± 0.14 1.36 ± 0.11 1.22 ± 0.14 1.31 ± 0.06

Win-Stay 0.44 ± 0.04 0.45 ± 0.05 0.61 ± 0.05 0.53 ± 0.06 0.60 ± 0.06 0.60 ± 0.05 0.68 ± 0.05 0.72 ± 0.03

Lose-Shift 0.52 ± 0.03 0.46 ± 0.04 0.48 ± 0.04 0.52 ± 0.04 0.45 ± 0.03 0.43 ± 0.03 0.44 ± 0.03 0.37 ± 0.02#

Omissions 0.12 ± 0.04 0.45 ± 0.12# 0.62 ± 0.20 1.0 ± 0.52 1.5 ± 0.44 2.3 ± 0.69 1.4 ± 0.35 1.6 ± 0.42
2-way ANOVA with Geissner-Greenhouse correction:
main effect of drug              p<0.05. 
Sidak’s multiple comparison:*p<0.05
Student's t-test with Welch’s correction: #p<0.05
male/air n = 10, male/toluene n = 10; female/air n = 12, female/toluene n = 12
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was in response to the lower dose of toluene (Dunnett’s test, 6,000 ppm toluene 

vs. baseline, male, q(11) = 2.48, p =0.055 ; female, q(11) 3.63 = , p = 0.0074).  Like 

toluene-naïve rats, acute 10,500 ppm toluene exposure decreased lose-shift 

behavior (Fig. 3.4C) in this cohort (Dunnett’s test, male, q(11) = 3.06, p = 0.020 ; 

female, q(11)  = 4.06, p = 0.0035 ).   Choice latency (Fig. 3.4D) decreased when 

reinforcement was not guaranteed in male (Dunnett’s test, 10,500 ppm vs. 

baseline, 12.5 % block, q(11) = 3.23, p = 0.015; 6,000 ppm, 6.25% block, q(11) = 

3.54, p = 0.0085) and female rats (10,500 ppm vs. baseline, 50% block, q(11) = 

3.27, p = 0.014; 12.5% block, q(11) =3.26, p = 0.014, 6.25% block q(11) =3.79, p = 

0.0056).  Interestingly, 10,500 ppm toluene increased choice latency in male rats 

when risky reinforcement was guaranteed (Dunnett’s test, vs. baseline, 100% 

block, q(11) = 2.95 , p = 0.024). Omissions (Fig. 3.4E) were reduced in male (10,500 

ppm, q(11) = 3.25 , p = 0.0144 ; 6,000 ppm, q(11) = 3.09 , p =0.019), but not female 

rats (all q(11) < 1.82, p > 0.16). 
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Figure 3.4. Toluene impairs behavioral flexibility in the probabilistic 

discounting task in adult rats treated with toluene vapor during 

adolescence.  Adolescent rats were treated with a 10,500 ppm toluene for 15 

min, twice daily, over five days followed by home cage recovery until adulthood. 

Adult male and female rats were trained at least twenty days on the probabilistic 

discounting task with descending odds until responding stabilized. (A) Proportion 

of risky choice within each probability block following acute exposure to air or 

toluene (6,000; 10,500 ppm). (B, C) Choice strategy across all trials.  Win-stay 

(B) indicates choice of risky lever after risky win while lose-shift (C) indicates 

choice of safe lever after risky loss. (D) Time to choice selection within each 

probability block. Omissions across all trials (E) indicate no lever press within 10 

s time period. Data shown are mean ± sem; all n = 12; two-way ANOVA and 

Dunnett’s test comparing each dose to baseline, *p<0.05, **p<0.01, colored to 

match dose). 

 

Effect Of Toluene on mPFC Activity Measured in Vivo Using The Genetically 

Encoded Calcium Sensor GCaMP6f 

Baseline Activity 

The activity of prelimbic mPFC neurons was measured by fiber photometry 

in rats injected with AAV1-CaMKII-GCaMP6f and exposed to air or 10,500 ppm 

toluene and 30 min of home cage recovery (Figure 3.5). Paired t-tests of average 
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GCaMP6f responses revealed no difference in event frequency (t(6) = 0.221, p = 

0.832), event amplitude(t(6) = 0.342, p = 0.744), event width(t(6) = 1.41, p = 0.209), 

or inter-event interval (t(6) = 0.112, p = 0.914).  

 

 

 

 

Figure 3.5. Basal prelimbic mPFC calcium activity is unaffected by acute 

toluene. Activity was measured in prelimbic mPFC neurons with fiber 

photometry in rats injected with AAV1-CaMKII-GCaMP6f and exposed to air or 

toluene (A) Exemplar viral expression (left) and fiber optic ferrule placement 

(right, black bars). (B) Representative 15 minute photometry recording following 

air (black) or toluene (red) treatment with detected calcium peak (blue arrows). 

Paired comparison of (C) GCaMP6f event frequency, (D) mean amplitude, (E) 

mean width, and (F) mean inter event interval in toluene and control conditions 

in seven rats.  
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mPFC activity tracks deliberation and outcome during probabilistic discounting 

Figure 3.6A illustrates the average GCaMP6f signal across all trials during 

the probabilistic discounting task in air-treated rats (8 rats, 1081 trials total).  Visual 

inspection of these graphs revealed a peak of activity during deliberation, 

approximately 1 to 2 s prior to lever press, and decreases in signal during outcome, 

1-16 s following lever press. (Figure 3.6B) A one-way ANOVA revealed an effect 

of choice outcome on GCaMP6f signal (F(1.377, 9.638) = 37.9, p < 0.0001). This effect 

was due to differentiation between large/risky wins and small/safe wins (Sidak’s 

post-hoc, risky win vs safe win, t(7) = 4.27, p = 0.011) as well as losses vs any win 

(risky loss vs safe win t(7) = 4.81, p = 0.0058; risky loss vs risky win, t(7) = 8.001, p 

= 0.0003). Choice outcome also affected putative consumption as measured by 

time spent in the food well (Fig. 3.6B, right, one-way ANOVA, F(1.503, 10.52) = 588, p 

< 0.0001).  This effect was also driven by differentiation between large/risky wins 

and small/safe wins (Sidak’s post-hoc, risky win vs safe win, t(7) =13.5, p < 0.0001) 

as well as losses vs any win (risky loss vs safe win t(7) = 29.5, p < 0.0001; risky 

loss vs risky win, t(7) = 28.5, p < 0.0001). 

Z-normalization of data during deliberation (Fig. 3.6C) revealed that activity 

increased relative to baseline (one-sample t-test vs. baseline: before risky, t(500) = 

6.92, p < 0.0001; before safe, t(522) = 6.71, p < 0.0001, data not shown.)  Traces 

were then sorted into forced-choice and free-choice trials. In forced-choice trials 

(Fig. 6C.i), there was a significant interaction between peak activity prior to lever 

press and behavior block (two-way ANOVA, upcoming choice x behavior block, 

F(4, 433) = 5.37, p = 0.0030).  
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Figure 3.6.  PrL mPFC pyramidal activity tracks choice tracks choice 

selection and outcome during probabilistic discounting. (A)  Aggregate 

calcium response (8 rats; 1081 trials) during entire probabilistic discounting task 

from air-treated controls. Lines represent average ± sem ΔF/F for safe 

choice/win (green), risky choice/win (blue), risky loss (pink). An increase in 

calcium activity was detected during deliberation, ~1.5 s prior to choice (shaded 

column throughout figure).  (B) Average Z-normalized ΔF/F% (left) and 

consumption time (right) during choice outcome for each rat with paired 

comparison: safe win vs risky win, ^p<0.05; risky loss vs safe win or risky win, 

*p<0.05. (C) Traces during deliberation were sorted on probability of rewarded 

B

i. Forced Choice

Probability of Risky Reward (%)

100 50 25 12.5 6.25

Prior to Safe Choice

Prior to Risky Choice

Air

C
Deliberation

Outcome

ii. Free Choice

A

*

*

Time relative to choice (s)

Risky Loss Safe Win Risky Win

Safe Win

Risky Win

Risky Loss

Safe Win

Risky Win

Risky Loss

0.0

2.5

5.0

7.5

10.0

12.5

15.0

T
im

e
 i
n
 f
o
o
d
 w

e
ll 

(s
)

*

*
^

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

Z
 n

o
rm

a
liz

e
d

 D
F

/F
 (

%
)

*

*
^



  82  

 

This was due to a relatively greater increase prior to risky choice during the 100% 

block (Sidak’s test, t(433) = 2.73, p = 0.033) and prior to safe choice during the 

6.25% block (t(433) = 3.06, p = 0.012). The interaction between activity prior to lever 

press and behavior block was not present during free-choice trials (Fig 3.6C.ii, F(4, 

569) = 0.550, p = 0.70).  

 

Toluene disrupts mPFC activity during deliberation and outcome 

Figure 3.7A shows the average fluorescence changes across all trials 

during the probabilistic discounting task on toluene test days (8 rats, 1081 trials 

each).  Like air-treated control days, these graphs show a peak of activity during 

deliberation and troughs during outcome. (Figure 3.7B)  Further, A one-way 

ANOVA revealed an effect of choice outcome on GCaMP6f signal (F(1.698, 11.88) = 

16.5, p = 0.0005). However, unlike controls, there was no differentiation between 

large/risky wins and small/safe wins (Sidak’s post-hoc, risky win vs safe win, t(7) = 

0.05, p > 0.9999).  There was a distinction between GCaMP6f signal following 

losses vs wins (risky loss vs safe win t(7) = 4.56, p = 0.0078; risky loss vs risky win, 

t(7) = 4.48, p = 0.0086). 

risky choice (i.e. 100%, 50%, 25%, 12.5%, and 6.25%) and choice type (i.e. free 

and forced); aggregate Z-normalized mean ± sem ΔF/F with average peaks 

summarized (right).  Average calcium response during forced-choice (C.i, 443 

traces, 8 rats) and free-choice  (C.ii, 560 traces, 8 rats). Summary traces exclude 

instances with < 10 traces across < 3 rats. Sidak’s multiple comparison of mean 

value, safe vs risky choice, *p<0.05. Arrow indicates moment of lever press. 
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Figure 3.7.   Toluene disrupts PrL mPFC pyramidal activity responsible for 

predicting preferred choice and encoding consumption during 

probabilistic discounting. (A)  Aggregate calcium response (8 rats; 1081 trials) 

during entire probabilistic discounting task on toluene treated test days.  Lines 

represent average ± sem ΔF/F for safe choice/win (green), risky choice/win 

(blue), risky loss (pink). An increase in calcium activity was detected during 

deliberation, ~1.5 s prior to choice (shaded column throughout figure).  (B) 
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Average Z-normalized ΔF/F% (left) and consumption time (right) during choice 

outcome for each rat with paired comparison: safe win vs risky win, ^p<0.05; 

risky loss vs safe win or risky win, *p<0.05. (C) Traces during deliberation were 

sorted on probability of rewarded risky choice (i.e. 100%, 50%, 25%, 12.5%, and 

6.25%) and choice type (i.e. free and forced); aggregate z normalized mean ± 

sem ΔF/F). Average calcium response during forced-choice (C.i, 452 traces, 8 

rats)  and free-choice  (C.ii, 566 traces, 8 rats). Summary traces exclude 

instances with < 10 traces across < 3 rats.  Paired t-tests *p <0.05, **p<0.01. 

Arrows indicate moment of lever press.  

 

Choice outcome also affected putative consumption as measured by time 

spent in the food well (Fig. 3.7B, right, one-way ANOVA, F(1.811, 12.68) = 763, p < 

0.0001).  This effect was also driven by differentiation between large/risky wins 

and small/safe wins as well as losses vs any win (all t(7) >17.9 , p < 0.0001). (Figure 

3.7B, inset)  Toluene also caused a slight, but significant reduction in consumption 

time (two-way ANOVA, main effect of treatment, (F(1,21) = 4.43 , p = 0.048), an 

effect driven by consumption during large/risky wins (Sidak’s post hoc, t(21) = 2.83, 

p = 0.030) and not small safe wins (t(21) =0.318, p = 0.99) or risky losses (t(21) = 

0.501, p = 0.96). 

Z-normalization of data during deliberation (Fig. 3.7C) revealed that mPFC 

activity increased relative to baseline (one-sample t-test vs 0% ΔF/F : before risky, 

t(424) = 6.24, p < 0.0001; before safe, t(611) = 10.7 p < 0.0001, data not shown.)  

Traces were then sorted into forced-choice and free-choice trials.  Unlike control 

conditions, there was no interaction between activity prior to lever press and 

behavior block during forced-choice trials following toluene exposure (Fig. 3.7C.i,  

two-way ANOVA, F(4, 442) = 1.48, p = 0.21).  Similar to control conditions, this 
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interaction did not exist during free-choice trials (Fig. 3.6C.ii, F(4, 574) = 0.264, p = 

0.90).  

Acute exposure to 10,500 ppm toluene vapor 30 min prior to testing 

disrupted descending odds probabilistic discounting in rats expressing GCaMP6f 

in the mPFC (Fig. 3.8A-E).  This included increased risky choice preference (Fig. 

3.8A, two-way ANOVA, main effect of drug, F(1, 7) = 11.6, p = 0.011) and reduced 

lose-shift behavior (Fig. 8C, paired t-test,  t(7) = 2.52, p = 0.040). Finally, we directly 

compared signal during deliberation (Fig. 8G) and outcome (Fig. 3.8H).  mPFC 

activity increased in toluene exposed animals compared to air prior to a safe lever 

press (Fig. 3.8G; paired t-test, t(7) = 2.38, p = 0.049) but not a risky lever press (t(7) 

= 1.15, p =  0.29).  Toluene exposure resulted in a smaller mPFC activity trough 

compared to air following safe wins (Fig. 3.8H; t(7) = 2.80, p = 0.027) and risky wins 

(t(7) = 3.96 , p = 0.0055), but not risky losses (t(7) = 0.536, p =  0.61). 
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Figure 3.8.  Probabilistic discounting during fiber photometry recordings 

following acute air or toluene exposure.  Fiber-tethered rodents expressing 

GCaMP6f performed the probabilistic discounting task following exposure to 

toluene and air. (A) Proportion of risky choice within each probability block 

following acute exposure to air or 10,500 ppm toluene. (B, C) Choice strategy 

across all trials.  Win-stay (B) indicates choice of risky lever after risky win while 

lose-shift (C) indicates choice of safe lever after risky loss. (D) Time to choice 

selection within each probability block. Omissions across all trials (E) indicate no 

lever press within 10 s time period. (F) Paired comparison of consumption time 

on air vs toluene treatment days across all outcomes. (G) Mean ΔF/F% +/- sem 

for all 8 rats on air vs toluene treatment days during deliberation: prior to safe 

choice (air, 501 traces; toluene, 425 traces) and prior to risky choice (air, 523 

traces; toluene, 610 traces) with paired comparison summaries (right).  (H) Mean 

ΔF/F% +/- sem during choice outcome: during a safe win (air, 501 traces; 

toluene, 425 traces), during a risky win (air, 264  traces; toluene, 282 traces), 

and during risky loss (air, 276  traces; toluene, 330 traces) with paired 
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comparison summaries (right). Data shown are mean ± sem; n = 8; 2-way 

ANOVAs with Sidak’s post hoc, n.s. = not significant, *p<0.05, **p<0.01, 

*p<0.001) 

 

DISCUSSION 

Acute toluene impairs probabilistic discounting 

In order to understand how the abused inhalant toluene affects risk/reward 

decision making, we exposed animals highly trained in the probabilistic discounting 

task to air or two levels of toluene vapor. We found a dose-dependent effect of 

toluene on risky choice preference in both male and female rats. Toluene 

increased risky choice preference when the initial expected value of the risky lever 

was high (descending odds task), but decreased risky choice preference when the 

initial expected value of the risky lever was low (ascending odds task). These 

effects were driven primarily by a perturbation in sensitivity to negative feedback, 

although a reduction in positive feedback sensitivity was also observed.  We 

interpret these findings as a toluene-induced failure to update expected values, 

resulting in behavioral inflexibility as the task progressed and reward probabilities 

changed.  

The alterations in choice and response latencies induced by toluene are 

similar to those induced by of amphetamine (St. Onge and Floresco, 2009; St. 

Onge et al., 2010), one of only two known drugs for which toluene serves as a 

discriminative stimulus (Bowen, 2006). As first suggested by St. Onge and 

colleagues, enhanced mPFC dopamine signaling might be the cause of 

amphetamine-induced discounting impairments since (1) increasing dopamine 
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perturbs complex cognitive functions mediated by the mPFC (2) pharmacologically 

silencing the mPFC caused the same procedural-dependent effects, and (3) mPFC 

dopamine levels track reward rates during probabilistic discounting (St. Onge and 

Floresco, 2010; St. Onge et al., 2010, 2012). Interfering with this dopamine signal 

might disrupt the ability to accurately encode reward value and/or act on choice 

valuation, resulting in more static patterns of choice. A similar mechanism should 

be considered for toluene, since it is known to increase extracellular levels of 

dopamine in the mPFC (Gerasimov et al., 2003; Koga et al., 2008) and as 

described in these studies, alters mPFC activity during probabilistic discounting. 

One caveat is that pharmacological activation of dopamine D2, but not D1, 

receptors in the mPFC only serve to decrease risky choice preference during 

probabilistic discounting. (St. Onge et al., 2011). Interestingly however, 

simultaneous stimulation of mPFC D2 receptors while pharmacologically silencing 

the basolateral amygdala causes the same procedural-dependent effects on 

probabilistic discounting as acute toluene exposure (Jenni et al., 2017). Future 

studies on the effect of toluene on complex cognitive behaviors should take this 

circuit into consideration. 

The increase in task engagement (i.e. decreased latency and omissions) 

following toluene exposure was not universal across sex or task type (ascending 

or descending). Toluene’s effects on these measures is likely more to do with 

differences in the task and how these differences affect each sex than a general 

impairment in performance.  In fact, inactivating the mPFC causes a slight increase 

in latency during safe-optimal trials of descending odds probabilistic discounting 
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(St. Onge and Floresco, 2010). Furthermore, omissions during probabilistic 

discounting are unaffected by mPFC inactivation or disconnection of mPFC-

nucleus accumbens circuitry (St Onge et al., 2012). On the other hand, treatment 

with the adrenergic auto receptor antagonist yohimbine (Montes et al., 2015) has 

been shown to produce an effect on choice behavior during probabilistic 

discounting that is similar to that of toluene reported here, while at the same time 

reducing response latencies. Thus, although not currently known, toluene may 

simultaneously impair shifts in choice bias and enhance task engagement via 

alterations in catecholaminergic signaling. 

 

Effect of adolescent toluene exposure on future probabilistic discounting 

Drug abuse during adolescence can lead to future cognitive impairments, 

substance abuse issues, and mood disorders.  In fact, rodents show increased risk 

preference during probabilistic discounting following chronic adolescent alcohol 

exposure, despite a protracted abstinence (Boutros et al., 2015).  Unlike ethanol, 

we found that adult rats with a history of toluene exposure during adolescence 

performed the risk task similarly to air-treated controls. Some transient increases 

in choice latency were observed during training that could be the result of 

instrumental learning deficits observed despite abstinence from toluene (Dick et 

al., 2014; Braunscheidel et al., 2017).  Another non-mutually exclusive possibility 

is that increased anxiety during toluene withdrawal (Bowen et al., 2018) led to 

increased indecisiveness, and thus deliberation time. This notion agrees with the 

increased choice latency observed following acute stress or infusions of 
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corticotropin releasing factor effort-discounting tasks (Shafiei et al., 2012; Bryce 

and Floresco, 2016). Finally, while rats received multiple toluene exposures during 

adolescence, the experience was over a relatively brief time period (5 days).  A 

more extensive exposure period like that employed by Boutros and colleagues 

(2015) might cause a greater effect on the measured parameters.  

In this study, an acute challenge with 10,5000 ppm toluene in adult rats with 

a history of toluene exposure during adolescence produced similar alterations in 

probabilistic discounting, lose-shift behavior, and choice latency as those only 

exposed to toluene as adults.  However, we did not observe any increase in win-

stay behavior in the combined adolescent/adult exposed animals. Interestingly, the 

lower dose of toluene failed to produce an appreciable change in discounting but 

did increase win-stay behavior in both male and female rats. This combination of 

sensitization to the reward-promoting effects of toluene at lower doses with 

simultaneous desensitization to cognitive impairments could contribute to inhalant 

relapse despite protracted abstinence.  

 

mPFC calcium activity encodes information about upcoming choice and 

outcome 

Neuronal activity within the mPFC is critical for tasks involving behavioral 

flexibility (Birrell and Brown, 2000; Marquis et al., 2007; Floresco et al., 2008) 

including probabilistic discounting (St. Onge and Floresco, 2010).  In the present 

study, we used in vivo fiber photometry to investigate the importance of mPFC 

activity on probabilistic discounting with temporal specificity and to provide 
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physiological evidence for a mPFC-dependent mechanism of toluene-induced 

deficits on probabilistic discounting. We observed increases in mPFC activity prior 

to any free-choice press, independent of the actual expected value of that press. 

This is consistent with previous reports showing that the firing rate of mPFC 

neurons increases prior to an action that is intended to generate reward (Sul et al., 

2010).  Data from forced-choice trials indicate that this signal does not simply 

predict any action that might generate reward. Rather, increases in mPFC activity 

appeared to flexibly shift from predicting forced risky choice to forced safe choice 

throughout the session.  Since this pattern reflects the theoretical optimal choice 

to maximize expected outcome (risky early when risky reward probabilities are 

high, safe late when risky reward probabilities are low) we interpret this as a 

“preferred action” signal.  This interpretation is similar to the recently described 

“outcome-prediction” activity discovered in mPFC neurons that fire specifically 

once an attentional set-shift is completed (Del Arco et al., 2017).   

In this study, we found a prominent decrease in mPFC calcium activity 

during rewarded outcome that was correlated with reward magnitude in air-treated 

animals. At first take, these data seem in stark contrast to many reports of 

increased mPFC electrical activity during reward outcome and consumption 

(McCoy and Platt, 2005; Horst and Laubach, 2013; Petykó et al., 2015; Del Arco 

et al., 2017). However, these studies refer to a very short time scale following 

reward delivery (0 – 2 seconds) compared to the duration of reward consumption 

during which we recorded mPFC calcium transients (0 – 20 seconds). Increases 

in mPFC spiking is tightly linked with initiation of consumption behavior (i.e. 
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licking), activity which desensitizes over time (Horst and Laubach, 2013). Further, 

a majority of mPFC activity during outcome switches from excitatory to inhibitory 

around 1.5 seconds post reward delivery (Del Arco et al., 2017). Combined, these 

factors could explain the sustained dip in mPFC calcium activity we observed 

during reward consumption and might represent portions of the brain’s executive 

functions “going offline” while engaging in a habitual or automatic behavior. It is 

clear however that this is not a global effect as Passecker and colleagues recently 

identified two dorsal mPFC ensembles that actively relay information about the 

value of the current reward, and influence upcoming choice (Passecker et al., 

2019).   

 

Effect of toluene on mPFC activity during probabilistic discounting 

Toluene disrupted flexible risk/reward decision making in a manner similar 

to pharmacological inactivation of the mPFC (St. Onge and Floresco, 2010). As 

such, it is possible that the effects of toluene were driven by a general suppression 

of PFC  in neural activity. Yet, when we measured baseline mPFC calcium activity 

in animals treated with the same toluene exposure protocol as during behavioral 

tests, we failed to detect any significant differences in magnitude or frequency of 

spontaneous calcium transients compared to air-treated controls. Thus, although 

it is clear that toluene can disrupt mPFC function, this does not appear to result 

from a global reduction in neural activity, but rather, may be mediated by 

disruptions in task-dependent patterns of mPFC activity.  
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mPFC activity increased during epochs prior to lever selection (i.e. 

deliberation). Acute administration of toluene blunted this increase, an effect that 

was driven by activity specifically prior to an upcoming safe, but not risky choice 

when collapsed across all trials. However, whereas increases in mPFC activity 

shift from pre-risky to pre-safe press during forced-choice trials in air treated 

controls, activity in toluene-treated animals display a slightly different activity 

profile: (1) activity prior to either lever press did not increase in the first probability 

block and (2) the shift in activity from pre-risky to pre-safe was disrupted. Further, 

toluene-treated animals still show strong increases prior to safe lever presses in 

free-choice trials. Taken together, these results suggest a toluene-induced failure 

to recognize changes in relative value of both levers as the task progresses rather 

than a nonspecific reduction in signaling preceding a low-risk decision.  

As with air-treated controls, toluene exposed rats showed a sustained dip 

in mPFC calcium activity across all rewarded trials. This dip was mitigated by 

toluene during both safe and risky wins, suggesting reduced mPFC silencing 

during consumption. Further, mPFC activity during a safe win was 

indistinguishable from a risky win following toluene treatment. While this could be 

explained by a general deficit in reward magnitude discrimination, toluene-treated 

animals did show appropriate discrimination (i.e. large reward preference) when 

the risky lever was reinforced 100% of the time. It is more likely that the deficit 

reflects impaired function of a subpopulation of neurons responsible for updating 

current outcome in order to influence future decision, like those recently discovered 

by Passecker and colleagues (2019).  One such subpopulation might be  deep-
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layer mPFC neurons projecting to the nucleus accumbens core, that are hypo-

excitable following toluene treatment (Wayman and Woodward, 2017).  Alterations 

in the activity of these neurons by toluene could explain the drug’s effect on mPFC 

activity during choice outcome.  

 

Sex differences in baseline probabilistic discounting 

Sex differences have been reported in other preclinical models of decision 

making involving risk (for review, see Orsini and Setlow, 2017). In these studies, 

we found that male and female rats acquired similar levels of probabilistic 

discounting, largely consistent with a recent report (Westbrook et al., 2018). Males 

and females were similarly sensitive to recent positive and negative feedback as 

measured by win-stay and lose-shift behavior, respectively. Females made much 

quicker decisions and fewer omissions than males. It is possible that females were 

hungrier than males during task performance, leading higher relative value of the 

food reward and thus greater task engagement. However, the food-restriction 

protocol whereby animals are limited based on their individual free-feeding weight 

should control for this possibility. The sex-differences in task-engagement are in 

stark contrast to probabilistic discounting under risk of footstock, where females 

omit significantly more than males (Orsini et al., 2016).  This indicates that females 

and males utilize different strategies regarding the decision to engage a risky 

situation when the punishment is neutral (reward omission) compared to aversive 

(foot shock. These sex differences should be taken into consideration when testing 

the effects of other experimental factors on probabilistic discounting.  
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CONCLUSION 

The studies herein describe the effect of abuse-levels of toluene vapor 

exposure on risk/reward decision making and strongly implicate mPFC dysfunction 

as a source of impaired flexible adjustments in choice biases. This deficit might be 

caused by perturbed task-related activity in sub-populations of projection specific 

mPFC neurons (e.g. BLA-projecting D2+ or nucleus accumbens core-projecting 

deep-layer pyramidal neurons) failing to integrate reward magnitude information to 

inform and/or execute future decisions. Future studies should attempt to identify 

these populations with molecular and circuit-level specificity and how they are 

specifically impaired by toluene.  
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CHAPTER 4: REDUCTION OF CANNABINOID 
RECEPTOR 1 SIGNALING ALTERS ASPECTS OF 
RISK/REWARD DECISION MAKING INDEPENDENT 
OF TOLUENE-MEDIATED DEFICITS.  
 
INTRODUCTION 

Abused substances impair risky decision making in humans (Lane et al., 

2005; Euser et al., 2011; Buelow and Suhr, 2014) and rodents (St. Onge and 

Floresco, 2009; Mitchell and Blankenship, 2011). Preclinical studies of the effects 

of drugs of abuse on decision making have focused primarily on stimulants and 

alcohol. However, recent studies from our laboratory have shown that toluene, a 

volatile organic solvent and abused inhalant, also perturbs flexible risk/reward 

decision making and associated reward-related activity in the prefrontal cortex 

(PFC)  (Braunscheidel et al., 2019).  

Interestingly, some of the inhibitory effects of toluene on cell signaling are 

mediated by enhanced cannabinoid receptor type 1 receptor (CB1R) activity in 

regions of the brain that are important for decision making (Beckley and 

Woodward, 2011; Beckley et al., 2016). In this regard, cannabis is the most 

common illicit intoxicant observed in ambulance attendees involving inhalant 

misuse (Crossin et al., 2018). Delta9-tetrahydrocannabinol is one of the key 

psychoactive components of cannabis, and it elicits its effects by acting as a partial 

agonist on CB1R. Beyond these reports, preclinical studies investigating the 

interaction between inhalants and endocannabinoids are limited. 

 Research on the modulation of CB1Rs in the context of cost/benefit decision 

making are important for developing informed health and safety policies. Relaxed 
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legislation on cannabis restrictions is leading to greater consumption of delta9-

tetrahydrocannabinol-containing products in adults (Carliner et al., 2017).  Given 

the comorbities of cannabis use with substance use disorders, mood disorders, 

and anxiety disorders (Stinson et al., 2006), it is not surprising that CB1R receptor 

expression is widespread in regions that are important for decision making such 

as the prefrontal cortex (Eggan et al., 2010), hippocampus (Davies et al., 2002), 

and striatum (Julian et al., 2003; Pickel et al., 2004) for review, see (Hu and 

Mackie, 2015). Enhancing CB1R signaling disrupts higher cognitive functions 

including risky decision making in humans (Lane and Cherek, 2002; Lane et al., 

2005; Anderson et al., 2010). However, these effects have not been reproduced in 

two separate preclinical models (Ferland et al., 2018; Freels et al., 2020).  Here 

we use a third, well-validated rodent model of risk/reward decision making – the 

probabilistic discounting task (St. Onge and Floresco, 2009; Braunscheidel et al., 

2019) – to test the hypotheses that CB1R silencing is sufficient to modulate risky 

decision making and that toluene-induced impairments in this behavior depend on 

CB1R signaling. 

As described above, CB1R expression is widespread in the central nervous 

system, but it is also expressed in periphery (Kulkarni-Narla and Brown, 2000) and  

involved in the immune response (Cabral et al., 2015).  This suggests that the 

ameliorative potential of CB1R silencing in the above experiments could also 

reflect off-target effects. Interestingly, the impairments in  behavioral flexibility 

caused by toluene mimic those observed by inactivation of the mPFC, and toluene 

exposure disrupts mPFC pyramidal activity during contingency updating and 
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monitoring (St. Onge and Floresco, 2010; Braunscheidel et al., 2019). Further, 

results from whole cell patch clamp electrophysiology recordings in the mPFC 

show that ex vivo toluene application reduced AMPA-mediated excitatory signaling 

via activation of presynaptic CB1Rs (Beckley and Woodward, 2011). While mPFC 

CB1R signaling is involved in fear and anxiety-related decision making (Draycott 

et al., 2014; Schneider et al., 2015), the effects on risk/reward decision making 

have not been explored. To address this gap in the literature, we studied the effect 

of local pharmacological manipulation of mPFC CB1Rs on probabilistic 

discounting.  Finally, we address hypotheses that toluene-induced impairments 

depend on mPFC CB1R signaling. The results of these studies provide evidence 

for the involvement of CB1R signaling during probabilistic discounting that is 

unrelated to toluene-induced deficits in risk/reward decision making. 

 

MATERIALS AND METHODS 

Animals 

 Fifty-eight male Sprague-Dawley rats (post-natal day (P) 53 on arrival; 

Envigo RMS, Indianapolis, IN) were housed in pairs in polypropylene cages on a 

reverse light cycle (lights off at 0900) in a climate-controlled room with food and 

water delivered ad libitum. At approximately P60-70, rats were food restricted to 

maintain 85-90% of their free feeding weight (weight at time of final testing (300-

400 g).  Figure 4.1A details the experimental timeline for all rodents. All 

procedures were performed in compliance with Medical University of South 

Carolina IACUC protocols. 
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Surgeries 

 A subset of 30 animals underwent stereotaxic surgery ~1 week after arrival 

during which deep anesthesia was achieved via an isoflurane vaporizer (Penlon; 

1 L/min, 5% induction, 2–3% maintenance) and bilateral guide cannula (Plastics 

One) were implanted above the prelimbic mPFC (± 0.6 ML, +2.95 AP, -2.85 DV 

from Bregma). Microinfusion tips extended 1 mm from the guide cannula for a 

final injection location of -3.85 DV from Bregma.  

 

Lever Press Training  

 Lever press training occurred over the course of 1-2 weeks as previously 

described (Braunscheidel et al 2019). In brief, rats were habituated to a reward of 

20% sweetened condensed milk (SCM), by giving them free access to 10 ml SCM 

for two days prior to operant training. Over the course of two phases, rats (P60-

70) were trained to lever press in operant chambers (Med Associates, St. Albans, 

VT) for SCM delivered to a central feeding well via a pump-activated syringe. 

Phase 1 (2-5 days; 30 min sessions) began with one lever (left or right, pseudo-

randomly assigned) reinforced with 45 µl SCM on an FR1 schedule.  Upon 

meeting criteria (50 presses for 2 consecutive days), the presented lever was 

switched, and rats were tested to criteria before moving on to phase 2. Phase 2 

(6-7 days; 60-minute sessions) consisted of 90 trials separated by 35s. Each 

session began with an illuminated house light and 2s later, the left or right lever 

extended in a pseudo-random order.  When pressed, the lever retracted, and 45 

µl SCM was delivered on 75% of trials.  If a lever was not pressed within 20s, it 
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retracted, and the trial was recorded as an omission. Following completion of two 

consecutive days with less than 10 omissions per session, the time to omission 

was reduced to 10s. When rats met criteria again, the lever reward probability 

reduced to 50%. When rats met criteria a third time, a side preference test was 

performed. Briefly, for each of 60 trials, both levers extended simultaneously and 

were reinforced on an FR1 schedule. A trial concluded when two presses 

occurred, which resulted in lever retraction for 20s. The preferred side was 

defined as the side that a rat pressed first most often across trials.  Rodents then 

began training in the probabilistic discounting task.  

 

Probabilistic Discounting 

 A  probabilistic discounting procedure was used to assess risk/reward 

decision making in rodents as previously described (St. Onge and Floresco, 2009; 

Braunscheidel et al., 2019).  This two-lever choice task (Fig. 1B) consists of a 

“safe” lever that delivered a small reward (30 µl SCM) 100% of the time and a 

“risky” lever that delivered a large reward (90 µl SCM) with varying probability of 

reinforcement.  The risky lever was assigned to the non-preferred lever position 

as determined by the side preference test. Each session consisted of 90 trials 

separated into 5 blocks and each block started with 8 forced-choice trials that set 

the probability of reinforcement for the following 10 free-choice trials (Fig. 4.1C). 

The probability of obtaining a large reward was varied from high-to-low with the 

following probabilities: 100%, 50%, 25%, 12.5%, 6.25%.   Each trial lasted 35 s 

and began with an illuminated house light and 2 s later  levers extended into the 
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chamber. A press on either lever caused both of them retract and turned the house 

light off.  On rewarded trials, reward was delivered to the central feeding well. 

These “wins” were paired with a discriminative cue: a flashing light above the food 

well to indicate whether the reward was small or large (safe win: 2 pulses, 0.35 s 

pulse width, 0.5 Hz; risky win: 5 pulses, 0.35 s pulse width, 0.5 Hz).  On non-

reinforced “loss” trials, no cue light was provided.  If a lever was not pressed in 10 

s, it was recorded as an omission and the houselights were extinguished for 25s.  

Following ~20 days of training (5-6 days per week), rats exhibited stable 

responding (two-way ANOVA on three consecutive testing days yields no block x 

day interaction or main effect of day, p > 0.1) and were subjected to drug tests.  
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Figure 4.1.   Probabilistic discounting training and test design.  (A) 

Experimental timeline and corresponding rat age. (B) Flow chart detailing a 

single trial of the probabilistic discounting task. (C) Breakdown of the 10 different 

probability blocks within the probabilistic discounting task with odds presented in 

descending order. (D) Inhalation chamber schematic. (E) Test day progression 

for the two toluene exposure experiments (top) and two mPFC CB1R modulation 

experiments (bottom). 
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Systemic Drug Administration And Inhalation Chamber Treatments 

In some studies, rats received an intra-peritoneal (i.p.) injection of CB1R 

inverse agonist AM251 (2mg/kg) or vehicle (DMSO) 15 min prior to 15 minute gas 

exposures (air or 10,500 ppm toluene) in a 30x30x30 cm inhalation chamber (Fig. 

4.1D, Plas Labs, Lansing, MI). Rats then were then returned to their home cage 

for 30 min prior to task performance (Fig. 4.1E). Toluene concentrations were 

achieved via a sevoflurane vaporizer (Penlon Limited; flow rate 4L/min) as 

previously described (Braunscheidel et al., 2017, 2019; Wayman and Woodward, 

2018), and confirmed with a portable toluene gas detector (DOD Technologies, 

Cary, IL).  At this dose, rats exhibit lethargy after ~10 minutes of exposure and 

were nearly immobile after 15 minutes. Rats fully regained ambulation following 

approximately 15 minutes of recovery in the home cage (unpublished 

observations). These four treatments (AM251 + air, AM251 + toluene, vehicle + air, 

vehicle + toluene) were administered in a within-subject counter balanced design 

with 2-5 days of retraining between tests such that pre-test day performance was 

equivalent (two-way ANOVA yields no main effect of day, p > 0.1). 

 

Microinjections 

For the mPFC CB1R manipulation studies, rats received microinfusions 

(300 nl over 1 min) of selective CB1R mediators (AM251,5 and 50 ng; WIN55,212-

2, 50 ng and 500 ng) or vehicle (3% DMSO, 3% Tween80, PBS) into the prelimbic 

mPFC 30 min before testing (Fig. 4.1E). These doses were selected as they have 

been shown to alter fear-related behaviors when microinjected into the mPFC 
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(Laviolette and Grace, 2006).  In both experiments, the three treatments (high 

dose, low dose, vehicle) were administered in a within-subject counter balanced 

design with 2-5 days of retraining between tests such that pre-test day 

performance was equivalent (two-way ANOVA yields no main effect of day, p > 

0.1). 

In a separate cohort, 50 ng AM251 or vehicle was injected 15 min prior to 

toluene exposure (i.e. 1hr prior to task performance, see Fig. 4.1E). All 

microinjections were administered using a within-subject, counter-balanced design 

with 2-5 days of retraining between tests such that pre-test day performance was 

equivalent  (two-way ANOVA yields no main effect of day, p > 0.1). This design has 

been validated elsewhere for addressing the neuropharmacology of the PD 

task(Stopper et al., 2013). 

 

Statistics 

 The primary dependent variable of the probabilistic discounting test was 

risky lever preference, expressed as proportion risky choice (number of risky lever 

presses/total lever presses) during each of the five probability blocks separated 

by likelihood of a rewarded risky lever press. Additional performance variables 

including omissions, latency to choice, win-stay (number of risky lever presses 

following a risky win / total number of risky wins), and lose-shift (number of safe 

lever presses following a risky loss / total number of risky losses) were also 

recorded. Only free-choice trials were considered in behavioral analyses. Choice 

data obtained from the microinjection experiments were analyzed with a two-way 
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repeated measures ANOVA with treatment and probability block as factors. Win-

stay, lose-shift, and omissions were analyzed with a one-way ANOVA with 

appropriate multiple comparisons. The systemic AM281 studies were analyzed 

with a three-way ANOVA with i.p. treatment, inhalation treatment, and probability 

block as factors. Win-stay, lose-shift, and omissions were analyzed with a 2-way 

ANOVA with appropriate post hoc multiple comparisons. All statistics and 

graphing was performed using Prism 8 (Graphpad Software San Diego, CA). 

 
 

RESULTS 

Systemic Reduction In  CB1R Activity Alters Probabilistic Discounting 

Performance Independently From Acute Toluene Effects 

 Previous studies in our laboratory have shown that acute toluene exposure 

impairs flexible adjustments in choice biases by rats during probabilistic 

discounting (Braunscheidel et al., 2019). In this experiment, we sought to 

determine whether this effect may be modulated by CB1R activity.  Figure 4.2A 

shows risk preference during probabilistic discounting behavior in well-trained 

Sprague-Dawley rats following four treatments: 2 mg/kg (i.p.) AM281 + air 

inhalation, vehicle + air inhalation, 2 mg/kg AM281 (i.p.) + toluene inhalation, and 

vehicle + toluene inhalation. Analysis of the choice data revealed that toluene 

exposure again impaired shifts in choice biases manifesting as an increase in risky 

choice under these conditions (main effect of toluene (F(1, 18) = 14.58, p = 0.0013). 

Post hoc two-way ANOVA of these data collapsed across all toluene/air treatments 

revealed that toluene exposure increased risky choice specifically during times of 
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high uncertainty (50%, 25%, and 12.5% blocks, all t(38) > 2.86, p < 0.024) and not 

during blocks where there was relatively little uncertainty of obtaining the larger 

reward (100% and 6.25% blocks, both t(38) < 1.78, p > 0.33).  However, there was 

no interaction between the factors (three-way ANOVA, toluene x AM281 x 

probability block, F(4, 72) = 0.85, p = 0.50) or any combination of two factors (toluene 

x AM281 F(1, 18) = 0.12, p = 0.74; toluene x probability block F(4, 72) = 1.96, p = 0.11; 

AM281 x probability block F(4, 72) = 0.55, p = 0.70). Furthermore, AM281 did not 

appear to alter choice during probabilistic discounting (main effect, F(1, 18) = 0.0020, 

p = 0.97).   

 

Figure 4.2.  Systemic CB1R inverse agonism alters probabilistic 

discounting performance independently from acute toluene effects. Well-

trained rats were treated with a combination of i.p. injections (2mg/kg AM281 or 

vehicle) and vapor exposure (toluene or air) prior to task performance.  (A) 

Proportion of risky choice within each probability block across treatments. (B, C) 

Choice strategies employed across all trials. Win-stay (B) indicates choice of 

risky lever after risky win while lose-shift (C) indicates choice of safe lever after 

risky loss.  (D) Time to choice selection within each probability block. (E) 

Omissions across all trials indicate no lever press within the 10 s trial period. 

Data shown are mean + sem; all n = 19; three-way ANOVA main effects, *p < 

0.05, **p < 0.01; Tukey’s post hoc, *p < 0.05, **p < 0.01. 
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Subsequent trial-by-trial analysis of the choice data were conducted to 

examine how the outcomes of risky choices influenced subsequent choice. Figure 

4.2B illustrates the effect of recent positive reinforcement on choice strategy, 

measured as the probability of choosing the risky lever following a risky win (“win-

stay”). Two-way ANOVA revealed an increase in win-stay behavior in toluene 

treated animals, (main effect, F(1, 18) = 13.18, p = 0.0020). Notably, the analysis 

also revealed as a significant interaction between toluene and AM281 treatments 

(F(1, 18) = 7.00, p = 0.017). This effect was driven in part by a reduction in win-stay 

behavior by AM281 relatively to vehicle treatment in air treated animals (Tukey’s 

post hoc, AM281 vs vehicle, q(14) = 4.48, p = 0.025).  Thus, even though CB1R 

inhibition did not alter overall choice levels, it did appear to reduce the influence 

that recently rewarded risky choices exerted over subsequent choices.  In contrast, 

the effect of recent negative feedback sensitivity on choice strategy did not differ 

across treatment conditions, measured as the probability choosing the safe lever 

following a risky loss (“lose-shift”; all F(1, 18) < 0.28, p > 0.60; Fig 4.2C). Taken 

together, the fact that AM281 did not alter the effects of toluene on in probabilistic 

discounting suggests that the alterations in decision making induced by this 

inhalant are likely not mediated by increased systemic CB1R activation.   

 Choice latency and omission data may reflect decision speed, impulsivity 

and/or general motivation to lever press for reward. Analysis of the choice data 

partitioned across blocks yielded no interaction between the factors (three-way 

ANOVA, toluene x AM281 x risk preference, F(4, 72) = 0.42, p = 0.79) or any 

combination of two factors (toluene x AM281 F(1, 18) = 1.37, p = 0.26; toluene x risk, 
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F(4, 72) = 1.07, p = 0.38; AM281 x risk, F(4, 72) = 1.10 , p =0.38) on choice latency 

(Fig 4.2D).  On the other hand, whereas toluene did not impact choice latency 

(main effect, F(1, 18) = 2.45, p = 0.14), it was affected by AM281 (main effect, F(1, 18) 

= 7.36, p = 0.014). Post hoc two-way ANOVA of these data collapsed across all 

AM281/vehicle treatments reveals that these differences are during times of high 

uncertainty (50%, 25%, and 12.5% blocks, all t(38) > 3.0, p < 0.015) and not when 

the potential outcome of a risky choice was more certain (100% and 6.25% blocks, 

both t(38) < 1.24, p > 0.70. AM281-treated animals also omitted more than their 

vehicle-treated counterparts (Fig. 4.2E, two-way ANOVA, main effect of AM281, 

F(1, 18) = 13.20, p = 0.0020). Interestingly, AM281 increased omissions following air 

treatment (Tukey’s post hoc, AM281 vs vehicle, q(18) = 5.77, p = 0.0036), but not 

after toluene exposure.  Taken together, these data suggest that AM281 causes 

task disengagement or delayed decision making speeds, especially during times 

of increased difficulty or uncertainty. 

 

Toluene Induced Deficits In Probabilistic Discounting Are Not Prevented By 

Reduced mPFC CB1R Activity 

 In the next set of experiments, we specifically targeted mPFC CB1Rs via a 

bilateral microinfusion of AM251 into the prelimbic cortex. In keeping with the 

findings following systemic administration of this compound, intra-PFC infusion of 

AM251 did not alter risk preference in toluene treated animals compared to vehicle 

+ toluene positive controls (Fig. 4.3A, two-way ANOVA, treatment x probability 

block, F(8, 64) = 0.70, p = 0.69; main effect of treatment, F(2, 16) = 2.15, p = 0.15; 



  109  

Sidak’s post hoc comparing AM251 + toluene to vehicle + toluene, all t(64) < 0.93, 

p > 0.73). With respect to reward and negative feedback sensitivity, inspection of 

the data presented in Figure 4.3B suggest that toluene again increased win-stay 

behavior relative to air-treatment. However, a one-way ANOVA of these data 

reveals this effect only approached statistical significance (F(2,16) = 3.04, p = 

0.076.), although post-hoc pairwise comparisons indicate that trend was driven by 

the trend in vehicle + toluene treatment vs vehicle + air (Tukey’s post hoc, q(16) = 

3.48, p = 0.063; both other q(16) < 2.01, p > 0.35).  Figure 4.3C shows the significant 

effect of these treatments on lose shift behavior (one-way ANOVA, F(2,16) = 10.58, 

p = 0.0012). Surprisingly, toluene decreased this metric compared to the vehicle + 

air control, irrespective of whether rats were treated with AM251 (Tukey’s post hoc, 

both q(16) > 5.09, p < 0.0064), and AM251 did not alter the effect of toluene (q(18) = 

9.45, p = 0.76).  Finally, there was no effect of these treatments on choice latency 

(Fig. 4.3D, two-way ANOVA, probability block x treatment, F(8, 64) = 1.17, p = 0.33; 

main effect of treatment, F(2, 16) = 1.10, p = 0.36) or omissions (Fig. 4.2E, one-way 

ANOVA, F(2, 16) = 0.78, p = 0.48). These data suggest that reducing CB1R activity 

within the prefrontal cortex does not block toluene-induced deficits in probabilistic 

discounting.  
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Effect Of mPFC CB1R Modulation On Probabilistic Discounting 

 Results from these experiments warranted further exploration of how mPFC 

CB1R signaling may modulate probabilistic discounting.  To address this, we 

microinfused different doses of AM251 or vehicle directly into the prelimbic cortex 

prior to probabilistic discounting test sessions (Fig. 4.4). This treatment did not 

alter risk preference (Fig. 4.4A, two-way ANOVA, probability block x AM251, F(8, 

112) = 0.41, p = 0.91; main effect of AM251, F(2,28) = 1.20, p = 0.32). However, 

despite the lack of effect of these treatments on overall choice, intra-mPFC infusion 

of the high dose of AM251 did decrease win-stay behavior (Fig. 4.4B, one-way 

ANOVA, F(2, 28) = 4.00, p = 0.030 and Dunnett’s post hoc, 50 ng AM251 vs vehicle, 

q(28) = 2.78, p = 0.018), consistent with its effect when administered systemically. 

Figure 4.3. Toluene-induced impairments in probabilistic discounting does 

not depend on mPFC CB1R signaling. Well-trained rats were given the 

following treatments prior to task performance across three test days: vehicle 

mPFC microinjection + air exposure, vehicle mPFC microinjection + toluene, or 

50 ng AM251 mPFC  microinjection + toluene.  (A) Proportion of risky choice 

within each probability block across treatments. (B, C) Choice strategies 

employed across all trials. Win-stay (B) indicates choice of risky lever after risky 

win while lose-shift (C) indicates choice of safe lever after risky loss.  (D) Time 

to choice selection within each probability block. (E) Omissions across all trials 

indicate no lever press within the 10 s trial period. Data shown are mean + sem; 

all n = 9; *p < 0.05; Tukey’s post hoc, τp = 0.063, *p < 0.05, **p < 0.01. 
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Lose-shift behavior was unaffected by mPFC AM251 (Fig. 4.4C, one-way ANOVA, 

F(2, 28) = 0.60, p = 0.55) as was choice latency (Fig. 4.4D, two-way ANOVA, 

probability block x AM251, F(8, 112) = 0.76, p = 0.64; main effect of AM251, F(2,28) = 

0.027, p =0.97) and omissions (Fig. 4.4E, one-way ANOVA, F(2, 28) = 3.11, p = 

0.060). These data suggest that mPFC CB1R signaling contributes to promoting 

win-stay behavior during probabilistic discounting. However, intra-PFC infusions 

of this compound did not recapitulate the actions of systemic treatment on 

omissions and choice latency, suggesting these effects were likely mediated by 

reducing CB1R activity in other brain regions  

 We then tested how intra-mPFC infusions of a CB1R agonist affected task 

performance, using two doses of WIN55,212-2 (50 ng and 500 ng).  These 

treatments also did not alter risk preference (Fig. 4.4F, two-way ANOVA, 

probability block x treatment, F(8, 112) = 0.79, p = 0.61; main effect of treatment, F(2, 

28) = 0.48, p = 0.62).  CB1R stimulation also did not affect win-stay (Fig. 4.4G, one-

way ANOVA, F(2, 28) = 1.40, p = 0.26), lose-shift (Fig. 4.4H, F(2, 28) = 0.47, p = 0.63), 

choice latency (Fig. 4.4I, two-way ANOVA, probability block x treatment, F(8, 112) = 

0.53, p = 0.83; main effect of treatment F(2, 28), p = 0.56), or omissions (Fig. 4.4J, 

one-way ANOVA, F(2, 28) = 0.78, p = 0.47). Thus, activation of CB1R receptors in 

the mPFC does not appear to alter risk/reward decision making or other 

motivational measures.  
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DISCUSSION 

Toluene-Induced Impairments In Probabilistic Discounting Do Not Depend 

On Systemic Or mPFC CB1R Inverse Agonism. 

Previous studies in our laboratory have shown that acute toluene exposure 

impairs flexible risk/reward decision making during probabilistic discounting 

Figure 4.4. Effects of mPFC CB1R manipulation on  probabilistic 

discounting. CB1R inverse agonist AM251 (5 ng, 50 ng) or vehicle was 

bilaterally microinjected into the mPFC of well-trained rats prior to task 

performance.  (A) Proportion of risky choice within each probability block across 

treatments.  (B, C) Choice strategies employed across all trials. Win-stay (B) 

indicates choice of risky lever after risky win while lose-shift (C) indicates choice 

of safe lever after risky loss.  (D) Time to choice selection within each probability 

block. (E) Omissions across all trials indicate no lever press within the 10 s trial 

period. (F-I) In a separate cohort of animals, CB1R agonist WIN55, 212-2 (50 

ng, 500 ng) or vehicle was bilaterally microinjected into the mPFC of well-trained 

rats prior to task performance. Data shown are mean + sem; all n = 15; Dunnett’s 

post hoc, *p < 0.05.  
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(Braunscheidel et al., 2019). Given that toluene impairs cellular activity via CB1R 

signaling (Beckley and Woodward, 2011; Beckley et al., 2016) and systemic CB1R 

treatment mitigates choice perseveration in rats (Hill et al., 2006), we first 

examined whether toluene-induced impairments in probabilistic discounting are 

mediated by enhanced endocannabinoid signaling. To test this, we treated rats 

systemically or intra-mPFC perfusion of a CB1R inverse agonist followed by 

toluene vapor.  Replicating our previous findings, toluene vapor increased risk 

preference during a probabilistic discounting task when reward probabilities 

progress from high to low over a session (Braunscheidel et al., 2019). Counter to 

our hypothesis however, this effect was not mitigated by co-treatment with a 

systemic injection or mPFC infusion of a CB1R inverse agonist.  

An analysis of trial-by-trial choice strategies suggests that reducing CB1R 

activity either systemically or within the mPFC mitigated the expected toluene-

induced increases in win-stay behavior, a marker of sensitivity to recent positive 

reinforcement.  This effect was independent of toluene treatment however, as a 

reduction in win-stay was observed in animals in the absence of toluene.  There 

were also no interactions between toluene and CB1R treatment on lose-shift 

behavior, a marker of sensitivity to recent negative reinforcement. Likewise, no 

interaction between toluene and CB1R treatment were detected in choice latency 

or number of omissions, markers of decision impulsivity, processing speeds and/or 

task engagement.   

Results from these experiments suggest that toluene-induced impairments 

in probabilistic discounting do not depend on enhanced endocannabinoid signaling 
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in the mPFC.  One alternative possibility is that toluene directly inhibits NMDA 

receptors (Cruz et al., 2000; Beckley and Woodward, 2011), which may in turn 

perturb mPFC functions that facilitate flexible decision making (St. Onge and 

Floresco, 2010; Braunscheidel et al., 2019).  Alternatively, the mPFC modulates 

probabilistic discounting via functional descending projections to the basolateral 

amygdala, as disruption of this circuitry induces similar effects on probabilistic 

discounting as bilateral mPFC inactivation (St Onge et al., 2012; Jenni et al., 2017). 

Thus, it is possible that that toluene acts on CB1R expressing mPFC terminals in 

the BLA. This is a particularly interesting idea as we have shown that toluene 

causes endocannabinoid-dependent inhibition BLA neurons receiving input from 

the mPFC (see Chapter 5: Toluene-Induced Alterations In Basolateral Amygdala 

Physiology). Future studies are required to identify a mechanism for the toluene-

induced disruption of behavioral flexibility during risk/reward decision making. 

 

Effect Of Systemic CB1R Inverse Agonism On Probabilistic Discounting 

Systemic AM281 administration did not affect risky choice during 

probabilistic discounting. This finding is consistent with a set of reports showing 

that systemic administration of the CB1R inverse agonist rimonabant does not 

change risky decision making in the rodent gambling task (Ferland et al., 2018) or 

probabilistic discounting under threat of shock (Freels et al., 2020). However, the 

AM281 treatments were not completely without effect, as an analysis of trial-by-

trial choice strategies suggests that AM281 reduced the effect of recent positive 

enforcement on upcoming choice selection, without affecting the influence of non-
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rewarded choices on action selection.  The lack of effect of reducing CB1R on 

flexible choice is perhaps surprising, given that treatment with AM281 reduces 

perseverative errors during strategy set shifting (Hill et al., 2006) which may be 

thought of as a failure in lose-shift decision making. However, the optimal choice 

following a loss trial varies drastically between the two tasks.  For example, 

returning to a choice on the risky lever that is not rewarded during the 50% 

probability block in this task is still the theoretically optimal selection, whereas 

perseverating during a simple strategy shift is always sub-optimal. Moreover, the 

effects of AM281 on set-shifting in the Hill et al. study were tested after a single 

shift, whereas in the present study, rats were well-trained to adjust choice biases 

as reward probabilities changed. These critical differences in task design are 

important when interpreting the effect of systemic CB1R inverse agonism on 

choice behavior.  Nevertheless, it is possible that CB1R activity may play a more 

prominent role in modulating flexible action selection when outcomes are 

deterministic, rather than probabilistic.   

Systemic injection of a CB1R inverse agonist increased choice latency and 

omissions, which may reflect a reduction in task engagement and/or reduced 

executive processing speeds. This idea is in keeping with the observation that that 

the CB1 receptor antagonist rimonabant decreases premature responding in the 

five-choice serial reaction time test (Pattij et al., 2007; Wiskerke et al., 2011) and 

reduced motivation to obtain food and drug rewards absent reward consumption 

(Solinas and Goldberg, 2005).  Alternatively, these results might reflect a 

generalized reduction in food motivation caused by reduced CB1R activity 
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(Freedland et al., 2000; Thornton-Jones et al., 2005; McReynolds et al., 2016). 

However, this would not explain why increases in choice latency in this study 

emerged exclusively in the middle of the task, during times of high difficulty (50% 

- 12.5% probability blocks) while being absent in the beginning and end of the task, 

when choices are clear (100% and 6.25% probability blocks). Furthermore, 

reducing food motivation with pre-feeding does alter choice during probabilistic 

discounting (St. Onge and Floresco 2009), whereas AM281 did not affect this 

measure. Moreover, treatment with this drug did not alter choice latency and 

omissions on a rodent gambling task (Ferland, 2018, Gueye et al., 2016). Notably, 

in that assay, probabilities associated with four different rewards remain static over 

the session, whereas in the probabilistic discounting task used here, probabilities 

of obtaining the larger reward are volatile. The extra cognitive effort of monitoring 

a changing probabilistic environment might be better suited to elicit latency effects 

caused by CB1R inverse agonism. Further, reductions in intake caused by CB1R 

inverse agonism did not extend to water consumption (Verty et al., 2004; Gardner 

and Mallet, 2006), which may be more comparable to the liquid reinforcer used in 

these studies.  Another alternative hypothesis is that this manipulation causes a 

generalized motor deficit. Although this was not measured in the current set of 

experiments, it would be surprising given that CB1R inverse agonism typically 

does not impact locomotion (Freedland et al., 2000; Verty et al., 2004; Gardner 

and Mallet, 2006; McReynolds et al., 2016).  

Freels et al (2020) did not observe changes in choice latency following 

systemic treatment with a CB1R inverse agonist in a risky decision making task, 
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where choice of a larger reward was associated by increasing probabilities of foot 

shock. Divergence of findings between probabilistic discounting with and without 

physical punishment are not uncommon, as the tasks employ overlapping, but not 

identical neurocircuitry (Orsini et al., 2015; Winstanley and Floresco, 2016). 

Further, differences exist in the specificity and mechanism of action of rimonabant, 

the CB1R inverse agonist used by Freels et al, and AM281, the compound used 

in these studies (Pertwee, 2006).  However, and in line with our results, systemic 

enhancement of CB1R activity decreased choice latency during discounting 

(Freels et al., 2020). Taken together, these results suggest an important role of 

CB1Rs in regulating decision making speed and/or task engagement during 

probabilistic discounting.   

Future studies are required to identify the locus of the CB1R-mediated 

choice latency and omission deficits observed here. Of particular interest might be 

mediating inactivation of the nucleus accumbens, given the unique expression 

profile of CB1Rs in this region (Pickel et al., 2004) and that pharmacological 

inactivation of the nucleus accumbens (or a mPFC-accumbens disconnection) 

also increases choice latency without affecting overall risk preference (Stopper and 

Floresco, 2011; St Onge et al., 2012).   

 

Modulation Of mPFC CB1R Signaling during Probabilistic Discounting 

The alterations in probabilistic discounting caused by systemic 

administration of CB1R inverse agonist warrant further exploration. CB1Rs are 

abundantly expressed in the PFC (Marsicano and Lutz, 1999; Eggan et al., 2010) 
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and mPFC CB1R inverse agonism impairs certain fear-related memories in 

rodents (Laviolette and Grace, 2006; Lin et al., 2009; Kuhnert et al., 2013). 

Moreover, the mPFC plays a critical role in facilitating flexible adjustments in 

choice biases (St. Onge and Floresco, 2010). Yet, very little is known about how 

diminishing mPFC CB1R signaling may affect appetitive decision making. Here we 

found that mPFC CB1R inverse agonism is sufficient to mediate the observed 

reduction in positive reinforcement on biasing future choice seen in the systemic 

CB1R applications, although this effect was not sufficient to cause significant 

changes in risky choice.  Nevertheless, the finding that these treatments blunted 

the impact that rewarded risky choices have on subsequent choice suggests that 

targeting CB1R may be a potential strategy for mitigating the effects of maladaptive 

pleasure seeking (e.g. gambling addiction treatment, substance use relapse 

prevention, OCD treatment) .  

Unlike silencing mPFC CB1R signaling, stimulating mPFC CB1R signaling 

did not affect any of the task parameters measured during probabilistic 

discounting. These results are a bit surprising given that acute administration of 

CB1R partial agonist delta9-tetrahydrocannabinol impairs behavioral flexibility 

(Lane and Cherek, 2002; Anderson et al., 2010) increases gambling risk 

preference, and decreases lose-shift behavior in humans.(Lane et al., 2005)  

Furthermore, enhancing mPFC CB1R signaling via increased receptor expression 

impairs behavioral flexibility in a reversal learning task (Klugmann et al., 2011) and 

direct agonism impairs memory recall and extinction learning in rodents (Kuhnert 

et al., 2013) However, in line with our results, a recent preclinical study showed 
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that systemic treatment with a CB1R agonist did not alter risk preference during a 

rodent gambling task, although it may promote more appropriate responding in risk 

preferring individuals (Gueye et al., 2016; Ferland et al., 2018).  Ferland and 

colleagues argue that their task perhaps did not engage the circuitry impaired by 

delta9-tetrahydrocannabinol administration due to the static probabilities used in 

their task. While the studies herein certainly would engage such circuitry, it 

appears that enhanced mPFC CB1R activity is not sufficient to drive abnormal risk 

preference. Future studies should consider the potential effects of systemic CB1R 

agonism on probabilistic discounting to address this hypothesis.  

 

CONCLUSION 

 The studies herein investigated an endocannabinoid-mediated mechanism 

for the behavioral flexibility deficits caused by acute administration of the abused 

inhalant toluene.  We found that systemic or local mPFC CB1R inhibition did not 

mitigate the impairments caused by toluene. Follow up experiments suggest that 

mPFC CB1R signaling is necessary for normal integration of recent positive 

reinforcement on future decisions, and that non-mPFC CB1R signaling is important 

for maintaining decision making speeds and task engagement during risky 

decision making. To our knowledge these studies are the first to investigate the 

role of mPFC CB1R inverse agonism in the context of risk/reward decision making  

and could help inform future studies on disorders marked by maladaptive pleasure 

seeking.   
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CHAPTER 5: TOLUENE-INDUCED ALTERATIONS 
IN BASOLATERAL AMYGDALA PHYSIOLOGY 

 
INTRODUCTION 

The amygdala plays a crucial role in regulating emotions and the response 

to fear and anxiety (Andrewes and Jenkins, 2019) as well as aspects of alcohol 

use disorder. For example, the amygdala mediates alcohol seeking behaviors (De 

Guglielmo et al., 2016), alcohol cue reactivity in addicts (Claus et al., 2011),  and 

anxiety-like behaviors during withdrawal from chronic alcohol use (Menzaghi et al., 

1994; Diaz et al., 2011). The focus of this chapter is on the basolateral amygdala 

(BLA), a region involved in reinstatement of alcohol seeking behavior and whose 

physiology is uniquely affected by chronic alcohol exposure (Läck et al., 2007; 

Marinelli et al., 2010; Keistler et al., 2017; Chesworth and Corbit, 2018). 

Alcohol is an organic solvent that acts as a central nervous system 

depressant via actions on glutamatergic receptors and GABAA receptors, among 

others (Möykkynen and Korpi, 2012; Olsen and Liang, 2017). An interaction 

between alcohol and the organic solvent, toluene, has been shown in rodents  

(Pryor et al., 1985) as well as human addicts (Marín-Navarrete et al., 2016) 

suggesting common underlying neurobiology. In fact, toluene and alcohol have a 

similar chemical profile, overlapping pharmacology, as well as abuse potential; for 

review, see (Beckley and Woodward, 2013). Despite this, only one study exists on 

the effect of volatile organic solvents on the amygdala where Perit and colleagues 

(2012) noted increased c-Fos immunoreactivity, a proxy for cellular activity, in the 

rat amygdala following a brief exposure to abused concentrations of toluene vapor. 
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Here we extend these findings by using whole-cell patch-clamp electrophysiology 

to investigate the actions of toluene on BLA neuronal activity.  

As the BLA contains a biochemically and physiological diverse population 

of neurons, it is perhaps not surprising that specific BLA subcircuits mediate 

discrete behaviors (Wassum et al., 2016). For instance, the medial prefrontal 

cortex (mPFC)-BLA pathway is important for executive control during appetitive 

risk/reward decision making, fear extinction (Park and Chung, 2020), as well as 

escalation of alcohol intake in rodents (Gioia et al., 2016, 2017). While previous 

reports have investigated circuit specific effects of toluene on the neurophysiology 

of mPFC projecting VTA dopamine neurons (Beckley et al., 2013; Wayman and 

Woodward, 2017, 2018), the studies herein are the first to report on the BLA 

neurons that receive input from the mPFC. 

Previous studies from this laboratory show that some of toluene’s inhibitory 

effects on glutamatergic transmission are mediated by a CB1 receptor-dependent 

mechanism (Beckley and Woodward, 2011; Beckley et al., 2016). CB1 receptors 

are expressed pre-synaptically in the BLA, and activation of CB1R, Gi-coupled 

signaling can reduce neurotransmitter release (Melis et al., 2004; Hu and Mackie, 

2015). Interestingly, alcohol inhibits glutamatergic function in the BLA via a 

presynaptic CB1 receptor-mediated mechanism (Läck et al., 2007; Robinson et al., 

2016). The following studies test the hypothesis that toluene affects mPFC-BLA 

neurocircuitry via a CB1 receptor dependent mechanism. 
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MATERIALS AND METHODS 

Animals  

 Sprague-Dawley rats (P77-P86 on arrival, Envigo RMS) were housed in 

pairs in polypropylene cages on a reverse light cycle (lights off at 09:00) in a 

climate-controlled room with food and water delivered ad libitum.  For current 

clamp experiments, animals remained in their homecage until testing at age P105 

- P125.  

 

Surgery 

 For voltage clamp experiments, animals underwent stereotaxic surgery one 

week after arrival for viral infusion of channelrhodopsin-2. Deep anesthesia was 

achieved via an isoflurane vaporizer (Penlon; 1 L/min, 5% induction, 2–3% 

maintenance) and 300 nl of AAV2-hSyn-ChR2(H134R)-EYFP (AddGene) was 

injected into the prelimbic portion of the mPFC (AP: ± 2.95; ML: ± 0.6; DV: ± 2.85 

mm). Rodents were given 3-7 weeks of recovery to allow for channelrhodopsin-2 

expression in mPFC in terminals of the BLA before recording at age P115 - P145.  

 

Preparation of Brain Slices 

 As previously described (Wayman and Woodward, 2017), brain tissue was 

rapidly removed and placed in an ice-cold sucrose solution that contained (in mM): 

sucrose (200), KCl (1.9), NaH2PO4 (1.4), CaCl2 (0.5), MgCl2 (6), glucose (10), 

ascorbic acid (0.4), and NaHCO3 (25); osmolarity 305–315mOsm. This solution 

was bubbled with 95% O2/5% CO2 to maintain physiological pH. Sections 
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containing the BLA were cut coronally into 300 µm slices using a Leica VT1000 

vibrating microtome with a double walled chamber through which cooled solution 

(2–4°C) circulated (Isotemp 3006, Fisher Scientific). Slices were transferred to a 

warmed chamber (32–34°C) containing a carbogen-bubbled aCSF solution 

containing (in mM): NaCl (125), KCl (2.5), NaH2PO4 (1.4), CaCl2 (2), MgCl2 (1.3), 

glucose (10), ascorbic acid (0.4), and NaHCO3 (25); osmolarity 290–300 mOsm 

for 30 min, and then kept at room temperature in carbogen-bubbled aCSF for at 

least 45 min before recordings.  

 

Ex vivo electrophysiology 

Brain slices were transferred to the recording chamber and perfused with 

oxygenated aCSF at a flow rate of 1.5 ml/min. The temperature was maintained at 

and heated 34°C during the course of the recordings with in-line and bath heaters 

(Warner Instruments). A horizontal pipette puller (P-97 Sutter Instrument) was 

used to pull recording pipettes constructed from thin-walled borosilicate capillary 

glass tubing (I.D.  1.0 mm, O.D. 1.50 mm; Sutter Instruments). Pipettes were filled 

with an internal solution containing (in mM) the following: K-gluconate (120), 

HEPES (10), KCl (10), MgCl2 (2), Na2ATP (2), NaGTP (0.3), EGTA (1), a pH 7.3-

7.4, osmolarity of 285–295 mOsm, and had resistances ranging from 3 to 4 MΩ. 

Principal BLA neurons were visually identified using an Axioskop FS2 microscope 

according to landmarks illustrated in a rat brain atlas (Paxinos and Watson, 2005). 

Following the formation of a gigaohm seal, light suction was applied to break 

through the cell membrane and achieve whole-cell access. Neurons with an 
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access resistance greater than 20 megaohm were not used for analysis. Recorded 

events were acquired with an Axon MultiClamp 700A (Molecular Devices), filtered 

at 4 kHz and digitized at a sampling rate of 10 kHz with an Instrutech ITC-18 

analog-digital converter (HEKA Instruments) controlled by AxographX software 

(Axograph Scientific) running on a Macintosh G4 computer (Apple).  

 

Intrinsic Excitability 

In order to study intrinsic excitability of BLA neurons, the resting membrane 

potential of BLA neuron was recorded under current clamp and then adjusted to 

~-70 mV for electrophysiological assessments of intrinsic excitability. A current 

ramp (0 to 500 pA over 1 s) was performed on each cell to determine rheobase. 

Then, action potentials were elicited using a 1 s pulse of current (rheobase + 50 

pA) at 0.1 Hz for 15 minutes (2 min baseline, 8 min treatment, 5 min washout).  

Internal resistance was calculated by measuring the voltage deflection in response 

to a 50 ms, 30 pA hyperpolarizing pulse given prior to each current pulse. Traces 

in which internal resistance deviated more than 25% from baseline were excluded 

from analysis. Recordings were analyzed offline for the number of spikes and 

action potential characteristics in response to each current step using AxographX 

software (Axograph, Sydney, Aus). 

 

Glutamatergic Synaptic Transmission 

Using a separate cohort of animals expressing channelrhodopsin-2 in 

mPFC neurons, voltage clamp experiments were performed to measure the effects 



  125  

of bath applied toluene on light-evoked synaptic glutamate transmission in BLA 

neurons. For these experiments, K-gluconate and KCl internal solutions were 

replaced with CsCl (120 mM). To isolate monosynaptic light-activated AMPA-

mediated currents in BLA neurons, the extracellular recording solution also 

contained 250 nM tetrodotoxin (American Radiolabeled Chemicals, Inc.), 500 uM 

4-aminopyridine (Sigma), and 50 uM AP5 (Tocris). In some experiments, 0.75 µM 

AM 281 (Tocris) was also included in the bath solution to inhibit CB1 receptors. 

Following breakthrough, EPSCs were induced by photostimulation of 

channelrhodopsin-expressing mPFC terminals in the BLA via a 470 nm LED 

(LEDD1B, Thor Labs). Light output from the 40X microscope objective ranged from 

1.1 - 2.45 mW and generated EPSCs ranging from 100 - 400 pA.  Traces were 

obtained from a paired pulses of photostimulation (1-5 ms with 150 ms inter pulse 

interval) and collected at a regular interval of 0.05 Hz for 15 min (2 min baseline, 

8 min treatment, 5 min washout).  This protocol allowed us to detect toluene-

induced changes in EPSC amplitude as well as alterations in paired-pulse plasticity 

that would implicate changes in presynaptic vesicular release probability (Gioia et 

al., 2016).   

In all experiments, baseline values were collected until responses were 

stable (~1-5 minutes before recordings began). For toluene treatments, a known 

volume of HPLC grade toluene (Sigma-Aldrich, Saint Louis, MO) was added to 

pre-gassed aCSF for a final concentration of 3 or 0.3 mM toluene.  Solutions were 

then immediately perfused into recording bath using Teflon tubing to minimize 

solvent loss. To control for loss of oxygen in the pre-gassed toluene solution, sham 
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recordings were conducted where slices were exposed to pre-gassed aCSF 

without toluene. Previous studies in our laboratory monitored the loss of toluene 

from experimental recording solutions and found that the concentration of toluene 

15 min after dilution was 77.9±15% (mean±SEM) of baseline value obtained at 0 

min (Cruz et al, 1998). Following this initial rapid loss because of volatility, toluene 

concentrations in recording solutions were relatively constant. Concentrations of 

toluene reported in the results section are not corrected for this loss. Once toluene 

was applied to a slice, no subsequent cells were recorded from that slice.  

 All procedures were performed in compliance with Medical University of 

South Carolina IACUC protocols in strict accordance with the NIH Guide for the 

Care and Use of Laboratory Animals.  

 

Statistics 

 Data were analyzed with Prism 8 software (Graphpad Inc., San Diego, CA) 

using a mixed effects model with treatment and time as factors. Values during and 

following toluene exposure were compared to baseline with Dunnett’s post-hoc 

test. For secondary measures of intrinsic excitability, averaged responses in the 

last minute of treatment and washout were compared to baseline (one-way 

ANOVA, Dunnett’s post hoc) 

 

 

 

 



  127  

RESULTS 

Toluene Increases Intrinsic BLA Neuronal Activity  

 In order to test the effect of toluene on the intrinsic firing properties of BLA 

neurons, action potentials (APs) were evoked by direct current injection (rheobase 

+ 50 pA). Figure 5.1A shows representative spike trains and first action potentials 

during baseline, treatment, and washout of aCSF sham (black, top) or 3.0 mM 

toluene (red, bottom). Figure 5.1B illustrates that 3.0 mM toluene increased firing 

(% of baseline) by the end of eight minutes of bath application (mixed effects 

model, time x treatment interaction, F(89, 1419) = 2.26, p < 0.0001; main effect of 

toluene, F(1, 16) = 5.33, p = 0.044, Dunnett’s post hoc, several points within minutes 

9 to 11, q(1419) > 3.32, p < 0.047). This effect reversed soon after washout of the 

toluene solution (all points from minute 12 to 15,  q (1419) < 3.05, p > 0.092) and 

was not observed during toluene-free sham recordings (all points, q(1419) < 2.1, p > 

0.71).   

 Figure 5.1C details the average values of several measures of cell 

excitability including  number of action potentials (i) resting membrane potential 

(ii), latency to first action potential (iii), AP amplitude (iv), AP rise time (v), AP decay 

(vi), AP half width (vii), inter-spike interval (vii), and fast afterhyperpolarization 

potential (ix) during the final minute of baseline, treatment and washout.  Toluene 

(3 mM) increased the total number of action potentials (Fig. 5.1C.i, one-way 

ANOVA, F(2,20) = 7.39, p = 0.0036) during treatment (Dunnett’s test, treatment 

vs. baseline, q(20) = 3.83, p = 0.0020), an effect that normalized following washout 

(washout vs. baseline, q(20) = 2.22, p = 0.070). The increased excitability caused  
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Figure 5.1. Toluene increases intrinsic excitability of BLA principle 
neurons. A) Representative spike trains evoked by direct current injection in 
BLA principal neurons under baseline, treatment, and washout of sham aCSF 
(black, top) or 3 mM toluene (bottom, red). Traces shown below are the first 
action potential (AP) of each recording aligned at membrane potential inflection 
point (dotted line) to highlight changes in after-hyperpolarization potential 
(arrows).  B) Time course of number of evoked APs during testing (mean + sem, 
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by toluene was reflected in several secondary measures including decreased 

latency to fire (vs. baseline, Fig. 5.1C.iii, q(20) = 4.18, p = 0.0009), decreased AP 

amplitude (vs. baseline, Fig. 5.1C.iv, vs. baseline, q(20) = 2.39, p = 0.049), 

decreased inter-event interval (vs. baseline, Fig. 5.1C.viii, vs baseline, q(20) = 4.45, 

p = 0.005), and a smaller fast after-hyperpolarization potential (vs. baseline, Fig 

5.1C.ix, q(20) = 6.58, p < 0.0001, see Fig. 1A, arrows for representative traces).  

However, in the presence of toluene, AP rise time increased (vs. baseline, Fig. 

5.1C.v, vs baseline, q(20) = 3.27) and AP decay time increased (vs. baseline, Fig.  

5.1C.vi, q(20) = 4.79, p = 0.0002), which could be expected to decrease overall 

excitability. Sham aCSF treatment did not affect spike number, resting membrane 

potential, fire latency, AP rise time, AP decay, AP half width, inter event interval, 

or fast afterhyperpolarization potential.  However, a small, yet statistically 

significant decrease in AP amplitude was detected during washout (vs. baseline, 

Fig. 5.1C.iv, q(12) = 3.38, p = 0.0040) and increase in AP decay during aCSF 

treatment (vs. baseline, Fig. 5.1C.vi, q(12) = 2.652, p = 0.0382).  

 

Toluene dose-dependently inhibits excitatory mPFC-BLA signaling in a 

CB1R-dependent manner 

expressed as percent of baseline, dotted line). Values significantly different from 
baseline are marked with unfilled data points (mixed effects model, Dunnett’s 
post hoc, p <0.05, see *). C) Summary of the effects of 3 mM toluene and sham 
on number of spikes (i), resting membrane potential (ii), latency to first action 
potential (iii), AP amplitude (iv), AP rise time (v), AP decay (vi), AP half width 
(vii), inter event interval (vii), and fast afterhyperpolarization potential (ix). Data 
are expressed as mean + sem; toluene n = 11 cells / 4 animals, aCSF sham n = 
7 cells / 3 animals; one-way ANOVA with Dunnett’s post hoc, *p < 0.05, **p < 
0.01, ***p < 0.001, ****p < 0.0001. 
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 Toluene inhalation (Braunscheidel et al., 2019) deficits in probabilistic 

discounting caused by interrupting mPFC-BLA signaling (St. Onge et al., 2012; 

Jenni et al., 2017). Recently, it has been shown that this circuit mediates 

withdrawal-related neurophysiology to the common organic solvent, alcohol (Gioia 

and McCool, 2017; Gioia et al., 2017). In the present set of experiments, AMPA-

mediated EPSCs in the BLA were evoked by a pair of light pulses (blue lines) on 

channelrhodopsin-2 expressing mPFC terminals (Fig. 5.2A). This protocol allowed 

us to detect overall changes in EPSC amplitude as well as paired-pulse plasticity 

changes caused by toluene.  Figure 5.2B shows that treatment with 0.3 mM 

toluene, 3.0 mM toluene, or 3.0 mM toluene with 0.75 µm AM281 did not alter the 

paired pulse ratio (EPSC2/EPSC1) over the course of 15 min of testing (mixed 

effects model: time x treatment F(135, 1613) = 0.92, p = 0.74; main effect of treatment 

F(3,36) = 1.11, p = 0.34).  However, as shown in Figure 5.2C, treatment with 3.0 mM 

toluene decreased the peak amplitude of EPSC 1 (mixed effects model: time x 

treatment F(135, 1609) = 1.347, p = 0.0064; main effect of treatment, F(3, 36) = 5.646, 

p = 0.0028). This effect required several minutes to occur and did not recover 

following wash out of the toluene solution (Dunnett’s post hoc, 3.0 mM toluene 

timepoints vs baseline beginning minute ten, q(1609) > 3.11, p < 0.049). Neither a 

lower concentration of toluene nor sham aCSF treatment had any effect on EPSC 

amplitude (0.3 mM toluene vs baseline, all q(1609) < 2.73 , p > 0.13; sham aCSF vs. 

baseline, all q(1609) < 2.58, p > 0.19).  
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Figure 5.2. Toluene dose-dependently reduces excitatory mPFC-BLA 
signaling in a CB1R-dependent manner. A) AMPA-mediated EPSCs in BLA 
principal neurons were evoked by a pair of light pulses (blue lines) applied to 
channelrhodopsin-2 expressing mPFC terminals. Representative recordings 
during baseline, treatment and washout of aCSF sham, 0.3 mM toluene, 3.0 mM 
toluene, and  3.0 mM toluene + 0.75 µM AM 281. Dotted lines mark EPSC 1 
amplitude at baseline. B) Time course of paired pulse ratio (EPSC 2 / EPSC 1) and 
(C) EPSC 1 peak amplitude during testing. Data are expressed as a percent (mean 
+ sem) of pre-treatment baseline (dotted line); aCSF sham n = 11 cells / 6 animals, 
0.3 mM toluene n = 10 cells / 6 animals, 3.0 mM toluene n = 11 / 4 animals, and 
3.0 mM toluene + 0.75 µM AM 281 n = 8 cells / 6 animals. Values significantly 
different from baseline are marked with unfilled data points (mixed effects model, 
Dunnett’s post hoc, p <0.05).  
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However, the inhibition of AMPA EPSCs by 3.0 mM toluene was mitigated by co-

application of the CB1R antagonist, AM281 (3.0 mM toluene + 0.75 uM AM281 vs. 

baseline, all q(1609) < 2.82, p > 0.10). These findings demonstrate that the toluene-

induced reduction in BLA EPSCs evoked from mPFC terminals is both dose- and 

CB1R-dependent.  

 

DISCUSSION 

Intrinsic BLA Excitability  

The major finding from this study is that toluene induces opposing effects 

on excitatory synaptic transmission and intrinsic excitability of principal 

glutamatergic pyramidal neurons in basolateral amygdala (BLA). The observation 

that toluene increased the current-evoked firing of BLA neurons is consistent with 

data in the literature showing that toluene increases c-Fos expression, a proxy for 

increased neuronal activity, in the BLA  (Perit et al., 2012).  Several components 

of the action potential were affected by toluene treatment consistent with increased 

excitability including decreased latency to fire, decreased inter-spike interval, and 

a reduced fast after-hyperpolarization potential (AHP).  Toluene-mediated 

increases in neuronal excitability have been reported for some but not all brain 

regions examined. For instance, toluene increased tonic firing of dopamine 

neurons within, but not outside of the ventral tegmental area (Riegel and French, 

1999c; Riegel et al., 2007). In contrast, nucleus accumbens neurons (Beckley et 

al., 2016) or deep layer prelimbic mPFC  neurons (Beckley and Woodward, 2011) 

were not affected by acute application of toluene. However, following a single in 
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vivo exposure to toluene vapor, Wayman et al. (2017) reported that mPFC neurons 

that project to the nucleus accumbens show sub-region, projection and layer-

specific changes in excitability. Core-projecting mPFC neurons in layer 5/6 

prelimbic mPFC were hypo-excitable following the toluene exposure while those 

in layer 2/3 were not affected. In contrast, toluene exposure enhanced firing of 

core-projecting neurons in both deep and shallow layers of the infralimbic mPFC. 

Shell projecting neurons in the infralimbic mPFC were hypoexcitable following 

toluene treatment with no effect seen in shell projecting neurons from layer 2/3 

infralimbic mPFC or those from the prelimbic mPFC.  Given this surprising degree 

of selectively, future studies should identify whether there are projection specific 

changes in BLA neuron excitability following in vitro or in vivo exposure to toluene. 

The underlying cause of the increased excitability caused by toluene is not 

yet known. An interesting possibility is that toluene, via its direct inhibition of large 

conductance calcium-activated potassium (BK) channels (Del Re et al., 2006) 

reduced the neuron’s relative refractory period. This explanation is consistent with 

observed decrease in the BK-dependent fast afterhyperpolarization potential 

(AHP) (Sah and Faber, 2002) and decreased inter-spike interval caused by 

toluene. Beckley and colleagues also found that toluene dampens the fast 

component of the AHP in medium spiny neurons in the nucleus accumbens 

(Beckley et al., 2016), but had no effect on the AHP in mPFC neurons (Beckley 

and Woodward, 2011).  Together with the findings of the present study, these 

results show that toluene’s effects on BK-mediated components of neuronal 
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excitability are region specific possibly due to differential expression of other BK 

channel subtypes that may contribute to toluene sensitivity.  

A reduction in AHP and inter-spike interval is a likely explanation for driving 

the observed toluene-induced increases in excitability. However, toluene-mediated 

reductions in AHP have been identified in the absence of changes in excitability 

(Beckley et al., 2016). Further, this mechanism does not appear to be responsible 

for the toluene-induced hyperexcitability of nucleus accumbens core-projecting 

prelimbic neurons  (Wayman and Woodward, 2018), although these studies 

measured excitability 24 h following toluene inhalation. Homeostatic upregulation 

of BK channels following the in vivo toluene treatment used by Wayman & 

Woodward could explain the differences between those results and the 

observations in the current study. More experimentation is required to better clarify 

the mechanism driving toluene-induced neuronal hyperexcitability in the BLA.  

Not all of the observed effects of toluene would be expected to increase 

excitability. For instance, toluene increased action potential rise time and decay. 

These effects could be due to toluene’s direct inhibition of voltage gated sodium 

channels (Gauthereau et al., 2005), that might also help explain the decreases in 

action potential amplitude.  Future experimentation is required to address these 

hypotheses for toluene-induced changes in action potential characteristics 

recorded from BLA neurons.  

 

Synaptic mPFC-BLA Signaling  
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Despite its effects on intrinsic activity, toluene is generally regarded as a 

central nervous system depressant (Bowen et al., 2006) via actions on voltage-

gated sodium channels (Gauthereau et al., 2005)  NMDA (Cruz et al., 1998, 2000), 

nicotinic acetylcholine receptors (Bale et al., 2002), GABAA, and glycine receptors 

(Beckstead et al., 2000, 2001). In line with this notion, we found that 3 mM toluene 

inhibits AMPA-mediated excitatory post-synaptic currents (EPSCs) in the BLA. 

Given in vitro volatility losses of 20-25% and that 3% of inhaled toluene reaches 

the brain (Benignus et al., 1981), this dose equates roughly to 7400 ppm, a 

concentration similar to that encountered by humans during voluntary solvent 

inhalation (Brouette and Anton, 2001; Bukowski, 2001). Similar dose-dependent 

effects of toluene on synaptic neurotransmission have been reported in other 

addiction-related neurocircuitry (Beckley and Woodward, 2011; Beckley et al., 

2013, 2016). Dysregulation of amygdala function is symptomatic of addiction to the 

most common organic solvent, alcohol (Menzaghi et al., 1994; Marinelli et al., 

2010; Diaz et al., 2011; Keistler et al., 2017; Chesworth and Corbit, 2018) and 

could likely play a crucial role in mediating toluene abuse.  

Toluene’s inhibitory effect on AMPA signaling progressed slowly over the 

course of treatment and persisted during washout. This finding agrees with the 

lack of a direct effect of toluene on recombinant AMPA receptors (Cruz et al., 1998) 

and suggests a secondary mechanism of action. One possibility is that toluene 

stimulates endocannabinoid signaling that then inhibits the release of glutamate 

by binding and activating CB1 receptors on presynaptic glutamate terminals (Melis 

et al., 2004; Perez-Rosello et al., 2013).  In support of this hypothesis, we found 
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that bath application of the CB1 receptor inverse agonist AM281 blocked the 

toluene-induced reduction in BLA AMPA EPSCs. This finding is in agreement with 

results from previous studies from our laboratory showing that toluene-induced 

decreases in AMPA EPSCs in the nucleus accumbens (Beckley et al., 2016) and 

mPFC (Beckley and Woodward, 2011) were CB1 receptor-dependent. Beckley 

and colleagues further defined this mechanism by showing that toluene inhibition 

of AMPA EPSCs was dependent on  release of calcium from intracellular stores, 

that are necessary for synthesis of the endogenous endocannabinoids.  

The present study is the first to show that toluene impairs synaptic signaling 

in the mPFC-BLA neural circuit, a pathway implicated in the susceptibility to 

alcohol-seeking behaviors in mice  (Gioia et al., 2016, 2017; Gioia and McCool, 

2017). The impaired mPFC-BLA signaling observed in the current studies is also 

interesting in the context of recent work from our lab investigating risk/reward 

decision making following toluene intoxication (Braunscheidel et al., 2019). 

Importantly, in that study, behavioral testing occurred thirty minutes following 

toluene exposure when toluene should have been mostly eliminated from the brain 

(Gerasimov et al., 2002). The toluene-induced deficits in behavioral flexibility also 

mimicked those following pharmacological inactivation of the mPFC-BLA pathway 

(St Onge et al., 2012; Jenni et al., 2017).   The persistent nature of the CB1 

receptor-mediated suppression of mPFC-BLA excitatory signaling observed in the 

present study may be a critical factor that underlies the reduction in behavioral 

flexibility in toluene intoxicated animals.  Future studies could examine this idea by 
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testing whether restoring mPFC-BLA activity using opto-or chemo-genetic 

approaches can reverse toluene’s effects on behavioral flexibility.  

The presynaptic mechanism of action proposed here for toluene should 

impair vesicular release probability as detected by changes in the paired pulse 

ratio. The paired pulse ratio of BLA AMPA EPSCs was not, however, affected by 

toluene exposure. While these results could speak to different mechanisms of 

action between alcohol (Läck et al., 2007) and toluene, it is also possible that the 

inter-pulse interval used in this study (150 ms) was too large to detect any 

significant changes in release probability.  Läck and colleagues showed that the 

effects of alcohol on BLA synaptic transmission were most noticeable using inter-

pulse intervals of 25 or 50 ms as only modest effects were observed at the 250 ms 

inter-pulse intervals.  It should also be noted that those experiments were 

conducted following several days of alcohol treatment and not a single in vitro 

exposure as used in the present study. Additional experiments are thus required 

to explore a presynaptic mechanism for the toluene-mediated reduction in AMPA 

EPSCs. 

CONCLUSION 

To our knowledge, these studies are the first to investigate the effect of 

inhalants on BLA neurophysiology. Using whole-cell patch clamp 

electrophysiology, we found that a concentration of toluene that is associated with 

voluntary solvent abuse transiently increased the excitability of BLA pyramidal 

neurons. The increase in firing was accompanied by a significant reduction in the 
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fast AHP potential and decreased inter-spike interval, factors that depend on a 

toluene-sensitive BK channel. Optical stimulation of mPFC terminals in the BLA 

revealed that toluene induced a slow-onset, sustained, and CB1R-dependent 

decrease in AMPA-mediated excitatory signaling. This mechanism may contribute 

to deficits in executive function that are observed following toluene intoxication in 

vivo (Braunscheidel et al., 2019). 
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CHAPTER 6: SUMMARY, CONCLUSIONS, AND 

FUTURE DIRECTIONS 

 
Adolescent Inhalant Use: Persistent Cognitive And Morphological Effects 

We found that repeated exposure to addictive concentrations of toluene 

vapor in adolescent rats had lasting effects on specific executive functions during 

adulthood. Namely, toluene-treated animals took longer to acquire operant- and 

classical-conditioning to an appetitive reward (Braunscheidel et al., 2017). This 

effect only pertained to the initial acquisition of these simple behaviors and largely 

did not extend to more cognitively demanding tasks (reversal learning, within-

session strategy-shifting, probabilistic discounting). Additionally, these deficits 

could not be explained by impaired motivation or latent-inhibition. Two persistent 

effects of toluene on cognition were observed. Toluene-treated animals 

extinguished responding to a previously unrewarded cue and changed strategies 

(when tested between-session) more rapidly than air-treated controls. Decreased 

perseveration on unrewarded pursuits during complex tasks is a common thread 

for both of these results and should be considered a potentially persistent 

phenotype following toluene use during adolescence. Taken together, these 

results suggest that full cognitive and behavioral recovery in human inhalant 

abusers is promising, given enough skill training and drug abstinence.  

Dendritic spine alterations were not evident in the medial prefrontal cortex 

following seven weeks of drug abstinence following toluene vapor exposure 

(Braunscheidel et al., 2017).  This result is perhaps not surprising given the modest 

effect of toluene use during adolescence on the mPFC-dependent behavioral tasks 
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in adulthood. However, we did observe an increase in immature dendritic spines 

in the nucleus accumbens of toluene-treated rats. Future studies should explore 

the cellular and molecular changes driving this immature-like accumbens spine 

morphology. Special focus should be given to a D2-mediated mechanism given 

toluene’s specificity for D2 medium spiny neurons in the accumbens (Beckley et 

al., 2016), the high percentage of post-synaptic densities of striatal neurons that 

contain D2 receptors (Hersch et al., 1995), and the finding that D2 receptors 

interact with several important post-synaptic scaffolding proteins including actin 

binding protein filamin A, protein 4.1N and spinophilin (Smith et al., 1999; Li et al., 

2000; Binda et al., 2002). Modulation of D2 signaling pathways by toluene could 

potentially destabilize the cytoarchitecture, leading to the increase in synaptically-

immature long-thin spines observed in the present study.  

 

Adult Inhalant Use: Acute Effects On Behavioral Flexibility And Underlying 

Neurophysiology 

The studies herein describe the effects of risk/reward decision making 

immediately following toluene intoxication. We found that toluene treatment does 

not affect risk/reward decision making, per se, but rather impairs behavioral 

flexibility and utilization of recent negative reinforcement on upcoming choice 

(Braunscheidel et al., 2019). This effect was dose-dependent, sex-independent, 

and strongly indicative of mPFC dysfunction. Using fiber photometry to monitor 

mPFC activity during discounting, we found that toluene treatment specifically 

disrupted activity during the contingency updating portions of the task. Toluene 
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also reduced the mPFC’s ability to distinguish between small and large rewards. 

We then explored two mechanisms for this effect: impaired mPFC-BLA signaling 

and increased endocannabinoid signaling.  

The toluene-induced deficits in behavioral flexibility mimicked those 

following pharmacological inactivation of the mPFC-BLA pathway (St Onge et al., 

2012; Jenni et al., 2017). In this dissertation, we stimulated mPFC terminals in the 

BLA and discovered a CB1R-dependent decrease in AMPA-mediated EPSCs 

during exposure to toluene. This effect developed over several minutes of bath-

applied toluene and persisted following aCSF washout. If present in vivo, this time 

course would help explain the underlying behavioral flexibility deficits detailed 

above since brain toluene concentrations at the start of behavioral testing (30 

minutes following toluene exposure) are likely negligible (Gerasimov et al., 2002).  

Future studies could examine this idea by testing whether restoring mPFC-BLA 

activity using opto- or chemo-genetic approaches can reverse toluene’s effects on 

behavioral flexibility.  

Some of the inhibitory effects of toluene on neuronal transmission are 

mediated by activation of CB1R signaling (Beckley and Woodward, 2011; Beckley 

et al., 2016).  Here we found that systemic administration of a CB1R inverse 

agonist did not mitigate deficits caused by toluene inhalation, but did independently 

reduce win-stay behavior, increase choice latency, and increase omissions. We 

next provided evidence that mPFC CB1R inverse agonism did not protect against 

toluene-induced behavioral inflexibility. This treatment did, however, cause a dose-

dependent reduction in win-stay behavior. These studies indicate that toluene-
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induced deficits cannot be prevented by systemic or mPFC modulation of CB1Rs, 

but they do not rule out a potential involvement of CB1Rs in mediating toluene’s 

behavioral effects. For instance, and in light of the CB1R-dependent decrease in 

BLA neurons innervated by the mPFC discovered in this dissertation, future 

studies should test if microinjecting CB1R inverse agonists into the BLA mitigates 

toluene-induced behavioral flexibility. To gain circuit specificity,  follow-up studies 

could use CRISPR-Cas9 gene editing technology to knock out mPFC CB1R 

expression and test for toluene sensitivity during probabilistic discounting. A 

second approach could be to selectively delete CB1Rs from glutamatergic 

terminals in floxed CB1R mice, although this would likely require several control 

experiments since it uses a different rodent model.  

While enhancing CB1R signaling disrupts  higher cognitive functions in 

humans including risky decision making (Lane and Cherek, 2002; Lane et al., 

2005; Anderson et al., 2010), these effects have not been reproduced in two 

separate preclinical models (Ferland et al., 2018; Freels et al., 2020).   Our data 

suggest that mPFC CB1Rs are important for mediating normal behavioral 

responses to recent positive reinforcement and that systemic CB1R function is 

necessary for normal decision speeds and task engagement during complex 

decision making.  However, CB1R manipulation did not alter overall risk preference 

in the probabilistic discounting task.  Thus, preclinical modeling of the human 

condition with regards to risky decision making and the endocannabinoid system 

remains elusive.  
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Future Directions: Toluene Self-Administration 

The gold-standard for modelling addiction in the preclinical setting is 

operant-based self-administration; for review, see (Sanchis-Segura and Spanagel, 

2006). In this paradigm, rodents or non-human primates self-administer a drug 

(orally or  intravenously via a chronically implanted catheter) for multiple hours per 

day over the course of several weeks. This is followed by various drug-cue 

extinction, reinstatement or relapse trials. The development of a rodent model of 

inhalant self-administration has lagged behind other drugs of abuse presumably 

due to the difficulty in controlling inhalant concentrations and overcoming initial 

aversive effects associated with solvent odor. In the first of two published attempts 

to model toluene abuse, Weiss and colleagues (1979) trained four squirrel 

monkeys outfitted with a custom inhalation helmet to lever-press for a toluene 

vapor. This approach required a significant investment of time and economic 

resources and has not been repeated. The second study involved a single, 30 min 

intravenous administration of aqueous toluene in mice (Blokhina et al., 2004). This 

approach is problematic for studying addiction for several reasons: 1) it does not 

mimic the inhaled route of administration in humans, 2) as a solvent, toluene can 

induce significant vein damage (Kulkarni et al., 2015), and 3) it prevents the study 

of critical aspects of addiction that require multiple administration sessions. These 

include measures such as acquisition, drug use escalation, withdrawal, extinction, 

drug-seeking, drug-craving, and relapse among others. 

The majority of preclinical studies on toluene used passive exposure 

paradigms due to the technical difficulties involved in inhalant self-administration 
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(namely, precise control of the delivery and elimination of a vaporized substance). 

However, there are several critical advantages to using an inhalation-based model 

for toluene self-administration: 1) self-administration of toluene vapor has strong 

face-validity, as inhalation is the preferred route of administration in humans 2) 

drug intake is voluntary and thus, likely involves critical reward pathways that may 

be unaffected by noncontingent drug administration (Fernàndez-Castillo et al., 

2012; Lominac et al., 2012). 3) longitudinal studies with repeated testing can be 

conducted over the course of the rodent’s lifetime 4) there are no concerns about 

catheter patency, that is especially important since toluene can cause vein damage 

(Kulkarni et al., 2015) and 5) there is no need for solubilizing agents (e.g. corn oil), 

commonly used when administering toluene  intraperitoneally (Riegel et al., 2004; 

Lo et al., 2009; Lin et al., 2010; Chan et al., 2012; Wu et al., 2018).   

As an ongoing effort during this dissertation I have helped develop a novel 

rodent model of self-administration of toluene vapor. Figure 6.1A details the 

behavioral timeline of this procedure, which includes weeks of habituation to the 

testing chamber and toluene vapor odor. Operant self-administration sessions in 

the following weeks are conducted on an FR1 schedule, where a single nose poke 

into the active port triggers an infusion of toluene vapor paired with conditioned 

cue for 15 seconds (Fig 6.1B). Promising preliminary data include increased 

sustained operant responding for toluene vapor, a stereotypical spike in 

responding on the first day of extinction, as well as cue-induced reinstatement (Fig. 

6.1C-E). 
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If this protocol provides reproducible data, the investigative potential is 

virtually endless.   One promising direction is to use this technique in combination 

with probabilistic discounting to test if individual differences in risk/reward decision 

making preclude inhalant abuse susceptibility. Given the effect of toluene on 

mPFC-BLA described in this dissertation, involvement  in C57BL/6J mice’s 

susceptibility to alcohol-taking behaviors (Gioia et al., 2016, 2017; Gioia and 

McCool, 2017) future studies should monitor this pathway in the context to toluene 

self-administration. Since the mPFC-BLA does not regulate extinction or 

reinstatement of alcohol seeking (Keistler et al., 2017), future studies should focus 

on mPFC-BLA activity during acquisition of toluene intake and test whether 

manipulation of this circuitry can prevent this initial drug seeking behavior. 

Another promising direction follows previous studies from our laboratory 

that demonstrating that toluene vapor reduces the intrinsic excitability of nucleus 

Figure 6.1 Toluene vapor self-administration.  (A) Timeline for acquisition, 

extinction, and reinstatement of operant responding for toluene vapor. (B) 

Illustration of the vapor SA apparatus. Active nose pokes triggered a 15 s 

exposure of air or toluene (Tol) vapor while inactive nose pokes had no 

consequence. Additional responses during the 15 s drug delivery had no 

additional consequence. For Air SA and extinction sessions, the toluene 

vaporizers were replaced with a second air regulator. (C.i) Number of daily 

infusions with the final week (dotted box) averaged (C.ii); student’s t-test **p < 

0.05. (D) Number of active and inactive nose pokes rats during the last week of 

SA (averaged) and extinction training. Tol SA vs Toluene EXT ANP ^^p < 0.01; 

EXT day 1 Tol ANP vs Tol INP ***p<0.001. (E) Cue-induced reinstatement of 

responding in rats fully extinguished from toluene SA behavior. Tol ANP 

comparing REIN to EXT and ^^p<0.01 to SA; ++p<0.01 Tol ANP vs INP paired 

comparison during REIN. Data shown are daily mean + SEM during 

reinstatement (REIN), last week average of self-administration (SA) or extinction 

(EXT); active nose poke (ANP), inactive nose poke (INP); air n = 6, toluene n = 

14 (6 during EXT). 



  147  

accumbens shell (NAcs) projecting infralimbic (IL) neurons in a layer-dependent 

fashion (Wayman and Woodward, 2017) and that chemogenetic activation of the 

IL-NAcs pathway impairs the expression of toluene-induced conditioned place 

preference (Wayman and Woodward, 2018). These neurons may also be involved 

in the reduction in cue-induced reinstatement of alcohol seeking behaviors 

(Keistler et al., 2017). Assessing whether toluene self-administration produces 

similar effects on the excitability of NAc projecting mPFC neurons and if 

manipulating this circuit disrupts cue-induced reinstatement to toluene are exciting 

and important future lines of questioning. 

 

CONCLUDING REMARKS 

Impaired executive control over behaviors is a hallmark of substance use 

disorders. Toluene, a commonly-abused yet understudied inhalant, has specific 

pharmacological actions on major neurotransmitter systems and uniquely alters 

addiction neurocircuitry. The studies herein add to this growing literature by 

describing the acute and persistent effects of toluene on complex cognitive 

behaviors and their underlying neurobiology.  
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SUPPLEMENTAL TABLES & FIGURES 

 

Supplemental Table 2.1. Average number of days to criteria for each training 
phase (Standard error in parentheses). 

 

No significant differences between group A and B for either CTA or Air rats. 
Student’s T test with Sidak’s post hoc for multiple comparisons. All t < 1.73, p > 
0.176; Group A: air n=8, CTA n=8; Group B air n=9, CTA n=9  
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Supplemental Figure 2.1.  The effect of binge-like exposure to toluene during 

adolescence on weight gain. The body weight of toluene exposed rats was 

significantly less than that of air exposed controls following the fifth day of 

treatment (P43). This difference persisted until the first day of lever press 

training (P60, solid arrow). Weights were not significantly different during 

behavioral flexibility (youngest tested animal was P70, dotted arrow). Data 

shown are mean +SEM; *p<0.05 student’s t test corrected for multiple 

comparisons with Holm – Sidak method; air n=17, CTA n=18. 
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Supplemental Figure 2.2.  Response latency and reminder trial performance 
in within-session testing of behavioral flexibility. There were no differences in 
accuracy between toluene-exposed and air-treated rats during the reminder 
trails preceding either within-session behavioral flexibility task. There were no 
differences in response latency between groups during reminder trials or test 
trials in either test of behavioral flexibility. Data shown are mean ± SEM; air 
n=9, CTA n=9. 
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Supplemental Figure 2.3. Error Subtypes during Within-Session Testing. There 

were no differences in the number of errors classified by subtype between 

groups during set-shifting or reversal learning (all p’s > 0.05) Data shown are 

mean ± SEM; air n=9, CTA n=9. 
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Supplementary Figure 2.4. Error Subtypes during Between-Session Set-Shift 
Task. Data shown are mean ± SEM; air n=8, CTA n=8. 
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Supplemental Figure 2.5. Task Performance On Day 1 Of Classical Conditioning. 

CTA blunts acquisition of classically conditioned approach behavior without altering 

latent inhibition within the first day of acquisitioning. CTA and Air treated animals 

were either cue-naïve (NPE) or pre-exposed (PE) to cue during the training phase. 

Conditioning was measured as the elevation ratio defined as X/(X+Y) where X is the 

number of food well entries during the first 30 s of cue and Y is the number of entries 

30 s prior to cue onset.  CTA treated rats had lower elevation ratios during the first 

day of testing compared to air treated controls, but there were no drug x cue 

interactions. Data shown are mean + SEM; random well entry (dotted line); main 

effect of drug *p<0.05; all n=8. 
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