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ABSTRACT 

HAROLD LEWIS HAUN. Role of Dynorphin/Kappa Opioid Receptor Activity Within 
the Extended Amygdala in Binge Alcohol Drinking (Under the direction of 
HOWARD C. BECKER). 

Alcohol Use Disorder (AUD) is a significant national and global public health 

problem. Of concern, binge drinking is the most common pattern of excessive 

alcohol consumption and serves as a risk factor for the development of AUD. 

Recent studies have implicated the dynorphin/kappa opioid receptor (DYN/KOR) 

neuropeptide system in this pattern of drinking but the precise circuitry mediating 

these effects are poorly understood. The central amygdala (CeA) and bed nucleus 

of the stria terminalis (BNST) are two interconnected structures within the 

extended amygdala macrostructure that are rich in DYN/KOR and thought to 

contribute to binge drinking behavior. In the present studies, we demonstrate that 

KOR in the BNST contribute to excessive drinking by showing that site-specific 

delivery of a KOR antagonist decreased, while an agonist increased, binge-like 

alcohol consumption. Furthermore, we show that high levels of drinking induced 

by systemic administration of a KOR agonist were reversed by selective KOR 

blockade within the BNST. These findings suggest that KOR in the BNST promote 

binge drinking behavior, however, the endogenous dynorphinergic circuitry 

underlying this effect remains unknown. The CeA is a likely candidate in that it is 

involved in excessive drinking and sends dense dynorphinergic projections to the 

BNST (CeA-BNSTDYN). In support of this hypothesis, we demonstrate that 

neuronal activity is increased within the CeA during a binge drinking session and 

that chemogenetic inhibition of the CeA-BNSTDYN pathway selectively decreased 
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binge-like alcohol consumption. Collectively, these studies suggest that the CeA-

BNSTDYN circuit contributes to binge-like alcohol consumption and KORs in the 

BNST likely mediate this effect. These studies provide valuable insight into 

neuronal circuitry underlying a key aspect of AUD and point to the DYN/KOR 

system as a potential therapeutic target for the treatment of excessive drinking.   
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CHAPTER 1: Background and Significance 
  
INTRODUCTION 

Alcohol Use Disorder  

The earliest reported consumption of alcohol by humans dates to 7000 BC 

and alcohol use continues to be a stable fixture in most societies across the globe 

(McGovern et al., 2004; WHO, 2018). In fact, Roughly 55% of the global adult 

population has consumed alcohol and 20% of adults have engaged in heavy 

episodic drinking placing alcohol as the most widely used drug of abuse next to 

tobacco (GBD, 2018; Peacock et al., 2018; SAMHSA, 2018). In the United States, 

however, the vast majority (86%) of the population has reported drinking alcohol 

within their lifetime and 26% of adults have reported heavy drinking (SAMHSA, 

2018). Alcohol drinking to excess presents a multitude of adverse societal and 

health effects creating a significant socioeconomic burden (WHO, 2018). Further, 

excessive drinking is associated with 88,000 deaths per year in the U.S. and 3.3 

million deaths worldwide, propelling alcohol abuse into the spotlight as a serious 

epidemiological concern (Rehm and Imtiaz, 2016; Rehm et al., 2003; WHO, 2018). 

While alcohol abuse is a broad term, the Diagnostic and Statistical Manual of 

Mental Disorders, 5th Edition (DSM-V) systematically defines a diagnosis of 

Alcohol Use Disorder (AUD) based on 11 criteria that encompasses both alcohol 

dependence and abuse (Dawson et al., 2005; Grant et al., 2015; Hasin, 2012). 

AUD is characterized as behavior consisting of compulsive, uncontrolled bouts of 

heavy episodic drinking accompanied by a negative emotional state and craving 

during periods of abstinence, which contributes to chronic relapse (Grant et al., 
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2015; Hasin, 2012). A diagnosis of AUD is not uncommon given a 30% life-time 

prevalence in the U.S. (Grant et al., 2015). Given the adverse health effects of 

alcohol abuse and high occurrence of AUD, it is not surprising that alcohol drinking 

is a significant contributor to the global burden of disease. In fact, alcohol-related 

disease is the third leading cause of preventable death behind tobacco use and 

poor diet and exercise, and alcohol-related mortality has doubled in the last 20 

years (Mokdad et al., 2004; SAMHSA, 2018; White et al., 2020). Alcohol abuse 

taxes the US economy a staggering $250 billion annually generated largely by a 

loss of workplace productivity, healthcare expenses associated with treating 

alcohol-related injury and disease, and criminal justice expenses (Sacks et al., 

2015; SAMHSA, 2016; WHO, 2018). Therefore, better understanding of the 

mechanisms that contribute to and promote heavy alcohol consumption is of the 

utmost importance to develop treatment strategies aimed at attenuating harmful 

alcohol drinking. 

The exact cause of uncontrolled drinking and relapse in patients diagnosed 

with an AUD arises from the diverse and complex interaction between genetic, 

epigenetic, and environmental factors that influence the neurobiological basis of 

behavior (Koob and Volkow, 2010, 2016). Presently, viable treatment strategies 

for patients suffering from an AUD include behavioral interventions and 

pharmacotherapies, which are modestly effective given the 60% relapse rates in 

treatment-seeking individuals within the first year (Dawson et al., 2005; Grant et 

al., 2015; SAMHSA, 2016). Brief interventions, cognitive behavioral therapy, and 

motivational-enhancement therapy are the most common forms of psychosocial 
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treatments for AUD (Miller and Wilbourne, 2002). These include behavioral and 

cognitive interventions aimed at addressing the maladaptive behavioral patterns 

that promote compulsive alcohol consumption and contribute to relapse (Coates 

et al., 2018; McHugh et al., 2010; Miller and Wilbourne, 2002). Because chronic 

alcohol consumption promotes maladaptive changes within the brain that drive 

uncontrolled drinking and amplify negative affect during withdrawal, it is not 

surprising that treatment outcomes are greatly improved when psychosocial 

interventions are combined with pharmacotherapy (Anton et al., 2006; Koob, 2013; 

Koob and Volkow, 2010). Presently, pharmacological treatment is limited to three 

clinically approved drugs by the U.S. Food and Drug Administration (Heilig and 

Egli, 2006; Swift and Aston, 2015). These include naltrexone, disulfiram, and 

acamprosate yet the efficacy of these drugs alone is modest and clinical utilization 

low (Akbar et al., 2018; Heilig and Egli, 2006). This is, in part, due to each 

compound having specific clinical utility based on distinct neurochemical and 

peripheral systems involved in alcohol’s effects. For example, naltrexone is an 

opioid antagonist that attenuates the reinforcing properties of alcohol thereby 

reducing the drive to drink (Anton et al., 2004). On the other hand, disulfiram 

decreases alcohol consumption by amplifying the negative reinforcing properties 

of alcohol by blocking the metabolism of acetaldehyde, a metabolite of alcohol, 

that is toxic and causes nausea, tachycardia, and flushing (Banys, 1988; Brewer, 

1984; Lester et al., 1952). Acamprosate, albeit a biologically inactive molecule, has 

anti-relapse properties through the actions of calcium salt acting as a calcium 

therapy (Heilig, 2014; Spanagel et al., 2014). While medication-assisted therapy is 
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an effective treatment strategy, less than 15% of individuals meeting the criteria 

for AUD actually receive formal treatment due to the high cost of healthcare 

services and fear of social exclusion (SAMHSA, 2018). Social exclusion and 

stigma are due, in part, to a lack of lay knowledge concerning the neuroadaptations 

that occur in patients with AUD and dependence that justify a diagnosable medical 

disorder (Glass et al., 2014; Schomerus et al., 2011; Weine et al., 2016). Thus, a 

major component of the NIAAA is to disseminate scientific findings to the public in 

regards to the neuroadaptive changes that accompany chronic alcohol 

consumption. More specifically, recent attention has focused on binge drinking as 

a particularly risky behavior that is associated with the development of AUD 

(Llerena et al., 2015; McCarty et al., 2004) 

 

BINGE DRINKING 

Habitual heavy drinking is a behavioral pattern acquired over time and is 

accompanied by neuroadaptations that further promote uncontrolled drinking 

behavior despite negative consequences. A behavioral pattern consisting of 

repeated bouts of heavy episodic drinking is a hallmark of AUD and defined as 5 

or more instances of binge drinking within a month. The NIAAA further defines 

binge drinking as 5 or more units of alcohol consumed within a 2-hour period for 

men, or 4 units within a 2-hour period for women (Alcoholism, 2004; SAMHSA, 

2018). Binge drinking is a common occurrence within the U.S. population in that 1 

in 6 persons displays this pattern of drinking within a 30-day period and, among 

individuals with a history of excessive drinking, roughly 90% report patterns of 
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binge drinking (Kanny et al., 2013). Furthermore, this pattern of excessive drinking 

has the greatest potential for harm because of the cognitive impairments and organ 

damage caused by high levels of alcohol circulating the body (Centers for Disease 

and Prevention, 2012; Jennison, 2004). Rapid consumption of alcohol in this 

fashion results in a blood alcohol concentration (BAC) in excess of the 0.08 g/dL 

(80 mg/dL) legal limit of intoxication (Alcoholism, 2004; Courtney and Polich, 2009; 

Kanny et al., 2013). Total alcohol metabolism under basal conditions is roughly 

0.015 g per hour per 100 mL, or the equivalent of 1 standard drink per hour 

(Cederbaum, 2012; Holford, 1987). Alcohol is metabolized at a steady state and 

the rapid consumption occurring during a binge quickly overwhelms metabolic 

processes leading to exponential increases in BACs (Holford, 1987). Generally, 2-

3 unit doses of alcohol consumed in an hour result in a BAC below 0.08 g/dL and 

is accompanied by a feeling relaxation and well-being (Hughes et. al., 2001). 

Consumption of 4-5 standard drinks, however, elevates BACs into a binge range 

between 0.08-0.09 g/dL. This level of intoxication is accompanied by reduced 

judgement, impairments in memory and reasoning, and impairments in motor 

coordination and reflex time. As alcohol consumption continues, BACs ranging 

from 0.10-0.25 g/dL result in gross impairments in motor coordination, slurring of 

speech, blurred vision, dysphoria, and nausea. Symptoms of alcohol poisoning 

begin to present when BACs in excess of 0.25 mg/dL are reached, which include 

confusion, severe nausea, vomiting, seizures, hypothermia, irregular breathing, 

and loss of consciousness. In cases of severe acute intoxication, coma and 

respiratory arrest can lead to death when BACs supersede 0.40 g/dL. The rapid 
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elevation of BAC achieved during a binge is potentially harmful because alcohol is 

a central nervous system (CNS) depressant and the subjective effects of alcohol 

are not felt until roughly 10-30 minutes after ingestion (Holford, 1987; Tagawa et 

al., 2000). Thus, a high volume of alcohol consumed during a 10-30 minute period 

can lead to an elevation in BAC to a damaging and potentially lethal level before 

an individual experiences negative feedback and slows subsequent drinking.  

 

Risk for Injury 

The high BAC achieved during a binge is associated with cognitive 

impairments that negatively affect decision making and increase the users risk for 

self-harm and harm to others (Jennison, 2004). For example, BACs superseding 

0.08 g/dL are associated with deficits in motor coordination, reduced ability to 

visually track moving objects, and impaired decision-making that collectively 

increase the risk of harm to the individual and others (Balodis et al., 2009; Courtney 

and Polich, 2009; Kanny et al., 2013). Acute intoxication results in deficits in motor 

coordination that are highly correlated with accidental injury and 42% of 

hospitalizations involve intoxication or alcohol-related disease (Gerke et al., 1997; 

Tagawa et al., 2000). In fact, binge drinking increases the risk for accidental injury 

and the level of alcohol intoxication is associated with emergency room visit 

severity in a dose-dependent manner (Borges et al., 1998; Cherpitel et al., 2004; 

Gmel et al., 2007). Injury most often presents as a fracture, abrasion, or 

concussion resulting from falls (Charalambous, 2002). Binge drinking is thought to 

result in injury in moderate drinkers because the high level of intoxication achieved 
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during an isolated binge is a foreign experience (Gruenewald and Nephew, 1994; 

Treno et al., 1997). However, habitual heavy episodic drinking is associated with 

repeated injury resulting in chronic hospitalization or emergency room visits 

(D'Onofrio and Degutis, 2002; Ponzer et al., 1999). Repeated episodes of binge 

drinking and injury are also associated with a diagnosis of AUD (Gmel et al., 2007; 

Mancino et al., 1996). Thus, it is likely that the high BAC achieved during a binge 

is predictive of a generalized increased risk for accidental injury.  

Accidental injuries are common in individuals with BACs above 0.08 g/dL 

due to the cumulative effect of deficits in psychomotor coordination and impaired 

decision making (Grant et al., 2000). Acute alcohol intoxication decreases an 

individuals perceived probability of negative outcomes and consequences of their 

actions (Fromme et al., 1997). Furthermore, alcohol is often referred to as a social 

lubricant because it decreases inhibition and increases self-confidence that can 

lead to an overestimation of one’s own abilities  (Tiplady et al., 2004). Alcohol also 

increases impulsive behaviors in a dose-related manner and increased impulsivity 

is associated with increased propensity for risk taking  (Kovacs et al., 2017; Lyvers 

et al., 2015; Upton et al., 2011). It is therefore not surprising that individuals are 

more likely to engage in dangerous behaviors that they would otherwise not take 

part in whilst sober. For example, individuals are more likely to engage in risky 

sexual behavior while intoxicated that increases the risk for spread of sexually 

transmitted disease, unwanted pregnancy, and/or sexual abuse (Hines and 

Straus, 2007; Naimi et al., 2003). Because intoxication during a binge drinking 

episode results in reduced cognitive control over emotional reactivity, incidences 
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of domestic violence and violent crime are also higher among binge drinkers 

(Brewer and Swahn, 2005; Llerena et al., 2015). Finally, because acute alcohol 

intoxication negatively affects the ability to track moving objects, impairs cognitive 

processes, and delays motor responsiveness, it is of no surprise that high BAC 

achieved during a binge negatively affects an individual’s ability to operate a motor 

vehicle (Brumback et al., 2007; Christoforou et al., 2013). Cognitive impairments 

associated with intoxication significantly contribute to mortality rates in intoxicated 

drivers (Marczinski and Fillmore, 2009; Wundersitz and Raftery, 2017). In fact, 

28% of all traffic related deaths involve alcohol-impaired drivers and, of self-reports 

within the US, there are roughly 115 million instances of alcohol-impaired driving 

annually (Mancino et al., 1996; National Highway Traffic Safety, 2010; Wundersitz 

and Raftery, 2017). The collective ensemble of cognitive processes affected by 

binge drinking contributes to but one of multiple facets of the negative effects of 

alcohol. 

 

Alcohol Toxicity 

The rapid consumption of alcohol during a binge exerts an extreme stress 

on metabolic pathways that work to process the large bolus of alcohol entering the 

system (Cederbaum, 1980; Llerena et al., 2015). The liver is of particular 

importance because it is the principal site of first pass metabolism and the most 

susceptible to life threatening complications due to excessive drinking (Badawy, 

1978; Zakhari, 2006). Prolonged stress on this metabolic pathway leads to high 

levels of alcohol circulating in the bloodstream as well as metabolites that are toxic 
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to organs and tissue (Holford, 1987). After oral consumption, alcohol enters the 

body and is readily absorbed in the intestines and passes through the portal vein 

to the liver (Badawy, 1978). Primary hepatic alcohol metabolism involves alcohol 

dehydrogenase (ADH) that converts alcohol to acetaldehyde through oxidative 

metabolism (Edenberg, 2007). Acetaldehyde is highly toxic and buildup produces 

nausea, headache, and vomiting. Acetaldehyde is metabolized through oxidation 

by mitochondrial aldehyde dehydrogenase 2 (ALDH2) into acetate in an 

irreversible reaction (Cederbaum, 2012; Holford, 1987). Acetate is then further 

metabolized in the liver or excreted to the periphery and metabolized. This occurs 

as mitochondrial acetyl-CoA synthetase (acetyl-CoA synthetase 2 in cytosol) 

reduces acetate to acetyl-CoA, an essential molecule in the tricarboxylic acid 

(TCA) cycle. This primary process of alcohol metabolism accounts for roughly 90% 

of alcohol metabolism, but when high concentrations of alcohol enter the system, 

the remaining 10% of alcohol is metabolized through microsomal oxidation 

(Cederbaum, 2012; Zakhari, 2006). This also occurs in the liver and involves 

CYP2E1, a cytochrome P450 enzyme that converts alcohol to acetaldehyde 

(Zakhari, 2006). An important byproduct of this reaction is the generation of 

reactive oxygen species (ROS) that can cause damage to DNA and mitochondria 

at high levels (Zakhari, 2006). The majority of acetaldehyde is converted by ALDH 

into acetate, but it can also be converted by CYP2E1 into acetate generating ROS 

in the process (Yun et al., 2014).  The rapid consumption of alcohol during a binge 

exerts a taxing force on the liver because of the zero-order kinetics of alcohol 

metabolism. The prolonged stress on these metabolic pathways leads to high 
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levels of alcohol circulating in the bloodstream as well as acetaldehyde, acetate, 

NADH, acetyl-CoA, and ROS (Zakhari, 2006).  Heavy drinkers have higher levels 

of acetaldehyde within the liver that promotes oxidative stress and lipid 

peroxidation (Barry, 1988; Setshedi et al., 2010).  Increased NADH and acetyl-

CoA production causes dysregulation of metabolic pathways including glycolysis, 

TCA cycle, and gluconeogenesis (Badawy, 1978; Cederbaum, 1980; Zakhari, 

2006). Dysregulation of these pathways directly contributes to alcoholic liver 

disease. For example, fatty acid oxidation is suppressed in the liver during alcohol 

metabolism and, as a result of prolonged heavy episodic drinking, contributes to 

fatty liver disease (Lieber, 1975; Rasineni and Casey, 2012). Acetaldehyde and 

ROS generated during chronic heavy drinking directly damage the liver as well 

(Barry, 1988; Setshedi et al., 2010). Alcohol-induced damage to the liver most 

commonly presents as fatty liver disease and cirrhosis of the liver, and together 

are the leading causes of death in heavy drinkers (Lieber, 1975; Llerena et al., 

2015; SAMHSA, 2018).  

Apart from direct effects on tissues involved in metabolism, the large bolus 

of alcohol entering the body during a binge can cause damage to multiple tissues 

and organs, especially with chronic use. For example alcohol causes a 

proinflammatory response in the tongue and gums, and chronic inflammation is a 

common risk factor for oral cancer (Ogden, 2005). After oral intake, alcohol travels 

down the esophagus damaging the esophageal mucosa that precipitates and 

exacerbates the symptoms of gastroesophageal reflux disease (Pan et al., 2019). 

Once reaching the gastrointestinal (GI) tract, alcohol suppresses prostaglandin 
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function further promoting inflammation and erosion of the lining within the large 

intestine (Punchard et al., 1994). Furthermore, alcohol decreases digestive 

enzyme levels within the small intestine resulting in poor nutrient extraction from 

food, which creates a metabolic imbalance and disrupts general health (Bode and 

Bode, 1997).  Damage to the gut, however, is not limited to direct tissue damage. 

The gut microbiome balance shifts toward dysbiosis with heavy alcohol 

consumption that is associated with a number of different pathologies including 

obesity, diabetes, irritable bowel syndrome, and celiac disease (Purohit et al., 

2008). Finally, excessive alcohol consumption has long been associated with 

pancreatitis and chronic binge drinking is a risk factor for pancreatic cancer (Gupta 

et al., 2010; Juliusson et al., 2018). In fact, heavy episodic drinking is associated 

with 70% of cases of chronic pancreatitis (Dufour and Adamson, 2003). Therefore, 

alcohol drinking disrupts various systems within the body that negatively affect 

general health and binge drinking significantly contributes to mortality associated 

with alcohol-induced disease.  

 

Risk Factor for AUD 

Social drinking is common worldwide and individuals at risk for developing 

AUD are more likely to binge drink in social situations than those at low risk (Gowin 

et al., 2017; Peacock et al., 2018). This is of importance because binge drinking is 

the most common pattern of excessive alcohol consumption regardless of age and 

sex (Kanny et al., 2013). In fact, roughly 50% of individuals that consumed alcohol 

in the past year did so in a binge fashion and instances of binge drinking continue 
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to rise within the US, as do corresponding emergency room visits, alcohol-related 

mortality, and diagnoses of AUD (Castle et al., 2016; Hingson et al., 2017; White 

et al., 2020). Even more, the intensity and duration of binge drinking serves as a 

strong predictor for the development of AUD (Gowin et al., 2017). Furthermore, the 

subjective response to alcohol is predictive of AUD in that binge drinkers report 

increased stimulation and craving for alcohol after a single beverage whereas non 

drinkers report a sedative effect (Holdstock et al., 2000). The predictive nature of 

the response to alcohol and patterns of binge drinking has been documented in 

humans, non-human primates, and rodents suggesting an evolutionarily 

conserved mechanism of addiction pathology (Baker et al., 2017; Hingson et al., 

2017; Zhou et al., 2017). Engagement in binge drinking may predispose an 

individual to AUD because BACs in excess of 0.08 g/dL are associated with a host 

of genetic and neuroadaptive changes that promote excessive drinking (Ferguson 

et al., 2019; Mulligan et al., 2011). Thus, study of the neurobiological mechanisms 

underlying binge drinking is critical to understanding the trajectory of AUD. 

 

NEUROBIOLOGICAL BASIS OF AUD AND BINGE DRINKING 

Alcohol is consumed, in part, because of the feelings of relaxation and 

euphoria experienced during intoxication that contributes to a positive affective 

state and gives the drug reinforcing properties. At the most basic level, alcohol 

influences mood and behavior through a pharmacological interaction with 

neurotransmitter systems that modulate inhibition and excitation within the brain. 

Alcohol is a nonspecific drug that is considered to be a CNS depressant because 
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it potentiates neural inhibition and attenuates excitatory processes. For example, 

the GABAA receptor is a ligand-gated ion channel that is activated by gamma-

aminobutyric acid (GABA), the major inhibitory neurotransmitter system in the CNS 

(Allan et al., 1987). Activation of GABAA receptors results in inward chloride ion 

flux that has a net effect of hyperpolarization of the cell (Mihic and Harris, 1997). 

Alcohol and other sedatives such as benzodiazepines and barbiturates are 

considered negative allosteric modulators because they have a synergistic effect 

with endogenous GABA interactions at the receptor that facilitate, and potentiate, 

GABAA-mediated neuronal inhibition (Mihic et al., 1997). Alcohol suppresses 

excitatory activity in the CNS through its action as an antagonist at the N-methyl 

D-aspartate (NMDA) receptor (Lovinger et al., 1989). NMDA receptors are ligand-

gated ion channels that modulate inward flux of sodium and calcium and outward 

flux of potassium, thereby resulting in depolarization of a neuron (Loftis and 

Janowsky, 2003; Yamakura and Shimoji, 1999). Activation of NMDA receptors 

occurs after binding of both glutamate, the major excitatory neurotransmitter, and 

glycine. In fact, alcohol inhibits synaptic functions of both ionotropic NMDA and 

AMPA glutamate receptors, which is somewhat unique in the adult brain (Gonzales 

and Jaworski, 1997; Lovinger et al., 1990; White et al., 1990). Thus, modulation of 

ionotropic glutamate and GABA receptors by alcohol functions to directly affect 

intracellular ionic balance and subsequent neuronal activity. However, alcohol also 

exerts its effects on the CNS through interactive effects of neuromodulatory 

monoamine systems. Briefly, alcohol increases dopamine, norepinephrine, and 

serotonin release that promotes the rewarding properties of the drug, enhances 
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arousal, and affects mood (Lovinger, 1997; Zahr and Pfefferbaum, 2017). Lastly, 

alcohol interacts with a number of different neuropeptide systems that similarly 

contribute to the reinforcing properties of alcohol and promote alcohol 

consumption, which will be discussed in detail later. Because the acute effects of 

alcohol enhance inhibition and blunt excitation through GABA and glutamate 

respectively, compensatory neuroadaptations occur after chronic alcohol abuse 

that result in rebound excitation during periods absence of drug that contribute to 

withdrawal syndrome. For example, internalization of GABAA and upregulation of 

NMDA receptors results in decreased inhibitory tone and hyperexcitability within 

brainstem structures that contributes to generalized seizure activity (Banerjee, 

2014; Rogawski, 2005).  

Human neuroimaging of patients with AUD and animal studies that 

approximate AUD have revealed that discrete neurocircuitry contributes to 

behaviors involved in the cycle of addiction, which are more precisely defined as 

1) binge consumption and intoxication, 2) withdrawal and negative affect, and 3) 

preoccupation and craving (Koob and Volkow, 2010). Different neuroanatomical 

substrates are involved in the behaviors observed in each stage of this cycle that 

collectively contribute to the manifestation of AUD. Preclinical models of excessive 

alcohol drinking and dependence have provided further insight into brain regions 

and neurochemical systems that are affected by chronic alcohol intake/exposure. 

For example, alcohol consumption to excess during a bout of binge drinking 

involves signaling within the mesolimbic dopamine system that reinforces the 

rewarding properties of alcohol and neuroadaptations within the dorsal striatum 
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promotes habitual binge drinking (Di Chiara, 1997; Nutt et al., 2015; Wang et al., 

2015). The negative affective state experienced during withdrawal involves activity 

within the extended amygdala and hypothalamus that promotes an internal stress 

response (Koob, 2009; Stephens and Wand, 2012). Finally, craving and 

preoccupation with alcohol consumption during periods of abstinence is 

associated with activity within the prefrontal cortex and hippocampus that 

contribute to relapse (Sinha and O'Malley, 1999). The dominant theory of the 

neurobiology of addiction proposes that a homeostatic balance is necessary within 

the brain for normal processing (Koob and Volkow, 2010). Alcohol disrupts this 

process by driving a positive affective state whilst intoxicated. But, with every 

action there is an equal and opposite reaction. Therefore, a negative affective state 

is experienced during withdrawal consistent with the opponent process theory. As 

a result of chronic binge drinking, the homeostatic balance skews towards a net 

negative state that presents during withdrawal as the emergence of persistent 

negative affect, drives craving, and promotes chronic relapse. Thus, engagement 

in repeated binge drinking is an effort to restore baseline homeostatic balance and 

regain an allosteric set-point. The discrete neurocircuitry underlying the stages of 

the addiction cycle as they relate to this shift in allostasis are described in greater 

detail below.  
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Binge Drinking and Reward 

As we have previously described, binge drinking is a destructive pattern of 

behavior that involves the rapid consumption of alcohol over a short amount of 

time. Binge drinking and intoxication is a key component of the conceptual 

framework underlying the neurobiological basis for AUD (Koob and Volkow, 2010). 

Alcohol, like all drugs of abuse, is consumed because it has positive reinforcing 

properties that promote excessive alcohol drinking. Operant conditioning 

paradigms are used to study reward-driven behavior in rodents and early 

experiments revealed that animals will lever press for intracranial self-stimulation 

(ICSS) of the medial forebrain bundle. Mice and rats will establish lever press 

behavior to receive ICSS, natural rewards, or drugs of abuse, which suggests a 

common neuronal mechanism involved in reward. In fact, responding for ICSS is 

decreased when subjects are pretreated with alcohol, demonstrating the innate 

rewarding properties of the drug (Negus and Miller, 2014). The medial forebrain 

bundle encompasses fibers of passage that originate in the ventral tegmental area 

(VTA) and terminate in the basal forebrain. The VTA is a midbrain structure 

involved in reward-related behaviors and is comprised of largely GABAergic 

neurons that express the neuromodulator, dopamine (DA). Systemic challenge or 

microinjection of alcohol directly into the VTA increases firing of DA neurons 

through an excitatory mechanism (Brodie et al., 1999; Gessa et al., 1985). 

Activation of neurons within the VTA results in release of DA in downstream 

structures in the ventral striatum involved in reward, such as the nucleus 

accumbens (NAc) (Kohl et al., 1998; Yim et al., 1998). Alcohol also facilitates 
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endogenous opioid release within the VTA resulting in activation of Mu-opioid 

receptor (MOR) locally on GABAergic terminals arising from the rostromedial 

tegmental nucleus (RMTg) (Font et al., 2013; Jhou et al., 2009; Matsui and 

Williams, 2011). Activation MOR on these terminals results in disinhibition of VTA 

projections to the NAc and increased phasic DA release that contributes to reward 

salience (Jhou et al., 2009). In fact, alcohol and all drugs of abuse increase 

extracellular DA release in the NAc and suggests a common mechanism involved 

in the reinforcing properties of these substances (Di Chiara, 1997; Di Chiara and 

Imperato, 1988).  

The mesolimbic DA system is not only responsive to the pharmacological 

effects of alcohol, but also drives alcohol drinking and seeking behavior. For 

example, alcohol consumption and anticipation of access to alcohol results in DA 

release within the NAc and blockade of DA receptors therein decreases voluntary 

intake (Hodge et al., 1997; Rassnick et al., 1992; Weiss et al., 1993). Furthermore, 

cues associated with alcohol are sufficient to induce activation of the VTA and NAc. 

Selective optogenetic activation of the VTA-NAc circuit promotes reinstatement of 

alcohol seeking, an effect that is dependent upon DA signaling in the NAc (Bass 

et al., 2013; Budygin et al., 2020; Juarez et al., 2017). Thus, projections from the 

VTA to the NAc play a prominent role in reward salience that promotes goal driven 

behavior, such as alcohol seeking and binge drinking. The NAc is further 

subdivided into the NAc core and NAc shell. Both the core and shell receive DA 

input from the VTA but each play a nuanced role in motivated behaviors. More 

specifically, the NAc core is involved in general reward processes such as alcohol 
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drinking and seeking behavior in response to discrete cues (Chaudhri et al., 2010). 

The NAc shell plays a more prominent role in the balance of stimulus-outcome and 

response-outcome processing (Corbit et al., 2001). Finally, D1- and D2-expressing 

neurons in the NAc core project to the ventral pallidum (VP) via the direct “go” and 

indirect “no-go” pathways, respectively, that are involved in various reward 

behaviors, such as drug seeking and contribute to the reinforcing properties of 

alcohol (Heinsbroek et al., 2020; Kupchik and Kalivas, 2013; Melendez et al., 

2004). D2-expressing neurons in the striatum are of interest because patients with 

AUD show decreased D2 availability compared to controls (Volkow et al., 2002). 

Furthermore, individuals with high levels of D2 expression are less likely to develop 

an AUD even if they are predisposed through familial alcoholism (Volkow et al., 

2006). Therefore, DA signaling within VTA-NAc-VP circuitry plays an important role 

in the rewarding properties of alcohol that promote drinking behavior. Interestingly, 

pharmacological inactivation of the VTA or NAc blocks the expression of 

conditioned place preference (CPP) for alcohol but lesion of DA terminals in the 

NAc does not affect voluntary alcohol consumption (Bechtholt and Cunningham, 

2005; Rassnick et al., 1993), suggesting that the mesolimbic DA systems works in 

concert with other regions and systems to provide the cumulative rewarding 

properties of alcohol that promote binge drinking.   

Habitual alcohol consumption is a key component to the addiction cycle and 

AUD. The dorsal striatum (DS) is of relevance because it plays a prominent role in 

assigning reward value to a behavior, and compulsive, habitual drug-seeking 

(Belin and Everitt, 2008; Malvaez and Wassum, 2018). Generally speaking the DS 
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is a part of the basal ganglia that is involved in the initiation and control of motor 

behaviors. The DS can be subdivided into the dorsal medial striatum (DMS) and 

the dorsal lateral striatum (DLS), which are analogues of the human caudate and 

putamen, respectively. The DMS is involved in goal-directed behavior and 

inactivation of the DMS disrupts lever-press responding for alcohol only when 

responding is sensitive to outcome value, indicative of action/outcome 

associations (Corbit et al., 2012; Fanelli et al., 2013). Devaluation studies revealed 

that selective inactivation of the DLS only decreased inflexible lever-press 

responding for alcohol, suggesting that the DLS is more so associated with habit-

like behavior (Corbit et al., 2012; Fanelli et al., 2013). This DMS/DLS dichotomy in 

responding for alcohol is in agreement with the general theory that behavioral 

acquisition and skill learning is mediated by associative corticostriatal activity 

involving the DMS. As behaviors are repeated and actions refined, behavioral 

responses become habitual, driven by a shift involving engagement of 

sensorimotor circuitry involving the DLS (Kupferschmidt et al., 2017). Indeed, the 

DS is a key component of the basal ganglia and DA signaling therein is involved 

in the initiation and continuation of motor behavior involved in alcohol seeking and 

consumption (Everitt and Robbins, 2013). Unlike the NAc, dopaminergic signaling 

in the DS arises from projections originating in the substantia nigra pars compacts 

(SNc), a midbrain DA-containing structure that innervates both the DMS and DLS.  

SNc inputs to the DS are classically associated with the direct and indirect 

pathways that drive thalamic inputs to the motor cortex through respective D1- and 

D2-expressing striatal neurons. Acute alcohol treatment increases extracellular DA 
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release within the striatum that has important consequences for behaviors that 

involve the DS (Gonzales et al., 2004; Sulzer, 2011). For example, D1 antagonist 

microinjection into the DMS decreases alcohol drinking and D2 antagonist in DLS 

decreases habitual responding for alcohol (Corbit et al., 2012; Wang et al., 2015). 

Interestingly, nonspecific D1/D2 antagonist into DLS decreases PR-breakpoint for 

alcohol suggesting a role for DA signaling in the DLS in the motivation to work for 

alcohol (Spoelder et al., 2017). Thus, the DMS is likely recruited after the 

engagement of mesolimbic reward circuity to promote and facilitate drug seeking 

behavior and, over time, the DLS is promotes more habitual patterns of drinking 

that contribute to compulsive alcohol consumption (Barker and Taylor, 2014). 

The amygdala is a structure located within the rostral pole of the temporal 

lobe that is classically associated with emotional behavior. Recent studies, 

however, suggest that subregions of the amygdala contribute to the reinforcing 

properties of alcohol that promote binge drinking. For example, lesion of the 

amygdala blocks the acquisition and expression of alcohol-induced CPP (Gremel 

and Cunningham, 2008). Further studies revealed that selective lesion of the 

central amygdala (CeA) attenuates voluntary alcohol consumption (Moller et al., 

1997). The CeA receives direct dopaminergic input from the VTA and SNc and, 

similar to the striatum, extracellular DA is increased within the CeA after acute 

alcohol challenge (Hasue and Shammah-Lagnado, 2002; Yoshimoto et al., 2000). 

Furthermore, blockade of D1 receptors in the CeA attenuates alcohol drinking and 

seeking behavior (Yoshimoto et al., 2000). Interestingly, activation of D2 

expressing neurons in the CeA promotes impulsive behavior that is involved in 
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chronic binge drinking (Kim et al., 2018). The CeA sends monosynaptic projections 

to the VTA and SNc and this circuitry is involved in appetitive learning (Lee et al., 

2010). Within the CeA, bath application of alcohol decreases glutamate release 

through inhibition of N-type calcium channels and in-vivo, nonselective blockade 

of NMDA/AMPA receptors in the CeA blocks the expression of CPP (Zhu et al., 

2007). Finally, the CeA is also the most sensitive site of GABAA antagonists’ effects 

on alcohol consumption and a history of chronic intermittent ethanol (CIE) 

exposure increases GABAergic tone and responsiveness to alcohol in the CeA 

(Gilpin et al., 2015; Hyytia and Koob, 1995; Roberto et al., 2012). Together, these 

studies suggest involvement of the CeA in the rewarding properties of alcohol and 

processes involved in the motivation to drink excessively. 

Therefore, alcohol is consumed because of the rewarding properties of the 

drug that arise from the collective activity of VTA-NAc-VP circuitry in addition to 

activity in the CeA. Neuroadaptations within the aforementioned brain regions as 

well as the DLS occur over time and contribute to the transition to habitual, 

compulsive, uncontrolled bouts of binge drinking that are a hallmark of AUD. 

 

Withdrawal and Negative Affect 

Chronic excessive drinking leads to neuroadaptations that promote 

withdrawal symptomology in the absence of alcohol. This is not to be confused 

with what is commonly referred to as a “hangover” that manifests as nausea, 

vomiting, and headache due to dehydration that is experienced after acute binge 

intoxication (Swift and Davidson, 1998). In fact, this acute negative experience has 
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strong aversive properties that are associated with stimuli related to alcohol and 

act as a positive punishment, which decreases the likelihood of further drinking. 

Alcohol consumption, however, can alleviate this symptomology and promote 

further drinking through negative reinforcement (Koob, 2013). Over time, repeated 

instances of binge drinking can result in neuroadaptations that contribute to 

withdrawal syndrome, which is characterized by physical symptomology, such as 

increased heart rate, sweating, tremor, seizure activity, and increased pain 

sensitivity combined with a negative emotional state that is experienced when 

access to alcohol is prevented (Becker and Hale, 1993; Jesse et al., 2017; Koob 

and Le Moal, 2008).  

Chronic binge drinking results in neuroadaptive changes that promote 

tolerance, dependence, and the manifestation of withdrawal syndrome that is 

associated with an imbalance of excitatory and inhibitory neurotransmitter 

systems. More specifically, alcohol is a GABAA PAM and NMDA antagonist, and 

chronic alcohol exposure results in a rebound effect of decreased inhibition due to 

GABAA hypofunction and NMDA-mediated hyperexcitability during withdrawal 

(Davies, 2003; Gonzales and Jaworski, 1997). Cessation of alcohol after chronic 

consumption results in CNS autonomic hyperexcitability that contributes to 

generalized tonic-clonic seizure activity (Becker and Hale, 1993; Rogawski, 2005). 

More specifically, withdrawal-related seizure activity occurs most commonly within 

48 hours of alcohol cessation and is related to a decrease in seizure threshold 

(Brathen et al., 1999; Victor and Brausch, 1967). Seizure activity originates in the 

brainstem during withdrawal due to decreased GABAA-mediated gating of 
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neuronal activity (Rogawski, 2005). Thus, drugs that restore activity of the GABAA 

receptor, such as benzodiazepines and alcohol, act as anticonvulsants and 

normalize seizure threshold during withdrawal (Mayo-Smith, 1997). Glutamatergic 

hyperexcitability also occurs that contributes to seizure activity through an 

upregulation of NMDA receptors and NMDA antagonists block withdrawal-related 

seizures (Grant et al., 1990; Kalluri et al., 1998). Cognitive processes are also 

greatly affected during acute withdrawal, and in the most severe cases, symptoms 

of alcohol withdrawal delirium, or Delirium Tremens (DTs) present as extreme 

confusion, hallucinations, autonomic hyperactivity, and cardiovascular arrhythmia 

(Grover and Ghosh, 2018; Schuckit, 2014).  Dysregulation of monoamine systems 

contribute to confusion, hallucinations, and extreme shifts in mood. DA in particular 

plays an important role in major alcohol withdrawal whole body tremor. For 

example, heavy episodic drinking decreases DA signaling in basal ganglia and 

promotes cerebellar degeneration that presents as resting tremor during 

withdrawal (Deik et al., 2012; Yokota et al., 2006).  

As previously discussed, alcohol increases DA release within reward 

circuitry and promotes the positive reinforcing effects of the drug. Chronic alcohol 

consumption, however, drives a maladaptive shift towards a hypodopaminergic 

state within the NAc that contributes to a reward-deficit (Edwards and Koob, 2010; 

Karkhanis et al., 2015). For example, under basal conditions acute alcohol 

increases endogenous opioid and DA release that is associated with positive affect 

(Yim et al., 1998). As drinking escalates over time, MOR-related signaling and 

subsequent DA release in response to alcohol is attenuated, necessitating greater 
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levels of alcohol consumption to achieve a positive state (Koob and Volkow, 2016). 

This rationale is supported by imaging studies that show reduced methylphenidate-

induced DA release within the striatum of patients with AUD (Volkow et al., 2013). 

Furthermore, chronic alcohol treatment increases ICSS reward threshold during 

withdrawal suggesting an increased hedonic drive to drink during withdrawal 

(Chester et al., 2006; Schulteis et al., 1995). Thus, heavy episodic drinking 

emerges as a maladaptive behavioral process to relieve the reward-deficit. The 

homeostatic set point shifts towards a net negative as signaling of the pro-affective 

MOR decreases and signaling in systems involved in dysphoria, aversion, and 

stress are increased.  

Withdrawal is generally accepted to be a stressful state and is associated 

with increased circulation of stress-responsive hormones and neuropeptides. The 

heightened stress/anxiety state resulting from repeated activation of the reward 

system contributes to negative hedonic value that has been conceptualized as an 

anti-reward system (Koob, 2013; Koob and Le Moal, 2008). For example, the 

hypothalamic-pituitary-adrenal (HPA) axis regulates the endogenous stress 

response and is severely impacted by chronic alcohol consumption (Blaine et al., 

2016). The paraventricular nucleus of the hypothalamus (PVN) produces 

corticotrophin release factor (CRF) that is secreted in response to input from 

structures that detect and are responsive to stress-associated stimuli (Turnbull and 

Rivier, 1997). CRF-expressing neurons within the PVN project to various 

structures within the CNS and also send axonal projections through the 

infundibular stalk that release CRF into the median eminence. CRF travels through 
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the hypophyseal portal system and drives the release of adrenocorticotrophic 

hormone (ACTH) from the anterior pituitary gland. ACTH then moves freely 

through the body and stimulates the secretion of cortisol/corticosterone (CORT) 

and glucocorticoids from the adrenal cortex. Feedback from CRF, ACTH, and 

CORT regulates the stress response and disrupted in patients with AUD (Stephens 

and Wand, 2012). Indeed, a moderate dose of alcohol reflecting BACs below 0.08 

g/dL blunt HPA axis responsiveness to experimenter-delivered CORT, supporting 

the anxiolytic properties of alcohol (Waltman et al., 1993). However, higher BACs 

achieved during a binge increase CRF, ACTH, and CORT release, as well as 

norepinephrine, and promotes positive feedback at the level of the PVN (Borg et 

al., 1981; Wright, 1978). Chronic alcohol consumption further disrupts HPA axis 

function by dynamically altering the response to alcohol, abstinence, and stress. 

For example, HPA axis activity is increased during chronic consumption and 

withdrawal, but is suppressed in response to stressors (Adinoff et al., 1998; 

Becker, 2012). Increased circulating stress hormone levels during withdrawal 

contribute to the shift toward negative allostasis that is relieved by binge drinking, 

consistent with the tension-reduction hypothesis (Becker, 2012; Cappell and 

Herman, 1972; Koob, 2013). However, repeated instances of binge drinking to 

alleviate withdrawal symptoms facilitate neuroadaptations that exacerbate the 

dysregulation of HPA axis reactivity and the stress response that perpetuates the 

addiction cycle.  

The extended amygdala macrostructure is considered to be a key node in 

the interface of stress and arousal systems with limbic drivers of hedonic behavior 
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affected during withdrawal (Koob and Le Moal, 2008). The extended amygdala is 

comprised of the CeA, bed nucleus of the stria terminalis (BNST), substantia 

innominata, and NAc shell (Alheid and Heimer, 1988). The CeA and BNST in 

particular modulate the stress response through projections to the PVN and lesion 

of either structure disrupts HPA axis activation (Crestani et al., 2013; Xu et al., 

1999). C-Fos immunoreactivity is increased within these structures during acute 

withdrawal and this heightened neuronal activity is thought to promote stress and 

anxiety-like behavior (Kimbrough et al., 2020; Smith et al., 2019). Interestingly, 

activity and connectivity between the CeA and BNST is observed during 

withdrawal that may contribute to negative affective states (Hu et al., 2018; 

Pedersen et al., 2020). In fact, inhibition of a select populations of projections 

between the CeA and BNST decreased alcohol intake and attenuated anxiety-like 

behavior in alcohol-dependent rats (de Guglielmo et al., 2019). Further, the CeA 

and BNST are rich in CRF and glucocorticoid receptors that are activated during 

withdrawal and contribute to excessive drinking (Kash et al., 2015; Pomrenze et 

al., 2019a; Silberman and Winder, 2013). Indeed, CRF and glucocorticoid 

antagonists have shown promise in attenuating excessive drinking and withdrawal-

related stress and anxiety in preclinical models of AUD (Funk et al., 2007; Shaham 

and de Wit, 2016; Stephens and Wand, 2012). More specifically, microinjection of 

a CRF1 antagonist into the CeA decreased dependent-like escalation in alcohol 

intake and reduced anxiety-like behavior during protracted withdrawal (Baldwin et 

al., 1991; Funk et al., 2006). CRF-expressing neurons within the BNST are also 

affected by chronic alcohol exposure and modulate activity in the VTA through 
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CRF1 receptors therein (Rinker et al., 2017; Silberman et al., 2013). Within the 

BNST, dysregulation of excitatory/inhibitory balance by alcohol-induced alteration 

of monoamine and peptide release mediate withdrawal-induced anxiety and are 

thought to also promote excessive drinking (Kash, 2012; Kash et al., 2015; Pleil et 

al., 2016).  

Koob et al., have described the negative affective state experienced during 

withdrawal that drives negative reinforcement and promotes alcohol drinking as 

the “dark side of addiction”, embodied by dysphoria, anxiety, and irritability (Koob, 

2013; Schulteis and Koob, 1994). The dark side emerges over time as functioning 

of anti-reward systems increase concurrent with frequent bouts of heavy episodic 

drinking. Thus, the chronic relapsing nature of AUD is evident as individuals seek 

to restore a homeostatic set point through alcohol consumption to alleviate 

withdrawal symptomology and persistent negative affect. However, since reward 

systems are desensitized over time, alcohol drinking to excess in repeated/chronic 

binges emerge as an effort to offset the negative allosteric load experienced during 

the reward deficit.  

 
Opponent Process Theory and Craving 

Individuals diagnosed with AUD report that craving, and an inability to 

regulate the behavioral response to craving, significantly contributes to relapse that 

perpetuates the chronic relapsing nature of the disorder (Breese et al., 2011; Fox 

et al., 2007). Therefore, understanding the neurobiological mechanisms that drive 

craving is essential to break the cycle of addiction and prevent relapse. Craving 

presents as an intense, urgent, and abnormal desire to consume alcohol that 
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arises from the complex interplay between neuroadaptations that occur as a result 

of prolonged alcohol abuse and environmental influences that trigger craving and 

relapse (Seo and Sinha, 2014; Sinha, 2013). As previously described, chronic 

excessive alcohol consumption results in neuroadaptations that create a 

maladaptive imbalance in positive and negative affect. The resulting increase in 

allosteric load leaves individuals with AUD susceptible to relapse because of 

increased reward salience, persistent negative affect, and deficits in the top-down 

control of impulsive behavior and emotional processing (Koob, 2013). It is not 

surprising that neurocircuitry involved in reward (striatum), behavioral inhibition 

(PFC), and emotional control (limbic system/amygdala) are affected by chronic 

alcohol abuse and drive craving (Koob and Volkow, 2016). Thus, allosteric 

pressure and resultant dysregulation of cortico-striatal-limbic circuitry is a likely 

culprit contributing to craving in patients with AUD.  

We have previously discussed the role of the NAc within the context of 

reward and provided evidence demonstrating that alcohol dependence drives a 

hypodopaminergic state during withdrawal. Concurrent neuroadaptations within 

reward circuitry shift during the transition to dependence to assign greater salience 

to alcohol and alcohol-related stimuli compared to natural rewards. Robinson and 

Berridge describe this process as incentive sensitization that is consistently 

observed across drugs of abuse (Robinson and Berridge, 1993). Therefore, 

craving for alcohol emerges in place of natural rewards as reward circuits are 

sensitized over time resulting in a homeostatic shift toward compulsive drinking. 

This is particularly evident in the sensitized response to cues associated with 
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alcohol. For example, increased activity is observed in the ventral and dorsal 

striatum in response to alcohol-related cues in subjects diagnosed with AUD and 

activity within these regions is predictive of the likelihood of relapse (Seo et al., 

2011). Preclinical models have shown that inactivation of the NAc attenuated 

reinstatement of alcohol-seeking behavior suggesting a causal role for this 

structure in what is considered the rodent approximation of craving and relapse 

(Chaudhri et al., 2010).  

Beyond mesolimbic DA, alcohol-predictive cues trigger the intense urge to 

seek alcohol and this craving is related to altered glutamatergic tone in the NAc. 

In fact, increased glutamate within the NAc of humans is observed during 

withdrawal and strongly predicts the intensity of craving (Bauer et al., 2013). In 

rodents, extracellular glutamate is increased within the NAc of alcohol-dependent 

mice and pharmacological attenuation of glutamatergic tone normalized alcohol 

intake to a moderate level (Griffin et al., 2014). Similarly, glutamate is released 

within the NAc in response to alcohol-associated cues and triggers reinstatement 

of alcohol-seeking in a mGlur2-dependent manner (Gass et al., 2011; Meinhardt 

et al., 2013). Thus, glutamate overflow within the NAc resulting from chronic 

alcohol consumption is thought to promote craving, preoccupation, and obsessive 

thoughts that drive relapse (Kalivas, 2009). 

The mPFC is classically associated with cognitive processing and top-down 

control over limbic structures, such as the NAc and amygdala, that drive hedonic 

behavior (Kouneiher et al., 2009). Neuroimaging studies have revealed that 

chronic alcohol abuse is associated with decreased gray matter volume within the 
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mPFC that manifests as deficits in higher order functioning such as decision 

making, impulse control, and emotional regulation (Bechara, 2005; Goldstein and 

Volkow, 2011; Yang et al., 2016). Even though there is decreased volume within 

the medial PFC (mPFC) and subdivisions therein, increased activity within these 

structures as a function of AUD have been associated with craving (Sinha, 2013). 

The orbitofrontal cortex (OFC) and insular cortex (IC) in particular are associated 

with incentive motivation and behavioral inhibition (Arana et al., 2003; Naqvi et al., 

2014). Activity within the OFC is increased in response to alcohol-associated cues 

and correlates with craving (Myrick et al., 2004). In fact, heightened OFC activity 

predicts the likelihood of relapse during protracted abstinence (Reinhard et al., 

2015). Similarly, alcohol-associated cues result in increased activity within the IC 

and this increase is more pronounced in alcohol-dependent individuals (Schacht 

et al., 2013). The heightened responsiveness of the IC is also predictive of the 

severity of AUD symptomology (Claus et al., 2011). Another region of the PFC, the 

dorsolateral prefrontal cortex (dlPFC), has been extensively studied in the context 

of craving and alcohol seeking behavior. The dlPFC is highly reactive to cues 

associated with alcohol and this activity is strongly correlated with craving (Park et 

al., 2007). Furthermore, modulation of neuroplasticity within the dlPFC using 

noninvasive techniques such as repeated transmagnetic stimulation (rTMS) has 

shown promise in reducing craving and relapse in treatment-seeking patients with 

AUD (Zhang et al., 2019). In rodents, the dlPFC is analogous to the prelimbic 

cortex (PL). The PL exerts excitatory control over the VTA through a glutamatergic 

projection involved in incentive salience (Carr and Sesack, 2000). The PL also 
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sends a direct monosynaptic projection to the NAc core and promotes drug 

seeking behavior (McGlinchey et al., 2016). Indeed, cues associated with alcohol 

increase c-Fos expression within the PL and selective inhibition or ablation of the 

PL-NAc core pathways is sufficient to block cue-induced reinstatement of alcohol 

seeking (Keistler et al., 2015; Keistler et al., 2017).  

During early withdrawal, uncontrolled craving is associated with 

dysregulation of the HPA axis that presents as a negative emotional state and 

promotes compulsive drinking (Koob, 2013). An inability to control emotional 

behavior in response to stress is associated with relapse and increased drinking 

(Claus et al., 2011). The ventromedial prefrontal cortex (vmPFC) has been 

implicated in the top-down control over emotional reactivity and dysregulated 

activity has been observed in abstinent patients with AUD (Seo et al., 2013). More 

specifically, basal activity is increased within the vmPFC and the level of resting 

state activity is positively correlated with craving scores and predicts relapse (Seo 

et al., 2013). In healthy subjects, vmPFC activity is increased in response to a 

stressor but this effect is not observed after chronic alcohol abuse suggesting a 

blunting in stress-responsivity. The vmPFC projects to the amygdala and 

decreased coupling of these structures is associated with negative affect (Urry et 

al., 2006). As a function of chronic alcohol consumption or a familial history of 

alcoholism, amygdala volume is decreased and the reduced size predicts craving 

and relapse (Hill et al., 2013; Wrase et al., 2008; Zhang et al., 2013). However, 

cues associated with alcohol illicit a robust increase in activity within the amygdala 

that is associated with relapse (Schact et al., 2013). Further study of PFC-
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amygdala connectivity in rodent models of AUD and relapse support these 

observations, although the neuroanatomical terminology for these structures 

differs slightly. For example, the human vmPFC is analogous to the rodents 

infralimbic cortex (IL) and sends glutamatergic projections to the BLA. Studies of 

conditioned fear and extinction learning have demonstrated that activity of IL-BLA 

projections is necessary for extinction learning and the expression of extinction 

behavior, which is sensitive to alcohol abuse (Bloodgood et al., 2018; Do-Monte et 

al., 2015; Holmes et al., 2012). Indeed, CIE exposure reduces activity within the IL 

and impairs extinction learning, reflective of a dysregulation in the top-down control 

of emotional behavior (Scarlata et al., 2019). The BLA, however, is not only 

involved in the regulation/expression of fear, but is highly reactive to cues 

associated with alcohol and a key node in reinstatement circuitry (Gass et al., 

2011; Sinclair et al., 2012). In fact, ablation of BLA projections to the NAc 

attenuates cue-induced reinstatement of alcohol-seeking (Keistler et al., 2017). 

The BLA also sends projections to the hippocampus, which is involved in 

contextual associations with alcohol that trigger relapse, and inhibition of BLA 

projections to the ventral hippocampus decreases excessive drinking (Ewin et al., 

2019). Thus, cortico-striatal-limbic circuity drives craving in response to cues 

associated with alcohol. 

Dysregulation of the HPA axis and the endogenous response to stress is a 

major component of craving and not only facilitates excessive drinking but 

sensitizes the response to cues associated with alcohol that drive relapse (Koob, 

2013; Koob and Le Moal, 2008).  We have previously described that CRF, ACTH, 
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and CORT levels are elevated at rest as a function of dependence that contributes 

to craving and further drinking to alleviate the hyper aroused state, consistent with 

the tension reduction hypothesis (Sinha, 2001). Stress reactivity, however, is also 

altered as a function of dependence that drives craving. Rodent models have been 

useful in demonstrating this relationship in that rats show increased response to a 

mild stressor during withdrawal that promotes alcohol-seeking behavior (Zorilla et 

al., 2001; Breese et al., 2005; Le at al., 1998). Repeated cycles of CIE exposure 

results in increased voluntary alcohol consumption in mice, and the addition of 

chronic FSS further elevates drinking beyond that of CIE alone (Anderson et al., 

2016; Lopez et al., 2016a). This suggests that a history of dependence sensitizes 

stress-related circuitry that selectively promotes excessive alcohol consumption, 

an effect not seen in non-dependent subjects. Furthermore, a history of alcohol 

dependence blunts the HPA axis response to stress that may present behaviorally 

as a maladaptive coping response (Adinoff et al., 1998; Becker, 2012). The 

extended amygdala and specifically the CeA and BNST are highly enriched in 

CRF-expressing neurons and adaptations within these structures has been 

suggested to play a role in the altered stress response that contributes to craving 

(Merlo Pich et al., 1995; Olive et al., 2002).  

In summary, the loss of control over craving is associated with compulsive 

alcohol drinking, especially when individuals are faced with situations, cues, or 

environments associated with alcohol, and in the face of stressful events. Indeed, 

circuits that are involved in emotional responses and cognitive control over 

behavior become dysregulated and contribute to craving and relapse. Thus, 
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cortico-striatal-limbic circuitry is a likely culprit driving craving and relapse because 

these regions are involved in regulation of behavioral control, reward, and emotion. 

Koob and Volkow propose a framework underlying craving where 

neuroadaptations within the NAc occur first that promote incentive salience. This 

is followed by alterations within the PFC resulting in a lack of top-down control of 

behavior. Finally, a gain of function in limbic structures, specifically the extended 

amygdala that modulate stress, push the system to promote alcohol drinking over 

natural rewards. 

 

Summary 

 The development of AUD and dependence arises from the complex 

interplay between neuroadaptations within multiple brain regions that occur as a 

result of repeated binge intoxication. Intoxication achieved during a binge activates 

reward circuitry and reinforces further alcohol consumption. As binge drinking 

continues, reward pathways are sensitized in response to stimuli associated with 

alcohol and drinking behavior that dysregulates reward circuitry. Furthermore, with 

repeated instances of binge drinking, withdrawal sequalae emerge from a gain of 

function in stress-related systems that presents as a persistent negative emotional 

state. Thus, chronic binge drinking and subsequent withdrawal create an allosteric 

load that shifts the act of alcohol consumption from positive to negative 

reinforcement. During abstinence, the negative emotional state experienced 

during withdrawal creates a strong drive to consume alcohol. Relapse presents as 

an effort to relive this state and Koob et al, 2013 suggested classifying AUD as a 
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stress surfeit disorder for this reason. The extended amygdala structure is a shared 

neuroanatomic substrate of binge drinking, withdrawal, and craving and the CeA 

and BNST in particular have garnered much interest as a druggable target for the 

treatment of AUD. More specifically, the CeA and BNST are home to a plethora of 

neuropeptides that are involved in the addiction cycle and pharmaceutical 

compounds targeting these systems have shown promise in decreasing drinking 

behavior, relieving withdrawal-related negative affect, and curbing craving/relapse. 

Of particular interest is the kappa opioid receptor, which is expressed within the 

extended amygdala and implicated in each stage of the addiction cycle. We will 

expand upon the function of this receptor and its endogenous ligand in relation to 

AUD in the following section.  

 
 
DYNORPHIN/KAPPA OPIOID RECEPTOR SYSTEM 
 

Neuropeptide systems play a critical role in the modulation of binge drinking 

behavior, withdrawal, and craving that comprise the addiction cycle. Dynorphin 

(DYN) is one such neuropeptide that is involved in the various aspects of the 

addiction cycle and has emerged as a potential therapeutic target for the treatment 

of AUD. Dynorphins (DYN) are a class of endogenous opioid peptides classically 

associated with stress, dysphoria, pain, and aversion and are the primary ligand 

to the kappa opioid receptor (KOR) (Bruchas et al., 2010; Chavkin et al., 1982; 

Mucha et al., 1985; Pfeiffer et al., 1986). DYN arises from a single precursor 

protein, preprodynorphin, which is enzymatically processed within the soma by 

proprotein convertase-2 into prodynorphin (PDYN) and further processed to 
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functionally active DYN peptides A and B (together referred to as “Big Dynorphin”) 

and neo-endorphin (Chavkin et al., 1982; Massotte and Kieffer, 1998). Like other 

opioid peptides, DYN is stored in dense-core vesicles where it is released from 

axon terminals or dendritic processes. The rate of DYN metabolism varies by brain 

region but occurs through proteolysis resulting in leu-enkephalin production 

(Sandin et al., 1997). Leu-enkephalin is an active metabolite with high affinity at 

the delta-opioid receptor, moderate affinity at the mu-opioid receptor, and very low 

affinity for KOR (Sandin et al., 1997). Upon release, DYNs cross the synaptic cleft 

and bind to KORs that are expressed primarily on presynaptic terminals. The KOR 

is a seven transmembrane G-protein coupled receptor encoded by the OPRK1 

gene (Chavkin, 2013). KORs exert a largely inhibitory effect on neuronal activity 

through Gi/o intracellular signaling. For example, upon DYN binding to KOR, GDP 

is displaced allowing for GTP association with the Gi/o subunit. GTP-bound Gi/o 

and beta/gamma subunits then dissociate from the c-terminus of KOR and have 

distinct signaling pathways. The Gi/o complex acts to inhibit adenylyl cyclase 

activity that, in turn, decreases cAMP production (Law et al., 2000). The GTP-

bound Gi/o subunits further exerts a hyperpolarizing effect on tonic neuronal 

activity by facilitating G-protein gated inward rectifying potassium channels (Kir3) 

(Henry et al, 1995). Finally, the beta-gamma subunit promotes hyperpolarization 

by blocking N-type voltage-gated calcium channels (Tallent et al., 1994). After G-

protein dissociation, the c-terminus is phosphorylated by G-protein receptor kinase 

2 (GRK2) at serine 369 that acts to functionally desensitize the receptor 

(McLaughlin et al., 2003b). Interestingly, KOR can be desensitized after ligand 
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binding and GRK2 phosphorylation at Ser-369, yet remain in the membrane 

without internalization (McLaughlin et al., 2004; McLaughlin et al., 2003b). 

Prolonged agonist activity at the receptor, however, results in internalization via 

beta-arrestin recruitment at the sites of phosphorylation (McLaughlin et al., 2004). 

Dephosphorylation occurs via protein phosphatase 1 and 2a allowing for receptor 

recycling to the membrane (Appleyard et al., 1997).  

 

Location and Function 

KORs are widely expressed throughout both the peripheral nervous system 

(PNS) and central nervous system (CNS). Within the PNS, KOR are expressed on 

primary sensory afferent neurons, within the gastrointestinal tract, and heart, and 

compounds with selective KOR agonist properties have been considered as 

potential treatment strategies for maladies of these regions (Galligan and Sternini, 

2017; Snyder et al., 2018; Sobanski et al., 2014). For example, KORs are 

expressed throughout primary afferent neurons on the cell body, dorsal root 

ganglion, and terminals within the spinal cord and, like mu- and delta-opioid 

receptors, activation of KOR within peripheral nerves has analgesic properties (Ji 

et al., 1995; Snyder et al., 2018). In fact, peripherally restricted KOR agonists 

attenuate the behavioral response to thermal allodynia, sciatic nerve injury, and 

hind-paw inflammation suggesting involvement of KOR in various pain models 

(Berg et al., 2011; Jamshidi et al., 2015). KOR agonists have spinal anesthetic 

properties and modulate the peripheral response to pain through reduced 

excitatory neurotransmission from sensory input to the CNS. Opioid receptors are 
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widely expressed in the gastrointestinal tract and morphine, through agonist action 

at the mu-opioid receptor, has strong analgesic properties, but reduces intra-

gastric contractions that cause constipation (Pasternak and Pan, 2013). KOR are 

also expressed within the gastrointestinal tract and modulate acetylcholine release 

at the neuromuscular junction within the colon (Chamouard et al., 1993; Riviere, 

2004). The use of KOR agonists to treat chronic pain is viable alternative to classic 

opiates because they do not cause gastrointestinal distress and there is little 

concern for dependence or abuse (Riviere, 2004). Of concern for drug 

development, KOR are expressed on myocardial cells within the heart and have 

anti- and pro- arrhythmic effects depending on dosage (Coles et al., 2003; Mousa 

et al., 2010). However, KOR agonists reduce the size of myocardial infarction and 

show promise for the prevention of tissue damage caused by heart attack (Peart 

et al., 2004). Finally, KOR agonists have also been considered for drug 

development given the anti-pruritic, anti-inflammatory, and anti-emetic properties 

of peripheral KOR activation (Phan et al., 2012; Liang, 2016; Porreca et al., 2009).   

Within the CNS, KOR are expressed in brain regions implicated in the 

experience of consciousness, mood/affect, and motivational behavior, such as the 

claustrum, frontal cortex, mesolimbic dopamine system, substantia nigra, 

hypothalamus, and the extended amygdala network (Bruchas et al., 2010; 

Chavkin, 2013; DePaoli et al., 1994; Simonin et al., 1995). Interestingly, KOR 

agonists have a profound effect on human consciousness and use of plants 

containing naturally occurring compounds with KOR agonist properties, such as 

Salvia divinorum, have been used in religious ceremonies or for medicinal 
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purposes by shamans in South America and Mexico for many years (Valdes et al., 

1983). More specifically, salvinorin A is a selective KOR agonist found within the 

leaves of the Salvia divinorum (salvia) plant and is considered to be one of the 

most potent naturally occurring hallucinogenic drugs (Chavkin et al., 2004; Roth et 

al., 2002). Inhalation of vapor derived from extracts of dried salvia leaves or 

ingestion of plant material has extreme hallucinogenic and dissociative properties 

(Valdes, 1994). Individuals report profound changes in all sensory modalities, out 

of body experiences, and psychotomimetic effects during clinical experimentation 

with salvinorin A (Pfeiffer et al., 1986; Siebert, 1994; Valdes, 1994). In support of 

DYN/KOR-mediated psychotomimetic effects, DYN levels are increased in the 

CSF of patients with schizophrenia and KOR antagonists attenuate hallucinations 

in these subjects (Gunne et al., 1977; Heikkila et al., 1990). Interestingly, 

documentation of experiences with salvinorin A have played an important role in 

unraveling one of the greatest unanswered questions in neuroscience, the 

“problem of consciousness”. In the last article written before his death, Francis 

Crick postulated that the claustrum, a structure rich in KOR and located between 

the insular cortex and striatum, may act as a “grand conductor of consciousness” 

(Crick and Koch, 2003). The claustrum is highly interconnected with cortical 

structures and is involved in the integration of sensory modalities and the 

experience of “self”. Thus, it is not surprising that activation of KOR by salvinorin 

A results in vivid hallucinations, disrupted perception of self and, what many refer 

to as ego death or ego dissolution (Stiefel et al., 2014). Even though the 

psychotropic effects of acute salvia intoxication resemble that of psychedelic 



 40 

compounds such as psilocybin, lysergic acid diethylamide, or dimethyltryptamine, 

salvia is not classified as a psychedelic because it does not have agonist 

properties at the 5-HT2A receptor (Roth et al., 2002). Even more interesting, 

salvinorin A decreases release of DA in the NAc setting this recreational drug apart 

from drugs of abuse (Zhang et al., 2005). Indeed, the use of salvia has gained 

popularity but the pattern of usage does not reflect abuse potential due to the 

dysphoric properties of the drug (SAHMSA, 2012). These unique properties have 

led many to be interested in the development of KOR agonists for various 

treatments due to the lack of abuse potential.  

 

Aversion, Stress, and Anxiety 

Within the CNS, however, KOR antagonists are more commonly 

investigated as treatment strategies for psychiatric disorders involving negative 

affective states, such as those of anxiety, depression, and addiction. This is 

because KOR agonists, while novel in their analgesic properties, promote 

dysphoric states in humans and rodents (Pfeiffer et al., 1986; Roth et al., 2002). 

More specifically, rodents display a variety of behaviors associated with dysphoria 

in response to KOR agonists such as aversion, a stress response, and anxiety-like 

behavior, all of which are critical components of alcohol withdrawal (Bals-Kubik et 

al., 1993; Lalanne et al., 2014; Shippenberg et al., 2001). For example, early 

studies revealed that repeated treatment with a KOR agonist produced conditioned 

place aversion (CPA) to a drug-paired environment, suggesting that KOR 

activation has aversive properties (Shippenberg and Herz, 1986). Further studies 
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revealed a dynamic relationship between DYN/KOR and DA signaling in the NAc 

that mediate aversion (Di Chiara and Imperato, 1988; Maisonneuve et al., 1994). 

KOR are found on presynaptic terminals of NAc-projecting dopaminergic neurons 

within the VTA (Margolis et al., 2003; Svingos et al., 1999). During reward-related 

behavior or exposure to drugs of abuse, DA is released from these VTA terminals 

in the NAc. Upon release, DA binds D1 receptors on medium spiny neurons 

(MSNs) that express DYN. D1 MSNs within the medial shell send long range 

projections to the VTA and release GABA and DYN onto dopaminergic cells 

therein and inhibit downstream release (Yang et al., 2018). More prominently, Gs-

mediated intracellular signaling after D1 MSN activation drives local release of 

DYN that activates KOR on VTA terminals and decreases DA release in the NAc 

(Al-hassani). DYN and KOR agonists alike decrease extracellular DA release 

within the NAc through Gi-mediated signaling on presynaptic VTA terminals 

(Margolis et al., 2003; Spanagel et al., 1992). Intracellular KOR signaling also 

enhances activity of the DA transporter (DAT) that increases clearance of DA from 

the extracellular space (Thompson et al., 2000). Thus, DYN/KOR activation in the 

NAc acts as a negative feedback mechanism gating mesolimbic DA activity. In the 

context of aversion, selective delivery of a KOR agonist into the NAc decreases 

local DA release and is sufficient to drive CPA (Bals-Kubik et al., 1993; Donzanti 

et al., 1992). A series of elegant studies from the Bruchas lab revealed that 

photostimulation of DYN-containing neurons within the ventral NAc shell results in 

the display of real-time place aversion and decreased responding for a natural 

reward, both of which are reversed by KOR antagonist challenge (Al-Hasani et al., 
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2015). Furthermore, genetic deletion of KOR from VTA-DA terminals in the NAc 

blocks CPA learning and can be restored by selective KOR knock-in (Chefer et al., 

2013). These data suggest that DYN-containing neurons within the NAc contribute 

to aversive-like behavior in a KOR-dependent fashion, likely though the modulation 

of local DA release. However, KOR in the NAc also modulate CPP and, more 

specifically, photoactivation of dorsal NAc shell DYN-containing neurons has 

rewarding properties suggesting that topographical organization of KOR 

expression may differentially regulate opposing behaviors (Al-Hasani et al., 2015; 

Castro and Berridge, 2014).  

It is also important to note that aversive behavior is also observed after 

microinjection of a KOR agonist into the PFC and VTA, and there is strong 

evidence suggesting that the aversive properties of KOR activation in the VTA is 

due to disrupted DA release within the PFC (Chavkin, 2013; Knoll and Carlezon, 

2010; Tejeda et al., 2013). In fact, KOR agonist microinjection into the VTA induces 

CPA by decreasing activity in projections to the PFC, but projections to the NAc 

are not affected (Bals-Kubrick et al., 1993). This finding was bolstered by the 

Shippenberg lab who demonstrated that KOR agonists decrease DA overflow 

within the PFC and this effect can be blocked by genetic deletion of KOR on DAT-

expressing neurons, suggesting KOR regulation of DA release within the PFC 

(Tejeda et al., 2013). Furthermore, systemic KOR agonist challenge resulted in 

CPA, as expected, but was blocked by selective KOR antagonist microinjection in 

the PFC. Decreased DA tone within the PFC and NAc have important clinical 

implications because positive valence disorders, such as depression, addiction, 
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some aspects of schizophrenia, and ADHD involve disruption to DA signaling in 

the PFC and NAc that mediates cognitive symptomology and reward deficits 

(Braver et al., 1999; Brennan and Arnsten, 2008; Ford et al., 2006).  

We have thus far described involvement of the DYN/KOR system in 

cognition and the balance of reward/aversion. Activity of DYN/KOR is also involved 

in the dynamic processes that mediate the physiological response to stress as well 

as behaviors involved in the stress response. Preclinical models of stress, such as 

the forced swim stress (FSS) task or fear conditioning have revealed an 

endogenous release of DYN in response to stress exposure (Land et al., 2008; 

McLaughlin et al., 2003a; Nabeshima et al., 1992). Release of DYN within the CNS 

has a number of effects that promote an internal stress response, which is not 

surprising given the expression pattern of DYN/KOR within the hypothalamus. 

Most notably, endogenous KOR activity in the hypothalamus triggers activation of 

the HPA axis and release of CRF, ACTH, and corticosterone (Drolet et al., 2001; 

Nikolarakis et al., 1987). Similarly, systemic administration of a KOR agonist 

increases c-Fos expression within the PVN and is accompanied by increased 

serum corticosterone levels indicative of pharmacological activation of the HPA 

axis (Buckingham and Cooper, 1986; Pechnick, 1993). Although these studies are 

correlative in nature, they suggest involvement of KOR in the physiological 

response to acute stress. More causal studies have been conducted in relation to 

DYN/KOR involvement in the behavioral response to repeated stress exposure. 

For example, KOR antagonists or global Pdyn-knockout blocks the emergence of 

pro-depressive behavior as a result of repeated foot-shock stress (Land et al., 
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2008). Furthermore, associative aversive learning involving an odor or context 

paired with a foot-shock is blocked by systemic KOR antagonist challenge or Pdyn-

knockout (Land et al., 2008). Similarly, repeated exposure to FSS results in 

increased immobility indicative of a pro-depressive state and is blocked by 

systemic KOR antagonist treatment (Mague et al., 2003; McGlaughlin et al., 2003). 

Increased immobility resulting from chronic FSS can be recapitulated in naïve 

animals when challenged with a KOR agonist (McGlaughlin et al., 2006). 

Involvement of KOR in response to the other ethologically relevant stressors, such 

social defeat stress, has also been demonstrated (Donahue et al., 2015). As with 

foot-shock or FSS, treatment with a KOR antagonist or Pdyn-knockout decreased 

the display of submissive posture, heightened nociception, and analgesia 

observed after social defeat stress (McGlaughlin et al., 2003).  

Foot-shock, FSS, and social defeat stress provoke DYN release and 

indicate activity of KOR in the behavioral response to stress (Knoll et al., 2010). 

CRF is also released in response to these stressors and it appears that CRF can 

stimulate release of DYN in the hypothalamus, suggesting a dynamic interaction 

between the DYN and CRF systems involved in the stress response (Almeida et 

al., 1986). For example, systemic challenge with CRF increases KOR 

phosphorylation, indicative of CRF activity provoking DYN release and KOR 

activation (Land et al, 2008; Bruchas et al., 2010). From a behavioral perspective, 

administration of CRF (ICV) promotes aversive learning and the expression of CPA 

is blocked by pharmacological blockade of KOR or Pdyn-knockout (Land et al., 
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2008). These data suggest a reciprocal interaction between the CRF and 

DYN/KOR systems as both a cause and causality involved in the stress response. 

The DYN/KOR system has also been strongly implicated in anxiety-like 

behavior but a clear role has been difficult to ascertain due to similar behavioral 

outcomes in response to KOR agonists and antagonist. This discrepancy arises 

from studies demonstrating that acute systemic treatment with a KOR agonist or 

antagonist both promote an anxiolytic phenotype (Knoll et al., 2007; Kuzmin et al., 

2006; Narita et al., 2006). Further studies have revealed a more prominent role for 

DYN/KOR activation in promoting anxiety-like behavior. For example, global Pdyn-

knockout attenuates the startle response and presents as an anxiolytic phenotype 

within the open field, elevated plus maze, and light/dark box tests (Bilkei-Gorzo et 

al., 2008; Wittmann et al., 2009). Anxiogenic behavior is restored within knockout 

mice, and potentiated in wild-type mice, by systemic challenge with a KOR agonist, 

suggesting that endogenous DYN/KOR activity promotes the expression of 

anxiety-like behavior (Wittmann et al., 2009).  Furthermore, KOR antagonists 

increase open arm entries in the elevated plus maze and decrease the fear-

potentiated startle response indicative of anxiolytic properties of the drug (Knoll et 

al., 2007).  

The extended amygdala is rich in DYN/KOR and recent studies suggest that 

connectivity between the CeA the BNST is involved in the expression of anxiety-

like behavior (Alheid, 2003; Fallon and Leslie, 1986; Mansour et al., 1994; 

Marchant et al., 2007; Poulin et al., 2009; Sim-Selley et al., 1999). For example, 

projection neurons in the CeA express and co-express various neuropeptides, 
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such as DYN, somatostatin (SST), and CRF. Optogenetic stimulation of CeA 

projections to the BNST (CeA-BNST) produces an anxiogenic phenotype in an 

open field task (Ahrens et al., 2018). Neurons within this circuit largely express 

Pdyn mRNA (along with SST) and the anxiogenic response resulting from circuit-

level activation can be blocked by KOR antagonist administration into the BNST. 

Interestingly, microinjection of the long-lasting KOR antagonist nor-BNI into the 

BNST alone does not affect anxiety-like behavior in the open field task suggesting 

that strong stimuli that provoke DYN release within the BNST are involved in the 

expression of anxiety, opposed to tonic dynorphinergic tone. In contrast, DYN-

containing neurons within the BNST release DYN locally and may promote anxiety 

(Crowley et al., 2016). The mechanism by which KOR in the BNST modulates 

anxiety is not completely clear, but it is likely through affecting excitatory/inhibitory 

balance through the regulation of glutamate/GABA release in select circuits. For 

example, activation of KOR in the BNST decreases presynaptic release of GABA 

through an ERK-dependent signaling mechanism from projections originating in 

the CeA (Li et al., 2012). This is in stark contrast to p38-MAPK signaling that 

mediates the dysphoric component of KOR activation in other structures (Bruchas 

et al., 2007). Interestingly, activation of BLA projections to the BNST results in 

anxiolytic behavior presumably through glutamate release downstream in the 

BNST, and optogenetic stimulation of DYN-containing neurons within the BNST 

decreases glutamate release by activation of KOR on BLA terminals (Crowley et 

al., 2016). The behavioral consequence of KOR modulation of glutamatergic and 

GABAergic terminals may depend on the topographical input to sub-compartments 
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in the BNST that modulate anxiety. More specifically, the oval, anterodorsal, and 

ventral BNST are involved in anxiety and direct GABAergic input onto these 

population may be anxiolytic (Jennings et al., 2013; Kash and Winder, 2006; Kim 

et al., 2013; Lebow and Chen, 2016; Lovinger and Kash, 2015). However, there 

are numerous GABAergic interneurons within the BNST and KOR antagonists may 

restore glutamate release onto these subpopulations driving feed-forward 

inhibition of anxiogenic populations. Thus, KOR antagonists may promote 

anxiolytic behavior directly, or indirectly through local circuits, by inhibition of 

anxiogenic hotspots in the BNST.  

Given the complex interplay with CRF and DYN in the stress response, it is 

not surprising that both are synergistically involved in anxiety. This interaction was 

clearly demonstrated by the Chavkin lab who showed that central administration 

of CRF provokes an anxiogenic phenotype in the elevated plus maze that is 

blocked by nor-BNI treatment within the BLA (Bruchas et al., 2009). Because KOR 

agonists decrease LTP and glutamate release in the BLA, it is tempting to 

speculate that intra-BLA nor-BNI disinhibits the BLA-BNST circuit thereby 

promoting anxiolytic behavior, but this has not been directly tested to the best of 

our knowledge (Huge et al., 2009; Crowley et al., 2016). CRF and DYN largely co-

localize within the nearby CeA and compensatory mechanisms have been 

observed in CRF expression after genetic alteration of DYN (Pomrenze et al., 

2015; Wittmann et al., 2009). For example, global Pdyn-knockout or nor-BNI 

treatment decreased Crf mRNA expression in the CeA (and PVN), which is 

associated with decreased expression of anxiety-like behavior (Wittmann et al., 
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2009). This is interesting because it demonstrates an influence of DYN/KOR 

activity on CRF expression, whereas CRF1 activation also promotes DYN release 

in other regions (Bruchas et al., 2009). Finally, direct infusion of CRF into the CeA 

is anxiogenic and enhances excitability of CeA neurons that project to the BNST 

(Asok et al., 2018). Indeed, anxiogenic neurons within the CeA-BNST circuit are 

known to express DYN and CRF, and expression of anxiety-like behavior is 

dependent upon KOR and the CRF1 receptor activity in the BNST (Ahrens et al., 

2018; Pomrenze et al., 2019). Thus, DYN and CRF play complimentary roles within 

the extended amygdala that contribute to anxiety-like behavior. 

 

DYN/KOR IN AUD AND DEPENDENCE 

Clinical Perspective 

Given the role of DYN/KOR in aversion, stress, and anxiety, it is not 

surprising that this system has gained much attention as a druggable target for the 

treatment of indices of negative effect in individuals with AUD. Indeed, examination 

of polymorphisms in the genes coding for DYN and KOR have revealed a strong 

association with AUD and dependence. More specifically, a single nucleotide 

polymorphism (SNP) in the PDYN gene has been identified in patients with AUD 

and is associated with drinking severity (Preuss et al., 2013; Williams et al., 2007; 

Xuei et al., 2006). In fact, PDYN SNPs are associated with negative craving and 

predict the likelihood of drinking severity in response to stress (Karpyak et al., 

2013; Preuss et al., 2013). SNPs in the Oprk1 gene coding for KOR are similarly 

found in individuals with AUD and are predictive of the severity of symptoms 
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assessed by AUDIT (Edenberg et al., 2008; Park et al., 2020). Furthermore, 

polymorphisms in PDYN and Oprk1 are associated with increased impulsivity, 

anxiety, and negative craving that predicts drinking severity (Edenberg et al., 2008; 

Park et al., 2020; Votinov et al., 2014; Xuei et al., 2006; Xuei et al., 2007). A more 

casual role for KOR in AUD has been identified in clinical studies through the use 

of the non-selective opioid antagonist naltrexone. Naltrexone is primarily thought 

to reduce alcohol intake with greater efficacy in individuals with a select 

polymorphism in the gene coding for the mu-opioid receptor (MOR), although there 

is some evidence suggesting this effect may be mediated by the KOR (Anton, 

2008; Oroszi et al., 2009). For example, alcohol-dependent individuals show less 

KOR bioavailability in the amygdala, insular cortex, frontal cortex, and striatum, all 

regions implicated in excessive drinking, withdrawal, and craving (Vijay et al., 

2018). Furthermore, naltrexone was found to decrease craving and alcohol intake 

in nontreatment-seeking heavy drinkers and this response was associated with 

KOR availability prior to treatment (de Laat et al., 2019). Similarly, nalmefene is a 

MOR antagonist and partial KOR agonist that has been shown to reduce the  

frequency and intensity of drinking in alcohol-dependent subjects (Mann et al., 

2013; van den Brink et al., 2013). Therefore, the development and application of 

selective KOR antagonists for the treatment of AUD has shown promise, and 

preclinical studies have been successful in demonstration the underlying 

processes that mediate these effects.  
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Preclinical Models of AUD 

For roughly 30 years, the relationship between DYN/KOR activity and 

alcohol consumption has been studied in preclinical models of AUD. Because KOR 

are located within brain regions that are involved in reward and aversion, much 

work has been done to determine the contribution of KOR to alcohol-induced CPP 

and CPA. However, a clear role for KOR within these behaviors has been difficult 

to ascertain due to mixed results. For example, systemic administration of the KOR 

agonist, U50,488, 10-min before alcohol conditioning blocks CPP learning in 

DBA/2 mice (Logrip et al., 2009). However, U50,488 treatment 90-min before 

alcohol pairings potentiates CPP in C57BL/6J mice, suggesting that the anxiolytic 

properties of alcohol relieved the aversive state driven by U50,488 (Sperling et al., 

2010). However, a provocateur of KOR signaling, be it endogenous DYN release 

in response to stress or exogenous administration of a KOR agonist, may be 

necessary to uncover KOR involvement in CPP. For example, FSS drives 

endogenous release of DYN and repeated FSS prior to conditioning potentiates 

CPP expression, an effect that is blocked by nor-BNI (McLaughlin et al., 2003a; 

Sperling et al., 2010). Interestingly, nor-BNI alone has no effect on CPP learning 

or expression, but does potentiate state-dependent CPP expression (Nguyen et 

al., 2012). These data are indicative of a facilitation of reward-pathway signaling 

during alcohol challenge, stress, or KOR antagonist administration that potentiates 

the rewarding properties of alcohol. Few studies, however, have explored the 

relationship between CTA and the DYN/KOR system. Nor-BNI does not affect 

alcohol-induced CTA during conditioning or testing but does attenuate CTA in 
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stressed rats suggesting potentiation of the aversive properties of alcohol by stress 

in a KOR-dependent manner (Anderson et al., 2013; Roma et al., 2008). Thus, 

further studies are necessary to determine a clear role for KOR in mediating 

reward/aversion related to alcohol.  

In the context of voluntary home-cage alcohol drinking, systemic 

administration of a KOR antagonist generally reduces intake that has been 

observed across multiple limited-access drinking paradigms ranging from 30-min 

to 24-hours of access (Anderson and Becker, 2017; Karkhanis et al., 2017). More 

specifically, nor-BNI reduced alcohol drinking during a 3-hour 2-bottle choice 

session in Rhesus monkeys and produced a reduction of intake in male C57BL/6J 

mice during 18- and 24-hour access to alcohol (Logrip et al., 2008; Williams and 

Woods, 1998; Zhou et al., 2017). However, the effect of a KOR antagonist on 

home-cage drinking is not consistent given that, under similar experimental 

conditions, either no effect or an increase in drinking has been observed. For 

example, nor-BNI reduced alcohol intake in female Long Evans rats during a 30-

min drinking session but increased drinking in males, suggesting possible sex 

differences in responsiveness to KOR antagonists (Morales et al., 2014). Nor-BNI 

also increased drinking in a subset of male Lewis rats that were high drinkers, but 

had no effect in females (Lindholm et al., 2001; Mitchell et al., 2005). Effects of 

KOR agonists on voluntary consumption have also been inconsistent across 

species and drinking paradigms. More specifically, chronic administration of 

enadoline increased alcohol intake in Wistar rats as does U50,488 treatment in 

C57BL/6J mice during continuous access drinking (Holter et al., 2000; Sperling et 
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al., 2010). Similarly, U50,488 increased alcohol intake during 1- and 2-hour limited 

access drinking sessions in C57BL/J5 mice (Anderson et al., 2016; Rose et al., 

2016). However, others have shown that U50,488 decreased intake in rats in both 

2- and 24-hour access drinking paradigms (Lindholm et al., 2001; Sandi et al., 

1990). Thus, differences in species, strain, time-course of drug delivery, and 

experimental design likely account for the inconsistency of the results in these 

studies.   

Although results have been mixed in the context of home cage drinking, a 

clear role for KOR has been demonstrated in models of operant self-administration 

in rats. Systemic administration of a KOR antagonist decreased operant self-

administration, blocked spontaneous recovery, and lowered progressive ratio 

breakpoints in Wistar and P-rats, respectively (Deehan et al., 2012; Rorick-Kehn 

et al., 2014; Schank et al., 2012; Walker et al., 2011). Furthermore, KOR 

antagonists block alcohol-seeking behavior in response to cues associated with 

alcohol or a pharmacological stressor, such as yohimbine (Schank et al., 2012; 

Funk et al., 2014). In fact, systemic challenge with U50,488 acts like a 

pharmacological stressor and is sufficient to induce reinstatement behavior in rats 

under extinction conditions, and this effect is blocked by nor-BNI (Funk et al., 2014; 

Hayes and Stewart, 1985). Studies involving mice, however, are mainly conducted 

in the context of home-cage drinking whereas the vast majority of studies involving 

reinstatement involve rats. This is particularly true in the context of models of 

alcohol dependence where rats typically self-administer alcohol opposed to mice 
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that are commonly presented alcohol in limited-access home cage drinking 

paradigms. 

Recently, focus has shifted toward probing DYN/KOR involvement 

dependence and negative affect associated with withdrawal that drives excessive 

drinking, aka the “dark side of addiction” (Koob, 2013; Schulteis and Koob, 1994). 

Rodent models of alcohol dependence, such as the chronic intermittent ethanol 

(CIE) exposure paradigm, produce a phenotypic escalation of voluntary alcohol 

consumption, withdrawal-related sequalae, and genetic adaptions that are seen in 

humans thus serving as a robust platform for the study of AUD (Becker and Lopez, 

2004; Lopez and Becker, 2005; Melendez et al., 2012; Osterndorff-Kahanek et al., 

2015). The CIE model involves repeated cycles of alcohol vapor exposure and 

withdrawal that mimics repeated bouts of binge drinking and withdrawal observed 

in humans. In a groundbreaking study, Walker and Koob compared the effects of 

naltrexone, nalmefene, and the selective KOR antagonist nor-BNI on alcohol self-

administration in CIE-exposed Wistar rats (Walker and Koob, 2008). Interestingly, 

naltrexone and nalmefene had a general effect on decreasing responding for 

alcohol, but nor-BNI selectively decreased self-administration in dependent rats 

without affecting moderate responding and intake in non-dependent subjects 

(Walker and Koob, 2008). These data suggest that the DYN/KOR system in 

particular is sensitive to a history of dependence/CIE exposure and further studies 

have supported this notion. For example, systemic challenge with nor-BNI 

decreased high levels of alcohol intake and attenuated anxiety-like behavior during 

withdrawal from CIE exposure (Walker et al., 2011). The anxiolytic properties of 
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KOR antagonists have been demonstrated in measures of withdrawal-induced 

anxiety, such as marble burying, elevated plus maze, and ultrasonic vocalizations 

(Rose et al., 2016; Berger et al., 2013; Schank et al., 2012). The extended 

amygdala is a likely culprit in mediating these effects because this macrostructure 

is rich in DYN/KOR and involved in excessive alcohol consumption (Al-Hasani et 

al., 2015; Bloodgood et al., 2020; Marchant et al., 2007). In fact, site-specific 

delivery of nor-BNI into the NAc, CeA, or BNST attenuates dependent-like drinking 

in CIE-exposed subjects without affecting drinking in non-dependent controls 

(Erikson et al., 2018; Kissler et al., 2014; Nealey et al., 2011). We will describe the 

role of KOR within the NAc, CeA, and BNST below in further detail. 

We have previously described the role of DA within the NAc in relation to 

the motivation to drink excessively and it is theorized that KOR antagonists may 

be effective in restoring dopaminergic homeostasis in the NAc under extreme 

conditions such as alcohol dependence. For example, a history of alcohol 

dependence achieved through CIE exposure results in increased expression of 

Pdyn mRNA within the NAc and selective microinjection of nor-BNI decreased 

dependent-like drinking (Karkhanis et al., 2015; Nealey et al., 2011). Alcohol is 

known to increase extracellular DA in the NAC but this response is inverted in CIE-

exposed mice in that DA levels decrease in response to acute alcohol challenge 

(Karkhanis et al., 2016). Furthermore, DA release within the NAc is decreased in 

dependent mice through enhanced functionality of KOR on VTA terminals 

(Karkhanis et al., 2015). The hypodopaminergic state observed during withdrawal 

is specific to alcohol-dependent mice and reflective of increased sensitivity of KOR 
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to agonists. The functional consequence of the so-called CIE-induced “super-

sensitivity” to KOR agonists is a hypodopaminergic state that promotes dysphoria, 

anxiety, and drug-seeking, which can be blocked by nor-BNI (Rose et al., 2016). 

This effect has been observed in rodent models as well as in non-human primates 

suggesting a conserved mechanism across species in the development of AUD-

like phenotypes (Siciliano et al., 2015; Siciliano et al., 2016). In support of the 

hypothesis that KOR-mediated suppression of DA activity drives negative affective 

states, microinjection of a KOR agonist into the NAc promotes anhedonia-like 

behavior that is blocked by a KOR antagonist (Muschamp et al., 2011). It is 

reasonable to suspect then that KOR antagonists would, in theory, block KOR 

activity on VTA terminals and disinhibit DA release in the NAc, reflecting rewarding 

properties and a potential for abuse. Indeed, KOR antagonists increased 

extracellular DA and KOR knockout potentiated evoked-DA release in the NAc, but 

ICSS reward threshold is not affected (Karkhanis et al., 2016; Todtenkopf et al., 

2004; Zapata and Shippenberg, 2006). Thus, it is theorized that DYN/KOR 

modulation of phasic DA release in the NAc is activity dependent and that KOR 

antagonists may be effective in restoring homeostasis under extreme conditions, 

such as alcohol dependence. It is also important to note that increased Pdyn 

mRNA has been observed within the NAc shell of seizure-prone mice during 

withdrawal from chronic alcohol (Beadles-Bohling and Wiren, 2005). Nor-BNI 

increased seizure activity in these mice during early withdrawal, although 

administration was via systemic injection and not localized to the NAc (Beadles-

Bohling and Wiren, 2006). Furthermore, systemic U50,488 increased seizure 
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threshold suggesting opposing KOR involvement in seizure activity and withdrawal 

related-negative affect. Future studies with targeted treatment will be of 

importance.  

 Less is known about DYN/KOR function within the CeA and BNST in the 

context of alcohol dependence but the existing data support a similar role in 

excessive drinking and withdrawal-related negative affect. For example, Pdyn 

expression and DYN-A immunoreactivity are increased within the CeA after 

chronic alcohol treatment and KOR therein display increased GTPyS signaling 

indicative of super-sensitivity, similar to the that observed in the NAc (D'Addario et 

al., 2013; Kissler and Walker, 2016). Kissler and collogues further demonstrated 

that microinjection of nor-BNI into the CeA selectively decreased drinking in 

dependent rats suggesting that the increase in KOR sensitivity contributes to 

excessive drinking (Kissler et al., 2014). However, physical signs of withdrawal 

were not affected by nor-BNI thus KOR within the CeA appear to play a 

predominant role in drinking behavior that is dissociable from negative affect. The 

exact mechanism driving the decrease in drinking is not entirely clearly, but could 

be through modulation of GABA release onto select populations within the CeA. 

For example, output neurons of the centromedial amygdala (CeM) are known to 

promote alcohol drinking and seeking behavior (Gilpin et al., 2015; Roberto et al., 

2012). Acute alcohol increases GABA release within the CeM and CIE exposure 

not only increases basal extracellular GABA, but potentates GABA release in 

response to alcohol (Roberto et al., 2003; Roberto et al., 2004). Interestingly, KOR 

regulate tonic inhibition within the CeM through modulation of GABA release from 
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presynaptic terminals (Kang-Park et al., 2013). The KOR agonist, U69593 reduces 

IPSCs indicative of KOR regulation of tonic GABAergic tone. Acute alcohol 

increases evoked IPSCs within the CeM from nearby KOR-expressing neurons 

within the centrolateral amygdala (CeL) and this effect is potentiated by nor-BNI or 

by genetic deletion of KOR (Kang-Park et al., 2013). GABA within the CeA is also 

associated with the reinforcing properties of alcohol as both GABAA antagonists 

and nor-BNI decrease self-administration (Hyytia and Koob, 1995; Kissler and 

Walker, 2016). The discrepancy between increased GABAergic tone resulting from 

CIE-induced dependence and increased GABA release in response to KOR 

antagonists is not fully understood, but may be reflective of topography of KOR-

expressing populations within the CeA. For example, KOR-expressing neurons 

within the CeL may functionally gate output neurons of the CeM such that nor-BNI 

restores tonic inhibitory control over this output population resulting in decreased 

drinking. Thus, future studies mapping expression patterns of KOR within the CeA 

in relation to output neurons that are known to promote excessive drinking will be 

of importance. 

 Much like the CeA, the BNST is highly enriched in DYN/KOR and sensitive 

to the effects of chronic alcohol. For example, a history of CIE exposure increased 

alcohol self-administration and upregulated Oprk1 expression within the BNST 

(Erikson et al., 2018). Interestingly, Pdyn expression was not affected by moderate 

alcohol self-administration nor CIE exposure. This observed increase in Oprk1 

contributes to excessive drinking because site-specific microinjection of nor-BNI 

into the BNST decreased alcohol self-administration in dependent rats without 
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affecting moderate responding in non-dependent control groups (Erikson et al., 

2018). In contrast to the CeA, KOR blockade in the BNST decreased ultrasonic 

vocalizations during withdrawal suggesting a reduction in negative affect (Erikson 

et al., 2018; Kissler et al., 2014). Thus, KOR within the BNST likely modulate 

maladaptive excessive drinking behavior by relieving withdrawal-related sequala 

in the negative affective domain, but the endogenous source of DYN mediating 

this effect is unknown.  

 

Extended Amygdala and Binge Drinking 

We have thus far discussed DYN/KOR involvement within the extended 

amygdala in relation to excessive drinking as a function of alcohol dependence. 

Binge drinking, however, is unique in that drinking is excessive yet infrequent, and 

occurs prior to development of dependence or AUD. Therefore, neuroadaptive 

processes involved in early binge drinking likely change over time during the 

transition to dependence that promote frequent, uncontrolled binge drinking. The 

amygdala has been implicated in binge drinking because it is a critical hub in 

reward circuitry involved in emotional reactivity and appetitive behavior (Gilpin et 

al., 2015; Koob, 2003; Roberto et al., 2012; Stephens and Duka, 2008). A history 

of binge drinking produces alterations in amygdala activity that present as poor 

mood states, heightened anxiety, altered stress-responsiveness, and increased 

impulsivity (Stephens and Duka, 2008; Stephens et al., 2005; Townshend and 

Duka, 2005). Furthermore, human functional magnetic resonance imaging (fMRI) 

studies show that increased activity at rest in the amygdala is associated with 
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heightened anxiety and impulsive decision-making in binge drinkers (Xiao et al., 

2013). Anxiety and impulsivity have a positive relationship with binge drinking and 

are associated with aberrant connectivity between the amygdala and the prefrontal 

cortex (PFC), which reflects deficits in networks mediating top-down control of 

excessive drinking (Balodis et al., 2009; Stautz and Cooper, 2013). In fact, 

decreased coupling of amygdala and PFC connectivity predicts long-term alcohol 

intake as a function of drinking during adolescence, suggesting neuroadaptations 

within amygdala-circuitry that contribute to the trajectory of AUD (Peters et al., 

2017). In contrast, acute alcohol intoxication to binge levels is anxiolytic and 

dampens amygdala activity, blunting emotional processing and threat 

responsiveness (Gilman et al., 2008; Gorka et al., 2013). Risky decision-making is 

a hallmark of binge intoxication and is associated with a dysregulation of emotional 

processing and decreased inhibitory control over behavior. Therefore, the 

amygdala plays a critical role in the motivation to consume alcohol excessively and 

is affected by a history of binge drinking. Given the role of DYN/KOR within the 

amygdala in preclinical models of AUD, it is likely that this system is recruited to 

promote binge drinking behavior as well. However, examination of DYN/KOR 

within the amygdala and projection sites in humans is currently not possible given 

the limitations of current imaging technology.  

An animal models that approximate binge drinking, the Drinking in the Dark 

(DID) paradigm, has been widely used in the field and proven to be an effective 

platform for pharmacological and circuit-level interrogation of brain systems that 

drive binge drinking (Crabbe et al., 2017; Rhodes et al., 2005; Sprow and Thiele, 
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2012). An important aspect of the DID model is that it captures excessive drinking 

behavior prior to the development of dependence when neuroadaptations are likely 

to occur that promote the progression to compulsive, inflexible drinking (Ferguson 

et al., 2019). The DID model capitalizes on natural rhythms in rodent behavior such 

that alcohol bottles are present 3 hours into the dark cycle, coinciding with a period 

of high alcohol consumption. Thus, mice drink more alcohol during this time period 

when presented with a single bottle of 20% alcohol (vol/vol) compared to any other 

period in the circadian cycle (Rhodes et al., 2005). Furthermore, BACs achieved 

after 2 or 4 hours of drinking exceed the 0.08 g/dL legal limit of intoxication and 

effectively models binge drinking behavior in humans. Indeed, a history of binge 

drinking results in lasting neuroadaptations that are associated with increased 

intake over time in mice, rats, non-human primates, and humans suggesting a 

conserved mechanism across species (Baker et al., 2017; Hingson et al., 2017; 

Zhou et al., 2017). Further, a growing body of literature has demonstrated 

involvement of the extended amygdala and neuropeptide systems therein in 

excessive alcohol drinking in the DID model (Anderson et al., 2014; King et al., 

2017; Pleil et al., 2015; Rinker et al., 2017).  

There has been considerable interest in the contribution of the DYN/KOR 

system to excessive drinking and negative affect produced by alcohol 

dependence, but recent studies suggest a general role in the regulation of binge 

drinking. For example, we have shown that systemic administration of the KOR 

agonist U50,488 increased binge-like alcohol consumption in male mice 

(Anderson et al., 2018). In contrast, systemic administration of the short acting 
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KOR antagonist LY2459989 decreased binge drinking. These findings compliment 

those that demonstrate efficacy of KOR antagonists to decrease dependent-like 

drinking, and are reflective of a general reduction of excessive drinking 

independent of a history of dependence. Furthermore, these findings are 

consistent with others that have shown that KOR agonists and antagonists 

bidirectionally modulate voluntary alcohol consumption, and the extended 

amygdala is a likely candidate in mediating these effects. The CeA is enriched in 

dynorphinergic neurons that may promote binge drinking behavior through 

activation of KOR locally or in downstream structures, such as the BNST 

(Marchant et al., 2007; Bloodgood et al., 2020). Indeed, a history of binge drinking 

increased excitability in DYN-containing neurons within the CeA of male mice 

suggesting a neuroadaptation in endogenous dynorphinergic circuitry underlying 

excessive drinking (Bloodgood et al., 2020). This rationale is supported by studies 

demonstrating that chemogenetic inhibition of DYN-containing neurons within the 

CeA, or genetic deletion of DYN in the CeA, decreased binge-like drinking in male 

and female mice (Anderson et al., 2018; Bloodgood et al., 2020). These studies 

demonstrate a clear role for DYN within the extended amygdala, but the 

downstream KORs mediating these effects are not known. Local release of DYN 

within the CeA is a possible explanation in that microinjection of nor-BNI or genetic 

deletion of KOR therein attenuated binge drinking in male mice (Anderson et al., 

2018; Bloodgood et al., 2020). However, KOR knockout in the CeA of female mice 

does not affect binge-like alcohol consumption alluding to possible KOR activity in 

a downstream structure (Bloodgood et al., 2020). Interestingly, systemic U50,488 
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increased c-Fos immunoreactivity within the CeA and the BNST, but expression in 

the BNST strongly correlated with reinstatement of alcohol-seeking (Le et al., 

2018). Therefore, KOR in the BNST may more directly contribute to binge drinking. 

Indeed, the CeA sends dense dynorphinergic projections to the BNST (CeA-

BNSTDYN) and the observed increase in c-Fos immunoreactivity within the CeA 

and BNST during bouts of binge drinking may be reflective of circuit level activation 

(Anderson et al., 2018; Ahrens et al., 2018; Le et al., 2018). A considerable gap 

exists in the literature in relation to KOR activity in the BNST and CeA-BNST 

connectivity in the context of binge drinking. Studies addressing this open question 

are critical to understanding the mechanisms that promote binge drinking prior to 

the development of dependence.  

 

Summary 

Binge drinking is the most common form of excessive drinking and presents 

a multitude of adverse effects on health and behavior, propelling binge patterns of 

drinking into the spotlight as a serious epidemiological concern (Sacks et al., 2015; 

SAMHSA, 2018; WHO, 2018). This pattern of intake is associated with increased 

engagement in risky behavior, poor health, and increased risk of developing 

alcohol dependence and/or an AUD (Centers for Disease and Prevention, 2012; 

Jennison, 2004). Binge drinking is a critical component in the cycle of addiction 

and understanding the mechanisms that promote binge drinking is important to 

understanding the trajectory of neuroadaptations that contribute to the 

development of an AUD. Among several neurochemical and neuropeptide 
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systems implicated in binge drinking, recent findings suggest a prominent role for 

the DYN/KOR system. This present dissertation uses a multifaceted approach 

involving pharmacology, immunohistological assessment of neuronal activity, and 

chemogenetics to interrogate the DYN/KOR neuropeptide system within extended 

amygdala circuity as it relates to excessive binge-like alcohol consumption in male 

and female mice. More specifically, we aim to determine the effect of KOR 

agonist/antagonist microinjection in the BNST on binge drinking behavior. We then 

examine endogenous activity of CeA projections to the BNST during drinking and 

functionally probe the role of the CeA-BNSTDYN circuit as it relates to binge-like 

alcohol consumption. Results from these studies provide important information 

regarding this neuropeptide system as a potential target for the development of 

therapeutics in treating individuals that engage in dangerous, excessive levels of 

alcohol drinking and provide valuable insight into the trajectory of AUD. 
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CHAPTER 2: Kappa Opioid Receptors in the Bed Nucleus of the Stria 
Terminalis Regulate Binge-Like Alcohol Consumption in Male and Female 
Mice. 
 
INTRODUCTION 

As described in Chapter 1, a growing body of literature has focused on the 

dynorphin/kappa opioid receptor (DYN/KOR) system in mediating excessive 

drinking (Anderson and Becker, 2017; Koob and Le Moal, 2008; Walker and Koob, 

2008). Activation of the DYN/KOR system following chronic alcohol exposure has 

been associated with behaviors reflective of a negative affective state experienced 

during alcohol withdrawal, and this has been suggested to increase relapse 

vulnerability as well as promote excessive levels of drinking (Karkhanis et al., 

2017; Sirohi et al., 2012). In fact, KOR antagonists have garnered much interest 

as a potential therapeutic intervention for the treatment of AUD (Karkhanis et al., 

2017). In support of this idea, studies have shown that systemic administration of 

the KOR antagonist, nor-BNI, attenuates dependence-related escalation of alcohol 

consumption and alleviates withdrawal symptomology in rats (Walker et al., 2011). 

These effects appear to be mediated by blockade of KORs in the extended 

amygdala as direct injection of nor-BNI into the central nucleus of the amygdala 

(CeA), bed nucleus of the stria terminalis (BNST), or nucleus accumbens shell 

(NAc shell) reduced elevated drinking and anxiety-like behavior in alcohol 

dependent animals (Erikson et al., 2018; Kissler et al., 2014; Rose et al., 2016).  

While these findings strongly implicate a role for the DYN/KOR system 

within the extended amygdala in alcohol dependence, recent findings suggest a 

more general role for KORs in the regulation of alcohol consumption in non-



 65 

dependent animals. For example, mice lacking prodynorphin or KORs show 

decreased alcohol drinking and preference (Blednov et al., 2006; Kovacs et al., 

2005; Van't Veer et al., 2016). However, few studies have probed the role of KORs 

within the context of binge drinking. The Drinking-in-the-Dark (DID) paradigm 

models binge drinking in rodents by producing high levels of  alcohol consumption 

within a relatively short period of time such that subjects reliably achieve BACs 

above the 80 mg/dL threshold of intoxication (Rhodes et al., 2005; Thiele et al., 

2014; Thiele and Navarro, 2014). We previously demonstrated that systemic 

administration of a KOR agonist increased, while a KOR antagonist decreased, 

binge-like alcohol consumption in male C57BL/6J mice (Anderson et al., 2018a). 

Since the BNST is rich in KORs and sensitive to alcohol (Burnham and Thiele, 

2017; Poulin et al., 2009), the present study examined whether manipulation of 

KORs in the BNST influence binge-like alcohol consumption using the DID model.  

 

MATERIALS AND METHODS 

Subjects 

Male and female C57BL/6J mice (Jackson Laboratories, Bar Harbor, ME) 

ranging from 10-12 weeks old were singly housed and tested in a temperature and 

humidity controlled AAALAC approved facility on a reverse 12-hr light/dark cycle 

with food and water continuously available. For all experiments, mice were treated 

in accordance with both the NIH Guide for the Care and Use of Laboratory Animals 

(National Research Council, 2011) and the Institutional Animal Care and Use 

Committee at MUSC.  
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Surgical Procedures 

Mice were anaesthetized with isoflurane and bilateral guide cannula 

(Plastics One, Inc.) were positioned above the BNST (AP: +0.8, ML: +/- 0.75, DV: 

-3.6) and secured to the skull with a light-cured resin system (Haun et al., 2018). 

Once inserted, microinjector tips extended 1 mm beyond the guide to target the 

BNST for microinjection. After surgery, all mice were given 2 weeks to recover prior 

to the start of experiments. 

Alcohol Binge Drinking Procedure 

After recovery from surgery, mice were habituated to the microinjection 

procedure by removing and then replacing dummy guides from the microinjector 

tract 30 minutes prior to drinking. Similarly, for studies involving systemic 

administration of drug, mice were habituated to the injection procedure by 

administering daily intraperitoneal (ip.) injections of vehicle for several days before 

alcohol access and then at 30 minutes prior to drinking sessions. Mice were trained 

to drink alcohol in their home cage in the limited access “Drinking-in-the-Dark” 

(DID) procedure, as previously described (Anderson et al., 2018a). A single bottle 

of alcohol (20% v/v) was presented 3 hours into the dark cycle in place of the water 

bottle. Access to alcohol was for 2 hours on 3 consecutive days, and then extended 

for 4 hours on the 4th day. Alcohol intake was determined for each 2-hour session 

and then for the 0-2 and 2-4 hour time periods during the final (4th day) 4-hour 

drinking session. An identical procedure was used for assessing sucrose (0.5% 

w/v) consumption. All mice were given one 4-day cycle of binge drinking, 3 days 

rest in the home cage, followed by a second 4-day binge cycle. For all experiments, 
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drug challenges occurred during the second binge cycle, prior to the 4-hour access 

(test) session. Average drinking across the first 3 days of the second binge cycle 

were used to separate subjects evenly into drug treatment groups. Immediately 

after the 4-hour test drinking session, blood samples were collected, plasma 

extracted, and blood alcohol concentrations determined using an AM1 Alcohol 

Analyzer (Analox Instruments, Stourbridge, UK). Separate, experimentally-naïve 

groups of mice were used in each experiment to ensure that a history of prior 

alcohol or sucrose consumption did not influence drinking or locomotor activity. 

Locomotor Activity Test 

Activity chambers (ENV-510; Med Associates) were used to assess 

locomotor activity as previously described (May et al., 2015). Briefly, the open field 

arenas measured 27.5 cm wide × 27.5 cm long × 20.5 cm deep. Mice were placed 

into the locomotor activity apparatus 16-hours after microinjection and distance 

traveled (cm) was measured in 1 min bins for 10 minutes. Additionally, cumulative 

time spent in the center (10 cm) of the open field arenas was collected to assess 

possible pharmacological effects on anxiety-like behavior. 

Drugs 

The KOR antagonist nor-Binaltorphimine dihydrochloride (nor-BNI; 2.5 

µg/side, Tocris) and the KOR agonist U50,488 (0, 0.1, 0.2 µg/side) was dissolved 

in 1xPBS for microinjection. The KOR agonist U50,488 (5 mg/kg; Tocris) was 

dissolved in 0.9% saline. Doses of nor-BNI and U50,488 were based on previous 

studies (Anderson et al., 2018a). 

Microinjection Procedures 
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Microinjections of nor-BNI were administered 16 hours before Day 4 of 

drinking during the second binge cycle in a between-subjects design. Vehicle or 

nor-BNI (2.5 µg/side) was delivered bilaterally into the BNST at 0.25 µL/min for 2-

min, followed by a 2-min diffusion period before microinjector removal (Anderson 

et al., 2018a; Griffin et al., 2014; Haun et al., 2018). Obdurators were replaced and 

mice returned to their home cage where they remained undisturbed until the 

following day. Microinjections of U50,488 (0, 0.1, 0.2 µg/side) occurred 30 min prior 

to drinking on Day 4 of the second, third, and fourth binge cycles in a 

counterbalanced, within-subjects design. For systemic administration, saline or 

U50,488 (5 mg/kg) was administered via intraperitoneal (ip) injection (10 ml/kg) 30-

min prior to the 4-hour test binge session.  

Histology 

At the conclusion of all experiments, mice were euthanized with urethane 

and transcardially perfused with 10 mL saline followed by 10 mL of 

paraformaldehyde (PFA; 4%). Brains were extracted, post fixed in 4% PFA for 24 

hours and cryoprotected in sucrose (30% wt/vol) until sectioning. Tissue was sliced 

in serial 40 µM sections and mounted on Permafrost slides. The tissue was then 

dehydrated in alcohol and stained with Cresyl Violet for histological verification of 

microinjector placement within the BNST, as previously described (Haun et al., 

2018). Only mice with verified bilateral placements in the BNST in reference to a 

mouse stereotaxic atlas were included in the final analyses (Franklin and Paxinos, 

2008). 

Statistical Analysis 
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The primary dependent variables were alcohol intake (g/kg), BEC (mg/dL), 

sucrose intake (mL/kg), and distance traveled (cm).  All data were analyzed by 

ANOVA, with Time as a repeated factor as necessary. Significant factor 

interactions were further evaluated using the Student-Newman–Keuls (SNK) for 

post-hoc comparisons. Alpha was set to p< 0.05 for all analyses. 
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RESULTS 

Effect of KOR Antagonist Microinjection Into the BNST on Binge-Like 
Alcohol Consumption. 
 

Male (N= 17) and female (N= 17) mice were split evenly into drug treatment 

groups based on alcohol intake averaged across the three preceding 2-hour 

limited-access drinking sessions. During these three sessions, males consumed 

an average of 2.01 ± 0.11 g/kg and females 3.01 ± 0.10 g/kg alcohol, consistent 

with other reports indicating female mice consume more alcohol than males (Finn 

et al., 2005; Rhodes et al., 2005; Sneddon et al., 2019). 

Alcohol intake during the test drinking session for the vehicle and KOR 

antagonist (nor-BNI) treatment groups are summarized in Figure 2.1. As shown in 

Figure 2.1A, females consumed more alcohol than males during the 0-2 and 2-4 

hour time periods following vehicle treatment. Further, nor-BNI strongly reduced 

alcohol consumption in both male and female mice. Although ANOVA did not 

indicate a significant 3-way interaction (Sex x Drug x Time; F= 0.43), there was a 

significant Sex x Drug interaction [F(1,30)= 6.53, p< 0.025], as well as main effects 

of Sex [F(1,30)= 19.06, p< 0.001] and Drug [F(1,30)= 67.50, p< 0.001]. 

Subsequent post-hoc analyses showed that nor-BNI significantly reduced alcohol 

intake in both male in female mice during both time periods (* p< 0.001). Also, 

vehicle-treated females consumed significantly more alcohol than vehicle-treated 

males (^ p< 0.001). Lastly, both sexes generally consumed more alcohol during 

the first 2-hour time period compared to the second 2-hour time period that was 

supported by a main effect of Time [F(1,30)= 10.34, p< 0.01].  
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Analysis of alcohol intake during the entire 4-hour test session showed that 

intra-BNST injection of nor-BNI significantly reduced alcohol consumption (Figure 

2.1B). This was supported by a significant Sex x Drug interaction [F(1,30)= 6.53, 

p< 0.025], as well as main effects of Drug  [F(1,30)= 67.50, p< 0.001] and Sex 

[F(1,30)= 19.06, p< 0.001]. Post-hoc analyses showed that nor-BNI decreased 

alcohol intake in both sexes compared to vehicle (* p< 0.001), and female mice 

consumed significantly more alcohol than males following vehicle treatment (^ p< 

0.001). 

At the conclusion of the 4-hour test drinking session, blood samples were 

collected and blood alcohol concentrations (BACs) were assessed. Consistent 

with the alcohol intake data, BACs were significantly lower in both sexes after nor-

BNI treatment and, under vehicle conditions, the higher alcohol intake in females 

resulted in significantly higher BACs compared to males (Figure 2.1C). This was 

supported by 2-way ANOVA that revealed a Sex x Drug interaction [F(1,30)= 5.54, 

p< 0.025] as well as main effects of Drug [F(1,30)= 49.64, p< 0.001] and Sex 

[F(1,30)= 7.15, p< 0.02]. Post hoc analyses revealed significantly reduced BACs 

in male and female mice as a result of nor-BNI treatment compared to vehicle (* 

p< 0.001) and higher average BACs in females compared to males receiving 

vehicle (^ p< 0.001). Finally, a schematic representation of microinjector guide 

placements within the BNST is represented in Figure 2.1D.  
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Figure 2.1: KOR antagonist infusion into the BNST reduced binge-like alcohol 
consumption. Male and female mice received a bilateral microinjection of vehicle 

or the KOR antagonist, nor-BNI (2.5 g/side), 16 hours before a binge drinking 
session. A) Alcohol intake (g/kg) during the consecutive 2-hour time periods (0-2 
and 2-4 hour) in the 4-hour access session. Females consumed more alcohol than 
males receiving vehicle across both timepoints (^ p< 0.001). Nor-BNI significantly 
reduced alcohol intake in males and females (*ps<0.001) relative to vehicle but 
drinking did not differ between sexes treated with nor-BNI at either time point. B) 
Cumulative alcohol intake across the 4-hour session. When treated with vehicle, 
females consumed more alcohol than males (^ p< 0.001). Nor-BNI reduced alcohol 
intake in both males and females compared to their respective vehicle (* ps< 
0.001). However, no difference was observed between males and females 
receiving nor-BNI. C) Blood alcohol concentration (BAC; mg/dL) was assessed at 
the end of the 4-hour session. Vehicle treated females had greater BACs than 
males receiving vehicle (^ p< 0.001). BACs were significantly reduced in both male 
and females compared to their respective vehicle groups (* ps< 0.001) but no 
difference was observed between males and females treated with nor-BNI. D) 
Representative microinjector tip placements within the BNST. 
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Effect of KOR Antagonist Microinjection Into the BNST on Binge-Like 
Sucrose Consumption. 
 
  Male (N= 16) and female (N= 16) mice were split into treatment groups 

based on average intake across the preceding three days of 2-hour sucrose 

drinking. Males consumed an average of 36.94 ± 1.97 mL/kg and females 

consumed 47.85 ± 2.22 mL/kg during these three days prior to drug challenge. 

During the test session, female mice generally consumed more sucrose than 

males and nor-BNI treatment produced a modest reduction in intake in both sexes 

(Figure 2.2A). ANOVA indicated main effects of Drug [F(1,28)= 9.29, * p< 0.005] 

and Sex [F(1,28)= 10.47, ^ p< 0.01], but the Dug x Sex and Drug x Sex x Time 

interaction terms did not achieve statistical significance (Fs< 2.2). Likewise, 

analysis of sucrose intake during the entire 4-hour test session indicated that nor-

BNI reduced sucrose consumption in both sexes and females generally consumed 

more sucrose than males (Figure 2.2B). This was supported by significant main 

effects of Drug [F(1,28)= 9.29, * p< 0.01] and Sex [F(1,28)= 10.47, ^ p< 0.01]. 

BNST microinjector placements for mice in this study are represented in Figure 

2.2C. 
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Figure 2.2: KOR antagonist infusion into the BNST reduced binge-like sucrose 
consumption. A) Sucrose intake (mL/kg) during the consecutive 2-hour time 
periods (0-2 and 2-4 hour) in the 4-hour access session. Females consumed more 
sucrose than males (^ p< 0.01) and infusion of nor-BNI into the BNST resulted in 
a general suppression of sucrose intake (* p= 0.005). B) Cumulative sucrose intake 
across the 4-hour session. Sucrose intake was greater in females (^ p< 0.01) while 
intake was lower in mice treated with nor-BNI compared to vehicle across sexes (* 
p= 0.005). C) Representative microinjector tip placements within the BNST. 
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Comparison of nor-BNI’s effects in the BNST on alcohol and sucrose 
consumption. 
 
  Because direct administration of nor-BNI into the BNST decreased 

consumption of both alcohol (Figure 2.1) and sucrose (Figure 2.2), the effect size 

was compared by expressing data from these 2 experiments as the percent 

change from vehicle (mL/kg). As can be seen in Figure 2.3, intra-BNST nor-BNI 

injection reduced alcohol consumption to a greater extent than sucrose. This was 

supported by ANOVA that indicated a significant Solution x Drug interaction 

[F(1,58)= 8.99, p< 0.005] as well as a main effect of Drug [F(1,58)= 61.45, p< 

0.001] and Solution [F(1,58)= 8.50, p< 0.005]. There was no main effect of Sex or 

interactions with this variable. Post-hoc analyses showed that the percent 

decrease in intake after nor-BNI was significantly greater for alcohol compared to 

sucrose (# p< 0.001). This suggests that the overall suppressive effect of local 

KOR antagonist treatment in the BNST is more pronounced for alcohol compared 

to sucrose.  
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Figure 2.3: Suppressed intake after KOR antagonist infusion into the BNST is 
greater for alcohol compared to sucrose. A) Using data collected in Experiments 
1 and 2, a percent change from vehicle calculation was made based on 4-hour 
intake of alcohol or sucrose for each sex. Nor-BNI microinjection into the BNST 
resulted in a significant decrease compared to vehicle for intake of alcohol and 
sucrose (* ps< 0.001). However, the percent change from vehicle after nor-BNI 
treatment was significantly greater in mice consuming alcohol compared to those 
drinking sucrose (# ps< 0.001).  
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Examination of Non-Specific Locomotor Effects of KOR Antagonist 
Microinjection in the BNST. 
 

A separate cohort of male (N= 17) and female (N= 16) mice were used to 

determine if the decrease in alcohol and sucrose consumption following intra-

BNST nor-BNI microinjection resulted from non-specific sedative effects by 

examining locomotor activity in an open-field arena. While females were generally 

more active than males [F(1,29)= 31.40, p< 0.001], nor-BNI infused into the BNST 

16 hours prior to testing did not affect distance traveled in either sex (Figure 2.4A). 

This was supported by the fact that ANOVA did not reveal a main effect of Drug 

(F= 0.03) or an interaction of Drug with Sex or Time variables. This suggests that 

the suppressive effect of nor-BNI on drinking behavior is not likely related to a 

general sedative-like effect. Further, analysis of time spent in the center of the 

open field indicated no significant main effects of Sex (F= 0.53) or Drug (F= 0.02). 

This suggests that KOR blockade within the BNST did not affect anxiety-like 

behavior under these behavioral testing conditions (Figure 2.4B). Microinjector 

placements within the BNST for this study are represented in Figure 2.4C. 
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Figure 2.4: KOR antagonist infusion into the BNST does not affect locomotor 
activity. A) Cumulative distance traveled (cm) after vehicle or nor-BNI 
microinjection into the BNST 16 hours before open field testing. Females generally 
traveled a greater distance than males (^ p< 0.001) but nor-BNI did not affect 
locomotor activity. B) Representative microinjector tip placements in the BNST. 
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Effect of KOR Agonist Microinjection Into the BNST on Binge-Like Alcohol 
Consumption. 
 

Male (N= 10) and female (N= 10) mice were split evenly into drug treatment 

groups based on alcohol intake averaged across the three preceding 2-hour 

limited-access drinking sessions. Male mice consumed an average of 2.12 +/- 0.2 

g/kg and females 2.72 +/- 0.28 g/kg alcohol during these three days. Two female 

mice were excluded from testing due to microinjector head-cap dislocation.  

Alcohol intake during the test drinking sessions after microinjection of the 

KOR agonist U50,488 (0, 0.1, 0.2 µg/side) is shown in Figure 2.5. Because neither 

a main effect of Sex [F(1,32)= 0.39, p= 0.54) nor a factor interaction was observed 

during the 4-hour binge drinking test sessions, data were averaged across males 

and females. Microinjection of U50,488 resulted in an increase in alcohol intake 

(Figure 2.5A). Repeated-measures ANOVA revealed a main effect of Drug 

[F(2,64)= 3.61, p< 0.05) and a Drug x Time interaction neared significance 

[F(2,64)= 2.48, p= 0.09). As can be seen, the increase in alcohol intake was likely 

driven by drinking during the first 0-2 hr epoch of the test given the equivalent 

levels of intake during the latter 2-4 hr timepoint. A 2-way ANOVA of the 0-2 hr 

timepoint was conducted to further evaluate the dose dependency of U50,488. 

Analysis revealed a main effect of Drug [F(2,32)= 7.57, p< 0.005] and post-hoc 

analysis showed that alcohol intake was greater than vehicle for both the low dose 

(0.01 µg/side; p< 0.05) and high dose (0.02 µg/side; p< 0.001) of U50,488. 

Similarly, analysis of alcohol drinking during the entirety of the 4-hour drinking 

session indicated that U50,488 resulted in a modest increase alcohol drinking 

compared to vehicle supported by a near significant main effect of Drug [F(2,32)= 
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3.18, p= 0.054] (Figure 2.5B). Microinjector placements within the BNST for this 

study are represented in Figure 2.5C. 
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Figure 2.5: KOR agonist infusion into the BNST increased binge-like alcohol 
consumption. Male and female mice received a bilateral microinjection of vehicle 
or the KOR agonist, U50,488 (0, 0.1, 0.2 µg/side), 30-min before binge drinking 
sessions in a within-subjects design. Data are averaged across males and females 
due to a nonsignificant main effect of Sex. A) Alcohol intake (g/kg) during the 
consecutive 2-hour time periods (0-2 and 2-4 hour) in the 4-hour access session. 
BNST infusion of U50,488 increased alcohol intake compared to vehicle at the 0-
2 hr timepoint (*ps< 0.05). B) Cumulative alcohol intake across the 4-hour session. 
U50,488 microinjection into the BNST modestly increased alcohol intake 
independent of dose supported by a near significant main effect of Drug (#p= 
0.054). C) Representative microinjector tip placements within the BNST. 
 
  

0-2hr 2-4hr
0

1

2

3

4
A

lc
o

h
o

l 
In

ta
k
e
 (

g
/k

g
/2

h
r)

Vehicle

0.1ug

0.2ug

*

Vehicle 0.1ug 0.2ug
0

1

2

3

4

A
lc

o
h

o
l 
In

ta
k
e
 (

g
/k

g
/4

h
r)

#

#

A. B.

C.

+0.26

+0.14

+0.02



 82 

Effect of KOR Agonist Microinjection Into the BNST on Binge-Like Sucrose 
Consumption. 
 

Male (N= 10) and female (N= 10) mice were split evenly into drug treatment 

groups based on sucrose intake averaged across the three preceding 2-hour 

limited-access drinking sessions. Male mice consumed an average of 24.4 +/- 2.5 

mL/kg and females 33.8 +/- 6.0 mL/kg sucrose during these three days.  

Sucrose intake during the test drinking sessions after microinjection of the 

KOR agonist U50,488 (0, 0.1, 0.2 µg/side) is shown in Figure 2.6. Because neither 

a main effect of Sex [F(1,38)= 2.90, p= 0.1) nor a factor interaction was observed 

during the binge drinking test sessions, data were averaged across males and 

females. Microinjection of U50,488 in the BNST did not affect sucrose intake 

across the 0-2 hr and 2-4 hr timepoints in the binge drinking session [F(2,76)= 

257.61, p= 0.26] (Figure 2.6A). Similarly, U50,488 had no effect on sucrose 

drinking cumulatively during the 4 hr drinking session (Figure 2.6B). Microinjector 

placements within the BNST for this study are represented in Figure 2.6C. 
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Figure 2.6: KOR agonist infusion into the BNST did not affect binge-like sucrose 
consumption. A) Sucrose intake (mL/kg) during the consecutive 2-hour time 
periods (0-2 and 2-4 hour) in the 4-hour access session. Compared to Vehicle, 
U50,488 did not influence sucrose drinking across the binge session. B) 
Cumulative sucrose intake across the 4-hour session. No effect of U50,488 was 
observed. C) Representative microinjector tip placements within the BNST. 
  

0-2hr 2-4hr
0

10

20

30

40

50

S
u

c
ro

s
e
 I
n

ta
k
e
 (

g
/k

g
/2

h
r)

Vehicle

0.1ug

0.2ug

Vehicle 0.1ug 0.2ug
0

10

20

30

40

50

S
u

c
ro

s
e
 I
n

ta
k
e
 (

g
/k

g
/4

h
r)

#

A. B.

C.

+0.26

+0.14

+0.02



 84 

Microinjection Into the BNST 30-min Prior to Testing Negatively Affects 
Behavior. 
 

For studies in Figure 2.1 and Figure 2.2, vehicle or nor-BNI were 

administered 16-hr prior to testing and drinking during the first 2 hours of the binge 

session after vehicle treatment was similar to the average of intake over the 3 days 

preceding testing. However, drinking appeared lower after vehicle microinjection 

into the BNST 30-min prior to testing relative to drinking on the prior 3 days. To 

further explore this disruption to drinking, data during the first 2 hours of drinking 

from studies involving U50,488 microinjection into the BNST are shown in Figure 

2.7A and include average intake across the three 2-hr limited access sessions 

prior to the binge session. Alcohol intake was significantly impacted by 

microinjection of vehicle into the BNST, supported by a main effect of 

Microinjection [F(3,48)= 10.03, p< 0.001]. Further post hoc analysis showed that 

alcohol drinking after vehicle or U50,488 (0.1 µg/side) was significantly less than 

drinking after mock microinjection handling on Days 1-3 (ps< 0.05). No effect of 

Sex was observed so data are presented as male and female group averages. 

Similar to alcohol drinking, sucrose drinking is presented in Figure 2.7B that was 

disrupted by microinjection into the BNST, evidenced by a main effect of 

Microinjection [F(3,54)= 3.07, p= 0.03). Post hoc analysis revealed that sucrose 

drinking decreased after microinjection of U50,488 (0, 0.1, 0.2 µg/side) compared 

to handling on days 1-3. (ps< 0.05).  

To determine if the microinjection procedure was resulting in sedation or 

impaired locomotor activity, mice were then tested in an open field task after 

receiving either Handling, or a microinjection of Vehicle or U50,488 (0.2 µg/side; 
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Figure 2.7C). ANOVA revealed a main effect of Microinjection and further post hoc 

analysis showed that cumulative locomotor activity for mice receiving a 

microinjection into the BNST was significantly less that those handled under mock 

microinjections conditions 30-min prior to testing.   
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Figure 2.7: Microinjection into the BNST 30-min prior to testing disrupted drinking 
and locomotor activity. A) Microinjection of Vehicle or 0.1 µg/side of U50,488 into 
the BNST resulted in significantly lower drinking than the previous Day 1-3 
involving handling. B) Similarly, sucrose intake was negatively affected by 
microinjection of Vehicle, and both doses of U50,488 compared to the previous 
three days of handling only. C) Compared to handling, mice receiving a 
microinjection of Vehicle or U50,488 (0.2 µg/side) displayed significantly 
decreased locomotor activity in an open field task.  
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Effect of Systemic KOR Agonist Challenge on Binge-Like Alcohol 
Consumption After Microinjection of a KOR Antagonist Into the BNST. 
 

We previously showed that systemic administration of the KOR agonist, 

U50,488, increased binge-like alcohol consumption in male mice (Anderson et al., 

2019). Experiment 5 was conducted to determine whether KOR within the BNST 

contribute to U50,488’s ability to increase alcohol intake in male and female mice.  

Male (N= 35) and female (N= 34) mice were separated into drug treatment 

groups based on average intake across the three 2-hour drinking sessions 

preceding testing on Day 4. During these sessions, males consumed an average 

of 2.42 ± 0.08 g/kg and females consumed 2.93 ± 0.12g/kg alcohol. Initial analysis 

indicated a trend but no significant main effect of Sex [F(1,60)= 3.20, p= 0.08]. 

Since Sex did not interact with the other factors, data for the 4-hour test binge 

session were averaged across males and females. Consistent with our previous 

report, systemic administration of U50,488 robustly increased binge-like alcohol 

consumption (Anderson et al., 2018a). Further, microinjection of nor-BNI into the 

BNST decreased alcohol intake and blocked the ability of U50,488 to increase 

alcohol consumption in this binge-drinking model (Figure 2.8A). ANOVA indicated 

a Systemic Treatment x Microinjection x Time interaction [F(1,60)= 24.52, p< 

0.001] and subsequent post hoc analysis showed that U50,488 robustly increased 

alcohol intake during the first 2 hours of the test binge session relative to vehicle 

(* p< 0.001). In contrast, alcohol consumption was lower in mice treated with 

U50,488 compared to vehicle (* p< 0.001) during the latter half (2-4 hour) of the 

binge session, an effect likely due to a ceiling effect reached in the first 2 hours of 

drinking. As observed in Experiment 1, nor-BNI microinjection into the BNST 
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significantly decreased alcohol intake compared to vehicle during both time 

periods of the binge session (* p< 0.001). Further, blocking KOR in the BNST via 

direct injection of nor-BNI completely blocked increased drinking following 

systemic administration of the KOR agonist U50,488 during the first 2 hours of the 

session (+ p< 0.001). 

Cumulative alcohol intake during the entire 4-hour test session is presented 

in Figure 2.8B, also collapsed across Sex. Analysis revealed a significant 

Systemic Treatment x Microinjection interaction [F(1,60)= 7.33, p= 0.009]. Post 

hoc tests indicated that systemic administration of U50,488 increased alcohol 

intake compared to vehicle (* p< 0.01), intra-BNST nor-BNI treatment alone 

reduced alcohol intake (* p< 0.001), and blocking KOR in the BNST blocked the 

ability of systemic U50,488 to elevate drinking (+ p< 0.001). Analysis of BACs 

determined immediately following the test binge-drinking session indicated a 

significant Systemic Treatment x Microinjection interaction [F(1,60)= 16.46, p< 

0.001]. Resultant BACs mirrored cumulative drinking data in that BACs were 

elevated in mice treated with U50,488, reduced in mice that received nor-BNI in 

the BNST alone, and lower than U50,488 or vehicle levels in mice that received 

both systemic U50,488 and intra-BNST injection of nor-BNI (ps< 0.001) (Figure 

2.8C). Representative microinjector placements are depicted in Figure 2.8D. 
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Figure 2.8: KOR antagonist infusion into the BNST blocked elevated alcohol 
consumption after systemic administration of a KOR agonist. Nor-BNI was 
microinjected into the BNST 16 hour prior to the 4-hour drinking session and the 
KOR agonist, U50,488 (5 mg/kg; ip.) was administered 30 min prior to drinking. 
Alcohol drinking data are collapsed across sex given a nonsignificant main effect 
(p= 0.079). A) Systemic U50,488 treatment resulted in a significant increase in 
alcohol intake during the first 2 hours of drinking compared to vehicle (*p<0.001). 
However, a ceiling effect was likely reached given that intake was lower in the 2-4 
hour period (* p< 0.001). Microinjection of nor-BNI into the BNST resulted in 
significantly lower alcohol consumption compared to vehicle (* p< 0.001) and 
U50,488 (+ p< 0.001) during the first 2 hours. In mice receiving nor-BNI infusion 
into the BNST combined with systemic U50,488, alcohol intake was reduced 
compared to vehicle (* p< 0.001) and U50,488 alone (+ p< 0.001) during the first 
2 hours. Drinking was also lower in the drug combination group than vehicle during 
the final 2 hours of testing (*p<0.001). B) A similar pattern of drinking was observed 
for cumulative intake across the 4-hour session. U50,488 (ip.) resulted in a 
significant increase in alcohol intake (* p< 0.01) while nor-BNI microinjection in the 
BNST decreased intake compared to vehicle (*<0.001). Intake was significantly 
less than both vehicle and U50,488 in mice receiving the combined U50,488 and 
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nor-BNI (* p< 0.001; + p< 0.001). C) BAC was assessed at the end of the 4-hour 
drinking session. Systemic U50,488 resulted in significantly greater BACs 
compared to vehicle while mice treated with nor-BNI microinjection into the BNST 
or combined nor-BNI and U50,488 (ip.) had lower BACs relative to vehicle (* ps< 
0.001). Furthermore, mice receiving nor-BNI in the BNST or nor-BNI and U50,488 
had lower BACs compared to U50,488 alone (+ps < 0.001). D) Representative 
microinjector tip placements within the BNST. 
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DISCUSSION 

Results from these studies show that KORs in the BNST play a role in 

regulating binge-like alcohol drinking in male and female mice. Direct 

administration of the KOR antagonist nor-BNI into the BNST significantly reduced, 

while microinjection of the KOR agonist U50,488 increased alcohol consumption 

in the DID model. Further, intra-BNST nor-BNI injection completely blocked the 

ability of systemically administered U50,488 to increase binge-like alcohol 

consumption in the model.  While nor-BNI injection into the BNST reduced sucrose 

consumption, the magnitude nor-BNI’s effect on sucrose intake was smaller than 

the suppression of alcohol intake. Infusion of U50,488 into the BNST had no effect 

on sucrose drinking. Collectively, these data are consistent with our earlier report 

showing that systemic administration of KOR a agonist or antagonist bi-

directionally alter alcohol consumption in the DID model (Anderson et al., 2018a) 

and extend those findings to show that KOR signaling in the BNST is significantly 

involved in regulating binge-like alcohol consumption.  

These findings agree with several reports suggesting that KOR antagonists 

attenuate excessive alcohol consumption in several rodent models, and the effects 

are mediated by action within the extended amygdala (Anderson et al., 2018b; 

Crowley and Kash, 2015; Koob, 2013). For example, nor-BNI was shown to 

decrease binge-like alcohol intake when administered systemically, as well as via 

microinjection into the CeA, or as reported here, within the BNST (Anderson et al., 

2018a). The CeA is of particular relevance because it expresses dynorphinergic 

(DYN+) neurons that send dense projections to the BNST (Ahrens et al., 2018; Al-
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Hasani et al., 2015; Mansour et al., 1994; Marchant et al., 2007; Normandeau et 

al., 2018). Chemogenetic inhibition of DYN+ neurons in the CeA decreased binge 

alcohol consumption and, thus, it is possible that reduced activity of KORs within 

the BNST may mediate this effect (Anderson et al., 2018a). Since there is a high 

degree of co-expression of DYN and other neuropeptides in the CeA (Kim et al., 

2017; McCullough et al., 2018; Pomrenze et al., 2019a), it is possible that targeted 

chemogenetic inhibition of the CeA-BNST pathway may produce its effects by also 

altering release of other peptides. For example, DYN is co-expressed with CRF 

within the CeA and inactivation of the CeA-BNSTCrf pathway decreased 

dependence-related drinking and anxiety-like behavior (de Guglielmo et al., 2019; 

Marchant et al., 2007; Pomrenze et al., 2019b). Further, increased anxiety-like 

behavior induced by CeA-BNST excitation is dependent upon KOR signaling within 

the BNST, suggesting involvement of the CeA-BNSTDYN circuit (Ahrens et al., 

2018). It is likely that CeA-BNSTDYN projections are similarly recruited during binge 

drinking and influence KOR actions in the BNST. Future studies will need to 

selectively target the CeA-BNSTDYN pathway using the DID model to more directly 

address this issue. Nevertheless, while it is difficult to rule out the involvement of 

other neuropeptide systems, results from the present study support the notion that 

KOR signaling in the BNST contributes to regulating alcohol drinking in the DID 

binge model.  

While KOR blockade within the BNST decreased alcohol consumption in a 

robust manner (55% reduction), nor-BNI injection into the BNST also produced a 

modest decrease (25% reduction) in sucrose consumption under the same binge-
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drinking conditions. Interestingly, systemic administration of nor-BNI did not affect 

sucrose intake in the DID model, suggesting that KORs in the BNST may play a 

more prominent role in general consummatory behavior (Anderson et al., 2018a). 

The DYN/KOR system is known to influence feeding behavior, including 

consumption of natural (palatable) rewards (Karkhanis et al., 2017; Nogueiras et 

al., 2012). However, the mechanisms and site of action for these effects are not 

entirely clear. For example, neither systemic nor intracerebroventricular (ICV) 

administration of nor-BNI altered sucrose or saccharine intake (Lopez et al., 2011). 

In another study, ICV infusion of nor-BNI reduced feeding behavior, but targeted 

blockade of KORs in the BNST did not alter responding for palatable food pellets 

(Le et al., 2018; Lopez et al., 2011). Thus, it is unclear to what extent 

pharmacological antagonism of KORs produce general reductions in food intake. 

Results from the present study suggest that alcohol intake is more sensitive to 

KOR antagonism, but since only a single dose of nor-BNI was evaluated, future 

studies are needed to determine whether an alcohol-selective effect reflects a shift 

to the left in the dose-response function. Finally, since KOR antagonists do not 

appear to influence water intake (Lindholm et al., 2001; Zhou and Kreek, 2019), 

reduced binge-drinking in this study is not likely due to a general effect on fluid 

consumption.  

It is possible that nor-BNI influences the rewarding properties of alcohol and 

sucrose that is reflected in reduced consumption of these two solutions. For 

example, nor-BNI (ip.) administration prior to conditioning potentiated state-

dependent conditioned place preference (CPP) when mice were challenged with 
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2 g/kg alcohol (Nguyen et al., 2012). Similarly, nor-BNI potentiated CPP 

expression to a lower dose of alcohol (0.8 g/kg) only in mice with a history of forced 

swim stress prior to conditioning (Sperling et al., 2010). However, nor-BNI does 

not affect CPP expression during testing in the absence of alcohol under non-

stressed conditions (Nguyen et al., 2012; Sperling et al., 2010). These studies 

suggest recruitment of DYN/KOR under conditions involving a high dose of alcohol 

or under stressful conditions that affect the reinforcing properties of alcohol. KOR 

antagonists similarly have no effect on the expression of alcohol-induced 

conditioned taste aversion (CTA) when given before conditioning or during testing 

(Anderson et al., 2013; Roma et al., 2008). KOR specifically within the BNST have 

received less attention in relation to CPP or CTA. Therefore, it is difficult to 

determine whether nor-BNI infused into the BNST in the present studies is 

affecting the reinforcing properties of alcohol.   

Heightened anxiety is thought to promote excessive drinking and KOR 

antagonists have been shown to exert anxiolytic effects (Koob, 2013; Van't Veer 

and Carlezon, 2013). More specifically, systemic administration of nor-BNI 

decreases anxiety-like behavior in open field (OF) and elevated plus-maze (EPM) 

tests (Knoll et al., 2007; Wittmann et al., 2009). Given the expression of KOR within 

the BNST, a structure known to be involved in anxiety (Kash et al., 2015), nor-BNI 

administration in the BNST was expected to result in an anxiolytic phenotype in 

the present studies. However, we observed no difference in the amount of time 

spent in the center portion of the open field arena between vehicle and nor-BNI 

treated mice. This is consistent with another report that showed a similar dose of 
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nor-BNI (2 g/side) microinjected into the BNST of male mice had no effect on 

center time in the OF nor in time spent in the open arm of an EPM (Ahrens et al., 

2018). However, nor-BNI administration into the BNST attenuates ultrasonic 

vocalizations, physiological withdrawal scores, and alcohol intake in rats with a 

history of alcohol dependence (Erikson et al., 2018). Different measures of anxiety 

such as novelty suppressed feeding (Carr and Lucki, 2010), fear-potentiated startle 

(Knoll et al., 2007), and forced swim stress (Mague et al., 2003) are also sensitive 

to KOR antagonists. Thus, it is likely that KOR in the BNST mediate anxiety-like 

behavior, but they may be selectively recruited under specific testing conditions 

and/or the state of the subjects.  

The present studies found, in agreement with others, that female mice 

generally consume more alcohol than males, resulting in significantly greater BACs 

(Finn et al., 2005; Rhodes et al., 2005; Sneddon et al., 2019). Females also 

exhibited greater sucrose intake and higher levels of locomotor activity upon first 

introduction to an open-field arena, consistent with other reports (Archer, 1975; 

Crabbe et al., 1999; Kaur et al., 2012; Tucker et al., 2016). Interestingly, no studies 

have directly explored sex differences in the effect of KOR antagonists on binge-

drinking. We observed a proportionately larger suppression of alcohol intake 

resulting from nor-BNI microinjection in the BNST for female mice compared to 

males. This finding points to potential sex differences in the ability of KOR 

antagonists to modulate alcohol intake and merits further exploration including 

more thorough testing of nor-BNI dosing. While sex differences were observed in 

alcohol consumption in Experiment 1, no significant differences were observed in 
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Experiment 5. In this case, the observation of females consuming more alcohol 

than males neared significance (p=0.08), with females consuming roughly 0.5 g/kg 

more than males. Sex differences in alcohol intake are not consistently observed 

in different models of excessive alcohol consumption and, in this case, may be due 

to differences in experimental design between Experiment 1 and 5 (Hilderbrand 

and Lasek, 2018). Mice in Experiment 1 received a single microinjection into the 

BNST prior to drinking while mice in Experiment 5 received a microinjection 

combined with an ip. injection 30-min prior to the test drinking session. The more 

robust handling procedure may have resulted in slightly lower intake, obscuring 

potential sex differences in alcohol intake.  

In contrast to KOR antagonists, sex differences in response to KOR 

agonists have been reported but vary by brain region. For example, male guinea 

pigs exhibit greater U50,488-induced GTPS activity in the cortex, claustrum, 

periaqueductal gray, and substantia nigra while females show greater GTPS 

activity in the dentate gyrus and hypothalamus (Wang et al., 2011). Females are 

also less sensitive than males to U50,488-induced responding for intracranial self-

stimulation suggesting sex differences in the ability of KOR to mediate motivated 

behaviors, such as binge-like alcohol consumption (Russell et al., 2014). The 

BNST is a sexually dimorphic region of particular interest in relation to KOR 

activation given that after U50,488 administration, expression of the immediate 

early gene c-Fos is greater in females than males, and sex differences in KOR 

mRNA expression have been reported (Conway et al., 2019; Russell et al., 2014). 

In the context of binge drinking, however, our studies indicate no sex differences 
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in the ability of U50,488 to enhance alcohol drinking to a high level, nor in the ability 

of nor-BNI to counter U50,488’s effects within the BNST. The effect of KOR 

agonists to increase intake appears to be selective to alcohol under binge 

conditions given that the same dose of U50,488 (5 mg/kg; ip.) does not affect 

sucrose intake (Anderson et al., 2018a). Others have similarly reported no change 

in sucrose consumption after challenge with the KOR agonist, Mesyl Salvinorin B 

(Zhou et al., 2017). To more selectively probe the role of KOR activation, U50,488 

was microinjected into the BNST resulting in increased alcohol intake in both male 

and female mice. These data build upon the previous findings of systemic 

administration of U50,488 and pinpoint the BNST as a likely site mediating 

increased alcohol intake. Interestingly, the increase in intake after U50,488 

microinjection was not observed in a separate cohort of mice drinking sucrose 

suggesting that KOR activation in the BNST selectively promotes alcohol drinking 

and does not affect consummatory behavior involving a natural reward.  

While the present studies indicate that KOR activity within the BNST 

bidirectionally modulates alcohol drinking in the binge model, direct microinjection 

into the BNST in close proximity to behavioral testing negatively affected 

consumption of both alcohol and sucrose. This finding was supported by analyzing 

drinking levels during the 3 days of mock microinjection handling compared to the 

analogous first 2 hours of drinking during the 4-hour test session. The disruption 

to drinking may be due to impaired locomotor activity given than mice receiving a 

microinjection were less mobile in an open field task compared to mice being 

handled prior to testing. However, microinjection of vehicle into the BNST 16-hours 
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prior to testing did not affect alcohol or sucrose drinking given that drinking during 

the first 2 hours of the 4-hour test day was comparable to drinking the prior 3 days 

during handling. Previous studies have utilized the same procedure for 

microinjections into the CeA, mPFC, or NAc prior to testing without any significant 

disruptions to drinking (Anderson et al., 2018a; Griffin et al., 2014; Haun et al., 

2018). Therefore, it is difficult to determine the exact cause of the disruption to 

behavior after microinjection into the BNST immediately preceding testing. 

Microinjection into the BNST of rats within the context of alcohol drinking is more 

common and negative effects on behavior are not commonly observed (Erikson et 

al., 2018; Le et al., 2018). Of note in mice, microinjection of a neuropeptide-Y 

receptor agonist into the BNST 2-hours prior to drinking in the DID model 

decreased intake while drinking was relatively unaffected by vehicle (Pleil et al., 

2015). The microinjection procedure utilized by Pleil et al., 2015 involved a much 

longer pretreatment time  (2 hours) and a slower infusion rate of 0.100 uL/min. This 

is an important consideration given that our studies involving 16-hour pretreatment 

of vehicle did not influence drinking. A similar procedure with increased 

pretreatment time and smaller injection volume will be of consideration for future 

studies when possible. None the less, a clear effect of intra-BNST U50,488 to 

enhance alcohol drinking was observed in the present studies supporting the 

contribution of KOR within this structure to alcohol drinking. 

Taken together, these findings point to a role for KOR within the BNST in 

regulating excessive alcohol drinking. However, it remains unclear as to how 

DYN/KOR activity influences drinking in the context of non-dependent binge-like 
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alcohol consumption when the majority of studies suggest efficacy of KOR 

antagonists only under conditions of alcohol dependence. Interestingly, many 

neuropeptide systems associated with dependence-related drinking also affect 

binge-like drinking in non-dependent subjects. For example, antagonists targeting 

the CRF1 receptor (Funk et al., 2007), orexin1 receptor (Lopez et al., 2016b), or 

KOR (Walker and Koob, 2008) all attenuate dependence-related drinking without 

affecting more moderate levels of consumption in non-dependent animals.  And 

yet, these systems are also engaged in and promote binge-like drinking prior to 

the development of dependence. Selective antagonists targeting the CRF1 

receptor (Lowery-Gionta et al., 2012), orexin1 receptor (Olney et al., 2015), or KOR 

(Anderson et al., 2018a) decrease binge-drinking, effectively normalizing intake to 

a moderate level. Since all of these neuropeptide systems are responsive to stress, 

they may become engaged under drinking-in-the-dark conditions that engenders 

high levels of alcohol intake, that presents as a potent stressful event (Anderson 

et al., 2018b; Koob, 2013; Rivier, 1996; Stephens and Wand, 2012). In the context 

of binge drinking, the high level of alcohol intake achieved results in a rapid 

elevation in BAC and may recruit the DYN/KOR system. For example, systemic 

administration of alcohol at doses generating BACs only in excess of 80 mg/dL 

results in increased extracellular DYN release within the nucleus accumbens 

(Marinelli et al., 2006). This increase in DYN occurs during the acute effects of 

alcohol intoxication suggesting a dynamic response of DYN to alcohol beyond the 

contribution of DYN/KOR signaling to dysphoria experienced during withdrawal 

(Chavkin and Koob, 2016). Therefore, KOR antagonists may modulate the stress 
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response to alcohol or anxiety associated with binge drinking in non-dependent 

mice resulting in a normalization of intake to more moderate levels. This is 

supported by the fact that nor-BNI has no effect on moderate alcohol consumption 

in non-dependent subjects when delivered by systemic injection (Walker et al., 

2011) or into extended amygdala structures (Erikson et al., 2018; Kissler et al., 

2014).  

Thus, the DYN/KOR system, along with other stress-related peptides 

contribute to excessive alcohol consumption, and are further recruited as bouts of 

binge drinking and intoxication increase in frequency, leading to escalated and 

uncontrolled drinking observed in dependence. This provides a potential 

prophylactic window during binge drinking to selectively target these systems early 

in the trajectory of the addiction cycle to normalize intake such that regular bouts 

of binging become less frequent, thereby reducing the likelihood of escalation of 

intake over time. In conclusion, the present series of studies demonstrate that 

targeted KOR antagonist treatment within the BNST attenuates binge-like alcohol 

consumption and normalizes KOR agonist-potentiated drinking in both male and 

female mice. Future studies aimed at targeting the precise dynorphinergic circuity 

within the extended amygdala that contributes to activity at KOR within the BNST 

will shed further light on the role the DYN/KOR system plays in mediating 

excessive binge-like alcohol drinking.  
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CHAPTER 3: Increased Neuronal Activity Within the Central Amygdala is 
Associated With Binge Drinking. 
 
INTRODUCTION 

In Chapter 2, we demonstrated that KOR activity within the BNST 

modulates binge-like alcohol consumption in male and female mice. The precise 

BNST afferent projection sites that contribute to binge drinking, however, are 

poorly understood. The CeA is a likely candidate in that it is involved in various 

alcohol-related behaviors and sends dense peptide-rich, projections to the BNST 

(Ahrens et al., 2018; de Guglielmo et al., 2019; Koob, 2003, 2009; Li et al., 2012; 

Waraczynski, 2006). Preclinical models have demonstrated a role for the CeA in 

the motivational effects of alcohol and withdrawal-related sequalae that promote 

excessive drinking (Gilpin et al., 2015; Koob, 2009; Sharko et al., 2016). Further, 

a growing body of literature has focused on the CeA within the context of binge 

drinking. For example, gene expression is up-regulated in the CeA of rats with a 

history of binge-like drinking (McBride et al., 2010).  The immediate early gene 

(IEG), C-Fos, is often used as a proxy for neuronal activity and increased c-Fos 

expression has been observed in the CeA after a bout of binge drinking (Burnham 

and Thiele, 2017; McReynolds et al., 2018).  In fact, there is a distinct population 

of neurons within the CeA that is recruited prior to bouts of binge drinking that 

promote excessive drinking behavior (George et al., 2012). Ensemble recruitment 

in the CeA is also critical to network remodeling that contributes to excessive 

drinking as a function of dependence (de Guglielmo et al., 2016; George et al., 

2012; Kimbrough et al., 2020). Of note, projections from the CeA to the BNST 

mediate high levels of alcohol consumption in dependent rats and the CeA-BNST 
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circuit is thought to be involved in the motivation to drink excessively during a binge 

(de Guglielmo et al., 2019).  

While the CeA is involved in alcohol consumption, it is also responsive to 

the pharmacological effects of alcohol. For example, human imaging studies have 

reported decreased activity within the amygdala and BNST after acute alcohol 

challenge (Hur et al., 2018). The dampening of extended amygdala activity is 

thought to account for, in part, the anxiolytic properties of alcohol (Koob, 2013). In 

fact, emotionally charged cues typically evoke a strong BOLD response in the 

amygdala, but this response is blunted when alcohol is on-board (Gilman et al., 

2008; Sripada et al., 2011). Preclinical studies measuring c-Fos activity in the CeA 

after acute alcohol challenge also support the pharmacological action of alcohol 

(Hitzemann and Hitzemann, 1997; Ryabinin et al., 1997). Relevant to binge 

drinking, acute administration of alcohol in doses generating blood alcohol 

concentrations (BACs) in excess of 80 mg/dL resulted in increased c-Fos 

expression in the CeA (Hansson et al., 2008; Hitzemann and Hitzemann, 1997; 

McBride, 2002). This effect was not observed with lower doses of alcohol that 

result in lower BACs (Ryabinin et al., 1997). Similarly, moderate levels of alcohol 

drinking do not alter c-Fos activity suggesting that the high BAC achieved during 

a binge is sufficient to induce c-Fos expression within the CeA (Burnham and 

Thiele, 2017; Hitzemann and Hitzemann, 1997; McBride, 2002). Little is known, 

however, about activity within projections from the CeA to the BNST during binge 

drinking and or in response to pharmacologically relevant BACs.  
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The drinking-in-the-dark (DID) model has been widely used in the field and 

proven to be effective in serving as a platform for pharmacological and circuit-level 

interrogation of brain systems that drive binge drinking (Rhodes et al., 2005; Sprow 

and Thiele, 2012; Thiele and Navarro, 2014). Few studies, however, have 

examined c-Fos expression as a function of binge drinking in the DID paradigm. 

The only study to date characterized c-Fos expression in C57BL/6J male mice 

across multiple brain regions relative to water drinking controls, with tissue 

collected 30 min after a 2 hour drinking session (Burnham and Thiele, 2017). This 

study found that c-Fos expression was elevated within the CeA and BNST of binge 

drinking male mice. It is unclear, however, if activity within the CeA and BNST are 

related or at what time these populations are recruited during a 4 hour drinking 

session. Therefore, the present study was designed to address this gap in the 

literature by determining c-Fos activity within projections from the CeA to the BNST 

during multiple timepoints of a binge-drinking session. 

 

MATERIALS AND METHODS 

Subjects 

Male and female (N= 30/sex) C57BL/6J mice (Jackson Laboratories, Bar 

Harbor, ME) at 10 weeks of age were singly housed and tested in a temperature 

and humidity controlled AAALAC approved facility on a reverse 12-hr light/dark 

cycle with food and water continuously available. For all experiments, mice were 

treated in accordance with both the NIH Guide for the Care and Use of Laboratory 
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Animals (National Research Council, 2011) and the Institutional Animal Care and 

Use Committee at MUSC.  

Surgical Procedures 

Originally, this study was designed to determine activity within projections 

from the CeA to BNST in the context of binge drinking. This, mice were 

anaesthetized with isoflurane and 0.15 uL of red Retrobeads (Lumafluor) were 

bilaterally infused into the BNST (AP: + 0.22, ML: +/- 0.75, DV: -4.6) using a 0.5 

uL Hamilton Neuros syringe at a flow rate of 0.05 uL/min for 5 min. The syringe 

was then left in place during a 10 min diffusion period and retracted over 5 min 

(Haun et al., 2018). The volume of Retrobead infusion was based on a pilot study 

but retrograde labeling in neurons within the CeA of experimental animals was not 

consistently measurable. Therefore, co-labeling of c-Fos and Retrobeads within 

CeA projections to the BNST was not quantified and is not described further.  

Alcohol Binge Drinking Procedure 

After surgery, all mice were given 2 weeks to recover prior to the start of 

experiments and were trained to drink alcohol in their home cage in the limited 

access “Drinking-in-the-Dark” (DID) procedure, as previously described (Anderson 

et al., 2018a; Haun et al., 2020; Rhodes et al., 2005). A single bottle of alcohol 

(20% v/v) was presented 3 hours into the dark cycle in place of the water bottle. 

Access to alcohol was for 2 hours on 3 consecutive days and then extended to 4 

hours on the 4th day. Alcohol intake was determined for each 2-hour session and 

then for the 2- and 4-hour time periods during the final (4th day) drinking session. 

All mice were given one 4-day cycle of binge drinking, 3 days rest in the home 
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cage, followed by a second 4-day binge cycle. On the final 4-hour binge drinking 

session, mice were perfused and blood samples collected at the 2-hour and 4-hour 

timepoints (Figure 3.1). These time points were chosen because peak c-Fos 

expression is detected 90 min after experimental manipulation, but activity can be 

detected between 30 and 120 min post manipulation (Barros et al., 2015; Cullinan 

et al., 1995; Hope et al., 1994; Kovacs, 1998). Therefore, tissue collected at the 2-

hour timepoint is reflective of neuronal activity occurring roughly 30 min into the 

drinking session. Similarly, c-Fos expression for tissue collected at the 4-hour 

timepoint coincides with activity 150 min into the binge session. Plasma was 

extracted from blood samples and blood alcohol concentrations (BAC) determined 

using an AM1 Alcohol Analyzer (Analox Instruments, Stourbridge, UK). Water 

drinking control mice were housed under the same conditions as alcohol drinking 

subjects and handled equally (weekly cage changes and body weight 

assessments). These mice remained alcohol naïve for the duration of 

experimentation and were sacrificed at the same 2- and 4-hr timepoints, were 

perfused, and their tissue extracted in an identical manner to alcohol drinking test 

subjects. However, BAC was not assessed in this group.  
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Figure 3.1: Procedure overview. A) Mice consumed alcohol across a 4 hr limited-
access drinking session. Tissue was collected at the 2 hr and 4 hr timepoints for 
blood alcohol concentration (BAC) and c-Fos assessment. Tissue collected at the 
2 hr timepoint indicates c-Fos expression after 30 min of drinking and the 4 hr 
timepoint reflects activity after 150 min of drinking.  
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Immunohistochemistry 

Mice were euthanized with urethane and transcardially perfused with 10 mL 

saline followed by 10 mL of paraformaldehyde (PFA; 4%). Brains were extracted, 

post fixed in 4% PFA for 24 hours and cryoprotected in sucrose (30% wt/vol) until 

sectioning. Tissue was sliced in serial 40 µM sections and processed for 

immunohistochemical staining as previously described (Smith et al., 2019). Free-

floating sections were rinsed (1-min washes, repeated 6 times) in 1x phosphate 

buffered saline (PBS) then blocked in 0.3% H2O2 and 0.3% triton-X 100 (PBST) 

for 1 hr.  Tissue was then rinsed and incubated overnight in rabbit anti-c-Fos 

primary antibody (1:8000; Synaptic Systems) in 5% normal goat serum and PBST 

at room temperature. The following morning, tissue was rinsed and incubated for 

1 hr in biotinylated goat anti-rabbit secondary antibody (1:1000; Jackson Immuno 

Research). After washing, tissue was incubated for 1 hr in ABC (1:1000; Vector 

Elite Kit, Vector Labs) and rinsed. Finally, immunolabeling was visualized after a 

20 min incubation 3,3’ diaminobenzidine (DAB; 0.025%), nickel ammonium sulfate 

(0.05%), and H202 (0.015%) in PBST for 20 min. The tissue was then rinsed and 

free-floating sections were mounted onto Permafrost slides, and coverslipped with 

Permount mounting medium. 

 Images were collected under 10X magnification on an EVOS-FL 

microscope (AMF-4300, ThermoFisher) and c-Fos immunoreactivity was 

assessed with ImageJ imaging software.  A representative image of the CeA was 

collected from the left and right hemisphere of two sections corresponding to AP: 

-1.46 and AP: -1.58 (Franklin and Paxinos, 2008). ImageJ software was used to 
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generate a single standard region of interest (ROI) encompassing the CeA and c-

Fos immunoreactive nuclei were counted. C-Fos counts were averaged across 

hemisphere and serial sections to generate a single mean for each subject.  

Statistical Analysis 

The primary dependent variables were alcohol intake (g/kg), BAC (mg/dL), 

and c-Fos+ nuclei.  Alcohol intake (g/kg) and BAC (mg/dL) were analyzed by 2-

way ANOVA to assess main effects of Sex and Time (2 hr, 4 hr). Pearson’s 

correlation was used to determine the relationship between alcohol intake and 

BAC. Linear regression analysis was then used to determine the correlation 

between alcohol intake and BAC, accounting for Sex and Time as between-

subjects factors. C-Fos data were analyzed by 3-way ANOVA with Sex, Solution 

(Water, Alcohol), and Time as between-subjects factors. Pearson’s correlation was 

used to determine the general relationship between alcohol intake (or BAC) and c-

Fos expression in the CeA. Linear regression analysis was then used to determine 

the combined effect of the predictors on alcohol intake (or BAC) and c-Fos 

expression, accounting for Sex and Time as between-subjects factors. Significant 

factor interactions were further evaluated using the Student-Newman–Keuls (SNK) 

for post-hoc comparisons. Alpha was set to p< 0.05 for all analyses. 
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RESULTS 
 
Drinking-in-the-Dark Paradigm Engenders Excessive Drinking and Elevated 
BAC. 
 

Male (N= 20) and female (N= 20) mice trained in the drinking-in-the-dark 

(DID) paradigm consumed alcohol during a final 4-hr binge drinking session and 

tissue was collected for c-Fos analysis at the 2-hr and 4-hr timepoints (Figure 3.1). 

Additional groups of alcohol naïve, water drinking male and female mice (N= 

10/sex) were sacrificed at the same timepoints. Prior to analysis, three male and 

three female mice were excluded due to technical errors. 

Alcohol intake during the test drinking session for the 2-hr and 4-hr drinking 

groups are summarized in Figure 3.2A. ANOVA revealed a main effect of Sex 

[F(1,33)= 4.75, p< .05] and Time [F(1,33)= 76.08, p< .001] suggesting that females 

generally consumed more alcohol than males, and intake was greater in mice 

drinking for 4 hr compared to 2 hr regardless of sex. BAC was assessed 

immediately after drinking for 2 hr and 4 hr (Figure 3.2B). As expected, BAC was 

greater after 4 hr of drinking compared to 2 hr [F(1,33)= 13.4, p< .001), but no sex 

differences were observed, despite females drinking more than males (def discuss 

this in the discussion). Pearson’s correlation analysis showed a significant positive 

relationship between alcohol intake and BAC under these binge drinking conditions 

collapsing across Sex and Time [R2= .692, p< .001; Figure 3.2C]. . Multivariate 

linear regression analysis further revealed that Sex and Time together explained 

a significant amount variance in BAC relating to alcohol intake [F(3,33)= 22.51, p< 

.001, R2= .69]. Linear regression analysis investigating the individual contributions 

of these variables to BAC showed that alcohol intake [Beta= 1.16, t(33)= 5.80, p< 
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.001] and Time [Beta= 0.41, t(33)= 2.12, p<.05], but not Sex [Beta= 0.05, t(33)= 

0.41, p> 0.6] predicted BAC in response to alcohol drinking. Further analysis of 2-

hr and 4-hr epochs revealed a strong positive correlation between alcohol intake 

and BAC at 2-hr [R2=.48, p<.005] and 4 hr [R2=.64, p<.001], collapsed across sex 

(Figure 3.2D). 
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Figure 3.2: Alcohol drinking in the DID paradigm resulted in high levels of intake 
and elevated BAC. A) Cumulative alcohol intake across the final 2 and 4-hour 
session. Alcohol intake was greater in mice drinking for 4 hr compared to 2 hr (*p< 
.001) and females generally consumed more alcohol than males (# p< .05). B) 
Blood alcohol concentration (BAC; mg/dL) was assessed at the end of the final 2 
or 4-hour session. BACs were higher after 4 hr of drinking compared to 2 hr of 
drinking in both males and females (*p< .001) C) Alcohol intake strongly predicts 
BAC independent of time and sex (*p<.001). D) Alcohol intake and BAC were 
significantly correlated after 2 hr and 4 hr of drinking (*ps< .005). 
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Effect of Binge Drinking on C-Fos Expression Within the CeA. 

  Representative images of c-Fos immunoreactivity within the CeA of water 

drinking alcohol-naïve control mice (CTL), and those consuming alcohol (EtOH) 

for 2 or 4 hours is shown in Figure 3.3A.  For CTL mice, data were analyzed from 

a total of 10 males (2 hr: N= 5; 4 hr: N= 5) and 10 females (2 hr: N= 5; 4 hr: N= 5). 

For alcohol drinking mice, data were analyzed for 17 males (2 hr: N= 10; 4 hr: N= 

7) and 17 females (2 hr: N= 8; 4 hr: N= 9). Three-way ANOVA revealed a significant 

main effect of Solution [F(1,46)= 121.97, p< 0.001] indicating that c-Fos expression 

was elevated in mice consuming alcohol (Figure 3.3B). Furthermore, c-Fos 

expression was overall greater in females supported by a main effect of Sex 

[F(1,46)= 10.6, p< 0.005]. Finally, a main effect of Time [F(1,46)= 5.52, p< 0.025] 

indicated greater c-Fos activity after 4 hours of drinking compared to 2 hours. 

There was a significant factor interaction between Sex and Time [F(1,46)= 4.39, 

p< 0.05) and post hoc analysis revealed that c-Fos expression in females 

consuming alcohol was greater at 2 hr compared to males at 2 hr (p< 0.05), but 

expression was equivalent at 4 hr across sex. For males, c-Fos activity was greater 

after 2 and 4 hr of alcohol drinking compared to CTL at each timepoint (ps< 0.005). 

C-Fos expression was also greater after 4 hr of alcohol drinking compared to 2 hr 

(p< 0.001). No differences in c-Fos expression were observed between CTL mice 

as a function of time in males (p= 0.56). For female mice, c-Fos expression was 

elevated after 2 and 4 hr of alcohol drinking compared to CTL at each timepoint 

(p< 0.001). However, there was no difference in expression in c-Fos levels of 
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alcohol drinking mice after 2 and 4 hr (p= 0.67), nor in CTL mice at each timepoint 

(p= 0.93).   
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Figure 3.3: C-Fos expression in the CeA is elevated after binge-like alcohol 
consumption. A.) Representative images of c-Fos immunoreactivity within the CeA 
of water-drinking control mice (CTL) and alcohol-drinking mice (EtOH) after 2 or 4 
hr of drinking. B) Mean c-Fos+ nuclei. C-Fos expression within the CeA was 
increased in male and female mice relative to CTL at both 2 hr and 4 hr (*ps< 
0.001). In males, c-Fos activity was greater after 4 hr of drinking compared to 2 hr 
(#p< 0.001). C-Fos activity was also greater in female alcohol-drinking mice at 2 
and 4 hr compared to male alcohol-drinking mice at 2 hr (#ps< 0.05). No 
differences in c-Fos expression were observed in male or female CTL groups.  
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Relationship Between Alcohol Intake and C-Fos Expression in the CeA. 

  Pearson’s correlation was used to determine if a relationship exists between 

alcohol intake and CeA c-Fos expression (Figure 3.4A). Pearson’s correlation 

revealved a strong possitive association between alcohol intake (g/kg) and c-Fos 

expression [r= 0.46, p< 0.01]. Multivariate regression analysis was then conducted 

to determine if Sex and Time together predicted CeA c-Fos expression in alcohol 

drinking mice. It was found that Sex and Time explained a significant amount 

variance in the levels of CeA c-Fos expression [F(3,33)= 6.30, p< 0.001, R2= 0.39]. 

However, analyzing these factors separately, Sex strongly predicted the CeA c-

Fos response to alcohol drinking [Beta= 0.45, t(33)= 2.89, p< 0.01], and not Time 

[Beta= 0.31, t(33)= 1.57, p> 0.2]. Given that sex predicted c-Fos expression, data 

were analyzed separeately for males and females. Among male mice (Figure 

3.4B), there was a strong positive correlation between alcohol intake and c-Fos 

expression after 2 hr of drinking [R2= 0.641, p< 0.01] and not after 4 hr of drinking 

in males (p> 0.4). There was no association between alcohol intake and c-Fos 

expression in female mice at either the 2 or 4 hr timepoints (ps> 0.6; Figure 3.4C).  

Because BACs above 80 mg/dL have a pharmacolocal effect on c-Fos 

expression in the CeA (Hansson et al., 2008; Hitzemann and Hitzemann, 1997), 

data were analyzed to determine the relationship between BAC and c-Fos activity 

(Figure 3.4D). Pearson’s correlation revealed that BAC strongly predicted CeA c-

Fos expression [r= 0.46, p< 0.01], independent of Sex and Time. Controlling for 

Sex and Time, multivariate linear regression analysis revealed that Sex and Time 

were associated with c-Fos expression and BAC [F(3,33)= 7.05, p< 0.001, R2= 
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0.41], but Sex strongly predicted the c-Fos response to BAC [Beta= 0.42, t(33)= 

2.91, p< 0.01]. Thus, separate regression analysis were conducted for males and 

females. Similar to alcohol drinking, BAC strongly predicted c-Fos expression in 

males at the 2 hr timepoint (R2= 0.47, p< 0.05) but not at 4 hr (p> 0.7) (Figure 

3.4E). Finally, BAC did not predict c-Fos expression in female mice at either 2 hr 

or 4 hr (ps> 0.2) (Figure 3.4F). 
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Figure 3.4: Alcohol drinking and BAC correlate with c-Fos expression in the CeA. 
A) Alcohol drinking strongly predicted c-Fos+ neurons within the CeA (p< 0.01). B) 
The correlation between alcohol drinking and c-Fos expression was significant 
after 2 hr of drinking in male mice (p< 0.01) but not at the 4 hr timepoint. C) 
Although c-Fos expression was increased in the CeA of female mice consuming 
alcohol, the level of intake did not predict with c-Fos expression. D) BAC strongly 
predicted c-Fos expression in the CeA overall (p< 0.01). E) BAC was associated 
with c-Fos expression in male mice at 2 hr (p< 0.05) but not at 4 hr. F) BAC did not 
predict c-Fos levels in the CeA of female mice at either timepoint.  
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DISCUSSION 

The present study adds to the growing body of literature demonstrating that 

alcohol drinking in the DID paradigm effectively models binge-like drinking 

behavior in mice by reliably producing clinically relevant BACs. Further, these 

findings extend previous work by assessing sex differences in CeA neuronal 

activity during binge drinking. We found that females consumed significantly more 

alcohol than males and that drinking in this paradigm produced BACs in excess of 

80 mg/dL in both sexes, consistent with the literature (Finn et al., 2018; Rhodes et 

al., 2007; Sneddon et al., 2019). Unfortunately, sufficient Retrobead 

immunoreactivity was not detected within CeA projections to the BNST precluding 

observations of circuit level activity. However, we found that c-Fos expression was 

elevated within the CeA of both male and female mice relative to alcohol naïve 

controls and that the amount of alcohol consumed and subsequent BAC predicted 

the level of c-Fos expression. When accounting for sex, c-Fos activity was 

generally greater in female mice but the correlation between alcohol intake and c-

Fos expression was driven largely by males after 2 hours of drinking, suggesting 

sex differences in CeA activity during binge drinking behavior in this model.  

Activity of select populations within the CeA is associated reward saliency 

that promotes appetitive behaviors, including alcohol consumption (Kim et al., 

2017; Koob, 2009; Koob and Volkow, 2016; Mahler and Berridge, 2009). For 

example, the CeA is activated in response to the acquisition and maintenance of 

consummatory behavior as well as emotionally salient stimuli like alcohol and 

reward-related cues (Knapska et al., 2007).  Optogenetic interrogation further 
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revealed that neurons within the CeA promote positive reinforcement and that 

activity of these neurons, assessed via calcium imaging, coincides with 

consummatory behavior (Douglass et al., 2017).  Likewise, reinstatement of lever-

press behavior in the context of cue-induced reinstatement of alcohol seeking 

predicts c-Fos expression in the CeA (Knapska et al., 2007; Radwanska et al., 

2008; Walker et al., 2017). In the context of voluntary consumption, increased c-

Fos expression has been observed in the CeA of male mice in the DID paradigm 

after 2 hours of drinking (Burnham and Thiele, 2017). Consistent with these 

reports, our results indicate that c-Fos activity was elevated relative to water 

drinking mice after 2 and 4 hours of alcohol drinking that supports involvement of 

the CeA in binge drinking behavior. We also found that the amount of alcohol 

consumed generally predicted c-Fos immunoreactivity within the CeA. Few 

studies, however, have directly manipulated the CeA specifically in the context of 

binge drinking to determine a causal role of this region in binge drinking behavior. 

Pharmacological interrogation of CeA peptide systems has revealed that 

microinjection of KOR or Crf1R antagonists attenuate binge drinking in male mice 

(Anderson et al., 2018a; Lowery-Gionta et al., 2012). Direct manipulation of 

neuronal activity within the CeA using chemogenetic inhibition of DYN-containing 

neurons or selective knockdown of DYN/KOR also decreased binge drinking 

(Anderson et al., 2018a; Bloodgood et al., 2020). Together, these findings 

implicate the CeA as having a causal role in the expression of excessive binge-

like alcohol consumption. 
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While the CeA is involved in motivated behaviors, there is also sufficient 

evidence demonstrating that this structure is sensitive to the pharmacological 

effects of alcohol. For example, dose-response studies indicate that acute 

systemic administration of a high dose of alcohol is sufficient to induce c-Fos 

expression in the CeA (Hitzemann and Hitzemann, 1997). This elevation in CeA 

activity is not observed with lower doses of alcohol that result in BACs below 80 

mg/dL, suggesting that a threshold is needed for c-Fos induction (Chang et al., 

1995; Ryabinin et al., 1997; Ryabinin and Wang, 1998). Importantly, these studies 

delivered alcohol independent of drinking behavior, suggesting that these 

responses were purely due to the pharmacological effects of alcohol. The temporal 

dynamics of the distribution of alcohol after oral self-administration follows a similar 

pattern to systemic treatment, albeit strongly related to the intensity and duration 

of drinking behavior (Griffin et al., 2009b; Robinson et al., 2000). For example, 

alcohol can be detected in brain dialysate samples 30 min after bouts of drinking 

(Griffin et al., 2009a; Griffin et al., 2007; Robinson et al., 2000). In the present 

study, tissue was collected 2 hours after the onset of drinking, reflecting c-Fos 

expression during the first 30 min of drinking session. This is a period when bout 

frequency and duration are the highest during a 4 hour session, meaning that 

BACs will rapidly rise thereafter from the large bolus of alcohol flooding the system 

(Wilcox et al., 2014). Therefore, activity at the 2 hour timepoint reflects the initiation 

of binge drinking behavior during the first 30 min of the session prior to the 

circulation of alcohol throughout the brain at a relevant BAC. Because we observed 

BACs in excess of 80 mg/dL after 2 and 4-hours of drinking, it is reasonable to 
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suspect then that BACs remained elevated during the final 2 hours of drinking, and 

that tissue collected during this time reflects a period of binge-level intoxication. C-

Fos expression at this time was elevated in mice consuming alcohol indicative of 

a pharmacological effect of alcohol. The temporal dynamics of c-Fos induction limit 

interpretation of our results thus it is unclear if c-Fos activity at the 4 hour timepoint 

reflects activity related to alcohol drinking or a pharmacological effect of alcohol. 

Future studies can disentangle the drinking behavior and effect of alcohol by 

utilizing genetically encoded calcium indicators to assess activity within the CeA 

with high temporal specificity during a binge drinking session.  

Studies of sex differences in alcohol intake across various limited-access 

drinking paradigms generally show that female mice consume more alcohol than 

males (Almeida et al., 1998; Crabbe et al., 2009; Jury et al., 2017). We and others 

have observed this phenotypic difference specially in the context of binge drinking 

in the DID paradigm (Crabbe et al., 2009; Finn et al., 2018; Haun et al., 2020; 

Sneddon et al., 2019). Here, we replicate this finding and show that females 

consumed more alcohol than males. The difference in intake was marginal in that 

subsequent BACs after 2 or 4-hours of drinking were not different in males and 

females. Studies of the neurobiological mechanisms underlying sex differences in 

binge-like alcohol consumption, however, remain limited. Here, we show that c-

Fos activity was elevated in mice drinking alcohol and also greater overall in the 

CeA of female mice. The general elevated c-Fos levels in females may be 

reflective of greater consummatory behavior under DID conditions. For example, 

we and other have shown that females readily consume more sucrose than males 
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in the DID model (Crabbe et al., 1999; Haun et al., 2020; Kaur et al., 2012). The 

idea that the appetitive, consummatory behavior involved in binge drinking is 

associated with activity in the CeA is supported by our finding that alcohol intake 

predicted levels of c-Fos expression. However, this effect was largely driven by 

male mice and thus, the association between binge drinking and activity of the CeA 

in females remains unclear.  

The CeA sends dense projections to the BNST and this pathway is thought 

to contribute to various alcohol-related behaviors (de Guglielmo et al., 2019; Li et 

al., 2012; Pomrenze et al., 2019a). For example, acute alcohol treatment results 

in disinhibition of CeA projections to the BNST and it is hypothesized that activation 

of the CeA-BNST circuit promotes alcohol drinking (Herman et al., 2013). To date, 

one study has directly manipulated this circuit in the context of alcohol drinking that 

demonstrated that optogenetic silencing of CeA-BNSTCrf neurons attenuates 

excessive drinking as a function of alcohol dependence (de Guglielmo et al., 2019). 

Of note, both Crf- and SST-containing neurons within the CeA-BNST circuit 

promote anxiety-like behavior, the latter of which is mediated by KOR in the BNST 

(Ahrens et al., 2018; Pomrenze et al., 2019b). Within the context of binge drinking, 

antagonists targeting the Crf1 receptor and KOR attenuate binge drinking (Haun 

et al., 2020; Lowery-Gionta et al., 2012). Therefore, it is likely that activity of Crf- 

and DYN-containing neurons within the CeA-BNST circuit contribute to binge 

drinking. A major aim of the present study was to determine c-Fos activity within 

the CeA-BNST circuit during binge-like alcohol consumption. The present findings 

were limited by inconsistent labeling of the CeA-BNST circuit but do support a 
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general role for the CeA in binge drinking behavior. Because KOR within the BNST 

modulate binge drinking behavior (Haun et al., 2020), it is reasonable to suspect 

involvement of DYN-containing neurons within the CeA-BNST circuit given that the 

CeA is activated during periods of binge drinking and that dynorphinergic neurons 

within the CeA promote binge drinking behavior (Anderson et al., 2018a; 

Bloodgood et al., 2020). Thus, these data support the further exploration of DYN-

containing neurons within the CeA-BNST circuit in the context of binge drinking. 
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CHAPTER 4: Chemogenetic Inhibition of the CeA-BNSTDYN Circuit 
Attenuates Binge-Like Alcohol Consumption. 
 
INTRODUCTION 

 We have previously shown that KOR within the BNST contribute to binge-

like alcohol consumption and it is hypothesized that dynorphinergic projections 

from the CeA to the BNST mediate this effect. Neuroimaging of the CeA or BNST 

in subjects with AUD or those with a history of binge drinking is limited, but there 

is evidence to suggest that these structures are involved in affective disorders that 

have a high co-occurrence with AUD. For example, high resting state connectivity 

has been observed between the CeA and BNST and synchronized activity is 

associated with the behavioral response to emotionally salient negative stimuli 

(Pedersen et al., 2019; Pedersen et al., 2020). Functional activity within these 

regions is also associated with anxiety in non-human primates (Fox et al., 2018; 

Oler et al., 2012; Torrisi et al., 2015). Activity within the extended amygdala is 

thought to promote maladaptive behaviors that alleviate stress and anxiety, such 

as alcohol consumption (Koob, 2003; Koob and Volkow, 2016). For example, 

amygdala activity during withdrawal is positively associated with AUDIT score and 

is a strong predictor of AUD (Fede et al., 2019; Hu et al., 2018; Peters et al., 2017). 

Conversely, acute alcohol dampens amygdala and BNST reactivity in response to 

stressors including emotionally charged images in humans (Gilman et al., 2008; 

Hur et al., 2018; Sripada et al., 2011). Increased activity within the extended 

amygdala observed during withdrawal reflects a shift in allosteric load that is 

thought to contribute to relapse, and the subsequent binge consumption of alcohol 

transiently quells withdrawal-related sequalae (Koob, 2013; Koob and Le Moal, 
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2008). The DYN/KOR system contributes to stress and anxiety experienced during 

withdrawal that drives excessive drinking (Koob, 2003; Koob and Le Moal, 2008). 

For example, a polymorphism in the genes coding for DYN and KOR, Pdyn and 

Oprk1 respectively, have been reported in patients with AUD and are associated 

with increased anxiety, impulsivity, and drinking severity (Edenberg et al., 2008; 

Park et al., 2020; Votinov et al., 2014; Xuei et al., 2006; Xuei et al., 2007). Current 

human imaging techniques, however, are limited by resolution of subcortical 

structures making observation of DYN/KOR activity specifically within the CeA and 

BNST of humans difficult at this time.   

 Studies involving various preclinical models of AUD have demonstrated a 

similar recruitment of the DYN/KOR system in the promotion excessive drinking 

and relapse-like behavior. For example, Pdyn/DYN expression is elevated within 

the extended amygdala in rats with a history of alcohol dependence achieved 

through chronic intermittent ethanol (CIE) exposure (Erikson et al., 2018; Kissler 

et al., 2014). High levels of alcohol intake achieved after CIE can be attenuated by 

systemic delivery of a KOR antagonist supporting a more causal role for KOR in 

excessive drinking (Walker and Koob, 2008; Walker et al., 2011). Further probing 

of the extended amygdala revealed that site-specific delivery of a KOR antagonist 

into the CeA, BNST, or NAc similarly decreased dependent-like alcohol 

consumption (Erikson et al., 2018; Kissler et al., 2014; Nealey et al., 2011). It is 

likely that circuity promoting high levels of alcohol intake in models of dependence 

may also contribute to binge-drinking as this pattern of drinking is positively 

correlated with the emergence of dependence across species (Addolorato et al., 
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2018; Baker et al., 2017; Kroenke et al., 2014). In fact, recent studies support a 

more general role for KOR in excessive drinking beyond the context of 

dependence. For example, systemic delivery of a KOR antagonist attenuates 

binge-like alcohol drinking in mice (Anderson et al., 2018a; Haun et al., 2020). 

Direct delivery of a KOR antagonist into the CeA or BNST decreased binge-like 

drinking, similar to the effect observed in subjects with a history of dependence 

(Anderson et al., 2018a; Erikson et al., 2018; Haun et al., 2020; Kissler et al., 

2014). Finally, systemic KOR agonist treatment increased binge drinking, an effect 

that is blocked by KOR antagonist delivery into the BNST suggesting that KOR in 

the BNST are actively engaged to promote alcohol drinking behavior (Haun et al., 

2020). However, the endogenous circuity that provides dynorphinergic input to the 

BNST involved in drinking behavior is unclear.  

 The CeA sends dense projections to the BNST and the CeA-BNST circuit 

contributes to various alcohol-related behaviors, such as anxiety and fear (Asok et 

al., 2018; Gilpin et al., 2014; Le et al., 2018; Roberto et al., 2012).  A dense 

population of neurons within the lateral subdivision of the CeA expresses DYN, 

among other neuropeptides, and sends direct projections to the BNST (CeA-

BNSTDYN) (Ahrens et al., 2018; Li et al., 2012; Marchant et al., 2007). No studies 

to date have directly investigated a functional role of CeA-BNSTDYN circuitry, 

however, chemogenetic inhibition of DYN-containing neurons within the CeA 

(CeADYN) reduced binge-like alcohol consumption (Anderson et al., 2018). This 

study provided the first evidence of DYN-containing neurons within the CeA 

contributing to binge drinking. Further studies revealed that genetic deletion of 
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DYN from the CeA attenuated binge-like alcohol consumption, directly pointing to 

DYN as a driver of excessive drinking (Bloodgood et al., 2020). Therefore, 

chemogenetic inhibition and deletion of DYN from CeADYN point to this population 

as a key hub for binge drinking, but the downstream site of these projections has 

yet to be determined. Manipulation of other CeA-BNST projections provide 

valuable insight given the high levels of peptide co-expression within the CeA.  For 

example, DYN is largely co-expressed with CRF in the CeA and optogenetic 

silencing of the CeA-BNSTCrf circuit attenuated dependence-related drinking and 

decreases fear and anxiety-like behavior in rats (Asok et al., 2018; de Guglielmo 

et al., 2019; Pomrenze et al., 2019b). Somatostatin (SST) colocalizes with DYN to 

a large extent within the CeA and activation of CeA-BNSTSST projections increased 

anxiety like behavior in mice, an effect that is dependent on KOR in the BNST 

providing evidence for functional CeA-BNSTDYN circuitry (Ahrens et al., 2018). 

Because the CeA-BNSTDYN pathway has not been directly manipulated in the 

context of binge drinking, the present studies were designed to use a 

chemogenetic approach to inhibit CeA-BNSTDYN in the context of binge drinking in 

male and female mice.  
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MATERIALS AND METHODS 

Subjects 

Male and female Pdyn-IRES-Cre mice ranging from 10-12 weeks old were 

from an in-house colony as previously described (Anderson et al., 2018a; Krashes 

et al., 2014). All animals were singly housed and tested in a temperature and 

humidity controlled AAALAC approved facility on a reverse 12-hr light/dark cycle 

with food and water continuously available. For all experiments, mice were treated 

in accordance with both the NIH Guide for the Care and Use of Laboratory Animals 

(National Research Council, 2011) and the Institutional Animal Care and Use 

Committee at MUSC.  

Surgical Procedures 

Mice were anaesthetized with isoflurane and 0.25 uL of AAVrg-hSyn-DIO-

hM4Di-mCherry or AAVrg-eF1a-eGFP was bilaterally infused into the BNST (AP: 

+ 0.22, ML: +/- 0.75, DV: -4.6) using a 0.5 uL Hamilton Neuros syringe at a flow 

rate of 0.05 uL/min for 5 min. The syringe was then left in place during a 10 min 

diffusion period and retracted over 5 min as previously described (Haun et al., 

2018). Bilateral guide cannula (Plastics One, Inc.) were then positioned above the 

CeA (AP: -1.2, ML: +/- 3.0, DV: -3.6) and secured to the skull with a light-cured 

resin system (Haun et al., 2018). Once inserted, microinjector tips extended 1 mm 

beyond the guide to target the CeA for microinjection. After surgery, all mice were 

given 4 weeks to recover for adequate viral expression prior to the start of 

experiments.  

Alcohol Binge Drinking Procedure 
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Mice were trained to drink alcohol in their home cage in the limited access 

“Drinking-in-the-Dark” (DID) procedure, as previously described (Anderson et al., 

2018a; Haun et al., 2020). Prior to drinking, mice were habituated to the 

microinjection procedure by removing and then replacing dummy guides from the 

microinjector tract 30 minutes prior to drinking. A single bottle of alcohol (20% v/v) 

was then presented 3 hours into the dark cycle in place of the water bottle. Access 

to alcohol was for 2 hours on 3 consecutive days, and then extended for 4 hours 

on the 4th day. Alcohol intake was determined for each 2-hour session and then 

for the 0-2 and 2-4 hour time periods during the final (4th day) 4-hour drinking 

session. An identical procedure was used for assessing sucrose (0.5% w/v) 

consumption. All mice were given one 4-day baseline cycle of binge drinking 

followed by 3 days rest in the home cage. This 4-day binge drinking cycle followed 

by 3 days of rest was repeated for 2 more cycles involving experimental testing. 

For all experiments, microinjection challenge occurred 30-min before the 4-hour 

binge session during the second and third binge cycle. Average drinking across 

the first 3 days of the second binge cycle were used to separate subjects evenly 

into drug treatment groups in a balanced within-subjects design. Immediately after 

the 4-hour test drinking session, blood samples were collected, plasma extracted, 

and blood alcohol concentrations determined using an AM1 Alcohol Analyzer 

(Analox Instruments, Stourbridge, UK).  

After the three 4-day binge cycles of alcohol drinking, mice were given 4-

weeks rest with food and water provided ad-libitum prior to sucrose drinking. 

Sucrose (0.5% v/v) drinking was carried out in an identical fashion to alcohol 
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drinking. This included one 4-day baseline week of sucrose binge drinking followed 

by 3 days of rest. This 4-day binge cycle was repeated for 2 more test weeks with 

microinjections occurring 30-min prior to testing on day 4 of the cycle.  

Microinjection Procedures 

The DREADD agonist clozapine-N-oxide (CNO; 1 mM/side, Tocris) was 

dissolved in 1xPBS for microinjection. This dose was chosen given strong Gi-

induced neuronal quiescence in various brain regions and documented usage for 

circuit level manipulation in the DID model (Mahler and Aston-Jones, 2018; Mahler 

et al., 2014; Rinker et al., 2017). Microinjections were administered 30-min before 

Day 4 of drinking during the second and third binge cycle in a within-subjects 

design. Vehicle or CNO (1 mM/side) was delivered bilaterally into the CeA at a flow 

rate of 0.25 µL/min for 2-min, followed by a 2-min diffusion period before 

microinjector removal (Anderson et al., 2018a; Griffin et al., 2014; Haun et al., 

2018). Obdurators were replaced and mice returned to their home cage where they 

remained undisturbed until testing.  

Histology 

At the conclusion of all experiments, mice were euthanized with urethane 

and transcardially perfused with 10 mL saline followed by 10 mL of 

paraformaldehyde (PFA; 4%). Brains were extracted, post fixed in 4% PFA for 24 

hours and cryoprotected in sucrose (30% wt/vol) until sectioning. Tissue was sliced 

in serial 40 µM sections and processed for verification of viral expression as 

previously described (Anderson et al., 2018a). Briefly, tissue was washed in 

1xPBS and incubated in rat anti-mCherry (1:1000; Invitrogen) overnight at room 
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temperature. The following day, tissue was washed and incubated in AlexaFluor 

goat anti-rat 555 (1:1000; ThermoFisher) for 2 hr. Tissue was then mounted on 

permafrost slides with Prolong Diamond with Dapi for imaging. Tissue from mice 

receiving AAVrg-eF1a-DIO-eGFP was perfused, sectioned, washed, and mounted 

onto slides for imaging. IHC was not necessary given the strong endogenous 

eGFP signal. Images were collected under 4x, 10x, and 20x magnification on an 

EVOS-FL microscope (AMF-4300, ThermoFisher). Only mice with viral expression 

and bilateral guide placements in the CeA in reference to a mouse stereotaxic atlas 

were included in the final analyses (Franklin and Paxinos, 2008).  

Statistical Analysis 

The primary dependent variables were alcohol intake (g/kg), blood alcohol 

concentration (BAC; mg/dL), and sucrose intake (mL/kg). All data were analyzed 

by ANOVA, with Sex and Virus (hM4Di; eGPF) as between-subjects factors and 

Drug (Vehicle; CNO) and Time (0-2; 2-4 hr) as a repeated factors as necessary. 

Significant factor interactions were further evaluated using the Student-Newman–

Keuls (SNK) for post-hoc comparisons. Alpha was set to p< 0.05 for all analyses. 
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RESULTS 

Dynorphin-Containing Neurons in the CeA Project to the BNST. 

We have previously demonstrated that both CeADYN neurons and KOR 

within the BNST contribute to excessive alcohol drinking in the DID model 

(Anderson et al., 2018a; Haun et al., 2020). Therefore, direct connectivity between 

CeA-BNSTDYN circuitry may mediate binge-like alcohol consumption. To directly 

test this, Pdyn-IRES-Cre mice were used to selectively target the CeA-BNSTDYN 

circuit for chemogenetic silencing during binge drinking sessions. Commonly used 

viral strategies for circuit level chemogenetic manipulation utilize an anterograde-

expressing viral vector that allows for receptor expression in the downstream 

terminal fields where CNO is directly applied for selective circuit 

activation/inhibition (Armbruster et al., 2007; Lee et al., 2014; Mahler et al., 2014; 

Roth, 2016; Urban and Roth, 2015). However, an alternative approach was 

necessary to target CeADYN projections terminating in the BNST given the 

disruption to behavior previously observed when microinjecting vehicle into the 

BNST 30-min prior to drinking (Figure 2.7). Therefore, the AAVrg serotype was 

utilized that allows for efficient retrograde expression restricted to a select cell 

population when utilizing a Cre-driver line (Tervo et al., 2016). A double-floxed Gi-

coupled DREADD (or a control vector) under the AAVrg serotype was applied to 

the BNST and CNO was targeted directly into the CeA to selectively influence 

hM4Di receptors on cell bodies in CeA-BNSTDYN circuit for chemogenetic 

inhibition.  
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Mice received bilateral infusions (0.25 uL/side) of AAVrg-hSyn-DIO-hM4Di-

mCherry (hM4Di) or AAVrg-eF1a-DIO-eGFP (eGFP) into the BNST and guide 

cannulae were positioned above the CeA to selectively target cell bodies in CeA-

BNSTDYN circuit with vehicle or CNO (Figure 4.1A). Cre-dependent expression of 

hM4Di selectively within CeADYN of Pdyn-IRES-Cre mice has been previously 

validated (Anderson et al., 2018a). Functionality has also been confirmed by 

electrophysical testing that showed that bath application of CNO resulted in 

significant hyperpolarization indicative of hM4Di-mediated inhibition (Anderson et 

al., 2018a).  

Expression of the mCherry (or eGFP) fluorescent tag was observed in 

terminals within the dorsal and ventral subdivisions of the BNST (Figure 4.1B). 

Expression of mCherry (or eGFP) was observed within the central lateral amygdala 

(CeL) consistent with viral tracing studies demonstrating that neuronal populations 

expressing DYN in the CeL send dense projections to the BNST (Figure 4.1C) 

(Ahrens et al., 2018; Li et al., 2012). Microinjector tip placements within the CeA 

are represented with black circles. Additional images showing bilateral DYN+ 

terminal expression in the BNST and expression in upstream DYN+ populations 

including the CeA, BMA, and PVN are shown in Supplemental Figure 1A. 

Representative images of AAVrg-eF1a-DIO-eGFP expression in the CeA is shown 

in Supplemental Figure 1B.  
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Figure 4.1: Viral strategy for targeting CeA-BNSTDYN circuit. A) Sagittal section 
depicting AAVrg-hSyn-DIO-hM4Di-mCherry or AAVrg-eF1a-DIO-eGFP infusion 
into the BNST of Pdyn-IRES-Cre and guide cannula positioning above the CeA. 
B) Stereotaxic delivery of AAVrg-hSyn-DIO-hM4Di-mCherry into the BNST 
resulted in expression of mCherry within DYN+ afferent terminals. Red= mCherry; 
Blue= Dapi C) AAVrg uptake by Cre+ DYN-containing terminals in the BNST 
results in expression within cell bodies within the CeA. Black circles represent 
microinjector tip placements within the CeA targeting CeA-BNSTDYN neurons. 
Red= mCherry; Blue= Dapi. 
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Effect of CeA-BNSTDYN Inhibition on Binge-Like Alcohol Consumption. 

  Male and female mice expressing AAVrg-hSyn-DIO-hM4Di-mCherry 

(hM4Di) or AAVrg-eF1a-DIO-eGFP (eGFP) were split into treatment groups based 

on average intake across the preceding three days of 2-hour alcohol drinking. 

Drinking data from 17 males (hM4Di= 9; eGFP= 8) and 16 females (hM4Di= 9; 

eGFP= 7) were included in the final analysis after viral expression and 

microinjector guide placement were confirmed. No differences in alcohol 

consumption were observed during 4-hour testing based on Sex [F(1,29)= 3.21, 

p= 0.08] with males consuming an average of 2.19 ± 0.12 g/kg and females 2.50 

± 0.12 g/kg. Therefore, drinking data were collapsed across Sex for further 

analysis.  

During the test session, silencing of the CeA-BNSTDYN circuit resulted in 

decreased alcohol consumption across both 0-2 and 2-4 hour timepoints (Figure 

4.2A). 4-way ANOVA (Sex x Virus x Time with Drug as a repeated factor) revealed 

a main effect of Drug [F(1,58)= 5.26, p< 0.05] and a Drug x Virus interaction 

[F(1,58)= 10.99, p< 0.01). There were no significant main effects of Sex, Virus, or 

Time (Fs< 2.49). Post hoc analysis indicated significantly lower alcohol 

consumption during the 0-2 and 2-4 hour timepoints in mice expressing hM4Di 

within the CeA-BNSTDYN circuit after CNO microinjection compared to vehicle (ps< 

0.01). Furthermore, intake in the hM4Di group after CNO challenge was lower than 

both vehicle and CNO treatment in mice expressing the eGFP control virus at both 

timepoints (ps< 0.01). Drinking after CNO challenge in mice expressing eGFP was 

no different than mice receiving vehicle. 
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Likewise, analysis of alcohol intake during the entire 4-hour test session 

indicated that CNO reduced alcohol consumption compared to vehicle after 

silencing of the CeA-BNSTDYN circuit (Figure 4.2B). This was supported by a 

significant main effect of Drug [F(1,29)= 6.60, p< 0.05] and Drug x Virus interaction 

[F(1,29)= 13.79, p< 0.001). Post hoc analysis further supported overall decreased 

alcohol intake in mice expressing hM4Di after CNO compared to vehicle (p< 0.001) 

and compared to eGFP-expressing mice receiving vehicle (p< 0.01) or CNO (p< 

0.005). Compared to vehicle, no effect of CNO was observed in eGFP-expressing 

mice. Lastly, resultant BACs were significantly lower after silencing of the CeA-

BNSTDYN circuit (Figure 4.2C). ANOVA revealed a main effect of Drug [F(1,31)= 

6.86, p< 0.01] and Drug x Virus interaction [F(1,31)= 12.99, p< 0.001). Further post 

hoc analysis determined that, compared to vehicle, hM4Di-expressing mice 

receiving CNO had significantly lower BACs (p< 0.005). This BAC was also lower 

than eGFP-expressing mice treated with vehicle or CNO (ps< 0.05).  

For reference, alcohol drinking data from mice excluded from the above 

analysis due to lack of viral expression within the CeA is shown in Supplemental 

Figure 2A. 4-way ANOVA (Sex x Virus x Time with Drug as a repeated factor) 

revealed no significant main effects nor factor interactions across the 0-2 and 2-4 

hour timepoints (Fs< 1.73). Similarly, analysis of alcohol intake during the entire 4-

hour test session was similar across groups receiving vehicle microinjection, 

compared to control (Fs< 0.15).  
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Figure 4.2: Chemogenetic inhibition of CeA-BNSTDYN reduces binge-like alcohol 
consumption. A) Alcohol intake (g/kg) during the consecutive 2-hour time periods 
(0-2 and 2-4 hour) in the 4-hour access session. Microinjection of CNO to silence 
the CeA-BNSTDYN circuit in hM4Di-expressing mice resulted in a significant 
decrease in alcohol intake across both time points compared to vehicle (VEH; *ps 
<0.005) and compared to eGFP-expressing mice receiving VEH or CNO (#ps< 
0.005). No differences in drinking were observed after CNO microinjection in eGFP 
expressing mice. B) Cumulative alcohol intake across the 4-hour session. 
Cumulative alcohol intake across the entire 4-hour session was lower in hM4Di-
expressing mice after CNO compared to VEH (*p <0.005) and compared to eGFP-
expressing mice receiving VEH or CNO (#ps< 0.005). C) Blood alcohol 
concentration (BAC) after binge drinking. CeA-BNSTDYN silencing with CNO 
resulted in significantly lower BACs in hM4Di-expressing mice compared to VEH 
(*p< 0.005). BACs were significantly lower than eGFP-expressing mice receiving 
VEH and CNO (#p< 0.005). No differences in BAC were observed compared to 
VEH after CNO microinjection in eGFP-expressing mice.  
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Effect of CeA-BNSTDYN inhibition on binge-like sucrose consumption. 

  While silencing of CeADYN does not affect binge-like sucrose drinking, 

targeted blockade of KOR within the BNST modestly reduced sucrose drinking in 

the DID model (Anderson et al., 2018a; Haun et al., 2020). To determine the effect 

of chemogenetic CeA-BNSTDYN inhibition on sucrose intake,  drinking was 

assessed in 17 males (hM4Di= 9; eGFP= 8) and 16 females (hM4Di= 9; eGFP= 7) 

after a 4-week cessation from alcohol drinking. Males consumed an average of 

32.47 ± 4.82 mL/kg and females 44.10 ± 2.88 mL/kg during 4-hour drinking and a 

main effect Sex neared significance [F(1,29)= 3.155, p= 0.09]. Thus, drinking data 

were collapsed across Sex for further analysis. 

 Silencing of the CeA-BNSTDYN circuit had no effect on sucrose intake during 

the 0-2 and 2-4 hour portions of the test session (Figure 4.3A). 4-way ANOVA 

(Sex x Virus x Time with Drug as a repeated factor) indicated no significant main 

effect of Drug [F(1,58)= 0.124, p= 0.73] suggesting that CNO had no effect on 

sucrose intake in both hM4Di and eGFP-expressing mice. A main effect of Time 

[F(1,58)= 4.26, p< 0.05] and Time x Sex intereaction [F(1,58)= 31.84; p< 0.001) 

were observed and further post hoc analysis indicated that females consumed 

more sucrose during the 2-4 hour epoch compared to males (p< 0.01). Cumulative 

drinking across the entire 4 hour session was not affected by microinjection of 

vehicle or CNO into the CeA of both hM4Di- and eGFP-expressing mice (Figure 

4.3B). While a main effect of Sex neared significance [F(1,29)= 3.16, p= 0.09], no 

effect of Virus or factor interaction was observed (Fs< 0.90). 
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Figure 4.3: Inhibition of CeA-BNSTDYN does not affect binge-like sucrose 
consumption. A) Sucrose intake (mL/kg) during the consecutive 2-hour time 
periods (0-2 and 2-4 hour) in the 4-hour access session. Microinjection of CNO 
into the CeA to silence the CeA-BNSTDYN circuit in hM4Di-expressing mice did not 
affect sucrose consumption across the binge session. CNO had no effect in eGFP-
expressing controls. B) Similarly, cumulative sucrose intake across the 4-hour 
session was not affected by CNO in both hM4Di and eGFP-expressing groups.  
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DISCUSSION 

The extended amygdala has long been implicated in excessive alcohol 

drinking and we have previously demonstrated recruitment of neurons within the 

CeA during periods of binge drinking. Furthermore, recent studies have supported 

a role for CeADYN and implicated KOR within the CeA and BNST specifically in the 

context of binge-like drinking behavior (Anderson et al., 2018a; Bloodgood et al., 

2020; Haun et al., 2020). Given the strong connectivity between the CeA and 

BNST, it was hypothesized that dynorphinergic projections from the CeA to the 

BNST (CeA-BNSTDYN) contribute to binge drinking. Here we report that inhibition 

of the CeA-BNSTDYN circuit using a novel chemogenetic strategy significantly 

attenuated binge-like alcohol consumption in male and female mice. This effect 

was not observed in mice harboring a control vector nor in those that received viral 

surgery but failed to exhibit hM4Di expression within the CeA-BNSTDYN circuit. 

Furthermore, the reduction in drinking behavior was specific to alcohol because 

CeA-BNSTDYN inhibition had no effect on sucrose drinking under similar conditions. 

Taken together, these data suggest that the CeA-BNSTDYN circuit promotes 

excessive alcohol consumption within the DID model of binge drinking. 

To the best of our knowledge, this is first use of an AAVrg strategy involving 

the  microinjection of CNO in a target neuronal population for circuit level 

manipulation. This strategy was implemented as an alternative to direct CNO 

application at CeADYN terminal fields in the BNST because vehicle microinjection 

into the BNST disrupted both drinking behavior and locomotor activity in previous 

experiments. The limited use of this AAVrg strategy is likely due to the potential for 
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activation of collateralized axonal inputs at the site of CNO administration. For 

example, Cre-dependent AAVrg infusion in the BNST resulted in expression within 

multiple DYN-expressing BNST afferent sites, including the CeA, BMA, and PVN 

(Appendix Figure 1A). The BMA sends peptide-rich projections to both the CeA 

and BNST and there is evidence of collateralization between these regions 

(Bienkowski and Rinaman, 2013; Poulin et al., 2006). Because KOR antagonist 

delivery into the CeA decreased binge drinking behavior, it is possible that 

collateral BMADYN projections terminating in the BNST and CeA could be affected 

by CNO microinjection and influence drinking (Anderson et al., 2018a). While we 

acknowledge this as a possibility, it is unlikely because dual retrograde tracing 

studies show minimal collateralization (~6%) within CeA- and BNST-projecting 

neurons of the BMA (Bienkowski and Rinaman, 2013). Similarly, the BNST is also 

rich in DYN-containing neurons and projections from the BNST to the CeA have 

been described (Crowley et al., 2016; Gungor et al., 2015; Kash et al., 2015). 

However, we only observed terminal expression in the BNST after Cre-dependent 

viral infusion suggesting that the virus was not expressed locally within soma in 

the BNST. Thus, under the current experimental conditions, it is possible but 

unlikely that the effects observed were due to collateral activation of DYN-

expressing terminals within the CeA. An optogenetic approach for CeA-BNSTDYN  

terminal inhibition is a viable option for future studies in that this strategy has been 

effectively utilized in mice to target the CeA-BNST circuit with cell type specificity 

(Ahrens et al., 2018; Li et al., 2012). 
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While these data demonstrate a causal role for the CeA-BNSTDYN circuit in 

binge-like alcohol consumption, further studies will be of importance to clarify the 

exact role of DYN within this pathway. Combined chemogenetic hM3Dq-mediated 

activation and pharmacological blockade of target receptors in the downstream 

terminal field is a common strategy to determine the contribution of a select peptide 

in a circuit. For example, microinjection of a CRF1 receptor antagonist into the 

BNST blocked the expression anxiety-like behavior after activation of the CeA-

BNSTCrf pathway (Pomrenze et al., 2019b). Similarly, optogenetic activation of 

CeA-BNSTSST is sufficient to induce an anxiogenic phenotype and expression of 

anxiety-like behavior is blocked by nor-BNI administration in the BNST (Ahrens et 

al., 2018). The use of the AAVrg serotype in the present study involved 

microinjection of CNO into the CeA to target cell bodies within the CeA-BNSTDYN 

pathway. Therefore, pharmacological challenge within the BNST after circuit level 

manipulation was not feasible under these methodological constraints. Therefore, 

the exact role of DYN within the CeA-BNST circuit is unclear under these 

experimental conditions because DYN-containing neurons within the CeA also 

express GABA, CRF, NTS, and SST, among other neuropeptides (Ahrens et al., 

2018; Marchant et al., 2007; Pomrenze et al., 2019a; Sanford et al., 2017; 

Torruella-Suarez et al., 2020). To address these concerns, we propose an 

intersectional viral approach for future studies to selectively knock down DYN 

expression within the CeA-BNST pathway. More specifically, this approach 

involves the use of 2 viral vectors. The first, AAVrg-Cre, can be infused in the BNST 

such that the transgene Cre would be expressed in BNST afferents, including 
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neurons within the CeA that terminate in the BNST. Secondly, a double-floxed 

Pdyn-shRNA infused into the CeA would then target neurons within the CeA-BNST 

circuit for pathway selective DYN-knockdown. While the present study 

demonstrated a role for bulk CeA-BNSTDYN circuit activity in binge drinking 

behavior, implementation of the strategy described above will better isolate the 

contribution of DYN, and DYN alone, within the circuit to drinking.  

In contrast with our previous studies, no differences in alcohol intake were 

observed between male and female mice consuming alcohol in the DID model. 

Females generally consume more alcohol than males across various limited 

access drinking procedures, but this effect is not consistently observed (Finn et al., 

2005; Hilderbrand and Lasek, 2018; Sneddon et al., 2019). It is likely that different 

experimental handling procedures across our studies accounts for this variation. 

In the present study, mice received a microinjection 30-min prior to a binge drinking 

session that involved robust handling in close temporal proximity to drinking 

behavior. Similarly, we did not observe sex differences in alcohol intake when drug 

was administered into the BNST 30-min prior to drinking (Figure 2.5). In contrast, 

females consumed more alcohol than males when microinjections occurred 16-hr 

prior to drinking or when mice did not receive handling prior to drinking (Figure 

2.1; Figure 3.2). Thus, the robust handling involved in the microinjection procedure 

in close proximity to drinking may have resulted in slightly lower alcohol intake, 

masking potential sex differences. Different experimental handling procures in 

future studies for CeA-BNSTDYN manipulation may uncover differential reactivity to 

circuit level manipulation. It is also important to note that sex differences in c-Fos 
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immunoreactivity  within the BNST after U50,488 administration and in KOR mRNA 

expression have been reported suggesting that CeA-BNSTDYN activation may 

reveal sex differences in drinking behavior (Conway et al., 2019; Russell et al., 

2014). In the context of binge drinking, however, our studies indicate no sex 

differences in the ability of U50,488 to enhance alcohol drinking to a high level, nor 

in the ability of nor-BNI to counter U50,488’s effects within the BNST. Furthermore, 

inhibition of the CeA-BNSTDYN circuit did not differentially affect alcohol 

consumption in male and female mice but  we cannot rule out the possibility of sex 

differences given our experimental design. 

An important finding of the present study was alcohol, but not sucrose 

drinking was attenuated by CeA-BNSTDYN inhibition suggesting pathway specific 

recruitment involved in motivated behavior exclusive to alcohol. This is in general 

agreement with our studies showing that systemic administration a KOR 

antagonist decreased binge-like alcohol consumption but did not affect sucrose 

intake (Anderson et al., 2018a). Interestingly, site-specific KOR blockade in the 

BNST decreased alcohol drinking but modestly reduced sucrose consumption. 

These data seem to suggest that KOR in the BNST play a role in general 

consummatory behaviors but selective inhibition of the CeA-BNSTDYN circuit did 

not influence sucrose consumption. This is a potentially important finding because  

the CeA is associated with reward saliency, involved in the maintenance of 

consummatory behavior, and it would be feasible for projections to the BNST  to 

be involved in a motivated behavior such as sucrose drinking (Douglass et al., 

2017; Kim et al., 2017; Knapska et al., 2006; Mahler and Berridge, 2009). The 
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DYN/KOR system is also known to influence feeding behavior, including 

consumption of natural rewards like sucrose (Karkhanis et al., 2017; Nogueiras et 

al., 2012). Manipulation of CeADYN in the context of sucrose drinking or general 

consummatory behavior has not been directly tested, but manipulation of other 

populations within the CeA that colocalize with DYN, such as nociceptin and 

neurotensin, provide valuable insight into the role of select CeA projections 

(Hardaway et al., 2019; Normandeau et al., 2018; Serafin et al., 2019). For 

example, chemogenetic inhibition of nociceptin-containing neurons in the CeA 

decreased sucrose intake supporting a role for peptidergic neurons within the CeA 

in natural reward behavior (Hardaway et al., 2019). However, ablation of 

neurotensin-expressing neurons in the CeA decreased alcohol intake but not 

sucrose consumption, consistent with our findings with CeA-BNSTDYN inhibition 

(Torruella-Suarez et al., 2020). Thus, KOR activity influenced by CeA-BNSTDYN 

projections may act on discreet populations of neurons within the BNST that are 

involved in alcohol drinking behavior opposed to circuitry involved in the general 

consumption of palatable rewards.  

It is important to note that DYN has both anterograde and retrograde 

release properties (Gupta and Gintzler, 2003; Lindholm et al., 2007; Margolis et 

al., 2003). The present chemogenetic strategy for circuit level inhibition involved 

CNO delivery to cell bodies within the CeA. Thus, local KOR activity in the CeA 

could have been affected because retrograde release of DYN has been described 

in the extended amygdala (Crowley et al., 2016; Gilpin et al., 2014; Kang-Park et 

al., 2013; Lindholm et al., 2007). Because microinjection of a KOR antagonist or 
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genetic KOR deletion within the CeA decreased binge-like alcohol consumption, 

we cannot rule out the possibility that the effect on drinking observed in the present 

study was due to decreased retrograde or terminal release of DYN within the CeA 

after CeA-BNSTDYN inhibition  (Anderson et al., 2018a; Bloodgood et al., 2020). 

This does not negate involvement of the circuit itself, but does raise the question 

as to the site of DYN-mediated effects on drinking behavior. In support of local 

KOR engagement in the CeA, GABAA receptors are expressed on presynaptic 

terminals and microinjection of a GABAA antagonist into the CeA decreases 

drinking in non-dependent rats suggesting a similar presynaptic mechanism as 

KOR (Hyytia and Koob, 1995). In fact, KOR antagonist application to the CeA 

increased local inhibition via increased presynaptic release of GABA and this 

mechanism is sensitive to the effects of alcohol (Gilpin et al., 2014; Kang-Park et 

al., 2013). However, an inherent discrepancy exists in that KOR antagonists 

increase GABA release but GABA activity is also enhanced within the CeA of 

alcohol-dependent rats and mice that contributes to excessive drinking (Kang-Park 

et al., 2013; Gilpin et al., 2014). Therefore, it is counterintuitive that KOR-

antagonist treatment dually increases presynaptic GABA release and also 

decreases alcohol intake since increased GABA is associated with increased 

drinking. It is important to note that study of alcohol’s effects on CeA functionality, 

be it chronic or acute, has primarily focused on the medial subdivision (CeM) of 

the CeA, which is the main source of behavioral output in the amygdala. 

Interestingly, KOR-expressing neurons within the CeA are primarily found within 

the lateral subdivision (CeL) and neurons within the CeL impinge directly on output 
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neurons within the CeM and functionally gate behavioral output through a 

monosynaptic GABAergic connection (Bloodgood et al., 2020; Herman et al., 

2013). Therefore, KOR antagonists may facilitate GABA release onto CeM output 

neurons resulting in decreased drinking behavior (Kang-Park et al., 2013). 

Similarly, within the CeL, DYN or KOR agonist activity at presynaptic GABAergic 

terminals would have the net effect of CeL disinhibition that may influence the 

activity of other peptide rich populations within the CeL that drive drinking behavior 

(De Guglielmo et al., 2019). More specifically, CRF-expressing neurons in the CeL 

promote excessive drinking in the context of alcohol dependence and there is 

extensive literature supporting interactions between the DYN and CRF systems 

(Bruchas et al., 2010; de Guglielmo et al., 2019; Pomrenze et al., 2019a). 

Therefore, KOR antagonists may drive increased GABA release onto CeLCrf 

neurons and thereby decrease alcohol intake, a possibility that has not been tested 

to the best of our knowledge. We suspect that CeA-BNSTDYN inhibition may 

influence local release of DYN in the CeA and attenuate drinking similar to the 

effect of intra-CeA nor-BNI through the scenario outlined above. Further study of 

the topography of KOR expression within the microcircuitry of the CeL and CeM 

may be the key to unlocking the discrepancy between KOR-mediated regulation 

of GABAergic activity and the effects of alcohol on GABA release in the CeA.  

Concerning KOR activity in the BNST, a series of elegant studies from the 

Kash lab supports a role for presynaptic KOR modulation of GABA release similar 

to that described above within the CeA. More specifically, bath application of the 

KOR agonist, U69593, or DYN results in decreased presynaptic release of GABA 
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within the BNST (Li et al., 2012). Because the BNST is rich in KOR-expressing 

nuclei, it is possible that KOR modulation of GABA release is derived from local 

interneurons or from presynaptic terminals of BNST afferents. Sorting of neuronal 

populations based on cellular properties revealed that the effect of U69593 on 

BNST activity was specific to KOR-expressing afferents because activity in 

interneurons was not affected. Therefore, we posit that the decrease in drinking 

behavior observed after CeA-BNSTDYN inhibition or nor-BNI microinjection into the 

BNST is due to enhanced presynaptic GABA release. Interestingly, KOR-mediated 

suppression of GABAergic release in the BNST has been observed in BNST-

projecting neurons of the CeA (Li et al., 2012). This suggests the existence of two 

parallel circuits within CeA-BNST circuitry because there is minimal co-expression 

of DYN and KOR within the CeA (Bloodgood et al., 2020). The functional role of 

these dissociable CeA-BNSTDYN and CeA-BNSTKOR pathways has not been 

explored. In support of this hypothesis, there is evidence for recruitment of 

presynaptic KOR on discrete populations within the BNST based on the source of 

input. For example, activation of glutamatergic BNST-projecting neurons of the 

BLA promotes the expression of an anxiolytic phenotype (Crowley et al., 2016). 

However, activation of DYN-containing neurons within the BNST attenuates 

glutamate release from the BLA and not from the PFC, suggesting pathway 

specific KOR modulation of neurotransmitter release relevant to anxiety and 

drinking behavior (Crowley et al., 2016). Furthermore, glutamatergic projections 

from the mPFC that terminate in the BNST promote activity of local DYN-

containing neurons that drive anxiety-like behavior and excessive drinking (Hwa et 
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al., 2019). This suggests that activity of DYN/KOR within the BNST can be derived 

from different sources of input that act on discrete circuity. However, in-vivo 

evidence of endogenous DYN release within the BNST has been limited to 

stimulated release of local DYN-containing neurons (Crowley et al., 2016). 

Retrograde release of DYN has been observed in the NAc, CeA, and BNST and 

action at presynaptic KOR in these regions decreases GABA release (Crowley et 

al., 2016; Gilpin et al., 2014; Lindholm et al., 2007). There is also evidence for 

anterograde release of DYN directly onto presynaptic terminals or dendrites/cell 

bodies expressing KOR (Gupta and Gintzler, 2003; Margolis et al., 2003). 

Therefore, it is possible that CeA-BNSTDYN directly influences activity of CeA-

BNSTKOR through an axoaxonic interaction. Future studies utilizing genetically 

encoded peptide sensors will allow for the detection of DYN/KOR activity within 

these select circuits.   

Within the BNST, projections to downstream structures involved in alcohol 

drinking, such as the VTA, are likely affected as a result of KOR 

activation/inactivation or CeA-BNSTDYN inhibition. For example, the BNST sends 

long-range GABAergic and glutamatergic projections to the VTA, placing this 

pathway in direct relevance to addiction circuitry (Kudo et al., 2012; Dedic et al., 

2018; Jennings et al., 2013). In fact, this pathway is involved in excessive drinking 

because chemogenetic inhibition of CRF-expressing neurons in the BNST-VTA 

circuit decreased alcohol intake in the DID model (Companion and Thiele, 2018; 

Rinker et al., 2017). Therefore, it is possible that endogenous activity of CeA-

BNSTDYN results in KOR-mediated inhibition of GABAergic presynaptic terminals 
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in the BNST that disinhibit the BNST-VTACrf circuit thereby promote alcohol 

drinking behavior. Likewise, inhibition of CeA-BNSTDYN would restore inhibition 

over BNST-VTACrf and attenuate binge drinking. This model, however, does not 

account for the inhibitory influence of GABA release from CeA-BNSTDYN in the 

BNST. However, GABAergic activity could have an inhibitory effect on local 

interneurons and influence activity of output populations such as BNST-VTACrf. 

There is evidence in support for local microcircuit activity in the BNST and these 

discrete populations are dysregulated by a history of alcohol dependence (Pati et 

al., 2020). More specifically, excitability is increased in local CRF-expressing 

neurons within the BNST during withdrawal from chronic alcohol and this is thought 

to affect activity in non-CRF neurons that project to the VTA or LH. Furthermore, 

these findings suggest that local BNST circuits are sensitive to alcohol and 

contribute to decreased activity in otherwise anxiolytic circuitry, thereby facilitating 

the expression of negative affective behaviors that promote excessive drinking. 

Because alcohol use disorder is conceptualized as stress surfeit disorder, it is 

possible that early binge drinking sensitizes these stress-related circuits and 

facilitates an escalation of intake over time (Koob, 2013). Therefore, future studies 

will be of importance to determine the precise circuitry and directionality of DYN 

release within the extended amygdala that contributes to excessive alcohol 

drinking behavior.  
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CHAPTER 5: Conclusion and Final Thoughts 

DYN/KOR and Binge Drinking 

The goal of this dissertation was to use a multifaceted approach involving 

pharmacology, histological assessment of neuronal activity, and chemogenetic 

tools to interrogate the dynorphin/kappa opioid (DYN/KOR) neuropeptide system 

within extended amygdala circuity as it relates to excessive binge-like alcohol 

consumption. Here, we have shown that activity of KOR within the bed nucleus of 

the stria terminalis (BNST) bidirectionally modulates binge-like alcohol 

consumption in the drinking-in-the-dark (DID) model. More specifically, 

microinjection of a KOR antagonist into the BNST decreased excessive drinking 

and blocked the ability of systemic KOR activation to enhance alcohol intake. 

Furthermore, microinjection of a KOR agonist selectively into the BNST increased 

alcohol consumption and together, these data demonstrate that KOR activity within 

the BNST is both necessary and sufficient to promote binge drinking behavior. 

Because the central amygdala (CeA) sends dynorphinergic projections to the 

BNST and the CeA-BNST circuit has been implicated in excessive drinking 

behavior, a study was conducted to assess neuronal activity within this pathway 

during a binge drinking session. This study revealed that c-Fos immunoreactivity, 

serving as a proxy for neuronal activity, was increased within the CeA of mice 

consuming alcohol compared to those drinking water. The level of alcohol 

consumption was positively correlated with c-Fos expression in the CeA, an effect 

that was largely driven by male mice. While determination of activity within CeA 

projections to the BNST was not quantified due to methodological constraints, a 
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more rigorous study was conducted to determine a causal role for the CeA-BNST 

pathway in binge drinking behavior. More specifically, we demonstrated that 

chemogenetic inhibition of the CeA-BNSTDYN circuit decreased binge-like alcohol 

consumption, an effect that was selective to alcohol because sucrose drinking was 

not affected. Taken together, these data support the overarching hypothesis that 

DYN/KOR activity within the extended amygdala contributes to excessive drinking 

and that the effect observed after CeA-BNSTDYN inhibition is likely mediated by 

KOR in the BNST.  

While this dissertation work outlines the role KOR in the BNST and 

implicates the CeA-BNSTDYN circuit in mediating binge drinking, the exact role of 

DYN within endogenous CeA-BNST circuitry still remains unclear. DYN-containing 

neurons within the CeA are GABAergic and also co-express a number of peptides 

involved in drinking behavior, such as CRF, NTS, and SST. Chemogenetic 

strategies confer cell-type and pathway specificity, but influence bulk 

neurotransmitter and peptide release within the targeted population. Thus, it is 

possible that the release of GABA or a neuropeptide such as CRF was affected by 

CeA-BNSTDYN inhibition and may influence drinking behavior. To address this 

concern, future studies will employ pathway-specific shRNA-mediated knockdown 

of DYN within CeA-BNST projections. This approach will deplete DYN expression 

within the circuit but leave other systems intact. Utilization of this strategy will build 

upon the present findings and more clearly define the role of DYN within CeA-

BNST circuitry.  
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One important limitation of this dissertation work is that microinjection into 

the BNST in close proximity to behavioral testing resulted in a disruption to drinking 

behavior. This methodological constraint limits interpretation of potential sex 

differences in response to U50,488 microinjection into the BNST on alcohol 

drinking. However, U50,488 did elevate alcohol consumption as hypothesized 

albeit a modest increase. This limitation also directed the use of a retroviral 

strategy to target the CeA-BNSTDYN circuit for chemogenetic studies. The most 

commonly used chemogenetic strategy to target select circuitry involves the use 

of an anterograde vector harboring a DREADD and CNO delivery into the 

downstream terminal field. In the present studies, a retro-viral approach was used 

that involved microinjection of CNO into the CeA. While this strategy allowed for 

effect circuit-level inhibition,  

Finally, studies aimed at determining neuronal activity within the CeA-BNST 

circuit during binge drinking were inconclusive due to poor expression of the retro-

tracer in the CeA. Within the CeA, c-Fos expression was elevated in mice 

consuming alcohol relative to water drinking control  and supports a general 

involvement of this region in binge drinking. However, the temporal dynamics of c-

Fos induction limit interpretation of our results. Future studies utilizing genetically 

encoded calcium indicators will build upon the present findings by measuring 

neuronal activity within DYN-containing neurons with high temporal specificity. For 

example, targeted viral expression using a Cre-dependent genetically-encoded 

fluorescent calcium biosensor in PDYN-IRES-Cre mice will allow for selective 
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measurement of real-time activity within the CeA-BNSTDYN pathway that can be 

time-locked to licks at an alcohol bottle. 

 

Clinical Perspectives 

AUD arises from the diverse and complex interaction between genetic, 

epigenetic, and environmental factors that influence the neurobiological basis of 

behavior (Koob and Volkow, 2010, 2016). The DYN/KOR systems accounts for but 

one of the plethora of variables that contribute to AUD and targeting this system 

alone is unlikely to restore proper functioning in all systems that together contribute 

to excessive drinking, negative affect, and craving that embody AUD. Thus, KOR 

antagonists are not a likely “all-inclusive” cure for AUD, but may be better suited 

as an adjunct therapy to treat persistent negative affect, promote stress resilience, 

and thereby reduce the drive to drink excessively.  

The widely accepted theoretical framework of the addiction cycle involves 

chronic binge drinking that precipitates the emergence of withdrawal syndrome 

and persistent negative affect that, in turn, drive craving, relapse, and further binge 

drinking. Indeed, KOR antagonists attenuate excessive alcohol drinking, 

withdrawal-related anxiety, and negative affective behaviors in preclinical models 

of alcohol dependence through action within the extended amygdala. The present 

dissertation builds upon these findings and indicates that KORs within the 

extended amygdala also modulate excessive binge-like alcohol consumption prior 

to the development of alcohol dependence. Together, these findings suggest that 

the DYN/KOR system is a shared neurobiological mechanism involved in initial 
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binge drinking and excessive drinking in the context of dependence. It is likely that 

the emergence of withdrawal syndrome and negative affect, which are absent in 

initial sporadic episodes of binge drinking, promote increased frequency and 

intensity of subsequent drinking through an increase in function of the DYN/KOR 

system.  

Increased dynorphinergic tone is hypothesized to promote excessive 

drinking and a PDYN SNP is associated with drinking severity in patients with AUD 

(Preuss et al., 2013; Williams et al., 2007; Xuei et al., 2006). Furthermore, a SNP 

in the gene coding for KOR, Oprk1, is positively associated with diagnoses of AUD 

as well as severity of alcohol drinking, withdrawal symptomology, impulsivity, and 

craving (Park et al., 2020). However, further imaging studies are needed to 

determine exactly how SNPs in PDYN and Oprk1 affect expression and signaling 

of DYN/KOR throughout the brain, and specifically within the extended amygdala. 

It also remains to be seen how KOR antagonists may influence dysregulated limbic 

network activity as a function of AUD. None the less, KOR antagonists may serve 

as a viable option to treat patients with a genetic vulnerability to AUD.  

Clinical trials involving selective KOR antagonists are currently underway 

although initial trials raised concern over drug safety. The long-lasting receptor 

inactivating antagonist, JDTic, has entered into Phase 2 clinical trials but have yield 

mixed success for the treatment of drug abuse, anxiety disorders, and treatment 

resistant depression. More specifically, studies were aborted due to off-target 

cardiovascular effects in a subset of patients. More conventional antagonists that 

compete at the receptor, unlike JDTic that inactivates c-Jun Kinase signaling, 
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serve as a viable alternative because they are well tolerated and have shown 

promise in clinical trials for the treatment of anxiety and depression (Schattauer et 

al., 2017; Lowe et al., 2014). For example, Opra Kappa (formerly LY2456302 or 

CERC-501) is a conventional KOR antagonist that has recently completed clinical 

trials in persons with cocaine dependence, nicotine use disorder, and in healthy 

controls (Jones et al., 2020; Reed et al., 2017). While the drug failed to attenuate 

craving or measures of depression, the KOR antagonist was well tolerated and 

holds promise for further studies.  

Lastly, de Laat and colleges provide compelling evidence in support of KOR 

pharmacotherapies by demonstrating that the non-selective opioid antagonist 

naltrexone reduces alcohol intake and attenuates craving in patients diagnosed 

with AUD through activity at KOR (de Laat et al., 2018). In fact, an ongoing clinical 

trial is utilizing combined naltrexone and buprenorphine to treat subjects with AUD 

and comorbid PTSD. While buprenorphine is a KOR antagonist and partial MOR 

agonist, combined treatment with naltrexone allows for MOR blockade and more 

selective KOR antagonist activity. Combined pharmacotherapies offer a viable 

alternative to costly drug development while achieving KOR selectivity. 

 

Final Thoughts 

Presently, a comprehensive understanding of the neurobiological 

underpinnings of AUD is far from complete and, although great advances have 

been made in the last decade, the translation of preclinical findings into new 

therapeutic interventions that attenuate excessive alcohol consumption remain 
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limited. Thus, there is a pressing need for the development of novel compounds to 

treat individuals suffering from an AUD and alleviate the enormous health and 

financial burden caused by excessive drinking. There is currently ample evidence 

indicating that neuropeptide systems contribute to excessive alcohol drinking and 

AUD. This dissertation adds to the growing body of preclinical literature supporting 

a role for the DYN/KOR system in excessive alcohol consumption and supports 

further study of this system as a promising druggable target for the treatment of 

AUD.  
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SUPPLEMENTAL FIGURES  
 
 

 
 
Supplemental Figure 1: Pattern of cre-dependent AAVrg expression after 
infusion into the BNST of Pdyn-IRES-Cre mice. A) Expression of mCherry was 
enhanced by colorimetric staining with DAB to better visualize terminal expression 
in the BNST relative to landmarks that can be difficult to see with fluorescent 
staining. Bilateral terminal expression can be seen within the BNST at the site of 
viral infusion. Expression can be seen in DYN-containing neurons within the CeA, 
BMA, and PVN. B) Infusion of the control vector, AAVrg-eF1a-DIO-eGFP, resulted 
in eGFP expression within the CeA.  
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Supplemental Figure 2: Alcohol drinking in mice that received surgery to target 
the CeA-BNSTDYN circuit but lacked viral expression. A) Alcohol drinking across 
the 0-2 and 2-4 hr timepoints was similar after VEH or CNO microinjection into the 
CeA. B) Similarly, cumulative alcohol intake at 4 hours was similar after VEH or 
CNO treatment suggesting that hM4Di expression within the CeA-BNSTDYN circuit 
is necessary for CNO to affect drinking behavior.  
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