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Abstract 

NATHAN LANCE ALDERSON. FA2H Dependent Fatty Acid 2-Hydroxylation in the 
Mammalian Nervous System (Under the direction of Dr. HIROKO HAMA) 

Myelin is formed by oligodendrocytes in the central nervous system and Schwann 

cells in the peripheral nervous system. This unique membrane is comprised of 

approximately 70% lipid and 300/0 protein. The high lipid content is thought to be vital 

for its insulatory function. Galactosylceramide (GaICer) and sulfatide make up 

approximately 30% of total myelin lipids, with more than half of these galactolipids 

containing fatty acids hydroxylated at the C2 position (2-hydroxy fatty acids). Despite 

their high abundance, very little is know about the biosynthesis of these 2-hydroxy 

galactolipids, and specific functions of the 2-hydroxyl group in myelin galactolipids 

remain speculative. To fill this gap, we recently cloned and characterized a human fatty 

acid 2-hydroxylase gene, FA2H, that is highly expressed in brain. To study the roles of 

fatty acid 2-hydoxylase and 2-hydroxy sphingolipids in the brain and other tissues, we 

have developed highly sensitive methodo 10 gies to measure in vitro fatty acid 2-

hydroxylase and free 2-hydroxy fatty acids by gas chromatography/mass spectrometry 

(GC/MS). Utilizing these novel methods, here we demonstrate that FA2H is required for 

the formation of 2-hydroxy fatty acids (precursors of 2-hydroxy galactolipids) in the 

central and peripheral nervous systems, and 2-hydroxylation of free fatty acids is the first 

step for the biosynthesis of 2-hydroxy galactolipids. During the course of the study we 

developed FA2H knockdown using siRNA and shRNA. RNAi against FA2H revealed 

unexpected cellular phenotypes indicative of altered differentiation. Cells were 2.8-fold 

more migratory, exhibited increased proliferation, and were strongly resistant to cAMP 
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induced differentiation. These findings open an exciting area of research involving 2-

hydroxy lipids in cell growth, migration, and differentiation. 
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Introduction 

A number of devastating neurodegenerative diseases, including multiple sclerosis 

(MS) and certain leukodystrophies, are associated with demyelination. Myelin, a lipid

rich membrane that wraps around the axons, facilitates nerve conduction and is fonned 

by oligodendrocytes in the central nervous system (CNS) and Schwann cells in the 

peripheral nervous system (PNS). The high lipid content of myelin is unique and thought 

to be critical for insulation and function of neurons [2]. The major myelin lipids are 

galactosylceramides (GalCer) and sulfatides (3-sulfate ester of GalCer), with 

approximately one half of the total fatty acids in GalCer and sulfatides hydroxylated at 

the C2 position (2-hydroxy fatty acids) [3, 4]. No other mammalian tissues contain such 

high concentrations of2-hydroxy fatty acids, suggesting an important role in myelination. 

Fatty acid 2-hydroxylase (FA2H) catalyzes the 2-hydroxylation of fatty acids during 

de novo synthesis of ceramide, a precursor of all complex sphingolipids [4, 5]. In myelin, 

the increased ratio of 2-hydroxy fatty acids to non-hydroxy fatty acids is thought to be 

critical for membrane compaction, an essential process for normal nerve function [2]. 

Biophysical studies of 2-hydroxy sphingolipids in model membranes show that the 2-

hydroxyl group facilitates membrane lipid-lipid [6-8] and carbohydrate-carbohydrate 

interactions between GalCer and sulfatides on apposing membranes by an extensive 

network of hydrogen bonds [9, 10]. Further, in rodent brains, enzyme activities for 

formation of 2-hydroxy spbingolipids increase after birth in parallel with myelination 
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and decrease after peak myelination [4, 11]. These studies suggest that 2-hydroxy fatty 

acids in GalCer and sulfatides have critical structural and functional roles in myelin. 

Surprisingly, the biosynthetic pathway and regulation of 2-hydroxylation are not well 

understood. Elucidation 0 f this pathway is imperative for the development 0 f novel 

therapeutic agents for treatment 0 f demyelinating diseases. 

We recently cloned and characterized a human fatty acid 2-hydroxylase gene, FA2H, 

that is highly expressed in brain [1]. We hypothesized that the F A2H gene product is 

responsible for the formation of precursors for 2-hydroxy GalCerlsulfatides biosynthesis, 

and that FA2H expression and activities have a critical role in myelinogenesis. 
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Review of Literature 

2-Hydroxy spbingolipids are found in most living organisms including vertebrate 

animals, worms, plants, yeast, and some bacterial species. In mammals, 2-hydroxy 

sphingolipids are uniquely abundant in certain tissues, most notably in the nervous 

system. Galactosylceramides (GalCer) and sulfatides account for one third of myelin 

lipids [2, 12]. One half of all fatty acids in these myelin glycosphingolipids are 

hydroxylated at the C2 position on the N-acyl chain (2-hydroxy fatty acids) [3, 4, 13]. 

This modification is thought to playa critical role in electrical insulation and nerve 

conduction. 

The 2-hydroxy fatty acid content in postnatal mammalian brain increases with active 

myelination and reaches stationary levels as animals mature [14-16]. Comparatively, 

myelin forming cells contain the highest reported levels of 2-hydroxy fatty acids, 

suggesting these lipids play a unique role in the myelination of the mammalian nervous 

systems (CNS & PNS) [17]. However, the biosynthetic pathway and regulation of 2-

hydroxylation are not well understood. To this end, we recently cloned and characterized 

a human fatty acid 2-hydroxylase gene, FA2H, that is highly expressed in brain [1]. 

2-Hydroxy Galactolipids in Vertebrate Nervous Systems. 

In m~~lin-forming oligodendrocytes and Schwann cells, GalCer containing both 2-

hydroxy and non-hydroxy fatty acids are synthesized by the enzyme UDP

galactose:ceramide galactosyltransferase (CGT) [18]. CGT -knockout mice, which lack 
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GalCer and sulfatides, form functionally altered myelin, develop neurological 

abnormalities, and have a short life span [19-21]. Detailed studies of these mice revealed 

crucial roles for GalCer and sulfatides in myelination and axo-glial organization [21-23]. 

Myelin of CGT -knockout mice contains 2-hydroxy glucosylceramides, which are not 

found in normal myelin [19, 20]. CGT -transgenic mice also had unstable and 

uncompacted myelin and developed progressive hind limb paralysis and demyelination 

[24]. Although total galactolipids in these mice were not altered significantly, the ratio of 

2-hydroxy GalCer to non-hydroxy GalCer was reduced, indicating that the underlying 

cause of the unstable myelin was reduced 2-hydroxy GalCer. These studies underscore 

the importance of2-hydroxyfatty acid-containing sphingolipids in myelin. 

Biophysical Studies on 2-Hydroxy Sphingolipids. 

Several biophysical studies [6, 8, 9] demonstrated that the 2-hydroxyl group in 

sphingolipids has a profound effect in the lipid organization within model membranes 

because of its hydrogen-bonding capability. The participation of the 2-hydroxyl group in 

hydrogen bonds with neighboring lipids was shown by analysis of the crystal structure of 

synthetic glycospbingolipids with 2-hydroxy octadecanoic acid [9] and by analysis of the 

phase transition temperature [8]. The monolayer behavior of synthetic ceramides showed 

that the 2-hydroxyl gr~up promotes condensation to a close-packed arrangement [6]. 

These studies provide a physical basis for the effects of 2-hydroxy sphingolipids in 

biomembranes. 

Characterization of Fatty Acid 2-Hydroxylases. 

In mammals, fatty acid 2-hydroxylation is believed to occur during de novo synthesis 

of ceramides, the common precursors of all glycosphingolipids and sphingomyelin. 
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Hoshi and Kishimoto first reported rat brain fatty acid 2-hydroxylase activities in 1973 

[4]. The rat brain fatty acid 2-hydroxylase is a microsomal enzyme [5] that requires 

molecular oxygen, Mg2+, pyridine nucleotides, cellular cofactors [4], and microsomal 

electron transfer proteins [25, 26]. Despite their extensive efforts, the rat brain fatty acid 

2-hydroxylase has not been purified, and biochemical study of this enzyme has not been 

reported since 1990. The biosynthetic pathway and coordination with other myelin 

enzymes is still not fully understood. 

Identification oftheYeast FADl gene (SCS7). 

In the yeast Saccharomyces cerevisiae, most sphingolipids contain 2-hydroxy fatty 

acids. The 2-hydroxylation is dependent on the F AH 1 (also known as SCS7) gene, which 

has been identified as a gene containing a cytochrome bs-like sequence [27] and as a 

suppressor of the Ca2+-sensitive phenotype of csg2 mutants [28]. Yeast fahl mutants 

show increased resistance to pore-fonning antifungal agents, presumably because of 

altered plasma membrane properties [29]. Yeast Fah1 p is a member of the membrane

bound desaturaselhydroxylase family with the conserved histidine motif (HX(3--4)HX(7-

41)HX(2-3)-HHX(61-189)(H/Q)X(2-3)HH), which is thought to coordinate a non-heme di-iron 

cluster at an active site [30]. The reactions catalyzed by the enzymes in this family require 

electron donors and molecular oxygen [30]. For yeast Fahl p, the tenninal electron donor 

is likely the intramolecular cytochrome bs domain. It is notable that the predicted 

properties of yeast Fah1 p are consistent with the biochemical properties of rat brain fatty 

acid 2-hydroxylase. Therefore, it is a reasonable assumption that mammalian fatty acid 2-

hydroxylases are encoded by FAHI homologues. 
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Identification of Mammalian FA2H genes. 

Previously, we cloned and characterized a human gene encoding a fatty acid 2-

hydroxylase (FA2H) that is highly expressed in human brain [1]. BLAST sequence 

analyses identified several human cDNA sequences that had significant similarity to 

yeast FARl (also known as SCS7), a gene required for 2-hydroxylation of spbingolipid

associated very long chain fatty acids [27, 28, 31]. All of the eDNA clones were derived 

from the same gene located in human chromosome 16 (NCBI locus identification, 

79152), which we named FA2H for fatty acid 2-hydroxylase. !he FA2H gene product is 

a 372-amino acid protein (42.8 kDa) that has 360/0 identity and 46% similarity to yeast 

Fahlp. Yeast Fahlp contains an N-terminal cytochrome bs domain (NCBI Conserved 

Domain Database accession no. pfamOOI73), four potential transmembrane domains, and 

the characteristic histidine motif conserved among membrane bound 

desaturaseslhydroxylases (consensus: HX(3--4 )HX(7--41 )HX(2-3)-HHX( 61-89)(H/Q)X 

(2-3)HH) (13,29,31). These histidines are thought to coordinate the non-heme di-iron 

cluster at an active site [30] (32). Similarly, human F A2H protein contains a cytochrome 

b5 domain at its N terminus (amino acids 1-92). Within this domain is the conserved 

heme-binding domain (His-Pro-Gly-Gly), suggesting that it is functional as an electron 

carrier. The cytochrome b5 domains of yeast Fahl p and human FA2H lack a membrane 

anchor, which is present in the microsomal cytochrome bs. The C-terminal three quarters 

of FA2H are highly homologous to the sphingolipid fatty acid hydroxylase domain 

(NCBI Conserved Domain Database accession no. pfam04116). This domain is found in 

previously identified FAHl homologues inSchizosaccharomyces pombe, Arabidopsis 

thaliana, and Caenorhabditis elegans [27], as well as in hypothetical proteins in the fungi 
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Magnaporthe grisea and Neurospora crass a, the malaria mosquito Anopheles gambiae, 

Drosophila melanogaster, the nematode C. briggsae, Xenopus laevis, Mus musculus, and 

Rattus norvegicus (NCBI conserved domain architecture retrieval tool). All of these 

proteins contain the eight conserved histidines and an N-terminal cytochrome hs domain 

with the exception of the A. thaliana homologue, which lacks a cytochrome hs domain 

[27]. 
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Chapter 1 

Development of a Novel Fatty Acid 2-Hydroxylase Assay 

Introduction 

Spbingolipids are a large class of lipids ubiquitously present in eukaryotic cell 

membranes. The structural diversity of sphingolipids stems from over three hundred 

distinct head groups, as well as various modifications on hydrocarbon chains of the 

hydrophobic ceramide moiety. One of the major modifications of ceramide structure is 

2-hydroxylation of the amide-linked fatty acids. The 2-hydroxylation of the N-acyl chain 

occurs during de novo synthesis of ceramide and is catalyzed by fatty acid 2-hydroxylase 

(also known as fatty acid alpha-hydroxylase). Sphingolipids containing 2-hydroxylated 

N-acyl chains (2-hydroxy sphingolipids) are found in various organisms, including plants, 

yeast, worms, and vertebrate animals. In mammals, 2-hydroxy sphingolipids are 

especially abundant m the nervous system, as the major myelin lipids, 

galactosylceramides and sulfatides (3-sulfate ester of galactosylceramide), contain a high 

proportion (--500/0) of 2-hydroxy fatty acids [3, 4, 13]. The roles for Gale and sGalC in 

myelination and axo-glial organization have been demonstrated in studies of knockout 

mice that lack these lipids [21-23], and the significance of 2-hydroxylation of these 

myelin lipids has long been speculated [32]. Mammalian epidermal tissues contain a 

unique set of very long chain ceramides with 2-hydroxy fatty acids, which are thought to 

be critical for the permeability barrier function of the epidermis [33, 34]. A number of 

studies also showed 2-hydroxy sphingolipids in liver and kidney, epithelia of digestive 
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tract, and other tissues (for example [35-38]). Despite the prevalence of 2-hydroxy 

sphingolipids, fatty acid 2-hydroxylase has not been studied in extraneural tissues until 

recently, and physiological roles for extraneural 2-hydroxy sphingolipids are poorly 

understood. 

The brain fatty acid 2-hydroxylation activity was first demonstrated by the conversion 

of [1-14C] tetracosanoic acid to 2-hydroxy tetracosanoic acid in sphingolipids when 

injected into rat brains [39]. Subsequently, an in vitro fatty acid 2-hydroxylase assay was 

developed using [I_14C] tetracosanoic acid as a substrate, brain homogenate as an enzyme 

source, and assay products analyzed by thin-layer chromatography [40]. With this 

method, biochemical properties of this enzyme have been studied in rat and mouse brains 

[5, 11, 25, 26, 32, 41]. The rat brain fatty acid 2-hydroxylase requires molecular oxygen, 

Mg2+, pyridine nucleotides (NADPH or NADH), and microsomal electron transport 

proteins [25, 26]. The rat brain fatty acid 2-hydroxylase was insensitive to carbon 

monoxide, indicating that it was not a P-450 enzyme but another type of mixed function 

oxygenase [ 41]. Although the brain enzyme was successfully characterized, the 

sensitivity of the previous assay method was limited, and no activities were detected in 

other tissues containing 2-hydroxy sphingolipids [41]. It was also unclear whether free 

fatty acids were the substrate of the enzyme, because the assay products were detected 

only as a component of2-hydroxy ceramides, and not as free 2-hydroxy fatty acids. 

In a recent study we showed that the human F A2H gene encodes a fatty acid 2-

hydroxylase that is highly expressed in the human brain [1]. Another study showed that 

mouse F A2H protein was localized in the endoplasmic reticulum and highly expressed in 

the brain during active myelination, suggesting that F A2H is the enzyme responsible for 
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the fonnation of 2-hydroxylated ceramide in oligodendrocytes of the mammalian brain 

[42]. In the course of the study, we developed an improved in vitro fatty acid 2-

hydroxylase assay using a stable isotope and gas chromatography-mass spectrometry. 

With the new assay, we showed that human F A2H converted a free fatty acid to a 

corresponding free 2-hydroxy fatty acid [1]. Here we report the details of the assay and 

an application of the method to a benchtop quadrapole mass spectrometer for convenient 

measurements of fatty acid 2-hydroxylase activities in various biological specimens. 

Materials And Methods 

Materials 

Fetal bovine serum was purchased from Atlanta Biologicals (Lawrenceville, GA). 

Tricosanoic acid was purchased from Matreya (catalog number 1186, Pleasant Gap, P A). 

Deuterated tetracosanoic acid [3,3,5,5-D4] (catalog number 71-2404-7) was purchased 

from Larodan Fine Chemicals (Malmo, Sweden). Purified human NADPH:P-450 

reductase (catalog number 456078) and NADPH regenerating system solutions (catalog 

numbers 451220 and 451200) were purchased from BD Biosciences Discovery Labware 

(Bedford, MA). a-Cyclodextrin was purchased from Sigma (St. Louis, MO). Methanol, 

acetyl chloride, and diethyl-ether (all HPLC grade) were purchased from VWR (West 

Chester, PA) and the Tri-Sil Reagent (catalog number 49001) was purchased from Pierce 

Biotechnology (Rockford, IL). 

Cell culture 

COS7 and HeLa cells were grown in Dulbecco's modified Eagle's medium 

supplemented with 4.5 giL. glucose and L-glutamine, sodium pyruvate, 10% fetal bovine 

serum, and 0.1 % Pen-Strep. Cells were maintained at 5% C02 at 37°C. A549 cells 
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(human lung carcinoma) were cultured in media containing 50% Dulbecco's modified 

Eagle's medium (as above) and 50% RPMI Medium 1640 supplemented with L-

glutamine. When indicated, COS7 cells were transfected with pcDNA3-hFA2H [1] using 

FuGene 6 Transfection Reagent (Roche Applied Science, Indianapolis, IN). 

Preparation of microsomal fractions from tissue culture cells 

Approximately 1 x 106 cells were harvested by trypsin-EDT A treatment and washed 

twice with ice-cold Hanks Balanced Salt Solution followed by two washes with ice-cold 

10 roM PBS (pH 7.4). The cell pellets were re-suspended in 1 mllysis buffer (10 roM 

Tris-HCI, pH 7.4; 1 % glycerol; 1 roM PMSF) and lysed by freeze-thawing, followed by 

sonication (Fisher Sonic Dismembrator Model 500, amplitude 29%, 5 sec on, 0.1 sec off, 

12 cycles). Celllysates were centrifuged at 1,000 x g for 5 min to remove unbroken cells 

and large debris. The supernatants were centrifuged at 100,000 x g for 2 hr in a Sorvall 

M120SE ultracentrifuge with an S-100 AT4 rotor to pellet microsomal fractions. The 

supernatant was discarded and the membrane pellets were resuspended in 1 ml of the ice-

cold lysis buffer by brief sonication in a Bransonic B1510MT bath sonicator. A small 

aliquot was removed for protein determination, and all samples were immediately frozen 

at - 70°C until analyses. Protein was quantified using a Pierce BCA Protein Assay Kit 

(Rockford,IL). 

Preparation of postnuclear fractions from postnatal mouse brain 
, 

Whole brains were immediately excised from adult mice following euthanasia then 

decapitation. The brain tissue was quickly homogenized in 1.5 ml ice-cold cell lysis 

buffer (10 roM Tris-HCI, pH 7.4; 1 % glycerol; 1 roM PMSF) by 30 strokes in a 2-ml 

Dounce tissue grinder. All samples were immediately frozen at -70°C until the time of 
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analyses. After thawing, homogenized tissue was sonicated (Fisher Sonic Dismembrator 

Model 500, amplitude 290/0, 5 sec on, 0.1 sec off: 12 cycles) and cell lysates were 

centrifuged at 1,000 x g for 5 min to remove unbroken cells and large debris. The 

supernatant was removed, placed on ice, and an aliquot taken for immediate protein 

detennination. 

2-Hydroxylation activity measurement 

In a 50-ml polypropylene tube, microsomal fractions (25 to 100 J..lg protein) or crude 

brain homogenate (50 J..lg protein) were added to an assay mixture containing 2.7 mM 

Tris-He!, pH 7.6; 1.28 mM NADP+; 3.3 mM glucose 6-phosphate; 3.3 mM MgCh; 0.2 

unit of glucose 6-phosphate dehydrogenase; 1 J.lg human NADPH:cytochrome P-450 

reductase; and a substrate, 1 J..lg (2.7 nmoles) of [3,3,5,5-D4]-tetracosanoic acid (stock 

solution was prepared as 10 J..lg/ml in 1.5 mM a-cyclodextrin) in a total volume of 1.5 mI. 

The substrate was added at time-zero of activity measurement. Following gentle mixing 

by swirling, the assay mixture was incubated at 37°C with shaking (100 rpm) to facilitate 

the diffusion of oxygen. At the end of incubation, 1 pmole oftricosanoic acid (C23 fatty 

acid) was added as an internal standard to each sample, and fatty acids were immediately 

extracted three times with 2 m1 diethyl ether. Each extraction consisted of vortex mixing 

and subsequent centrifugation. The combined diethyl ether extracts were brought to 

dryness under a stream of nitrogen in 13 x 100 mm screw cap test tubes (Fisher 

Scientific, catalog number 14-959-25A). Fatty acids were derivatized and quantified as 

described under "Measurement of fatty acid 2-hydroxylase assay product by GC/MS". 
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Measurement of fatty acid 2-hydroxylase assay product by GCIMS 

The methyl esters of fatty acids were prepared as previously described [1]. Briefly, 

anhydrous methanolic HCI was prepared by drop-wise addition of acetyl chloride to 

methanol and 1 ml added to each sample. The samples were tightly capped, incubated for 

45 min at 65°C, and dried under a stream of nitrogen. The 2-hydroxy groups were further 

derivatized to trimethylsilyl (TMS) ethers by the addition of 125 ~l Tri-Sil reagent and 

incubated at room temperature for 30 min tightly capped. 

Derivatized samples (1-2 J.11) were analyzed by one of the two GC/MS systems. For 

activities in transfected COS7 cells (Figs. 2, 3, and 4), the samples were directly applied 

to a Hewlett-Packard 5890 gas chromatograph with injector in splitless mode. The 

analytes were fractionated on a Restek RTX-5 column (5% diphenyl/95% dimethyl 

polysiloxane, 0.25 mm I.D., 0.25 ~m D.F., 30 m) (Bellefonte, PA) and the injection port 

and the transfer line were maintained at 250°C. The initial oven temperature was 110°C 

with no hold time and increased to 300°C at 10°Cltnin. Mass spectra data were obtained 

on a VG-70S magnetic sector mass spectrometer following electron impact (EI) 

ionization. Peaks of the target analytes and internal standard were processed using the 

Opus software system (Micromass Infonnation Systems, Modesto, CA). 

Activities in tissue culture cells (without transfection) and mouse brain were analyzed 

using a bench-top GC/MS system. Derivatized samples (1-2 J.lI) were directly applied to 

a Shimadzu GC-2010 (Shimadzu Scientific, Columbia, MD) gas chromatograph with 

injector in splitless mode. The analytes were fractionated on a Restek RTX-5 column 

(5% dipheny1l95% dimethyl polysiloxane, 0.25 mm LD., 0.25 J.lm D.F., 30 m) and the 

injection port and the transfer line were maintained at 250°C. The initial oven 
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temperature was 110°C with no hold time and increased to 300°C at 10°C/min. Mass 

spectra data were obtained on a Shimadzu GCMS-QP20IO mass spectrometer following 

electron impact (EI) ionization. Peaks of the target analytes and internal standard were 

processed using the GC/MS Lab Solutions software (Shimadzu Scientific, Columbia, 

MD). 

With both GC/MS systems, calibration curves were constructed by plotting peak area 

ratios of the target analytes to the internal standard against concentration, using linear 

regression analysis. The ion monitored for the internal standard was 368, corresponding 

to the molecular ion for C:23 FA methyl ester. The ions monitored for 2-hydroxy 

[3,3,5,5-D4]-tetracosanoic acid had a mass of 415 and 459, corresponding to m-15 and m-

59, respectively. The activities were calculated as pmoles 2-hydroxy [3,3,5,5-D4]

tetracosanoic acid per mg protein per min. 

Results And Discussion 

Electron transport system for the FA2H-dependent fatty acid 2-hydroxylation 

Fatty acid 2-hydroxylase activity was first demonstrated in vitro using a rat brain 

homogenate [41]. The rat brain enzyme required molecular oxygen, Mg2+, and pyridine 

nucleotides, which suggested that the enzyme was a mixed function oxidase [41]. 

Cytochrome P-450 enzymes were not implicated in this reaction, since the activity was 

not inhibited by carbon monoxide [41]. In modified assays with microsomal fractions, 

the rat brain fatty acid 2-hydroxylase was shown to require a microsomal electron 

transfer system [41]. All 0 f these characteristics are consistent with the predicted 

properties of the human FA2H gene product [1]. The nucleotide sequence of the FA2H 

gene indicates that FA2H protein (372 amino acid) is a member of membrane-bound 
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desaturaselhydroxylase family with the conserved non-heme di-iron-binding motif (HX(3-

4)HX(7-41)HX(2-3)HH~61-189)(H/Q)X(2-3)HH). The enzymes in this family catalyze diverse 

reactions (desaturation, hydroxylation, epoxidation, etc.) with hydrophobic substrates 

(fatty acids, sterols, sphingolipids, etc.) using molecular oxygen [30]. FA2H protein also 

contains an N-terminal cytochrome bs domain, which presumably serves as an electron 

carrier that feeds electrons to the putative catalytic di-iron site of the enzyme. Based on 

these findings, we postulated that fatty acid 2-hydroxylation by F A2H was coupled with 

microsomal electron transfer systems involving NADH:cytochrome bs reductase or 

NADPH:cytochrome P-450 reductase. Since NADPH is a more effective electron donor 

than NADH for the rat brain enzyme [26], our assay system included purified 

recombinant human NADPH:cytochrome P-450 reductase and an NADPH regeneration 

system (NADP+ + glucose 6-phosphate + glucose 6-phosphate dehydrogenase). These 

components are commonly used for studies of cytochrome P-450 enzymes and are 

available from commercial sources. With these components, electron transport would 

occur in the following order: NADPH ~ NADPH:cytochrome P-450 reductase -? 

NADP+ V P-450 Reductase y Cytochrome bs V Catalytic Center A (reduced) 1'+ (oxidized) A (Fe
2
+) 

NADPH P-450 Reductase Cytochrome bs Catalytic Center 
(oxidized) " (reduced) (Fe3+) ~ 

-V-
FA2H 

Fatty acids 

°2 
H20 

2-0H Fatty Acids 

Fig. 1-1. An electron transport system reconstituted in the in vitro fatty acid 2-
hydroxylase assay. The arrows indicate the flow of electrons. The intramolecular 
cytochrome bs domain is necessary for the activity ofFA2H [1], which is believed 
to serve as a component of an electron transfer system to provide electrons to the 
putative catalytic iron atoms. Components of the microsomal electron transport 
system in vivo remain to be determined. 
Alderson. N. l. et al. J.lipid Res. 2005;46:1569-1575 
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cytochrome bs domain ofFA2H ~ the catalytic site ofFA2H (Fig. 1-1). 

It is of interest that the rat brain enzyme was activated by a heat stable, water soluble 

cofactor [26], which was later shown to be glucose 6-phosphate [40]. Presumably, 

glucose 6-phosphate aided in regenerating NADPH from NADH+ in the previous assay 

system as well. 

Detection of 2-hydroxy [3,3,5,5-D4]-tetracosanoic acid by GCIMS 

Rat and mouse brain fatty acid 2-hydroxylase activities were previously measured 

using [1_ 14C] tetracosanoic acid as a substrate, and the reaction product was separated 

from other lipids in the samples and byproducts by multiple chromatographic processes 

prior to quantification [11, 41]. To simplify the assay, we used a deuterated fatty acid 

[3,3,5,5-D4]-tetracosanoic acid (C24:0) as a substrate and a high resolution GC/MS 

system for identification and quantification of the reaction product. Tetracosanoic acid 

was a preferred substrate by the rat brain enzyme [41]. A difficulty associated with this 

substrate was the delivery of this highly hydrophobic molecule to the enzyme. The rat 

brain fatty acid 2-hydroxylase was sensitive to detergents, and the substrate was coated 

on the surface of Celite (diatomaceous earth) in the previous assay system [41]. In our 

assay, deuterated tetracosanoic acid was dissolved in a-cyclodextrin solution, which was 

known to effectively solubilize fatty acids and ceramides without interfering with 

enzymatic reactions [43]. Microsomes of FA2H-transfected COS7 cells were a 

convenient source of the enzyme to establish the assay system. 

One J.lg of deuterated tetracosanoic acid (fc. 1.8 J.lM) was incubated with the 

micro somes, an NADPH regeneration system, and NADPH:cytochrome P-450 reductase. 

Fatty acids were extracted after adding 1 pmole of an internal standard, tricosanoic acid 
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(C23:0), which was not present in the microsomes at detectable levels. GC/MS analysis 

of the fatty acids in assay mixtures showed a new lipid compound that co-eluted with 

TMS ether of 2-hydroxy tetracosanoic acid methyl ester. The molecular ion of this 

compound had a mass of 474, that was 4 mass units larger than TMS derivative of 2-

hydroxy tetracosanoic acid. Fragmentation of this compound generated two distinct ions 

with a mass of 459 and 415, respectively, which are also 4 mass units larger than the 

corresponding ions generated from the non-deuterated 2-hydroxy tetracosanoic acid 

derivative (Fig. 1-2). 
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Fig. 1-2. Chromatograms of trimethylsilyl ether of 2-hydroxy tetracosanoic acid 
methyl ester formed in an in vitro reaction. Total ion chromatogram and selected 
ion chromatograms corresponding to MW=474, m-15, and m-59 are shown. The inlet 
shows the fragmentation ofTMS ether of [3,3,5,5-D4]-2-hydroxy tetracosanoic acid 
methyl ester. The asterisks indicate the positions of deuterium. 
Alderson, N. L. et at J. Lipid Res. 2005;46:1569-1575 

Other hydroxy fatty acids were distinguishable from 2-hydroxy fatty acids based on 

unique fragmentation patterns. As shown in , Fig. 1-3, TMS derivatives of 2-hydroxy, 3-

hydroxy, and 2,3-dihydroxy hexadecanoic acid methyl esters and 20-hydroxy eicosanoic 
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acid methyl ester occurred at different positions, generating unique fragments. Based on 

the retention time and the unique fragmentation pattern, we concluded that the lipid 

species shown in Fig. 1-2 was a TMS ether of deuterated 2-hydroxy tetracosanoic acid 

methyl ester. In the initial phase of this study, a high-resolution magnetic sector mass 

spectrometer was used to attain the lowest detection limit to ensure the detection of low 

levels of reaction products. The instrument used in this study had a limit of detection at 

the sub-fino Ie level. 
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Fig. 1-3. Fragmentation patterns of hydroxy fatty acid derivatives. The masses 
of unique fragments used for GelMS quantification are shown. 
Alderson, N. L. et at J. Lipid Res. 2005;46:1569-1575 

With this detection method, fatty acid 2-hydroxylase activity assay was established 

using microsomes of COS7 cells transiently transfected with pcDNA-FA2H. These cells 

highly express the human fatty acid 2-hydroxylase and served as a convenient enzyme 

source to determine the assay condition. In the presence of 50 J.1g microsomal proteins, 
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formation of deuterated 2-hydroxy tetracosanoic acid was linear up to 3 hr at a substrate 

conversion rate of 0.25% per hr (Fig. 1-4). It should be noted that free 2-hydroxy fatty 

acids were detected as products in this assay. In the previous studies, the product was 

detected only as a component of ceramide, not as a free fatty acid [41], and the direct 

substrate of the enzyme remained unclear [25, 32, 41]. Although we have not tested 
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Fig. 1-4. Time-course of fatty acid 2-hydroxylation. Microsomal fraction was 
prepared from COS7 cells transfected with pcDNA3-hFA2H. The assay mixtures 
contained 50 f.1g microsomal proteins in the presence of an NADPH regeneration 
system and human NADPH:P-450 reductase. Data are shown as mean ± SD of 
duplicate measurements. 
AJderson, N. L. et al. J. Lipid Res. 2005;46:1569-1575 

ceramide 2-hydroxylation by FA2H, the time-course shown in Fig. 1-4 provides strong 

evidence that FA2H utilizes free fatty acids to generate free 2-hydroxy fatty acids. Based 

on the previous studies mentioned above, it appears that accumulated free 2-hydroxy 

fatty acids could be converted to 2-hydroxy ceramides, presumably by ceramide 

synthases present in micro somes. Thus, a highly sensitive detection system is necessary 
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to measure free 2-hydroxy fatty acids below the levels that could be utilized by ceramide 

synthases. 

J 
2-Hydroxy tetracosanoic acid formation was also proportional to protein concentration 

up to 100 J.lg of micro somes (Fig. 1-5). It should be noted that quantification of the 

reaction product was performed by injecting 1-2 J.lI out of 100 J.lI of derivatized samples 

into the GC/MS, which corresponds to 0.25 to 1 J.lg protein. The high sensitivity of this 

assay is very useful for analysis when sample quantities are limited. 
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Fig. 1-5. Fatty acid 2-hydroxylation as a function of protein concentration. 
Microsomal fractions were prepared from COS7 cells transfected with pcDNA3-
hFA2H. The assay mixtures contained indicated amount of microsomal proteins in 
the presence of an NADPH regeneration system and human NADPH:P-450 reductase. 
Reaction mixtures were incubated for 120 min at 37°C. Data are shown as mean ± 
SD of duplicate measurements. 
Alderson. N. L. et al. J. Lipid Res. 2005;46:1569-1575 
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The pH profile shown in Fig. 1-6 indicated that fatty acid 2-hydroxylase activity of 

FA2H-transfected COS7 microsomes was the highest at pH 7.6-7.8, which is consistent 

with the optimum pH for the rat brain enzyme [41]. It should be noted that this assay is a 

multi-component system involving three enzymes (FA2H, NADPH:cytochrome P-450 

reductase, and glucose 6-phosphate dehydrogenase). The linear correlation between 

protein concentration and activities (Fig. 1-5) shows that F A2H is the limiting component 

at pH 7.6. It is possible that the rate of electron transport could have become sub-optimal 

at other pH. 
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Fig. 1-6. pH profile of fatty acid 2-hydroxylase activity. Microsomal fractions 
were prepared from COS7 cells transfected with pcDNA3-hFA2H. The reaction 
mixtures contained 50 f.lg microsomal proteins in the presence of an NADPH 
regeneration system, human NADPH:P-450 reductase, and 2.7 mM potassium 
phosphate (pH 6.0, 7.0, or 7.5) (triangle) or 2.7 mM Tris-HCI (pH 7.0, 7.4, 7.6, 7.8, 
8.0, or 8.4) (circle). Reaction mixtures were incubated for 120 min. The pH of the 
reaction mixture remained unchanged at the end of incubation. 
Alderson. N. L. et al. J. Lipid Res. 2005;46:1569-1575 
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With crude biological samples, endogenous lipids could interfere with the fatty acid 2-

hydroxylase assay. Free fatty acids would compete with the deuterated substrate, and 

other membrane lipids and storage lipids would affect the delivery of the deuterated 

substrate to the microsomal fatty acid 2-hydroxylase. When 0.18-1.8 f.lM of de ute rated 

tetracosanoic acid were added in the assay with 50 J.lg of microsomal proteins of F A2H-

transfected COS7 cells, formation of deuterated 2-hydroxy tetracosanoic acid was 

consistent at all substrate concentrations, indicating that the presence of microsomal fatty 

acids and other lipids did not interfere with the assay (Fig. 1-7). This result also indicates 
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Fig. 1-7. Effect of substrate concentration on fatty acid 2-hydroxylase activities. 
The reaction mixtures contained 50 J.lg microsomal proteins from FA2H-transfected 
COS7 cells (triangle) or murine brain homogenates (circle) and were incubated for 
120 min and 180 min, respectively. The substrate conversion was 4.5% (at 0.18 J..lM 
with FA2H-transfected COS7 microsomes) or less. 
Alderson, N. L. et al. J. Lipid Res. 2005;46:1569-1575 

that apparent Km for tetracosanoic acid is below 0.18 J..lM, which is significantly lower 

than the reported Km for the rat brain enzyme (4.2 f.lM) [41]. These values are not 
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directly comparable smce different methods of substrate delivery were used (Celite 

complexes versus cyclodextrin inclusion complexes). Further, the reaction product in the 

previous assay was detected as 2-hydroxy ceramide, which was generated by multiple 

enzymatic reactions. 

When crude murine brain homogenates (50 J.lg protein) were used as enzyme sources, 

2-hydroxylation was not saturated at substrate concentrations below 0.9 11M, presumably 

due to a relatively high concentration of lipids in the brain (Fig. 1-7). The substrate 

concentration used in this report (1.8 JlM) is appropriate for the samples we have tested. 

However, other samples with higher lipid contents may require a higher concentration of 

the deuterated substrate. 

Fatty acid 2-hydroxylase activity measurement by a benchtop GCIMS 

The assay described above was initially developed using a high-resolution magnetic 

sector mass spectrometer. Although this instrument provides an unsurpassed sensitivity, 

the highly specialized instrument is not commonly used in research laboratories and not 

practical for routine analyses. We therefore applied the same method to a benchtop 

system with a quadrapole mass spectrometer. Although the limit of detection on the 

benchtop instrument was approximately lOa-fold higher (at the finole level) compared to 

the magnetic sector mass spectrometer, the activity in FA2H-transfected COS7 cells was 

readily detectable with this instrument (not shown). To test whether this instrument was 

useful for various biological samples, we first measured fatty acid 2-hydroxylase 

activities in mouse brains. When whole brain homogenates (50 J.lg protein) were 

incubated with the assay mixture as described above, deuterated 2-hydroxy tetracosanoic 

acid was reproducibly formed (Table 1-1). Subsequently, activities in commonly used 
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cell lines, COS7, HeLa, and A549, were measured. To our knowledge, fatty acid 2-

hydroxylase activities have never been shown in tissue culture cells. As shown in Table 

I, all cell lines measured had relatively high fatty acid 2-hydroxylase activities. 

Consistent with this result, we have observed free 2-hydroxy fatty acids in these cells (not 

shown). It is likely that fatty acid 2-hydroxylase and 2-hydroxy sphingolipids have been 

overlooked in many tissues and cell lines due to their low abundance. The new assay will 

allow us to re-evaluate the presence of fatty acid 2-hydroxylase and 2-hydroxy 

spbingolipids in various biological samples. 

TABLE 1-1 

Fatty acid 2-hydroxylase activities in tissue culture cells and mouse brain 
homogenates 

Samples# FA 2-hydroxylase activity (pmolesemg-1emin-1
) 

Adult mouse brain (9.9 ± 0.9) x10-3 

COS7 0.27 ± 0.02 

HeLa 0.28 ± 0.03 

A549 0.45 ± 0.02 

# For the measurement of activities in mouse brains, whole brain homogenates were used 
as enzyme sources. Assay mixtures were incubated with 50 f,lg proteins for 180 min. For 
the measurement of activities in tissue culture cells, microsomal fractions were used as 
enzyme sources. Assay mixtures were incubated with 100 f,lg proteins for 120 min. Data 
are shown as the mean ± standard deviation of triplicate measurements. 
Alderson, N. L. et al. J. Lipid Res. 2005;46:1569-1575 
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Chapter 2 

Fatty Acid 2-Hydroxylation in the Central Nervous System 

Introduction 

2-Hydroxy fatty acid-containing spbingolipids (2-hydroxy spbingolipids) are present 

in most living organisms, including yeast, some bacteria, and vertebrates. In humans and 

other mammals, 2-hydroxy spbingolipids are found in much higher concentrations in 

myelin and epidermal tissues, compared to other tissues. Several lines of evidence 

suggest that 2-hydroxy sphingolipids may playa crucial role in creating the special 

characteristics of myelin in humans and other vertebrates. 

Myelin consists of approximately 700/0 lipids and 30% proteins, as compared to 30-

50% lipids in most cell membranes, which presumably contributes to its high electrical 

resistance [2]. One of the striking features of myelin is that approximately one-third of 

all lipids consist of galactosylceramides (GalCer) and sulfatides (3-sulfate ester of 

GalCer) with half of their amide-linked fatty acids hydroxylated at the C2 position (2-

hydro xy fatty acids) [3, 4, 13, 41]. 

In myelin-fonning oligodendrocytes and Schwann cells, GalCer containing both 2-

hydroxy and non-hydroxy fatty acids are synthesized by the enzyme UDP

galactose:ceramide galactosyltransferase (CGT) [18]. COT -knockout mice, which lack 

GalCer and sulfatides, form functionally altered myelin, develop neurological 

abnormalities, and have a short lifespan [19, 20]. Detailed studies 0 f these mice revealed 
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crucial roles for GalCer and sulfatides in myelination and axo-glial organization [21-23]. 

Myelin of CGT -knockout mice contains 2-hydroxy glucosylceramides, which are not 

found in normal myelin [19, 20]. CGT-transgenic mice also had unstable and 

uncompacted myelin and developed progressive hindlimb paralysis and demyelination 

[24]. While total galactolipids in these mice were not significantly altered, the ratio of 2-

hydroxy GalCer to non-hydroxy GalCer was reduced, indicating that the underlying 

cause of the unstable myelin was reduced 2-hydroxy GalCer. These studies underscore 

the importance of2-hydroxy fatty acid-containing sphingolipids in myelin. 

The precursor of all complex sphingolipids is ceramide. For the synthesis of 2-

hydroxy galactolipids, CGT uses 2-hydroxy ceramides, which are formed by the action of 

fatty acid 2-hydroxylase (also known as fatty acid a-hydroxylase) [5, 41]. In 1973, 

Hoshi and Kishimoto demonstrated fatty acid 2-hydroxylase activity in rat brain [41]. 

The rat brain fatty acid 2-hydroxylase is a microsomal enzyme [5] that reqUIres 

molecular oxygen, Mg2
+, pyridine nucleotides, cellular cofactors [41], and microsomal 

electron transfer proteins [25, 26]. Despite their extensive efforts, the rat brain fatty acid 

2-hydroxylase has not been purified, and its molecular identity remained elusive until 

recently. We have reported the identification and characterization of the human gene 

(FA2H) encoding a fatty acid 2-hydroxylase that is highly expressed in brain [1]. Human 

FA2H is a highly hydrophobic protein with an N-terminal cytochrome bs domain 

essential for enzyme activity. F A2H also contains a putative catalytic site with the 

histidine motif conserved among membrane-bound desaturases and hydroxylases 

[consensus: HX(3-4)H~7-41)HX(2-3)HHX(61-189)(H/Q)X(2-3)HH]. These histidine residues 

are thought to coordinate the non-heme di-iron cluster at the active site of the enzyme 
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[30]. FA2H catalyzes 2-hydroxylation of free fatty acid in vitro, which was dependent on 

a reconstituted electron transport system [1]. Subsequently, Eckhardt et a1. reported that 

the mouse F A2H gene was highly expressed in brain during myelination, and that F A2H 

mRNA colocalizes with PLP mRNA [42]. These findings provide strong evidence that 

the FA2H gene encodes the fatty acid 2-hydroxylase previously characterized by 

Kishimoto and colleagues. 

Despite the extensive studies on biochemical characteristics of fatty acid 2-

hydroyxlase, the pathway for the synthesis of 2-hydroxy galactolipids remains unclear, 

because in vivo substrates of this enzyme are not clearly defined. Based on our data 

(de novo synthesis pathway) 
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Serine + Palmitoyl GoA 

~ 
3-Ketosphinganine 2-0H Fatty acid 

~ ~ 
Dihydrosphingosine + 2-0H Acyl-GoA 

~ 
2-0H Dihydroceramide 

~ OH 
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2-0H Galactosylceramide (GaiGer) 
~ 

2-0H Sulfatide 

(salvage pathway) 

Geramide 
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Fig. 2-1. Proposed biosynthetic pathway for 2-hydroxy sphingolipids. The de 
novo pathway is identical to the biosynthesis of non-hydroxy sphingolipids, except for 
the 2-hydroxylation step catalyzed by FA2H. Note that fatty acids with variable chain 
lengths are incorporated into sphingolipids. UDP-galactose:ceramide galactosyl 
transferase (CGT) catalyzes the synthesis of galactosyl ceramide (GaICer). The 
salvage pathway may contribute to the formation of2-hydroxy ceramide from 2-
hydroxy fatty acid and sphingosine. 
Alderson, N. L. et al. J. Lipid Res. 2006.47: 2772-2780. 
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obtained in vitro, we hypothesize that FA2H fonns free 2-hydroxy fatty acids in vivo, 

which serve as the precursors of 2-hydroxy galactolipids. In this report we present data 

that are consistent with the pathway shown in Fig. 2-1, in which FA2H-dependent 2-

hydroxylation of free fatty acids is the first step in the synthesis of myelin 2-hydroxy 

galacto lipids. 

Materials and Methods 

Materials 

Fetal bovine serum was purchased from Atlanta Biologicals (Norcross, GA). 

Deuterated tetracosanoic acid [3,3,5,5-04]- and odd chain fatty acids (ClS-C2S) were 

purchased from Larodan Fine Chemicals (Malmo, Sweden). Bovine sulfatides and 

cerebrosides were purchased from Matreya (Pleasant Gap, P A). Generation of anti

human FA2H polyclonal antibodies has been reported [1]. Anti-mouse FA2H polyclonal 

antibodies were generated in rabbits using a synthetic multi-antigenic peptide 

corresponding to the C-terminal 20-aa of mouse FA2H 

(KLWDYFFHTLIPEEAHPKMQ). HRP-linked donkey anti-rabbit IgG (NA934), and 

the ECL Western Blotting Detection Kit were purchased from Amersham Biosciences 

(Piscataway, NJ). Anti-actin polyclonal antibodies were purchased from Sigma (Saint 

Louis, MO). Purified human NADPH:P-450 reductase and NADPH regenerating system 

solutions were purchased from BD Biosciences Discovery Labware (Bedford, MA). 

Animals 

A breeding colony of C57BL/6 mice was maintained in animal care facilities of the 

Medical University of South Carolina (MUSC) with water and food ad libitum. Mice 
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were treated in accordance with the MUSC Institutional Animal Care and Use Committee 

(IACUC) approved procedures. 

Cell Cultures 

Cc?4" cedS'- ~<I were marrira:rrie~ IIi c7M'tf't«" contauimg msuun «(( \-Lgrfu(), (ransrerrm 

(5.5 ,....glml) , sodium selenite (40 nM), ethanolamine (2 J.lg/ml) , 1 % fetal bovine seru~ 

penicillin-streptomycin, and supplemented with 25% B 1 04 neuroblastoma-conditioned 

medium as reported before [45]. Oligodendrocyte differentiation was initiated upon 

removal ofBl04-conditioned medium. 

Primary glial cells were isolated from newborn rat brains as described previously [45, 

46]. Briefly, cells were grown for 7-10 days in the presence of 10% calf serum. 

Microglia were separated by shaking the culture flasks for 30 min, plated in 6-well 

dishes, and harvested for immunoblot analysis. Oligodendrocyte progenitor cells (OPCs) 

were harvested by overnight shaking on a gyratory shaker at 200 rpm and resuspended in 

10% calf serum and subjected to several rounds of attachment/detachment for further 

enrichment. The final OPC suspension was seeded in 6-well dishes or 100-mm dishes 

coated with poly-D-Iysine. Cells were allowed to grow in DMEM supplemented with 

transferrin (50 J.lglml) , insulin (5 J.lglml) , sodium selenite (20 nM), triiodo-L-thyronine 

(30 nM), and 0.5% fetal calf serum. Growth media (GM) included the growth factors 

bFGF (10 ng/ml) and PDaF (10 ng/ml), and differentiation media (DM) excluded growth 

factors. Astrocyte-enriched cultures were prepared by subculturing the original mixed 

glial culture devoid of most oligodendrocytes and microglia as described previously [47]. 
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Isolation of Mouse Brain Galactolipids 

GalCer and sulfatides (2-hydroxy and non-hydroxy) were isolated as described 

previously with minor modifications [20]. Briefly, whole munne brains were 

homogenized using a PT1200E Polytron homogenizer with a 7-mm generator, and lipids 

extracted with 19 volumes of chloroform/methanol (2: 1, v/v) [48]. The extracts were 

washed with 0.2 vol of 0.9% NaCI, and the lower phase collected. Aliquots (50 mg wet 

weight equivalent per sample) were used for preparative TLC. For the isolation of 

sulfatides, aliquots of lipid extracts were subjected to mild alkaline hydrolysis (in 0.5 N 

KOH for 10 min at 50e C) to remove glycerolipids [19]. TLC plates were developed in 

chloroform/methanol/water (70:30:4, v/v/v) after saturation with solvent vapor for 45 

mm. Lipid spots were visualized under UV after spraying with primuline solution 

(0.005% primuline in acetone/water, 80:20 v/v). Galactolipid spots (2-hydroxy and non

hydroxy) were removed from the plates and subjected to alkaline hydrolysis (in 4 N KOH 

for overnight at 80 ec). Following neutralization with glacial acetic acid, fatty acids were 

extracted three times with 3 ml diethyl ether, and dried under N2. Fatty acids were 

derivatized and quantified as described in the next section. 

Fatty Acid Determination by Gas Chromatography/Mass Spectrometry (GC/MS) 

Whole brains were immediately excised from neonatal mice after careful cervical 

dislocation and decapitation. The tissue was quickly homogenized in 1.5 ml of ice-cold 

cell lysis buffer (10 mM Tris-HCI, pH 7.4, 1 % glycerol, and 1 mM PMSF) by 30 strokes 

in a 2-ml Dounce tissue grinder. The tissue homogenate was sonicated (Fisher Sonic 

Dismembrator model 500; amplitude at 29%; 5 sec on, 0.1 sec off for 12 cycles), and cell 

lysates were centrifuged at 1,000 x g for 5 min to remove unbroken cells and large debris. 
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The supernatant was removed, a small aliquot was taken for immediate protein 

detennination, and the remaining supernatant was immediately frozen at -80°C until 

analysis. Crude cell lysate (1 ml) was mixed with a set of internal standards (CIS, C17, 

C19, C21, C23 and C2S fatty acids) and free fatty acids were extracted three times with 2.5 

m1 of diethyl ether. Combined diethyl ether extracts were brought to dryness under N2 

for GC/MS analysis. To prepare fatty acid methyl esters, 1 ml of methanolic Hel was 

added to each sample and incubated at 65°C for 45 min, and samples were brought to 

dryness under nitrogen. To prepare trimethylsilyl (TMS) derivatives of hydroxyl groups, 

100 Jll Tri-Sil Reagent (Pierce Biotechnology, Rockford, IL) was added to each sample 

and incubated for 30 min at room temperature. Derivatized samples (1-2 J.lI) were 

directly applied to a GC-2010 gas chromatograph (Shimadzu Scientific, Columbia, MD) 

with the injector in split less mode. The injection port and transfer line were maintained at 

250°C, and analytes were fractionated on a Restek RTX-5 column (5% diphenyl and 95% 

dimethyl polysiloxane; 0.25 mm inner diameter, 0.25 J.lm D.F., 30 m). The initial oven 

temperature was 110°C' with no hold time, and increased to 300°C at 10 °C/min. Mass 

spectra data were obtained on a Shimadzu GC/MS-QP2010 mass spectrometer following 

electron impact ionization. Peaks of the target analytes and internal standards were 

processed using the GC-MS Lab Solutions software (Shimadzu Scientific). Calibration 

curves were constructed by plotting peak area ratios of the target analytes to their 

respective internal standard against concentration. 

Fatty Acid 2-HydroxyJase Assay 

Brain F A2H activity was detennined as described previously [49]. Briefly, in a 50-mJ 

polypropylene tube, crude brain homogenate (50 J.lg of protein) was added to an assay 
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mixture containing 2.7 mM Tris-HC~ pH 7.6, 1.28 mM NADP+, 3.3 mM glucose 

6-phosphate, 3.3 mM MgCh, 0.2 unit of glucose 6-phosphate dehydrogenase, 1 J.lg of 

human NADPH:cytochrome P-450 reductase, in a total volume of 1.4 mI. The substrate, 

1 J.lg (2.7 nmol) of [3,3,5,5-D4] C24 fatty acid (stock solution was 1 ° J.!g/ml in 1.5 mM u

cyclodextrin), was added at time zero. After gentle mixing by swirling, the assay mixture 

was incubated at 37°C for 180 min with shaking (100 rpm) to facilitate the diffusion of 

oxygen. At the end of incubation, 1 pmol of C23 fatty acid (an internal standard) and 20 

JlI of glacial acetic acid were added to each sample, and fatty acids were immediately 

extracted three times with 2 ml of diethyl ether. The combined diethyl ether extracts were 

brought to dryness under a stream of nitrogen. Fatty acids were derivatized and 

quantified as described in the "Fatty Acid Determination by Gas Chromatography/Mass 

Spectrometry (GC/MS)" section. 

Immunoblot Analyses 

CG4 and primary glial cells were resuspended in lysis buffer (10 mM Tris-HCI, pH 

7.6; 1 mM PMSF; 1 % glycerol), a small aliquot removed for protein determination, and 

remaining samples were mixed with an equal volume of 2x SDS-PAGE sample buffer. 

Total protein levels were quantified with a Pierce BCA Protein Assay Kit (Rockford, IL). 

Proteins (20 Jlg per well) were separated on 10% SDS-polyacrylamide gels, and blotted 

onto nitrocellulose membranes. Membranes were blocked with TBST-milk (10 mM Tris

HCI, pH' 8.0; 150 mM NaCI; 0.05% Tween 20; 5% nonfat dry milk) overnight at 4°C, 

incubated with affinity purified anti-human F A2H polyclonal antibodies (1: 1 000) or anti

actin polyclonal antibodies (1 :200) in TBST -milk for 2 hr, washed, followed by an 

incubation with HRP-linked donkey anti-rabbit IgG (1 :5,000) (Amersham Biosciences, 
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Piscataway, NJ) for 1.5 hr. Membranes were washed and target proteins visualized using 

the ECL Chemiluminescent Detection System (Amersham Biosciences). 

Whole brains were immediately excised from adult mice after careful cervical 

dislocation and decapitation. The brain tissue was quickly homogenized in 1.5 m1 of ice

cold cell lysis buffer (10 roM Tris-HCI, pH 7.4, 1% glycerol, and 1 roM PMSF) by 30 

strokes in a 2-ml Dounce tissue grinder. The tissue homogenate was sonicated (Fisher 

Sonic Dismembrator model 500; amplitude at 29%; 5 sec on, 0.1 sec off for 12 cycles), 

and cell lysates were centrifuged at 1,000 x g for 5 min to remove unbroken cells and 

large debris. The supernatant was removed, a small aliquot was taken for immediate 

protein determination, and the remaining supernatant was analyzed as above. 

Quantitative RT-PCR (qPCR) 

Murine brain was immediately excised after careful cervical dislocation and 

decapitation, and homogenized using a PT1200E Polytron homogenizer with a 7-mm 

generator. RNA was isolated using the QIAGEN RNeasy Lipid Tissue kit. opes were 

disrupted by QIAshredder, and total RNA was isolated using the QIAGEN RNeasy kit. 

cDNA was generated using the Promega AT Reverse Transcriptase kit. Real-time 

quantitative PCR (Q-PCR) was perfonned on a BioRad MyiQ single-color real-time PCR 

detection system. The primers used for each gene were as follows: for mouse PLP, 

mPLP-F1 ggcagatctttggcgactac and mPLP-Rl tgagcttgatgttggcctct; for mouse FA2H, 

mFA2H-F1 gtgttcctgcggctcattct and mFA2H-R1 atggtgggccttcatgttgt; for mouse CGT, 

mCGT -PI aaaggcatggggatcttgtt and mCGT -R1 gccgggttgatccttgtg; for mouse 18S rRNA, 

m18S-Pl gcccgaagcgtttactttga and m18S-Rl ggcctcagttccgaaaacc. A standard reaction 

mixture contained 15 J.lI iQ SYBR Green Supermix (BioRad), cDNA template, and 200 
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nM each of forward and reverse primers in a total volume of 30 J.!l. The mixture was first 

heated at 95°C for 3 min, followed by 40 cycles of 2-step amplification (10 sec at 95°C 

and 45 sec at 57°C). All reactions were performed in triplicate. For each sample, 18S 

rRNA was measured as an internal standard. Threshold cycle (Ct) for each target was 

obtained by BioRad MyiQ Optical System Software. Relative abundance of FA2H, 

CGT, and PLP mRNA were calculated using the ~~Ct method [50]. 

Results And Discussion 

We propose the pathway for the synthesis of2-hydroxy galactolipids as shown in Fig. 

2-1. In this pathway, it is postulated that free fatty acids are converted to 2-hydroxy fatty 

acids by FA2H, which are incorporated into ceramide, the direct precursor of myelin 

GalCer. We hypothesize that the main function ofFA2H in brain is to provide precursors 

of myelin 2-hydroxy galactolipids. Thus, FA2H is expected to be present primarily in 

o ligodendrocytes. In fact, FA2H mRNA has been shown to colocalize with proteolipid 

protein (PLP) mRNA in mouse brain [42]. To demonstrate that FA2H protein is present 

in o ligodendrocytes, we performed immunoblot analysis of glial cells. FA2H was not 

detectable in the rat oligodendrocyte cell line CG4 cultured in growth medium 

(supplemented with growth factors pnGF and bFGF), but distinct bands were visible 

when cells were grown in differentiation medium (with no growth factors) (Fig. 2-2). 
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Fig. 2-2. FA2H is present primarily in oligodendrocytes. Total celllysates (20 f.!g 
protein) of rat glial progenitor cell line C04 or rat primary cells were subjected to 
SDS-PAGE, followed by immunoblot with anti-human FA2H or anti-actin polyclonal 
antibodies. CG4 cells were grown in a growth medium (GM) or differentiation 
medium for 2 days (DM2) or 4 days (DM4). OPC GM, oligodendrocyte progenitors 
in OM; OPC DM, oligodendrocyte progenitors in DM; A, astrocytes; M, microglia. 
Alderson, N. L. et at J. Lipid Res. 2006.47: 2772-2780. 

Based on the rat genome database, the rat F A2H protein is 80% identical to human F A2H 

with the same molecular weight (43 kDa). This is consistent with the size of the band on 

the immunoblot. Similarly, F A2H was present at a low level in rat primary 

oligodendrocytes maintained in growth medium, and increased when cultured in 

differentiation medium. There was no detectable F A2H in primary astrocytes, and a very 

faint band was visible in primary microglia. These results are consistent with the 

presumed role ofFA2H in myelin 2-hydroxy galactolipid synthesis. 

In order to validate the precursor-product relationship between fatty acids and 

galactolipids in developing mouse brain, we first determined the fatty acid compositions 

of myelin galactolipids in neonatal mouse brains and their changes during myelination 

(Table 2-1, Table 2-2). It has been reported that in Galeer of rat brain, only a small 

fraction of total fatty acids are 2-hydroxylated at the onset of myelinogenesis, and the 

proportion of 2-hydroxy fatty acids increases dramatically during myelination [4]. While 
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the general trend of changes in fatty acid compositions of mouse brain GalCer and 

sulfatides was similar to rat brain GalCer, there were distinct differences in fatty acid 

species. Most notably, mouse GaICer and sulfatide contained high levels of 2-hydroxy 

Cl6 fatty acid, which was not found in rat GalCer [4]. When normalized against protein 

contents, changes in total non-hydroxy fatty acids of GalCer and sulfatides were within 

1.5- to 2-fold from P2 to P30. In striking contrast, 2-hydroxy fatty acid contents in 

GalCer and sulfatides increased 7- and II-fold from P2 to P20, and remained high at P30. 
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Table 2-1 

Fatty acid composition of GalCer in neonatal mouse brain. 

Non-hydroxy Fatty Acids (nmollmg protein) a Total non-hydroxy 

Age C16 C18 C20 C22 C24 C24:1 C26 FA 

P2 862 841 20.8 11.9 96.9 95.8 6.6 1935 

PI7 818 722 20.7 11.9 73.3 III 5.5 1761 

P20 1232 1101 30.2 11.5 105 133 5.0 2617 

P30 757 742 16.7 7.6 61.3 82.9 3.2 1671 

2-Hydroxy Fatty Acids (nmollmg protein) a Tota12-hydroxy 

Age C16 C18 C20 C22 C24 C24:1 C26 FA 

P2 99.3 14.7 0.2 2.2 12.1 14.4 5.2 148 

P17 125 65.1 0.2 11.6 347 20.9 5.0 574 

P20 417 105 0.2 13.3 464 27.1 9.3 1036 

P30 298 68.8 0.2 10.6 705 22.5 9.0 1114 

a GalCer were purified from whole brain, and their fatty acid compositions analyzed by 
GCIMS. 
Alderson, N. L. et at J. Lipid Res. 2006.47: 2772-2780. 
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Table 2-2 
Fatty acid composition of sulfatides in neonatal mouse brain. 

Non-hydroxy Fatty Acids (nmollmg protein) b Total non-hydroxy 

Age C16 C18 C20 C22 C24 C24:1 C26 FA 

P2 146 120 5.8 4.2 65.4 87.0 1.4 430 

P17 172 164 5.3 4.9 78.1 123 1.3 548 

P20 298 330 9.4 7.6 159 200 2.7 1007 

P30 279 354 11.2 7.1 107 121 1.7 881 

2-Hydroxy Fatty Acids (nmollmg protein) b Total 2-hydroxy 

Age C16 C18 C20 C22 C24 C24:1 C26 FA 

P2 21.2 13.4 0.6 0.9 13.8 0.3 0.8 51 

PI7 91.7 41.7 0.5 1.2 29.9 0.3 0.8 166 

P20 284 151 0.9 4.6 133 0.8 2.1 576 

P30 221 102 0.7 3.2 135 1.1 2.7 466 

b Sulfatides were purified from whole brain, and their fatty acid compositions analyzed 
by GC/MS. 

Alderson, N. L. et al. J. Lipid Res. 2006. 47: 2772-2780. 
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The increase in 2-hydroxy fatty acids resulted in a marked increase in the ratio of 2-

hydroxy fatty acids to non-hydroxy fatty acids during myelination (Fig. 2-3). This ratio 

reached a peak in sulfatides at P20 (4.8-fold higher than P2), but continued to increase in 

GalCer to P30 (8.7-fold higher than P2). As in rat brain GalCer, there was a shift in 

chain lengths of 2-hydroxy fatty acids in mouse brain GalCer as animals matured. The 

relative content of non-hydroxy C24 fatty acid in GalCer remained consistent at 2-5% of 
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Age (Days) 
Fig. 2-3. The 2-hydroxy fatty acid contents in brain GalCer and sulfatide 
increase during postnatal myelination. Whole brains were isolated from neonatal 
mice at various ages. GaICer and sulfatides were extracted from whole brain and 
purified by preparative TLC. Fatty acids were liberated from GalCer and sulfatides by 
alkaline hydrolysis, and quantified by GC/MS. The data are expressed as the ratio of 
tota12-hydroxy fatty acids to total non-hydroxy fatty acids in GalCer (filled circle) 
and sulfatide (open circle). 
Alderson, N. L. et at J. Lipid Res. 2006.47: 2772-2780. 

total GalCer-associated fatty acids, whereas 2-hydroxy C24 fatty acid content increased 

from 0.6% to 25% from P2 to P30. The increase in 2-hydroxy C24 fatty acid content in 

sulfatide was less dramatic (from 3% to 10%). 

39 



Cellular 2-hydroxy fatty acids have been previously described only as components of 

various sphingolipids, and free 2-hydroxy fatty acid levels have not been reported. If free 

2-hydroxy fatty acids are the precursors of 2-hydroxy galactolipids, then free fatty acids 

are expected to be present in brain with similar compositions found in myelin 2-hydroxy 

galactolipids. To test this possibility, we quantified free 2-hydroxy fatty acids in 

developing mouse brain (Fig. 2-4). The three major species of free 2-hydroxy fatty acids 

(2-hydroxy C16, C I8, and C24) were the same as in 2-hydroxy GalCer and sulfatides, 

indicative of a precursor-product relationship. The three major free 2-hydroxy fatty acids 

increased 5- to I9-fold during postnatal myelination, presumably driving the higher rate 

of incorporation into myelin galactolipids. The relative ratio among the three major 

species, however, was not precisely the same. The high levels of C24 fatty acid in 

galactolipids do not reflect free 2-hydroxy C24 fatty acids, suggesting a chain-length 

preference by one or more enzymes in the pathway. The minor 2-hydroxy fatty acid 

species (C20, C22, and C26) increased approximately 2-fold during the same period. 

Following the period of peak myelination, by P83 all 2-hydroxy fatty acids decreased to 

the PI levels, and further decreased in aging animals. Non-hydroxy free fatty acid levels 

increased 2- to 5-fold after birth, and remained consistent after P20 (data not shown). 

Determination of tissue free fatty acids could be compromised by hydrolysis of complex 

lipids by lipases during handling of the tissues. In our measurements, however, we 

observed a sharp decrease of free 2-hydroxy fatty acids after P20, while brain 2-hydroxy 

galactolipids continue to increase at the same time. It is, therefore, unlikely that free 2-

hydroxy fatty acids were generated by degradation of tissue 2-hydroxy galactolipids. To 

40 



provide further evidence that the increase in free 2-hydroxy fatty ~cids represent de novo 

synthesis, and not degradation of2-hydroxy galactolipids, mouse brain fatty acid 2-
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isolated from mouse at various ages as indicated. Free fatty acids were extracted by 
diethyl ether, and derivatized for GCIMS analysis. Free 2-hydroxy fatty acid levels 
were normalized against protein contents. Data are shown as mean and S.D. (n=5 for 
Day 1, n= l for 24 months, n=2 for all other time points). Top pane~ levels of major 2-
hydroxy fatty acids; bottom panel, levels of minor 2-hydroxy fatty acids. 
Alderson, N. L. et al. J. Lipid Res. 2006.47: 2772-2780. 
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hydroxylase activities were detennined using the newly developed GC/MS-based in vitro 

assay [1, 49]. The assay measures the conversion 0 f deuterated C24 fatty acid to 

deuterated 2-hydroxy C24 fatty acid. This system allows for the accurate measurement of 

less than 1 % conversion of the deuterated substrate. As shown in Fig. 2-5, the mouse 
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Fig. 2-5. Fatty acid 2-hydroxylase activity is upregulated during myelination. 
Total brain homogenates (50 ~g protein) were used for fatty acid 2-hydroxylase 
assays. The activities are expressed as finoles of2-hydroxy [3,3,5,5-D4] C24 fatty acid 
formed per mg protein per min. Data are shown as mean ± S.D. (n=5 for PI, n=I for 
24 months, and n=2 for all other time points). 
Alderson, N. L. et at J. Lipid Res. 2006.47: 2772-2780. 

brain fatty acid 2-hydroxylase activity sharply increased after P2, and the highest activity 

(5-fold increase from PI) was observed in P20 mice, which closely paralleled the changes 

in free 2-hydroxy fatty acids. After P20, the F A2H activity decreased to a "maintenance 

level" (--30% of peak activity) by P83, which was maintained for most of the life span of 

the mouse# Thus, jt js highJy unJjkeJy that a sjgniJicant port jon of our measurements of 
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free 2-hydroxy fatty acids is due to degradation of 2-hydroxy galactolipids. Interestingly, 

the activity gradually decreased as animals aged by as much as 40% in 32-month-old 

mice, compared to 4-month-old mice. 

We further tested the hypothesis that FA2H is the major fatty acid 2-hydroxylase 

responsible for the formation of 2-hydroxy fatty acids in mouse brain during myelination. 

First, FA2H protein levels in mouse brain were determined by immunoblot. As shown in 

Fig. 2-6, a weak but detectable signal was present for F A2H at P2. As in the case of rat 

FA2H, the mouse FA2H protein is 81 % identical to human FA2H with a molecular 

weight of 43 kDa, which is consistent with the size of the band on the immunoblot. 

FA2H protein increased approximately 4-fold and 9.7-fold at P14 and P20, respectively, 

followed by a slight decrease at P46. The change in F A2H protein levels coincides with 

the change in brain fatty acid 2-hydroxylase activity, providing evidence that FA2H is 

responsible for the activity. 

Age: 2 14 20 46 Days 

FA2H 

p-Actin 
Fig. 2-6. F A2H protein levels are upregulated during myelination. Crude brain 
homogenates were subjected to SDS-P AGE, followed by immunoblot with anti
human F A2H or anti-actin polyclonal antibodies. 
Alderson, N. l. et al. J. Lipid Res. 2006.47: 2772-2780. 

Next we tested if F A2H is up-regulated in parallel with other myelin genes during 

myelination. It has been reported that FA2H mRNA in mouse brain increased 7-fold 
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from P7 to PI4, determined by Northern blot analysis [42]. Since we were interested in 

the change in FA2H expression from the onset of myelination, FA2H mRNA was 

quantified by qPCR from PI through P23 mice. To compare the change of expression to 

other myelin genes, CGT, and PLP mRNA levels were also measured by qPCR. CGT 

encodes the enzyme responsible for the conversion of ceramides to GalCer, and thus the 

expression of FA2H and CGT are expected to be coordinately up-regulated. PLP is a 

structural protein of myelin, which serves as an indicator of the progression of 

myelinogenesis. As shown in Fig. 2-7, mouse brain FA2H mRNA was present at much 
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Fig. 2-7. FA2H expression is upregulated during myelination. Total RNA was 
isolated from neonatal mouse brain, and FA2H, CGT, and PLP mRNA levels were 
determined by qPCR. Data are normalized against 18S rRNA levels. Circles 
represent individual animals. The mean ± S.D. of three measurements are shown. 
Alderson. N. L. et al. J. Lipid Res. 2006.47: 2772-2780. 

lower levels than CGT or PLP mRNA at PI, and exponentially increased during the 

neonatal period of myelination, reaching on average 400-fold over PI at P20. The slight 

decrease in P23 is consistent with the decrease in FA2H activity and free 2-hydroxy fatty 

acid content shown above. A similar pattern was observed with CGT (130-fold average) 

and PLP mRNA (800-fold average) during this time period. These data are consistent 
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with the hypothesis that up-regulation of FA2H is coordinated with CGT expression to 

efficiently incorporate 2-hydroxy fatty acids into myelin galactolipids. 

The above data show that the brain fatty acid 2-hydroxylase activity correlates with 

changes in FA2H expression and protein levels. However, there may be more than one 

fatty acid 2-hydroxylase present in brain. To address this question, we tested whether 

brain fatty acid 2-hydroyxlase activity was inhibited by anti-FA2H polyclonal antibodies. 

As shown in Fig. 2-8A, fatty acid 2-hydroxylase activity in P20 murine brain was 

inhtbited by anti-mouse FA2H antibodies in a dose dependent matter. Importantly, this 
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Fig. 2-8. Brain fatty acid 2-hydroxyJase activity is inhibited by anti-FA2H 
antibodies. Fatty acid 2-hydroxylase assays were performed with brain homogenates 
(50 J.lg protein) ofa 20-day old mouse. A. Indicated volume of PBS (open circle) or 
affinity purified anti-mouse FA2H antibodies in PBS (filled circle) were added. B. 
Assays were performed in the presence of the following: C, no addition; PBS, 7.5 J.lI 
of PBS; Ab, 7.5 J.lI of affinity purified anti-FA2H antibodies; Ab+Ag, 7.5 J.llof 
affinity purified anti-mouse FA2H antibodies pre-incubated with the antigen (a 
synthetic multi-antigenic peptide corresponding to the C-termina120-aa of mouse 
FA2H). Data are shown as mean ± S.D. of triplicate measurements. 
Alderson, N. L. et al. J. Lipid Res. 2006.47: 2772-2780. 
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inhibitory effect was abolished when FA2H-antibodies were preincubated with the 

antigen, indicating that the inhibition was due to specific binding of the antibodies to 

FA2H (Fig. 2-8B). Antibodies against other myelin proteins (MBP and 2',3'-cyclic 

nucleotide 3'-phosphodiesterase) had no effect on the brain fatty acid 2-hydroxylase 

activity (data not shown). These data clearly demonstrate that FA2H is the primary fatty 

acid 2-hydroxylase responsible for the formation of 2-hydroxy fatty acids in mouse brain 

during myelination. 

In this report we provide evidence that FA2H is responsible for the formation of 2-

hydroxy fatty acids during myelination, and that free 2-hydroxy fatty acids are likely 

precursors of myelin 2-hydroxy galactolipids. We showed that: 1) FA2H is present in 

oligodendrocytes, the myelin-forming cells of the central nervous system; 2) the fatty 

acid compositions of mouse brain galactolipids gradually change during myelination such 

that increasing proportions of 2-hydroxy fatty acids are incorporated; 3) the relative ratio 

of 2-hydroxy versus non-hydroxy galactolipids was very low at the onset of 

myelinogenesis (approximately 8% of galactolipids contained 2-hydroxy fatty acids), and 

increased 6- to 8-fold by 30 days of age; 4) free 2-hydroxy fatty acid levels in mouse 

brain increased 5- to 9-fold during this period, and their composition was reflected on the 

fatty acids in galactolipids, consistent with a precursor-product relationship; 5) the 

changes of brain free 2-hydroxy fatty acid levels coincided with FA2H-dependent fatty 

acid 2-hydroxylase activity and upregulation ofFA2H expression. Altogether, these data 

support the postulated pathway for the synthesis of 2-hydroxy galactolipids shown in Fig. 

2-1, in which free fatty acids are converted to 2-hydroxy fatty acids by FA2H, and then 

incorporated into ceramide, the drrect precursor of GalCer. 
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This study, for the first time, provides strong evidence that free fatty acids are in vivo 

and in vitro substrates of fatty acid 2-hydroxylase. This issue remained unclear despite 

the extensive biochemical studies of this enzyme in the 1970s and 1980s. In 1973, Hoshi 

and Kishimoto first reported a rat brain enzyme that converted free fatty acid to 2-

hydroxy ceramide, which they named fatty acid a-hydroxylase [41]. The substrates used 

in most of their assays were free fatty acids, and the products were detectable only as 2-

hydroxy ceramides, and not as free acids. The assay thus measured the net outcome of at 

least two reactions, 2-hydroxylation and ceramide synthesis; the latter presumably by 

acyl CoA-independent reverse ceramidase activity [51]. In their in vitro assay, ceramide 

(lignoceroyl sphingosine) did not serve as a substrate [41]. Since free 2-hydroxy fatty 

acids were not detectable, and ceramide did not serve as a substrate, it was postulated that 

an unidentified intermediate was 2-hydroxylated [25, 32]. Consistent with their data, 

ceramide (palmitoyl sphingosine) acted neither as a substrate nor as a competitive 

inhibitor in our assay (Alderson and Hama, unpublished observation). There are possible 

explanations for the apparent discrepancy between Kishimoto's observations and our data 

that show conversion of free fatty acid to free 2-hydroxy fatty acid. It could be due to the 

differences in the detection limits for free 2-hydroxy fatty acids. In our assay, less than 

1 % conversion of the deuterated substrate can be accurately measured. Alternatively, in 

Kishimoto's assay with fatty acid-Celite complex, the two consecutive reactions (fatty 

acid 2-hydroxylation followed by ceramide synthesis) might have proceeded at an 

extremely high efficiency due to the limited diffusion of 2-hydroxy fatty acid 

intermediates. In our assay, substrates were delivered as a-cyclodextrin inclusion 

complexes, which are less likely to limit the diffusion of reaction products. It is also 
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possible that both free fatty acid and ceramide serve as substrates in vivo, but not under 

the in vitro assay conditions used in both studies. Our current study does not address 

whether ceramide is also a substrate in vivo. Since there is precedence for ceramide 2-

hydroxylation in Tetrahymena [52] and yeast [53, 54], this issue needs to be further 

clarified in mammalian cells. Another possible substrate is acyl CoA, which has been 

used in previous studies [5, 2~J 29]/ In th~~~ ~llUlj,~~ th' acyJ chain of the rauioactive 

acyl CoA was incorporated into 2-hydroxy ceramide. However, 2-hydroxy acyl eoA was 

not detected as an intermediate, and it was concluded that acyl eoA was not the direct 

substrate of 2-hydroxylase [5]. Since acyl eoA is quickly hydrolyzed in the presence of 

brain microsomes [55], purified enzyme would be required to clarify this issue. 

In various biological systems, there are at least three types of fatty acid 2-

hydroxylases known to date. One type is the di-iron-containing monooxygenases, such 

as FA2H and its homologues. Database searches for homologues indicated that FA2H is 

a single gene in human and mouse, and Northern blot showed a single mRNA band in all 

tissues tested [1, 42]. Therefore, it is unlikely that there is a second di-iron-containing 

fatty acid 2-hydroyxlase in human and mouse. A second type is cytochrome P-450 

enzymes found in bacteria [56, 57]. This class of enzymes catalyzes H202-dependent 2-

hydroxylation of fatty acids, which has not been reported in any eukaryotic species. A 

third type is the 2-oxoglutarate (20G)-dependent oxygenase, phytanoyl-CoA 2-

hydroxylase. This peroxisomal enzyme is involved in oxidation of branched-chain fatty 

acids, and does not use straight-chain fatty acids [58]. Thus, FA2H is the only likely 

candidate for the mouse brain fatty acid 2-h~drQxylase res.\1o\1s.ible for the formatioIl of 

free 2-hydroxy fatty acids. Consistent with this prediction, our data show that the brain 
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fatty acid 2-hydroxylase activity correlates with changes in FA2H expression and protein 

levels, and that the activity was inhibited by anti-FA2H antibodies. Although we cannot 

exclude the possibility for a second, minor fatty acid 2-hydroxylase, current data 

indicates that FA2H is the major fatty acid 2-hydroxylase involved in the synthesis of 

myelin 2-hydroxy galactolipids. 

Interestingly, 2-hydroxy ceramides are the preferred substrate for CGT over non

hydroxy ceramides [18, 59, 60]. Other sphingolipids in myelin (sphingomyelin and 

complex glycolipids) do not normally contain 2-hydroxy fatty acids, even though the 

enzymes that synthesize these complex spbingolipids are not inherently incapable of 

incorporating 2-hydroxy substrates. It appears that the ER localization of CGT is partly 

responsible for the highly selective incorporation of 2-hydroxy fatty acids into GalCer. 

Sphingomyelin synthases and GlcCer synthase are localized in the Golgi apparatus or 

plasma membrane, and therefore require ceramide transport from the ER to these 

organelles. If 2-hydroxy ceramides were efficiently converted to GalCer by CGT in the 

ER, little or no 2-hydroxy ceramides would be transported out of the ER. Perhaps, 

expression of FA2H and CGT is precisely coordinated in oligodendrocytes such that all 

2-hydroxy fatty acids generated by FA2H are incorporated into GalCer. 

Another factor that might playa role in the selective incorporation of 2-hydroxy fatty 

acids into GalCer is a lipid tlippase that translocates ceramides from the cytoplasmic 

leatlet to the extracytoplasmic leatlet of the ER membrane. The catalytic sites of F A2H 

and the yeast F AH 1 gene product are predicted to be at the cytoplasmic face of the ER 

membrane [1, 27, 31]. Similarly, the catalytic site of ceramide synthases are predicted to 

be at the cytoplasmic face [61]. Therefore, both 2-hydroxy and non-hydroxy ceramides 

49 



are presumably formed within the cytoplasmic leaflet of the ER membrane. Newly 

synthesized ceramides then follow one of the three routes; 1) extracted by a cytoplasmic 

protein CERT to be transported to the Golgi [62], 2) transported via the vesicle-mediated 

mechanism, or 3) move to the extracytoplasmic leaflet to be converted to GalCer by CGT 

[63]. In the third route, the transbilayer movement of ceramides could be spontaneous 

[64, 65], or catalyzed by a hypothetical ceramide flippase [61, 66]. Since 2-hydroxy 

ceramides are less abundant than non-hydroxy ceramides, it seems reasonable to 

postulate a ceramide flippase with a higher affinity for 2-hydroxy ceramides than for non

hydroxy ceramides for delivery of all 2-hydroxy ceramides to CGT for incorporation into 

2-hydroxy GalCer. 

Our data also showed that there is distinct chain length specificity for incorporation of 

fatty acids into GalCer and sulfatide at different stages of myelination. The most striking 

was the 40-fold increase of GalCer-associated 2-hydroxy C24 fatty acid from P2 to P30. 

A similar tendency has been reported in neonatal rat brain, although less dramatic [4]. 

These observations suggest that there are distinct acyl chain preferences by ceramide 

synthases, CGT, and GalCer sulfotransferase. Presumably, fatty acid elongases and 

ceramide synthases are coordinately regulated with FA2H and CGT to achieve the unique 

fatty acid compositions of myelin galactolipids during development. There are multiple 

isoforms of fatty acid elongases [67] and ceramide synthases [61], but the specific 

isoforms involved in myelin 2-hydroxy GalCer synthesis are not clearly defined. Further 

molecular and biochemical investigations of FA2H, fatty acid elongases, and ceramide 

synthases are needed to elucidate the biosynthesis of myelin 2-hydroxy galactolipids and 

their roles m normal myelination as well as m demyelinating diseases. 
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Chapter 3 

Fatty Acid 2-Hydroxylation in the Peripheral Nervous System 

Introduction 

Myelin is produced by oligodendrocytes in the central nervous system and Schwann 

cells in the peripheral nervous system. This unique membrane is comprised of 

approximately 700/0 lipids and 30% proteins. The high lipid content is thought to play an 

integral role in insulation and salutatory nerve conduction [2]. Although myelin proteins 

have been extensively studied, still very little is known about the role of lipids in 

myelinogensis. Galactosylceramides (GaICer) and sulfatides (3-sulfate ester of Galeer), 

comprise approximately 25-30% of total myelin lipids [2, 12]. Interestingly, 50% of 

Ga1Cer and sulfatides contain fatty acids hydroxylated at the C2 position (2-hydroxy fatty 

acids) [3, 4]. No other mammalian tissues contain such high concentrations of2-hydroxy 

fatty acids, suggesting an important role in myelination. 

Our laboratory has published detailed studies demonstrating F A2H dependent fatty 

acid 2-hydroxylation in the central nervous system during developmental myelination in 

rodents [68]. Previously, others have demonstrated that fatty acid 2-hydroxylase (FA2H) 

catalyzes the 2-hydroxylation of fatty acids during de novo synthesis of ceramide, a 

precursor of all complex spbingolipids [4, 5]. Although biochemical studies have 

demonstrated that PNS myelin contains a uniquely high content of 2-hydroxy 

galactolipids [69], still very little is known about the biosynthetic pathway and functional 
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role for these lipids in the peripheral nervous system. Here we demonstrate that 1) FA2H 

is highly up-regulated upon Schwann cell differentiation; 2) F A2H is highly expressed in 

rat sciatic nerve during postnatal myelination and exhibits an expression pattern 

consistent with other known myelin associated genes (eg. COT, Po); 3) FA2H is the 

major 2-hydroxylase in the rat Schwannoma cell line D6P2T and is required for the 

fonnation of 2-hydroxy galactolipids; 4) FA2H may be involved in very early 

myelinogenic processes including Schwann cell migration and differentiation. 

Materials and Methods 

Materials 

Fetal bovine serum was purchased from Atlanta Biologicals (Norcross, GA). Bovine 

sulfatides, cerebrosides (kerasin, phrenosin) and glucocerebrosides were purchased from 

Matreya (Pleasant Gap, PA). Deuterated tetracosanoic acid [3,3,5,5-D4]-and odd chain 

fatty acids (C15-C25) were purchased from Larodan Fine Chemicals (Malmo, Sweden). 

Solvents used were HPLC grade and purchased from EMD, Canada and EM Science, 

Oennany. Silica gel 60 TLC plates were from Merck. Recombinant heregulin-~l 177-244 

was from Genentech (South San Francisco, CA). Forskolin, dibutyryl-cAMP was 

purchased from Sigma (St. Louis, MO). 

Animals 

Sprague-Dawley rats Fisher rats were maintained in animal care facilities of the 

Medical University of South Carolina and University of Miami Miller School of 

Medicine, respectively, with water and food ad libitum. Rats were treated in accordance 
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with the Institutional Animal Care and Use Committee approved procedures at these 

institutions. 

Cell Cultures 

Rat Schwann cells were obtained from sciatic nerves of 3-month old Fisher rats by the 

method of Morrissey [70] with minor modifications. Nerve segments were explanted in 

DMEM (Invitrogen, Carlsbad, CA) containing 10% heat-inactivated FBS (Hyclone) and 

depleted of fibroblasts by sequential transplantation (2-3 times) to new plastic dishes. 

After two weeks, tissue explants were dissociated with 0.25% dispase (Roche) and 0.05% 

collagenase (Worthington) and the resulting cell suspension plated on dishes coated with 

poly-L-Iysine (PLL; 200 Jlg/ml). Cells were grown in DMEM containing 10% FBS 

supplemented with a mixture of mitogens [2 JlM forskolin, 20 Jlg/ml bovine pituitary 

extract (Biomedical Tech., Stoughton, MA), and 2.5 nM recombinant heregulin-t31 177-244 

(Genentech)]. After 1 week in culture, cells were trypsinized and remaining fibroblasts 

removed by a 30-min incubation with anti-Thy 1.1 antibodies (conditioned medium from 

mouse hybridoma cells, ATCC) followed by addition of rabbit complement (ICN). 

Primary Schwann cells from passage I to 4 (2-8 popUlation doublings) were routinely 

cultured on PLL-coated dishes in medium containing mit 0 gens. Isolated Schwann cells 

were >98% pure based on immunostaining with anti-SIOO (Dako), a protein expressed 

specifically in Schwann cells. Differentiation was stimulated by plating on 10 cm PLL

laminin coated dishes (2xI06 cells I dish) in DMEM containing 1 % FBS and 1 mM 

dibutyryl-cAMP (Sigma) for 3 days, as described by Harrisingh et al. [71]. 
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Rat Schwannoma D6P2T cells were purchased from ATCC and grown in DMEM 

containing 10% FBS as recommended by the supplier and collected at approximately 

60%-70% confluency. 

Migration Assay 

D6P2T cells (50,000 per well) were placed on the top surface of filter inserts (8 J.lm 

pore) with serum-free media in 24-well culture dishes containing the same media with 

100/0 FBS. After 4 hr, non-migratory cells were removed with a cotton swab, and 

migratory cells on the bottom surface of the filter were stained with bromophenol blue 

and counted using light microscopy. 

Isolation of Rat Sciatic Nerve Galactolipids 

Rats at postnatal days 4, 7, 10, 15, 20, 30 and 60 were euthanized according to 

guidelines established by the institutional IACUC committee. Sciatic nerves were 

exposed through a lateral incision in the thigh and sectioned immediately. A minimum of 

three sciatic nerves (PI5, P20, P30, and P60) and a maximum of 16 nerves (P4) were 

pooled to generate separate samples. At least three samples were analyzed per time point 

except for P4 that consisted of only one pool. Whole nerves were homogenized in PBS 

using a PT1200E Polytron with a 7-mm generator. GalCer and sulfatides (2-hydroxy and 

non-hydroxy) were isolated as described by Coetzee et al [20], with minor modifications. 

Lipids were extracted with 19 volumes of chloroform:methanol mixtures (2: 1, v/v) [48]. 

The extracts were washed with 0.2 vol of 0.9% NaCI, the lower phase collected and dried 

under a N2 stream. Dry lipid extracts were sUbjected to mild alkaline hydrolysis (0.5N 

KOH for 10 min at 50°C) to remove glycerolipids [20]. TLC plates were saturated with 

solvent vapors for 45 min prior to development in chloroform:methanol:water (70:30:4). 
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Lipid spots were visualized under UV after spraying with primuline solution (0.005% 

primuline in acetone/water, 80:20 v/v) and identified using the corresponding standards. 

Hydroxy and non-hydroxygalactolipids were removed from the plates, internal standards 

added (CIS, CI7, C 19, C2I, C23, C23 and C2S fatty acids), and samples were subjected to 

alkaline hydrolysis (4N, KOH, overnight at 80°C). Lipids were neutralized using glacial 

acetic acid, fatty acids extracted three times with 3 mL diethyl ether, and dried under N2. 

Fatty acid determination by Gas ChromatographylMass Spectrometry (GC/MS) 

Fatty acid methyl esters were prepared by adding 1 mL of methanolic HCI to each 

sample and incubating at 65°C for 45 min and brought to dryness under N2• To prepare 

trimethylsilyl (TMS) derivatives of hydroxyl groups, 100 J.lL Tri-Sil Reagent (Pierce 

Biotechnology, Rockford, IL) was added and incubated for 30 min at room temperature. 

Derivatized samples were applied to a GC-2010 gas chromatograph (Shimadzu 

Scientific, Columbia, MD) with the injector in splitless mode. The injection port and 

transfer line were maintained at 250°C. Analytes were fractionated on a Restek RTX-5 

column (5% diphenyl and 95% dimethyl polysiloxane; 0.25 mm inner diameter, 0.25 J.lm 

D.F., 30 m). The initial oven temperature was 110°C, and increased to 300°C at 

I DOC/min. Mass spectra data were obtained on a Shimadzu GC/MS-QP2010 mass 

spectrometer following electron impact ionization. Peaks of the target analytes and 

internal standards were processed using the GC-MS Lab Solutions software (Shimadzu 

Scientific). Calibration curves were constructed by plotting peak area ratios of the target 

analytes to their respective internal standard against concentration. 
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Fatty Acid 2-hydroxylase Assay 

F A2H activity was detennined in rat sciatic nerves and in D6P2T cells using the 

method described previously by Alderson et al. [49]. Briefly, crude sciatic nerve or 

D6P2T homogenates (50 f,lg of protein) were added to an assay mixture containing 2.7 

mM Tris-HCI, pH 7.6, 1.20 mM NADP+, 3.3 mM glucose 6-phosphate, 3.3 mM MgCh, 

0.2 unit of glucose 6-phosphate dehydrogenase, 1 f,lg of human NADPH:cytochrome P-

450 reductase, in a total volume of 1.4 mL. The substrate, 1 f.lg (2.7 nmol) of [3,3,5,5-D4] 

C24 fatty acid (stock solution: 10 f,lg/mL in 1.5 mM a-cyclodextrin), was added at time 

zero. After gentle mixing by swirling, the assay mixture was incubated by shaking (100 

rpm) at 37°C for 180 min. At the end of the incubation, 1 pmol of C23 fatty acid was 

added to each sample as an internal standard, and samples neutralized by addition of 20 

JlL of glacial acetic acid. Fatty acids were extracted three times with 2 mL of diethyl 

ether and combined diethyl ether extracts brought to dryness under N2. Fatty acids were 

derivatized and quantified as described in the "Fatty acid detennination by Gas 

Chromatography/Mass Spectrometry (GC/MS)" section. 

Quantitative RT-PCR (Q-PCR) 

Rats at postnatal days 4, 7, 10, 15, 20, 30 and 60 were euthanized according to 

guidelines established by the institutional IACUC committee. Sciatic nerves were 

exposed through a lateral incision in the thigh and sectioned innnediately. Whole nerves 

were homogenized in PBS using a PT1200E Polytron with a 7-mm generator. RNA was 

isolated using the QIAGEN RNeasy Lipid Tissue kit. Schwarm cells were disrupted 

using QIAshredder mini spin columns (QIAGEN) and RNA was isolated using the 

QIAGEN RNeasy kit. RNA was quantified using a NanoDrop ND-1000 
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Spectrophotometer (Nanodrop Technologies, Inc.). cDNA was generated using the Bio

Rad iScript cDNA Synthesis kit. Real-time quantitative peR (Q-PCR) was performed on 

a BioRAD MyiQ single-color real-time PCR detection system. The primers used for 

each gene were as follows: for rat FA2H rFA2H-Fl: cca tta cta cct gca ctt tgg and 

rFA2H-Rl: tct gga atg agg gtg tgg a; rat CGT rCGT-FI gtt cat ggg tce age ttg tg and 

rCGT -Rl ctg gcc ggc ttt gtt agg; for rat Po rPo-FI ctg cae tgc tcc ttc tgg t and rPo-RI cet 

tgg cat agt gga aga ttg; for rat 18S rRNA rI8S-FI ggc ccg aag cgt tta ctt and rI8s-Rl cgg 

ccg tcc ctc tta atc. 

PCR reactions were performed in a 96 well plate with a standard reaction mixture 

containing 15 JlL iQ SYBR Green Supermix (Bio-Rad), cDNA template, and 200 nM 

each of forward and reverse primers in a total volume of 30 JlL. All reactions were 

performed in triplicate. The thermal cycling conditions were set at 95°C for 3 mtn, 

followed by 40 cycles of 2-step amplification (10 sec at 95°C and 45 sec at 57°C). I8S 

rRNA was measured as the housekeeping gene. Data were analysed using the MyiQ 

software. Relative abundance of FA2H, COT and Po were calculated using the AACt 

method [50]. 

Construction of hairpin shRNA expression plasmids 

FA2H short hairpin RNA (shRNA) or control shRNA expresslon plasmids were 

constructed for the target sequence for rat FA2H aagagattattcacttgtggt, or Control #5 

from Ambion (Ambion, Austin, TX). Each insert contained a BamHI linker, sense 

strand, a loop sequence (TTCAAGAGA), antisense strand, RNA Pol III terminator, and a 

HindIII linker. Double-stranded DNA inserts were prepared by annealing 63-base 

complementary synthetic oligonucleotides and cloned into BamHI and HindIII sites of 
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pSilencer 5.1-U6 Retro (Ambion). The correct inserts were confinned by sequencing. 

Plasmids were transfected into D6P2T using Nucleofector kit T. (amaxa, Gaithersburg, 

MD). 

Transfection of D6P2T cells 

D6P2T cells were transfected with double stranded siRNA (2f.lg) or shRNA 

expressIon plasmids (2.5Jlg) using Nucleofector kit T. (amaxa, Gaithersburg, MD) 

siRNA was purchased commercially (Ambion, Austin, TX), and shRNA was constructed 

as described above in "Construction of hairpin shRNA expression plasmids". 

Transfections were performed according to the manufacturers instructions (Program T-

20). Briefly, cells were collected using trypsin-EDTA at 60-70 % confluency. Cells 

were counted and approximately 2 x 106 cells were transfected for each treatment 

condition, and immediately plated m 75cm2 flasks to propagate for 48 hours. 

Transfection efficiency was monitored for each experiment usmg pmaxGFP and 

visualization with fluorescence tnlcroscopy. Typical experiments averaged 

approximately 80-90% transfection efficiency with high viability. 

[
14C] Acetate Metabolic Labeling in D6P2T Cells 

D6P2T cells were transfected with 2.5Jlg of scrambled shRNA or FA2H-shRNA 

expression plasmids using amaxa Nucleofector kit T (amaxa). After 48 hours, puromycin 

( 1 J.lglml) was added to the culture media and resistant cells selected for two weeks. 

Cells were grown to approximately 50% confluencyand metabolically labeled with [14C] 

acetate (2 J.lCilml) for 48 hours. Lipids were extracted with 19 volumes of 

chloroform:methanol mixtures (2:1, v/v) [48]. The extracts were washed with 0.2 vol of 
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0.9% NaCl, the lower phase collected and dried under a N2 strea.m. Dried lipid extracts . 

were subjected to mild alkaline hydrolysis (O.5N KOH for 10 min at 50°C) to remove 

glycerolipids [20]. TLC plates were saturated with solvent vapors for 45 min previous to 

being developed in chlorofonn:methanol:water (70:30:4). A small aliquot was removed 

for determination of total [14C] counts per sample. Equal counts were loaded for each 

sample on TLC plates. Non-hydroxy and 2-hydroxy galactolipids standards were run as a 

cold carrier. Lipid spots were visualized under UV after spraying with primuline solution 

(0.005% primuline in acetone/water, 80:20 v/v) and identified using the corresponding 

standards. GalCer were isolated by scraping 2-hydroxy and non-hydroxy [14C]-GaICer 

separately, and samples were measured by liquid scintillation counter. 

Results and Discussion 

Myelin is formed by oligodendrocytes in the eNS and Schwann cells in the PNS.. We 

have previously demonstrated that FA2H is expressed in oligodendrocytes of in the 

central nervous system [68]. We further demonstrated that FA2H gene expression was 

up-regulated approximately 400-fold during postnatal myelination in parallel to other 

myelin associated genes. In this report, we examined the expression of FA2H during 

postnatal myelination of the peripheral nervous system utilizing quantitative-PeR (q

peR). In order to demonstrate the relative change in gene expression, other well

characterized PNS myelin genes were also measured. CGT encodes the galactolipid 

biosynthetic enzyme that catalyzes the formation of GalCer from ceramides. As both 

genes are involved in the same biosynthetic pathway, FA2H and CGT should be 

coordinately expressed during myelination. The gene Po, encodes for the major structural 

protein in PNS, thus serves as a good marker of the myelinogenic process. As shown in 
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Fig. 3-1. FA2H expression in rat sciatic nerve is highly upregulated during 
myelination in parallel with other myelin genes.FA2H, CGT, and PO mRNA 
levels in rat sciatic nerve were detennined by quantitative RT -PCR. Data were 
normalized against 18S rRNA levels and expressed as mean + SD (n=5 for P7, PI0, 
P20, P30, and P60, n=1 for P4). 

Fig. 3-1, FA2H was expressed at relatively lower levels than either CGT or Po 

respectively. However, the expression pattern and relative fold increase for FA2H was 

comparable to the other genes. FA2H expression increased approximately 6-fold during 

the peak myelination period, from postnatal day 4 (P4) to postnatal day 20 (P20). COT 

and Po increased 3.7-fold and 6.3 fold respectively during this same period. The 

expression of all three genes quickly returned to levels measured at P4. The changes in 

F A2H closely paralleled two previously characterized myelin genes, thus F A2H may be 

integral for proper developmental myelination of the PNS by generating 2-hydroxy 

precursors that are efficiently incorporated into myelin by CGT. 

We next examined the FA2H enzyme activity in the sciatic nerve during postnatal 

PNS myelination utilizing a previously published method developed in our laboratory 

[49]. This assay specifically measures the conversion of deuterated C24 free fatty acids to 

deuterated C24 2-hydroxy fatty acids by GC/MS. FA2H activity increased progressively 

to P20, reaching approximately 700% of activity levels measured at P4 (Fig. 3-2). There 
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was a slight decline in enzyme activities (~20%) after this peak myelination period, 

however this decrease did not directly parallel the decline observed in F A2H gene 

expressIon. Thus, FA2H protein may remain relatively stable following peak 

myelinogenesis in order to continue to produce precursors in the maintenance of 

abundant myelin lipids. These data also provide in vitro evidence that rat F A2H can use 

free fatty acids as a substrate, however, we cannot exclude the possibility that the enzyme 

may utilize another (or mUltiple) substrates in vivo. 

0.5 

~-..,-
-:; i::: 0.4 
n~ 
"'-cP i::: 0.3 19 -i 
-(5 ~~ 
~a.. 0.2 ~O) 

"'C 

~~ 
• 0 Ne 0.1 <0. 
~ ---

0.0 
0 10 20 30 60 

Postnatal age (days) 

Fig. 3-2. FA2H activity in the sciatic nerve increases during myelination. Fatty 
acid 2-hydroxylase activity in sciatic nerve homogenates were determined using the 
GC/MS-based activity assay. The mean and S.D. of data from 3-5 animals are 
shown, except at day 4, which represents a pool of sciatic nerve from 4 animals. 

Since the activity of F A2H remained relatively high following the peak myelination 

period, this raised the possibility that 2-hydroxy lipids may continue to accumulate in 

myelin after this time. To address this question we quantified the non-hydroxy and 2-

hydroxy fatty acids associated with GalCer and sulfatides isolated from sciatic nerve 
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during postnatal myelination. Interestingly, GalCer associated C J6 and C I8 fatty acids 

were relatively high compared to other longer chain fatty acids at P4 - P20 (Fig. 3-3, 

Left). However, after P20, longer chain fatty acids (C22 - C26) continually accumulate to 

C DC16 o20HC16 S 800 []C18 800 o20HC18 e EiC20 G1J20HC20 Q. 

OJ 600 SC22 600 ml20H C22 
E .C24 .20HC24 -'0 .C26 .20HC26 

~ 400 400 -(I) 
"C 
·u 200 200 
ftS 
>-
i 

0 0 LL 

4 7 10 15 20 30 60 4 7 10 15 20 30 60 
Postnatal age (days) Postnatal age (days) 

Fig. 3-3. The 2-hydroxy fatty acid content of GalCer increases during 
myelination. Total lipids were extracted from sciatic nerve. GalCer were purified 
by TLC and fatty acid compositions detennined by GC/MS. Average and S.D. of3-4 
animals are shown, except at day 4, which represents a pool of sciatic nerve from 4 
animals. 

P60. In contrast, GalCer-associated 2-hydroxy fatty acids were comparatively low in the 

first twenty days after birth (Fig. 3-3, Right). After P20, there is a marked increase in 

long chain 2-hydroxy fatty acids in GalCer, primarily C22-C26. Taken together, these data 

indicate that certain fatty acid elongases (ELOVL genes) and ceramide synthases (LASS 

genes) may be coordinately up-regUlated during postnatal myelination to generate 

preferred chain length substrates in the biosynthesis of GalCer and sulfatides. ELOVL6 

(formerly MASR) is the major fatty acid desaturase involved in PNS myelination and 

may play an integral role in fatty acid elongation during developmental myelination 

[72]). 
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The fatty acids associated with sulfatides demonstrated a similar pattern as observed 

for GalCer, with some interesting differences. Non-hydroxy C16 and CI8 remained 

relatively high compared to all other non-hydroxy fatty acids except C22, which 

quantitatively increased after P20 (Fig. 3-4, Left). The relative chain lengths of 2-
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Fig. 3-4. The 2-hydroxy fatty acid content of sulfatides increases during 
myelination. Total lipids were extracted from sciatic nerve. Sulfatides were 
purified by TLC and fatty acid compositions determined by GC/MS. Average and 
S.D. of3-4 animals are shown, except at day 4, which represents a pool of sciatic 
nerve from 4 animals. 

60 

hydroxy fatty acids were also different compared to GalCer, with C22 and C24 being the 

prominent lipid species after P20 (Fig. 3-4, Right). The differences observed in fatty acid 

chain length among GalCer and sulfatides offers direct evidence that the enzyme that 

catalyze the conversion of GalCer to sulfatides in the biosynthetic pathway, GalCer 

sulfotransferase, most likely has a substrate chain length specificity. 

The relative total abundance of non-hydroxy and 2-hydroxy fatty acids associated with 

GalCer and sulfatides changed dramatically during the postnatal myelination period. 

GalCer associated 2-hydroxy fatty acids accounted for only 5-6 % of total fatty acids at 

P4 (Fig 3-5, Left), and increased to over 60% by P60. In comparison, 2-hydroxy fatty 
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acids also were relatively low in abundance in sulfatides at P4, and increased to 

approximately 35% by P60 (Fig. 3-5, Right). The percentages reported here are in direct 

agreement to previously published data on the fatty acid content of rat PNS [69]. 
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Fig. 3-5. Proportion of 2-0H fatty acids in gaiactolipids increases during 
myelination. Individual fatty acids in TLC-purified GalCer (A) and sulfatide (B) 
were determined by GCIMS. The total of all detectable non-OH (open circle) and 
2-0H fatty acids (closed circle) in galactolipids were used as 100%. 

During myelination of the PNS, Schwann cells are derived from the neural crest and 

must migrate to the appropriate site on the axon prior to the production of myelin. Prior 

to myelinogenesis, the Schwann cell must senesce, make axonal contact, and undergo 

differentiation. To determine the role of FA2H in differentiation, we isolated and 

cultured rat primary Schwann cells. After stimulation to differentiate with addition 0 f 

cAMP analogues, FA2H gene expression was quantified by q-PCR and compared to 

CGT and Po. FA2H was expressed at very low levels prior to differentiation when 

compared to the relative expression of CGT and po. (Fig. 3-6) However, FA2H was 

increased approximately 90-fold following differentiation. In contrast, CGT and Po were 
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stimulated only 3-4 fold. These results demonstrate that FA2H may play an important 

role in cAMP mediated Schwann cell differentiation. 
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Fig. 3-6. F A2B expression is highly up-regulated during rat Schwann cell 
differentiation. Total RNA was isolated from adult rat whole sciatic nerves. 
FA2H, CaT and Po mRNA levels were determined by quantitative RT -PCR. Data 
are nonnalized against 18SrRNA. Mean and SD from three measurements are 
shown. 

D6P2T cells, a previously characterized rat Schwannoma cell line [73], have been 

previously shown to synthesize non-hydroxy and 2-hydroxy galactolipids, and exhibit a 

relatively differentiated phenotype. To detennine ifFA2H was responsible for 2-hydroxy 

galactolipid fonnation, we perfonned a series of experiments to demonstrate that 1) 

FA2H is the major 2-hydroxylase in the PNS and 2) FA2H is required for the 

biosynthesis of 2-hydroxy galactolipids. D6P2T cells were treated by RNAi against 

FA2H using commercially available rat FA2H siRNA (Ambion) or a shRNA plasmid 

construct made in our laboratory. The siRNA and shRNA each targeted the same region 

ofFA2H mRNA. 
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The shRNA plasmid construct was used for long-term knock-down ofFA2H, as RNAi 

effects by siRNA typically last approximately 72 hours. Cells were selected for 

puromycin resistance by addition of puromycin (1 J.lg/ml) to the media for two weeks, 

and the cells were then propagated and harvested. Total non-hydroxy and 2-hydroxy 
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Fig. 3-7. FA2H is required for the biosynthesis of2-hydroxy galactolipids D6P2T 
cells were transfected with scrambled shRNA (Control) or shRNA:FA2H (FA2H). 
After 48 hours, 1 J.lg/ml puromycin was added to culture media and resistant cells 
selected for two weeks. (A) Celllysates were hydrolyzed overnight and the major non
hydroxy and 2-hydroxy fatty acids (C16, CI8, C24) were quantified by GC/MS. (B) 
GalCer were measured by metabolic labeling with [14C] actetate. GalCer was isolated 
by TLC, visualized by primuline, scraped, and counted by liquid scintillation counter. 
Data are mean + SD of triplicate samples. 
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fatty acids were measured by GC/MS following alkaline hydrolysis. A separate 

experiment was conducted using [14C] acetate metabolic labeling to measure 

galactolipids. As shown in Fig. 3-7 A, cells transfected with shRNA directed against rat 

FA2H (shRNA:FA2H) had approximately 60% lower levels of total 2-hydroxy fatty 

acids compared to the scrambled control treated cells (Control). After metabolic labeling 

with [14C] acetate, there was no difference in the amount of synthesized non-hydroxy 

GalCer in shRNA:FA2H versus control (Fig. 3-7B). However, 2-hydroxy GalCer was 

decreased approximately 35-40%. It is important to emphasize that these data are newly 

synthesized lipids, thus we did not expect to see complete elimination of 2-hydroxy 

galacto lipids. 

To confirm that results obtained in 3-7 were not an artifact of retroviral elements in 

the shRNA plasmid construct, we transfected D6P2T cells with siRNA targeted against a 

homologous region of the FA2H mRNA. RNAi decreased FA2H activity by 40% when 

compared to control siRNA (Fig. 3-8, A). Accordingly, total 2-hydroxy fatty acids were 

decreased approximately 60% compared to control (Fig. 3-8, B). These results are in 

close agreement with results obtained with shRNA treatment (Fig. 3-7 A), demonstrating 

that the effects of shRNA are not retroviral or puromycin dependent. Together, these 

data demonstrate that FA2H is the major, ifnot the only, fatty acid 2-hydroxlyase present 

in the cell line D6P2T. In addition, FA2H is required for the formation of 2-hydroxy 

galacto lipids. 
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As shown in Fig. 3-6, FA2H is highly up-regulated during differentiation. Prior to 

differentiation, Schwann cells are highly migratory and changes in the plasma membrane 

lipid composition may alter migratory processes. We perfonned cell migration assays to 

determine if down-regulation of FA2H expression would affect migration of D6P2T 

cells. Surprisingly, cells treated with siRNA:F A2H increased cell migration by 2.8 fold 

compared to control treated cells (Fig. 3-8, C). These data suggest that F A2H may be 
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Fig. 3-8. FA2H is the major 2-hydroxylase in D6P2T cells and FA2H RNAi 
enhances cell migration. Cells were harvested 72 hr after transfection with control 
or FA2H siRNA. (A) Fatty acid 2-hydroxylase activities in whole celllysates. The 
mean and range of two measurements are shown. (B) Free 2-hydroxy fatty acid 
contents were determined by GCIMS. The data include three major 2-hydroxy fatty 
acids (2-0H CI6, 2-0H CI8, and 2-0H C24). (C) Cells were allowed to migrate for 
4 hr before staining. The mean and S.D. of cell counts in three different views are 
shown. 

involved in regulating certain cell surface receptors involved in Schwann cell migration, 

or F A2H may serve as a negative regulator of cell cycle arrest and differentiation. Thus, 

we hypothesized that down-regulation of FA2H would alter the cellular phenotype 

toward a less differentiated state and these cells may be prone to remain undifferentiated. 
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Finally, to detennine if F A2H alters cellular differentiation, D6P2T cells were treated 

with shRNA:FA2H or control and selected against puromycin for two weeks. Cells were 

treated for 24 hours with the 100 J.1M of the cAMP analogue dibutyryl cAMP (db-cAMP). 

Cells were labeled with calcein-AM and visualized by fluorescence microscopy. As 

shown in Fig. 3-9, control cells treated with db-cAMP exlubited retarded growth (59%), 

characteristic of senescence and early differentiation processes. Cells treated with 

shRNA:FA2H continued to proliferate with db-cAMP treatment, with only a 17% decline 

in growth. These data suggest that FA2H and 2-hydroxy lipids may serve as a regulator 

of differentiation in D6P2T cells, possible by removing cells from the cell cycle. This is 

the first demonstration that 2-hydroxy lipids may have roles in myelination other than 

structural components of the myelin sheath. 
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Fig. 3-9. FA2H RNAi delays cAMP induced cellular differentiation. D6P2T 
cells were transfected with scrambled shRNA (Control) or shRNA:FA2H (FA2H). 
After 48 hours, 1 J.lg/ml puromycin was added to culture media and resistant cells 
selected for two weeks. (Top) Cells were treated with dibutyryl cAMP (db-cAMP) 
or Sham (media) for 24 hours, and visualized by fluorescence microscopy 
following addition of calcein-AM (2 J.lg/ml). (Bottom) Cells were trypsinized, 
stained with bromophenol blue, and counted by hemocytometer. Data are mean + 
SD of triplicate samples. 
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Summary and Conclusions 

Galactosylceramides (GaICer) and sulfatides account for one third of myelin lipids [2, 

12]. Fifty percent of all fatty acids in these myelin glycosphingolipids are hydroxylated 

at the C2 position on the N-acyl chain (2-hydroxy fatty acids) [3, 4, 13]. Although the 

high content of 2-hydroxy lipids in myelin have been known to exist for over fifty years, 

still very little is known about 2-hydroxy lipid biosynthesis, regulation, and functional 

ro Ie in myelination. 

The brain fatty acid 2-hydroxylation activity was first demonstrated by the conversion 

of [1_14C] tetracosanoic acid to 2-hydroxy tetracosanoic acid in sphingolipids when 

injected into rat brains [39]. Subsequently, an in vitro fatty acid 2-hydroxylase assay was 

developed using [1_14C] tetracosanoic acid as a substrate, brain homogenate as an enzyme 

source, and assay products analyzed by thin-layer chromatography [40]. With this 

method, biochemical properties of this enzyme have been studied in rat and mouse brains 

[5, 11, 25, 26, 32, 41]. The rat brain fatty acid 2-hydroxylase requires molecular oxygen, 

Mg2
+, pyridine nucleotides (NADPH or NADH) , and microsomal electron transport 

proteins [25, 26]. The rat brain fatty acid 2-hydroxylase was insensitive to carbon 

monoxide, indicating that it was not a P-450 enzyme but another type of mixed function 

oxygenase [ 41]. Although the brain enzyme was successfully characterized, the 

sensitivity of the previous assay method was limited, and no activities were detected in 

other tissues containing 2-hydroxy sphingolipids [41]. It was also unclear whether free 
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fatty acids were the substrate of the enzyme, because the assay products were detected 

only as a component of2-hydroxy ceramides, and not as free 2-hydroxy fatty acids. 

In Chapter 1 we demonstrate the development of novel and highly sensitive GC/MS

based assays for the quantification of fatty acid 2-hydroxylase activity and 2-hydroxy 

fatty acid content of biological samples. The activity assay utilizes a deuterated free fatty 

acid as substrate and quantitatively measures the production of deuterated free 2-hydroxy 

fatty acid. This allows for the precise detennination of enzyme activity by using a 

substrate that is identifiable in an assay mixture containing high levels of endogenous 

fatty acids. The current activity assay is over 1000-fold more sensitive than previous 

methods, however the method is not without limitations. This assay system is not 

suitable for true enzymological studies or high throughput testing of various substrates 

and assay conditions. It is likely that purification of the enzyme and a simple high

throughput assay will be necessary to address these issues in the future. In its current 

fo~ the assay has allowed detailed study of the enzyme properties and measurement of 

fatty acid 2-hydroxylase activities in several tissues and cell lines. Further, this assay has 

provided in vitro evidence that FA2H can utilize free fatty acids as a substrate [49]. 

Development of this assay represents a significant contribution to the study of 2-hydroxy 

lipids. 

In 1973, Hoshi and Kishimoto reported fatty acid 2-hydroxylase activities rat brain 

[ 4]. However, despite exhaustive efforts for two decades by Kishimoto and colleagues, 

the enzyme has not been purified and still very little is known regarding the biosynthetic 

pathway for 2-hydroxy lipids. We have reported the identification and characterization 

of the human gene (FA2H) encoding a fatty acid 2-hydroxylase that is highly expressed 
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in brain [1]. Human FA2H is a highly hydrophobic 42.8 kDa protein with an N-terminal 

cytochrome bs domain essential for enzyme activity. F A2H also contains a putative 

catalytic site with the histidine motif conserved among membrane-bound desaturases and 

hydroxylases [consensus: HX(3-4)HX(7-41)HX(2-3)HH~61-189)(H/Q)~2-3)HH]. These 

histidine residues are thought to coordinate the non-heme di-rron cluster at the active site 

of the enzyme [30]. FA2H catalyzes 2-hydroxylation of free fatty acid in vitro, which 

was dependent on a reconstituted electron transport system [1]. Subsequently, Eckhardt 

et al. reported that the mouse F A2H gene was highly expressed in brain during 

myelination, and that FA2H mRNA colocalizes with PLP mRNA [42]. These findings 

provide strong evidence that the FA2H gene encodes the fatty acid 2-hydroxylase 

previously characterized by Kishimoto and colleagues. 

In Chapter 2 we demonstrate the role of FA2H during developmental myelination of 

the central nervous system. FA2H is expressed primarily in oligodendrocytes and protein 

content increases during OPC differentiation. FA2H dependent 2-hydroxylase activity 

increased during the period of developmental myelination in parallel with increases in 

F A2H protein and gene expression. These data demonstrate that F A2H is likely 

controlled at the transcriptional level. Free 2-hydroxy fatty acids were measurable during 

myelination and quantitatively changed in parallel to FA2H 2-hydroxylase activity, 

providing in vivo evidence that free fatty acids are the likely substrate for F A2H. The 

lipid composition of brain GalCer and sulfatides were measured by GC/MS. 2-Hydroxy 

fatty acid species associated with galactolipids were very similar to the composition of2-

hydroxy free fatty acids, providing further evidence in vivo of a precursor-product 

relationship. In addition, we performed antibody blocking experiments to demonstrate 
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that FA2H is the major, if not only, fatty acid 2-hydroxylase in the mammalian central 

nervous system. 

Myelin is produced by oligodendrocytes in the central nervous system and Schwann 

cells in the peripheral nervous system. Biochemical studies have demonstrated that PNS 

myelin contains a high content of2-hydroxy galactolipids similar to CNS [69]. However, 

there are differences in the proteins found in each system. Po is the major protein in the 

PNS, however this protein is absent in the central nervous system. Differences in the 

composition among 2-hydroxy chain lengths have been reported between the CNS and 

PNS [74]. Taken together, it seems likely that there may be differences between the two 

systems with regard to myelin formation, structure, and function. 

In Chapter 3, we demonstrate that FA2H is highly up-regulated upon Schwann cell 

differentiation and during postnatal myelination of the sciatic nerve. Fatty acid 2-

hydroxylase activity increased during myelination in parallel to the gene expression. The 

gene expression pattern was consistent with other known myelin associated genes (eg. 

CGT, Po), suggesting that FA2H may play an integral role in PNS myelination. The 

composition of 2-hydroxy fatty acids associated with GalCer and sulfatides changed 

during myelination, with longer chain 2-hydroxy fatty acids accumulating. These data 

suggest that fatty acid elongases (ELOVL) may be up-regulated during myelination to 

provide preferred substrates for GalCer and sulfatide synthesis. We further demonstrate 

that FA2H is the major 2-hydroxylase in the rat Schwannoma cell line D6P2T and is 

required for the formation of,2-hydroxy galactolipids. Interestingly, we also discovered 

that down-regulation of FA2H increases D6P2T cell migration and delayed cAMP

induced differentiation. These data suggest that FA2H and 2-hydroxy lipids appear to 
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playa significant role in cell cycle arrest, thus enabling continued cell migration and 

pro liferation. 

This body of work is a comprehensive study of FA2H dependent fatty acid 2-

hydroxylation in the mammalian nervous systems. However, the role of 2-hydroxy fatty 

acid containing lipids in myelin cannot be adequately addressed until a FA2H knock-out 

mouse is available. Future studies utilizing the F A2H knockout mouse will address the 

structural role of 2-hydroxy lipids in the formation of myelin sheets, the role of F A2H in 

the maintenance of myelin lipids, the role of 2-hydroxy lipids in nerve conduction, and 

the effect of FA2H knock-out on oligodendrocyte and Schwann cell migration and 

differentiation. 
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