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MARK DANIEL ANGELONI. Analysis of slot height accuracy and precision of stainless 
steel orthodontic brackets manufactured by metal injection molding and computer 
numerical control milling using stereomicroscopy. (Under the direction of Dr. Luis Leite) 
 
Objective: It is the objective of this study to determine the dimensional accuracy and 

precision that is achievable by two manufacturing methods of stainless steel orthodontic 

brackets, CNC milling and metal-injection molding. To determine this, we propose the 

following specific aims: 1) to determine the actual dimensions of the slots in both milled 

and MIMed orthodontic bracket and standard deviations. 2) Using mathematical models to 

determine if the dimensional difference, if one exists, between milled and MIMed brackets 

will result in a difference in third order tooth movement (torque) realization (effective 

torque vs nominal torque). The actual bracket slot dimensions from both manufacturing 

techniques will be used in the mathematical model, which determines effective torque 

produced by a rectangular archwire within a rectangular slot. And 3) to determine if there 

is a statistical difference in the precision of the two different manufacturing methods. 

Materials and Methods: In this study ten brackets of two different types of 0.022 in (0.559 

mm) slot maxillary right central incisor stainless steel conventional brackets were 

investigated: GAC OmniArch (GAC, Bohemia, NY, USA) and OPAL Avex (OPAL 

Orthodontics, South Jordan, UT, USA), both brackets with MBT prescription, which is 17° 

torque for the maxillary central incisors. The GAC stainless steel brackets are produced by 

the MIM process. The OPAL stainless steel brackets are produced by the CNC milling 

process.  The mesial profiles of the brackets were imaged using ZEN imaging software 

through a Carl Zeiss Stemi508 microscope (Carl Zeiss MicroImaging GmbH, Jena, 

Germany), at 45x magnification. The brackets were carefully aligned so that the slots were 
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photographed perpendicular to the slot. The images were calibrated and evaluated using 

the GNU Image Manipulation Program (GIMP) software. Using the software, points were 

selected and transferred for analysis into an Excel spreadsheet. In each photo 3 points were 

selected on the left (gingival) wall, the right (incisal) wall, and the floor. The points were 

all plotted on a 2-dimensional Cartesian (x,y) coordinate system, which was given by the 

GIMP software. Using Excel, a trend-line was generated for the walls and the floor, using 

linear regression. This analysis allowed for the determination of the bottom and top slot 

height as well as the angle between the slot walls. In addition to these measurements, the 

torque play for each bracket was determined for five different, commonly used rectangular 

wires. Nominal values for the archwires were used to determine torque play. The archwire 

dimensions used were: 0.016in × 0.022in, 0.017in × 0.025in, 0.018in × 0.025in, 0.019in × 

0.025in, and 0.021in × 0.025in. The torque play is the more clinically applicable 

information. Furthermore, all of the brackets evaluated in the study were additionally 

imaged using scanning electron microscopy (SEM) allowing for more precise subjective 

evaluation of the bracket slots, in addition to the objective forms of evaluation previously 

mentioned. The SEM images revealed any surface inconsistencies within the bracket slots, 

that could affect bracket-wire interaction, and therefore tooth movement.  

Results: The bottom slot dimension for the OPAL sample had a mean of 0.0216in, with a 

standard deviation of 0.0002in, and a maximum of 0.0219in. The entire sample being 

below the nominal slot height of 0.022 in. The GAC bracket slots on the other hand had a 

mean of 0.0230in, with a standard deviation of 0.0003in, and a maximum of 0.0234in. The 

entire sample of GAC brackets evaluated had a bottom slot height above 0.022in. On 
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average, the AVEX OPAL bracket slot heights were 2% below the nominal value, whereas 

the GAC OmniArch brackets were 4.5% oversized. All of the brackets in each sample were 

divergent, meaning that the top height of the bracket slot was greater than the bottom 

height, and there was no difference between the two groups when considering divergence 

angle. There was a statistical difference found for the deviation angles for wires of 

commonly used nominal sizes. Furthermore, comparison of the two groups was performed 

to test the deviation from the mean for each individual sample. This essentially would test 

the precision of the manufacturing techniques. It was determined that there was a statistical 

difference in the precision of the bracket slot heights between the two groups. The SEM 

images offer more insight into the shape of the bracket slot and surface appearance of the 

brackets.  

Conclusions: In conclusion, it was determined that there was a statistically significant 

difference between the two samples of brackets, GAC OmniArch and AVEX OPAL, in 

the outcome variables of bottom slot height, top slot height, and deviation angle for the 

five nominally sized archwires used in the mathematical model, which effects torque 

realization. In addition, it was determined that there is a statistically significant difference 

between the two samples, in terms of deviation from the mean, for those outcome 

variables. Therefore it can be concluded that there is a statistically significant difference 

between the two samples in terms of both accuracy and precision 
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Introduction 

In order to understand the importance of the orthodontic bracket, it is of the utmost 

importance to understand the development of the orthodontic system that is currently used 

by the vast majority of orthodontists in the world today, namely the Straight Wire 

Appliance (SWA). The term straight-wire appliance was originally coined to describe a 

patented appliance developed by Dr. Larry Andrews. The SWA has the ability to exert 

control of each individual tooth in all three dimensions by the close fit of rectangular 

archwires in accurately made brackets. The brackets, themselves, incorporate angulation, 

or tip, and inclination, or torque, individualized for each tooth, as well as in-out position, 

so that wire bending is simplified (Andrews 1976).  The three dimensional control of the 

tooth, with the specific in/out position of the tooth, the angulation, and the inclination is 

termed the bracket prescription, and this system is also referred to as a “preadjusted” 

appliance. 

The concept for the SWA began with a paper written by Andrews entitled “The Six 

Keys of Normal Occlusion” (AJO 62, September 1972).  From the study of 120 ideal 

untreated occlusions Andrews proposed the following tooth position and occlusal norms: 

1) class I molar occlusion with the upper first molar tipped mesially with the distal cusp in 

contact with marginal ridge of second molar, 2) correct mesio-distal crown angulation (tip), 

since the tip of each tooth affects the space that it occupies, 3) correct bucco-palatal crown 

angulation (torque), 4) absence of rotations (except the upper first molar must be slightly 
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disto-palatally rotated for a correct intra- and inter-arch fit), 5) no spaces and 6) flat occlusal 

plane or surve of Spee (COS), which has an effect on overbite (Andrews 1972).  

The SWA was developed to facilitate attainment of these norms using archwires 

without the need for in/out, angulation, and inclination bends therefore finishing cases with 

“straight” archwires. In many cases, even with the SWA, wire bends in all three dimensions 

are needed to attain the ideal location of a teeth. In addition, increased torque within the 

wire, and other auxiliaries may be required, even assuming ideal bracket location; reasons 

for this will be explained.  

The important features of the straight-wire appliance are built in the bracket design, 

which contains the so-called “prescription”. As previously stated, this determines the three 

dimensional control of each individual teeth. Expressing the prescription of the bracket and 

desired control of the tooth requires ideal bracket positioning. Generally brackets are 

placed on the facial axis (FA) point of the tooth, which is the center of the tooth based on 

the mesiodistal width, the long axis, and the occluso-(or incis-) gingival height of the tooth. 

This is the point at which the long axis of the tooth (looking down on the occlusal table or 

incisal edge of the tooth to the root), and the horizontal axis of the crown intersect. Accurate 

bracket placement is vital since it affects in/out values, angulation, inclination, vertical 

alignment, and rotations (Andrews 1976).   

Specific features of the bracket design include: 1) in-out adjustment incorporated 

into bracket bases, 2) tip, or angulation, incorporated into the bracket slot so that the slot is 

placed on an angle to allow the crown to tip mesially; this is individualized for each tooth, 

and 3) torque, or inclination, incorporated into the walls of the bracket slot to ensure when 
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the tooth is angulated in a bucco-lingual plane, and is individualized to each tooth and 

finally, 4) bracket bases are contoured to permit ease of placement on the FA point and to 

give a good fit against the tooth surface (Andrews 1976). Again, it is the interface between 

the orthodontic bracket, specifically the bracket slot, and the archwire that will determine 

the position of the teeth. 

 It is evident from this information that aside from accurate bracket placement, the 

manufacturing and standardization of orthodontic brackets is of the utmost importance to 

realize the desired tooth position. In using edgewise mechanics, and specifically, the SWA, 

the placing of archwires in a preadjusted bracket is designed to produce three-dimensional 

tooth-moving forces. These forces are created as a result of the intimate fit of wire into the 

bracket slot, therefore any ‘‘play’’ or ‘‘slop’’ between these components will result in 

incomplete transmission of the bracket prescription to the tooth. For example, when 

retracting a maxillary incisor to reduce an overjet, slop between the bracket and wire results 

in palatal tipping of the crown, with the root of the tooth concurrently moving labially 

(Cash, Good et al. 2004).  

  It is apparent that the movement that is most affected by play in the bracket 

slot/archwire interface is the inclination, or torque. Proper buccolingual inclination of both 

posterior and anterior teeth is considered essential to providing stability and proper occlusal 

relationship in orthodontic treatment. Torque of the maxillary incisors is particularly 

critical in establishing an esthetic smile line, proper anterior guidance, and Class I canine 

and molar relationship, because undertorqued anterior teeth can preclude the distal 

movement of the anterior maxillary dentition while maintaining proper inclination. 
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Furthermore, undertorqued incisors decrease the available dental arch perimeter, because 

it has been shown that for every 2.5° of anterior inclination, about 1 mm of arch length is 

generated. In addition, undertorqued posterior segments have a constricting effect on the 

maxillary arch because they do not allow appropriate cusp-to-fossa relationships between 

the maxillary and mandibular teeth (Gioka and Eliades 2004).  

 In general, maxillary central incisor torque in preadjusted appliances ranges from 

7° in the Andrews prescription to 22° in the bioprogressive prescription. The lack of 

standardization in torque values can be partially explained on the basis of individual 

preferences in tooth position or differences pertinent to treatment philosophy. Also, as 

Gioka et al state, “this variation might imply the illogical nature of directly transferring the 

incisor inclination observed in esthetically pleasing and functionally sound dentitions to 

the bracket slot” (Gioka and Eliades 2004).    

 Full torque expression should potentially be achieved by using an archwire of the 

appropriate size to fill the bracket slot. To be able to insert a full size rectangular archwire 

it necessitates a certain amount of ‘play’. Essentially, this means that the vertical dimension 

or height of the bracket slot must be greater than the height of the archwire, and the larger 

the discrepancy between the bracket slot and the archwire dimension, the greater the 

reduction in the amount of torque expressed relative to the nominal amount of torque in 

the bracket. (Joch, Pichelmayer et al. 2010).  

 In order to fully understand the interaction between the bracket slot and the 

archwire and the realization of torque, there are a few terms that must be explained. As 

previously stated, the term ‘torque’ in orthodontics primarily refers to buccolingual root 
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inclination. At the bracket-archwire level incorporated torque, nominal torque, and 

effective torque have different definitions. To begin, incorporated torque (t) is defined as 

‘an angle between the slot center plane and orthogonal plane to the base of the bracket. 

This can be seen in Figure 1.  

 

 
Figure 1. The incorporated torque is defined as the angle between the slot center plane and 
the orthogonal plane to the base of the bracket (Joch, Pichelmayer et al. 2010).  
 
This is the amount of torque, in degrees, that will be presented specific to the bracket 

prescription.  Next is nominal torque (tnom). The nominal, or given dimensions of the 

archwires and brackets, as stated by the manufacturer, are used to define the nominal 

torque. Torque play (α) can be seen as the discrepancy between the size of the archwire 

and the size of the bracket slot. The interaction between the wire and the bracket slot can 

be seen in Figure 2.  
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Figure 2: Diagram of the archwire / bracket slot relationship: prescription torque (θ), 
theoretical torque loss (α) due to different archwire dimensions (b): wire width and (c): 
wire depth, and bracket slot (a) (Nguyen, Bell et al. 2013). 
 
 
Determining α allows the calculation of the torque play from the archwire and slot height 

dimensions using the following formula (1):  

 
Formula 1: Using the Figure 2, the above equation can be derived, yielding α. (Nguyen, 
Bell et al. 2013) 
 
And finally, to determine effective torque (teff), the exact dimensions of the slot and 

archwire are required; as these are affected by production inaccuracies, precise 

measurements are necessary. Essentially, effective torque is defined as ‘the angle between 

the intersection of the measured archwire height and the orthogonal plane to the base of 

the bracket’. In addition, incorporated wire torque, torque added to the wire, has an effect 

on overall torque. Effective torque is calculated by the difference between incorporated 
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torque (t), incorporated bracket torque plus incorporated wire torque (Meling, Odegaard et 

al. 1997), and torque play (α), using the formula (3): (Joch, Pichelmayer et al. 2010).  

 
 (3)  teff = t – α 

 
As Badawai et al. stated, torque expression can be achieved by filling the bracket 

slot and gradually increasing the archwire dimensions during treatment. However, the 

dimensions of the final working archwire never reach the full dimensions of the bracket 

slot; therefore, a percentage of the torque built into the bracket is lost because of the play 

between the archwire and the bracket slot. And furthermore, it has been shown that there 

is a considerable discrepancy between the theoretical and the measured bracket/archwire 

play. This play often extends to 100% of the prescribed torque, which essentially, is 

equivalent to using round wires (Badawi, Toogood et al. 2008). The “play” or deviation 

angle is the amount of rotation in degrees that a rectangular or square wire initially, in the 

passive state, must be twisted in order to engage the bracket walls or tube and generate 

biomechanical torque (Sebanc, Brantley et al. 1984). 

Currently, there are two main manufacturing processes that are used to produce 

stainless steel orthodontic brackets, which are metal-injection molding (MIM), and 

computer-numerical control (CNC) milling. In a study of metallurgical characterization of 

orthodontic brackets produced by the MIM process by Zinelis, et al. comprehensively 

outline the MIM process. In general, in the MIM process, metal powders with particle sizes 

of a few microns are mixed with organic binders (typically, wax, thermoplastic resins, and 

other materials), lubricants, and dispersants, until a homogeneous mixture is obtained. 

Injection of this so-called “feedstock” is done using an injection molding machine, which 
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is similar to those used in the plastics industry. The injected parts, called ‘‘green parts,’’ 

are formed into the desired geometry but at 17–22% oversize to compensate shrinkage after 

sintering (Zinelis, Annousaki et al. 2005). Sintering is the process of compacting and 

forming a coherent mass of material by heat and/or pressure without melting(2011).  

As explained by Zinelis et al. the next procedure is the ‘‘debinding,’’ which is used 

to remove at least 90% of the organic binder from green parts by heat, solvent, or both. The 

green parts have now been transformed into ‘‘brown parts,’’ preserving the same size with 

a quite porous structure. The final stage of the MIM process is sintering, which is 

performed in a high-temperature furnace under vacuum or a controlled atmosphere. In this 

stage the residual binder is removed, and at the end of the process the parts have shrunk by 

17–22%, reaching the precise desired dimensions because shrinkage is similar along the 

three axes. Nevertheless, in certain cases, secondary operations such as thermal or surface 

treatments are required. MIM products have tight tolerances of up to ±0.3% of the desired 

dimensions and density values more than 97% of the theoretical density of the material 

(Zinelis, Annousaki et al. 2005). The sequence of MIM production method is schematically 

presented in Figure 3.  
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Figure 3. Schematic representation of the MIM process (Zinelis, Annousaki et al. 2005). 

 

Among the currently available manufacturing processes, MIM is the least 

expensive mainly due to material savings during the production cycle because runners and 

sprues can be easily recycled and reused. Casting is the most expensive because it is 

estimated that 90% of the metal used is wasted in sprues and runners and 50% to 75% of 

the material used becomes scrap during machining. MIM is considered the most 

competitive technology for the production of large quantities of complex and intricate 

parts, whereas milling is economically beneficial only for geometrically simple parts. In 
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addition, MIM allows the use of any alloy for the production of orthodontic brackets, which 

is not always the case with the other processes (Zinelis, Annousaki et al. 2005).  

Apart from the economic advantages, the production method may have serious 

implications in the clinical performance of orthodontic brackets. The use of new alloys for 

the production of MIM brackets with different mechanical properties may affect their 

mechanical performance under clinical conditions. As single-piece appliances, MIM 

brackets are expected to be free of the corrosion consequences associated with the galvanic 

couple of brazing alloys with stainless steel (Zinelis, Annousaki et al. 2005). This is an 

issue when the bracket and the base are made separately and then fixed together. 

In their study evaluating four different types of brackets produced using the MIM 

process, Zinelis et al determined that all of the brackets tested showed porosity, which may 

be a function of the shrinkage of the green parts during sintering. Although theoretically 

the MIM parts have a density of more than 97% of the nominal value, a large numbers of 

factors (alloy, powder type, debinding method, sintering heat rate, sintering hold time etc.) 

may influence porosity development during the manufacturing process (Zinelis, Annousaki 

et al. 2005). The drawbacks of this manufacturing method and possible effects on 

consistency of dimensions of orthodontic brackets produced therein are evident, with the 

major issue being the shrinking that the appliance undergoes during the process. A small 

percentage difference in shrinkage can have a large effect due to the small scale in which 

bracket slot dimensions exist.   

 The CNC milling process begins with design of the orthodontic bracket via 

computer design software. This process is familiarly known as CAD. Next, the CAD file 
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of the bracket design is evaluated by a computer-aided manufacturing software. This 

software is used to virtually manufacture the bracket, and determine the best and most 

efficient process to produce the bracket. This process ensures that there will be no issues 

when the process moves to the manufacturing line. In addition, prototypes are made using 

the milling machine prior to the production line. The process for the stainless steel 

orthodontic brackets begins with a blank of 17-4 stainless steel. This blank is mounted 

precisely, and different shaped carbide drill bits are used to cut from the blank to produce 

the orthodontic bracket. Generally, the shape and lifespan of the drill bits are proprietary 

information, not released by manufacturers (Margetts 2016).  

It is an objective of this study to determine the dimensional accuracy and precision 

that is achievable by these two manufacturing methods, CNC milling and metal-injection 

molding. Based on this information, we hypothesize that milled bracket slots are more 

accurate and precise than metal-injection molded bracket slots. In addition, we hypothesize 

that this difference is statistically significant when the bracket slots are compared with 

realization of effective torque. The null hypotheses being that there is not a statistically 

significant difference in bracket slot dimension between milled orthodontic brackets and 

those produced by the MIM process, the effective torque realized is not statistically 

significant when comparing the two techniques of bracket manufacturing, and that there is 

no difference in precision of the two manufacturing methods. To test these hypotheses, we 

propose the following specific aims: 1) to determine the actual dimensions and standard 

deviations of the slots manufactured by the two methods. This will be completed using a 

Carl Zeiss STEMI508 stereomicroscope at 45x magnification images, in order to 
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accurately measure beyond micrometers. Ten brackets from each manufacturer GAC 

OmniArch (GAC, Bohemia, NY, USA), which are produced by the MIM process and 

OPAL Avex (OPAL Orthodontics, South Jordan, UT, USA), which are produced by the 

CNC milling process, both brackets with same prescription, which has a  17° torque for the 

maxillary central incisors will be examined, and compared to determine which is most 

accurate and precise to the specified dimensions of the slot. 2) Using mathematical models 

to determine if the dimensional difference, if one exists, between milled and MIMed 

brackets will result in a difference in third order tooth movement (torque) realization 

(effective torque vs nominal torque). The actual bracket slot dimensions from both 

manufacturing techniques will be used in the mathematical model, which determines 

effective torque produced by a rectangular archwire within a rectangular slot.  This 

mathematical model was previously determined and has been used in numerous studies.  

The effective torque in all cases will be determined and compared with the nominal torque, 

with the use of an ideal archwire dimension (dimensional variability of archwires will not 

be measured or included). These will be compared in order to determine if a statistically 

significant difference is realized. And 3) to determine if there is a statistical difference in 

the precision of the two different manufacturing methods. 

 

 
 
Review of Literature 
 

During the late 1990s, accurate measurements of bracket slots height did not receive 

adequate attention, even though close slot tolerances are essential for accurate torque 
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control and the fact that many of these factors were previously studied for years. Meling 

and Odegaard et al. performed numerous studies in order to better understand the state of 

bracket slot tolerances, and determine implications, as well as to give recommendations. 

Odegaard et al. described an instrument to measure the torsional twist with a high degree 

of accuracy, wherein the rotational deflection could be recorded to the nearest 1/50°. In 

this context, play is defined as the angular rotation of the wire from its passive position 

(wire cross-section parallel to slot walls) to the position where two diagonal corners make 

contact to the opposing slot wall. In their study, using the equation developed, which takes 

into account, wire size, wire bevel, and angle of twist, it is possible to estimate bracket slot 

height. It is also possible to determine effective torque, using the relationship among 

effective and nominal torques as well as torsional play, which is nominal torque minus 

torsional play is equal to effective torque. The formula assumes the edge bevel to be a 

perfectly circular section (90° of an arch), which is known not to be the case. In addition, 

the method does not directly address the effect of a slot taper. The calculated slot height 

obtained by this method is an estimate of the effective slot height, which is a combination 

of bracket slot height and slot taper, and is indirectly taken into account. Within the 

equation that is used to determine slot height it is known that 0.1° of change in torsional 

play corresponds to 0.9 μm change in slot height. Since the method error was less than 0.1° 

it follows that the bracket slot height could be calculated with a high degree of accuracy 

(Meling T, Odegaard J et al. 1998).  

In their study, they showed that Ormco medium standard edgewise 0.018-inch 

brackets had a bracket slot height of 0.475 mm (0.0187 inches) at a distance of 0.03 mm 
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from the slot base. Furthermore, a slight taper, or divergence of 1.85° was observed. The 

estimated bracket slot in this investigation was 0.476 ± 0.0032 mm (0.0187 ±0.00013 

inches). There is some intrasample variation in bracket slot height, the range being 0.470 

to 0.481 mm (0.0185 to 0.0189 inches). This corresponds to a variation in the torsional 

play of 1° for a 0.018 × 0.025-inch wire and would be even higher for a 0.016 × 0.022-inch 

wire (Meling, Odegaard et al. 1998). This means that even when using an archwire, whose 

vertical dimension, or height, is the same nominal value as the height of the bracket slot, 

there is still 1° of torque loss.  

In a study, by Cash et al, five upper left central incisor brackets were selected at 

random from a total of 11 commercially available conventional, esthetic, and self-ligating 

orthodontic bracket systems. Brackets were measured on two occasions by two different 

operators across the top and across the base of the slot. When a metal slot had been 

incorporated into a bracket base of a different material (Clarity and Elegance Plastic), only 

the metal slot insert was measured. Measurements were completed after calibration on a 

one-mm scale, using a single-axis Maxtascan 100 (Graticules, Tonbridge, Kent, UK) 

producing a digital readout. This study determined that all of the bracket slots examined 

were oversized, by between 5% and 17%, and that slot walls varied between, parallel, 

convergent, and divergent, depending on manufacturer. It was reiterated in this study, as 

with others, that the measurement of the brackets is slightly complicated by the fact that 

the brackets have rounded or beveled edges in their slots, and the degree to which this 

rounding is present varies among manufacturers (Cash, Good et al. 2004).  
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Earlier findings were similar in a study by Kusy and Whitley, who measured 24 

brackets from eight manufacturers microscopically, to the nearest .0001”. They found that 

while three bracket slots were smaller than the stated sizes, 20 others exceeded the stated 

sizes. The largest .018" slot actually measured .0209", which is nearly .003" oversized, and 

the largest .022" slot measured .0237", or almost .002" oversized (Kusy and Whitley 1999). 

Siatkowski noted that maxillary and mandibular incisors may suffer unexpected loss of 

torque when protracting the buccal segments during space closure with the preadjusted 

edgewise appliance. These anterior teeth may suffer a loss of torque of 5–10°, and this 

equates to roughly 1.9 mm of lingual retrusion of incisal edges during space closing 

protraction. These conclusions are in line with the findings by Kusy and Whitely. 

Siatkowski also mentions that European orthodontic bracket manufacturers use metric 

tooling, and, as a result of the difference between this and American tooling based on the 

imperial system, the 0.022-inch slots in European-made brackets are automatically 

oversized by 4.22% even before any manufacturing variability is encountered (Siatkowski 

1999).  

Dellinger presented deviation angles for arch wires in 0.018 and 0.022 inch bracket 

slots; these were based on both the nominal wire sizes and the worst tolerance conditions 

associated with the smallest wire sizes allowable by manufacturers. Dellinger’s data was 

obtained from theoretical calculations using a formula for deviation angle. In Creekmore’s 

tables the effect on play associated with the range in bracket slot size due to manufacturer 

tolerance was considered. The values, in degrees, for the deviation angle or play differed 

from the corresponding values published by Dellinger, who had focused only on 
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manufacturer tolerance for the wire dimensions. For an 0.017 × 0.025 inch wire in an 0.018 

inch slot, Dellinger showed a deviation angle of 3.4°, and thus a 3.6° effective torque angle, 

for a bracket torque angle of 7°. On the other hand, Creekmore indicated a deviation angle 

of 4.5° or an effective torque angle of 2.5°, for a bracket torque angle of 7°. Hixson and 

associates used a technique involving a torque-meter assembly to actually measure the 

values of deviation angle for some of the various rectangular wires used in 0.018 and 0.022 

inch bracket slots; their experimental data were different from the results provided by 

Dellinger and Creekmore. For example, Hixson’s group determined a deviation angle or 

play of 6.8° for an 0.017 × 0.025 inch wire in an 0.018 inch slot (Sebanc, Brantley et al. 

1984).  

Deviations from the theoretical and measured bracket/archwire play can be caused 

by intrinsic variations in arch-wire size, arch-wire edge bevel, bracket slot dimension, and 

bracket deformation, in addition to other aforementioned reasons. The purpose of the study 

by Badawi et al was to measure the difference in third-order moments that can be delivered 

by engaging 0.019 × 0.025-in stainless steel archwires in 2 active self-ligating (ASL) 

brackets (In-Ovation, GAC, Bohemia, NY; Speed, Strite Industries, Cambridge, Ontario, 

Canada) and 2 passive self-ligating (PSL) brackets (Damon2, Ormco, Orange, Calif; Smart 

Clip, 3M Unitek, Monrovia, Calif) (Badawi, Toogood et al. 2008). Active self-ligating 

brackets are designed in order to force the wire against the bottom of the bracket slot when 

the clip is engaged, whereas with passive self-ligating brackets, even a full-size wire 

(nominal height of wire is equal to the nominal height of the slot), will not be forced against 

the bottom of the slot, due to an increased slot depth. 
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In their study, a bracket/wire assembly torsion device was developed. This 

apparatus can apply torsion to the wire while maintaining perfect vertical and horizontal 

alignment between the wire and the bracket. A multi-axis force/torque transducer was used 

to measure the moment of the couple (torque in Newton-millimeters, or Nmm), and a 

digital inclinometer was used to measure the torsion angle. The torsion angle is the relative 

angle of twist of the archwire and is the combination between the angle of the bracket and 

the angle of twist of the archwire (Badawi, Toogood et al. 2008).   

Clinically effective torque has been suggested to be 5 to 20 Nmm. This study 

determined that the angles of torsion at which the lower limit of that range (5 Nmm) is 

achieved were 15° for the active self-ligating brackets and 22.5° for the passive self-

ligating brackets. For the active self-ligating brackets, the angle of torsion at which the 

upper limit of that range (20 Nmm) was achieved was 31°, but it was 34.5° for the passive 

self-ligating brackets (Badawi, Toogood et al. 2008).   

The relevant conclusions that can be drawn from these findings are that the torsion 

angle must be greater than 15° for ASL brackets, and 22.5° for PSL, and that for the 

majority of bracket prescriptions torque will not be realized unless wires are modified to 

increase torque where needed, or torqueing auxiliaries are used (Badawi, Toogood et al. 

2008). Therefore it is evident that even with ASL brackets, which more closely resemble 

conventional twin brackets, wherein the archwire is secured into the bracket with an 

elastomeric or stainless steel ligature, torque realization is limited and the addition of 

increased torque into the wire is needed.  
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Major et al.’s study on the accuracy of bracket slot dimensions used a different 

method from Meling and Odegaard. In their study, Major et al. examined three different 

types of 0.022 in (0.559mm) slot upper right central incisor stainless steel self-ligating 

brackets, which included Damon Q, In-Ovation-R, and Speed.  Each bracket was 

photographed through a microscope, and brackets were carefully aligned so that the slots 

were photographed perpendicularly to the slot. The bracket images were evaluated using a 

technique that allowed for precise examination of the outline of the bracket slot. This 

permitted determination of exact heights of the bracket slot throughout the depth of the 

slot, in addition to bracket shape, as in parallel, divergent, or convergent slot walls (Major, 

Carey et al. 2010).  

This study determined some very specific and pertinent information in regard to 

slot shape and size among the three different types of brackets analyzed. For example, the 

Speed brackets in the study had strongly pronounced rounding in the corners where the 

right and left walls meet the bottom. This has an effect on measurements because the larger 

the rounding radius of the corners, the less accurate the assumption is that the slots are 

essentially a trapezoidal shape. The Damon brackets had a slight rounding in the corners 

at the slot bottom, and In-Ovation appeared nearly square. In Speed brackets, the slot was 

0.556 mm at the bottom and 0.547 mm at the top. Compared to the nominal slot size of 

0.559 mm, statistically speaking 63% and 95% of Speed brackets are undersized as 

measured at the bottom and top, respectively. In-Ovation slot size is very near the nominal 

value at the bottom, but oversized by 2.6 standard deviations at the top of the slot, meaning 

that over 99.5% of In-Ovation brackets are oversized as measured at the top. Damon 
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brackets are the most rectangular slot, as evidenced by having nearly 90° angles at the 

bottom corners. But both the top and bottom of the slot are oversized compared to the 

nominal 0.559mm slot by approximately 1%, on average (Major, Carey et al. 2010).  

This study goes on to give a great example about manufacturing tolerances and 

precision, and the effect it can have in the orthodontic arena. Often tolerances are reported 

as being ±2 standard deviations since 95% of all data is within 2 standard deviations of the 

average, therefore the tolerances of the slot heights are 15 μm, 15 μm, and 43 μm for Speed, 

In-Ovation, and Damon, respectively, as measured at the top of the slot. Damon notably 

has the highest tolerance in slot height. Using the aforementioned formula presented by 

Meling et al. to calculate torque play, and assuming a rectangular slot and a nominal 0.483 

× 0.635mm (0.019 × 0.025 in) wire, the torque play theoretically changes 4.7° from a 43 

μm difference in slot height. Using the same formula, the difference between the average 

torque play between a Speed and Damon bracket is 2.3°. These torque play differences are 

an idealized estimate, and actual torque play is dependent on factors such as bracket/wire 

friction and beveling of wire corners. Using their torque expression data, a torque play of 

4.7° could result in variation of torque expression of 5–10Nmm, which is clinically relevant 

since the ideal torque value for biological movement of teeth is between 5 and 20 Nmm 

(Major, Carey et al. 2010).  

 It is clear that bracket slot height inconsistencies are not the only factor that affects 

torque realization. Another factor is, of course, the archwire. Deviations from the nominal 

size, the existence of an edge bevel, and variations within, can have a great impact on tooth 

movement, in general, and torque realization, specifically. In a study by Joch et al. both 
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bracket slot heights (various self-ligating brackets were used in this study) and archwires 

were evaluated, measured, and effective torque determined for all bracket/archwire 

combinations. In their study, the slot height of 10 upper right central incisor brackets, with 

a nominal slot height of 0.022 in, from 5 different bracket systems, as well as 10 archwires 

from six different types were measured. This study found that orthodontic bracket slot 

heights were oversized by 1% up to 7% from the nominal size. All measured bracket slot 

height values were within DIN (German Institute for Standardization) tolerance limits, 

most of them close to the upper limit. The largest deviation was a bracket slot, which was 

oversized by 24%. In addition, this investigation of stainless steel archwires with 0.019 × 

0.025 and 0.020 × 0.025-inch dimensions showed measurements outside the upper and 

lower limits in height and width given by DIN. Two-thirds of the examined archwire types 

exceeded the DIN  limits for height, and one-third exceeded the limits for width.  This 

study then used the findings in order to calculate torque play of all combinations of brackets 

and archwires. The authors combined these into a matrix format in order to determine 

torque play of all combinations, which can be seen in Figure 4.   
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Figure 4. Minimum and maximum deviation angle ranges of various combinations of 
measured ).022 inch brackets and 0.019 × 0.025 and 0.020 × 0.025 inch archwires (Joch, 
Pichelmayer et al. 2010).  
 
 
The torque play in this analysis ranged from a minimum of 4.5° to a maximum of 11.7°. 

For example, from the table, it can be appreciated that the maximum torque play for the 

combination of the SPEED System™ and SPEED Wire™ medium upper is 6.9°. These 

torque losses can have a significant effect on treatment when the nominal torque in the 
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upper right central incisor for example is 12°, reducing effective torque drastically (Joch, 

Pichelmayer et al. 2010).  

In addition, the roundness, or bevel, of the corners of the wire was not taken into 

consideration. These factors can have additional influence on torque play (Joch, 

Pichelmayer et al. 2010). There has been commentary on this factor, as well as numerous 

studies that determined the extent and effect of this issue on torque realization. As stated 

by Gioka et al., manufacturers can enlarge the size of the slot and slightly decrease the 

archwire cross-section relative to the nominal size to exclude the possibility that a wire 

could not be fully engaged into the bracket slot. Furthermore, they go on to state that 

another measure taken to prevent this undesirable incident include rounding and beveling 

the edges of both archwires and brackets; this makes inserting the wire easier. The effect 

of this being an additional factor that accounts for the difference between incorporated 

torque, or nominal torque, and effective torque. Additionally, the round edges of an 

archwire and the bracket slot can account for the difference between theoretical play and 

actual play (Gioka and Eliades 2004). 

 Sebanc et al. thoroughly investigated the function of edge bevel of orthodontic 

archwires on effective torque. He explains the manufacturing process of archwires, “square 

or rectangular arch wires are fabricated from round wires by a process of rolling rather than 

drawing. The round wire is passed through a device called a ‘Turk’s head’, which is a set 

of two rollers positioned 90° to each other, and rolled to the desired dimensions. The edges 

of the wire remain rounded after this rolling process, resulting in the edge bevel.” Clearly, 

this process will yield archwires with an edge bevel, and this roundness will have a great 
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effect on torque expression because it is the edges of the archwire that first engage the 

bracket slot for delivery of torque (Sebanc, Brantley et al. 1984).  

 In his study it was determined that the largest percent contribution of the edge bevel 

to the measured deviation angles (torque play) occurred with the beta-titanium wires. This 

is attributed to the fact that there is an inability of the manufacturer to better approximate 

a square corner for the beta-titanium wire during rolling may be due to the mechanical and 

wear properties of this alloy. Specifically, in the 0.022 inch slots, the 0.019 × 0.025 inch 

beta titanium segments produced measured deviation angle values of about 22° and an edge 

bevel contribution to the torque play of about 12.7°. These values are much higher than the 

average torque of about 12°, with an edge bevel contribution to the torque play of only 

about 4°, for the stainless steel 0.019 × 0.025 inch wires in the 0.022 inch slots. Beta-

titanium being the greatest because with increased edge bevel there is greater torque play 

(Sebanc, Brantley et al. 1984).  

 In addition, Gioka et al. commented on the importance of the mechanical properties 

of the wire material and its effect on torque realization. For example, in the case of a low-

modulus alloy such as Ni-Ti, the expression of torque is further decreased because some 

activation is dissipated as elastic deformation. Furthermore, because there is increased 

torque play as a function of wire size and edge bevel, lower modulus alloys, Ni-Ti and β-

Ti, are unable to apply the amount of torque necessary, 5-20 Nmm, to effectively cause 

these desired 3rd order movement without incorporated “wire twisting”, or increasing the 

torsion angle of the wire (Gioka and Eliades 2004). 

 29 



 Meling et al discusses the importance of precision when increasing the torsion angle 

of the wire, and the difficulty in keeping the angle within the ideal torque moment value 

(between 5 and 20 Nmm). One of the objectives of their study was to determine the change 

in the torqueing moment (Nmm) per degree of twist in the wire, calling this torsional 

stiffness. This study used only stainless steel wires, and only 0.018 in orthodontic stainless 

steel brackets. It was determined that “the change in torsional stiffness as expressed by the 

slope of the line, ranged from 2.5 Nmm/degree for a 0.016 × 0.022-inch wire to 3.9 

Nmm/degree for a 0.018 × 0.025-inch wire”. This means that for 1° of twist a 2.5 Nmm 

moment is generated with a 0.016 × 0.022-inch wire in an 0.018in bracket slot. 

Furthermore, if the acceptable working range for a torqueing moment is 15 Nmm (the 

difference between 20 Nmm – upper limit – and 5 Nmm – lower limit), then this equates 

to between 6.0° for a 0.016 × 0.022 inch wire and 3.8° for a 0.018 × 0.025-inch wire. 

Comparing the working range with the observed span of torsional play, it can be seen that 

the ratio between these two is relatively small. Therefore, it is difficult to apply torque with 

a desirable degree of accuracy. For example, in this study it was determined that the mean 

torsional play for a 0.016 × 0.022 inch wire was 18.5°. To obtain a 20 Nmm moment, a 

mean additional twist of 7.8° must be applied for a total of 26.3°, since with this size wire 

the torsional stiffness is 2.5 Nmm/degree. However, if the calculations in this example is 

based on the 0.016 × 0.022 inch wire in the study with the least amount of play (16.6°), 

and also the highest torsional stiffness (2.9 Nmm/degree) for this size wire, and the same 

26.3° of twist is applied, the resulting torque moment is 28.1 Nmm, which is outside of the 

range for an acceptable torqueing moment (Meling, Odegaard et al. 1997). Therefore it can 
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be seen that applying the same amount of additional twist to one particular wire in one 

instance can result in a completely different, and ineffective or nonphysiologcal, torqueing 

moment with another wire of the same nominal size. This study did not take into account 

variation in bracket slot dimensions.  

 Meling et al performed a similar study, using the same methods as the 

aforementioned study, but testing nickel-titanium and beta-titanium wires. Again this study 

used 0.018 in stainless steel brackets. The general impression from the data for the 0.016 

× 0.022-inch nickel-titanium alloy wires is that, for twist angles below 20°, they develop 

very little torque. Even at 25°, the torque levels were less than 5 Nmm. The torsional 

stiffness varied from 0.34 to 1.03 Nmm per degree, with a mean of 0.70 Nmm per degree. 

The beta-titanium alloy wire with these dimensions had a torsional stiffness of 1.15 Nmm 

per degree, a torque of 6.48 Nmm at 25°. For the 0.017 × 0.025- inch nickel-titanium wires 

it was demonstrated that torque was exerted at twist angles above 10°. At 25° they 

developed a mean torque of 13.5 Nmm with a range of 10.13 to 17.99 Nmm. These wires 

had torsional stiffnesses ranging from 0.79 to 1.45 Nmm per degree, with a mean of 1.04 

Nmm per degree. The TMA wires had torsional stiffnesses of 1.15 for 0.016 × 0.022-inch 

and 1.64 Nmm per degree for the and 0.017 × 0.025-inch wires, thus being 1.6 times stiffer 

than nickel-titanium. Furthermore, none of the wires that were tested exhibited 

superelasticity when activated to 25°. Although, when activated beyond 25°, some wires 

had deactivation plateaus and demonstrated hysteresis. As most torque prescriptions advise 

less than 25° of torsional twist, the superelasticity of the nickel-titanium wires is of little 

clinical importance regarding torque effect (Meling and Odegaard 1998).  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 In addition to the variability found in bracket slot dimensions, archwire material, 

and edge bevel dimensions there are even other variables that will affect torque realization. 

In Zinelis et al’s study of the “Metallurgical  Characterization of Orthodontic Brackets 

Produced by Metal Injection Molding” some interesting findings in regards to the 

hardnesses of stainless steel orthodontic brackets were made, in comparison with 

orthodontic archwires, and the effect of these differences. The Vickers hardness (VHN), a 

scale which measures the effective hardness of a material, essentially tendency to 

deformation, of the brackets tested varied from 154 to 287 VHN, which is much lower than 

the hardness (400 VHN) reported for the wing components of conventional SS brackets. 

This difference may have significant effects on the wear phenomena encountered during 

the archwire interaction with the bracket slot. The SS archwires demonstrate a hardness of 

600 VHN, whereas the hardness of NiTi archwires range from 300 to 430 VHN. It is 

desirable to minimize this mismatch in hardness to avoid wear in brackets during 

orthodontic treatment. The clinical significance of the hardness findings is the fact that 

low-hardness wing components may affect the force transfer from the archwires to teeth 

because it may inhibit full engagement of the wire to the slot wall and possible plastic 

deformation of the wing (Zinelis, Annousaki et al. 2005). In effect this means that the 

orthodontic bracket slot can plastically deform due to the force applied by the harder 

orthodontic wire, which can affect the bracket slot dimensions, further complicating torque 

realization.  

 In addition, manner of wire ligation can have an effect on torque realization. This 

is mentioned by Gioka et al, who states “elastomeric ligatures have shown a force 
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degradation pattern characterized by an initial exponential decrease reaching 40% in the 

first 24 hours” (Gioka and Eliades 2004). This means that the elastomeric ligatures will be 

unable to seat the archwire against the slot floor, limiting force application and resultant 

torqueing moment. And furthermore, by Sebanc et al who states “ligation can substantially 

affect the amount of torque transferred from the arch wire-bracket system to the tooth” 

(Sebanc, Brantley et al. 1984). Form of ligation and bracket positioning are two variables 

that are within the control of the practitioner. Therefore placing the brackets in the correct 

position, and using stainless steel ligation, when torque expression is required and desired, 

should be performed routinely.  

As previously stated, archwires, bracket placement, type of ligation, and tooth 

morphology, in addition to others, can have a great effect on torque realization. It is 

important to remove, or account for, as many variables as possible, specifically those that 

are outside the doctor and patient’s control. A potential source of inconsistency is within 

the manufacturing process.  As with any other product, the manufacturing process of 

brackets results in some variation in sizes and characteristics, including dimensional 

accuracy and torque prescription consistency. Although brackets are made from several 

materials, including titanium and ceramics, the focus will be on stainless steel (type 17-4) 

orthodontic brackets. As Badawai et al stated, various bracket manufacturing processes 

such as injection-molding, casting, and milling can affect the accuracy of the prescribed 

torque values, and this has been reported to be about 5% to 10% (Badawi, Toogood et al. 

2008). Shortcomings with each of these manufacturing techniques include the fact that the 

MIM exposes the material to expansion and shrinkage, whereas milling can incorporate a 
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rough grained surface. Furthermore, bracket slot manufacturing introduces metal particles, 

grooves, and striations, which can preclude the full engagement of the wire in the slot walls. 

All slot walls have a rough surface with imperfections, porosity, and microstructural 

defects, which could affect the dimensional accuracy of the slot wall (Gioka and Eliades 

2004).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Materials and Methods 
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In this study two different types of 0.022 in (0.559 mm) slot maxillary right central 

incisor stainless steel conventional brackets, manufactured with metal injection molding 

(GAC OmniArch, Bohemia, NY, USA) and computer numerical control milling (OPAL 

Avex - OPAL Orthodontics, South Jordan, UT, USA) respectively were investigated: and, 

both brackets with MBT prescription, which is 17° torque for the maxillary central incisors. 

The MBT prescription was used because of the higher torque of the central incisors which 

would make the potential difference in deviation angle more apparent. The GAC 

OmniArch bracket system  was chosen  for this study as this company utilizes the MIM 

process exclusively in the manufacturing of its brackets and, therefore increased accuracy 

in the manufacturing technique could be expected. This investigation used a sample size of 

10 brackets for both bracket types. Throughout the imaging and evaluation process the 

evaluator was blinded to the bracket type. 

In order to conduct different measurements of the walls of the bracket slot of both 

systems studied, the mesial profiles of the brackets were imaged using ZEN imaging 

software through a Carl Zeiss Stemi508 microscope (Carl Zeiss MicroImaging GmbH, 

Jena, Germany), at 45x magnification. The setup can be seen in Figure 5. This method has 

been used in previous studies to measure the bracket slot height (Major, Carey et al. 2010). 
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Figure 5. Carl Zeiss stereomicroscope setup for bracket slot imaging 

 
The brackets were carefully aligned so that the slots were photographed 

perpendicular to the slot. Alignment was confirmed by visually reviewing images to ensure 

the brackets were not tilted. An example image can be seen in Figure 6. 
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Figure 6. Example photo of the slot. 

 
This process was repeated three times for each bracket. All 20 brackets were 

imaged on three separate occasions, 7 days apart. This was done in order to verify 

consistency of imaging perpendicularly to the slot. All of the images were taken using the 

same magnification. The images were calibrated and evaluated using the GNU Image 

Manipulation Program (GIMP) software. Using the software, points were selected and 

transferred for analysis into an Excel spreadsheet. In each photo 3 points were selected on 

the left (gingival) wall, the right (incisal) wall, and the floor. The points were all plotted on 

a 2-dimensional Cartesian (x,y) coordinate system, which was given by the GIMP software, 

and represented pixel coordinates. An example of this analysis can be seen in Figure 7. 

 

 37 



 
Figure 7. Slot profile evaluation, showing trendlines for the slot floor and walls. 

 
 

Each corner, where the right and left wall meets the floor, has a radius, therefore 

points were selected just outside the radius. Along each wall two endpoints were then 

selected, just before the walls started to round. In order to determine the evaluator’s 

consistency in selecting points along the walls and floor of the slot, the evaluator repeated 

the process for 20 slot profiles. Then using the distance formula, the midpoint of both walls 

and the floor of the bracket were identified. Using Excel, a trend-line was generated for the 

walls and the floor, using linear regression. Therefore there was an output of an equation 

in the form of y = mx +b, and an R2 for the walls and the floor. The R2 value for the three 

lines provides a means to evaluate the linearity of the slot walls.  
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A total of five measurements are calculated from what is assumed to be a 

trapezoidal profile of the slot. Then three angles are calculated: the angle between the slot 

walls, which determines the slot taper (θ3), and the angles made at the intersection of the 

slot walls and floor (θ1 and θ2).  

The distance between any two 2-dimensional Cartesian point is given by Formula 

4: 

 
                                                           Dist = √(x2-x1)2 + (y2-y1)2                                                  
(4)           
 
The bottom distance is calculated as the distance between the points generated by the 

intersection of the left wall and the bottom line, and the right wall and bottom line. The top 

distance is calculated by taking the (x,y) coordinates of the highest point plotted on the 

right wall, generating an equation with the same slope as the floor of the slot, and 

determining the intersection of that this new line with the equation for the left wall, then 

taking that (x,y) coordinate and using the distance formula to determine the top slot height. 

The slot bottom and top distance is the measurements that corresponds to the slot height, 

nominally 0.022 in. Initially, these measurements are given in pixel length. A gauge block 

(Mitutoyo Corportation, Kanagawa Japan) of 1mm was imaged using the microscope under 

the same conditions therefore pixels could be converted to known units of length, 

millimeters and inches. The gauge block is ASME-1 rated and has an accuracy to within 

0.02μm (0.00002 mm). Since the nominal bracket slot dimension is 0.559mm, this level of 

accuracy is considered sufficient. 
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 The three angles can be determined using the slopes of the three lines, and the 

following equations: 

 

 
In addition to these measurements, the torque play for each bracket was determined 

for five different, commonly used rectangular wires. Nominal values for the archwires were 

used to determine torque play. The archwire dimensions used were: 0.016in × 0.022in, 

0.017in × 0.025in, 0.018in × 0.025in, 0.019in × 0.025in, and 0.021in × 0.025in. The torque 

play is the more clinically applicable information.  

The data sets, consisting of the outcome variables for each of the three images (30 

OPAL images and 30 GAC images) for each individual bracket were averaged, creating a 

final data set of ten OPAL and ten GAC. The statistical analysis to determine if there is a 

statistical difference of the outcome variables will be performed using this data set. 

 Furthermore, all of the brackets evaluated in the study were additionally imaged 

using scanning electron microscopy (SEM) allowing for more precise subjective evaluation 

of the bracket slots, in addition to the objective forms of evaluation previously mentioned. 

The SEM images revealed any surface inconsistencies within the bracket slots, that could 

affect bracket-wire interaction, and therefore tooth movement.  
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Statistical Analysis 
 

Intraclass Correlations Coefficients (ICC) were used to test for agreement because 

of the continuous nature of the data. The ICC is a general measurement of agreement or 

consensus. The coefficient represents agreements between two or more raters or evaluation 

methods on the same set of subjects multiple times. The ICC was determined for the 

perpendicularism of the bracket slot image acquisition as well as the consistency of point 

selection within the bracket slot walls. An ICC of 1 represents perfect agreement. 

P-values for comparing Opal and GAC were determined based on the outcome 

variables, bottom dimension, top dimension, divergence angle of slot walls, linearity of 

slot walls and floor, as well as torque play for 5 commonly used rectangular arch-wires. P-

values were obtained using a Wilcoxon Signed Rank test since the distributions for the 

variables were not normal. In addition, summary statistics for each outcome by group, 

OPAL and GAC, were determined in terms of mean, median, standard deviation, and 

minimum and maximum. Furthermore, P-values were obtained, using a Wolcoxon Signed 

Rank test, to determine if there was a significant difference in the deviation from the mean 

for all of the outcome variables. This was done in order to determine if there is a difference 

in precision between the manufacturing methods.  
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Results 
 
 The Intraclass correlations for perpendicularism of bracket slot image acquisition 

were determined between all the groups simultaneously and then pairwise. The ICC for all 

groups was 0.95248, therefore consistency of image acquisition shows very high 

agreement. In addition, the ICC for point selection within the slot, is 0.99735, therefore it 

is shown that points are selected consistently between images.  

 Summary statistics for the outcome variables can be seen in the Table 1. In the table 

the outcome variables are listed on the left, and include the bottom and top dimensions in 

both inches and millimeter units, as well the divergence angle of the slot walls. 

Furthermore, the deviation angles for the five selected archwire sizes are listed as well. For 

each outcome variable, the mean, standard deviation, and minimum and maximum value 

is listed. This table serves as an overview of the samples from each group, for the outcome 

variables. In the following, more specific data is shown that includes the values for each 

bracket from both groups.  

 Group N Mean Standard 
Deviation 

Minimum Maximum 

Bottom (mm) MIM 10 0.5852 0.0082 0.5746 0.5953 
 Milled 10 0.5476 0.0040 0.5432 0.5557 
Top (mm) MIM 10 0.6109 0.0104 0.5966 0.6256 
 Milled 10 0.5658 0.0036 0.5625 0.5728 
Bottom (in) MIM 10 0.0230 0.0003 0.0226 0.0234 
 Milled 10 0.0216 0.0002 0.0214 0.0219 
Top (in) MIM 10 0.0241 0.0004 0.0235 0.0246 
 Milled 10 0.0223 0.0001 0.0221 0.0226 
Divergence MIM 10 2.2847 0.6925 0.6760 3.1029 
 Milled 10 2.1627 0.4231 1.4428 2.9262 
16x22 MIM 10 21.8763 1.2847 20.2510 23.4577 
 Milled 10 16.4025 0.5475 15.7980 17.5167 
17x25 MIM 10 15.4392 0.9483 14.2324 16.6047 
 Milled 10 11.2775 0.4273 10.8043 12.1463 

 42 



18x25 MIM 10 12.6602 0.9077 11.5045 13.7756 
 Milled 10 8.6643 0.4115 8.2086 9.5008 
19x25 MIM 10 9.9698 0.8700 8.8614 11.0386 
 Milled 10 6.1292 0.3965 5.6899 6.9352 
21x25 MIM 10 4.8558 0.8023 3.8328 5.8412 
 Milled 10 1.2972 0.3690 0.8882 2.0471 
Left wall MIM 10 0.9419 0.0821 0.7247 0.9947 
 Milled 10 0.8941 0.0901 0.7318 0.9860 
Right Wall MIM 10 0.9130 0.0957 0.7095 0.9983 
 Milled 10 0.9633 0.0479 0.8662 0.9988 
Floor MIM 10 0.6378 0.1897 0.2850 0.9822 
 Milled 10 0.7169 0.1827 0.3444 0.9396 

Table1. Outcome statistics 
 
 Comparison of the CNC milled (AVEX OPAL) and metal-injection molded (GAC 

OmniArch) brackets for the outcome variables with the specific P-values can be found in 

Table 2. The statistically significant p-values are those highlighted below.  

 p-value 
Bottom  (mm) 0.0002 
Top (mm) 0.0002 
Bottom (in) 0.0002 
Top (in) 0.0002 
Degrees R/L 0.3075 
16x22 0.0002 
17x25 0.0002 
18x25 0.0002 
19x25 0.0002 
21x25 0.0002 
Left wall 0.1859 
Right Wall 0.3075 
Floor 0.3475 

Table 2. P-values for outcome statistics. Statistically significant variables are highlighted 
 

From the above table it is evident that statistically significant differences were found 

between the two groups in bottom and top slot height, as well as deviation angle for the 

five archwires selected and used in the mathematical model. 
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The bottom slot dimension for the OPAL sample had a mean of 0.0216in, with a 

standard deviation of 0.0002in, and a maximum of 0.0219in. The entire sample being 

below the nominal slot height of 0.022 in. The GAC bracket had a mean of 0.0230in, with 

a standard deviation of 0.0003in, and a maximum of 0.0234in. The entire sample of GAC 

brackets evaluated had a bottom slot height above 0.022in. On average, the AVEX OPAL 

bracket slot heights were 2% below the nominal value, whereas the GAC OmniArch 

brackets were 4.5% oversized. The bottom slot height dimension for the entire sample from 

each group can be seen in Figure 8. 

 

 
Figure 8. Scatter plot of the bottom slot height for the samples of the CNC milled (OPAL) 
and MIMed (GAC). 
 

All of the brackets in both groups had slot walls that were divergent, meaning that 

the top height of the bracket slot was greater than the bottom height. There was no statistical 
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difference found between the two groups when considering divergence angle of the slot 

walls. Furthermore, there was a statistically significant difference found between the top 

slot height for the two groups.  

No difference was found in the linearity of the slot walls and floor of the bracket 

slots between the two groups, based on the R2 values of the trendlines. 

There was a statistical difference found for the deviation angles for wires of 

commonly used nominal sizes. For a 0.016in × 0.022in nominally sized archwire in an 

OPAL bracket the average deviation angle is 16.40°, with a standard deviation of  0.55°, 

with a minimum and maximum of 15.80° and 17.52°, respectively. For GAC brackets with 

the same sized archwire, the average deviation angle is 21.88°, with a standard deviation 

of 1.28°, with a minimum and maximum of 20.25° and 23.46°, respectively. The 

differences in deviation angle for the two groups can be seen in Figure 9. 
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Figure 9. Scatter plot of the deviation angle for an 0.016in × 0.022in archwire for the 
samples of the CNC milled (OPAL) and MIMED (GAC).  
 

 
For a 0.017in × 0.025in nominally sized archwire in an OPAL bracket the average 

deviation angle is 11.28°, with a standard deviation of  0.43°, with a minimum and 

maximum of 10.80° and 12.15°, respectively. For GAC brackets with the same sized 

archwire, the average deviation angle is 15.44°, with a standard deviation of 0.95°, with a 

minimum and maximum of 14.23° and 16.60°, respectively. The differences in deviation 

angle for the two groups can be seen in Figure 10. 
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Figure 10. Scatter plot of the deviation angle for an 0.017in × 0.025in archwire for the 
samples of the CNC milled (OPAL) and MIMED (GAC).   
 

 
For a 0.018in × 0.025in nominally sized archwire in an OPAL bracket the average 

deviation angle is 8.66°, with a standard deviation of  0.41°, with a minimum and maximum 

of 8.21° and 9.50°, respectively. For GAC brackets with the same sized archwire, the 

average deviation angle is 12.66°, with a standard deviation of 0.91°, with a minimum and 

maximum of 11.50° and 13.78°, respectively. The differences in deviation angle for the 

two groups can be seen in Figure 11. 
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Figure 11. Scatter plot of the deviation angle for an 0.018in × 0.025in archwire for the 
samples of the CNC milled (OPAL) and MIMED (GAC).  
 
 

For a 0.019in × 0.025in nominally sized archwire in an OPAL bracket the average 

deviation angle is 6.13°, with a standard deviation of  0.40°, with a minimum and maximum 

of 5.69° and 6.93°, respectively. For GAC brackets with the same sized archwire, the 

average deviation angle is 9.97°, with a standard deviation of 0.87, with a minimum and 

maximum of 8.86° and 11.03°, respectively. The differences in deviation angle for the two 

groups can be seen in Figure 12. 
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Figure 12. Scatter plot of the deviation angle for an 0.019in × 0.025in archwire for the 
samples of the CNC milled (OPAL) and MIMED (GAC).   
 
 

For a 0.021in × 0.025in nominally sized archwire in an OPAL bracket the average 

deviation angle is 1.30°, with a standard deviation of  0.37°, with a minimum and maximum 

of 0.89° and 2.04°, respectively. For GAC brackets with the same sized archwire, the 

average deviation angle is 4.86°, with a standard deviation of 0.80°, with a minimum and 

maximum of 3.83° and 5.84°, respectively. The differences in deviation angle for the two 

groups can be seen in Figure 13. 

 

 49 



 
Figure 13. Scatter plot of the deviation angle for an 0.021in × 0.025in archwire for the 
samples of the CNC milled (OPAL) and MIMED (GAC).  
 
 

Furthermore, comparison of the two groups was performed to determine if there 

was a statistical difference in the deviation from the mean for each individual sample. This 

data is presented in Table 3. 

 
 Group N Average 

Deviation from 
the mean 

Bottom (mm) GAC 10 0.0075 
 OPAL 10 0.0032 
Top (mm) GAC 10 0.0083 
 OPAL 10 0.0029 
Bottom (in) GAC 10 0.0003 
 OPAL 10 0.0001 
Top (in) GAC 10 0.0003 
 OPAL 10 0.0001 
Divergence GAC 10 0.4614 
 OPAL 10 0.3264 
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16x22 GAC 10 1.1756 
 OPAL 10 0.4371 
17x25 GAC 10 0.8675 
 OPAL 10 0.3411 
18x25 GAC 10 0.8303 
 OPAL 10 0.3284 
19x25 GAC 10 0.7958 
 OPAL 10 0.3165 
21x25 GAC 10 0.7338 
 OPAL 10 0.2945 
Left wall GAC 10 0.0554 
 OPAL 10 0.0741 
Right Wall GAC 10 0.0746 
 OPAL 10 0.0357 
Floor GAC 10 0.1432 
 OPAL 10 0.1401 

Table 3. Outcome statistics for deviations from the mean 
 
 
The two groups, GAC and OPAL, were compared and p-values were determined for the 

outcome variables, based on deviation from the mean. These values can be seen in Table 

4. It is evident from this table that the deviations are statistically significant for the bottom 

slot height and all of the deviation angle values for each of the five wire sizes. 

 
 p-value 
Bottom  (mm) 0.0010 
Top (mm) 0.0640 
Bottom (in) 0.0010 
Top (in) 0.0640 
Degrees R/L 0.9982 
16x22 0.0006 
17x25 0.0006 
18x25 0.0006 
19x25 0.0006 
21x25 0.0006 
Left wall 0.2413 
Right Wall 0.1405 
Floor 0.8501 

Table 4. P-values for outcome statistics for deviations from the mean. Highlighted p-values 
are statistically significant.  
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Discussion 

The bottom slot height is the outcome variable with the greatest significance, 

because it is the basis of the comparison between the two bracket types and manufacturing 

methods. It also determines the torque realization for each of the archwire sizes used in the 

mathematical model. The mean bottom slot height for the MIM sample is 0.023in, and for 

the CNC milling sample it is 0.0216in. The MIM sample being 4.5% greater than the 

nominal size, and the CNC milling sample 2% below the nominal size. Therefore there is 

a clear difference between the two samples on the basis of dimensional accuracy.  The 

CNC milled brackets would be preferable and be more likely to deliver the nominal torque 

value due to the size of the bracket slot. 

This difference is apparent when the deviation angle for the combination nominally 

sized archwires for the bracket samples are examined. There is a clear and statistically 

significant difference between the two samples. The clinically significant aspect of this can 

be seen especially when examining the torque play for the 0.019in × 0.025in and 0.021in 

× 0.025in for the two different samples. These archwires are commonly used archwires for 

torque realization during treatment. It is evident that with MIM brackets a clinician would 

need to use an archwire with a nominal dimension of 0.021in × 0.025in to achieve the same 

deviation angle within a degree, as an CNC milled bracket with a wire of nominal 

dimension 0.019in × 0.025in. This is significant to treatment because the smaller arch wire 

is more versatile in the clinician’s hands, and some detailing can be done with this arch-

wire. In addition, from a practice management standpoint, it could represent a need for 

increased inventory of archwires. 
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If an orthodontic provider uses MIM manufactured brackets, using a higher torque 

prescription may be needed, in order to clinically realize the desired torques of the 

dentition. Alternatively, the clinician can use a larger sized archwire, routinely add torque 

to the archwire, or use torqueing auxiliaries. All of these will in the least, increase chair 

time required to treat patients. But furthermore, due to the overall decreased precision and 

increased range of bracket slot size, compared to the CNC milled brackets, it is still difficult 

to consistently account for the increased slot height, which will have an effect on torque 

realization. For MIM manufactured brackets, as seen in Table 3, the average deviation from 

the mean for bottom slot height is three times larger than the average deviation for the CNC 

milled brackets. The effect of this is seen when examining the deviations from the mean 

for torque realization for the different sized archwires, also presented in Table 3. It can bee 

seen that the deviation from the mean for the MIM sample in effective torque is two to 

three times greater than it is for the CNC milled sample. For example, the deviation from 

the mean for an 0.019in × 0.025in, a commonly used archwire for torque realization 

clinically, for the MIM sample of brackets was 0.80, whereas for the CNC milled sample 

it was 0.32, roughly 2.5 times greater for the MIM sample.  

This statistically significant different deviation could potentially affect treatment, 

from case to case, and even tooth to tooth within a patient, due to inconsistently oversized 

bracket slots. Since there is a significant range of deviation from the mean for the MIM 

brackets studied one could expect to see a range from bracket to bracket within the patient. 

Using this sample of brackets, it is seen that the range of bottom bracket slot height for the 

MIM sample is from 0.0226in to 0.0234in. In this case, the largest slot height is 3.5% 
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greater than the smallest slot height. When comparing these in the mathematical model to 

determine effective torque, this can lead to a difference of 3.2° in an 0.016in × 0.022in 

archwire, to 2° in an 0.021in × 0.025in.  Therefore, if there was this amount of deviation 

among brackets within a complete set for a patient, there could be a two to over three 

degrees difference for torque realized between the maxillary central incisors. Conversely 

for the sample of the CNC milled brackets the potential differences are 1.7° in an 0.016in 

× 0.022in archwire, to 1.1° in an 0.021in × 0.025in.  This difference is clinically significant 

and could potentially make finishes more difficult and less predictable for the clinician.   

To account for torque play, or deviation angle, increasing torque within the 

archwire is common practice. However, outinely adding the appropriate torque to a wire 

can be time consuming and difficult. As previously stated, there is window between 5 and 

20 Nmm for physiological torqueing moment for a tooth, and small discrepancies can have 

an effect on realizing the appropriate torque, and potentially exceeding the physiological 

appropriate forces on teeth. It is generally acknowledged that application of high force 

levels is more likely to induce root resorption and possible loss of tooth vitality. Reitan 

showed that increased forces will lead to hyalinization of the periodontal ligament and 

subsequent undermining resorption (Reitan 1951).  Therefore, if there is a large range in 

bracket slot height among brackets on the same patient, it will be difficult to consistently 

add the appropriate torsion to the wire, which will achieve the appropriate torqueing 

moment, to achieve both consistency and symmetry, and maintain that moment within what 

is physiologically appropriate.  
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 In addition, due to the fact that there is a clear difference in the accuracy and 

precision of the brackets there could be in an increase in treatment time. This is because 

there could be a clinically significant difference in deviation angle from one bracket to the 

other on the contralateral side within the same patient. This would require bends in the wire 

in order to make the tooth torques symmetrical. Moreover, the greater deviation angle alone 

found in the MIM brackets would require adding torque to the archwire or using torqueing 

auxiliaries. These additional treatment needs could potentially increase treatment time. 

The SEM images offer more insight into the shape of the bracket slot and surface 

appearance of the brackets, and verification of what is seen using the Carl Zeiss 

STEMI508. There were many findings that are consistent within each group, MIM and 

CNC milled.  Overall, the corners, where the walls meet the floor, of the MIM brackets are 

very rounded and uneven. There are many surface blemishes, and in many cases, 

blemishes, and or protrusions, in the bracket slot. In one bracket there appeared to be a 

large particle slightly protruding into the slot, although this may not have an effect on 

torque realization, it could potentially do so in other brackets produced by the MIM 

process. Large protrusions into the slot could actually increase torque realization, but since 

this is inconsistent among brackets, it can not be accounted for by the clinician and could 

negatively affect forces and moments delivered to the dentition, and therefore outcomes. 

The floors of the MIM brackets appeared generally straight, especially when compared to 

the CNC milled brackets. An example of an SEM image of a MIM bracket that shows these 

findings can be seen in Figure 14. 
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Figure 14. SEM image of bracket produced by the MIM process. Inconsistent rounding of 
corners, uneven floor, and large particle slightly protruding into the slot can be seen.  

The CNC milled brackets were overall very clean and had consistent surfaces. The 

corner where the left wall meets the floor is very slightly rounded, and the corner where 

the right wall meets the floor is nearly a perfect corner. The floor of the brackets is 

consistently is slightly rounded and is not a straight line, which is reflected in the R2 value 

for the trendline of the floors for the CNC milled brackets. Only one of the brackets had a 

slight protrusive blemish that went into the bracket slot. Aside from what is specifically 

mentioned, overall both bracket types had relatively straight walls. An example of an SEM 

image of a CNC milled bracket that shows these findings can be seen in Figure 15. 
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Figure 15. SEM image of bracket produced by the CNC milling process. Consistently sharp 
corners, floor and walls can be seen. 
  
 From the outcome data it is evident that there is not a difference between the two 

samples in divergence angle of the slot walls. Therefore, when archwires are placed in the 

bracket slot complete seating of the archwire will occur, and the archwire will make contact 

with the floor of the bracket slot, therefore, any inconsistencies in the floor could be 

significant. From the SEM images it is evident that generally, the MIM sample has a floor 

that is inconsistent, with the middle of the floor being slightly higher than points closer to 

the corners, outside of the corner radius. This bracket feature could potentially effect 

seating of the archwire into the smallest dimension of the bracket slot height, therefore, 

decreasing the effective slot height, and increasing the deviation angle between archwire 

and bracket slot. This feature differs from that of the CNC milled sample of brackets. There 
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is a consistent, yet slight, concavity on the floor of the slot. This feature would not prevent 

seating of the archwire into the smallest dimension of bracket slot height. Furthermore, as 

seen in the SEM image one of the MIM bracket slots, there is a large particle visible, 

slightly protruding into the slot. In its existing location, there would most likely not be an 

effect on torque realization for that bracket, but if that particle were located in the floor of 

the slot, and prevented complete seating of the archwire into the smallest dimension of slot 

height, there could be an increase in deviation angle between the bracket slot and archwire. 

Particles of this type were not seen in any of the CNC milled brackets. It is most likely a 

component of the MIM process.    

During the evaluation process for this study, one difficulty was with identifying the 

points on the slot profile that were marginally outside the rounded corners. This was 

especially difficult with the MIM brackets, wherein the corners were rounded to a much 

greater degree. This begins to complicate the assumption that the slot is trapezoidal in 

shape, as Major et al. discussed in their study on bracket slot tolerances. Knowing exactly 

where the edges of different size wires engaged the slot, would allow for precise location 

of points, and therefore permit more accurate objective evaluation of bracket slot 

dimensions.  

Although this is a thorough analysis of the bracket slots, there are some limitations. 

Ensuring that the pictures are taken from a direct perpendicular viewpoint is difficult. In 

this study, this was accounted for by imaging the bracket slots in a perpendicular 

orientation on three separate occasions, comparing the three based on interclass 

correlations, and then averaging the measurements for the three images together. Selecting 
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three points along the slot walls will yield an accurate representation of the slot profile. If 

there is an area of irregularity large enough to greatly affect the R2, but is not in a position 

where the edges of the arch-wire would engage, then it wouldn’t have an effect on torque 

realization. From both the stereomicroscope images and SEM analysis of the brackets it is 

apparent that the most irregularity is found in the middle of the floor of the bracket slot, 

and as previously stated, for the MIM sample could affect seating of the archwire, therefore 

increase deviation angle between the bracket slot and the archwire. In future studies, if it 

were possible for a computer program to select an infinitesimal number of points along the 

walls and floor of the slot, a more accurate model could be created (Major, Carey et al. 

2010). The effective height of the bracket slot is the more important outcome, because this 

will take into account the divergence of the bracket slots. In this study, the bracket slot 

height used in order to determine the torque play was the bottom dimension, therefore not 

taking into account the convergence of the slot. This means that the deviation angle values 

presented may not be the exact angles that will be encountered in treatment, given a wire 

of the exact nominal dimension. However, since the divergence angle values for the two 

bracket types are similar, one would expect to see essentially the same change in deviation 

angle clinically.  

Future studies could potentially evaluate if there is any difference in plastic 

deformation, during treatment, between milled brackets and brackets produced by the MIM 

process. In addition, since this study and others have only imaged the bracket from the 

mesial aspect, future studies could evaluate the distal aspect. Another future study could 

compare the MIM process of two manufacturers and determine if the decreased 
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dimensional precision and accuracy is a function of the manufacturing process itself. 

Another important factor to consider is the potential difference in bracket dimensions 

among production lots, which is another topic for a future study. This is a quality control 

issue within the manufacturing process, but since variation could potentially exist 

knowledge of this would aid the orthodontic clinician in producing the most accurate forces 

and moments to the dentition, which in turn would allow for an anticipated outcome, and 

potentially optimal result (Meling, Odegaard et al. 1998).  

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion 

 In conclusion, it was determined that there was a statistically significant difference 

between the two samples of brackets, MIM (GAC OmniArch) and CNC milled (AVEX 
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OPAL), in the outcome variables of bottom slot height, top slot height, and deviation angle 

for the five nominally sized archwires used in the mathematical model, which effects 

torque realization. In addition, it was determined that there is a statistically significant 

difference between the two samples, in terms of deviation from the mean, for those 

outcome variables. Therefore it can be concluded that there is a statistically significant 

difference between the two samples in terms of both accuracy and precision. Future studies 

will have to determine if this difference can be attributed to the manufacturing processes 

in general, or if there is a difference among manufacturers, but a difference between these 

two samples was noted nonetheless. These differences are clinically significant for two 

main reasons. Firstly, a clinician using the MIM manufactured GAC OmniArch would 

have to use an 0.021in × 0.025in archwire to be able to achieve the same deviation angle 

as an 0.019in × 0.025in archwire in the CNC Milling AVEX OPAL bracket sample, within 

a degree. And secondly, because there is overall lack of precision for the MIM sample, 

compared to the CNC milling sample, there is a clinical inability to predict how much 

torque is being expressed from bracket to bracket. Precision in the slot dimension, is nearly 

as important as accuracy to the clinician. It is essential for the clinician to know as much 

about the bracket slot dimensions, and arch-wire dimensions for that matter, as possible, 

because this allows the clinician to be able to account for discrepancies during treatment. 
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 The aim of this study was to investigate the bonding base surface morphology, alloy 

type, microstructure, and hardness of four types of orthodontic brackets produced 
by Metal Injection Molding technology (Discovery, Extremo, Freedom, and 
Topic). The bonding base morphology of the brackets was evaluated by scanning 
electron microscopy (SEM). Brackets from each manufacturer were embedded in 
epoxy resin, and after metallographic grinding, polishing and coating were 
analyzed by x-ray energy-dispersive spectroscopic (EDS) microanalysis to assess 
their elemental composition. Then, the brackets were subjected to metallographic 
etching to reveal their metallurgical structure. The same specimen surfaces were 
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repolished and used for Vickers microhardness measurements. The results were 
statistically analyzed with one-way analysis of variance and Student-Newman-
Keuls multiple comparison test at the 0.05 level of significance. The findings of 
SEM observations showed a great variability in the base morphology design among 
the brackets tested. The x-ray EDS analysis demonstrated that each bracket was 
manufactured from different ferrous or Co-based alloys. Metallographic analysis 
showed the presence of a large grain size for the Discovery, Freedom, and Topic 
brackets and a much finer grain size for the Extremo bracket. Vickers hardness 
showed great variations among the brackets (Topic: 287 +/- 16, Freedom: 248 +/- 
13, Discovery: 214 +/- 12, and Extremo: 154 +/- 9). The results of this study showed 
that there are significant differences in the base morphology, composition, 
microstructure, and microhardness among the brackets tested, which may anticipate 
significant clinical implications. 

 
 

 66 


	Analysis of Slot Height Accuracy and Precision of Stainless Steel Orthodontic Brackets Manufactured by Metal Injection Molding and Computer Numerical Control Milling Using Stereomicroscopy
	Recommended Citation

	ThesisSignedTitlePage
	ThesisFinalMAPDF

