
International Journal of Advanced Computer Technology
ISSN: 2319-7900 www.ijact.org Volume-X, Issue-VI, December 2020

17

PARALLELIZING TIME-SERIES SESSION DATA ANALYSIS

WITH A TYPE-ERASURE BASED DSEL

Ruo Ando, Center for Cybersecurity Research and Development, National Institute of Informatics, Japan; Youki Kadobayashi, Laboratory

for Cyber Resilience Information Science Division, Nara Institute of Science and Technology, Japan; Hiroki Takakura, Center for Cyberse-

curity Research and Development, National Institute of Informatics, Japan

ABSTRACT
The Science Information Network (SINET) is a Japanese

academic backbone network. SINET consists of more than

800 universities and research institutions. In the operation of

a huge academic backbone network, more flexible querying

technology is required to cope with massive time series ses-

sion data and analysis of sophisticated cyber-attacks. This pa-

per proposes a parallelizing DSEL (Domain Specific Embed-

ded Language) processing for huge time-series session data.

In our DESL, the function object is implemented by type eras-

ure for constructing internal DSL for processing time-series

data. Type erasure enables our parser to store function pointer

and function object into the same *void type with class tem-

plates. We apply to scatter/gather pattern for concurrent

DSEL parsing. Each thread parses DSEL to extract the tuple

timestamp, source IP, and destination IP in the gather phase.

In the scattering phase, we use a concurrent hash map to han-

dle multiple thread outputs with our DSEL.

In the experiment, we have measured the elapsed time in

parsing and inserting IPv4 address and timestamp data format

ranging from 1,000 to 50,000 lines with 24-row items. We

have also measured CPU idle time in processing 100,000,000

lines of session data with 5, 10 and 20 multiple threads. It has

been turned out that the proposed method can work in feasible

computing time in both cases.

INTRODUCTION
 The Science Information Network (SINET) is a Japanese

academic backbone network. SINET consists of more than

800 universities and research institutions. SINET serves vari-

ous research facilities in space science, seismology, high-en-

ergy physics, nuclear fusion, and computing science. Cur-

rently, SINET is being used by over 2 million users. Also,

SINET supports international research collaboration in the ac-

ademic backbone network. Since 2016, NII has been running

a service of NII-SOCS (NII Security Operation Collaboration

Services). Our NII-SOCS team has deployed a security mon-

itoring system consisting of PA-7080, Elasticsearch, Splunk,

and NVidia Multi-GPU server. We introduce our system and

some operational experience of handling huge session data

ranging from 400,000,000 to 800,000,000 per day in this talk.

During four years of 2016-2019, We have faced many chal-

lenges regarding the number of hosts, protocol proliferation,

probe placement technologies, and security incident response.

 The PA-7000 Series leverages a scalable architecture to

adopt the flexible and powerful processing the key functional

tasks of networking, security, and management. Session data

format is shown in Table 1. No.1 - 9 is concerned about

TCP/IP packet header. NO 19-23 is retrieved to generate sta-

tistics. Particularly, No.12 (application) and No.17 (category)

are inspected in detail. A firewall such as PaloAlto-7080 plays

an essential role in network security. Also, as cyber-attacks

become sophisticated, the language to achieve efficiency and

flexibility is required for complex intrusion detection tasks.

Table 1. Pa-7080 Data Description

No item name value

1 capture time 2018/01/01 00:00:00.000

2 generated time 2018/01/01 00:00:00.000

3 start time 2018/01/01 00:00:00.000

4 elapsed time 3

5 source IP xxx.xxx.xxx.xxx

6 source Port 64354

7 source country code JP

8 destination IP yyyy.yyyy.yyy.yyyy

9 destination port 2939

10 dest country code US

11 protocol TCP

12 application NA

13 subtype NA

14 action NA

15 session end reason NA

16 category NA

17 packets 0

18 packets sent 0

19 packets received 0

20 bytes 0

21 bytes sent 0

22 bytes received 0

23 device name NA

For example, the query such as capture_time = 2020/11/**

(No.1), source_IP=X.Y.0.0/16 (No.5), applica-

tion=web_browsing (NO12). is required to detect session data

under inspection. Unfortunately, although popular intrusion

detection systems have their policy language with compli-

cated logic requires architecture-dependent code. This paper

proposes a DSEL (Domain Specific Embedded Language) for

International Journal of Advanced Computer Technology
ISSN: 2319-7900 www.ijact.org Volume-X, Issue-VI, December 2020

18

network traffic processing that can be real-world time-series

session data on a huge academic backbone network.

OVERVIEW
 In our system, we adopt folk-join pattern to handle multiple

threads (flows). In folk-join parallelism, control flow folks

(divides) into multiple flows which join (combine) later.
After the folk, one flow is divided into two separate flows.

Each flow is independent. After the join, only one flow con-

tinues.

 In the aspect of reading chunks of time-series data, we ap-

ply the scatter-gather pattern. Specifically, the scat-

ter/gather pattern enables you to achieve parallelism in servic-

ing requests, enabling you to service them significantly faster

than you could if you had to service them sequentially. Scat-

ter/gather is quite useful when you have a large amount of

mostly independent processing that is needed to handle a

particular request.

 In Figure 1, we apply our DSL for each data of time-series

session data. Each thread parsing DSL stores key-value

<timestamp, address_pair> into concurrent hashmap in the

join phase. In other words, multiple flows of parsing DSL are

reduced to one flow which uses concurrent highly concurrent

hashmap as the lower side of Figure 1.

Figure 1. Folk-Join Pattern

Domain-Specific Language
 This paper copes with two sorts of computer language: A

domain-specific language (DSL) and a general-purpose lan-

guage (GPL). DSL is designed for specializing a particular

application domain, whereas GPL is designed for applicable

across domains. Nowadays, DSL has a variety ranging from

pervasively used languages such as HTML, XML, SQL, etc.

DSL is further classified by the kind of language including

domain-specific markup, domain-specific modelling and do-

main-specific programming languages. Also, DSL is

sometimes called mini-languages because a single application

uses it.

A. External and internal DSL
 There are two main categories of DSL: external and internal.

In external DSLs, a language is parsed independently of the

host GPL. CSS with regular expressions is a good example of

an external DSL. Internal DSLs are implemented with a par-

ticular form of API in a host GPL. A fluent interface [1] is

often adopted in internal DSL.Mocking libraries such as

JMock and Ruby on Rails are good examples of internal DSL.

There has been a long tradition of usage of internal DSL, par-

ticularly in the LISP community.

 Figure 2 shows the architecture of internal and external

DSLs. In the view of typical compiler architecture, two kinds

of DSL are common: parser, type checker and generator.

However, in external DSL, the language is parsed inde-

pendently of the host GPL and independent from the rest of

the program. On contrast, internal DSL is implemented inside

GPL. Giving up the flexibility of custom syntax of external

DSL, internal GPL takes advantages in the learning curve and

performance. Generally, internal DSL is easier to write be-

cause the language can be tailored to the idioms of the domain.

In some cases, the code generator part is omitted in internal

DSL.

Figure 2. Internal/External DSL

B. DSEL
 There is yet another representation of DSL - a domain-spe-

cific embedded language (DSEL). DSEL is almost the same

meaning of internal DSL. However, DESL is the language

which consists of many small internal DSLs. Strictly, DESL

is a concept where small internal DSL interoperate with one

another. Boost Spirit and YACC could be good examples of

DSEL. The Boost Spirit parser framework is designed for re-

cursive descent parser generation based on template metapro-

gramming techniques. One of Boost Spirit's core techniques

is expression templates, enabling users to approximate the

Syntax of ENBF (Extended Backus Naur Form) like grammar.

International Journal of Advanced Computer Technology
ISSN: 2319-7900 www.ijact.org Volume-X, Issue-VI, December 2020

19

In Boost Spirit, parser object is a backtracking LL(∞) parser

capable of parsing rather ambiguous grammars.

C. Higher-order programming
 Function objects. A function object, which is also called a

functor, allows the persistent object to operate functions like

variables during execution. To put it simply, the main purpose

of function objects is implementing callback functions.

Listing.1. Function Objects

1: bool is_substr_of(const string& sub, const string& all)

2: {

3: return all.find(sub) != string: npos;

4: }

5: int main()

6: {

7: function<bool (const string&, const string&)> f;

8: f = &is_substr_of;

9: cout << f("a", "abc") << endl;

10: }

 At line 1-4 in Listing 1, the function object of is_substr_of()

is defined. At line 7-8, the function object is generated and

pointed to the variable f.

 Binding Functions. Function objects become more effec-

tive with binding functions. To name a few, binding functions

are lambda expressions, Boost. Phoenix and Boost.Bind.

Compared with a straight function call, function objects have

two thrusts (advantages). At first, a function object can hold

state. Secondly, a function object is a type that results in it

being utilized as the template parameters.

Linear static analysis C++ Boost provides Boost: bind, which

is a generalization of the standard functions of std:bind1st and

std:bind2nd. Bind supports arbitrary function objects, point-

ers, and member function pointers. Bind can connect any ar-

guments or route input arguments in an arbitrary position.

Also, the purpose of Bind is not placing any requirements

with the function object. In particular, the result_type,

first_argument_type and second_argument_type standard

typedefs are not necessary in using Bind.

Lambda expression is an anonymous function utility provided

by C++, Java, and so on. Broadly, the anonymous function is

defined at the site where it is called. Lambda expression is

originated from Alonzo Church's λ-calculus. The concept of

anonymous comes from a function body but not bound to a

function name. It takes advantages in generating a function

definition at any point in the program's lexical scope, where

you would expect to pass a function object.

Proposal method

 Our DSEL requires the polymorphism corresponding to the

data format of items are shown in TABLE I. For example, our

parser needs to switch template functions by formats such as

X.X.X.X (IP address) and YYYY-MM-DD (timestamp). In

this case, function templates are not always the best way to

handle polymorphism. Instead, we apply type erasure to han-

dle several callback functions for each data items (address,

timestamp, application, and so on).

A. Type erasure
 Type erasure is a technique for removing explicit type an-

notations from a program in the load-time process. It is exe-

cuted in compile-time (before run-time). Instead of type-pass-

ing semantics, type erasure adopts operational semantics

which does not require programs accompany by types. In the

view of the abstraction principle, type erasure ensures that the

run-time program execution is independent of type infor-

mation.

Figure 3. Proposal Method Using Type Erasure

Listing.2. Type Erasure

1: union any_pointer {

2: void (*func_ptr)();

3: void* obj_ptr;

4: };

5: template <class Func, class R>

6: struct function_ptr_manager {

7: static R invoke(any_pointer function_ptr)

8: {}

9:};

10:

11: template <class Func, class R>

12: struct function_obj_manager {

13: static R invoke(any_pointer func_obj)

14: {}

15: };

 Figure 3 depicts our method using type erasure. In the up-

per-left side of Figure 3, function objects (including ac-

tion_ipaddr) are stored with type erasure. Then, our program

selects an appropriate function object by adopting tag

International Journal of Advanced Computer Technology
ISSN: 2319-7900 www.ijact.org Volume-X, Issue-VI, December 2020

20

dispatch. Further, tag dispatch is based on SFINAE(Substitu-

tion Failure Is Not an Error). SFINAE is the technique to

avoid the compilation abort even if the substitution of the de-

duced type arguments in the template’s argument list or func-

tion parameter list causes an error. Listing 2 shows the exam-

ple of type erasure. Types of a function pointer and function

object are erased and store in *void of the union at line 1-4.

B. Choice of parallelism
 Generally, parallelism is divided into two categories: data

parallelism and task parallelism. Data parallelism is more

popular for scalable parallelism. Broadly, data parallelism is

a design pattern that scales as the data set grows, broadly, as

the problem size grows. Typically, the data is split into chunks

and each chunk processed with a separate (and independent)

task. In some cases, the splitting is recursive; in other cases,

it is recursive. In the view of mechanisms which enables par-

allel computation, the two most important mechanisms are

thread parallelism and vector parallelism:

 Thread parallelism: Thread parallelism adopts a separate

data flow of each worker. Thread parallelism also supports

functional decomposition.

 Vector parallelism: A mechanism for implementing par-

allelism directly on the hardware using the same data flow of

control on multiple data chunks. Usually, vector parallelism

supports regular parallelism. Vector parallelism also can be

used for coping with irregular parallelism with some limita-

tions.

 In our system, thread parallelism is adopted. Another set of

design patterns we applied is map and folk-join.

 The map pattern, which is also called embarrassing paral-

lelism, divides data into lots of uniform parts and represents a

regular parallelization. The fork-join pattern adopts recursion

for subdividing data into several chunks for both regular and

irregular parallelization. Both patterns are used to achieve

scalability of parallelism.

C. Scatter/gather
 As we discussed before, we apply a scatter/gather pattern.

We use Pthreads for reading chunks and writing a truncated

line of session data. In scatter phase, we adopt Intel TBB's

hashmap, which is a highly concurrent container. In the

gather phase, multiple Pthreads runs in task decomposition.

 Task decomposition: If we want to transform code into a

concurrent version, there are two ways. First one is data de-

composition, in which the program cope with a large collec-

tion of data and can compute every chunk of the data inde-

pendently. The second one is task decomposition, in which

the process is partitioned into a set of independent tasks that

threads can execute in any order. Data decomposition has

some drawbacks. For example, the size of split session data

files varies according to the situation in which the data is re-

trieved.

 More specifically, the master thread traverses session data

file directory and enqueue the file name. When the queue is

full, the master thread waits until the worker thread pro-

cessing packets consumes a file name and removes it from the

queue.

 Highly concurrent hashmap: The interval length of ag-

gregation of our system is millisecond. Approximately, the

granularity of histogram Ming is around 86,000,000 (60 * 60

* 24 * 1000 = 86,400,000). It is difficult to evade lock con-

tention to store 86,000,000 key-value into a hash map parallel

from our experience. We give up using a concurrent hash map

which is affected by lock contention. Instead, key-value can

be represented by using the defining namespace such as

X1<timestamp>, $X1<count> and X2<timestamp> and

X2<bytes>. Containers provided by Intel TBB offer a much

higher level of concurrency.

 Intel TBB: We use Intel Threading Building Blocks (TBB)

for scatter/gather pattern. TBB is designed on a tasking model

for providing features of parallel patterns (map and folk-join)

and a collection of thread-safe data structures such as concur-

rent hashmap. The TBB is implemented to avoid global locks.

For example, there is no global task queue and memory allo-

cator, causing locks contention.

The TBB implementation generally evades global lock con-

tention in its implementation. In particular, there is no global

task queue, and the memory allocator is lock-free. Listing 3

shows the code for inserting key-value into a concurrent

hashmap.

Listing.3. Inserting key-value into hashmap

1: iTbb_Map_map::accessor t;

2: TbbVec_Boost_Map.insert(t, timestamp_tmp);

3: t->second = addrString3;

 Generally, high concurrent containers (including hashmap)

are more expensive than STL containers. Highly concurrent

containers have more overheads and take longer time than

STL containers. Therefore, highly concurrent containers are

recommended to speed up from the additional concurrency,

which can outperform their slower sequential performance.

B. Parsing expression grammar
 Parsing Expression Grammars (PEG) [2] is a derivative of

the Extended Backus-Naur Form (EBNF) [3]. PEG is imple-

mented to cope with a decent recursive parser. In other words,

a PEG can be interpreted in a recursive-descent parser’s man-

ner like EBNF in a more direct manner. PEG is designed to

describe a formal language representing a set of rules applied

for parsing and recognizing strings and tokens. Another ad-

vantage of PEG over EBNF is that it performs with an exact

International Journal of Advanced Computer Technology
ISSN: 2319-7900 www.ijact.org Volume-X, Issue-VI, December 2020

21

interpretation. In each PEG grammar, only one valid parse

tree is determined.

Listing.4. Paring Expression Grammar

1: definition(const AddrParse& self)

2: {

3: ipaddr = (int_p >> '.' >> int_p >> '.' >> int_p >> '.' >> int_p)

[Action_ipaddr()];

4:

5: timestamp = (int_p >> '-' >> int_p >> '-' >> int_p >> 'T' >>

int_p >> ':' >> int_p >> ':' >> int_p >> 'Z')

6: [Action_timestamp()];

7

8: r = timestamp | ipaddr;

9: }

 Listing 4 shows the example of PEG of Boost Spirit. At line

3, the program defines the format of an IP address (X.X.X.X).

The timestamp format (YYYY-MM-DDThh:mm: ss) is de-

fined at line 5-6.

EXPERIMENTAL RESULT
 In experiment, we use workstation with Intel(R) Xeon(R)

CPU E5-2620 v4 (2.10GHz) and 251G RAM. Figure 1 de-

picts the elapsed time in parsing session data log. The X-axis

is the number of lines of session data log file. Y-axis is the

elapsed time. The parsing log file's elapsed time increases lin-

early corresponding to the file size except for some spikes

such as around 45,000. Figure 2 depicts the elapsed time in

inserting key-value pair data into multi-index. The X-axis is

the number of lines of session data log file. Y-axis is the

elapsed time.

Figure 3. Elapsed Time in Parsing Session Log File

Results in Figure 3 and 4 have been obtained in the same ex-

ecution of our parse. Also, the elapsed time of parsing log file

increases linearly corresponding to the file size. It has been

turned out that the proposed method can work in feasible com-

puting time. We have also measured CPU idle time with mul-

tiple threads parsing DSEL. Table II shows the comparison of

CPU idle time is running 5, 10 and 20 threads. It has become

clear that we can speed up by increasing threads from 5 to 10.

However, there is no difference between 10 and 20 threads in

the measurement of CPU idle time. Figure 6,7 and 8 are time-

series data of CPU idle time with multiple threads 5, 10 and

20. The X-axis is second. Y-axis is CPU idle time. In three

figures, we have observed two plateaus. The first plateau fin-

ishes around 4800 (5 threads), 2800 (10 threads) and 1800

(20 threads).

Figure 4. Elapsed Time in Inserting Key-Value into Multi-Index

Figure 5. CPU idle time with 5 threads parsing DSEL.

Figure 6. CPU idle time with 10 threads parsing DSEL.

Figure 7. CPU idle time with 20 threads parsing DSEL

International Journal of Advanced Computer Technology
ISSN: 2319-7900 www.ijact.org Volume-X, Issue-VI, December 2020

22

 It is reasonable in the view of the number of multiple

threads. However, the length of the second plateau differs

much in three cases. The third case of 20 threads shown in

Figure 8 has the longest plateau ranging from about 2000 to

4000. As a result, the third case is the worst in the view of

effective resource utilization. We can conclude that the sec-

ond case with 10 threads shown in Figure 7 is the best config-

uration.

RELATED WORK
A. Metaprogramming
Various approaches of metaprogramming [4] have been pro-

posed to cope with the embedding of DSLs. One of these ap-

proaches is code generation, where code is converted to AST

representation for processing the embedded DSL program at

compile-time. The multi-state programming approach [5] is

proposed to interpret a program in several multiple phases. In

[5], the compiler operates at run-time, but at a different phase

than the actual processing block statements. Another distin-

guished research about applying metaprogramming for DSL

is proposed by Seefried et al. [6]. In [6], Template Haskell [7]

is used to implement PanTHeon and Pan [8].

B. Functor
One of the concepts of functor [9] [10] [11] is originated from

the module systems of SML [10] and OCaml [11]. By using

functor, [10] and [11] can abstract over required statically

type-checked manner. Functor still imposes severe re-

strictions on module systems in the case of structuring com-

ponents. Accordingly, a functor is used with function-binding

utilities such as Lambda expression and Boost. Bind.

C. Pattern matching
 Various techniques of pattern matching in object-oriented

programming have been proposed to message exchange in

distributed systems [13], semi-structured data [14], and UI

event handling [15]. Moreau, Ringeissen and Vittek [16] pro-

pose using pattern matching code into existing languages,

without any requirement extensions. For Java, Liu and Myers

[17] add a pattern matching construct using a backward exe-

cution mode. An alternative technique of multi-methods [18]

is proposed. In [18], pattern matching is unified with method

dispatch. Also, [19] [20] extends multi-methods to predicate-

dispatch. In [19] [20], functional programming languages are

proposed to convert from one data type to another in pattern

matching.

D. Parser expression grammar
 Parser expression grammar is inspired by Birman’s

TS/TDPL and GTS/GTDPL systems [23] [24] [25]. Adams

[26] adopts TDPL in a modular language prototyping frame-

work. Also, various practical top-down parsers such as

ANTLR [27], PARSEC combinator library for Haskell [28]

are available. These top-down parsers provide backtracking

capabilities that conform to the model in practice.

E. Time-series log analysis
 Another important topic of time series analysis is out-

lier/anomaly detection. In [29], a data structure called k-ary

sketch is proposed for efficient utilization of memory. Also,

k-ary sketch enables a constant, per-period update and recon-

struction cost. Popular algorithms of anomaly detection of

temporal data are ARIMA, HMM and SVM. Pandu [30] et al.

proposes a sequence-based analysis using SVM and HVM for

anomaly detection of time-sequence of instrumentation data

of VMM (virtual machine monitor).

F. DSL
 Configurable language for network traffic analysis and in-

trusion detection is a promising application of DSL. PADS

[31] is a declarative data description language for describing

both the physical layout and semantic properties of ad hoc

data traffic. As an extension of PADS, Fisher [32] proposes

an automated inference algorithm of ad hoc data source struc-

ture and a format specification in the PADS. Chimera [33]

provides a declarative query language for intrusion detection

systems with a platform-independent SQL syntax. SQL [34]

is a stream-based query system for incorporating expert

knowledge to perform timely anomaly detection in large scale

traffic data.

G. DSL for concurrency
 There have been many research efforts on DSL for concur-

rent computing. DiLorenzo proposes Transactional forest for

concurrent file stores using serializable transactions[37].

Chiw proposes Diderot, a parallel domain-specific language

for biomedical image analysis and visualization[38].

 Anderson [38] presents Parallel Accelerator, a library and

compiler for high-performance scientific computing in Julia.

Waltz and Pollack [40] present description research in devel-

oping a natural language processing system with modular

knowledge sources but strongly interactive processing.

CONCLUSION
 As attacks are increasing in sophistication, analytics should

also be sophisticated that detect them. Network traffic, in gen-

eral, has become more invisible. To name a few, major cloud

vendors such as Cloudflare recently deploy DNS over

TLS/HTTPS. Also, with the spread of TLS 1.3, the middlebox

appliances become less effective. Consequently, current Bot-

net running over the cloud platform is harder and harder to

detect and analyze.

In this paper, the parallelizing DSEL (Domain Specific Em-

bedded Language) processing for huge time-series session

data has been proposed. In our DESL, the function object is

implemented by type erasure for constructing internal DSL

for processing time-series data. Type erasure enables our

International Journal of Advanced Computer Technology
ISSN: 2319-7900 www.ijact.org Volume-X, Issue-VI, December 2020

23

parser to store function pointer and function object into the

same *void type with class templates.

 Also, as the Internet traffic keeps increasing rapidly, we

should cope with hundreds of gigabytes session data ranging

from 500 to 1000 million lines. To cope with this challenge,

we apply a scatter/gather pattern for concurrent DSEL parsing.

Each thread parses DSEL to extract the tuple timestamp,

source IP, and destination IP in the gather phase. In the scat-

tering phase, we use a concurrent hash map to handle multiple

thread outputs with our DSEL.

 In the experiment, we have measured the elapsed time in

parsing and inserting IPv4 address and timestamp data format

ranging from 1,000 to 50,000 lines with 24-row items. We

have also measured CPU idle time in processing 100,000,000

lines of session data with 5, 10 and 20 multiple threads. It has

been turned out that the proposed method can work in feasible

computing time in both cases.

 In the current situation, declarative languages maintain as

much expressive power as possible while not imposing the

significantly impacting intrusion detection systems' perfor-

mance. Also, the more flexible framework is necessary for

providing logical construction of the expression of sophisti-

cated attacks.

REFERENCES
[1]. I. Brcic: "Ideally Fast" Decimal Counters with Bista-

bles. IEEE Trans. Electron. Comput. 14(5): 733-737

(1965)

[2]. Bryan Ford: Parsing Expression Grammars: A recogni-

tion-based Syntactic Foundation,

http://pdos.csail.mit.edu/~baford/packrat/popl04/

[3]. Richard E. Pattis: EBNF: A Notation to Describe Syn-

tax, http://www.cs.cmu.edu/~pattis/misc/ebnf.pdf

[4]. K. Czarnecki, J. T. O’Donnell, J. Striegnitz, and W.

Taha. DSL implementation in MetaOCaml, Template

Haskell, and C++. In Domain-Specific Program Gener-

ation, volume 3016 of LNCS, pages 51-72. Springer,

2003.

[5]. W. Taha. A gentle introduction to multi-stage program-

ming. In Domain-Specific Program Generation,

Springer LNCS 3016, pages 30-50, 2003.

[6]. S. Seefried, M. M. T. Chakravarty, and G. Keller. Opti-

mising Embedded DSLs using Template Haskell. G.

Karsai and E. Visser, editors, GPCE, volume 3286 of

Lecture Notes in Computer Science, pages 186-205.

Springer, 2004.

[7]. T. Sheard and S. Peyton Jones. Template metaprogram-

ming for Haskell. In M. M. T. Chakravarty, editor,

ACM SIGPLAN Haskell Workshop 02, pages 1-16.

ACM Press, Oct. 2002.

[8]. C. Elliott. Functional images. In the Fun of Program-

ming, “Cornerstones of Computing” series. Palgrave,

Mar. 2003.

[9]. D. MacQueen, “Modules for Standard ML”, in Proceed-

ings of the 1984 ACM Symposium on Lisp and

Functional Programming, Papers Presented at the Sym-

posium, August 1984, pages 198-207, New York, Au-

gust 1984. Association for Computing Machinery.

[10]. R. Harper and M. Lillibridge, “A Type-Theoretic Ap-

proach to Higher-Order Modules with Sharing”, In Pro-

ceedings of 21st ACM Symposium on Principles of Pro-

gramming Languages, January 1994.

[11]. X. Leroy. Manifest Types, Modules and Separate Com-

pilation. In Proceedings of 21st ACM Symposium on

Principles of Programming Languages, pages 109-122,

January 1994.

[12]. K. Fisher and J. H. Reppy. “The Design of a Class

Mechanism for Moby”, In proc of SIGPLAN Confer-

ence on Programming Language Design and Implemen-

tation, pages 37-49, 1999.

[13]. Lee, K., LaMarca, A., Chambers, C.: HydroJ: Object-

oriented Pattern Matching for Evolvable Distributed

Systems. In: Proc. of Object-Oriented Programming

Systems and Languages (OOPSLA). (2003)

[14]. Gapeyev, V., Pierce, B.C.: Regular Object Types. In:

Proc. of European Conference on Object-oriented Pro-

gramming (ECOOP). (2003)

[15]. Chin, B., Millstein, T.: Responders, “Language Support

for Interactive Applications”, In Proc of European Con-

ference on Object-Oriented Programming (ECOOP).

(2006)

[16]. Moreau, P.E., Ringeissen, C., Vittek, M.: A Pattern

Matching Compiler for Multiple Target Languages. In:

In Proc. of Compiler Construction (CC), volume 2622

of LNCS. (2003) 61-76

[17]. Liu, J., Myers, A.C.”, JMatch: Iterable Abstract Pattern

Matching for Java”, In proceedings of the 5th Interna-

tional Symposium on Practical Aspects of Declarative

Languages (PADL). (2003) 110-127

[18]. Clifton, C., Millstein, T., Leavens, G.T., Chambers, C.,

“Multi Java: Design Rationale, Compiler Implementa-

tion, and Applications” in Prof of ACM Transactions on

Programming Languages and Systems 28(3) (May

2006) 517-575.

[19]. Ernst, M., Kaplan, C., Chambers, C.: Predicate dis-

patching: a unified theory of dispatch. In Proceedings of

Euro-pean Conference on Object-Oriented Program-

ming (ECOOP). Volume 1445 of Springer LNCS.

(1998) 186-211

[20]. Millstein, T.: Practical Predicate Dispatch. In: Proc. of

Object-Oriented Programming Systems and Languages

(OOPSLA). (2004)’

[21]. Wadler, P., “Views: A way for pattern matching to co-

habit with data abstraction”, In Proceedings of Princi-

ples of Programming Languages (POPL). (1987)

[22]. Okasaki, C.: Views for Standard ML. In: In SIGPLAN

Workshop on ML, pages 14-23. (1998)

[23]. Alfred V. Aho and Jeffrey D. Ullman. The Theory of

Parsing, Translation and Compiling - Vol. I: Parsing.

Prentice-Hall, Englewood Cliffs, N.J., 1972.

International Journal of Advanced Computer Technology
ISSN: 2319-7900 www.ijact.org Volume-X, Issue-VI, December 2020

24

[24]. Alexander Birman. The TMG Recognition Schema.

PhD thesis, Princeton University, February 1970.

[25]. Alexander Birman and Jeffrey D. Ullman. Parsing algo-

rithms with backtrack. Information and Control,

23(1):1-34, August 1973.

[26]. Stephen Robert Adams. Modular Grammars for Pro-

gramming Language Prototyping. PhD thesis, Univer-

sity of Southampton, 1991.

[27]. Terence J. Parr and Russell W. Quong. ANTLR: A

Predicated LL(k) parser generator. Software Practice

and Experience, 25(7):789-810, 1995

[28]. Daan Leijen. Parsec, a fast combinator parser.

http://www.cs.uu.nl/?daan.

[29]. Balachander Krishnamurthy, Subhabrata Sen, Yin

Zhang, Yan Chen: Sketch-based change detection:

methods, evaluation, and applications. Internet Meas-

urement Conference 2003: 234-247

[30]. Ady Wahyudi Paundu, Takeshi Okuda, Youki

Kadobayashi, Suguru Yamaguchi: Sequence-Based

Analysis of Static Probe Instrumentation Data for a

VMM-Based Anomaly Detection System. CSCloud

2016: 84-94

[31]. Kathleen Fisher, Robert Gruber: PADS: a domain-spe-

cific language for processing ad hoc data. PLDI, 2005:

295-304.

[32]. Kathleen Fisher, David Walker, Kenny Qili Zhu, Peter

White: From dirt to shovels: fully automatic tool gener-

ation from ad hoc data. POPL 2008: 421-434

[33]. Kevin Borders, Jonathan Springer, Matthew Burnside:

Chimera: A Declarative Language for Streaming Net-

work Traffic Analysis. USENIX Security Symposium

2012: 365-379

[34]. Peng Gao, Xusheng Xiao, Ding Li, Zhichun Li, Kang-

kook Jee, Zhenyu Wu, Chung Hwan Kim, Sanjeev R.

Kulkarni, Prateek Mittal: SAQL: A Stream-based Query

System for Real-Time Abnormal System Behavior De-

tection. USENIX Security Symposium, 2018: 639-656.

[35]. Vern Paxson: Bro: a system for detecting network in-

truders in real-time. Comput. Networks 31(23-24):

2435-2463 (1999)

[36]. Martin Roesch: Snort: Lightweight Intrusion Detection

for Networks. LISA 1999: 229-238

[37]. Jonathan DiLorenzo, Katie Mancini, Kathleen Fisher,

Nate Foster: TxForest: A DSL for Concurrent File

stores. APLAS 2019: 332-354

[38]. Charisee Chiw, Gordon L. Kindlmann, John H. Reppy,

Lamont Samuels, Nick Seltzer: Diderot: a parallel DSL

for image analysis and visualization. PLDI 2012: 111-

120

[39]. Todd A. Anderson, Hai Liu, Lindsey Kuper, Ehsan

Totoni, Jan Vitek, Tatiana Shpeisman: Parallelizing

Julia with a Non-Invasive DSL. ECOOP 2017: 4:1-4:29

[40]. Waltz, D.; Pollack, J. (1985). "Massively parallel pars-

ing: A strongly interactive model of natural language in-

terpretation". Cognitive Science. 9: 51–74.

BIOGRAPHIES
 Ruo Ando has received PhD from Keio University in

2006. He is now an associate professor by special appoint-

ment of National Institute of Informatics since 2016. Before

joining NII, he worked as a senior security researcher of the

National Institute of Information and Communication Tech-

nology since 2006. He received the Outstanding Leadership

Award in the 8th IEEE International Conference on Depend-

able, Autonomic and Secure Computing (DASC-09) at China

in 2009. He is the member of Trusted Computing Group JRF

(Japan Regional Forum) in 2008-2015. He served as a re-

viewer of Springer Journal PPNA, Willey Journal of Security

and Communications Networks and IEEE transactions of In-

formation Forensics and Security. He worked in project Next-

Generation Security Info-Security R & D METI (FY2008-

10). He was engaged in “Unknown malware detection using

incremental malware detection” MEXT FY(2012-2015). He

served as a reviewer of Springer Journal, Willey Journal of

Security and Communications Networks and IEEE transac-

tions of Information Forensics and Security.

Youki Kadobayashi works for NICT Japan as an in-

vited expert, where his role as the Rapporteur of ITU-T Study

Group 17 Question 4 (Cybersecurity) has been supported

since 2008. At SG17, he has been working with other experts

to gather insights on cybersecurity information exchange for

more than five years – results of the study activities have been

made available under ITU-T Recommendation series of

X.1500 known as CYBEX. He also conducts lectures and

hands-on exercises on cybersecurity at the Nara Institute of

Science and Technology, Japan, for which he has been work-

ing as an Associate Professor since 2000. Since last year, he

has participated in several international research collaboration

programs; he has been coordinating the FP7 NECOMA pro-

ject, which has been jointly funded by the European Commis-

sion and MIC of Japan. At the NECOMA project, he lever-

ages big data, SDN, and cloud computing technologies for

improving cyber-resilience. He is deeply committed to the

Asia-Pacific region; he has delivered talks on cybersecurity

standards at past Asia-Pacific Tele community Cybersecurity

Forum meetings. He also delivers guest lectures on cyberse-

curity and cloud computing security at the Unitec Institute of

Technology in New Zealand as an Adjunct Professor.

Hiroki Takakura is Director of Cybersecurity Research

and Development, National Institute of Informatics. In that

capacity, he takes the direction on its cybersecurity research.

He has also supervised NII Security Operation Collaboration

Services (NII-SOCS) to detect, analyze and pursue cyberat-

tacks against 100 national universities since 2017. With his

experiences and knowledge on cybersecurity, he is one mem-

ber of the Ministry of Health, Labor and Welfare advisory

group to support the reform in data health/examination and

payment agency. He makes an effort to realize robust and re-

silient digital healthcare services. He received his B.S. and

International Journal of Advanced Computer Technology
ISSN: 2319-7900 www.ijact.org Volume-X, Issue-VI, December 2020

25

M.S degrees from Kyushu University in1990 and 1992 re-

spectively. In 1995, he received Dr Eng. degree from Kyoto

University in 1995. After research activities at the University

of Illinois at Urbana-Champaign (Visiting Scholar), Nara In-

stitute of Science and Technology (Research Associate),

Kyoto University (Lecturer and Associate Professor) and Na-

goya University (Professor), he is currently a professor at Na-

tional Institute of Informatics since 2015. Since 2016 he has

become a director of the Center for Cybersecurity Research

and Development, NII.

