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ABSTRACT  
The Science Information Network (SINET) is a Japanese 

academic backbone network.  SINET consists of more than 

800 universities and research institutions.  In the operation of 

a huge academic backbone network, more flexible querying 

technology is required to cope with massive time series ses-

sion data and analysis of sophisticated cyber-attacks. This pa-

per proposes a parallelizing DSEL (Domain Specific Embed-

ded Language) processing for huge time-series session data. 

In our DESL, the function object is implemented by type eras-

ure for constructing internal DSL for processing time-series 

data. Type erasure enables our parser to store function pointer 

and function object into the same *void type with class tem-

plates. We apply to scatter/gather pattern for concurrent 

DSEL parsing. Each thread parses DSEL to extract the tuple 

timestamp, source IP, and destination IP in the gather phase. 

In the scattering phase, we use a concurrent hash map to han-

dle multiple thread outputs with our DSEL. 

In the experiment, we have measured the elapsed time in 

parsing and inserting IPv4 address and timestamp data format 

ranging from 1,000 to 50,000 lines with 24-row items. We 

have also measured CPU idle time in processing 100,000,000 

lines of session data with 5, 10 and 20 multiple threads. It has 

been turned out that the proposed method can work in feasible 

computing time in both cases. 

 

INTRODUCTION 
 The Science Information Network (SINET) is a Japanese 

academic backbone network.  SINET consists of more than 

800 universities and research institutions. SINET serves vari-

ous research facilities in space science, seismology, high-en-

ergy physics, nuclear fusion, and computing science. Cur-

rently, SINET is being used by over 2 million users. Also, 

SINET supports international research collaboration in the ac-

ademic backbone network. Since 2016, NII has been running 

a service of NII-SOCS (NII Security Operation Collaboration 

Services). Our NII-SOCS team has deployed a security mon-

itoring system consisting of PA-7080, Elasticsearch, Splunk, 

and NVidia Multi-GPU server. We introduce our system and 

some operational experience of handling huge session data 

ranging from 400,000,000 to 800,000,000 per day in this talk. 

During four years of 2016-2019, We have faced many chal-

lenges regarding the number of hosts, protocol proliferation, 

probe placement technologies, and security incident response. 

 

 The PA-7000 Series leverages a scalable architecture to 

adopt the flexible and powerful processing the key functional 

tasks of networking, security, and management. Session data 

format is shown in Table 1. No.1 - 9 is concerned about 

TCP/IP packet header. NO 19-23 is retrieved to generate sta-

tistics. Particularly, No.12 (application) and No.17 (category) 

are inspected in detail. A firewall such as PaloAlto-7080 plays 

an essential role in network security. Also, as cyber-attacks 

become sophisticated, the language to achieve efficiency and 

flexibility is required for complex intrusion detection tasks. 

 
Table 1. Pa-7080 Data Description 

No item name  value 

1 capture time 2018/01/01 00:00:00.000 

2 generated time  2018/01/01 00:00:00.000 

3 start time 2018/01/01 00:00:00.000 

4 elapsed time 3 

5 source IP xxx.xxx.xxx.xxx 

6 source Port 64354 

7 source country code JP 

8 destination IP yyyy.yyyy.yyy.yyyy 

9 destination port 2939 

10 dest country code US 

11 protocol TCP 

12 application  NA 

13 subtype NA 

14 action  NA 

15 session end reason NA 

16 category NA 

17 packets 0 

18 packets sent 0 

19 packets received 0 

20 bytes 0 

21 bytes sent  0 

22 bytes received 0 

23 device name NA 

  

For example, the query such as capture_time = 2020/11/** 

(No.1), source_IP=X.Y.0.0/16 (No.5), applica-

tion=web_browsing (NO12). is required to detect session data 

under inspection.  Unfortunately, although popular intrusion 

detection systems have their policy language with compli-

cated logic requires architecture-dependent code. This paper 

proposes a DSEL (Domain Specific Embedded Language) for 
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network traffic processing that can be real-world time-series 

session data on a huge academic backbone network. 

OVERVIEW 
 In our system, we adopt folk-join pattern to handle multiple 

threads (flows). In folk-join parallelism, control flow folks 

(divides) into multiple flows which join (combine) later. 
After the folk, one flow is divided into two separate flows. 

Each flow is independent. After the join, only one flow con-

tinues. 

 

 In the aspect of reading chunks of time-series data, we ap-

ply the scatter-gather pattern.  Specifically, the scat-

ter/gather pattern enables you to achieve parallelism in servic-

ing requests, enabling you to service them significantly faster 

than you could if you had to service them sequentially. Scat-

ter/gather is quite useful when you have a large amount of 

mostly independent processing that is needed to handle a 

particular request.  

 

 In Figure 1, we apply our DSL for each data of time-series 

session data.  Each thread parsing DSL stores key-value 

<timestamp, address_pair> into concurrent hashmap in the 

join phase. In other words, multiple flows of parsing DSL are 

reduced to one flow which uses concurrent highly concurrent 

hashmap as the lower side of Figure 1. 

 
Figure 1. Folk-Join Pattern 

Domain-Specific Language 
 This paper copes with two sorts of computer language: A 

domain-specific language (DSL) and a general-purpose lan-

guage (GPL). DSL is designed for specializing a particular 

application domain, whereas GPL is designed for applicable 

across domains.  Nowadays, DSL has a variety ranging from 

pervasively used languages such as HTML, XML, SQL, etc. 

DSL is further classified by the kind of language including 

domain-specific markup, domain-specific modelling and do-

main-specific programming languages. Also, DSL is 

sometimes called mini-languages because a single application 

uses it. 

 

A. External and internal DSL 
 There are two main categories of DSL: external and internal. 

In external DSLs, a language is parsed independently of the 

host GPL. CSS with regular expressions is a good example of 

an external DSL. Internal DSLs are implemented with a par-

ticular form of API in a host GPL. A fluent interface [1] is 

often adopted in internal DSL.Mocking libraries such as 

JMock and Ruby on Rails are good examples of internal DSL. 

There has been a long tradition of usage of internal DSL, par-

ticularly in the LISP community. 

 

 Figure 2 shows the architecture of internal and external 

DSLs. In the view of typical compiler architecture, two kinds 

of DSL are common: parser, type checker and generator. 

However, in external DSL, the language is parsed inde-

pendently of the host GPL and independent from the rest of 

the program. On contrast, internal DSL is implemented inside 

GPL. Giving up the flexibility of custom syntax of external 

DSL, internal GPL takes advantages in the learning curve and 

performance. Generally, internal DSL is easier to write be-

cause the language can be tailored to the idioms of the domain. 

In some cases, the code generator part is omitted in internal 

DSL. 

 

 
Figure 2. Internal/External DSL 

B. DSEL 
 There is yet another representation of DSL - a domain-spe-

cific embedded language (DSEL). DSEL is almost the same 

meaning of internal DSL. However, DESL is the language 

which consists of many small internal DSLs. Strictly, DESL 

is a concept where small internal DSL interoperate with one 

another.  Boost Spirit and YACC could be good examples of 

DSEL. The Boost Spirit parser framework is designed for re-

cursive descent parser generation based on template metapro-

gramming techniques. One of Boost Spirit's core techniques 

is expression templates, enabling users to approximate the 

Syntax of ENBF (Extended Backus Naur Form) like grammar. 
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In Boost Spirit, parser object is a backtracking LL(∞) parser 

capable of parsing rather ambiguous grammars. 

 

C. Higher-order programming 
 Function objects. A function object, which is also called a 

functor, allows the persistent object to operate functions like 

variables during execution. To put it simply, the main purpose 

of function objects is implementing callback functions. 

 

Listing.1. Function Objects 

1: bool is_substr_of( const string& sub, const string& all ) 

2: { 

3:   return all.find( sub ) != string: npos; 

4: } 

5: int main() 

6: { 

7:    function<bool (const string&, const string&)> f; 

8:    f = &is_substr_of; 

9:    cout << f( "a", "abc" )  << endl; 

10: } 

 

 At line 1-4 in Listing 1, the function object of  is_substr_of() 

is defined. At line 7-8, the function object is generated and 

pointed to the variable f. 

 Binding Functions. Function objects become more effec-

tive with binding functions. To name a few, binding functions 

are lambda expressions, Boost. Phoenix and Boost.Bind. 

Compared with a straight function call, function objects have 

two thrusts (advantages). At first, a function object can hold 

state. Secondly, a function object is a type that results in it 

being utilized as the template parameters. 

Linear static analysis C++ Boost provides Boost: bind, which 

is a generalization of the standard functions of std:bind1st and 

std:bind2nd. Bind supports arbitrary function objects, point-

ers, and member function pointers. Bind can connect any ar-

guments or route input arguments in an arbitrary position. 

Also, the purpose of Bind is not placing any requirements 

with the function object. In particular, the result_type, 

first_argument_type and second_argument_type standard 

typedefs are not necessary in using Bind. 

Lambda expression is an anonymous function utility provided 

by C++, Java, and so on. Broadly, the anonymous function is 

defined at the site where it is called. Lambda expression is 

originated from Alonzo Church's λ-calculus. The concept of 

anonymous comes from a function body but not bound to a 

function name. It takes advantages in generating a function 

definition at any point in the program's lexical scope, where 

you would expect to pass a function object. 

 

Proposal method 

 Our DSEL requires the polymorphism corresponding to the 

data format of items are shown in TABLE I. For example, our 

parser needs to switch template functions by formats such as 

X.X.X.X (IP address) and YYYY-MM-DD (timestamp). In 

this case, function templates are not always the best way to 

handle polymorphism. Instead, we apply type erasure to han-

dle several callback functions for each data items (address, 

timestamp, application, and so on). 

A. Type erasure 
 Type erasure is a technique for removing explicit type an-

notations from a program in the load-time process. It is exe-

cuted in compile-time (before run-time). Instead of type-pass-

ing semantics, type erasure adopts operational semantics 

which does not require programs accompany by types. In the 

view of the abstraction principle, type erasure ensures that the 

run-time program execution is independent of type infor-

mation.  

 
Figure 3. Proposal Method Using Type Erasure 

 

Listing.2. Type Erasure 

1: union any_pointer { 

2:  void (*func_ptr)();  

3:  void* obj_ptr;    

4: }; 

5: template <class Func, class R> 

6: struct function_ptr_manager { 

7:  static R invoke(any_pointer function_ptr) 

8:  {} 

9:}; 

10: 

11: template <class Func, class R> 

12: struct function_obj_manager { 

13:  static R invoke(any_pointer func_obj) 

14:  {} 

15: }; 

 

 Figure 3 depicts our method using type erasure. In the up-

per-left side of Figure 3, function objects (including ac-

tion_ipaddr) are stored with type erasure. Then, our program 

selects an appropriate function object by adopting tag 
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dispatch. Further, tag dispatch is based on SFINAE(Substitu-

tion Failure Is Not an Error). SFINAE  is the technique to 

avoid the compilation abort even if the substitution of the de-

duced type arguments in the template’s argument list or func-

tion parameter list causes an error. Listing 2 shows the exam-

ple of type erasure. Types of a function pointer and function 

object are erased and store in *void of the union at line 1-4. 

B. Choice of parallelism 
 Generally, parallelism is divided into two categories: data 

parallelism and task parallelism. Data parallelism is more 

popular for scalable parallelism. Broadly, data parallelism is 

a design pattern that scales as the data set grows, broadly, as 

the problem size grows. Typically, the data is split into chunks 

and each chunk processed with a separate (and independent) 

task.  In some cases, the splitting is recursive; in other cases, 

it is recursive. In the view of mechanisms which enables par-

allel computation, the two most important mechanisms are 

thread parallelism and vector parallelism: 

 

 Thread parallelism: Thread parallelism adopts a separate 

data flow of each worker. Thread parallelism also supports 

functional decomposition.  

 

 Vector parallelism: A mechanism for implementing par-

allelism directly on the hardware using the same data flow of 

control on multiple data chunks. Usually, vector parallelism 

supports regular parallelism. Vector parallelism also can be 

used for coping with irregular parallelism with some limita-

tions. 

 

 In our system, thread parallelism is adopted. Another set of 

design patterns we applied is map and folk-join. 

 

 The map pattern, which is also called embarrassing paral-

lelism, divides data into lots of uniform parts and represents a 

regular parallelization. The fork-join pattern adopts recursion 

for subdividing data into several chunks for both regular and 

irregular parallelization. Both patterns are used to achieve 

scalability of parallelism. 

 

C. Scatter/gather  
 As we discussed before, we apply a scatter/gather pattern. 

We use Pthreads for reading chunks and writing a truncated 

line of session data. In scatter phase, we adopt Intel TBB's 

hashmap, which is a highly concurrent container.  In the 

gather phase, multiple Pthreads runs in task decomposition. 

 

 Task decomposition: If we want to transform code into a 

concurrent version, there are two ways. First one is data de-

composition, in which the program cope with a large collec-

tion of data and can compute every chunk of the data inde-

pendently. The second one is task decomposition, in which 

the process is partitioned into a set of independent tasks that 

threads can execute in any order. Data decomposition has 

some drawbacks. For example, the size of split session data 

files varies according to the situation in which the data is re-

trieved. 

 More specifically, the master thread traverses session data 

file directory and enqueue the file name. When the queue is 

full, the master thread waits until the worker thread pro-

cessing packets consumes a file name and removes it from the 

queue. 

 

 Highly concurrent hashmap: The interval length of ag-

gregation of our system is millisecond. Approximately, the 

granularity of histogram Ming is around 86,000,000 (60 * 60 

* 24 * 1000 = 86,400,000). It is difficult to evade lock con-

tention to store 86,000,000 key-value into a hash map parallel 

from our experience. We give up using a concurrent hash map 

which is affected by lock contention. Instead, key-value can 

be represented by using the defining namespace such as 

X1<timestamp>, $X1<count> and X2<timestamp> and 

X2<bytes>. Containers provided by Intel TBB offer a much 

higher level of concurrency. 

 

 Intel TBB: We use Intel Threading Building Blocks (TBB) 

for scatter/gather pattern. TBB is designed on a tasking model 

for providing features of parallel patterns (map and folk-join) 

and a collection of thread-safe data structures such as concur-

rent hashmap. The TBB is implemented to avoid global locks. 

For example, there is no global task queue and memory allo-

cator, causing locks contention.  

 

The TBB implementation generally evades global lock con-

tention in its implementation. In particular, there is no global 

task queue, and the memory allocator is lock-free.  Listing 3 

shows the code for inserting key-value into a concurrent 

hashmap. 

Listing.3. Inserting key-value into hashmap 

1: iTbb_Map_map::accessor t; 

2: TbbVec_Boost_Map.insert(t, timestamp_tmp); 

3: t->second = addrString3; 

 Generally, high concurrent containers (including hashmap) 

are more expensive than STL containers. Highly concurrent 

containers have more overheads and take longer time than 

STL containers. Therefore, highly concurrent containers are 

recommended to speed up from the additional concurrency, 

which can outperform their slower sequential performance. 

B. Parsing expression grammar 
 Parsing Expression Grammars (PEG) [2] is a derivative of 

the Extended Backus-Naur Form (EBNF) [3]. PEG is imple-

mented to cope with a decent recursive parser. In other words, 

a PEG can be interpreted in a recursive-descent parser’s man-

ner like EBNF in a more direct manner. PEG is designed to 

describe a formal language representing a set of rules applied 

for parsing and recognizing strings and tokens. Another ad-

vantage of PEG over EBNF is that it performs with an exact 
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interpretation. In each PEG grammar, only one valid parse 

tree is determined. 

 

Listing.4. Paring Expression Grammar 

1: definition( const AddrParse& self ) 

2: { 

3: ipaddr = (int_p >> '.' >> int_p  >> '.' >> int_p >> '.' >> int_p) 

[Action_ipaddr()];  

4: 

5: timestamp = (int_p >> '-' >> int_p >> '-'  >> int_p >> 'T' >> 

int_p >> ':' >> int_p  >> ':' >> int_p >> 'Z') 

6: [Action_timestamp()]; 

7  

8: r = timestamp | ipaddr; 

9: } 

 

 Listing 4 shows the example of PEG of Boost Spirit. At line 

3, the program defines the format of an IP address (X.X.X.X). 

The timestamp format (YYYY-MM-DDThh:mm: ss) is de-

fined at line 5-6. 

EXPERIMENTAL RESULT 
 In experiment, we use workstation with Intel(R) Xeon(R) 

CPU E5-2620 v4 (2.10GHz) and 251G RAM. Figure 1 de-

picts the elapsed time in parsing session data log. The X-axis 

is the number of lines of session data log file. Y-axis is the 

elapsed time. The parsing log file's elapsed time increases lin-

early corresponding to the file size except for some spikes 

such as around 45,000. Figure 2 depicts the elapsed time in 

inserting key-value pair data into multi-index. The X-axis is 

the number of lines of session data log file. Y-axis is the 

elapsed time.  

 
Figure 3. Elapsed Time in Parsing Session Log File 

Results in Figure 3 and 4 have been obtained in the same ex-

ecution of our parse. Also, the elapsed time of parsing log file 

increases linearly corresponding to the file size. It has been 

turned out that the proposed method can work in feasible com-

puting time. We have also measured CPU idle time with mul-

tiple threads parsing DSEL. Table II shows the comparison of 

CPU idle time is running 5, 10 and 20 threads. It has become 

clear that we can speed up by increasing threads from 5 to 10. 

However, there is no difference between 10 and 20 threads in 

the measurement of CPU idle time. Figure 6,7 and 8 are time-

series data of CPU idle time with multiple threads 5, 10 and 

20. The X-axis is second. Y-axis is CPU idle time. In three 

figures, we have observed two plateaus. The first plateau fin-

ishes around 4800 (5 threads), 2800 (10 threads)  and 1800 

(20 threads). 

 
Figure 4. Elapsed Time in Inserting Key-Value into Multi-Index 

 

 
Figure 5. CPU idle time with 5 threads parsing DSEL. 

 
Figure 6. CPU idle time with 10 threads parsing DSEL. 

  
Figure 7. CPU idle time with 20 threads parsing DSEL 
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 It is reasonable in the view of the number of multiple 

threads. However, the length of the second plateau differs 

much in three cases. The third case of 20 threads shown in 

Figure 8 has the longest plateau ranging from about 2000 to 

4000. As a result, the third case is the worst in the view of 

effective resource utilization. We can conclude that the sec-

ond case with 10 threads shown in Figure 7 is the best config-

uration. 

 

RELATED WORK 
A. Metaprogramming 
Various approaches of metaprogramming [4] have been pro-

posed to cope with the embedding of DSLs. One of these ap-

proaches is code generation, where code is converted to AST 

representation for processing the embedded DSL program at 

compile-time. The multi-state programming approach [5] is 

proposed to interpret a program in several multiple phases. In 

[5], the compiler operates at run-time, but at a different phase 

than the actual processing block statements. Another distin-

guished research about applying metaprogramming for DSL 

is proposed by Seefried et al. [6].  In [6], Template Haskell [7] 

is used to implement PanTHeon and Pan [8]. 

B. Functor 
One of the concepts of functor [9] [10] [11] is originated from 

the module systems of SML [10] and OCaml [11]. By using 

functor, [10] and [11] can abstract over required statically 

type-checked manner. Functor still imposes severe re-

strictions on module systems in the case of structuring com-

ponents. Accordingly, a functor is used with function-binding 

utilities such as Lambda expression and Boost. Bind. 

 

C. Pattern matching 
 Various techniques of pattern matching in object-oriented 

programming have been proposed to message exchange in 

distributed systems [13], semi-structured data [14], and UI 

event handling [15]. Moreau, Ringeissen and Vittek [16] pro-

pose using pattern matching code into existing languages, 

without any requirement extensions. For Java, Liu and Myers 

[17] add a pattern matching construct using a backward exe-

cution mode. An alternative technique of multi-methods [18] 

is proposed. In [18], pattern matching is unified with method 

dispatch. Also, [19] [20] extends multi-methods to predicate-

dispatch. In [19] [20], functional programming languages are 

proposed to convert from one data type to another in pattern 

matching. 

 

D. Parser expression grammar 
 Parser expression grammar is inspired by Birman’s 

TS/TDPL and GTS/GTDPL systems [23] [24] [25].  Adams 

[26] adopts TDPL in a modular language prototyping frame-

work. Also, various practical top-down parsers such as 

ANTLR [27], PARSEC combinator library for Haskell [28] 

are available. These top-down parsers provide backtracking 

capabilities that conform to the model in practice. 

 

E. Time-series log analysis 
 Another important topic of time series analysis is out-

lier/anomaly detection. In [29], a data structure called k-ary 

sketch is proposed for efficient utilization of memory. Also, 

k-ary sketch enables a constant, per-period update and recon-

struction cost. Popular algorithms of anomaly detection of 

temporal data are ARIMA, HMM and SVM. Pandu [30] et al. 

proposes a sequence-based analysis using SVM and HVM for 

anomaly detection of time-sequence of instrumentation data 

of VMM (virtual machine monitor). 

 

F. DSL 
 Configurable language for network traffic analysis and in-

trusion detection is a promising application of DSL. PADS 

[31] is a declarative data description language for describing 

both the physical layout and semantic properties of ad hoc 

data traffic. As an extension of PADS, Fisher [32] proposes 

an automated inference algorithm of ad hoc data source struc-

ture and a format specification in the PADS. Chimera [33] 

provides a declarative query language for intrusion detection 

systems with a platform-independent SQL syntax. SQL [34] 

is a stream-based query system for incorporating expert 

knowledge to perform timely anomaly detection in large scale 

traffic data. 

 

G. DSL for concurrency 
 There have been many research efforts on DSL for concur-

rent computing. DiLorenzo proposes Transactional forest for 

concurrent file stores using serializable transactions[37]. 

Chiw proposes Diderot, a parallel domain-specific language 

for biomedical image analysis and visualization[38]. 

 Anderson [38] presents Parallel Accelerator, a library and 

compiler for high-performance scientific computing in Julia. 

Waltz and Pollack [40] present description research in devel-

oping a natural language processing system with modular 

knowledge sources but strongly interactive processing. 

 

CONCLUSION 
 As attacks are increasing in sophistication, analytics should 

also be sophisticated that detect them. Network traffic, in gen-

eral, has become more invisible. To name a few, major cloud 

vendors such as Cloudflare recently deploy DNS over 

TLS/HTTPS. Also, with the spread of TLS 1.3, the middlebox 

appliances become less effective. Consequently, current Bot-

net running over the cloud platform is harder and harder to 

detect and analyze.  

In this paper, the parallelizing DSEL (Domain Specific Em-

bedded Language) processing for huge time-series session 

data has been proposed. In our DESL, the function object is 

implemented by type erasure for constructing internal DSL 

for processing time-series data. Type erasure enables our 
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parser to store function pointer and function object into the 

same *void type with class templates.  

 Also, as the Internet traffic keeps increasing rapidly, we 

should cope with hundreds of gigabytes session data ranging 

from 500 to 1000 million lines. To cope with this challenge, 

we apply a scatter/gather pattern for concurrent DSEL parsing. 

Each thread parses DSEL to extract the tuple timestamp, 

source IP, and destination IP in the gather phase. In the scat-

tering phase, we use a concurrent hash map to handle multiple 

thread outputs with our DSEL. 

 In the experiment, we have measured the elapsed time in 

parsing and inserting IPv4 address and timestamp data format 

ranging from 1,000 to 50,000 lines with 24-row items. We 

have also measured CPU idle time in processing 100,000,000 

lines of session data with 5, 10 and 20 multiple threads. It has 

been turned out that the proposed method can work in feasible 

computing time in both cases. 

 In the current situation, declarative languages maintain as 

much expressive power as possible while not imposing the 

significantly impacting intrusion detection systems' perfor-

mance.  Also, the more flexible framework is necessary for 

providing logical construction of the expression of sophisti-

cated attacks. 
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