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Abstract 

To study the phylogeny and taxonomy of samples from complex environments 

Next-generation sequencing (NGS)-based 16S rRNA sequencing, which has been 

successfully used  jointly with the PCR amplification and NGS technology. First 

step for many downstream analyses is clustering 16S rRNA sequences into 

operational taxonomic units (OTUs). Heuristic clustering is one of the most 

widely employed approaches for generating OTUs in which one or more seed 

sequences to represent each cluster are selected. In this work we chose five 

random seeds for each cluster from a genes library, and we present a novel 

distance measure to cluster bacteria in the sample. Artificially created sets of 16S 

rRNA genes selected from databases are successfully clustered with more than 

%98 accuracy, sensitivity, and specificity. 
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1 Introduction 

Bacteria play an important role in human health and disease [1]. In addition, they have an essential role in 

various biogeochemical activities. To understand the bacterial world around us, characterizing the taxonomic 

community composition taken from an environmental sample is very important [2] [3]. Most widely used 

biomarker for microbial community descriptions is the 16S rRNA (ribosomal RNA) marker genes generated 

by high-throughput sequencing technology [4]. Advanced sequencing technology can produce millions of 16S 

rRNA, bypassing the necessity of isolating single organisms for cultivation, and has become a powerful tool 

for in-depth analysis of bacterial community composition [5], [6]. 

 

For rapidly processing the 16S sequencing data, first step is to cluster them into the OTUs [7] [8], which form 

the basis for estimating the species, diversity, composition, and richness of the microbes in the environment 

[9][10]. For binning 16S rRNA sequences there are two major approaches:  

a. taxonomy dependent methods, where each query sequence is compared against a reference taxonomy 

database and assigned to the organism of the best-matched annotated sequence using sequence 

searching [11] or classification [12][13], and taxonomy independent methods (also called de novo 

clustering) [14], where sequences are grouped into OTUs based on pairwise sequence similarities. 

However, 

b. The success of taxonomy dependent methods are limited by the completeness of reference databases 

[15] since a significant portion of bacteria in a sample belong to unknown taxa which are not recorded 

in databases, In contrast, de novo clustering methods divide sequences into OTUs without needing 

any reference database and have become the preferred choice for researchers [16]. 

The wide variety of de novo clustering methods has been proposed for binning OTUs in the past decades, can 

be categorized further into i) hierarchical clustering, ii) heuristic clustering, iii) model-based and iv)  network-



 HSD Vol. 1, No. 2, December 2019, pp.78- 83 

79 

based methods [17]. Hierarchical clustering methods like  mothur [17], HPC-CLUST [19], ESPRIT [20], and 

mcClust [21] require a distance matrix.  This matrix is computed from all sequences pairs after pairwise 

sequence alignment or a multiple sequence alignment. Then a hierarchical tree is built, and with a predefined 

threshold,  sequences are assigned into OTUs.  

 

On the other hand, network-based methods like M-pick [22] and DMclust [23] by computing all pairwise 

sequences distances, first construct a fully connected graph and then by  modularity community detection,  

generates  OTUs. Therefore, the computational complexity of both hierarchical and network-based methods is 

O(N2), where N is the number of sequences [17][23].  

Model-based methods, CROP [24] and BEBaC [25] mainly apply some statistical model just like Bayesian 

model, or a mathematical framework like Gaussian mixture model to describe sequence data.  Then  based on 

probability theory, they assign sequences to OTUs. However, they have still a high computational burden 

[26]. For this reason, hierarchical clustering, model-based and network-based clustering methods, in dealing 

large-scale sequencing data, quickly meet with the limitations of computational time and memory usage [17]. 

 

2 Materials and methods 

In this research work, we employ a novel  taxonomy dependent method, where each query sequence is 

compared against  reference taxonomy databases in Greengenes, and SILVA,  and assigned to the organism of 

the best-matched.  16S rRNA gene sequences in seven taxonomic classes in Greengenes, and SILVA 16S 

rRNA libraries are used to create sample sets to be clustered. From each class at a taxonomy level a number of 

seeds are randomly selected. Using  Longest Common Subsequence Search method, the similarity of query 

sequence with the seed sequences are calculated. If at least one of the similarities  with seeds exceeds a certain 

threshold,  the query is assigned the cluster of seeds.  

The Longest Common Subsequence Search method  helps us to avoid long sequences of pair wise or globally 

aligned sequences.  

2.1 Longest common subsequence search 

To find the level of similarity of two gene sequences  using Longest Common Subsequence Search method, 

assume in Figure 1., (a) is a gene reported for a bacteria, and (b) is a gene reported for another, or the same 

bacteria.  

(a) GGCTAACTAGTGTAGAGGTGAAATGATTTAGAT TAGGTGGCAA…. 

(b) .......................GTGTAGAGGTGAAATGCGTAGAT  

Figure 1. The longest common subsequence of two genes 

The longest common subsequence of (a) and (b) is  

GTGTAGAGGTGAAATG 

Then we remove this common subsequence from both sequences. Then look for next longest common 

substring. If there is no longer one this time the string 

TAGAT 

may be the second longest common subsequence. It is seen that ten iterations of this process is optimal. 

Then we add the lengths of these common substrings and normalize by dividing this sum, to the length of the 

shorter gene. 

 

2.2 Inclass and interclass similarities 

The average inclass similarities and interclass averages are compared through the analysis of data contained in 

the high quality ribosomal RNA databases Greengenes, SILVA, and RDP. The number of non-redundant 

bacterial 16S ribosomal RNA (rRNA) gene sequences with around 1,200 base pairs is 198.510 for 

Greengenes. This number is 1.488.662 for SILVA, and 1.350.270 for RDP. 
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The average inclass similarities and interclass averages are computed for family, genus and species taxon 

levels in the three databases Greengenes, SILVA, and RDP. The results are show n Tables 2-3. 

Table 1. similarities in class/ Inter Class for family level 

 Databases In Class Inter Class 

Phylum Greengenes 17.47 11.80 

SILVA 29.36 10.23 

RDP  21.86 14.28 

Mean 22.90 12.10 

Class Greengenes 22.64 12.13 

SILVA 21.15 9.63 

RDP  26.47 10.85 

Mean 23.42 10.87 

Order Greengenes 26.57 12.43 

SILVA 33.28 17.55 

RDP 29.99 11.61 

Mean 29.95 13.86 

Family Greengenes 32.54 13.20 

SILVA 56.41 11.45 

RDP  42.40 22.90 

Mean 43.78 15.85 

Genus Greengenes 45.55 13.81 

SILVA 31.50 15.58 

RDP  49.60 16.61 

Mean 42.22 15.33 

Species Greengenes 56.02 10.45 

SILVA 24.23 12.31 

Mean 40.13 12.70 

 Overall Mean 30.08 13.45 

 

It is seen that there is a significat difference between in class and inter class similarities for three important 

taxon levels. Hence this observation shows that longest common sequence similarity measure can be used for 

both annotation and clustering of unknown samples [27]. 

3 Results 

Three 16S rRNA libraries are used with  198,510 genes   Greengenes,  with 801,984 genes, RDP, and with 

1,820,420 genes SILVA are used to show the accuracy, sensitivity, and specificity of LCSS  clustering 

technique. 

At each taxonomic level, 50 genes are selected from each of 20 classes. These 1000 genes are then shuffled. 

From each class five seeds are randomly selected. Then the Longest Common Subsequence similarities of 

seeds to a sample gene (query) are calculated. If any of five seeds is similar to the query gene beyond a 

threshold, this query is put in the same cluster as these seeds. 

Using this technique, 1000 genes are clustered with the  Accuracy,  Sensitivity, and specificity in Table 4 for 

all taxonomic classes. 

 

Table 2. Accuracy, Sensitivity, and specificity of clustering in Greengenes 

% Accuracy Sensitivity specificity 

Phylum 98.76 67.90 98.69 

Class 97.12 95.35 97.07 

Order 97.26 94.96 97.23 

Family 97.06 95.21 96.99 

Genus 97.75 85.30 98.27 
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Species 97.00 98.30 96.93 
Table 3. Accuracy, Sensitivity, and specificity of clustering in RDP 

% Accuracy Sensitivity specificity 

Phylum 94.73 65.30 94.45 

Class 88.49 62.30 87.88 

Order 88.64 76.90 89.25 

Family 74.78 83.30 74.33 

Genus 88.91 83.30 84.33 

 

Table 4. Accuracy, Sensitivity, and specificity of clustering in SILVA 

 

Accuracy Sensitivity specificity 

Phylum 94.64 89.10 94.35 

Class 99.12 70.00 98.83 

Order 94.22 80.30 94.95 

Family 98.06 67.00 99.69 

Genus 95.39 96.50 94.74 

Species 93.51 64.20 95.05 

 

4 Conclusion 

16S rRNA high-throughput sequencing has become a powerful and convenient technology for studying 

microbial diversity and composition in the environmental samples. Until now, numerous heuristic clustering 

methods have been developed to pick OTUs, but most of them just select one sequence as the cluster seed, 

resulting in OTUs overestimation and sensitivity to the sequencing errors. In this work, we proposed a novel 

similarity clustering method (namely LCSSM). 
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