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Abstract:  In my target article, I argued that the brains of ray-finned fishes of the teleost 
subclass (Actinopterygii) are sufficiently complex to support sentience — that these fishes 
have subjective awareness of interoceptive and exteroceptive sense experience. Extending 
previous theories centered on the tectum, I focused on the organization of the fish pallium. In 
this Response to the commentaries, I clarify that I do not propose that the fish pallium is, or 
must be, homologous to the mammalian neocortex to play a role in sentience. Some form of a 
functionalist approach to explaining the neural basis of sentience across taxa is probably most 
appropriate. However, what is known about the neural correlates of consciousness in humans 
is adequate to provide a starting place for investigation of the correlates of sentience in other 
animals, including fishes. Ultimately, though, hypotheses and experiments to evaluate 
anatomical and physiological correlates specific to sentience in fishes will be necessary. 
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1. DOES NEUROSCIENCE HAVE ANSWERS ABOUT CONSCIOUSNESS? 
 
I thank the commentators for providing an interesting, insightful and diverse set of 
commentaries on the target article. I will begin my Response by discussing the objection 
raised by Gutfreund (2017a), who summarizes his objection with the following words: “At 
the moment the only reason to justify inferring consciousness in an animal is that we are 
conscious. So, the only way to resolve questions about consciousness in animals is by 
resolving our consciousness first.” He then denies that any progress is being made in 
achieving this resolution. However, extrapolating from the discovery of the neural basis of 
some adaptive behaviors in weakly electric fish and barn owls, he seems to believe that a 
complete understanding of the neural basis of complex cognitive functions, such as attention 
and decision making, is well along. Consciousness will not be needed for this understanding 
(Gutfreund 2017b). From these beliefs he argues that, logically, the more we know about the 
neural basis of behaviors in any given species, the less likely it is that that species is conscious. 
He calls this the “neuroethological paradox of animal consciousness” and concludes: “This 
growing gap between our advanced understanding of animal brains and our lack of 
understanding of consciousness in animals should, in line with the above paradox, reduce our 
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confidence in the idea of widespread consciousness across animal species” (Gutfreund 
2017b, p. 197). 

The foundation of Gutfreund’s argument is the assumption that no progress has been 
made in understanding the neural basis of consciousness1 in humans. It is incontestable that 
we do not have the mechanistic account of the neural basis of consciousness Gutfreund 
demands, but over the last two decades, notable progress has been made in identifying in 
humans what Crick and Koch (2003; Koch 2012) call the neural correlates of consciousness 
(NCC), and what Dehaene (2014) refers to as signatures of conscious thought. Thus, I submit 
that the epistemic question is not whether there is a mechanistic explanation of 
consciousness but whether it is legitimate to infer consciousness in a nonhuman species from 
the available data about human NCC. 

In the target article, I used an extended argument from analogy (Andrews 2015, pp. 
62-68) to suggest that the best explanation for sentience in fishes gives an affirmative answer 
to this question. In later sections of this Response, I will discuss some of the behavioral and 
neurobiological properties I used as the analogies in my argument. Here I want to respond to 
Gutfreund by pointing out some of the consequences of accepting his conclusion that no 
progress has been made in understanding the neural basis of consciousness.  

 
1.1  Neuroscience has no answers to consciousness: Pragmatic consequences 
 
In the title of his commentary, Gutfreund claims that “neuroscience has no answers” to the 
problem of consciousness. This claim has at least two pragmatic consequences. First, 
Gutfreund would seem to be logically compelled to accept that efforts to use brain-imaging 
techniques, such as positron emission tomography (PET) and functional magnetic resonance 
imaging (fMRI), to improve differential diagnoses in patients with disorders of consciousness 
(DOC) are futile. To me this seems irresponsible. Making an accurate discrimination among 
DOC patients with vegetative state/unresponsive wakefulness syndrome (VS/UWS), a 
minimally conscious state (MCS), or those with locked-in syndrome (LIS) is crucial to an 
appropriate clinical management plan, and, in the extreme, to making decisions concerning 
continuation or termination of life support. Systematic clinical examination based on 
behavioral signs, such as purposeful behaviors, is vitally important to differential diagnosis 
among DOC patients, but clinicians acknowledge that the absence of behavioral signs 
associated with the various categories of DOC does not provide a reliable diagnosis of the 
presence or absence of consciousness. 

Over the past decade, controlled clinical studies have found that differences in 
distribution of PET and fMRI activity across brain regions, while not definitive (Boly et al. 
2013), are useful in diagnosing the difference among DOC patients, particularly between 
those with either VS/UWS or MCS (Giacino et al. 2014; Gosseries et al. 2014; Laureys and 
Schiff 2012). As Gosseries et al. (2014) note, the results of these studies and their 
interpretation have been strongly informed by theories of the neural basis of consciousness 
in humans and continue to inform these theories in turn (e.g., Dehaene 2014). Countering 
Gutfreund’s assertion that we know nothing about the neural basis of human consciousness, 

                                                           
1 As I indicated in the target article, I follow Allen and Trestman (2016) and equate sentience with phenomenal 
consciousness. For that reason, and because Gutfreund and many of the other commentators use consciousness 
in their comments, I will use consciousness and sentience interchangeably in my Response. 
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this work demonstrates that there is an existing and useful interaction between empirically 
based theories of the neural basis of consciousness and clinical applications. 

Second, laws and regulations designed to protect animals from practices which cause 
them distress and pain are generally based on the attribution of sentience. It may be that 
these regulations need to be extended to species not now covered, including fishes (Balcombe 
2016) and crustaceans (Birch 2017). Denying that animals are sentient based on rejection of 
the plausible existence of behavioral and neurobiological analogies with humans would most 
certainly hamper these efforts, and, in a worst-case scenario, could lead to a rollback of 
existing regulations.2 

The empirical evidence supporting any of the existing theories of consciousness is 
admittedly incomplete, and, ideally, we should not make leaps from evidence to theory 
without complete empirical support from experimental research. However, as the 
philosopher of science Heather Douglas (2000; 2009) has concluded, in many cases, the 
importance for practice and policy of the problems under investigation not only permits but 
requires that a theory be accepted as plausible even in the absence of a complete mechanistic 
explanation. Storm et al. (2017) concurred with this conclusion in their recent review of 
progress in isolating NCC in humans, non-human primates, and rats. Referencing Gutfreund 
(2017b) they write (p. 10888), “there is an increasing need to come up with a neuroscientific 
account of animal consciousness, not necessarily providing definitive answers but rather a 
‘best estimate’ facilitating rational decisions on issues of great societal relevance, such as 
ritual slaughter and pain mitigation in animal health care.” 

 
2. SELECTIVE ATTENTION: BOTTOM-UP AND TOP-DOWN PROCESSING 

 
Stauffer (2017), accuses me of being promiscuous in the use of selective attention as a 
criterion for sentience. I did not intend this and stated (Woodruff 2017, p. 5) that: “Sentience 
and selective attention are generally not considered to be the same process, and evidence 
indicates that either can be present without the other.” But I may have blurred the distinction 
by stating: “However, in the absence of selective attention, the contents of sentience required 
to produce specific actions necessary for survival, such as finding food or avoiding a predator, 
are absent.” Whether selective attention is necessary for consciousness is still debated. Some 
researchers in this area insist that it is necessary (e.g., Cohen et al. 2012; Dehaene et al. 2006). 
However, the weight of the evidence increasingly suggests that selective attention can exist 
without consciousness, and consciousness can exist in the absence of selective attention (e.g., 
van Boxtel et al. 2010). In addition, as Stauffer points out, citing Johnston and Dark’s 
distinction (1986) between external and internal selective attention, selective attention is not 

                                                           
2 In the last paragraph of his article in Trends in Neurosciences, Gutfreund (2017b) acknowledges this concern, 
but discounts it, writing: “Some readers of this article will be alarmed that my criticism of scientific claims for 
widespread sentiency in the animal kingdom can lead to unethical objectification of animals. I argue the 
contrary, it is the scientific attempts to divide animals into those that are conscious and those that are not that 
can lead to objectification of animals. My claim is that any such attempt is premature, including theories that 
assign consciousness exclusively to great apes. Animals should be treated with respect and compassion because 
this is the most sensible and humane thing to do, irrespective of findings emerging from laboratories studying 
animal brains and behaviors.” Having spent the greater part of four decades witnessing efforts in the US to 
improve the treatment of laboratory animals, this view strikes me as naïve. 
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a unitary process. Johnston and Dark’s distinction is compatible with the distinction made by 
others between bottom-up and top-down attentional processes (van Boxtel et al. 2010). 

Attentional selection can be based either on bottom-up processing driven by factors 
related to external stimuli, or on top-down processing using endogenous cognitive processes 
such as memory. Either type of processing can be conscious or unconscious. Whether or not 
consciousness is involved appears to depend on the function involved in the behavior under 
consideration. For example, according to the classification for humans outlined by Christof 
Koch and his colleagues (van Boxtel et al. 2010), in visual search, the pop-up phenomenon is 
an example of the bottom-up process associated with consciousness, while working memory 
is an example of a top-down process associated with consciousness. 

Pop-out was described for visual search in archer fish in the target article. I will 
describe examples of experiments showing working memory in fishes below. I conclude from 
these examples that in fishes — as, presumably, in all mammals — sentience accompanies 
selective attention in some behaviors, but not others. Thus, I agree with Stauffer that 
unconscious selective attention can successfully guide behavior in fishes (as it does in 
humans), but I disagree that selective attention, whether it is external (bottom-up) or internal 
(top-down), is never associated with sentience in fishes.  

On this view, sentience can be associated with some behaviors indicating bottom-up 
selective attention. That is, the attentional selection is not determined by endogenous 
cognitive processes but by features of the environmental stimuli. Following Gibson’s (1979) 
ecological approach to perception, Favela (2017) argues that bottom-up, or external, 
selective attention is all that is needed for sentience in fishes. A complete reply to Favela 
would require a critique of Gibson’s theory which is far beyond the scope of this Response. I 
will hence offer only one reflection: I wonder why, given his grounding in Gibson’s theory, 
Favela would propose that phenomenal consciousness in fish exists at all. As he writes in his 
commentary: “instead of going inward into the mind to find additional information, ecological 
psychologists go outward into the environment.” On Gibson’s view, the affordances of 
environmental stimuli are adequate to guide adaptive behavior. For example, I do not have 
to be consciously aware of the percept “handle” to grasp it and lift a coffee cup to my mouth. 
All the information that is needed to accomplish this behavior is in the stimulus of the cup. 
Gibson’s ecological approach, then, is generally used to negate any theory that invokes the 
role of cognitive processing, let alone sentience, in perception (Costall 1984). I accordingly 
doubt that ecological psychology, at least as traditionally formulated by Gibson, has much, if 
anything, to contribute to the understanding of sentience in fishes. 

 
3. BEHAVIORAL DATA AND SENTIENCE 
 
In the target article, I emphasized the anatomy and physiology of the fish brain. My intention 
was to extend the work of Feinberg and Mallatt (2016) and Braithwaite (2010), among 
others, which associated neurobiology with sentience in fishes. However, although some 
neurophysiological correlates of sentience that do not depend on verbal or behavioral 
“report” have been proposed for humans and non-human primates (Storm et al. 2017), 
behavioral evidence is generally regarded as fundamental to attributing sentience. I 
accordingly presented selected examples of behaviors as evidence of sentience in fishes. 
Some commentators agreed and added additional examples. Others disagreed with my 
interpretations.  
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3.1 Can observations be generalized across species? 
 
Allen-Hermanson (2017) questioned the validity of the behavioral examples I discussed.  He 
expressed a general concern as to the extent to which behavioral observations can be 
generalized among species. Stauffer also raised this question. Caution should be used when 
extrapolating research results from one species to another. Preferably, whether a behavior 
observed in one species of fish can be generalized to other fish species is an issue to be 
resolved through appropriate experimentation. For example, goldfish exhibit trace 
conditioning (Portavella et al. 2004; Vargas et al. 2009). Can this finding be generalized to 
cod and halibut? Experiments have confirmed the presence of trace conditioning in these 
species (Nilsson et al. 2008; 2010). 

If direct experimental evidence is weak, however, a theoretical model presented by 
Brown (2017) offers an evolutionarily defensible approach to generalizing behavioral results 
across species. He calls this the phylogenetic approach. Although not as strong as extensive 
direct experimental demonstration of generalizability, this approach can legitimately assist 
in formulating policy decisions if they must be made in the absence of complete datasets. It 
also offers predictive power for generating hypotheses to guide experiments. 

 
3.2 Transitive inference in cichlids as an indicator of sentience 
 
Expressing a specific concern, Allen-Hermanson doubts that the experiment by Grosenick 
et al. (2007) demonstrates that male cichlids exhibit transitive inference. According to the 
supplemental material accompanying the article by Grosenick et al., the bystander fish and 
combatant fish were housed together prior to the experiment. Allen-Hermanson proposes 
that associative learning during this pre-experimental, group-housing period enabled the 
bystander fish to learn the social rank of the combatant fish. During the experimental tests, 
then, the bystander fish responded to these pre-experimentally learned cues when they chose 
to pair with weaker combatant fish. This explanation disagrees with the interpretation that 
inference was made from naïve observations of the outcome of fights among combatants 
made during the experimental sessions (Droege and Braithwaite 2014; Grosenick et al. 2007; 
Woodruff 2017). This disagreement is one that can be resolved empirically. I am disinclined 
to change my interpretation in the absence of evidence from appropriately designed 
experiments. 

 
3.3 Working memory in fish 
 
I did not discuss working memory in the target article. Taschereau-Dumouchel et al. (2017) 
point out that working memory has been associated with consciousness (e.g., Prinz 2000). 
Can it be shown in fish? The answer is yes. But, this yes depends upon acceptance of a 
definition of working memory that can be applied to animals. The concept of working 
memory is often associated with Baddeley (1986), who proposed it as a form of active short-
term memory in which auditory, particularly verbal, representations (phonological loop) and 
representations of visual space (visual-spatial scratchpad) were manipulated by a central 
executive with the help of selective attention. Baddeley’s model was developed to understand 
one aspect of human memory processing. Whether, in its specifics, it can be applied to 
animals can be debated. However, the concept of working memory predates Baddeley’s 
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formulation. Miller et al. (1960) proposed working memory as a limited capacity cognitive 
system that temporarily holds information for processing to guide decision-making and 
behavior. Several simple tasks are accepted as tests of working memory, as so defined, in rats 
(e.g., Dudchenko 2004; Olton et al. 1979; Woodruff et al. 1993). Adaptations of these tasks to 
the aquatic environment indicate the presence of working memory in fish. For example, 
Ohnishi (1974) found that goldfish could learn to discriminate the position of a reinforcement 
between arms of a Y-maze even when a delay was introduced between forced exposure to 
the reinforcement and arm choice, and Creson et al. (2003) demonstrated working memory 
in black mollies using a non-reinforced alternation procedure in a T-maze. As Creson (2017) 
notes in his commentary, this experiment is particularly interesting because its design 
permitted dissociation between working memory and spatial memory in the same subjects. 

 
3.4 Temporal representation, behavioral flexibility and sentience 
 
In her commentary, Droege (2017) offers a theory for identifying consciousness that 
emphasizes flexible responding and representation of the “present moment.” In her words: 
“Consciousness is only necessary to be able to flexibly respond, that is, to respond differently 
to a situation in order to achieve a goal. Consciousness allows dynamic changes in action or 
the goal in response to situational demands.” I suggest that Droege’s theory may be useful in 
defining behaviors relevant to application of the Animal Sentience Precautionary Principle 
developed by Birch (2017). 

To apply her theory, Droege and her colleague Brathwaite (Droege and Braithwaite 
2014) propose four methodological ways to identify flexible responding operationally. The 
first way is inherent in the concept of flexible responding as well as in the other three ways. 
Differential response to the environment must be present. To meet its goals (e.g., safety from 
attack, procurement of food) in a novel situation, an animal may not be able to rely on an 
existing algorithm, such as prior associative conditioning, to produce the most effective 
behavior. Behavioral flexibility is therefore needed; it is demonstrated when an animal infers 
future conditions in response to novel situations based on representation of multiple current 
stimuli and past information. 

This is the second method Droege and Braithwaite (2014) propose. They cite the study 
by Grosenick et al. (2007) as an example of this way of identifying consciousness, rejecting 
the interpretation, as I did, that the bystander fish chose to associate with the weaker 
combatant fish based on long-term memory. Rather, the observer fish inferred “the relative 
strength of the particular individuals in the specific current situation. Representation of the 
features in the world now is needed to respond appropriately” (Droege and Braithwaite 
2014). In addition to inference, working memory was also involved in choosing the weaker 
fish after having observed the fights. As noted in the previous section, working memory is 
often also a process associated with consciousness. 

The third way of demonstrating consciousness proposed by Droege and Braithwaite 
is the ability to manipulate the environment to accomplish goals. I refer the reader to their 
paper for examples of studies in which fish exhibit environmental manipulation. 

The fourth indicator of behavioral flexibility “is the ability to represent both present 
features of the situation and features that are absent in the immediate stimulus” (Droege and 
Braithwaite 2014). Droege and Braithwaite use allocentric spatial memory to demonstrate 
this indicator of flexible behavior and, thus, consciousness. They emphasize that in spatial 
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tasks the subject needs to predict not just where reinforcement can be found, but where 
reinforcement will not be found. For example, in the standard water maze used to test spatial 
memory in rats, the rat’s spatial map includes not just that the platform is in one specific place 
in the tank, but that it is not in any other possible locations (e.g., Woodruff et al. 1992). 

Droege and Braithwaite’s argument for allocentric spatial memory as a way of 
demonstrating behavioral flexibility and thereby inferring sentience is consistent with my 
position in the target article and with the inclusion of allocentricity as a marker of 
consciousness by Seth et al. (2005). In addition, if allocentricity is a valid marker of sentience, 
it might be expected to generalize widely across families of fishes. This appears to be the case. 
Allocentricity has been demonstrated in goldfish (Cyprinidae; Durán et al. 2010), Siamese 
fighting fish (Osphronemidae; Roitblat et al. 1982), gobies (Gobiidae; White and Brown 2015) 
and black mollies (Poeciliidae; Creson et al. 2003).  

 
4. CONSCIOUSNESS AND ITS NEURAL CORRELATES IN FISH 
 
4.1 P-consciousness or A-Consciousness? 
 
In the target article, I argued that fish are sentient. Following Allen and Trestman (2016), I 
equated sentience and phenomenal consciousness. Mikhalevich (2017) and Husband 
(2017) propose that, rather than phenomenal consciousness (P-consciousness), I have made 
an argument that fish have access consciousness (A-consciousness). I intend the contrary and 
thank them for identifying this problem. 

The distinction between P-consciousness and A-consciousness is usually identified 
with Ned Block (1995; 2007; 2011). In Block’s theory, P-consciousness has a large capacity, 
while A-consciousness has a limited capacity. P-conscious contents are qualitative and are 
not directly available to cognitive processing. Because P-conscious contents are not available 
to cognitive processing, they have no function. The contents of A-consciousness, on the other 
hand, are representational, not phenomenal, and function to influence cognitive processing. 
If, as Mikhalevich notes in her commentary, a fish had only A-consciousness, it would have 
no qualitative experiences. It would be, in Block’s (1995) words, “a full-fledged phenomenal 
zombie” (p. 233). I submit that fish are not zombies and, in agreement with others (Dehaene 
2014; Gilman 1997; Güzelderea and Aydedeb 1997; Mangan 1997; Mack et al. 2015; Mack et 
al. 2016; Noë 1997; Papineau 2007; Persuh et al. 2012), argue that there is good reason to 
reject Block’s theory. 

Block (1995; 2007; 2011) uses Sperling’s (1960) classic study as one main source of 
support for his theory. Sperling explored the capacity of iconic memory3 in humans. Sperling 
showed subjects a stimulus consisting of 3 rows of 4 letters and numbers for 0.5 seconds and 
asked them to recall as many of the 12 items as possible immediately upon offset of the 
stimulus. He found that they recalled an average of 4.3 items. Block takes this result to 
indicate the presence of limited capacity A-consciousness. However, subjects also typically 

                                                           
3 The term iconic memory had not been introduced when Sperling conducted his classic experiment. He used 
the term immediate-memory span for visual stimuli in referring to the type of rapidly decaying sensory memory 
he manipulated in his experiments. 
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stated that they “saw more items than they remembered.” Block (1995; 2007) takes this as 
evidence for the existence of P-consciousness as he defines it. 

Sperling quantified the impression that “more is seen than is remembered” in another 
experiment. The stimulus in this experiment was also 3 rows of 4 letters and numbers 
presented for 0.5 sec. Immediately upon offset of the stimulus, a high-frequency tone, a mid-
frequency tone, or a low-frequency tone was sounded. The order of presentation of the tones 
was random. The subjects were instructed to report the letters in the upper row if the high 
tone sounded, the middle row if the mid tone sounded, or the lower row if the low tone 
sounded. Thus, in this “partial-report” procedure, the subjects were tasked with recalling 
only 4 items, not 12 items, a number within the capacity of iconic memory identified in the 
first experiments. The subjects recalled an average of 3.3 of the 4 items in the row associated 
with the tone’s frequency. Because the subjects did not know which tone would be presented, 
accurate performance required that more items than the 4 in the row cued for recall be 
available at the time the tone was sounded. Sperling (1960) calculated that an average of 9.1 
of 12 items are available to the subjects at the time of report. For Block these results 
demonstrate that P-consciousness has a capacity that “overflows conscious access” (Block 
2007; 2011) and that P-consciousness is a pre-attentive, pre-experiential, non-reportable 
state with no function. Only A-consciousness contents are available to cognitive processing. 

However, as Naccachea and Dehaene (2007) point out, some of the evidence Block 
uses to support the existence of P-consciousness — that is, the claim that “more is seen than 
is remembered” by subjects — itself relies on accepting a subjective experiential report. This 
strongly suggests that P-consciousness influences cognitive processing and that there is only 
one consciousness, the contents of which include the overall phenomenal scene and 
individual phenomenal items within the scene, both of which are accessible (Papineau 2007). 
Accessibility is produced in Sperling’s full report condition when top-down attentional 
processes amplify items (Koch and Tsuchiya 2007). These items are then recalled. Bottom-
up attention contributes to recall in the partial-report condition. This interpretation implies 
that P-consciousness is not pre-attentive and is supported by experiments using either 
Sperling’s design or “change blindness” (Simons and Levin 1997) in which attentional load 
was manipulated. The results of these experiments indicate that attention plays a significant 
role in the accessibility of the contents of P-consciousness (Mack et al. 2015; 2016; Persuh 
2012). In sum, this theory accounts for Sperling’s observations without the necessity of 
postulating two separate consciousnesses. Rather, P-consciousness alone produces 
subjective experience.  

In response to Taschereau-Dumouchel et al. (2017), I maintain that P-
consciousness (i.e., sentience) in fishes does not require higher-order thought and self-
reflection. On my view, although their descriptions differ in detail, sentience in fishes is 
equivalent to what Feinberg and Mallatt (2016) call sensory consciousness, Merker (2007) 
calls core consciousness, and G. Edelman (1989; 2003) calls primary consciousness. 
Sentience in fishes includes, for example, the basic feeling of sensations such as color and 
pain, as well as bodily states associated with emotion. Further, it integrates memory with the 
need for adaptive action in present time (e.g., Droege). G. Edelman (2003) summarized an 
animal with this type of sentience (primary consciousness) in this way: “Such an animal with 
primary consciousness has no explicit narrative capability (although it has long-term 
memory), and, at best, it can only plan to deal with the immediate scene in the remembered 
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present. Nonetheless, it has an advantage over an animal lacking such an ability to plan” (p. 
5521). This seems a heuristically useful description of sentience in fishes. 

 
4.2 Subjective experience and subjective perspective 

 
LaFollette (2017) wants clarification concerning my use of “subjective experience.” His 
inference that subjective experience, as I use it, identifies the locus of experience is correct. 
This locus can be thought of as a first-person perspective, but I am not implying that fish are 
in any way self-conscious. Sentience in fishes does not require the ability to monitor one’s 
own cognitions. However, I maintain that a “scene in the remembered present” is defined by 
a subset of neural activity that constitutes a mental representation, and I concur with Gerlai’s 
(2017) statement that “Mental representations imply that there is an actor, the self, that 
experiences, and plays a role in, the representation” (p. 2). If this implication is accepted, it is 
useful to assign to fishes what Baker (2013) calls a rudimentary first-person perspective. 
Baker’s rudimentary first-person perspective is independent of linguistic or conceptual 
abilities and does not require self-consciousness. It only entails that a sentient subject is the 
origin in time and space of its perception of the environment. 

 
4.3 Neural correlates and the neuron doctrine 
 
My argument that fishes have the capacity for sentience and a rudimentary first-person 
perspective rests, in part, on the neurophysiological consequences of synaptic interactions 
among neurons. Pereira (2017a) rejects that synaptic interactions are solely responsible for, 
or perhaps even crucial for, generation of the bioelectrical correlates of sentience. Rather, he 
proposes that Golgi’s syncytial model of the nervous system provides the physical substrate 
“at least for affective and motivational states” associated with sentience through generation 
of what he calls “hydro-ionic waves.” Pereira’s hypothesis necessitates significant revision of 
the neuron doctrine, a paradigm that has guided advances in neuroscientific research for 
more than a century. These advances include plausible hypotheses for the neural basis of the 
basic feeling states of sentience (Damasio 2010). 

If a sufficient number of observations incompatible with the neuron doctrine were 
identified in the search for the neural correlates of sentience, then a revolutionary paradigm 
shift away from it might be justified (Kuhn 1970). However, whereas fusion of neuronal 
membranes, for example, may play a role in nervous system development and repair 
(Giordano-Santini et al. 2016), and astroglia may function to modulate bioelectric correlates 
of sentience (Pereira, Jr., 2017b; Pereira, Jr., et al. 2017), such observations fall short of what 
is needed for a Kuhnian paradigm shift. 

 
4.4 Neural correlates and structural homologies 
 
I noted in the first section of this Response that progress has been made in identifying 
potential neural correlates of sentience in humans. This has led to acceptance of the premise 
that the existence of at least some of these correlates can serve as an indicator of sentience in 
animals (e.g., Boly et al. 2013; Edelman et al. 2005; Seth et al. 2005). Following this premise, 
I proposed in the target article that some neuroanatomical and neurophysiological correlates 
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of sentience associated with the human neocortex can be identified in the fish pallium. 
Several of the commentators took me to task for this (Husband; Mikhalevich; Stauffer). 

I did not intend to argue that sentience absolutely requires the presence of structural 
homologies to the mammalian neocortex. Structures are commonly defined as homologous 
across taxa if common embryological origin, pattern of embryological development, and 
derivation from a common ancestor can be demonstrated. Similarity in function is not 
required. The function of homologous structures can obviously diverge during evolution and 
the same function can be caused by different structures, which is the case for brain structure-
function relationships across taxa. Thus, in response specifically to Burgos and Mikhalevich, 
I think it is plausible when theorizing about consciousness in fishes to adopt a limited 
functionalist approach.4 That is, any one of several neural structures might serve the same 
function; and flexibility in the pattern of underlying synaptic connectivity is possible.  Thus, I 
agree with the quote from Braithwaite and Droege (2016) that Mikhalevich includes in her 
commentary: “the question is not whether fish have a cortex or an insula, but whether they 
have the functional capacity for (indicators of consciousness such as) global integration and 
attentional amplification.” 

A limited functionalist approach seems particularly appropriate to my sketch of a 
theory of sentience in fishes. On the one hand, the tectum is seen as having a primary role in 
the generation of sentience and the dorsodorsal (DD) pallium — which, I proposed, based on 
electrophysiological data, might function as an association area of the pallium — has no 
homology in the mammalian neocortex. On the other hand, the dorsolateral (DL) and 
dorsomedial (DM) pallium are structural homologs to the mammalian hippocampus and 
amygdala, respectively, and evidence exists that the DL and DM are also functionally 
analogous to these structures. For example, ablation of the hippocampus proper (Ammon’s 
horn, the dentate gyrus, and the subiculum) impairs allocentric spatial learning in rats (Nadel 
1991), as does ablation of DL in goldfish (Durán et al. 2010). Lesions of the rat amygdala or 
goldfish DM do not produce an impairment in spatial tasks. Conversely, destruction of the rat 
amygdala or goldfish DM, but not the hippocampus or DL, impairs two-way electric shock 
avoidance learning (Portavella et al. 2004) without impairing escape from shock.  

The functional relationships inferred from ablation experiments may not, however, be 
as straightforward as they appear. For example, while the hippocampus proper is important 
in allocentric spatial learning (Nadel 1991), so are adjacent cortical areas, the 
parahippocampal and retrosplenial gyri (Ekstrom et al. 2014). These gyri connect with the 
anterior nucleus of the thalamus (AnTh), a structure which in mammals is associated with 
allocentric spatial learning (Aggleton et al. 2010; Jankowski et al. 2013). The hippocampus 

                                                           
4 Burgos commented that these are “philosophical choppy waters.” Indeed, they are. Here, I call this limited 
functionalism to give a name to an approach which maintains that sentience in animals requires some presently 
unknown minimal amount of neural tissue and complexity of neural circuitry, although both the gross and 
microscopic architecture of this neural tissue may differ significantly across taxa. Thus, I have rejected the 
theory that bacteria are sentient (Woodruff 2016) because the physical basis for their responses to the 
environment is explicable by reference to comparatively simple molecular interactions. Regarding computers, 
in response to Burgos, I accept the possibility that electronic circuitry sufficiently complex to produce machine 
sentience is, in principle, possible. So, I am open, in the case of computers, to an expanded view of functionalism. 
However, as recent publications indicate, whether computers are now, or can become, sentient remains 
controversial (e.g., Carter et al. 2017; Dehaene et al. 2018).  
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proper does not have direct connections with AnTh, but the fish DL does (Echteler and Saidel 
1981). Combined, these observations suggest that the DL may not be exactly equivalent to 
the hippocampus proper in mammals but may include anatomical and functional similarities 
to parts of the mammalian cortex including participation, as I propose, in sentience. 

I suggest that this may apply to the DM as well. Taschereau-Dumouchel et al. 
expressed concern that I include the amygdala as part of the substrate for conscious 
experience of emotion in humans. I do not, but this does not rule out the possible 
participation of the DM in the conscious experience of emotion by fishes. As I noted in the 
target article, I base this possibility on the observation that DM lesions impair operant 
avoidance conditioning in fishes. Operant procedures have been used to separate reflex 
responses to nociceptive stimuli from appreciation of the felt sensation of pain in monkeys 
and rats (Morgan et al. 2008; Vierck, 2006). Disruption of operant shock-avoidance learning 
by DM lesions supports the hypothesis that the DM is involved in sentient appreciation of the 
emotional component of pain. The DM and other pallial regions may be more generally 
involved in the conscious experience of emotion. As Rey Planellas (2017) discusses in her 
commentary, pallial afferents from the hypothalamus and other subpallial structures that 
modulate behaviors associated with the emotional contents of sentience, such as emotional 
fever (Rey et al. 2015), have been found in fishes. These observations support my argument 
that the pallium participates in the conscious appreciation of the quality of exteroceptive and 
interoceptive stimuli. 

Burgos questions the validity of proposing that any one neural structure or system is 
necessary for either the behaviors just discussed or for sentience. He suggests that J. L. 
Mackie’s INUS-conditions (Insufficient, Nonredundant, Unnecessary, Sufficient) approach 
could be a better approach for defining causal relationships between brain structures and 
effects such as sentience than one that ascribes causation to activity within a set structure or 
group of structures in the brain. With INUS conditions, effects are caused by clusters of factors 
(e.g., A&B&C). An individual factor within the cluster is Insufficient to produce the effect, but 
the factors are Nonredundant. Any one of several different clusters (e.g., A&B&C or D&E&F 
or G&H&I) can produce the effect. Thus, a specific cluster is Unnecessary for the existence of 
the effect but is Sufficient to cause the effect. The INUS is compatible with functionalism. 
However, it is difficult to reconcile with data, such as those just described for the effects of DL 
and DM lesions in goldfish, which support the current consensus that distinct types of 
cognitive information are processed within distinct brain structures. It is also a poor match 
for the mosaic evolution hypothesis which seems to provide the best explanation for the 
functional modularity of the fish brain (e.g., Gonzalez-Voyer et al. 2009). Therefore, inasmuch 
that it is compatible with recovery of function after brain damage, the INUS approach has 
some appeal, but it is difficult to see how it can practically advance our understanding of the 
neural basis of sentience. 

 
4.5 Global availability of information and sentience in fishes 
 
Taschereau-Dumouchel et al. state that “consciousness has been associated with the global 
availability of information to different subsystems in the brain” and then ask: “Do fishes have 
such a mechanism for global broadcasting conscious information to various subparts of their 
brains?” As I discussed in the target article, feedforward and feedback excitatory neuronal 
circuitry capable of amplification of neural signals, as well as inhibitory circuits that serve to 
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sharpen the information content of these signals, have been identified in the tectum and the 
pallium of fishes. Also, numerous connections among the several pallial divisions, and 
substantial afferent and efferent connections between the pallium and subpallial structures, 
including an analog of the mammalian thalamus, the preglomerular complex, exist. These 
connections can serve as the basis for reentrant processing. Thus, it is plausible to propose 
that the neuroanatomy of the fish brain is complex enough to foster the global availability of 
information that some theorize is necessary for sentience (e.g., Baars et al. 2013; Dehaene 
and Naccache 2001). Electrophysiological responses proposed to correlate with sensory 
binding and global broadcasting of sensory information (Baars et al. 2013; Crick and Koch, 
2003) have also been recorded from the pallium. These responses include gamma frequency 
electrical rhythms (Prechtl et al., 1998) and sustained evoked responses to sensory 
stimulation (Elliot and Maler 2015; Prechtl et al., 1998). 

Thus, it may be reasonable to conclude that global broadcasting of information to 
various sub-systems of the fish brain occurs. I think this conclusion is at best tentative, 
however. It is based on inference from the results of experiments conducted to test 
hypotheses related to sensory processing, learning and memory, and so forth. These 
experiments were not designed to separate the neural correlates of cognitive processing 
supporting these functions from the neural correlates of global information broadcasting. 
While the similarities between fish neuroanatomy and neurophysiology and some neural 
correlates of consciousness in humans are intriguing, the conclusion that global broadcasting 
of information occurs in the fish brain relies on post-hoc interpretation of the data. The 
conclusion also assumes that Baars’s (1988) global workspace model of consciousness is 
valid for humans. Even if this is the case, within the limited functionalist approach I propose, 
there is no reason to assume that the global workspace model must be relevant to sentience 
in fishes. 

 
5. CONCLUSIONS 
 
In the target article, I offered a sketch of what Burgos correctly refers to as a “highly 
heuristic” theory. I proposed that the fish pallium participates in the elaboration of sentience, 
that is, the subjective awareness of interoceptive and exteroceptive sense impressions, and 
that it does this as part of a reentrant network of neural structures that is centered on the 
tectum and includes the preglomerular complex. I did not claim that the fish pallium is closely 
homologous to that of mammals, although I did argue that the fish pallium shares some of the 
organizational principles thought to be correlated with sentience in humans. 

I stand by the claims I made in the target article. However, to advance beyond a 
heuristic sketch of a theory of the neural basis of fish sentience, hypotheses and experiments 
that are specifically directed towards this problem will have to be developed. Given that we 
do not have direct access to the contents of sentient states in fish (or, for that matter, sentient 
states in any being other than ourselves), this is clearly a challenge. If this challenge is to be 
met, a behavioral battery that can serve as a “Turing test” for fish sentience (Gerlai) must be 
agreed upon. As Braithwaite (2010), Brown (2014; 2017) and Gerlai discuss, there are 
numerous candidates for inclusion in this battery. Appropriately designed 
electrophysiological experiments will also have to be conducted. These experiments might, 
for example, look for differences in neural activity between behaviors included in the Turing 
test battery and those behaviors that had been ruled out. Finally, it would be well to keep in 
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mind that, as Gerlai states, “to truly understand what it feels like to be a fish, we may need to 
appreciate both the similarities and the differences between us and them. We may even need 
a better understanding of what it really feels like to be human” (p. 3).  
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UQÀM/ISC Cognitive Science Summer School June 26 - July 6 2018, Montreal, Canada 

The Other Minds Problem: Animal Sentience and Cognition 

Overview. Since Descartes, philosophers know there is no way to know for sure what — or whether — others feel 
(not even if they tell you). Science, however, is not about certainty but about probability and evidence. The 7.5 
billion individual members of the human species can tell us what they are feeling. But there are 9 million other 
species on the planet (20 quintillion individuals), from elephants to jellyfish, with which humans share biological 
and cognitive ancestry, but not one other species can speak: Which of them can feel — and what do they feel? 
Their human spokespersons — the comparative psychologists, ethologists, evolutionists, and cognitive 
neurobiologists who are the world’s leading experts in “mind-reading" other species -- will provide a sweeping 
panorama of what it feels like to be an elephant, ape, whale, cow, pig, dog, bat, chicken, fish, lizard, lobster, snail: 
This growing body of facts about nonhuman sentience has profound implications not only for our understanding of 
human cognition, but for our treatment of other sentient species. 
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