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Accurately estimating contacts between animals can be critical
in ecological studies such as examining social structure,
predator–prey interactions or transmission of information and
disease. While biotelemetry has been used successfully for such
studies in terrestrial systems, it is still under development
in the aquatic environment. Acoustic telemetry represents
an attractive tool to investigate spatio-temporal behaviour of
marine fish and has recently been suggested for monitoring
underwater animal interactions. To evaluate the effectiveness
of acoustic telemetry in recording interindividual contacts,
we compared co-occurrence matrices deduced from three
types of acoustic receivers varying in detection range in
a benthic shark species. Our results demonstrate that (i)
associations produced by acoustic receivers with a large
detection range (i.e. Vemco VR2W) were significantly different
from those produced by receivers with smaller ranges (i.e.
Sonotronics miniSUR receivers and proximity loggers) and (ii)
the position of individuals within their network, or centrality,
also differed. These findings suggest that acoustic receivers
with a large detection range may not be the best option
to represent true social networks in the case of a benthic
marine animal. While acoustic receivers are increasingly used
by marine ecologists, we recommend users first evaluate the
influence of detection range to depict accurate individual
interactions before using these receivers for social or predator–
prey studies. We also advocate for combining multiple receiver
types depending on the ecological question being asked
and the development of multi-sensor tags or testing of new

2017 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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automated proximity loggers, such as the Encounternet system, to improve the precision and accuracy
of social and predator–prey interaction studies.

1. Introduction
Determining animal encounters or contact rates can be central in ecological studies, for example in
determining social structure, mating behaviour, predator–prey interactions and information or disease
transmission [1–4]. Contact between animals in a social context can be represented as a social network.
The social network analysis (SNA) framework is based on recording and integrating observations
of multiple pairs of individuals which are analysed using a set of powerful statistical metrics at
the individual, group or population level [5]. SNA has proved valuable to address and quantify
multiple biological processes in animal populations ranging from preferred associations and patterns of
assortment [6], the role of personality [7] and indirect connections in social structure [8], the processes of
transmission of parasites [3] or culture [9], network resilience and robustness [10] or the role of social [11]
or genetic [12] inheritance of social network properties.

While technology to measure contact between animals has significantly improved in terrestrial
studies [1,13], it has received little attention in aquatic ecosystems (but see [14,15]). Indeed, directly
observing wild animals, particularly in an aquatic environment, is challenging when individuals are hard
to identify or when focal subjects are too elusive to get accurate repeated observations. Moreover, current
technologies, such as Global Positioning System (GPS), used to track individuals and construct social
networks in terrestrial animal populations are not applicable in aquatic systems. Consequently, most
animal social network studies in the marine environment have relied on repeated direct observations
of interactions between identified individuals [6,16–18].

While the number of SNAs has considerably increased in terrestrial animals and marine
mammals [19], it remains in its infancy in marine fish [17]. This is primarily due to difficulties in following
and identifying aquatic animals underwater for long periods and defining appropriate sampling periods
for animals that are hard to see. However, recent studies have investigated the sociality of bentho-pelagic
shark species (juvenile Negaprion brevirostris [16], adult Carcharhinus melanopterus [6,10] and Scyliorhinus
canicula [20]). Such studies require animals to be uniquely identified. Telemetry is a potential method
in which the spatio-temporal position of a tagged animal can be remotely and continuously recorded
within networks of fixed ultrasonic acoustic receivers [21], thereby allowing indirect estimates of their
encounters or interactions with conspecifics, predators or prey. Subsequently, networks of receivers
have been recently proposed as a method to map the co-occurrences and social interactions in free-
ranging marine fishes [14,21–24] and build social networks. The combination of automatic telemetry with
network analysis, therefore, presents great potential for investigating the behaviour of species that are
difficult to observe directly [23,24]. Although acoustic telemetry has been used successfully to monitor
shark behaviour, such an integrated approach has had limited application (but see Guttridge et al. [15]
for proximity loggers; Stehfest et al. [22] and Jacoby et al. [23] for Vemco VR2W acoustic receivers;
and Armansin et al. [25] for Vemco Positioning System (VPS)).

Arrays of terrestrial RFID receivers to track electronically tagged birds are ideal to document their
social network inferred from the arrival and departure of individuals from the small detection range of
feeders [26]. By contrast, VR2W acoustic receivers often have large and variable detection ranges (up to
800 m radius around the device [27,28]), which can result in sharks being detected simultaneously from
up to 1600 m apart. Using multiple receivers can provide information into synchronicity in movements
of individuals and in turn on some form of social structure in mobile animals [23]. However, the large
scale and variability of detection range in VR2W receivers brings in the questions as to whether they can
be used to accurately report individual gregariousness and interactions as previously suggested [24]. For
example, when can two individuals detected together be considered associating? At what detection range
do co-occurrences become meaningful? There can be multiple scales of social grouping, and the choice
of the spatial resolution will be dependent on the question at hand. As research questions should drive
edge definition in social networks [29,30], it is important to consider whether different scale-dependent
methods of network construction are appropriate to estimate realistic social encounters, especially in
large marine benthic animals, which spend most of the day resting on the bottom. Animal social networks
are often constructed from proximity data on the spatio-temporal co-occurrence of identifiable subjects
as a proxy for interaction networks [5,31], but the validity of this assumption has rarely been tested
despite the importance of defining edges in social networks [29,30]. Despite the appealing use of acoustic
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receivers to automatically build social networks in aquatic animals, such method might not be effective
because of broad detection ranges. It is therefore critical to understand how comparable networks are
when constructed using these methods and how or if the network properties are affected according to
variations in detection ranges.

In this study, we aimed to confront the resolution issue of spatio-temporal data collection from
individual associations using three different types of acoustic underwater receivers with varying
detection ranges. We took advantage of an ongoing study of the seasonal mating aggregation of a
benthic shark (the Port Jackson shark Heterodontus portusjacksoni) in eastern Australia to compare social
networks built from detections at different types of ultrasonic receivers that were deployed in Jervis
Bay (New South Wales, Australia). The Port Jackson shark is a good model as this species forms large
mating aggregations on near shore rocky reefs for which they show very high levels of philopatry and
seasonal residency [32]. We used three types of receivers: (i) Vemco VR2W acoustic receivers are the most
commonly used and record the presence of animals fitted with acoustic transmitters within a radius
varying between 50 and 800 m depending on environmental conditions, (ii) Sonotronics miniSUR are
also ultrasonic receivers, but they have the capability to adjust their detection range (set to 10 and 60 m
in this study) by modifying the gain, and (iii) proximity loggers are animal-borne receivers and record
other tagged animals in close vicinity of the focal individual (less than 10 m). In the context of a breeding
aggregation of a benthic shark, we questioned whether all types of receivers of different detection ranges
returned similar edge weight and individual positions in social networks despite capturing associations
at different spatial scales.

2. Material and methods
2.1. Study site and design
The study was conducted in Jervis Bay in New South Wales, Australia. This bay hosts large seasonal
mating aggregations of Port Jackson sharks, a benthic species endemic to Australia, in which both males
and females undertake yearly migrations from their foraging grounds in southern Australia to return
to the same reef in Jervis Bay to breed [32]. Proximity loggers (ARX-RX1, Sonotronics, Inc., Tucson, AZ,
USA) were attached to seven individual sharks in 2012, whereas Vemco VR2W (Vemco, Halifax, Nova
Scotia, Canada) and Sonotronics miniSUR (Sonotronics, Inc.) acoustic receivers were deployed in 2012
and 2013 (one VR2W and two miniSUR at the main study site Orion Beach each year; figure 1).

2.2. Tagging procedures
Adult Port Jackson sharks were hand-captured by SCUBA divers and snorkelers, and slowly brought to
the surface. They were then transported to shore in a canoe, where they were immediately transferred
to a trough containing fresh seawater. The total length (TL) of individuals was measured to the
nearest centimetre. Females ranged from 91 to 129 cm TL, whereas males ranged from 88 to 113 cm
TL. Individuals were sexed based on the presence or absence of claspers, fin clipped for genetic
and isotopic analysis, and tagged with passive integrated transponder tags (FDXB transponders;
Microchips Australia) for individual identification. Individuals were then sedated in a solution of
tricaine methanesulfonate (MS-222; 150 mg ml−1), and an acoustic transmitter (Vemco V16, 69 kHz)
was implanted in their peritoneal cavity through a 2.5 cm incision, which was then sutured using five
interrupted sutures and superglue. Transmitters were programmed with a nominal delay of 90 s and an
expected battery life of 2805 days. All individuals were revived and released at their site of capture. More
details are provided in Bass et al. [32]. In this study, the subjects were eight females and 10 males tagged
in 2012, and 13 females and eight males tagged in 2013.

2.3. VR2W acoustic receivers
Vemco VR2W acoustic receivers are the most frequently used tool in marine animal tracking [27].
These receivers are used to record the presence or movements of fishes or other aquatic fauna. They
are fixed to the substrate or attached to mooring lines in mid-water and record the presence of any
acoustic transmitter within a detection range that varies considerably according to environmental
conditions [27,28]. The detectability radius around the receiver can vary from 50 to 800 m depending on
habitat and context. In this study, VR2W receivers had a detection range of about 400 m radius [32], and
we were interested in estimating the association patterns of a benthic shark during mating aggregations;
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Figure 1. Conceptual framework of the study design. (a) Group of individual Port Jackson sharks resting together at their mating
aggregation. (b) Locations of Vemco VR2W acoustic receivers deployed in Jervis Bay (NSW, Australia); each circle representing a receiver.
(c) Zoom in Orion Beachwith the location of acoustic receivers, including one VR2Wacoustic receiver deployed in 2012–2013, twominiSUR
receivers deployed in 2012 and twominiSUR receivers deployed in 2013. Each receiver is represented by a small white circle and larger one
represents its detection range (blue for VR2W and green for miniSURs). The red path represents a fictional movement track of a shark
equippedwith a proximity logger able to record the presence of encountered tagged sharks both inside (red path area) and outside (grey
path area) the VR2W’s detection range. Colours of shark silhouettes represent the different recording possibilities by the receivers: black
sharks for individuals or groups recorded by the proximity logger only outside of the VR2W’s detection range, red sharks are detected by
the proximity logger, green sharks are recorded by the miniSURs and blue sharks are recorded by the VR2W receiver only. Blue and red
sharks are also recorded by the VR2W receiver. Note also that sharks recorded by the VR2W receiver only (blue sharks) can be either within
a group or solitary due to the large detection range.

Port Jackson sharks often form tight groups of several individuals which can even sit on top of each other
(figure 1a).

2.4. MiniSUR receivers
Omni-directional submersible ultrasonic receivers (miniSUR, Sonotronics, Inc.) are fixed acoustic
receivers that record the identity of tagged individuals as per VR2Ws, but the detection range can be
selected by modifying the gain setting of the receiver, allowing co-occurrences to be defined at a finer
resolution with the goal to record fish being within one to five body lengths which is regularly used
to define group formation or an association [15,25]. In this study, the detection range of the miniSURs
was set to 18 dB in 2012 corresponding to approximately 10 m radius according to the manufacturer
(Sonotronics, Inc.). This detection range corresponds to about 10 Port Jackson shark body lengths
(approx. 1–1.5 m TLs), which would pick up any shark resting in close proximity (i.e. grouping; figure 1a).
In 2013, the gain of the miniSUR was set to shift every 5 min between 18 and 36 dB (between approx. 10
and 60 m). Range tests were conducted in the field to verify the detection range by deploying a miniSUR
receiver in a fixed position and then gradually moving a Vemco V16 acoustic transmitter away from the
receiver in order to determine the drop-out of detection strength. These tests confirmed an average range
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of 10 or 60 m depending on the settings implemented in 2012 and 2013. Note that miniSUR receivers
can record and decode Vemco tags after sending the raw data to the manufacturer.

2.5. Sonotronics proximity loggers
Proximity loggers (Sonotronics, Inc.) are miniature omni-directional receivers that can be attached to an
animal’s body. In this study, the Port Jackson sharks used were 88–129 cm in TL, weighing 6–18 kg in air.
The proximity tag weighed 31 g in air (16 g in seawater); this is less than 1% of the body weight of these
sharks, a percentage that has been shown in other studies not to affect shark behaviour [15]. Tags were
mounted to the first dorsal fin of the shark using monofilament. They are designed to log the date and
time of ultrasonic transmitters set to 69 kHz frequency (Vemco V16 acoustic transmitters) moving within
the receiver’s detection range [15]. The gain settings can be modified to restrict detection range. For this
study, the receiver sensitivity setting was arranged to detect transmitters within approximately 4 m (10–
30 db), equivalent to approximately two to three Port Jackson shark body lengths. The detection range
was then verified in the field following the same method described for miniSUR receivers and confirmed
that it was approximately 4 m. The proximity logger data were used to collect association data for all
individuals that co-occurred within its range at the same interval (figure 1). Because the individual upon
which the proximity logger was mounted would be included in all association events detected, it was
excluded from the network. Note that Sonotronics proximity loggers can record and decode Vemco tags
after adjustment during decoding process.

2.6. Study design and data analysis
Our analysis is based on testing the similarity/dissimilarity of social networks built from receivers of
varying detection ranges (i.e. from 4 to 400 m) and measuring association patterns at different spatial
scales. Such comparative analysis was conducted according to a variety of restrictions in order to
consider different spatial scales from the three receiver types. First, because the proximity receiver had
the shortest monitoring period, we restricted data from miniSURs and the VR2W receiver from Orion
Beach to the same monitoring period for comparison. Moreover, both of the miniSURs were deployed
within the range of one VR2W receiver at Orion Beach and had a smaller detection range than the VR2W
receiver (figure 1). Therefore, we would expect individuals recorded by miniSURs to also be recorded
by the VR2W. The mobile proximity logger records individuals in close proximity to the focal shark, but
does not provide any spatial information for these interactions. Therefore, recorded associations cannot
be geolocalized, which limits the ability to appropriately compare the output with other receivers if
most interactions occurred outside the VR2W’s detection range. To deal with this issue, we extracted the
groups inferred from the proximity logger in which individual members were also detected by the VR2W
based on timestamps of groups (figure 1). Furthermore, as a final comparison, we considered the network
constructed from associations at all VR2W receivers in Jervis Bay (figure 1a). As both males and females
show high site fidelity to their home reefs during the mating season [32], this species is a good choice
for testing these methods. As a result, we were able to compare five datasets in 2012: (i) co-occurrences
recorded by all VR2W receivers deployed in Jervis Bay, (ii) co-occurrences recorded only by the receiver
from Orion Beach where miniSUR was deployed, (iii) co-occurrences recorded by the miniSUR receivers
at a 10 m detection range setting, (iv) associations recorded by the proximity loggers within the VR2W’s
range, and (v) total data from the proximity loggers including associations occurring outside the VR2W’s
range; and four datasets in 2013: (i) co-occurrences recorded by all VR2W receivers from Jervis Bay, (ii)
co-occurrences recorded from the VR2W receiver from Orion Beach, (iii) co-occurrences recorded by the
miniSUR receivers at a 10 m detection range setting, and (iv) co-occurrences recorded by the miniSUR
receivers at a 60 m detection range setting.

Social association matrices were constructed based on the ‘gambit of the group’ approach [5,31] where
groups are defined as co-occurrences of individuals within a receiver’s detection range and within an
arbitrary pre-defined 10-min bin (e.g. 0.00–0.09, 0.10–0.19, etc.). This also allows time for all receivers to
detect animals on a minimum of six occasions based on V16 delay time (i.e. 90 s). Association strength for
each dyad was calculated using the simple ratio index, where associations are scaled between 0 (never
observed in the same group) and 1 (always occurred in the same group) [33]. Using the simple ratio
index, the edge weight was calculated using the following equation [5]:

EAB = x
x + yAB + yA + yB

,
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where (x) is the number of sampling periods where A and B co-occurred, (yAB) is the number of times
both A and B were observed in the same sample but not together, yA is the number of samples where
only individual A was seen and yB is the number of samples where only B was seen. We used an hourly
sampling period to construct our networks. Network construction and analysis were performed with
the asnipe package in R [34].

To compare the similarity of resulting association indices between methods, we first compared
association matrices using a Mantel test for each receiver type. We also investigated the similarity
of network structural properties by determining the consistency of weighted degree (the sum of
associations from one individual) between networks produced by the different receivers. We used
methods described in Wilson et al. [35] by comparing the sum of the variances for individuals’ network
position (weighted degree) across observed networks (SVO) with the sum of individual variances in
positions from randomized networks (SVR). Individuals were ranked within each network according to
their weighted degree and scaled between 0 and 1. Individual positions were thus relative to all others
in the network, with small values of SVO indicating a similar relative ranking across repeated samples.
Significance was assessed by comparing the SVO of weighted degree for each network comparison with
a frequency distribution of SVR values generated from 10 000 randomizations of the observed data.
Randomization procedures were conducted following a data-stream randomization procedure in asnipe
R package [34] using the default algorithm using one swap and 10 000 permutations. This procedure
is usually used to determine the consistency of individuals with repeated sample networks [26]. The
randomization procedure was also used to test for randomness of associations for each network by
comparing observed mean and coefficient of variation (CV) of association indices with those of the 10 000
random networks [5].

3. Results
3.1. Data comparison
Of the seven proximity loggers deployed, only three were retrieved, from which only one provided
reliable data; the other two loggers either did not accurately code timestamp data or presented early
battery failure and therefore could not be used in the analysis. In 2012, data for all receivers were
restricted to the period during which the retained proximity logger provided data: from 25 August to 10
October 2012. In 2013, data from miniSUR and VR2W were recorded from 23 August to 21 October 2013,
and data from miniSURs were filtered for gain 18 and 64 dB (corresponding to 10 and 60 m detection
ranges, respectively). For all receiver comparisons, we restricted our analyses to individuals present
in each network: 15 individuals in 2012 and 18 in 2013.

3.2. Association indices
Networks all presented mean observed association indices significantly larger than those of their
respective random networks (p < 0.001). They also all showed observed CV significantly higher than
random ones (at least p < 0.01), except for the proximity logger restricted to the VR2W in Orion Beach in
2012 (p = 0.491). These results suggest that all receivers (except the VR2W) were able to demonstrate that
Port Jackson sharks showed some form of non-random associations measured by co-occurrence.

In 2012, Mantel tests showed that association indices from the proximity logger and miniSUR
receivers, with a detection range of 4 and 10 m, respectively, were significantly correlated (r = 0.780,
p = 0.001; table 1). Association data produced by the proximity logger restricted to the VR2W’s range
and in its totality were significantly correlated (r = 0.889, p = 0.001; table 1). Similarly, association matrices
produced by all VR2W receivers in Jervis Bay produced were correlated to the one produced when only
considering the VR2W from Orion Beach (r = 0.869, p = 0.001; table 1). However, comparisons between
VR2Ws and either proximity (inside or outside VR2W range) or miniSUR receivers in 2012 revealed that
association matrices were not significantly correlated in both cases (table 1).

In 2013, there was a significant correlation between association matrices from miniSUR of 10 and 60 m
range (r = 0.965, p = 0.001; table 1). Restricting associations to Orion Beach did not significantly affect
the correlation between association matrices when using VR2W receivers (r = 0.794, p = 0.001; table 1).
However, association matrices built from miniSURs were not significantly correlated from those inferred
from VR2W receivers in both cases (table 1).

These observed changes in correlations were associated with a difference in the structure of the
association matrices of the VR2W compared to the other receivers as shown by heatmaps of values in
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Table 1. Statistical output from comparison of Port Jackson shark network properties between receivers.

association matrices similarity degree consistency

year receiver comparison Mantel r p-value SVO SVR (±CI) p-value

2012 VR2W (Orion)–VR2W (all) 0.869 0.001 0.331 0.241 (0.231; 0.262) 1.000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2012 VR2W (all)–Proxi (all) −0.163 0.827 1.689 0.976 (0.953; 1.000) 1.000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2012 VR2W (all)–Proxi (Orion) −0.105 0.721 1.591 1.174 (1.146; 1.202) 1.000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2012 VR2W (all)–SUR-10 m −0.167 0.827 1.643 0.434 (0.421; 0.447) 1.000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2012 VR2W (Orion)–SUR-10 m −0.157 0.807 1.576 0.518 (0.505; 0.532) 1.000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2012 VR2W (Orion)–Proxi (VR2W) −0.161 0.828 1.607 1.495 (1.463; 1.527) 0.972
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2012 SUR-10 m–Proxi (VR2W) 0.712 0.001 0.199 0.766 (0.741; 0.790) 0.000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2012 Proxi–Proxi (VR2W) 0.889 0.001 0.158 0.919 (0.894; 0.943) 0.000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2012 Proxi–SUR-10 m 0.780 0.001 0.193 0.499 (0.488; 0.501) 0.000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2012 Proxi–VR2W (Orion) −0.253 0.930 1.887 0.897 (0.488; 0.509) 1.000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2013 VR2W (Orion)–VR2W (all) 0.794 0.001 0.363 0.804 (0.782; 0.816) 0.000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2013 VR2W (all)–SUR-60 m 0.086 0.202 2.148 1.241 (1.225; 1.241) 1.000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2013 VR2W (all)–SUR-10 m 0.034 0.351 2.229 0.804 (0.782; 0.826) 1.000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2013 VR2W (Orion)–SUR-60 m 0.034 0.364 1.917 1.241 (1.225; 1.257) 1.000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2013 VR2W (Orion)–SUR-10 m 0.018 0.402 1.912 0.804 (0.782; 0.826) 1.000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2013 SUR-10 m–SUR-60 m 0.965 0.001 0.023 0.808 (0.782; 0.836) 0.000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

matrices (figure 2). In 2012, association matrices built from VR2Ws appear to underestimate association
scores relative to those of miniSURs and proximity loggers (as shown by cells in figure 2 which are
overall darker for VR2Ws). This may be due to the position of miniSURs in 2012, which were installed
right on areas of subgroups of tagged sharks while within a wider detection range. In this case, the
VR2W receiver may record both solitary and associated individuals as being part of a group, thereby
weakening the relative strength of association. On the contrary in 2013, association matrices built from
VR2Ws seem to overestimate association scores relative to those of miniSURs (as shown by cells in
figure 2 which are overall lighter for VR2Ws). In this case, miniSURs might be placed outside the range of
subgroups of tagged sharks, therefore underestimating the strength of associations because of relatively
fewer detections compared with VR2W receivers.
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3.3. Consistency in centrality rank
Observed sum of variances (SVO) of individual weighted degree between proximity logger and miniSUR
receiver (10 m range) was statistically smaller than the randomized sum of variances (SVR), indicating
repeatability in individual social position across methods (restricting proximity receiver to Orion Beach:
SVO = 0.199, p < 0.001 or not SVO = 0.193, p < 0.001; table 1). Similarly, consistency was also found
between miniSUR of 10 and 60 m detection range in 2013, suggesting that the same information is
captured at any range within 60 m (SVO = 0.023, p < 0.001; table 1). Consistency in rank was also found
when comparing restricted data of proximity receivers (SVO = 0.158, p < 0.001; table 1). For VR2Ws,
restricting data to the VR2W at Orion Beach did not change the rank of individual in their network in 2013
(SVO = 0.363, p < 0.001; table 1), but did in 2012 (SVO = 0.331, p = 1.000; table 1). However, SVO values
were much higher, and consequently, the consistency of individuals’ ranks was not significant when
comparing the network produced by the proximity logger and the miniSURs with the one constructed
from the VR2W receiver (table 1). Higher and lower ranks were better conserved throughout the
miniSUR and proximity receivers than the relative medium ranks (figure 3).

4. Discussion
Acoustic telemetry is now commonly used by marine biologists to infer movement patterns of
fishes. With the development of social network tools for understanding both the spatial and social
network structure in ecology, acoustic telemetry has been recently proposed as a means to investigate
the social structure of aggregations by recording co-occurrences of tagged individuals at acoustic
receivers [21,23,24]. Proximity networks are often used as a proxy for interaction networks, but there is a
need to carefully consider the definition of edges in interaction networks and the influence of spatial scale
on social interactions [30]. While acoustic telemetry has been successfully employed to infer patterns
of social structuring in a mobile shark species [23], our results demonstrate that this may be species-
dependent as co-occurrences inferred from receivers with a large detection range may not accurately
represent social interactions at smaller spatial scales, increasing the number of false positive interactions,
especially in less mobile benthic species such as Port Jackson sharks.

Our study compared three types of acoustic receivers with different detection ranges extending from 4
to about 400 m. Our results not only showed that association indices built from VR2W acoustic receivers
were not correlated to those inferred from miniSUR and proximity receivers (figure 2 and table 1), but
also that the position of individuals within their network (i.e. their rank in centrality) was statistically
different (figure 3 and table 1). However, association indices were correlated between networks built from
miniSUR and proximity receivers, and individual centrality ranks were relatively consistent. This means
that, in the case of benthic animals such as Port Jackson sharks, individual associations seem relevant
when recorded within a 4–60 m detection range, with a higher resolution at 4–10 m. This is not surprising
as Port Jackson sharks are often found sharing refuges or gutters, forming small aggregations within a
few metres (figure 1a) [36]. This is also in accordance with observational studies of social structure in
fish and sharks where associations are generally defined as two individuals present within one to four
body lengths [15,17,25]. Although our study was characterized by a low sample size, node level metrics
in partial networks should predict an animal’s real social position [37], especially as our study focuses on
the relative difference of edge weight and centrality between network construction methods of a similar
set of individuals.

Previous studies have proposed the use of passive acoustic telemetry to infer interactions in large
fishes in the wild [14,22]. However, these studies used relatively large detection ranges. For instance,
Holland et al. [14] proposed the use of acoustic ‘Business Card’ tags, which behave in a similar way to
proximity loggers [15] in that they are attached to the shark and record every transmitter-attached shark
swimming in proximity of the Business Card-tagged individual. This device is now commercialized
under the name Vemco Mobile Transceiver (VMT) [2]. Nevertheless, detection range of the Business Card
tags used by Holland et al. [14] was greater than 150 m and about 200 m for VMT [2]. A recent study used a
similar approach to study the inter- and intra-specific encounter networks of sand tiger sharks, Carcharias
taurus, by analysing data from VMT tags recovered from two sharks [38]. The authors defined ‘social
interactions’ as two or more individuals spending two or more consecutive hours together within a circle
of greater than 1000 m radius. While they argued for evidence of fission–fusion behaviour, their analysis
did not test for randomness of encounters or structure of the data, a crucial step in SNA [5]. Therefore,
in this case, associations may represent random encounters during seasonal migrations. In an attempt to
understand the schooling patterns of the fishes, Stehfest et al. [22] used an array of Vemco VR2 acoustic
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receivers installed on artificial fish aggregating devices (FADs) to construct a network of co-occurrence
of tagged yellowfin tuna (Thunnus albacares) visiting these FADs. The detection range of the receivers
used in Stehfest et al. [22] was less than 600 m. While it is difficult to determine if co-occurrences within
a circle of greater than 1000 m diameter are representative of biologically meaningful social interactions,
the study was focused on describing the aggregative behaviour of tunas around FADs rather than real
social interactions, as tunas form large schools implying that fish could be part of the same school but not
necessarily associating with a particular individual. These examples reinforce the necessity to consider
that research questions should drive edge definition in social networks [29,30] and that researchers need
to carefully question the appropriate scale at which they need to construct their proximity networks and
the analyses required to answer their specific questions.

A recent study presented a promising approach to explore social network structure from telemetry
data of spatio-temporal co-occurrences [23]. While associations are also defined within the detection
range of VR2W acoustic receivers, the method proposed is based on the fact that mobile animals such
as sharks can form strong associations if they move between receivers together (and are continually
detected on the same receivers and in different clustering events), which can be demonstrated by
extracting the timing and directionality of dyadic interactions from the data [23,24]. Mobility and
sociality of the focal species may, however, influence the likelihood of depicting real associations via
such large range receivers and the number of receivers used. For instance, assessment of interactions
in benthic species with low mobility, such as Port Jackson sharks which often rest in dense groups
stacked one on top of the other (figure 1a), likely requires a relatively lower number of receivers and
a smaller detection range than species such as reef sharks that follow and form mobile social groups
over larger spatial scales. Studying co-occurrences can provide interesting and important contributions
for our understanding of population dynamics [23,39], but caution is required when interpreting them as
real social interactions. New technologies such as Encounternet, which is an automated telemetry system
combining animal radio tags and wireless stations, can improve the creation of social networks [40,41],
although this technology has rarely been tested underwater [42]. Another approach is to use the Vemco
Radio-Acoustic Positioning (VRAP) system or the more recent VPS to record the spatial position of
individual sharks and subsequently infer associations between individuals [25,43]. This is certainly a
more accurate resolution that is similar to the use of GPS trackers in terrestrial studies and is expected
to produce more realistic interactions, but remains relatively complex and costly to implement. Inferring
social interactions from spatial positioning may also require further development in testing randomness
of positioning [44] to remove potential unwanted by-products of spatial overlap, especially in benthic
sharks that spend long periods resting on the bottom.

In our study, VR2W receivers were not able to capture co-occurrences at an appropriate spatial scale to
infer social associations from Port Jackson sharks, which reside in the fact that it likely not only records
real associations but also isolated solitary individuals inside the receiver range, both of which would
be assigned to a group as illustrated in figure 1. In the latter case, assigning lone individuals to groups
is clearly an error. The degree of mobility likely influences the rate of false positives as low mobility
will increase detection probability and as a result increase assigned associations. This is especially the
case for benthic species such as Port Jackson sharks [32] or wobbegong sharks [25] that spend most of
their time sitting on the bottom, reducing the likelihood of encountering other individuals away from
their resting area, and where social interactions may occur within one or two body lengths (i.e. approx.
3 m). In this study, we used V16 acoustic transmitters which have the strongest acoustic signal of the
tags from this manufacturer, enabling a VR2W acoustic receiver to detect the V16 at a distance of about
400 m. One solution to reduce this distance could use lower-powered tags (e.g. V9 or V13) to produce
similar detection ranges to the other systems tested in our study. Future work employing simulations
re-creating data using different detection methods for several species of different mobility should help
in better determining the influence of detection range for inferring real social associations.

Our study also demonstrates that using different types of receivers can contribute to investigating
different aspects of the behavioural ecology of the Port Jackson shark. While using an optimal VPS
receiver design was not possible due to budget limitations, we used a large network of VR2W acoustic
receivers to document large-scale movement patterns of sharks within Jervis Bay and along the east
Australian coastline [32], while deploying miniSUR acoustic receivers with a smaller detection range
at specific mating aggregation sites to document patterns of associations between individuals of this
benthic shark (figure 1). The lack of differences between networks constructed from all VR2Ws and
restricted to the VR2W from Orion Beach may be because Port Jackson sharks only transited through
other receivers before settling at Orion Beach (i.e. 99% of detections occurred at Orion Beach); therefore,
most interactions occurred at Orion Beach. This would be a typical pattern of any species with high
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site fidelity. Our design could have been improved by reducing the power of the tags used in order to
reduce the detection range of VR2W acoustic receivers to make it similar to the miniSURs. However, such
reduction would have impacted the effectiveness of our large-scale migration study [32]. Our preliminary
assessment of the benefit of using receivers with a small detection range to study the social network
of our study benthic shark species suggests that increasing the number of miniSUR receivers at our
aggregation site in future studies will likely improve the precision of our inference of the social network.

Proximity loggers [15] remain the most robust technique for inferring meaningful social interactions;
however, they still suffer from the need to recover the receiver from the animal to download the data,
which is challenging even in low mobile species such as demonstrated by our study, although some
solutions to release and retrieve devices are under development [45]. Moreover, they do not provide
any spatial information on recorded interactions, although they can be combined with other tags that
do, and return a network of encounters centred around one individual. However, complemented with
the VR2W receiver array as implemented in our study, spatial information can be recorded for some
associations. The Business Card tags have the convenience of being able to be geolocalized within a
network of acoustic receivers, but also need to be recovered to retrieve the data [14]. The optimal system
for inferring social networks of marine organisms would be a combination of the two technologies, with
mobile receivers recording the tagged individuals encountered within a reduced range and transferring
the data to fixed listening stations in proximity [14], although this would represent a technological
challenge due to time taken to download the data. Alternatively, proximity receivers could communicate
with another animal-borne device providing location of the animal and remotely transferring the data
from the proximity logger. This idea is under development with VMT communicating with Service Argos
via Bluetooth to remotely transmit data [46]. Developing a similar technology with short-range proximity
receivers will greatly improve our ability to record intra- and inter-specific interactions in the marine
environment. Recently, the proximity logger technology used to infer social networks of birds [40,41]
has been adapted to the aquatic context [42]. Briefly, it consists of three device types: (i) a set of small
tags emitting individually coded high frequency radio signals, receives signals from other tags and its
proximity, and logs perceived encounters in an on-board memory, (ii) a set of wireless base stations, fixed
at known positions and recording encounters with tags, uploading the logs stored in the tags’ memory
and transmitting information between tags and the third component of the system, and (iii) an interface
between the user and the system (i.e. a transmitter/receiver node mounted on a laptop) collects the data
from the base stations. Such promising method requires testing in marine environments as it may be
challenging in some conditions, but provides a promising tool to improve fine-scale association patterns
in fishes.

5. Conclusion
Our study provides an example of the limitations and precautions that marine ecologists need to
take into account when attempting to depict the social structure of fish aggregations in the marine
environment using acoustic telemetry. The ecology of the species should be considered to define the
scale of biologically meaningful interactions between individuals, especially its mobility as marine
organisms can socialize in different ways [47]. These issues are also applicable to terrestrial studies as
similar problems are found for certain highly mobile or rarely detected species. Our study provides
evidence that using a network of VR2W acoustic receivers may not be judicious in exploring the social
network of a benthic shark species at its mating aggregation due to potential low rate of movements
over large spatial scales. We therefore encourage marine ecologists to think about the ecological research
questions considered and the scales and contexts at which they can be answered [29]. Broad networks
of acoustic receivers with large detection ranges (e.g. VR2Ws) can be used to construct co-occurrence
networks to investigate population dynamics, particularly for mobile species that do not stay in one
place for long periods of time [23], while reduction of tag power can contribute to get closer to realistic
contact by reducing a detection range. Alternatively, they can be used in a triangulation set-up to achieve
high spatial resolution positioning (e.g. VPS), although this set-up is more complicated and costly.
Likewise, networks of receivers with a smaller detection range (e.g. miniSURs) are likely useful to build
more realistic interaction networks and investigate other specific social mechanisms such as courtship,
social learning or diffusion of information or disease. Combining these receiver types can represent an
optimal design, using, for example, VR2Ws to monitor large-scale population dynamics and individual
movement patterns and deploying miniSUR at specific restricted aggregation sites to monitor association
patterns. Proximity loggers are likely the most accurate method to infer small-scale interactions in marine
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animals, but technological drawbacks still weaken their effectiveness. The use of multi-sensor tagging
is likely a good way forward [48] in providing complementary information. Promising technological
developments such as Encounternet’s adaptation to the marine environment [42] or the development
of new generations of proximity loggers that facilitate the retrieving of data via new communicating
systems will not only benefit social interaction studies in marine environments, but also the study of key
ecological processes such as predator–prey interactions.
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